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PREFACE

M any students in the behavioral sciences view the required statistics course as an 
intimidating obstacle that has been placed in the middle of an otherwise interest-

ing curriculum. They want to learn about human behavior—not about math and science. 
As a result, the statistics course is seen as irrelevant to their education and career goals. 
However, as long as the behavioral sciences are founded in science, knowledge of statistics 
will be necessary. Statistical procedures provide researchers with objective and systematic 
methods for describing and interpreting their research results. Scienti�c research is the 
system that we use to gather information, and statistics are the tools that we use to distill 
the information into sensible and justi�ed conclusions. The goal of this book is not only 
to teach the methods of statistics, but also to convey the basic principles of objectivity and 
logic that are essential for science and valuable for decision making in everyday life.

Essentials of Statistics for the Behavioral Sciences, ninth edition, is intended for an 
undergraduate statistics course in psychology or any of the behavioral sciences. The overall 
learning objectives of this book include the following, which correspond to some of the 
learning goals identi�ed by the American Psychological Association (Noland and the Soci-
ety for the Teaching of Psychology Statistical Literacy Taskforce, 2012): 

1. Calculate and interpret the meaning of basic measures of central tendency and  
variability. 

2. Distinguish between causal and correlational relationships. 

3. Interpret data displayed as statistics, graphs, and tables. 

4. Select and implement an appropriate statistical analysis for a given research design, 
problem, or hypothesis. 

5. Identify the correct strategy for data analysis and interpretation when testing 
hypotheses. 

6. Select, apply, and interpret appropriate descriptive and inferential statistics. 

7. Produce and interpret reports of statistical analyses using APA style. 

8. Distinguish between statistically signi�cant and chance �ndings in data. 

9. Calculate and interpret the meaning of basic tests of statistical signi�cance. 

10. Calculate and interpret the meaning of con�dence intervals. 

11. Calculate and interpret the meaning of basic measures of effect size statistics. 

12. Recognize when a statistically signi�cant result may also have practical  
signi�cance. 

The book chapters are organized in the sequence that we use for our own statistics 
courses. We begin with descriptive statistics (Chapters 1–4), next lay the foundation for 
inferential statistics (Chapters 5–8), and then examine a variety of statistical procedures 
focused on sample means and variance (Chapters 9–13), before moving on to correlational 
methods and nonparametric statistics (Chapters 14 and 15). Information about modifying 
this sequence is presented in the “To the Instructor” section for individuals who prefer a 
different organization. Each chapter contains numerous examples (many based on actual 
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xii PREFACE

research studies), learning objectives and learning checks for each section, a summary and 
list of key terms, instructions for using SPSS, detailed problem-solving tips and demonstra-
tions, and a set of end-of-chapter problems.

Those of you who are familiar with previous editions of Essentials of Statistics for the 
Behavioral Sciences will notice that some changes have been made. These changes are 
summarized in the “To the Instructor” section. Students who are using this edition should 
read the section of the preface entitled “To the Student.” In revising this text, our students 
have been foremost in our minds. Over the years, they have provided honest and useful 
feedback, and their hard work and perseverance has made our writing and teaching most 
rewarding. We sincerely thank them. 

To the Instructor

Those of you familiar with the previous edition of Essentials of Statistics for the BehavThose of you familiar with the previous edition of Essentials of Statistics for the BehavThose of you familiar with the previous edition of -
ioral Sciences will notice a number of changes in the ninth edition. Throughout the book, 
research examples have been updated, real-world examples of particular interest to stu-
dents have been added, and the end-of-chapter problems have been extensively revised.  

Major revisions for this edition include:

1. Each section of every chapter begins with a list of Learning Objectives for that 
speci�c section. 

2. Each section ends with a Learning Check consisting of multiple-choice questions 
and answers, with at least one question for each Learning Objective.

3. Do-it-yourself examples have been added to each chapter. These present numerical 
examples and ask student to perform speci�c statistical calculations to test their 
understanding of topics presented in the chapter.

Other examples of speci�c and noteworthy revisions include:

Chapter 1 The section on data structures and research methods has been edited to par-
allel the Statistics Organizer: Finding the Right Statistics for Your Data in the appendix. 
The chapter has been reorganized to simplify the sequence of topics.

Chapter 2 The chapter has undergone relatively minor editing to clarify and simplify. 

Chapter 3 The sequence of topics within the chapter has been reorganized to facilitate 
the flow of concepts. The median discussion has been refined and clarified and includes 
both samples and populations.

Chapter 4 The opening paragraphs have been edited to relate the concept of variability to 
the more familiar concepts of diversity and consistency. The sections on standard deviation 
and variance have been edited to increase emphasis on concepts rather than calculations. 

Chapter 5 The section discussing z-scores for samples has been incorporated into the 
other sections of the chapter so that populations and samples are consistently discussed 
together.  

Chapter 6 The section “Looking Ahead to Inferential Statistics” has been shortened 
and simplified.
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PREFACE xiii

Chapter 7 The box feature explaining the difference between standard deviation and 
standard error has been deleted, with the content being incorporated into Section 7.4. 
Furthermore, the content was edited to emphasize that the standard error is the primary 
new element introduced in the chapter. The final section, “Looking Ahead to Inferential 
Statistics,” was simplified and shortened to be consistent with the changes in Chapter 6.

Chapter 8 A redundant example was deleted, which shortened and streamlined the 
remaining material so that most of the chapter is focused on the same research example.

Chapter 9 The section introducing confidence intervals was edited to clarify the origin 
of the confidence interval equation and to emphasize that the interval is constructed at the 
sample mean.

Chapter 10 The section presenting the estimated standard error of (M1 2 M2M2M ) has been 
simplified and shortened.

Chapter 11 The discussion of matched-subjects designs has been moved to the end of the 
chapter as part of the strengths and weaknesses of independent- versus repeated-measures 
designs. The section discussing hypothesis testing has been separated from the section on 
effect size and confidence intervals to be consistent with the other two chapters on t tests. t tests. t
The section comparing independent- and repeated-measures designs has been expanded. 

Chapter 12 One redundant example of an ANOVA has been eliminated to simplify 
and shorten the chapter. Sections of the chapter have been reorganized to allow the discus-
sion to flow directly from hypothesis tests and effect size to post tests. 

Chapter 13 The section discussing factors that influence the outcome of a repeated-
measures hypothesis test and associated measures of effect size has been substantially ex-
panded. The same research example is used to introduce and to demonstrate the two-factor 
ANOVA, which simplifies that portion of the chapter.

Chapter 14 The section on partial correlations was deemed not essential to the topic 
of correlation and has been eliminated, which substantially simplifies and shortens the 
chapter.  

Chapter 15 A new section introduces Cohen’s w as a measure of effect size for both 
chi-square tests. 

■ Matching the Text to Your Syllabus
The book chapters are organized in the sequence that we use for our own statistics courses.  
However, different instructors may prefer different organizations and probably will choose 
to omit or deemphasize speci�c topics. We have tried to make separate chapters, and even 
sections of chapters, completely self-contained, so that they can be deleted or reorganized 
to �t the syllabus for nearly any instructor. Some common examples are as follows:

 ■ It is common for instructors to choose between emphasizing analysis of variance 
(Chapters 12 and 13) or emphasizing correlation/regression (Chapter 14). It is rare for       
a one-semester course to complete coverage of both topics.   

 ■ Although we choose to complete all the hypothesis tests for means and mean differ-
ences before introducing correlation (Chapter 14), many instructors prefer to  place 
correlation much earlier in the sequence of course topics. To accommodate this, 
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sections 14.1, 14.2, and 14.3 present the calculation and interpretation of the Pearson 
correlation and can be introduced immediately following Chapter 4 (variability). 
Other sections of Chapter 14 refer to hypothesis testing and should be delayed until 
the process of hypothesis testing (Chapter 8) has been introduced.

 ■ It is also possible for instructors to present the chi-square tests (Chapter 15) much 
earlier in the sequence of course topics. Chapter 15, which presents hypothesis tests 
for proportions, can be presented immediately after Chapter 8, which introduces the 
process of hypothesis testing. If this is done, we also recommend that the Pearson 
correlation (Sections 14.1, 14.2, and 14.3) be presented early to provide a foundation 
for the chi-square test for independence.

To the Student

A primary goal of this book is to make the task of learning statistics as easy and painless 
as possible. Among other things, you will notice that the book provides you with a number 
of opportunities to practice the techniques you will be learning in the form of Learning 
Checks, Examples, Demonstrations, and end-of-chapter problems. We encourage you to 
take advantage of these opportunities. Read the text rather than just memorizing the for-
mulas. We have taken care to present each statistical procedure in a conceptual context that 
explains why the procedure was developed and when it should be used. If you read this 
material and gain an understanding of the basic concepts underlying a statistical formula, 
you will �nd that learning the formula and how to use it will be much easier. In the “Study 
Hints” that follow, we provide advice that we give our own students. Ask your instructor 
for advice as well; we are sure that other instructors will have ideas of their own.

■ Study Hints
You may �nd some of these tips helpful, as our own students have reported.

 ■ The key to success in a statistics course is to keep up with the material. Each new 
topic builds on previous topics. If you have learned the previous material, then the 
new topic is just one small step forward. Without the proper background, however, 
the new topic can be a complete mystery. If you find that you are falling behind, get 
help immediately.

 ■ You will learn (and remember) much more if you study for short periods several 
times per week rather than try to condense all of your studying into one long session. 
Distributed practice is best for learning. For example, it is far more effective to study 
and do problems for half an hour every night than to have a single three-and-a-half-
hour study session once a week. We cannot even work on writing this book without 
frequent rest breaks.

 ■ Do some work before class. Stay a little bit ahead of the instructor by reading the 
appropriate sections before they are presented in class. Although you may not fully 
understand what you read, you will have a general idea of the topic, which will make 
the lecture easier to follow. Also, you can identify material that is particularly confus-
ing and then be sure the topic is clarified in class. 

 ■ Pay attention and think during class. Although this advice seems obvious, often it is 
not practiced. Many students spend so much time trying to write down every example 
presented or every word spoken by the instructor that they do not actually understand 
and process what is being said. Check with your instructor—there may not be a need 
to copy every example presented in class, especially if there are many examples like 
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it in the text. Sometimes, we tell our students to put their pens and pencils down for a 
moment and just listen.

 ■ Test yourself regularly. Do not wait until the end of the chapter or the end of 
the week to check your knowledge. As you are reading the textbook, stop and 
do the examples. Also, stop and do the Learning Checks at the end of each sec-
tion. After each lecture, work some of the end-of- chapter problems. Review the 
Demonstration problems, and be sure you can define the Key Terms. If you are 
having trouble, get your questions answered immediately—reread the section, go 
to your instructor, or ask questions in class. By doing so, you will be able to move 
ahead to new material.

 ■ Do not kid yourself! Avoid denial. Many students observe their instructor solving 
problems in class and think to themselves, “This looks easy, I understand it.” Do you 
really understand it? Can you really do the problem on your own without having to 
leaf through the pages of a chapter? Although there is nothing wrong with using ex-
amples in the text as models for solving problems, you should try working a problem 
with your book closed to test your level of mastery.

 ■ We realize that many students are embarrassed to ask for help. It is our biggest chal-
lenge as instructors. You must find a way to overcome this aversion. Perhaps contact-
ing the instructor directly would be a good starting point, if asking questions in class 
is too anxiety-provoking. You could be pleasantly surprised to find that your instruc-
tor does not yell, scold, or bite! Also, your instructor might know of another student 
who can offer assistance. Peer tutoring can be very helpful.

■ Contact Us
Over the years, the students in our classes and other students using our book have given us 
valuable feedback. If you have any suggestions or comments about this book, you can write 
to either Professor Emeritus Frederick Gravetter, Professor Emeritus Larry Wallnau, or 
Professor Lori-Ann Forzano at the Department of Psychology, The College at Brockport, 
SUNY, 350 New Campus Drive, Brockport, New York 14420. You can also contact Profes-
sor Emeritus Gravetter directly at fgravett@brockport.edu.

Ancillaries

Ancillaries for this edition include the following.

 ■ MindTap® Psychology MindTap® Psychology for Gravetter/Wallnau/Forzano’s 
Essentials of Statistics for the Behavioral Sciences, Ninth Edition is the digital learn-
ing solution that helps instructors engage and transform today’s students into criti-
cal thinkers. Through paths of dynamic assignments and applications that you can 
personalize, real-time course analytics, and an accessible reader, MindTap helps you 
turn cookie cutter into cutting edge, apathy into engagement, and memorizers into 
higher-level thinkers. As an instructor using MindTap you have at your fingertips 
the right content and unique set of tools curated specifically for your course, such as 
video tutorials that walk students through various concepts and interactive problem 
tutorials that provide students opportunities to practice what they have learned, all 
in an interface designed to improve workflow and save time when planning lessons 
and course structure. The control to build and personalize your course is all yours, 
focusing on the most relevant material while also lowering costs for your students. 
Stay connected and informed in your course through real time student tracking that 
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xvi PREFACE

provides the opportunity to adjust the course as needed based on analytics of interac-
tivity in the course.

 ■ Aplia An online interactive learning solution that ensures students stay involved 
with their coursework and master the basic tools and concepts of statistical analysis. 
Created by a research psychologist to help students excel, Aplia’s content engages 
students with questions based on real-world scenarios that help students understand 
how statistics applies to everyday life. At the same time, all chapter assignments are 
automatically graded and provide students with detailed explanations, making sure 
they learn from and improve with every question.

 ■ Online Instructor’s Manual The manual includes learning objectives, key terms, a 
detailed chapter outline, a chapter summary, lesson plans, discussion topics, student 
activities, “What If” scenarios, media tools, a sample syllabus, and an expanded test 
bank. The learning objectives are correlated with the discussion topics, student activi-
ties, and media tools.

 ■ Online PowerPoints Helping you make your lectures more engaging while effec-
tively reaching your visually oriented students, these handy Microsoft PowerPoint®

slides outline the chapters of the main text in a classroom-ready presentation. The 
PowerPoint® slides are updated to reflect the content and organization of the new 
edition of the text.

 ■ Cengage Learning Testing, powered by Cognero® Cengage Learning Testing, 
powered by Cognero®, is a flexible online system that allows you to author, edit, and 
manage test bank content. You can create multiple test versions in an instant and 
deliver tests from your LMS in your classroom.
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2 CHAPTER 1 | Introduction to Statistics

1-1 Statistics, Science, and Observations

LE A R N I N G O B J E C T IV E S  

1. De�ne the terms population, sample, parameter, and statistic; describe the relation-
ships between them; and identify examples of each.  

2. De�ne the two general categories of statistics, descriptive and inferential, and 
describe how they are used in a typical research study. 

3. Describe the concept of sampling error and explain how sampling error creates the 
fundamental problem that inferential statistics must address. 

■ Introduction
Before we begin our discussion of statistics, we ask you to read the following paragraph 
taken from the philosophy of Wrong Shui (Candappa, 2000).

The Journey to Enlightenment
In Wrong Shui, life is seen as a cosmic journey, a struggle to overcome unseen and 
unexpected obstacles at the end of which the traveler will �nd illumination and 
enlightenment. Replicate this quest in your home by moving light switches away 
from doors and over to the far side of each room.*

Why did we begin a statistics book with a bit of twisted philosophy? In part, we simply 
wanted to lighten the mood with a bit of humor—starting a statistics course is typically not 
viewed as one of life’s joyous moments. In addition, the paragraph is an excellent counter-
example for the purpose of this book. Speci�cally, our goal is to do everything possible to 
prevent you from stumbling around in the dark by providing lots of help and illumination 
as you journey through the world of statistics. To accomplish this, we begin each section 
of the book with clearly stated learning objectives and end each section with a brief quiz 
to test your mastery of the new material. We also introduce each new statistical procedure 
by explaining the purpose it is intended to serve. If you understand why a new procedure is 
needed, you will �nd it much easier to learn.

The objectives for this �rst chapter are to provide an introduction to the topic of statis-
tics and to give you some background for the rest of the book. We discuss the role of statis-
tics within the general �eld of scienti�c inquiry, and we introduce some of the vocabulary 
and notation that are necessary for the statistical methods that follow.

As you read through the following chapters, keep in mind that the general topic of 
statistics follows a well-organized, logically developed progression that leads from basic 
concepts and de�nitions to increasingly sophisticated techniques. Thus, each new topic 
serves as a foundation for the material that follows. The content of the �rst nine chapters, 
for example, provides an essential background and context for the statistical methods pre-
sented in Chapter 10. If you turn directly to Chapter 10 without reading the �rst nine chap-
ters, you will �nd the material confusing and incomprehensible. However, if you learn and 
use the background material, you will have a good frame of reference for understanding 
and incorporating new concepts as they are presented.

■ Definitions of Statistics
By one de�nition, statistics consist of facts and �gures such as the average annual snowfall 
in Denver or Derek Jeter’s lifetime batting average. These statistics are usually informative 

*Candappa, R. (2000). The Little Book of Wrong Shui. Kansas City, MO: Andrews McMeel Publishing. 
Reprinted by permission.
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SECTION 1-1 | Statistics, Science, and Observations 3

and time-saving because they condense large quantities of information into a few simple �g-
ures. Later in this chapter we return to the notion of calculating statistics (facts and �gures), 
but for now we concentrate on a much broader de�nition of statistics. Speci�cally, we use the 
term statistics to refer to a general �eld of mathematics. In this case, we are using the term 
statistics as a shortened version of statistical procedures. For example, you are probably 
using this book for a statistics course in which you will learn about the statistical techniques 
that are used to summarize and evaluate research results in the behavioral sciences.

Research in the behavioral sciences (and other �elds) involves gathering information. 
To determine, for example, whether college students learn better by reading material on 
printed pages or on a computer screen, you would need to gather information about stu-
dents’ study habits and their academic performance. When researchers �nish the task of 
gathering information, they typically �nd themselves with pages and pages of measure-
ments such as test scores, personality scores, and opinions. In this book, we present the 
statistics that researchers use to analyze and interpret the information that they gather. 
Speci�cally, statistics serve two general purposes:

1. Statistics are used to organize and summarize the information so that the researcher 
can see what happened in the research study and can communicate the results to 
others.

2. Statistics help the researcher to answer the questions that initiated the research by 
determining exactly what general conclusions are justi�ed based on the speci�c 
results that were obtained.

The term statistics refers to a set of mathematical procedures for organizing,  
summarizing, and interpreting information.

Statistical procedures help ensure that the information or observations are presented 
and interpreted in an accurate and informative way. In somewhat grandiose terms, statistics 
help researchers bring order out of chaos. In addition, statistics provide researchers with a 
set of standardized techniques that are recognized and understood throughout the scienti�c 
community. Thus, the statistical methods used by one researcher will be familiar to other 
researchers, who can accurately interpret the statistical analyses with a full understanding 
of how the statistics were done and what the results signify.

■ Populations and Samples
Research in the behavioral sciences typically begins with a general question about a speci�c 
group (or groups) of individuals. For example, a researcher may want to know what factors 
are associated with academic dishonesty among college students. Or a researcher may want 
to examine the amount of time spent in the bathroom for men compared to women. In the 
�rst example, the researcher is interested in the group of college students. In the second 
example, the researcher wants to compare the group of men with the group of women. In sta-
tistical terminology, the entire group that a researcher wishes to study is called a population.

A population is the set of all the individuals of interest in a particular study.

As you can well imagine, a population can be quite large—for example, the entire set 
of women on the planet Earth. A researcher might be more speci�c, limiting the population 
for study to women who are registered voters in the United States. Perhaps the investigator 
would like to study the population consisting of women who are U.S. senators. Popula-
tions can obviously vary in size from extremely large to very small, depending on how the 
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4 CHAPTER 1 | Introduction to Statistics

investigator de�nes the population. The population being studied should always be identi-
�ed by the researcher. In addition, the population need not consist of people—it could be a 
population of rats, corporations, parts produced in a factory, or anything else an investiga-
tor wants to study. In practice, populations are typically very large, such as the population 
of college sophomores in the United States or the population of small businesses.

Because populations tend to be very large, it usually is impossible for a researcher to 
examine every individual in the population of interest. Therefore, researchers typically select 
a smaller, more manageable group from the population and limit their studies to the individ-
uals in the selected group. In statistical terms, a set of individuals selected from a population 
is called a sample. A sample is intended to be representative of its population, and a sample 
should always be identi�ed in terms of the population from which it was selected.

A sample is a set of individuals selected from a population, usually intended to 
represent the population in a research study.

Just as we saw with populations, samples can vary in size. For example, one study might 
examine a sample of only 10 students in a graduate program and another study might use a 
sample of more than 10,000 people who take a speci�c cholesterol medication.

So far we have talked about a sample being selected from a population. However, this is 
actually only half of the full relationship between a sample and its population. Speci�cally, 
when a researcher �nishes examining the sample, the goal is to generalize the results back 
to the entire population. Remember that the research started with a general question about 
the population. To answer the question, a researcher studies a sample and then generalizes 
the results from the sample to the population. The full relationship between a sample and a 
population is shown in Figure 1.1.

■ Variables and Data
Typically, researchers are interested in speci�c characteristics of the individuals in the pop-
ulation (or in the sample), or they are interested in the factors that may in�uence individuals 

THE POPULATION
All of the individuals of interest

THE SAMPLE
The individuals selected to

participate in the research study

The results
from the sample
are generalized

to the population

The sample
is selected from
the population

F I G U R E  1 .1
The relationship between 
a population and a sample.
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SECTION 1-1 | Statistics, Science, and Observations 5

Every population parameter has a corresponding sample statistic, and most research 
studies involve using statistics from samples as the basis for answering questions about 
population parameters (Figure 1.1). As a result, much of this book is concerned with the 
relationship between sample statistics and the corresponding population parameters. In 
Chapter 7, for example, we examine the relationship between the mean obtained for a 
sample and the mean for the population from which the sample was obtained.

or their behaviors. For example, a researcher may be interested in the in�uence of televi-
sion commercials on people’s fast-food preferences. As new commercials appear on TV, 
do people’s food choices also change? Something that can change or have different values 
is called a variable.

A variable is a characteristic or condition that changes or has different values for 
different individuals.

Once again, variables can be characteristics that differ from one individual to anoth-
er, such as weight, gender, personality, or fast-food preferences. Also, variables can be 
environmental conditions that change such as temperature, time of day, or television 
commercials.

To demonstrate changes in variables, it is necessary to make measurements of the vari-
ables being examined. The measurement obtained for each individual is called a datum, 
or more commonly, a score or raw score. The complete set of scores is called the data set
or simply the data.

Data (plural) are measurements or observations. A data set is a collection of  
measurements or observations. A datum (singular) is a single measurement or 
observation and is commonly called a score or raw score.

Before we move on, we should make one more point about samples, populations, and 
data. Earlier, we de�ned populations and samples in terms of individuals. For example, 
we discussed a population of college students and a sample of cholesterol patients. Be 
forewarned, however, that we will also refer to populations or samples of scores. Because 
research typically involves measuring each individual to obtain a score, every sample (or 
population) of individuals produces a corresponding sample (or population) of scores.

■ Parameters and Statistics
When describing data it is necessary to specify whether the data come from a population 
or a sample. A characteristic that describes a population—for example, the average score 
for the population—is called a parameter. A characteristic that describes a sample is called 
a statistic. Thus, the average score for a sample is an example of a statistic. Typically, the 
research process begins with a question about a population parameter. However, the actual 
data come from a sample and are used to compute sample statistics.

A parameter is a value—usually a numerical value—that describes a population. 
A parameter is usually derived from measurements of the individuals in the  
population.

A statistic is a value—usually a numerical value—that describes a sample. A  
statistic is usually derived from measurements of the individuals in the sample.
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6 CHAPTER 1 | Introduction to Statistics

■ Descriptive and Inferential Statistical Methods
Although researchers have developed a variety of different statistical procedures to orga-
nize and interpret data, these different procedures can be classi�ed into two general 
categories. The �rst category, descriptive statistics, consists of statistical procedures that 
are used to simplify and summarize data.

Descriptive statistics are statistical procedures used to summarize, organize, and 
simplify data.

Descriptive statistics are techniques that take raw scores and organize or summarize 
them in a form that is more manageable. Often the scores are organized in a table or a graph 
so that it is possible to see the entire set of scores. Another common technique is to sum-
marize a set of scores by computing an average. Note that even if the data set has hundreds 
of scores, the average provides a single descriptive value for the entire set.

The second general category of statistical techniques is called inferential statistics. 
Inferential statistics are methods that use sample data to make general statements about a 
population.

Inferential statistics consist of techniques that allow us to study samples and then 
make generalizations about the populations from which they were selected.

Because populations are typically very large, it usually is not possible to measure 
everyone in the population. Therefore, a sample is selected to represent the population. 
By analyzing the results from the sample, we hope to make general statements about the 
population. Typically, researchers use sample statistics as the basis for drawing conclusions 
about population parameters. One problem with using samples, however, is that a sample 
provides only limited information about the population. Although samples are generally 
representative of their populations, a sample is not expected to give a perfectly accurate 
picture of the whole population. Thus, there usually is some discrepancy between a sample 
statistic and the corresponding population parameter. This discrepancy is called sampling 
error, and it creates the fundamental problem that inferential statistics must address.

Sampling error is the naturally occurring discrepancy, or error, that exists 
between a sample statistic and the corresponding population parameter.

The concept of sampling error is illustrated in Figure 1.2. The �gure shows a population 
of 1,000 college students and two samples, each with �ve students who were selected from 
the population. Notice that each sample contains different individuals who have different 
characteristics. Because the characteristics of each sample depend on the speci�c people in 
the sample, statistics will vary from one sample to another.  For example, the �ve students 
in sample 1 have an average age of 19.8 years and the students in sample 2 have an average 
age of 20.4 years. 

It is also very unlikely that the statistics obtained for a sample will be identical to the 
parameters for the entire population. In Figure 1.2, for example, neither sample has sta-
tistics that are exactly the same as the population parameters. You should also realize that 
Figure 1.2 shows only two of the hundreds of possible samples. Each sample would con-
tain different individuals and would produce different statistics. This is the basic concept 
of sampling error: sample statistics vary from one sample to another and typically are 
different from the corresponding population parameters.
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SECTION 1-1 | Statistics, Science, and Observations 7

One common example of sampling error is the error associated with a sample pro-
portion. For example, in newspaper articles reporting results from political polls, you 
frequently �nd statements such as this:

Candidate Brown leads the poll with 51% of the vote. Candidate Jones has 42% approval, 
and the remaining 7% are undecided. This poll was taken from a sample of registered vot-
ers and has a margin of error of plus-or-minus 4 percentage points.

The “margin of error” is the sampling error. In this case, the percentages that are 
reported were obtained from a sample and are being generalized to the whole population. 
As always, you do not expect the statistics from a sample to be perfect. There always 
will be some “margin of error” when sample statistics are used to represent population 
parameters.

■ Statistics in the Context of Research
The following example shows the general stages of a research study and demonstrates 
how descriptive statistics and inferential statistics are used to organize and interpret the 
data. At the end of the example, note how sampling error can affect the interpretation of 
experimental results, and consider why inferential statistical methods are needed to deal 
with this problem.

F I G U R E  1 . 2
A demonstration of sampling error. Two 
samples are selected from the same population. 
Notice that the sample statistics are different 
from one sample to another, and all of the 
sample statistics are different from the 
corresponding population parameters. The 
natural differences that exist, by chance, 
between a sample statistic and a population 
parameter are called sampling error.

Population
of 1000 college students

Population Parameters
Average Age 5 21.3 years

Average IQ 5 112.5
65% Female, 35% Male

opulation 

Sample #1

Eric
Jessica
Laura
Karen
Brian

Sample Statistics
Average Age 5 19.8
Average IQ 5 104.6

60% Female, 40% Male

Sample St

Sample #2

Tom
Kristen
Sara

Andrew
John

Sample Statistics
Average Age 5 20.4
Average IQ 5 114.2

40% Female, 60% Male

Sample St
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8 CHAPTER 1 | Introduction to Statistics

Figure 1.3 shows an overview of a general research situation and demonstrates the roles 
that descriptive and inferential statistics play. The purpose of the research study is to 
address a question that we posed earlier: Do college students learn better by study-
ing text on printed pages or on a computer screen? Two samples are selected from 
the population of college students. The students in sample A are given printed pages 
of text to study for 30 minutes and the students in sample B study the same text on a 
computer screen. Next, all of the students are given a multiple-choice test to evaluate 
their knowledge of the material. At this point, the researcher has two sets of data: the 
scores for sample A and the scores for sample B (see the figure). Now is the time to 
begin using statistics.

E X A M P L E  1 . 1

F I G U R E  1 . 3
The role of statistics in research.

Step 1

Step 2

Step 3

Experiment:

Descriptive statistics:

Inferential statistics:

Compare two
studying methods

Test scores for the
students in each
sample

Organize and simplify

Interpret results

Sample A
Read from printed

pages

25
27
30
19
29

26
21
28
23
26

28
27
24
26
22

20
23
25
22
18

22
17
28
19
24

27
23
21
22
19

Sample B
Read from computer

screen

Data

Average
Score = 26

The sample data show a 4-point diffew a 4-point diffew a 4-point dif rence
between the two methods of studying. However,
there are two ways to interpret the results.
1. There actually is no difThere actually is no difTher fee actually is no diffee actually is no dif rence between
      the two studying methods, and the sample
      diffe      diffe      dif rence is due to chance (sampling error).
2. There rThere rTher eally is a diffeeally is a diffeeally is a dif rence between
      the two methods, and the sample data
      accurately reflect this diffeect this diffeect this dif rence.
The goal of inferential statistics is to help researchers
decide between the two interpretations.

Population of
College
Students

Average
Score = 22

20 25 30 20 25 30
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SECTION 1-1 | Statistics, Science, and Observations 9

First, descriptive statistics are used to simplify the pages of data. For example, the 
researcher could draw a graph showing the scores for each sample or compute the aver-
age score for each sample. Note that descriptive methods provide a simplified, organized 
description of the scores. In this example, the students who studied printed pages had 
an average score of 26 on the test, and the students who studied text on the computer 
averaged 22.

Once the researcher has described the results, the next step is to interpret the outcome. 
This is the role of inferential statistics. In this example, the researcher has found a difference 
of 4 points between the two samples (sample A averaged 26 and sample B averaged 22). 
The problem for inferential statistics is to differentiate between the following two 
interpretations:

1. There is no real difference between the printed page and a computer screen, and 
the 4-point difference between the samples is just an example of sampling error 
(like the samples in Figure 1.2).

2. There really is a difference between the printed page and a computer screen, and 
the 4-point difference between the samples was caused by the different methods  
of studying.

In simple English, does the 4-point difference between samples provide convincing 
evidence of a difference between the two studying methods, or is the 4-point difference just 
chance? The purpose of inferential statistics is to answer this question. ■

LO1 1. A researcher is interested in the fast-food eating habits of American college 
students. A group of 50 students is interviewed and the researcher finds 
that these students eat an average of 2.3 commercially prepared meals 
per week. For this study, the average of 2.3 meals is an example 
of a .

a. parameter 

b. statistic

c. population

d. sample

LO1 2. A researcher is curious about the average distance traveled by Canada geese 
during peak fall migration in the state of New York. The entire group of 
Canada geese in the state is an example of a .  

a. sample

b. statistic

c. population

d. parameter

LO2 3. What term is used for the statistical techniques that use sample data 
to draw conclusions about the population from which the sample was 
obtained? 

a. population statistics

b. sample statistics

c. descriptive statistics

d. inferential statistics

LE A R N I N G C H E C K
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10 CHAPTER 1 | Introduction to Statistics

1-2 Variables and Measurement

LE A R N I N G O B J E C T IV E S

4. Explain why operational de�nitions are developed for constructs and identify the 
two components of an operational de�nition. 

5. Describe discrete and continuous variables and identify examples of each. 

6. De�ne real limits and explain why they are needed to measure continuous  
variables. 

7. Compare and contrast the four scales of measurement (nominal, ordinal, interval, 
and ratio) and identify examples of each.  

The scores that make up the data from a research study are the result of observing and 
measuring variables. For example, a researcher may �nish a study with a set of IQ scores, 
personality scores, or reaction-time scores. In this section, we take a closer look at the vari-
ables that are being measured and the process of measurement.

■ Constructs and Operational Definitions
Some variables, such as height, weight, and eye color are well-de�ned, concrete entities 
that can be observed and measured directly. On the other hand, many variables studied 
by behavioral scientists are internal characteristics that people use to help describe and 
explain behavior. For example, we say that a student does well in school because he or 
she is intelligent. Or we say that someone is anxious in social situations, or that someone 
seems to be hungry. Variables like intelligence, anxiety, and hunger are called constructs, 
and because they are intangible and cannot be directly observed, they are often called 
hypothetical constructs.

Although constructs such as intelligence are internal characteristics that cannot be 
directly observed, it is possible to observe and measure behaviors that are representative 
of the construct. For example, we cannot “see” intelligence but we can see examples of 
intelligent behavior. The external behaviors can then be used to create an operational de�-
nition for the construct. An operational de�nition de�nes a construct in terms of external 
behaviors that can be observed and measured. For example, your intelligence is measured 
and de�ned by your performance on an IQ test, or hunger can be measured and de�ned by 
the number of hours since last eating.

LO3 4. The SAT is standardized so that the average score on the verbal test is 500 each 
year. If you select a group of 100 graduating seniors who have taken the verbal 
SAT, what value would be obtained for their average score?

a. 500

b. greater than 500

c. less than 500

d. around 500 but probably not equal to 500

1. b 2. c 3. d 4. d A N S W E R S
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SECTION 1-2 | Variables and Measurement 11

■ Discrete and Continuous Variables
The variables in a study can be characterized by the type of values that can be assigned 
to them. A discrete variable consists of separate, indivisible categories. For this type of 
variable, there are no intermediate values between two adjacent categories. Consider the 
number of questions that each student answers correctly on a 10-item multiple-choice 
quiz. Between neighboring values—for example, seven correct and eight correct—no other 
values can ever be observed.

A discrete variable consists of separate, indivisible categories. No values can exist 
between two neighboring categories.

Discrete variables are commonly restricted to whole, countable numbers—for example, 
the number of children in a family or the number of students attending class. If you observe 
class attendance from day to day, you may count 18 students one day and 19 students the 
next day. However, it is impossible ever to observe a value between 18 and 19. A discrete 
variable may also consist of observations that differ qualitatively. For example, people can 
be classi�ed by birth order (�rst-born or later-born), by occupation (nurse, teacher, lawyer, 
etc.), and college students can by classi�ed by academic major (art, biology, chemistry, 
etc.). In each case, the variable is discrete because it consists of separate, indivisible cat-
egories.

On the other hand, many variables are not discrete. Variables such as time, height, and 
weight are not limited to a �xed set of separate, indivisible categories. You can measure 
time, for example, in hours, minutes, seconds, or fractions of seconds. These variables are 
called continuous because they can be divided into an in�nite number of fractional parts.

For a continuous variable, there are an in�nite number of possible values that fall 
between any two observed values. A continuous variable is divisible into an in�nite 
number of fractional parts.

Suppose, for example, that a researcher is measuring weights for a group of individuals 
participating in a diet study. Because weight is a continuous variable, it can be pictured as 
a continuous line (Figure 1.4). Note that there are an in�nite number of possible points on 
the line without any gaps or separations between neighboring points. For any two different 
points on the line, it is always possible to �nd a third value that is between the two points.

Two other factors apply to continuous variables:

1. When measuring a continuous variable, it should be very rare to obtain identical 
measurements for two different individuals. Because a continuous variable has an 

Constructs are internal attributes or characteristics that cannot be directly 
observed but are useful for describing and explaining behavior.

An operational de�nition identi�es a measurement procedure (a set of opera-
tions) for measuring an external behavior and uses the resulting measurements as a 
de�nition and a measurement of a hypothetical construct. Note that an operational 
de�nition has two components: First, it describes a set of operations for measuring 
a construct. Second, it de�nes the construct in terms of the resulting measurements.
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12 CHAPTER 1 | Introduction to Statistics

in�nite number of possible values, it should be almost impossible for two people to 
have exactly the same score. If the data show a substantial number of tied scores, 
then you should suspect that the measurement procedure is very crude or that the 
variable is not really continuous.

2. When measuring a continuous variable, researchers must �rst identify a series  
of measurement categories on the scale of measurement. Measuring weight  
to the nearest pound, for example, would produce categories of 149 pounds,  
150 pounds, and so on. However, each measurement category is actually an inter-
val that must be de�ned by boundaries. To differentiate a weight of 150 pounds val that must be de�ned by boundaries. To differentiate a weight of 150 pounds val
from the surrounding values of 149 and 151, we must set up boundaries on the 
scale of measurement. These boundaries are called real limits and are positioned 
exactly halfway between adjacent scores. Thus, a score of 150 pounds is actually 
an interval bounded by a lower real limit of 149.5 at the bottom and an lower real limit of 149.5 at the bottom and an lower real limit upper real 
limit of 150.5 at the top. Any individual whose weight falls between these real limit of 150.5 at the top. Any individual whose weight falls between these real limit
limits will be assigned a score of 150.  As a result, two people who both claim to 
weigh 150 pounds are probably not exactly the same weight. One person may  
actually weigh 149.6 and the other 150.3 but they are both assigned a weight of 
150 pounds (see Figure 1.4). 

Real limits are the boundaries of intervals for scores that are represented on a 
continuous number line. The real limit separating two adjacent scores is located 
exactly halfway between the scores. Each score has two real limits. The upper real 
limit is at the top of the interval, and the lower real limit is at the bottom.

The concept of real limits applies to any measurement of a continuous variable, even 
when the score categories are not whole numbers. For example, if you were measur-
ing time to the nearest tenth of a second, the measurement categories would be 31.0, 
31.1, 31.2, and so on. Each of these categories represents an interval on the scale that 
is bounded by real limits. For example, a score of 31.1 seconds indicates that the actual 
measurement is in an interval bounded by a lower real limit of 31.05 and an upper 
real limit of 31.15. Remember that the real limits are always halfway between adjacent 
categories.

Students often ask 
whether a measurement 
of exactly 150.5 should 
be assigned a value of 
150 or a value of 151. 
The answer is that 150.5 
is the boundary between 
the two intervals and is 
not necessarily in one 
or the other. Instead, 
the placement of 150.5 
depends on the rule that 
you are using for round-
ing numbers. If you are 
rounding up, then 150.5 
goes in the higher  
interval (151) but if you 
are rounding down,  
then it goes in the lower 
interval (150).

149

149.5
150

149.6 150.3

150.5

151 152

148.5

149

149.5

150

150.5

Real limits

151

151.5

152

152.5

F I G U R E  1 . 4
When measuring weight 
to the nearest whole pound, 
149.6 and 150.3 are 
assigned the value of 
150 (top). Any value in the 
interval between 149.5 
and 150.5 is given the 
value of 150.
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Later in this book, real limits are used for constructing graphs and for various calcula-
tions with continuous scales. For now, however, you should realize that real limits are a 
necessity whenever you make measurements of a continuous variable.

Finally, we should warn you that the terms continuous and discrete apply to the vari-
ables that are being measured and not to the scores that are obtained from the measurement. 
For example, measuring people’s heights to the nearest inch produces scores of 60, 61, 62, 
and so on. Although the scores may appear to be discrete numbers, the underlying variable 
is continuous. One key to determining whether a variable is continuous or discrete is that 
a continuous variable can be divided into any number of fractional parts. Height can be 
measured to the nearest inch, the nearest 0.5 inch, or the nearest 0.1 inch. Similarly, a pro-
fessor evaluating students’ knowledge could use a pass/fail system that classi�es students 
into two broad categories. However, the professor could choose to use a 10-point quiz that 
divides student knowledge into 11 categories corresponding to quiz scores from 0 to 10. Or 
the professor could use a 100-point exam that potentially divides student knowledge into 
101 categories from 0 to 100. Whenever you are free to choose the degree of precision or 
the number of categories for measuring a variable, the variable must be continuous.

■ Scales of Measurement
It should be obvious by now that data collection requires that we make measurements of 
our observations. Measurement involves assigning individuals or events to categories. The 
categories can simply be names such as male/female or employed/unemployed, or they 
can be numerical values such as 68 inches or 175 pounds. The categories used to measure 
a variable make up a scale of measurement, and the relationships between the catego-
ries determine different types of scales. The distinctions among the scales are important 
because they identify the limitations of certain types of measurements and because certain 
statistical procedures are appropriate for scores that have been measured on some scales 
but not on others. If you were interested in people’s heights, for example, you could mea-
sure a group of individuals by simply classifying them into three categories: tall, medium, 
and short. However, this simple classi�cation would not tell you much about the actual 
heights of the individuals, and these measurements would not give you enough information 
to calculate an average height for the group. Although the simple classi�cation would be 
adequate for some purposes, you would need more sophisticated measurements before you 
could answer more detailed questions. In this section, we examine four different scales of 
measurement, beginning with the simplest and moving to the most sophisticated.

The Nominal Scale The word nominal means “having to do with names.” Measurement nominal means “having to do with names.” Measurement nominal
on a nominal scale involves classifying individuals into categories that have different 
names but are not related to each other in any systematic way. For example, if you were 
measuring the academic majors for a group of college students, the categories would be art, 
biology, business, chemistry, and so on. Each student would be classified in one category 
according to his or her major. The measurements from a nominal scale allow us to deter-
mine whether two individuals are different, but they do not identify either the direction or 
the size of the difference. If one student is an art major and another is a biology major we 
can say that they are different, but we cannot say that art is “more than” or “less than” bi-
ology and we cannot specify how much difference there is between art and biology. Other 
examples of nominal scales include classifying people by race, gender, or occupation.

A nominal scale consists of a set of categories that have different names. Measure-
ments on a nominal scale label and categorize observations, but do not make any 
quantitative distinctions between observations.
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Although the categories on a nominal scale are not quantitative values, they are occa-
sionally represented by numbers. For example, the rooms or of�ces in a building may be 
identi�ed by numbers. You should realize that the room numbers are simply names and do 
not re�ect any quantitative information. Room 109 is not necessarily bigger than Room 
100 and certainly not 9 points bigger. It also is fairly common to use numerical values as a 
code for nominal categories when data are entered into computer programs. For example, 
the data from a survey may code males with a 0 and females with a 1. Again, the numerical 
values are simply names and do not represent any quantitative difference. The scales that 
follow do re�ect an attempt to make quantitative distinctions.

The Ordinal Scale The categories that make up an ordinal scale not only have differ-
ent names (as in a nominal scale) but also are organized in a fixed order corresponding to 
differences of magnitude.

An ordinal scale consists of a set of categories that are organized in an ordered 
sequence. Measurements on an ordinal scale rank observations in terms of size or 
magnitude.

Often, an ordinal scale consists of a series of ranks (�rst, second, third, and so on) 
like the order of �nish in a horse race. Occasionally, the categories are identi�ed by ver-
bal labels like small, medium, and large drink sizes at a fast-food restaurant. In either 
case, the fact that the categories form an ordered sequence means that there is a direc-
tional relationship between categories. With measurements from an ordinal scale, you 
can determine whether two individuals are different and you can determine the direction 
of difference. However, ordinal measurements do not allow you to determine the size of 
the difference between two individuals. In a NASCAR race, for example, the �rst-place 
car �nished faster than the second-place car, but the ranks don’t tell you how much faster. 
Other examples of ordinal scales include rank in graduating class (�rst, second, etc.) and 
T-shirt sizes (small, medium, large). In addition, ordinal scales are often used to measure 
variables for which it is dif�cult to assign numerical scores. For example, people can rank 
their food preferences but might have trouble explaining “how much” they prefer choco-
late ice cream to steak.

The Interval and Ratio Scales Both an interval scale and a ratio scale consist of a 
series of ordered categories (like an ordinal scale) with the additional requirement that 
the categories form a series of intervals that are all exactly the same size. Thus, the scale 
of measurement consists of a series of equal intervals, such as inches on a ruler. Other 
examples of interval and ratio scales are the measurement of time in seconds, weight 
in pounds, and temperature in degrees Fahrenheit. Note that, in each case, one interval 
(1 inch, 1 second, 1 pound, 1 degree) is the same size, no matter where it is located on the 
scale. The fact that the intervals are all the same size makes it possible to determine both 
the direction and the size of the difference between two measurements. For example, you 
know that a measurement of 80° Fahrenheit is higher than a measure of 60°, and you know 
that it is exactly 20° higher.

The factor that differentiates an interval scale from a ratio scale is the nature of the 
zero point. An interval scale has an arbitrary zero point. That is, the value 0 is assigned 
to a particular location on the scale simply as a matter of convenience or reference. In 
particular, a value of zero does not indicate a total absence of the variable being mea-
sured. For example, a temperature of 0 degrees Fahrenheit does not mean that there is no 
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temperature, and it does not prohibit the temperature from going even lower. Interval 
scales with an arbitrary zero point are relatively rare. The two most common examples 
are the Fahrenheit and Celsius temperature scales. Other examples include golf scores 
(above and below par) and relative measures such as above and below average rainfall.

A ratio scale is anchored by a zero point that is not arbitrary but rather a meaningful 
value representing none (a complete absence) of the variable being measured. The exis-
tence of an absolute, non-arbitrary zero point means that we can measure the absolute 
amount of the variable; that is, we can measure the distance from 0. This makes it pos-
sible to compare measurements in terms of ratios. For example, a gas tank with 10 gallons 
(10 more than 0) has twice as much gas as a tank with only 5 gallons (5 more than 0). 
Also note that a completely empty tank has 0 gallons. To recap, with a ratio scale, we can 
measure the direction and the size of the difference between two measurements and we 
can describe the difference in terms of a ratio. Ratio scales are quite common and include 
physical measures such as height and weight, as well as variables such as reaction time or 
the number of errors on a test. The distinction between an interval scale and a ratio scale is 
demonstrated in Example 1.2.

An interval scale consists of ordered categories that are all intervals of exactly the 
same size. Equal differences between numbers on scale re�ect equal differences in 
magnitude. However, the zero point on an interval scale is arbitrary and does not 
indicate a zero amount of the variable being measured.

A ratio scale is an interval scale with the additional feature that a score of zero 
indicates none of the variable being measured. With a ratio scale, ratios of numbers 
do re�ect ratios of magnitude.

A researcher obtains measurements of height for a group of 8-year-old boys. Initially, the 
researcher simply records each child’s height in inches, obtaining values such as 44, 51, 49, 
and so on. These initial measurements constitute a ratio scale. A value of zero represents 
no height (absolute zero). Also, it is possible to use these measurements to form ratios. 
For example, a child who is 60 inches tall is one-and-a-half times taller than a child who is 
40 inches tall.

Now suppose that the researcher converts the initial measurement into a new scale by 
calculating the difference between each child’s actual height and the average height for 
this age group. A child who is one inch taller than average now gets a score of 11; a child 
four inches taller than average gets a score of 14. Similarly, a child who is two inches 
shorter than average gets a score of 22. On this scale, a score of zero corresponds to aver-
age height. Because zero no longer indicates a complete absence of height, the new scores 
constitute an interval scale of measurement. 

Notice that original scores and the converted scores both involve measurement in 
inches, and you can compute differences, or distances, on either scale. For example, there 
is a six-inch difference in height between two boys who measure 57 and 51 inches tall on 
the first scale. Likewise, there is a six-inch difference between two boys who measure 19 
and 13 on the second scale. However, you should also notice that ratio comparisons are 
not possible on the second scale. For example, a boy who measures 19 is not three times 
taller than a boy who measures 13. ■

Statistics and Scales of Measurement For our purposes, scales of measurement 
are important because they help determine the statistics that are used to evaluate the data. 
Specifically, there are certain statistical procedures that are used with numerical scores 

E X A M P L E  1 . 2
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from interval or ratio scales and other statistical procedures that are used with non-
numerical scores from nominal or ordinal scales. The distinction is based on the fact that 
numerical scores are compatible with basic arithmetic operations (adding, multiplying, 
and so on) but non-numerical scores are not. For example, if you measure IQ scores for a 
group of students, it is possible to add the scores together to find a total and then calculate 
the average score for the group. On the other hand, if you measure the academic major 
for each student, you cannot add the scores to obtain a total. (What is the total for three 
psychology majors plus an English major plus two chemistry majors?) The vast major-
ity of the statistical techniques presented in this book are designed for numerical scores 
from interval or ratio scales. For most statistical applications, the distinction between 
an interval scale and a ratio scale is not important because both scales produce numeri-
cal values that permit us to compute differences between scores, to add scores, and to 
calculate mean scores. On the other hand, measurements from nominal or ordinal scales 
are typically not numerical values, do not measure distance, and are not compatible with 
many basic arithmetic operations. Therefore, alternative statistical techniques are neces-
sary for data from nominal or ordinal scales of measurement (for example, the median 
and the mode in Chapter 3, the Spearman correlation in Chapter 14, and the chi-square 
tests in Chapter 15). 

LO4 1. What is an operational definition?

a. A de�nition of a hypothetical construct.

b. A method for measuring a hypothetical construct.

c. A method for measuring and de�ning a hypothetical construct.

d. None of the above.

LO5 2. A researcher studies the factors that determine the number of jobs adults have 
in a lifetime. The variable, number of jobs, is an example of a(n) 
variable.

a. discrete

b. continuous

c. nominal

d. ordinal

LO6 3. When measuring height to the nearest half inch, what are the real limits for a 
score of 69.0 inches?

a. 68 and 70

b. 68.5 and 69.5

c. 68.75 and 69.75

d. 68.75 and 69.25

LO7 4. Ranking a group of cities in terms of “quality of life” would be an example of 
measurement on a(n)  scale of measurement.

a. nominal

b. ordinal

c. interval

d. ratio

1. c 2. a 3. d 4. b

LE A R N I N G C H E C K

A N S W E R S
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1-3 Three Data Structures, Research Methods, and Statistics

LE A R N I N G O B J E C T IV E S  

8. Describe, compare, and contrast descriptive, correlational, experimental, and  
nonexperimental research, and identify the data structures associated with each. 

9. De�ne independent, dependent, and quasi-independent variables and recognize 
examples of each.

■  Data Structure 1. One Group with One or More Separate  
Variables Measured for Each Individual: Descriptive Research 

Some research studies are conducted simply to describe individual variables as they exist 
naturally. For example, a college of�cial may conduct a survey to describe the eating, 
sleeping, and study habits of a group of college students. Table 1.1 shows an example of 
data from this type of research. Although the researcher might measure several different 
variables, the goal of the study is to describe each variable separately. In particular, this 
type of research is not concerned with relationships between variables. 

Three separate variables measured for each individual in a group of eight students.

Weekly Number of Student
Fast-Food Meals

Number of Hours
Sleeping Each Day

Number of Hours
Studying Each Day

A 0 9 3
B 4 7 2
C 2 8 4
D 1 10 3
E 0 11 2
F 0 7 4
G 5 7 3
H 3 8 2

TA B L E  1 .1

A study that produces the kind of data shown in Table 1.1 and is focused on describing 
individual variables rather than relationships, is an example of descriptive research or the 
descriptive research strategy.

Descriptive research or the descriptive research strategy involves measuring one 
or more separate variables for each individual with the intent of simply describing 
the individual variables.

When the results from a descriptive research study consist of numerical scores, such as 
the number of hours spent studying each day, they are typically described by the statistical 
techniques that are presented in Chapters 3 and 4. For example, a researcher may want to 
know the average number of meals eaten at fast-food restaurants each week for students at 
the college. Non-numerical scores are typically described by computing the proportion or 
percentage in each category. For example, a recent newspaper article reported that 34.9% 
of American adults are obese, which is roughly 35 pounds over a healthy weight.   
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■ Relationships Between Variables
Most research, however, is intended to examine relationships between two or more vari-
ables. For example, is there a relationship between the amount of violence in the video 
games played by children and the amount of aggressive behavior they display? Is there a 
relationship between vocabulary development in childhood and academic success in col-
lege? To establish the existence of a relationship, researchers must make observations—that 
is, measurements of the two variables. The resulting measurements can be classi�ed into 
two distinct data structures that also help to classify different research methods and differ-
ent statistical techniques. In the following section we identify and discuss these two data 
structures.

■  Data Structure 2. One Group with Two Variables Measured  
for Each Individual: The Correlational Method

One method for examining the relationship between variables is to observe the two 
variables as they exist naturally for a set of individuals. That is, simply measure the 
two variables for each individual. For example, research results tend to �nd a relation-
ship between Facebook use and academic performance, especially for freshmen (Junco, 
2015). Figure 1.5 shows an example of data obtained by measuring time on Facebook and 
academic performance for eight students. The researchers then look for consistent pat-
terns in the data to provide evidence for a relationship between variables. For example, as 
Facebook time changes from one student to another, is there also a tendency for academic 
performance to change?

Consistent patterns in the data are often easier to see if the scores are presented in a 
graph. Figure 1.5 also shows the scores for the eight students in a graph called a scatter 
plot. In the scatter plot, each individual is represented by a point so that the horizontal 
position corresponds to the student’s Facebook time and the vertical position corresponds 
to the student’s academic performance score. The scatter plot shows a clear relationship 
between Facebook time and academic performance: as Facebook time increases, academic 
performance decreases. 

F I G U R E  1 . 5
One of two data structures for studies evaluating the relationship between variables. Note that there are two separate 
measurements for each individual (Facebook time and academic performance). The same scores are shown in a table 
(a) and a graph (b).

A
B
C
D
E
F
G
H

4
2
2
5
0
3
3
1

Student
Facebook

Time

2.4
3.6
3.2
2.2
3.8
2.2
3.0
3.0

Academic
Performance

(a) 3.8
3.6
3.4
3.2
3.0
2.8
2.6
2.4
2.2
2.0

0 1 2

Facebook time   (0 = least, 5 = most)

A
c

a
d

e
m

ic
 p

e
rfo

rm
a

n
c

e

3 4 5

(b)
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A research study that simply measures two different variables for each individual and 
produces the kind of data shown in Figure 1.5 is an example of the correlational method, 
or the correlational research strategy.

In the correlational method, two different variables are observed to determine 
whether there is a relationship between them.

Statistics for the Correlational Method When the data from a correlational 
study consist of numerical scores, the relationship between the two variables is usu-
ally measured and described using a statistic called a correlation. Correlations and the 
correlational method are discussed in detail in Chapter 14. Occasionally, the measure-
ment process used for a correlational study simply classifies individuals into catego-
ries that do not correspond to numerical values. For example, a research study with a 
group of college students who self-identified as either male or female could classify 
the students by gender and by how they describe their own weight (underweight, 
average, overweight). Note that the researcher has two scores for each individual but 
neither of the scores is a numerical value. This type of data is typically summarized 
in a table showing how many individuals are classified into each of the possible 
categories. Table 1.2 shows an example of this kind of summary table. For example, 
the table shows that only 12 of the males in the sample considered themselves to be 
overweight. This type of data can be coded with numbers (for example, male 5 0 and 
female 5 1) so that it is possible to compute a correlation. However, the relationship 
between variables for non-numerical data, such as the data in Table 1.2, is usually 
evaluated using a statistical technique known as a chi-square test. Chi-square tests are 
presented in Chapter 15.

Underweight Average Overweight

Males 6 32 12 50

Females 4 25 21 50

Correlational data consisting of non-numerical scores. Note that there are two measurements for 
each individual: gender and self-described weight. The numbers indicate how many people are in 
each category. For example, out of the 50 females, only 4 viewed themselves as underweight.

TA B L E  1 . 2

Limitations of the Correlational Method The results from a correlational study 
can demonstrate the existence of a relationship between two variables, but they do not 
provide an explanation for the relationship. In particular, a correlational study cannot 
demonstrate a cause-and-effect relationship. For example, the data in Figure 1.5 show a 
systematic relationship between Facebook time and academic performance for a group 
of college students; those who spend more time on Facebook tend to have lower grades. 
However, there are many possible explanations for the relationship and we do not know 
exactly what factor (or factors) is responsible for Facebook users having lower grades. For 
example, many students report that they multitask with Facebook while they are study-
ing. In this case, their lower grades might be explained by the distraction of multitasking 
while studying. In particular, we cannot conclude that simply reducing time on Facebook 
would cause their academic performance to improve. To demonstrate a cause-and-effect 
relationship between two variables, researchers must use the experimental method, which 
is discussed next.
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■  Data Structure 3. Comparing Two (or More) Groups of Scores: 
Experimental and Nonexperimental Methods  

The second method for examining the relationship between two variables involves the 
comparison of two or more groups of scores. In this situation, the relationship between 
variables is examined by using one of the variables to de�ne the groups, and then measur-
ing the second variable to obtain scores for each group. For example, Polman, de Castro, 
and van Aken (2008) randomly divided a sample of 10-year-old boys into two groups. One 
group then played a violent video game and the second played a nonviolent game. After 
the game-playing session, the children went to a free play period and were monitored for 
aggressive behaviors (hitting, kicking, pushing, frightening, name-calling, �ghting, quar-
reling, or teasing another child). An example of the resulting data is shown in Figure 1.6. 
The researchers then compare the scores for the violent-video group with the scores for 
the nonviolent-video group. A systematic difference between the two groups provides evi-
dence for a relationship between playing violent video games and aggressive behavior for 
10-year-old boys.

Statistics for Comparing Two (or More) Groups of Scores Most of the statistical 
procedures presented in this book are designed for research studies that compare groups of 
scores like the study in Figure 1.6. Specifically, we examine descriptive statistics that sum-
marize and describe the scores in each group and we use inferential statistics to determine 
whether the differences between the groups can be generalized to the entire population.

When the measurement procedure produces numerical scores, the statistical evalua-
tion typically involves computing the average score for each group and then comparing 
the averages. The process of computing averages is presented in Chapter 3, and a variety 
of statistical techniques for comparing averages are presented in Chapters 8–13. If the 
measurement process simply classi�es individuals into non-numerical categories, the sta-
tistical evaluation usually consists of computing proportions for each group and then com-
paring proportions. Previously, in Table 1.2, we presented an example of non-numerical 
data examining the relationship between gender and self-described weight. The same data 
can be used to compare the proportions for males with the proportions for females. For 
example, 24% of the males described themselves as overweight compared to 42% of the 
females. As before, these data are evaluated using a chi-square test, which is presented in 
Chapter 15.

One variable (type of video game)
is used to define groups

A second variable (aggressive behavior)
 is measured to obtain scores within each group

7
8

10
7
9
8
6

10
9
6

8
4
8
3
6
5
3
4
4
5

Violent Nonviolent

Compare groups
of scores

F I G U R E  1 .6
The second data 
structure for studies 
evaluating the relation-
ship between variables. 
Note that one variable 
(violent game vs. non-
violent game) is used to 
define the groups and a 
second variable (aggres-
sive behavior) is mea-
sured to obtain scores 
within each group.
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■ Experimental and Nonexperimental Methods
There are two distinct research methods that both produce groups of scores to be compared: 
the experimental and the nonexperimental strategies. These two research methods use 
exactly the same statistics and they both demonstrate a relationship between two variables. 
The distinction between the two research strategies is how the relationship is interpreted. 
The results from an experiment allow a cause-and-effect explanation. For example, we can 
conclude that changes in one variable are responsible for causing differences in a second 
variable. A nonexperimental study does not permit a cause-and effect explanation. We can 
say that changes in one variable are accompanied by changes in a second variable, but we 
cannot say why. Each of the two research methods is discussed in the following sections.

■ The Experimental Method
One speci�c research method that involves comparing groups of scores is known as the 
experimental method or the experimental method or the experimental method experimental research strategy. The goal of an experimental 
study is to demonstrate a cause-and-effect relationship between two variables. Speci�cally, 
an experiment attempts to show that changing the value of one variable causes changes to 
occur in the second variable. To accomplish this goal, the experimental method has two 
characteristics that differentiate experiments from other types of research studies:

1. Manipulation The researcher manipulates one variable by changing its value 
from one level to another. In the Polman et al. (2008) experiment examining the 
effect of violence in video games on aggressive behavior (Figure 1.6), the research-
ers manipulate the amount of violence by giving one group of boys a violent 
game to play and giving the other group a nonviolent game. A second variable is 
observed (measured) to determine whether the manipulation causes changes to 
occur. In the Polman et al. (2008) experiment, aggressive behavior was measured.

2. Control The researcher must exercise control over the research situation to ensure 
that other, extraneous variables do not in�uence the relationship being examined.

To demonstrate these two characteristics, consider the Polman et al. (2008) study exam-
ining the effect of violence in video games on aggression (see Figure 1.6). To be able to 
say that the difference in aggressive behavior is caused by the amount of violence in the 
game, the researcher must rule out any other possible explanation for the difference. That 
is, any other variables that might affect aggressive behavior must be controlled. There are 
two general categories of variables that researchers must consider:

1. Participant Variables These are characteristics such as age, gender, and intelli-
gence that vary from one individual to another. Whenever an experiment compares 
different groups of participants (one group in treatment A and a different group 
in treatment B), researchers must ensure that participant variables do not differ 
from one group to another. For the experiment shown in Figure 1.6, for example, 
the researchers would like to conclude that the violence in the video game causes 
a change in the participants’ aggressive behavior. In the study, the participants in 
both conditions were 10-year-old boys. Suppose, however, that the participants in 
the nonviolent condition were primarily female and those in the violent condition 
were primarily male. In this case, there is an alternative explanation for the differ-
ence in aggression that exists between the two groups. Speci�cally, the difference 
between groups may have been caused by the amount of violence in the game, 
but it also is possible that the difference was caused by the participants’ gender 
(females are less aggressive than males). Whenever a research study allows more 
than one explanation for the results, the study is said to be confounded because it is confounded because it is confounded
impossible to reach an unambiguous conclusion.

In more complex ex-
periments, a researcher 
may systematically 
manipulate more than 
one variable and may 
observe more than one 
variable. Here we are 
considering the simplest 
case, in which only one 
variable is manipulated 
and only one variable is 
observed. 
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2. Environmental Variables These are characteristics of the environment such as 
lighting, time of day, and weather conditions. A researcher must ensure that the 
individuals in treatment A are tested in the same environment as the individuals 
in treatment B. Using the video game violence experiment (see Figure 1.6) as an 
example, suppose that the individuals in the nonviolent condition were all tested  
in the morning and the individuals in the violent condition were all tested in the 
evening. Again, this would produce a confounded experiment because the  
researcher could not determine whether the differences in aggressive behavior  
were caused by the amount of violence or caused by the time of day.

Researchers typically use three basic techniques to control other variables. First, the 
researcher could use random assignment, which means that each participant has an equal 
chance of being assigned to each of the treatment conditions. The goal of random assign-
ment is to distribute the participant characteristics evenly between the two groups so that 
neither group is noticeably smarter (or older, or faster) than the other. Random assignment 
can also be used to control environmental variables. For example, participants could be 
assigned randomly for testing either in the morning or in the afternoon. A second tech-
nique for controlling variables is to use matching to ensure equivalent groups or equivalent 
environments. For example, the researcher could match groups by ensuring that each group 
has exactly 60% females and 40% males. Finally, the researcher can control variables by 
holding them constant. For example, in the video game violence study discussed earlier 
(Polman et al., 2008), the researchers used only 10-year-old boys as participants (holding 
age and gender constant). In this case the researchers can be certain that one group is not 
noticeably older or has a larger proportion of females than the other.

In the experimental method, one variable is manipulated while another variable 
is observed and measured. To establish a cause-and-effect relationship between the 
two variables, an experiment attempts to control all other variables to prevent them 
from in�uencing the results.

Terminology in the Experimental Method Specific names are used for the two 
variables that are studied by the experimental method. The variable that is manipulated by 
the experimenter is called the independent variable. It can be identified as the treatment 
conditions to which participants are assigned. For the example in Figure 1.6, the amount 
of violence in the video game is the independent variable. The variable that is observed 
and measured to obtain scores within each condition is the dependent variable. For the 
example in Figure 1.6, the level of aggressive behavior is the dependent variable.

The independent variable is the variable that is manipulated by the researcher. In 
behavioral research, the independent variable usually consists of the two (or more) 
treatment conditions to which subjects are exposed. The independent variable is 
manipulated prior to observing the dependent variable.prior to observing the dependent variable.prior

The dependent variable is the one that is observed to assess the effect of the  
treatment.

An experimental study evaluates the relationship between two variables by manipulat-
ing one variable (the independent variable) and measuring one variable (the dependent 
variable). Note that in an experiment only one variable is actually measured. You should 
realize that this is different from a correlational study, in which both variables are measured 
and the data consist of two separate scores for each individual.
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Control Conditions in an Experiment Often an experiment will include a condition 
in which the participants do not receive any treatment. The scores from these individu-
als are then compared with scores from participants who do receive the treatment. The 
goal of this type of study is to demonstrate that the treatment has an effect by showing 
that the scores in the treatment condition are substantially different from the scores in the 
no-treatment condition. In this kind of research, the no-treatment condition is called the 
control condition, and the treatment condition is called the experimental condition.

Individuals in a control condition do not receive the experimental treatment. 
Instead, they either receive no treatment or they receive a neutral, placebo treatment. 
The purpose of a control condition is to provide a baseline for comparison with the 
experimental condition.

Individuals in the experimental condition do receive the experimental treatment.

Note that the independent variable always consists of at least two values. (Something 
must have at least two different values before you can say that it is “variable.”) For the 
video game violence experiment (see Figure 1.6), the independent variable is the amount 
of violence in the video game. For an experiment with an experimental group and a control 
group, the independent variable is treatment versus no treatment.

■  Nonexperimental Methods: Nonquivalent Groups  
and Pre-Post Studies

In informal conversation, there is a tendency for people to use the term experiment to refer experiment to refer experiment
to any kind of research study. You should realize, however, that the term only applies to 
studies that satisfy the speci�c requirements outlined earlier. In particular, a real experi-
ment must include manipulation of an independent variable and rigorous control of other, 
extraneous variables. As a result, there are a number of other research designs that are not 
true experiments but still examine the relationship between variables by comparing groups 
of scores. Two examples are shown in Figure 1.7 and are discussed in the following para-
graphs. This type of research study is classi�ed as nonexperimental.

The top part of Figure 1.7 shows an example of a nonequivalent groups study compar-
ing boys and girls. Notice that this study involves comparing two groups of scores (like an 
experiment). However, the researcher has no ability to control which participants go into 
which group—all the males must be in the boy group and all the females must be in the 
girl group. Because this type of research compares preexisting groups, the researcher can-
not control the assignment of participants to groups and cannot ensure equivalent groups. 
Other examples of nonequivalent group studies include comparing 8-year-old children and 
10-year-old children, people with an eating disorder and those with no disorder, and com-
paring children from a single-parent home and those from a two-parent home. Because it 
is impossible to use techniques like random assignment to control participant variables and 
ensure equivalent groups, this type of research is not a true experiment.

The bottom part of Figure 1.7 shows an example of a pre-post study comparing depres-
sion scores before therapy and after therapy. A pre-post study uses the passage of time 
(before/after) to create the groups of scores. In Figure 1.7 the two groups of scores are 
obtained by measuring the same variable (depression) twice for each participant; once 
before therapy and again after therapy. In a pre-post study, however, the researcher has 
no control over the passage of time. The “before” scores are always measured earlier than 
the “after” scores. Although a difference between the two groups of scores may be caused 
by the treatment, it is always possible that the scores simply change as time goes by. For 

Correlational studies are 
also examples of nonex-
perimental research. In 
this section, however, we 
are discussing nonex-
perimental studies that 
compare two or more 
groups of scores.
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example, the depression scores may decrease over time in the same way that the symptoms 
of a cold disappear over time. In a pre-post study the researcher also has no control over 
other variables that change with time. For example, the weather could change from dark 
and gloomy before therapy to bright and sunny after therapy. In this case, the depression 
scores could improve because of the weather and not because of the therapy. Because the 
researcher cannot control the passage of time or other variables related to time, this study 
is not a true experiment.

Terminology in Nonexperimental Research Although the two research studies 
shown in Figure 1.7 are not true experiments, you should notice that they produce the 
same kind of data that are found in an experiment (see Figure 1.6). In each case, one vari-
able is used to create groups, and a second variable is measured to obtain scores within 
each group. In an experiment, the groups are created by manipulation of the independent 
variable, and the participants’ scores are the dependent variable. The same terminology is 
often used to identify the two variables in nonexperimental studies. That is, the variable 
that is used to create groups is the independent variable and the scores are the dependent 
variable. For example, the top part of Figure 1.7, gender (boy/girl), is the independent 
variable and the verbal test scores are the dependent variable. However, you should real-
ize that gender (boy/girl) is not a true independent variable because it is not manipulated. 

F I G U R E  1 .7
Two examples of nonexperimental 
studies that involve comparing 
two groups of scores. In (a), a 
participant variable (gender) is 
used to create groups, and then the 
dependent variable (verbal score) 
is measured in each group. In 
(b), time is the variable used to 
define the two groups, and the 
dependent variable (depression) is 
measured at each of the two times.

Variable #1: Participant gender
(the quasi-independent variable)
Not manipulated, but used to
create two groups of participants

Variable #2: Verbal test scores
(the dependent variable)
Measured in each of the
two groups

17
19
16
12
17
18
15
16

12
10
14
15
13
12
11
13

Boys Girls

Any
difference?

Variable #1: Time
(the quasi-independent variable)
Not manipulated, but used
to create two groups of scores

Variable #2: Depression scores
(the dependent variable)
Measured at each of the two 
different times

17
19
16
12
17
18
15
16

12
10
14
15
13
12
11
13

Before
Therapy

After
Therapy

Any
difference?

(a)

(b)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 1-4 | Statistical Notation 25

For this reason, the “independent variable” in a nonexperimental study is often called a 
quasi-independent variable.

In a nonexperimental study, the “independent variable” that is used to create the 
different groups of scores is often called the quasi-independent variable.

LO8 1. In a correlational study, how many variables are measured for each individual 
and how many groups of individuals are in the study?

a. One variable and one group

b. One variable and two groups

c. Two variables and one group

d. Two variables and two groups

LO8 2. A research study comparing alcohol use for college students in the United 
States and Canada reports that more Canadian students drink but American 
students drink more (Kuo, Adlaf, Lee, Gliksman, Demers, & Wechsler, 2002). 
What research design did this study use?

a. Correlational

b. Experimental

c. Nonexperimental 

d. Noncorrelational

LO9 3. A recent study reports that infant rats fed a diet containing genetically modified 
grains reached an adult weight 10% greater than their litter-mates raised on a 
regular diet.  For this study, what is the independent variable?  

a. The rats given the genetically modi�ed diet

b. The rats given the regular diet

c. The type of diet given to the rats

d. The adult weight of the rats

1. c 2. c 3. c 

LE A R N I N G C H E C K

A N S W E R S

1-4 Statistical Notation

LE A R N I N G O B J E C T IV E S

10. Identify what is represented by each of the following symbols: X, Y, X, Y, X, Y N, N, N n, and o.

11. Perform calculations using summation notation and other mathematical  
operations following the correct order of operations. 

The measurements obtained in research studies provide the data for statistical analysis. 
Most of statistical analyses use the same general mathematical operations, notation, and 
basic arithmetic that you have learned during previous years of school. In case you are 
unsure of your mathematical skills, there is a mathematics review section in Appendix A 
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at the back of this book. The appendix also includes a skills assessment exam (page 512) 
to help you determine whether you need the basic mathematics review. In this section, we 
introduce some of the specialized notation that is used for statistical calculations. In later 
chapters, additional statistical notation is introduced as it is needed.

■ Scores
Measuring a variable in a research study yields a score for each individual. Raw scores are 
the original, unchanged scores obtained in the study. Scores for a particular variable are 
typically represented by the letter X. For example, if performance in your statistics course is 
measured by tests and you obtain a 35 on the �rst test, then we could state that X 5 35. A set 
of scores can be presented in a column that is headed by X. For example, a list of quiz scores 
from your class might be presented as shown in the margin (the single column on the left).  

When observations are made for two variables, there will be two scores for each indi-
vidual. The data can be presented as two lists labeled X and X and X Y for the two variables. For Y for the two variables. For Y
example, observations for people’s height in inches (variable X) and weight in pounds X) and weight in pounds X
(variable Y) can be presented as shown in the double column in the margin. Each Y) can be presented as shown in the double column in the margin. Each Y X, Y pair Y pair Y
represents the observations made of a single participant.

The letter N is used to specify how many scores are in a set. An uppercase letter N is used to specify how many scores are in a set. An uppercase letter N N idenN idenN -
ti�es the number of scores in a population and a lowercase letter n identi�es the number of 
scores in a sample. Throughout the remainder of the book you will notice that we often use 
notational differences to distinguish between samples and populations. For the height and 
weight data in the preceding table, n 5 7 for both variables. Note that by using a lowercase 
letter n, we are implying that these data are a sample.

■ Summation Notation
Many of the computations required in statistics involve adding a set of scores. Because 
this procedure is used so frequently, a special notation is used to refer to the sum of a set 
of scores. The Greek letter sigma, or o, is used to stand for summation. The expression oX
means to add all the scores for variable X. The summation sign o can be read as “the sum of.” 
Thus, oX is read as “the sum of the scores.” For the following set of quiz scores, 10, 6, 7, 4X is read as “the sum of the scores.” For the following set of quiz scores, 10, 6, 7, 4X

oX 5 27 and N 5 4.

To use summation notation correctly, keep in mind the following two points:

1. The summation sign, o, is always followed by a symbol or mathematical expression. 
The symbol or expression identi�es exactly which values are to be added. To compute 
o X, for example, the symbol following the summation sign is X, for example, the symbol following the summation sign is X X, and the task is to X, and the task is to X
�nd the sum of the X values. On the other hand, to compute X values. On the other hand, to compute X o(X(X( 2 1)2, the summa-
tion sign is followed by a relatively complex mathematical expression, so your �rst 
task is to calculate (Xtask is to calculate (Xtask is to calculate ( 2 1)2 for each of the scores and then add those values.

2. The summation process is often included with several other mathematical opera-
tions, such as multiplication or squaring. To obtain the correct answer, it is essen-
tial that the different operations be done in the correct sequence. Following is a list 
showing the correct order of operations for performing mathematical operations. 
Most of this list should be familiar, but you should note that we have inserted the 
summation process as the fourth operation in the list.

Order of Mathematical Operations

1. Any calculation contained within parentheses is done �rst.

2. Squaring (or raising to other exponents) is done second.

Quiz 
Scores Height Weight

X X Y

37 72 165
35 68 151
35 67 160
30 67 160
25 68 146
17 70 160
16 66 133
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3. Multiplying and/or dividing is done third. A series of multiplication and/or division 
operations should be done in order from left to right.

4. Summation using the o notation is done next.

5. Finally, any other addition and/or subtraction is done.

The following examples demonstrate how summation notation is used in most of the 
calculations and formulas we present in this book. Notice that whenever a calculation 
requires multiple steps, we use a computational table to help demonstrate the process. 
The table simply lists the original scores in the �rst column and then adds columns to 
show the results of each successive step. Notice that the �rst three operations in the order-
of-operations list all create a new column in the computational table. When you get to 
summation (number 4 in the list), you simply add the values in the last column of your table 
to obtain the sum.

A set of four scores consists of values 3, 1, 7, and 4. We will compute oX, oX2X2X , and (oX)X)X 2

for these scores. To help demonstrate the calculations, we will use a computational table 
showing the original scores (the X values) in the first column. Additional columns can then X values) in the first column. Additional columns can then X
be added to show additional steps in the series of operations. You should notice that the 
first three operations in the list (parentheses, squaring, and multiplying) all create a new 
column of values. The last two operations, however, produce a single value corresponding 
to the sum.

The table to the left shows the original scores (the X values) and the squared scores X values) and the squared scores X
(the X2X2X  values) that are needed to compute oX2X2X .

The first calculation, oX, does not include any parentheses, squaring, or multiplication, 
so we go directly to the summation operation. The X values are listed in the first column of X values are listed in the first column of X
the table, and we simply add the values in this column:

oX 5 3 1 1 1 7 1 4 5 15

To compute oX2X2X , the correct order of operations is to square each score and then find 
the sum of the squared values. The computational table shows the original scores and the 
results obtained from squaring (the first step in the calculation). The second step is to find 
the sum of the squared values, so we simply add the numbers in the X2X2X  column:

oX2X2X 5 9 1 1 1 49 1 16 5 75

The final calculation, (oX)X)X 2, includes parentheses, so the first step is to perform the 
calculation inside the parentheses. Thus, we first find oX and then square this sum. Earlier, X and then square this sum. Earlier, X
we computed oX 5 15, so

(oX)X)X 2 5 (15)2 5 225 ■

Use the same set of four scores from Example 1.3 and compute o(X 2 1) and o(X 2 1)2. 
The following computational table will help demonstrate the calculations.

X (X(X(  – 1)X – 1)X (X(X(  – 1)X – 1)X 2 The first column lists the 
original scores. A second 
column lists the (X 2 1) 
values, and a third column 
shows the (X 2 1)2 values.

3 2 4
1 0 0
7 6 36
4 3 9

More information on the 
order of operations for 
mathematics is available 
in the Math Review  
appendix, page 513.

E X A M P L E  1 . 3

X X2X X2X X

3 9
1 1
7 49
4 16

E X A M P L E  1 . 4
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To compute o(X 2 1), the first step is to perform the operation inside the parentheses. 
Thus, we begin by subtracting one point from each of the X values. The resulting values are X values. The resulting values are X
listed in the middle column of the table. The next step is to add the (X 2 1) values, so we 
simply add the values in the middle column.

o(X 2 1) 5 2 1 0 1 6 1 3 1 5 11

The calculation of o(X 2 1)2 requires three steps. The first step (inside parentheses) is 
to subtract 1 point from each X value. The results from this step are shown in the middle X value. The results from this step are shown in the middle X
column of the computational table. The second step is to square each of the (X 2 1) values. 
The results from this step are shown in the third column of the table. The final step is to add 
the (X 2 1)2 values, so we add the values in the third column to obtain

o(X 2 1)2 5 4 1 0 1 36 1 9 5 49.

Notice that this calculation requires squaring before adding. A common mistake is to add 
the (X 2 1) values and then square the total. Be careful! ■

In both of the preceding examples, and in many other situations, the summation opera-
tion is the last step in the calculation. According to the order of operations, parentheses, 
exponents, and multiplication all come before summation. However, there are situa-
tions in which extra addition and subtraction are completed after the summation. For 
this example, use the same scores that appeared in the previous two examples, and 
compute oX 2 1.

With no parentheses, exponents, or multiplication, the first step is the summation. Thus, 
we begin by computing oX. Earlier we found oX 5 15. The next step is to subtract one 
point from the total. For these data, oX 2 1 5 15 2 1 5 14. ■

For this example, each individual has two scores. The first score is identified as X, and the 
second score is Y. With the help of the following computational table, compute Y. With the help of the following computational table, compute Y oX, oY, Y, Y
and oXY.XY.XY

To find oX, simply add the values in the X column.X column.X

oX 5 3 1 1 1 7 1 4 5 15

Similarly, oY is the sum of the Y is the sum of the Y Y values in the middle column.Y values in the middle column.Y

oY 5 5 1 3 1 4 1 2 5 14

To compute oXY, the first step is to multiply XY, the first step is to multiply XY X times X times X Y for each individual. The resulting Y for each individual. The resulting Y
products (XY values) are listed in the third column of the table. Finally, we add the products XY values) are listed in the third column of the table. Finally, we add the products XY
to obtain oXY 5 15 1 3 1 28 1 8 5 54. ■

The following example is an opportunity for you to test your understanding of summation 
notation.

Calculate each value requested for the following scores: 5, 2, 4, 2

a. oX2X2X b. o(X 1 1) c. o(X 1 1)2

You should obtain answers of 49, 17, and 79 for a, b, and c, respectively. Good luck. ■

E X A M P L E  1 . 5

E X A M P L E  1 . 6

Person X Y XY

A 3 5 15
B 1 3 3
C 7 4 28
D 4 2 8

E X A M P L E  1 . 7
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LO10 1. What value is represented by the uppercase letter N?

a. the number of scores in a population

b. the number of scores in a sample

c. the number of values to be added in a summation problem

d. the number of steps in a summation problem

LO11 2. What is the value of o(X 1 1) for the following scores: 0, 1, 4, 2?

a. 8

b. 9

c. 11

d. 16

LO11 3. What is the last step in the calculation of (oX)X)X 2?

a. Square each score.

b. Add the scores.

c. Square the sum of the scores

d. Add the squared scores.

1. a 2. c 3. c

LE A R N I N G C H E C K

A N S W E R S

1. The term statistics is used to refer to methods for 
organizing, summarizing, and interpreting data.

2. Scientific questions usually concern a population, Scientific questions usually concern a population, Scientif
which is the entire set of individuals one wishes to 
study. Usually, populations are so large that it is  
impossible to examine every individual, so most  
research is conducted with samples. A sample is a 
group selected from a population, usually for purposes 
of a research study.

3. A characteristic that describes a sample is called a 
statistic, and a characteristic that describes a popula-
tion is called a parameter. Although sample statistics 
are usually representative of corresponding popula-
tion parameters, there is typically some discrepancy 
between a statistic and a parameter. The naturally 
occurring difference between a statistic and the  
corresponding parameter is called sampling error.

4. Statistical methods can be classified into two broad Statistical methods can be classified into two broad Statistical methods can be classif
categories: descriptive statistics, which organize and 
summarize data, and inferential statistics, which use 
sample data to draw inferences about populations.

5. A construct is a variable that cannot be directly  
observed. An operational definition measures and 

defines a construct in terms of external behaviors that 
are representative of the construct.

6. A discrete variable consists of indivisible categories, 
often whole numbers that vary in countable steps. 
A continuous variable consists of categories that are 
infinitely divisible and each score corresponds to an 
interval on the scale. The boundaries that separate 
intervals are called real limits and are located exactly 
halfway between adjacent scores.

7. A measurement scale consists of a set of categories 
that are used to classify individuals. A nominal scale 
consists of categories that differ only in name and are 
not differentiated in terms of magnitude or direction. 
In an ordinal scale, the categories are differentiated 
in terms of direction, forming an ordered series. An 
interval scale consists of an ordered series of catego-
ries that are all equal-sized intervals. With an interval 
scale, it is possible to differentiate direction and 
distance between categories. Finally, a ratio scale is an 
interval scale for which the zero point indicates none 
of the variable being measured. With a ratio scale, 
ratios of measurements reflect ratios of magnitude.

8. The experimental method examines relationships 
between variables by manipulating an independent 

S U M M A R Y
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variable to create different treatment conditions and 
then measuring a dependent variable to obtain a group 
of scores in each condition. The groups of scores 
are then compared. A systematic difference between 
groups provides evidence that changing the independ-
ent variable from one condition to another also caused 
a change in the dependent variable. All other variables 
are controlled to prevent them from influencing the re-
lationship. The intent of the experimental method is to 
demonstrate a cause-and-effect relationship between 
variables.

9. Nonexperimental studies also examine relationships 
between variables by comparing groups of scores, 
but they do not have the rigor of true experiments and 
cannot produce cause-and-effect explanations. Instead 
of manipulating a variable to create different groups, 
a nonexperimental study uses a preexisting participant 
characteristic (such as male/female) or the passage of 
time (before/after) to create the groups of scores being 
compared.

10. In an experiment, the independent variable is manipu-
lated by the researcher and the dependent variable 
is the one that is observed to assess the effect of the 
treatment. The variable that is used to create the 
groups in a nonexperiment is a quasi-independent 
variable. 

11. The letter X is used to represent scores for a variable. X is used to represent scores for a variable. X
If a second variable is used, Y represents its scores. Y represents its scores. Y
The letter N is used as the symbol for the number of N is used as the symbol for the number of N
scores in a population; n is the symbol for a number 
of scores in a sample.

12. The Greek letter sigma (o) is used to stand for sum-
mation. Therefore, the expression oX is read “the sum X is read “the sum X
of the scores.” Summation is a mathematical operation 
(like addition or multiplication) and must be performed 
in its proper place in the order of operations; summa-
tion occurs after parentheses, exponents, and multiply-
ing/dividing have been completed.

statistics (3)

population (3)

sample (4)

variable (5)

data (5)

data set (5)

datum (5)

score (5)

raw score (5)

parameter (5)

statistic (5)

descriptive statistics (6)

inferential statistics (6)

sampling error (6)

constructs (11)

operational definition (11)

discrete variable (11)

continuous variable (11)

real limits (12)

upper real limit (12)

lower real limit (12)

nominal scale (13)

ordinal scale (14)

interval scale (15)

ratio scale (15)

descriptive research (17)

descriptive research strategy (17)

correlational method (19)

experimental method (22)

independent variable (22)

dependent variable (22)

control condition (23)

experimental condition (23)

nonequivalent groups study (23)

pre-post study (23)

quasi-independent variable (25)

KE Y TER M S

The Statistical Package for the Social Sciences, known as SPSS, is a computer program that 
performs most of the statistical calculations that are presented in this book, and is commonly 
available on college and university computer systems. Appendix D contains a general introduc-
tion to SPSS. In the SPSS section at the end of each chapter for which SPSS is applicable, there 
are step-by-step instructions for using SPSS to perform the statistical operations presented in 
the chapter.

SPSS ®
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FO CUS  O N  PRO B LE M  SO LVIN G

It may help to simplify summation notation if you observe that the summation sign is always 
followed by a symbol or symbolic expression—for example, oX or X or X o(X 1 3). This symbol 
specifies which values you are to add. If you use the symbol as a column heading and list all 
the appropriate values in the column, your task is simply to add up the numbers in the column. 
To find o(X 1 3) for example, start a column headed with (X 1 3) next to the column of Xs. 
List all the (X 1 3) values; then find the total for the column.

Often, summation notation is part of a relatively complex mathematical expression that 
requires several steps of calculation. The series of steps must be performed according to the 
order of mathematical operations (see pages 26–27). 

D E M O N S TR ATIO N  1.1

SUMMATION NOTATION

A set of scores consists of the following values:

7 3 9 5 4

For these scores, compute each of the following:

oX
(oX)X)X 2

oX2X2X
oX 1 5
o(X 2 2)

Compute oX To compute To compute T oX, we simply add all of the scores in the group.

oX 5 7 1 3 1 9 1 5 1 4 5 28

Compute (oX)2 The first step, inside the parentheses, is to compute The first step, inside the parentheses, is to compute The f oX. The second step is 
to square the value for oX.

oX 5 28 and (oX)X)X 2 5 (28)2 5 784

Compute oX2 The first step is to square each score. The second step is to add the squared The first step is to square each score. The second step is to add the squared The f
scores. The computational table shows the scores and squared scores. To compute oX2X2X  we 
add the values in the X2X2X  column.

oX2X2X 5 49 1 9 1 81 1 25 1 16 5 180

Compute oX 1 5 The first step is to compute The first step is to compute The f oX. The second step is to add 5 points to the 
total.

oX 5 28 and oX 1 5 5 28 1 5 5 33

Compute o(X 2 2) The first step, inside parentheses, is to subtract 2 points from each The first step, inside parentheses, is to subtract 2 points from each The f
score. The second step is to add the resulting values. The computational table shows the 
scores and the (X 2 2) values. To compute o(X 2 2), add the values in the (X – 2) column:X – 2) column:X

o(X 2 2) 5 5 1 1 1 7 1 3 1 2 5 18

X X2X X2X X

7 49
3 9
9 81
5 25
4 16

X X 2 2

7 5
3 1
9 7
5 3
4 2
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PROBLEMS  

10. The results of a recent study showed that children who 
routinely drank reduced fat milk (1% or skim) were 
more likely to be overweight or obese at ages 2 and 
4 compared to children who drank whole or 2% milk 
(Scharf, Demmer, & DeBoer, 2013).  Is this an exam-
ple of an experimental or a nonexperimental study?

11. Gentile, Lynch, Linder, and Walsh (2004) surveyed 
over 600 eighth- and ninth-grade students asking about 
their gaming habits and other behaviors. Their results 
showed that the adolescents who experienced more vid-
eo game violence were also more hostile and had more 
frequent arguments with teachers. Is this an experimen-
tal or a nonexperimental study? Explain your answer.

12. A research study comparing alcohol use for college 
students in the United States and Canada reports that 
more Canadian students drink but American students 
drink more (Kuo, Adlaf, Lee, Gliksman, Demers, 
& Wechsler, 2002). Is this study an example of an 
experiment? Explain why or why not.

13. Stephens, Atkins, and Kingston (2009) conducted an 
experiment in which participants were able to tolerate 
more pain when they were shouting their favorite 
swear words than when they were shouting neutral 
words. Identify the independent and dependent  
variables for this study.

14. Ackerman and Goldsmith (2011) compared learning 
performance for students who studied material printed 
on paper versus students who studied the same mate-
rial presented on a computer screen. All students were 
then given a test on the material and the researchers 
recorded the number of correct answers. 
a. Identify the dependent variable for this study.
b. Is the dependent variable discrete or continuous?
c. What scale of measurement (nominal, ordinal, 

interval, or ratio) is used to measure the dependent 
variable?

15. There is some evidence that people with a visible 
tattoo are considered to be less attractive than are 
people without a visible tattoo. Resenhoeft, Villa, 
and Wiseman (2008) showed one group of students 
a color photograph of a 24-year-old woman with a 
tattoo of a dragon on her arm. A second group of 
students was shown the same photograph but with the 
tattoo removed. Each participant was asked to rate the 
attractiveness of the woman in the photograph. 
a. Identify the independent variable for this study.
b. What scale of measurement is used for the  

independent variable?
c. Identify the dependent variable for this study.
d. What scale of measurement is used for the  

dependent variable?

1. *A researcher is interested in the texting habits of high 
school students in the United States. The researcher 
selects a group of 100 students, measures the number 
of text messages that each individual sends each day, 
and calculates the average number for the group.
a. Identify the population for this study.
b. Identify the sample for this study.
c. The average number that the researcher calculated 

is an example of a .

2. Define the terms population and sample, and explain 
the role of each in a research study.

3. Statistical methods are classified into two major cate-
gories: descriptive and inferential. Describe the general 
purpose for the statistical methods in each category.

4. Define the terms statistic and parameter and explain 
how these terms are related to the concept of sampling 
error.

5. Explain why honesty is a hypothetical construct 
instead of a concrete variable.  Describe how honesty 
might be measured and defined using an operational 
definition.

6. A tax form asks people to identify their age, annual 
income, number of dependents, and social security 
number. For each of these three variables, identify 
the scale of measurement that probably is used and 
identify whether the variable is continuous or discrete.

7. Four scales of measurement were introduced in this 
chapter, from simple classification on a nominal scale to 
the more informative measurements from a ratio scale. 
a. What additional information is obtained from 

measurements on an ordinal scale compared to 
measurements on a nominal scale?

b. What additional information is obtained from 
measurements on an interval scale compared to 
measurements on an ordinal scale?

c. What additional information is obtained from  
measurements on a ratio scale compared to  
measurements on an interval scale?

8. Describe the data for a correlational research study 
and explain how these data are different from the data 
obtained in experimental and nonexperimental studies, 
which also evaluate relationships between two variables.

9. Describe how the goal of an experimental research 
study is different from the goal for nonexperimental or 
correlational research. Identify the two elements that 
are necessary for an experiment to achieve its goal.

*Solutions for odd-numbered problems are provided in Appendix C.
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16. Guéguen and Jacob (2012) asked waitresses to wear 
different colored T-shirts on different days for a 
six-week period and recorded the tips left by male 
customers. The results show that male customers gave 
significantly bigger tips to waitresses when they were 
wearing red. For this study, identify the independent 
variable and the dependent variable.

17. Ford and Torok (2008) found that motivational signs 
were effective in increasing physical activity on a 
college campus. Signs such as “Step up to a healthier 
lifestyle” and “An average person burns 10 calories 
a minute walking up the stairs” were posted by the 
elevators and stairs in a college building. Students and 
faculty increased their use of the stairs during times 
that the signs were posted compared to times when 
there were no signs.
a. Identify the independent and dependent variables 

for this study.
b. What scale of measurement is used for the  

independent variable?

18. For the following scores, find the value of each  
expression:
a. oX
b. (oX)X)X 2

c. oX 2 2 
d. o(X 2 2)

X

3
2
4
2

19. For the following set of scores, find the value of each 
expression:
a. oX2X2X
b. (oX)X)X 2

c. o(X 1 1)
d. o(X 1 1)2

X

1
2
4
1
3

20. For the following set of scores, find the value of each 
expression:
a. oX
b. (oX)X)X 2

c. oX2X2X
d. o(X 1 3)  

X

22
22

7
23
21

21. Two scores, X and X and X Y, are recorded for each of Y, are recorded for each of Y n 5 5 
participants. For these scores, find the value of each 
expression.
a. oX
b. oY
c. o(X 1 Y) Y) Y
d. oXYXY

Subject X Y

A 3 1
B 1 5
C 22 2
D 24 2
E 2 4

22. Use summation notation to express each of the  
following calculations:
a. Add the scores and then square the sum.
b. Square each score and then add the squared values.
c. Subtract 2 points from each score and then add the 

resulting values.
d. Subtract 1 point from each score and square the 

resulting values. Then add the squared values.

23. For the following set of scores, find the value of each 
expression:
a. oX2X2X
b. (oX)X)X 2

c. o(X 2 3)
d. o(X 2 3)2

X

4
5
2
1
3
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2-1 Frequency Distributions and Frequency Distribution Tables

2-2 Grouped Frequency Distribution Tables

2-3 Frequency Distribution Graphs

Summary

Focus on Problem Solving

Demonstration 2.1

Problems

Frequency Distributions 2
CHAP TER

Tools You Will Need
The following items are con-
sidered essential background 
material for this chapter. If you 
doubt your knowledge of any of 
these items, you should review 
the appropriate chapter or section 
before proceeding.

 ■ Proportions (math review, 
Appendix A)

 ■ Fractions
 ■ Decimals
 ■ Percentages

 ■ Scales of measurement 
(Chapter 1): nominal, ordinal, 
interval, and ratio

 ■ Continuous and discrete 
variables (Chapter 1)

 ■ Real limits (Chapter 1)
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2-1 Frequency Distributions and Frequency Distribution Tables

LE A R N I N G O B J E C T IV E S

1. Use and create frequency distribution tables and explain how they are related to the 
original set of scores.

2. Calculate the following from a frequency table: oX, oX2X2X , and the proportion and 
percentage of the group associated with each score.

The results from a research study usually consist of pages of numbers corresponding to 
the measurements or scores collected during the study. The immediate problem for the 
researcher is to organize the scores into some comprehensible form so that any patterns 
in the data can be seen easily and communicated to others. This is the job of descriptive 
statistics: to simplify the organization and presentation of data. One of the most common 
procedures for organizing a set of data is to place the scores in a frequency distribution.

A frequency distribution is an organized tabulation showing the number of  
individuals located in each category on the scale of measurement.

A frequency distribution takes a disorganized set of scores and places them in order 
from highest to lowest, grouping together individuals who all have the same score. If the 
highest score is X 5 10, for example, the frequency distribution groups together all the 10s, 
then all the 9s, then the 8s, and so on. Thus, a frequency distribution allows the researcher 
to see “at a glance” the entire set of scores. It shows whether the scores are generally high 
or low, whether they are concentrated in one area or spread out across the entire scale, and 
generally provides an organized picture of the data. In addition to providing a picture of the 
entire set of scores, a frequency distribution allows you to see the location of any individual 
score relative to all of the other scores in the set.

A frequency distribution can be structured either as a table or as a graph, but in either 
case, the distribution presents the same two elements:

1. The set of categories that make up the original measurement scale

2. A record of the frequency, or number of individuals in each category

Thus, a frequency distribution presents a picture of how the individual scores are 
distributed on the measurement scale—hence the name frequency distribution.

■ Frequency Distribution Tables
The simplest frequency distribution table presents the measurement scale by listing the dif-simplest frequency distribution table presents the measurement scale by listing the dif-simplest frequency distribution table presents the measurement scale by listing the dif
ferent measurement categories (Xferent measurement categories (Xferent measurement categories (  values) in a column from highest to lowest. Beside each X values) in a column from highest to lowest. Beside each X X
value, we indicate the frequency, or the number of times that particular measurement occurred 
in the data. It is customary to use an X as the column heading for the scores and an X as the column heading for the scores and an X f as the f as the f
column heading for the frequencies. An example of a frequency distribution table follows.

The following set of N 5 20 scores was obtained from a 10-point statistics quiz. We will 
organize these scores by constructing a frequency distribution table. Scores:

8 9 8 7 10 9 6 4 9 8

7 8 10 9 8 6 9 7 8 8

It is customary to list 
categories from highest  
to lowest, but this is 
an arbitrary arrange-
ment. Many computer 
programs list categories 
from lowest to highest.

E X A M P L E  2 . 1
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1. The highest score is X 5 10, and the lowest score is X 5 4. Therefore, the �rst 
column of the table lists the categories that make up the scale of measurement 
(X values) from 10 down to 4. Notice that all of the possible values are listed in X values) from 10 down to 4. Notice that all of the possible values are listed in X
the table. For example, no one had a score of X 5 5, but this value is included. 
With an ordinal, interval, or ratio scale, the categories are listed in order 
(usually highest to lowest). For a nominal scale, the categories can be listed 
in any order.

2. The frequency associated with each score is recorded in the second column. For 
example, two people had scores of X 5 10, so there is a 2 in the f column beside  f column beside  f
X 5 10.

Because the table organizes the scores, it is possible to see very quickly the general quiz 
results. For example, there were only two perfect scores, but most of the class had high 
grades (8s and 9s). With one exception (the score of X 5 4), it appears that the class has 
learned the material fairly well.

Notice that the X values in a frequency distribution table represent the scale of measureX values in a frequency distribution table represent the scale of measureX -
ment, not the actual set of scores. For example, the not the actual set of scores. For example, the not X column lists the value 10 only one X column lists the value 10 only one X
time, but the frequency column indicates that there are actually two values of X 5 10. Also, 
the X column lists a value of X column lists a value of X X 5 5, but the frequency column indicates that no one actually 
had a score of X 5 5.

You also should notice that the frequencies can be used to find the total number of 
scores in the distribution. By adding up the frequencies, you obtain the total number of 
individuals:

o f 5 N ■

Obtaining oX from a Frequency Distribution TableX from a Frequency Distribution TableX There may be times when 
you need to compute the sum of the scores, oX, or perform other computations for a set 
of scores that has been organized in a frequency distribution table. To complete these 
calculations correctly, you must use all the information presented in the table. That is, it 
is essential to use the information in the f column as well as the X column to obtain the X column to obtain the X
full set of scores.

When it is necessary to perform calculations for scores in a frequency distribution 
table, the safest procedure is to use the information in the table to recover the complete 
list of individual scores before you begin any computations. This process is demonstrated 
in the following example.

Consider the frequency distribution table shown in the margin. The table shows that the 
distribution has one 5, two 4s, three 3s, three 2s, and one 1, for a total of 10 scores. If you 
simply list all 10 scores, you can safely proceed with calculations such as finding oX or X or X
oX2X2X . For example, to compute oX you must add all 10 scores:X you must add all 10 scores:X

oX 5 5 1 4 1 4 1 3 1 3 1 3 1 2 1 2 1 2 1 1

For the distribution in this table, you should obtain oX 5 29. Try it yourself. 
Similarly, to compute oX2X2X  you square each of the 10 scores and then add the squared 

values.

oX2X2X 5 52 1 42 1 42 1 32 1 32 1 32 1 22 1 22 1 22 1 12

This time you should obtain oX2X2X 5 97. ■

X f

10 2

9 5

8 7

7 3

6 2

5 0
4 1

E X A M P L E  2 . 2

X f

5 1

4 2

3 3

2 3
1 1
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An alternative way to get oX from a frequency distribution table is to multiply X from a frequency distribution table is to multiply X
each X value by its frequency and then add these products. This sum may be expressed X value by its frequency and then add these products. This sum may be expressed X
in symbols as of Xof Xo . The computation is summarized as follows for the data in 
Example 2.2:

X f fx

5 1 5 (the one 5 totals 5)
4 2 8 (the two 4s total 8)
3 3 9 (the three 3s total 9)
2 3 6 (the three 2s total 6)
1 1 1 (the one 1 totals 1)

oX 5 29

No matter which method you use to �nd oX, the important point is that you must 
use the information given in the frequency column in addition to the information in the 
X column.X column.X

The following example is an opportunity for you to test your understanding by comput-
ing oX and X and X oX2X2X  for scores in a frequency distribution table.

Calculate oX and X and X oX2X2X  for scores shown in the frequency distribution table in Example 2.1 
(page 37). You should obtain oX 5 158 and oX2X2X 5 1,288. Good luck. ■

■ Proportions and Percentages
In addition to the two basic columns of a frequency distribution, there are other measures 
that describe the distribution of scores which can be incorporated into the table. The two 
most common measures are proportion and percentage.

Proportion measures the fraction of the total group that is associated with each score. 
In Example 2.2, there were two individuals with X 5 4. Thus, 2 out of 10 people had 
X 5 4, so the proportion would be 2

10 5 0.20. In general, the proportion associated with 
each score is

proportion 5 p 5
f

N

Because proportions describe the frequency ( f ) in relation to the total number (N), N), N
they often are called relative frequencies. Although proportions can be expressed as 
fractions (for example, 2

10), they more commonly appear as decimals. A column of pro-
portions, headed with a p, can be added to the basic frequency distribution table (see 
Example 2.4).

In addition to using frequencies ( f ) and proportions (p) and proportions (p) and proportions ( ), researchers often describe 
a distribution of scores with percentages. For example, an instructor might describe the 
results of an exam by saying that 15% of the class earned As, 23% Bs, and so on. To com-
pute the percentage associated with each score, you �rst �nd the proportion (ppute the percentage associated with each score, you �rst �nd the proportion (ppute the percentage associated with each score, you �rst �nd the proportion ( ) and then 
multiply by 100:

percentage 5 p(100) 5
f

N
(100)

Percentages can be included in a frequency distribution table by adding a column headed 
with %. Example 2.4 demonstrates the process of adding proportions and percentages to a 
frequency distribution table.

Caution: Doing calcula-
tions within the table 
works well for oX but 
can lead to errors for 
more complex formulas.

E X A M P L E  2 . 3
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The frequency distribution table from Example 2.2 is repeated here. This time we have added 
columns showing the proportion (pcolumns showing the proportion (pcolumns showing the proportion ( ) and the percentage (%) associated with each score.

X f p 5 f/N % 5 p(100)

5 1 1/10 5 0.10 10%
4 2 2/10 5 0.20 20%
3 3 3/10 5 0.30 30%
2 3 3/10 5 0.30 30%
1 1 1/10 5 0.10 10%

E X A M P L E  2 . 4

LO1 1. If the following scores are placed in a frequency distribution table, then what is 
the frequency value corresponding to X 5 2?  Scores:  2, 3, 1, 1, 3, 3, 2, 4, 3, 1

a. 1

b. 2

c. 3

d. 4

LO1 2. For the following distribution of quiz scores, how many individuals took 
the quiz?

a. 5

b. 10

c. 15

d. 21

LO2 3. For the following frequency distribution, what is the value of oX2X2X ?

a. 50

b. 55

c. 74

d. 225

1. b 2. d 3. a 

LE A R N I N G C H E C K

X f

5 6
4 5
3 5
2 3
1 2

X f

5 1
4 0
3 2
2 1
1 3

A N S W E R S

2-2 Grouped Frequency Distribution Tables

LE A R N I N G O B J E C T IV E

3. Choose when it is useful to set up a grouped frequency distribution table, and use 
and create this type of table for a set of scores.

When a set of data covers a wide range of values, it is unreasonable to list all the individual 
scores in a frequency distribution table. Consider, for example, a set of exam scores that 

■
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range from a low of X 5 41 to a high of X 5 96. These scores cover a range of more than 
50 points.

If we were to list all the individual scores from X 5 96 down to X 5 41, it would take 
56 rows to complete the frequency distribution table. Although this would organize the data, 
the table would be long and cumbersome. Remember: The purpose for constructing a table 
is to obtain a relatively simple, organized picture of the data. This can be accomplished by 
grouping the scores into intervals and then listing the intervals in the table instead of list-
ing each individual score. For example, we could construct a table showing the number of 
students who had scores in the 90s, the number with scores in the 80s, and so on. The result 
is called a grouped frequency distribution table because we are presenting groups of scores 
rather than individual values. The groups, or intervals, are called class intervals.

There are several guidelines that help guide you in the construction of a grouped fre-
quency distribution table. Note that these are simply guidelines, rather than absolute require-
ments, but they do help produce a simple, well-organized, and easily understood table.

The grouped frequency distribution table should have about 10 class intervals. If a table has 
many more than 10 intervals, it becomes cumbersome and defeats the purpose of a frequency 
distribution table. On the other hand, if you have too few intervals, you begin to lose infor-
mation about the distribution of the scores. At the extreme, with only one interval, the table 
would not tell you anything about how the scores are distributed. Remember that the purpose 
of a frequency distribution is to help a researcher see the data. With too few or too many in-
tervals, the table will not provide a clear picture. You should note that 10 intervals is a general 
guide. If you are constructing a table on a blackboard, for example, you probably want only 5 
or 6 intervals. If the table is to be printed in a scientific report, you may want 12 or 15 inter-
vals. In each case, your goal is to present a table that is relatively easy to see and understand.

The width of each interval should be a relatively simple number. For example, 2, 5, 10, or 
20 would be a good choice for the interval width. Notice that it is easy to count by 5s or 
10s. These numbers are easy to understand and make it possible for someone to see quickly 
how you have divided the range of scores into class intervals.

The bottom score in each class interval should be a multiple of the width. If you are using 
a width of 10 points, for example, the intervals should start with 10, 20, 30, 40, and so on. 
Again, this makes it easier for someone to understand how the table has been constructed.

All intervals should be the same width. They should cover the range of scores completely 
with no gaps and no overlaps, so that any particular score belongs in exactly one interval.

The application of these rules is demonstrated in Example 2.5.

An instructor has obtained the set of N 5 25 exam scores shown here. To help organize 
these scores, we will place them in a frequency distribution table. The scores are:

82 75 88 93 53 84 87 58 72 94 69 84 61

91 64 87 84 70 76 89 75 80 73 78 60

The first step is to determine the range of scores. For these data, the smallest score is 
X 5 53 and the largest score is X 5 94, so a total of 42 rows would be needed for a table 
that lists each individual score. Because 42 rows would not provide a simple table, we have 
to group the scores into class intervals.

The best method for finding a good interval width is a systematic trial-and-error ap-
proach that uses guidelines 1 and 2 simultaneously. Specifically, we want about 10 intervals 

When the scores are 
whole numbers, the total 
number of rows for a 
regular table can be 
obtained by finding the 
difference between the 
highest and the lowest 
scores and adding 1:

rows 5 highest 2 lowest 1 1

G U I D E LI N E  1

G U I D E LI N E  2

G U I D E LI N E  3

G U I D E LI N E  4

E X A M P L E  2 . 5

Remember, when the 
scores are whole  
numbers, the number of 
rows is determined by

highest 2 lowest 1 1
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and we want the interval width to be a simple number. For this example, the scores cover 
a range of 42 points, so we will try several different interval widths to see how many in-
tervals are needed to cover this range. For example, if each interval were 2 points wide, it 
would take 21 intervals to cover a range of 42 points. This is too many, so we move on to 
an interval width of 5 or 10 points. The following table shows how many intervals would 
be needed for these possible widths:

Width
Number of Intervals Needed 
to Cover a Range of 42 Points

2 21 (too many)
5 9 (OK)

10 5 (too few)

Notice that an interval width of 5 will result in about 10 intervals, which is exactly what 
we want.

The next step is to actually identify the intervals. The lowest score for these data is 
X 5 53, so the lowest interval should contain this value. Because the interval should have 
a multiple of 5 as its bottom score, the interval should begin at 50. The interval has a width 
of 5, so it should contain 5 values: 50, 51, 52, 53, and 54. Thus, the bottom interval is 50–54. 
The next interval would start at 55 and go to 59. Note that this interval also has a bottom 
score that is a multiple of 5, and contains exactly 5 scores (55, 56, 57, 58, and 59). The com-
plete frequency distribution table showing all of the class intervals is presented in Table 2.2.

Once the class intervals are listed, you complete the table by adding a column of 
frequencies. The values in the frequency column indicate the number of individuals who 
have scores located in that class interval. For this example, there were three students with 
scores in the 60–64 interval, so the frequency for this class interval is f 5 3 (see Table 2.2). 
The basic table can be extended by adding columns showing the proportion and percentage 
associated with each class interval.

Finally, you should note that after the scores have been placed in a grouped table, you 
lose information about the specific value for any individual score. For example, Table 2.2 
shows that one person had a score between 65 and 69, but the table does not identify the 
exact value for the score. In general, the wider the class intervals are, the more information 
is lost. In Table 2.2 the interval width is 5 points, and the table shows that there are three 
people with scores in the lower 60s and one person with a score in the upper 60s. This in-
formation would be lost if the interval width were increased to 10 points. With an interval 
width of 10, all of the 60s would be grouped together into one interval labeled 60–69. The 
table would show a frequency of four people in the 60–69 interval, but it would not tell 
whether the scores were in the upper 60s or the lower 60s. ■

Because the bottom 
interval usually extends 
below the lowest score 
and the top interval  
extends beyond the  
highest score, you often 
will need slightly more 
than the computed  
number of intervals.

X f

90–94 3
85–89 4
80–84 5
75–79 4
70–74 3
65–69 1
60–64 3
55–59 1
50–54 1

TA B L E  2 . 2
This grouped frequency distribu-
tion table shows the data from 
Example 2.5. The original scores 
range from a high of X 5 94 to 
a low of X 5 53. This range has 
been divided into 9 intervals with 
each interval exactly 5 points 
wide. The frequency column ( f ) 
lists the number of individuals 
with scores in each of the class 
intervals.
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■ Real Limits and Frequency Distributions
Recall from Chapter 1 that a continuous variable has an infinite number of possible values 
and can be represented by a number line that is continuous and contains an infinite number 
of points. However, when a continuous variable is measured, the resulting measurements 
correspond to intervals on the number line rather than single points. If you are measur-
ing time in seconds, for example, a score of X 5 8 seconds actually represents an interval 
bounded by the real limits 7.5 seconds and 8.5 seconds. Thus, a frequency distribution table 
showing a frequency of f 5 3 individuals all assigned a score of X 5 8 does not mean that 
all three individuals had exactly the same measurement. Instead, you should realize that the 
three measurements are simply located in the same interval between 7.5 and 8.5.

The concept of real limits also applies to the class intervals of a grouped frequency 
distribution table. For example, a class interval of 40–49 contains scores from X 5 40 to 
X 5 49. These values are called the apparent limits of the interval because it appears that 
they form the upper and lower boundaries for the class interval. If you are measuring a 
continuous variable, however, a score of X 5 40 is actually an interval from 39.5 to 40.5. 
Similarly, X 5 49 is an interval from 48.5 to 49.5. Therefore, the real limits of the interval 
are 39.5 (the lower real limit) and 49.5 (the upper real limit). Notice that the next higher 
class interval is 50–59, which has a lower real limit of 49.5. Thus, the two intervals meet at 
the real limit 49.5, so there are no gaps in the scale. You also should notice that the width 
of each class interval becomes easier to understand when you consider the real limits of 
an interval. For example, the interval 50–59 has real limits of 49.5 and 59.5. The distance 
between these two real limits (10 points) is the width of the interval.

LO3 1. A set of scores ranges from a high of X 5 96 to a low of X 5 27. If these 
scores are placed in a grouped frequency distribution table with an interval 
width of 10 points, the top interval in the table would be .

a. 90–99

b. 90–100

c. 91–100

d. 87–96

LO3 2. What is the lowest score in the following distribution?

a. X 5 16

b. X 5 17

c. X 5 1

d. cannot be determined

LO3 3. Which of the following statements is false regarding grouped frequency 
distribution tables?

a. An interval width should be used that yields about 10 intervals.

b. Intervals are listed in descending order, starting with the highest value at the 
top of the X column.X column.X

c. The bottom score for each interval is a multiple of the interval width.

d. The value for N can be determined by counting the number of intervals in N can be determined by counting the number of intervals in N
the X column.X column.X

1. a 2. d 3. d

LE A R N I N G C H E C K

X f

24–25 2
22–23 4
20–21 6
18–19 3
16–17 1

A N S W E R S
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2-3 Frequency Distribution Graphs

LE A R N I N G O B J E C T IV E S

4. Describe how the three types of frequency distribution graphs—histograms,  
polygons, and bar graphs—are constructed and identify when each is used. 

5. Use and create frequency distribution graphs and explain how they are related to 
the original set of scores.

6. Explain how frequency distribution graphs for populations differ from the graphs 
used for samples.

7. Identify the shape of a distribution—symmetrical, and positively or negatively 
skewed—based on a set of scores or a frequency distribution graph. 

A frequency distribution graph is basically a picture of the information available in a fre-
quency distribution table. We will consider several different types of graphs, but all start 
with two perpendicular lines called axes. The horizontal line is the X-axis, or the abscissa X-axis, or the abscissa X
(ab-SIS-uh). The vertical line is the Y-axis, or the ordinate. The measurement scale (set of Y-axis, or the ordinate. The measurement scale (set of Y X
values) is listed along the X-axis with values increasing from left to right. The frequencies X-axis with values increasing from left to right. The frequencies X
are listed on the Y-axis with values increasing from bottom to top. As a general rule, the Y-axis with values increasing from bottom to top. As a general rule, the Y
point where the two axes intersect should have a value of zero for both the scores and the 
frequencies. A final general rule is that the graph should be constructed so that its height 
(Y-axis) is approximately two-thirds to three-quarters of its length (Y-axis) is approximately two-thirds to three-quarters of its length (Y X-axis). Violating these X-axis). Violating these X
guidelines can result in graphs that give a misleading picture of the data (see Box 2.1).

■ Graphs for Interval or Ratio Data
When the data consist of numerical scores that have been measured on an interval or ratio 
scale, there are two options for constructing a frequency distribution graph. The two types 
of graphs are called histograms and polygons.

Histograms To construct a histogram, you first list the scores (measurement categories), 
equally spaced along the X-axis. Then you draw a bar above each X-axis. Then you draw a bar above each X X value so thatX value so thatX

a. the height of the bar corresponds to the frequency for that category.

b. for continuous variables, the width of the bar extends to the real limits of the 
category. For discrete variables, each bar extends exactly half the distance to the 
adjacent category on each side.  

For both continuous and discrete variables, each bar in a histogram extends to the midpoint 
between adjacent categories. As a result, adjacent bars touch and there are no spaces or 
gaps between bars. An example of a histogram is shown in Figure 2.1.

When data have been grouped into class intervals, you can construct a frequency distri-
bution histogram by drawing a bar above each interval so that the width of the bar extends 
to the real limits of the interval. As before, adjacent bars touch with no space between bars. 
This process is demonstrated in Figure 2.2.

For the two histograms shown in Figures 2.1 and 2.2, notice that the values on both 
the vertical and horizontal axes are clearly marked and that both axes are labeled. Also 
note that, whenever possible, the units of measurement are speci�ed; for example, 
Figure 2.2 shows a distribution of heights measured in inches. Finally, notice that the hori-
zontal axis in Figure 2.2 does not list all of the possible heights starting from zero and 
going up to 48 inches. Instead, the graph clearly shows a break between zero and 30, indi-
cating that some scores have been omitted.
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Children’s heights (in inches)
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f
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230 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

F I G U R E  2 . 2
An example of a frequency 
distribution histogram for 
grouped data. The same 
set of children’s heights is 
presented in a frequency 
distribution table and in a 
histogram.

Quiz scores (number correct)
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X
5
4
3
2
1

f
2
3
4
2
1

21

F I G U R E  2 .1
An example of a frequency distribution 
histogram. The same set of quiz scores 
is presented in a frequency distribution 
table and in a histogram.

A Modified Histogram A slight modification to the traditional histogram produces a 
very easy to draw and simple to understand sketch of a frequency distribution. Instead of 
drawing a bar above each score, the modification consists of drawing a stack of blocks. 
Each block represents one individual, so the number of blocks above each score corre-
sponds to the frequency for that score. An example is shown in Figure 2.3.

Note that the number of blocks in each stack makes it very easy to see the absolute 
frequency for each category. In addition, it is easy to see the exact difference in frequency 
from one category to another. In Figure 2.3, for example, there are exactly two more people 
with scores of X 5 2 than with scores of X 5 1. Because the frequencies are clearly dis-
played by the number of blocks, this type of display eliminates the need for a vertical line 
(the Y-axis) showing frequencies. In general, this kind of graph provides a simple and Y-axis) showing frequencies. In general, this kind of graph provides a simple and Y
concrete picture of the distribution for a sample of scores. Note that we often will use this 
kind of graph to show sample data throughout the rest of the book. You should also note, 
however, that this kind of display simply provides a sketch of the distribution and is not a 
substitute for an accurately drawn histogram with two labeled axes.

Polygons The second option for graphing a distribution of numerical scores from an in-
terval or ratio scale of measurement is called a polygon. To construct a polygon, you begin 
by listing the scores (measurement categories), equally spaced along the X-axis. Then,X-axis. Then,X

a. a dot is centered above each score so that the vertical position of the dot  
corresponds to the frequency for the category.
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Although graphs are intended to provide an accurate 
picture of a set of data, they can be used to exaggerate 
or misrepresent a set of scores. These misrepresenta-
tions generally result from failing to follow the basic 
rules for graph construction. The following example 
demonstrates how the same set of data can be pre-
sented in two entirely different ways by manipulating 
the structure of a graph.

For the past several years, the city has kept records 
of the number of homicides occurring per year. The 
data are summarized as follows:

Year Number of Homicides

2013 42
2014 44
2015 47
2016 49

These data are shown in two different graphs in 
Figure 2.4. In the first graph, we have exaggerated the 
height and started numbering the Y-axis at 40 rather Y-axis at 40 rather Y
than at zero. As a result, the graph seems to indicate 
a rapid rise in the number of homicides over the four-
year period. In the second graph, we have stretched 
out the X-axis and used zero as the starting point X-axis and used zero as the starting point X
for the Y-axis. The result is a graph that shows little Y-axis. The result is a graph that shows little Y
change in the homicide rate over the 4-year period.

Which graph is correct? The answer is that neither 
one is very good. Remember that the purpose of a 
graph is to provide an accurate display of the data. The 
first graph in Figure 2.4 exaggerates the differences be-
tween years, and the second graph conceals the differ-
ences. Some compromise is needed. Also note that in 
some cases a graph may not be the best way to display 
information. For these data, for example, showing the 
numbers in a table would be better than either graph.

BOX 2.1 The Use and Misuse of Graphs
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F I G U R E  2 . 4
Two graphs showing the number of homicides 
in a city over a 4-year period. Both graphs show 
exactly the same data. However, the first graph 
gives the appearance that the homicide rate is 
high and rising rapidly. The second graph gives 
the impression that the homicide rate is low and 
has not changed over the 4-year period.

1 2 3 4 5 6 7
x

F I G U R E  2 . 3
A frequency distribution 
graph in which each indi-
vidual is represented by a 
block placed directly above 
the individual’s score. For 
example, three people had 
scores of X = 2.
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b. a continuous line is drawn from dot to dot to connect the series of dots.

c. the graph is completed by drawing a line down to the X-axis (zero frequency) at X-axis (zero frequency) at X
each end of the range of scores. The �nal lines are usually drawn so that they reach 
the X-axis at a point that is one category below the lowest score on the left side and X-axis at a point that is one category below the lowest score on the left side and X
one category above the highest score on the right side. An example of a polygon is 
shown in Figure 2.5.

A polygon also can be used with data that have been grouped into class intervals. For a 
grouped distribution, you position each dot directly above the midpoint of the class inter-
val. The midpoint can be found by averaging the highest and the lowest scores in the 
interval. For example, a class interval that is listed as 20–29 would have a midpoint of 24.5.

midpoint 5
20 1 29

2
5

49

2
5 24.5

An example of a frequency distribution polygon with grouped data is shown in Figure 2.6.
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F I G U R E  2 . 5
An example of a frequency 
distribution polygon. The same set 
of data is presented in a frequency 
distribution table and in a polygon.
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F I G U R E  2 .6
An example of a frequency 
distribution polygon for 
grouped data. The same 
set of data is presented in a 
frequency distribution table 
and in a polygon.
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■ Graphs for Nominal or Ordinal Data
When the scores are measured on a nominal or ordinal scale (usually non-numerical 
values), the frequency distribution can be displayed in a bar graph.

Bar Graphs A bar graph is essentially the same as a histogram, except that spaces are 
left between adjacent bars. For a nominal scale, the space between bars emphasizes that 
the scale consists of separate, distinct categories. For ordinal scales, separate bars are used 
because you cannot assume that the categories are all the same size.

To construct a bar graph, list the categories of measurement along the X-axis and then X-axis and then X
draw a bar above each category so that the height of the bar corresponds to the frequency 
for the category. An example of a bar graph is shown in Figure 2.7.

■ Graphs for Population Distributions
When you can obtain an exact frequency for each score in a population, you can construct 
frequency distribution graphs that are exactly the same as the histograms, polygons, and 
bar graphs that are typically used for samples. For example, if a population is defined 
as a specific group of N 5 50 people, we could easily determine how many have IQs of 
X 5 110. However, if we were interested in the entire population of adults in the United 
States, it would be impossible to obtain an exact count of the number of people with an 
IQ of 110. Although it is still possible to construct graphs showing frequency distributions 
for extremely large populations, the graphs usually involve two special features: relative 
frequencies and smooth curves.

Relative Frequencies Although you usually cannot find the absolute frequency for 
each score in a population, you very often can obtain relative frequencies. For example, 
no one knows the exact number of male and female human beings living in the United 
States because the exact numbers keep changing. However, based on past census data and 
general trends, we can estimate that the two numbers are very close, with women slightly 
outnumbering men. You can represent these relative frequencies in a bar graph by making 
the bar above Female slightly taller than the bar above Male (Figure 2.8). Notice that the 
graph does not show the absolute number of people. Instead, it shows the relative number 
of females and males.

Smooth Curves When a population consists of numerical scores from an interval or 
a ratio scale, it is customary to draw the distribution with a smooth curve instead of the 
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F I G U R E  2 .7
A bar graph showing the distribution of 
personality types in a sample of college 
students. Because personality type is a 
discrete variable measured on a nomi-
nal scale, the graph is drawn with space 
between the bars.
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jagged, step-wise shapes that occur with histograms and polygons. The smooth curve 
indicates that you are not connecting a series of dots (real frequencies) but instead are 
showing the relative changes that occur from one score to the next. One commonly oc-
curring population distribution is the normal curve. The word normal refers to a specific 
shape that can be precisely defined by an equation. Less precisely, we can describe a 
normal distribution as being symmetrical, with the greatest frequency in the middle and 
relatively smaller frequencies as you move toward either extreme. A good example of 
a normal distribution is the population distribution for IQ scores shown in Figure 2.9. 
Because normal-shaped distributions occur commonly and because this shape is math-
ematically guaranteed in certain situations, we give it extensive attention throughout 
this book.

In the future, we will be referring to distributions of scores. Whenever the term distribu-
tion appears, you should conjure up an image of a frequency distribution graph. The graph 
provides a picture showing exactly where the individual scores are located. To make this 
concept more concrete, you might �nd it useful to think of the graph as showing a pile of 
individuals just like we showed a pile of blocks in Figure 2.4. For the population of IQ 
scores shown in Figure 2.9, the pile is highest at an IQ score around 100 because most 
people have average IQs. There are only a few individuals piled up at an IQ of 130; it must 
be lonely at the top.
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F I G U R E  2 . 8
A frequency distribution showing the relative 
frequency of females and males in the United 
States. Note that the exact number of individuals is 
not known. The graph simply shows that there are 
slightly more females than males.

F I G U R E  2 .9
The population distribution 
of IQ scores; an example of 
a normal distribution.
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■ The Shape of a Frequency Distribution
Rather than drawing a complete frequency distribution graph, researchers often simply 
describe a distribution by listing its characteristics. There are three characteristics that com-
pletely describe any distribution: shape, central tendency, and variability. In simple terms, 
central tendency measures where the center of the distribution is located and variability 
measures the degree to which the scores are spread over a wide range or are clustered 
together. Central tendency and variability are covered in detail in Chapters 3 and 4. Techni-
cally, the shape of a distribution is defined by an equation that prescribes the exact relation-
ship between each X and X and X Y value on the graph. However, we will rely on a few less-precise Y value on the graph. However, we will rely on a few less-precise Y
terms that serve to describe the shape of most distributions.

Nearly all distributions can be classi�ed as being either symmetrical or skewed.

In a symmetrical distribution, it is possible to draw a vertical line through the mid-
dle so that one side of the distribution is a mirror image of the other (Figure 2.10).

In a skewed distribution, the scores tend to pile up toward one end of the scale and 
taper off gradually at the other end (see Figure 2.10).

The section where the scores taper off toward one end of a distribution is called the 
tail of the distribution.

A skewed distribution with the tail on the right-hand side is positively skewed
because the tail points toward the positive (above-zero) end of the X-axis. If the tail X-axis. If the tail X
points to the left, the distribution is negatively skewed (see Figure 2.10).

For a very dif�cult exam, most scores tend to be low, with only a few individuals earn-
ing high scores. This produces a positively skewed distribution. Similarly, a very easy exam 
tends to produce a negatively skewed distribution, with most of the students earning high 
scores and only a few with low values.

Not all distributions are perfectly symmetrical or obviously skewed in one direction. 
Therefore, it is common to modify these descriptions of shape with phrases likely “roughly 
symmetrical” or “tends to be positively skewed.” The goal is to provide a general idea of 
the appearance of the distribution. 

Symmetrical distributions

Skewed distributions

Positive skew Negative skew

F I G U R E  2 .1 0
Examples of different 
shapes for distributions.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



50 CHAPTER 2 | Frequency Distributions

LO4 1. Which of the following measuring scales are displayed by frequency 
distribution polygons? 

a. Either interval or ratio scales

b. Only ratio scales

c. Either nominal or ordinal scales

d. Only nominal scales

LO5 2. A group of quiz scores is shown in a histogram. If the bars in the histogram 
gradually decrease in height from left to right, what can you conclude about 
the set of quiz scores?

a. There are more high scores than there are low scores.

b. There are more low scores than there are high scores.

c. The height of the bars always decreases as the scores increase.

d. None of the above.

LO6 3. Instead of showing the actual number of individuals in each category, a 
population frequency distribution graph usually shows a(n) .

a. estimated frequency

b. grouped frequency

c. relative frequency

d. hypothetical frequency

LO7 4. In a distribution with positive skew, where are the scores with the highest 
frequencies located?

a. On the right side of the distribution

b. On the left side of the distribution

c. In the middle of the distribution

d. Represented at two distinct peaks

1. a 2. b 3. c 4. b 

LE A R N I N G C H E C K

A N S W E R S

1. The goal of descriptive statistics is to simplify the 
organization and presentation of data. One descriptive 
technique is to place the data in a frequency distri-
bution table or graph that shows exactly how many 
individuals (or scores) are located in each category  
on the scale of measurement.

2. A frequency distribution table lists the categories that 
make up the scale of measurement (the X values) in X values) in X
one column. Beside each X value, in a second colX value, in a second colX -
umn, is the frequency or number of individuals in that 
category. The table may include a proportion column 
showing the relative frequency for each category:

proportion 5 p 5
f

n

The table may include a percentage column showing 
the percentage associated with each X value:X value:X

percentage 5 ps100d 5
f

n
s100d

3. It is recommended that a frequency distribution table 
have a maximum of 10 to 15 rows to keep it simple. 
If the scores cover a range that is wider than this sug-
gested maximum, it is customary to divide the range 
into sections called class intervals. These intervals 
are then listed in the frequency distribution table 
along with the frequency or number of individuals 
with scores in each interval. The result is called a 
grouped frequency distribution. The guidelines for 

S U M M A R Y
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constructing a grouped frequency distribution table 
are as follows:
a. There should be about 10 intervals.
b. The width of each interval should be a simple num-

ber (e.g., 2, 5, or 10).
c. The bottom score in each interval should be a mul-

tiple of the width.
d. All intervals should be the same width, and they 

should cover the range of scores with no gaps.

4. A frequency distribution graph lists scores on the hori-
zontal axis and frequencies on the vertical axis. The 
type of graph used to display a distribution depends 
on the scale of measurement used. For interval or ratio 
scales, you should use a histogram or a polygon. For 
a histogram, a bar is drawn above each score so that 

the height of the bar corresponds to the frequency. 
Each bar extends to the real limits of the score, so that 
adjacent bars touch. For a polygon, a dot is placed 
above the midpoint of each score or class interval so 
that the height of the dot corresponds to the frequency; 
then lines are drawn to connect the dots. Bar graphs 
are used with nominal or ordinal scales. Bar graphs are 
similar to histograms except that gaps are left between 
adjacent bars.

5. Shape is one of the basic characteristics used to 
describe a distribution of scores. Most distributions 
can be classified as either symmetrical or skewed. A 
skewed distribution that tails off to the right is said 
to be positively skewed. If it tails off to the left, it is 
negatively skewed.

frequency distribution (36)

range (40)

grouped frequency distribution (40)

class interval (40)

apparent limits (42)

histogram (43)

polygon (43)

bar graph (47)

relative frequency (47)

symmetrical distribution (49)

skewed distribution (49)

tail(s) of a distribution (49)

positively skewed distribution (49)

negatively skewed distribution (49)

KE Y TER M S

General instructions for using SPSS are presented in Appendix D. Following are detailed 
instructions for using SPSS to produce Frequency Distribution Tables or Graphs.

FREQUENCY DISTRIBUTION TATAT BLES

Data Entry

1. Enter all the scores in one column of the data editor, probably VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on Frequencies.
2. Highlight the column label for the set of scores (VAR00001) in the left box and click the Highlight the column label for the set of scores (VAR00001) in the left box and click the Highlight the column label for the set of scores (V

arrow to move it into the Variable box.
3. Be sure that the option to Display Frequency Table is selected.
4. Click OK.

SPSS Output

The frequency distribution table will list the score values in a column from smallest to largest, 
with the percentage and cumulative percentage also listed for each score. Score values that 
do not occur (zero frequencies) are not included in the table, and the program does not group 
scores into class intervals (all values are listed).

FREQUENCY DISTRIBUTION HISTOGRAMS OR BAR GRAPHS

Data Entry

1. Enter all the scores in one column of the data editor, probably VAR00001.

SPSS ®
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Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click Frequencies.
2. Highlight the column label for the set of scores (VAR00001) in the left box and click the 

arrow to move it into the Variable box.
3. Click Charts.
4. Select either Bar Graphs or Histogram.
5. Click Continue.
6. Click OK.

SPSS Output

SPSS will display a frequency distribution table and a graph. Note that SPSS often produces 
a histogram that groups the scores in unpredictable intervals. A bar graph usually produces a 
clearer picture of the actual frequency associated with each score.

FO CUS  O N  PRO B LE M  SO LVIN G

1. When constructing or working with a grouped frequency distribution table, a common 
mistake is to calculate the interval width by using the highest and lowest values that define 
each interval. For example, some students are tricked into thinking that an interval identi-
fied as 20–24 is only 4 points wide. To determine the correct interval width, you can:
a. Count the individual scores in the interval. For this example, the scores are 20, 21, 22, 

23, and 24 for a total of 5 values. Thus, the interval width is 5 points.
b. Use the real limits to determine the real width of the interval. For example, an interval 

identified as 20–24 has a lower real limit of 19.5 and an upper real limit of 24.5 (half-identified as 20–24 has a lower real limit of 19.5 and an upper real limit of 24.5 (half-identified as 20–24 has a lower real limit of 19.5 and an upper real limit of 24.5 (half
way to the next score). Using the real limits, the interval width is 24.5 2 19.5 5 5 points

D E M O N S TR ATIO N  2.1

A GROUPED FREQUENCY DISTRIBUTION TABLEN TABLEN T

For the following set of N 5 20 scores, construct a grouped frequency distribution table using 
an interval width of 5 points. The scores are:

14 8 27 16 10 22 9 13 16 12
10 9 15 17 6 14 11 18 14 11

Set up the class intervals.

The largest score in this distribution is X 5 27, and the lowest is X 5 6. Therefore, a 
frequency distribution table for these data would have 22 rows and would be too large. 
A grouped frequency distribution table would be better. We have asked specifically for an 
interval width of 5 points, and the resulting table has five rows.

X

25–29
20–24
15–19
10–14
5–9

STEP 1
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Remember that the interval width is determined by the real limits of the interval. For exam-
ple, the class interval 25–29 has an upper real limit of 29.5 and a lower real limit of 24.5. 
The difference between these two values is the width of the interval—namely, 5.

Determine the frequencies for each interval.

Examine the scores, and count how many fall into the class interval of 25–29. Cross out 
each score that you have already counted. Record the frequency for this class interval. 
Now repeat this process for the remaining intervals. The result is the following table:

X f

25–29 1 (the score X 5 27)
20–24 1 (X 5 22)
15–19 5 (the scores X 5 16, 16, 15, 17, and 18)
10–14 9 (X 5 14, 10, 13, 12, 10, 14, 11, 14, and 11)
5–9 4 (X 5 8, 9, 9, and 6)

STEP 2

PRO B LE M S

X f

10 1
9 2
8 4
7 3
6 2

5. For each of the following, determine the interval 
width that would be best for a grouped frequency 
distribution and identify the approximate number of 
intervals needed to cover the range of scores.
a. Scores that range from X 5 6 to X 5 81
b. Scores that range from X 5 18 to X 5 34
c. Scores that range from X 5 56 to X 5 97

6. For the following scores, the smallest value is X 5 7 
and the largest value is X 5 48. 
a. Determine the best interval width and identify 

the approximate number of intervals needed for a 
grouped frequency distribution table.

b. Place the scores in a grouped frequency distribu-
tion table using the interval width you determined.

26 40 21 17 48 31 37 22
24 13 30 28 29 19 44 34
35 20 7 42 39 31 40 11

7. The following scores are the ages for a random sample 
of n 5 32 drivers who were issued parking tickets 
in Chicago during 2015. Determine the best interval 
width and place the scores in a grouped frequency 
distribution table. From looking at your table, does 

1. Place the following set of n 5 20 scores in a frequency 
distribution table.

6 10 9 5 10 8 7 4 10 9
8 8 6 10 9 10 5 9 9 6

2. Construct a frequency distribution table for the fol-
lowing set of scores. Include columns for proportion 
and percentage in your table.

Scores: 4 5 7 8 1 6 8 7 4 4
6 3 4 7 6 4 5 3 5 5

3. Find each value requested for the distribution of 
scores in the following table.
a. n
b. oX
c. oX2X2X

X f

5 2
4 3
3 1
2 4
1 2

4. Find each value requested for the distribution of 
scores in the following table.
a. n
b. oX
c. o(X 2 1) 
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14. Place the following scores in a frequency distribution 
table. Based on the frequencies, what is the shape of 
the distribution?

15 14 9 10 15 12 14 11 13
14 13 14 12 14 13 13 12 11

15. A survey given to a sample of college students  
contained questions about the following variables. For 
each variable, identify the kind of graph that should be 
used to display the distribution of scores (histogram, 
polygon, or bar graph).
a. age
b. birth-order position among siblings (oldest 5 first)
c. academic major
d. registered voter (yes/no)

16. Gaucher, Friesen, and Kay (2011) found that words 
they identified as “masculine-themed” (such as com-
petitive, independent, analyze, strong) are commonly 
used in job recruitment materials, especially for job 
advertisements in male-dominated areas. In a similar 
study, a researcher counted the number of masculine-
themed words in job advertisements for job areas, and 
obtained the following data.

Area
Number of 

Masculine Words

Plumber 14
Electrician 12
Security guard 17
Bookkeeper 9
Nurse 6
Early-childhood educator 7

Determine what kind of graph would be appropriate 
for showing this distribution and sketch the frequency 
distribution graph.

17. Find each of the following values for the distribution 
shown in the following polygon.
a. n
b. oX
c. oX2X2X

f

7

6

5

4

3

2

1

1 2 3 4 5 6
  X  X

it appear that tickets are issued equally across age 
groups?

57 30 45 59 39 53 28 19
34 21 34 38 52 29 64 39
22 44 46 26 56 20 33 58
32 25 48 22 51 26 63 51

8. What information is available about the scores in a 
regular frequency distribution table that you cannot 
obtain for the scores in a grouped table?

9. Describe the difference in appearance between a bar 
graph and a histogram and describe the circumstances 
in which each type of graph is used.

10. For the following set of scores:

7 5 4 4 6 5 2 3 2 4 5 8
5 8 3 3 6 4 7 3 4 3 3 6

a. Construct a frequency distribution table to organize 
the scores.

b. Draw a frequency distribution histogram for these 
data.

11. Draw a histogram for the distribution of scores shown 
in the following table.

X f

10 2
9 4
8 1
7 1
6 4
5 2

12. Draw a polygon for the distribution of scores shown in 
the following table.

X f

6 2
5 5
4 3
3 2
2 1

13. For the following set of scores:

12 13 8 14 10 8 9 13 9
9 14 8 12 8 13 13 7 12

a. Organize the scores in a frequency distribution 
table.

b. Based on the frequencies, identify the shape of the 
distribution.
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the material. Then all students took the quiz. The 
following table shows quiz scores similar to the results 
obtained in the study.

Quiz Scores for Two Groups of Students

Simply Reread Answer Questions

8, 5, 7, 9, 8 9, 7, 8, 9, 9
9, 9, 8, 6, 9 8, 10, 9, 5, 10
7, 7, 4, 6, 5 7, 9, 8, 7, 8

  Sketch a polygon showing the frequency distribution 
for students who reread the passage.  In the same graph, 
sketch a polygon showing the scores for the students 
who answered questions. (Use two different colors 
or use a solid line for one polygon and a dashed line 
for the other.)  Does it look like there is a difference 
between the two groups?

21. Recent research suggests that the amount of time 
that parents spend talking about numbers can have a 
big impact on the mathematical development of their 
children (Levine, Suriyakham, Rowe, Huttenlocher, 
& Gunderson, 2010).  In the study, the researchers 
visited the children’s homes between the ages of 14 
and 30 months and recorded the amount of “number 
talk” they heard from the children’s parents. The  
researchers then tested the children’s knowledge of 
the meaning of numbers at 46 months. The following 
data are similar to the results obtained in the study.

Children’s Knowledge-of-Numbers 
Scores for Two Groups of Parents

Low Number-Talk 
Parents

High Number-Talk 
Parents

2, 1, 2, 3, 4 3, 4, 5, 4, 5
3, 3, 2, 2, 1 4, 2, 3, 5, 4
5, 3, 4, 1, 2 5, 3, 4, 5, 4

Sketch a polygon showing the frequency distribution 
for children with low number-talk parents. In the same 
graph, sketch a polygon showing the scores for the 
children with high number-talk parents. (Use two  
different colors or use a solid line for one polygon and 
a dashed line for the other.) Does it appear that there 
is a difference between the two groups?

18. For the following set of scores:

7 5 6 4 4 3 8 9 4 7 5 5 6
9 4 7 5 10 6 8 5 6 3 4 8 5

a. Construct a frequency distribution table.
b. Sketch a histogram showing the distribution.
c. Describe the distribution using the following 

characteristics:
(1) What is the shape of the distribution?
(2) What score best identifies the center (average) 

for the distribution?
(3) Are the scores clustered together, or are they 

spread out across the scale?

19. A local fast-food restaurant normally sells coffee in 
three sizes—small, medium, and large—at three 
different prices. Recently they had a special sale, 
charging only $1 for any sized coffee. During the 
sale, an employee recorded the number of each coffee 
size that was purchased on Wednesday morning. The 
following Wednesday, when prices had returned to 
normal, she again recorded the number of coffees 
sold for each size. The results are shown in the 
following table.

Regular Prices All Sizes for $1

X f X f

Large 12 Large 41
Medium 25 Medium 27
Small 31 Small 11

a. What kind of graph would be appropriate for 
showing the distribution of coffee sizes for each  
of the two time periods?

b. Draw the two frequency distribution graphs.
c. Based on your two graphs, did the sale have an 

influence on the size of coffee that customers 
ordered?

20. Weinstein, McDermott, and Roediger (2010) published 
an experimental study examining different techniques 
that students use to prepare for a test. Students read a 
passage, knowing that they would have a quiz on the 
material. After reading the passage, students in one 
condition were asked to continue studying by simply 
reading the passage again. In a second condition, 
students answered a series of prepared questions about 
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3-1 Overview

3-2 The Mean

3-3 The Median

3-4 The Mode

3-5 Central Tendency and the Shape of the Distribution

3-6 Selecting a Measure of Central Tendency

Summary

Focus on Problem Solving

Demonstration 3.1

Problems

Central Tendency 3
CHAP TER

Tools You Will Need
The following items are con-
sidered essential background 
material for this chapter. If you 
doubt your knowledge of any of 
these items, you should review 
the appropriate chapter or section 
before proceeding.

 ■ Summation notation (Chapter 1)
 ■ Frequency distributions 

(Chapter 2)
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3-1 Overview

The general purpose of descriptive statistical methods is to organize and summarize a set 
of scores. Perhaps the most common method for summarizing and describing a distribution 
is to find a single value that defines the average score and can serve as a typical example 
to represent the entire distribution. In statistics, the concept of an average or representative 
score is called central tendency. The goal in measuring central tendency is to describe a 
distribution of scores by determining a single value that identifies the center of the distribu-
tion. Ideally, this central value will be the score that is the best representative value for all 
of the individuals in the distribution.

Central tendency is a statistical measure to determine a single score that de�nes 
the center of a distribution. The goal of central tendency is to �nd the single score 
that is most typical or most representative of the entire group.

In everyday language, central tendency attempts to identify the “average” or “typical” 
individual. This average value can then be used to provide a simple description of an entire 
population or a sample. In addition to describing an entire distribution, measures of cen-
tral tendency are also useful for making comparisons between groups of individuals or 
between sets of data. For example, weather data indicate that for Seattle, Washington, 
the average yearly temperature is 53° Fahrenheit and the average annual precipitation is 
34 inches. By comparison, the average temperature in Phoenix, Arizona, is 71° and the 
average precipitation is 7.4 inches. The point of these examples is to demonstrate the great 
advantage of being able to describe a large set of data with a single, representative number. 
Central tendency characterizes what is typical for a large population and in doing so makes 
large amounts of data more digestible. Statisticians sometimes use the expression “number 
crunching” to illustrate this aspect of data description. That is, we take a distribution con-
sisting of many scores and “crunch” them down to a single value that describes them all.

Unfortunately, there is no single, standard procedure for determining central tendency. 
The problem is that no single measure produces a central, representative value in every 
situation. The three distributions shown in Figure 3.1 should help demonstrate this fact. 
Before we discuss the three distributions, take a moment to look at the figure and try to 
identify the “center” or the “most representative score” for each distribution.

1. The �rst distribution [Figure 3.1(a)] is symmetrical, with the scores forming a dis-
tinct pile centered around X 5 5. For this type of distribution, it is easy to identify 
the “center,” and most people would agree that the value X 5 5 is an appropriate 
measure of central tendency.

2. In the second distribution [Figure 3.1(b)], however, problems begin to appear. Now 
the scores form a negatively skewed distribution, piling up at the high end of the 
scale around X 5 8, but tapering off to the left all the way down to X 5 1. Where 
is the “center” in this case? Some people might select X 5 8 as the center because 
more individuals had this score than any other single value. However, X 5 8 is 
clearly not in the middle of the distribution. In fact, the majority of the scores (10 
out of 16) have values less than 8, so it seems reasonable that the “center” should 
be de�ned by a value that is less than 8.

3. Now consider the third distribution [Figure 3.1(c)]. Again, the distribution is sym-
metrical, but now there are two distinct piles of scores. Because the distribution is 
symmetrical with X 5 5 as the midpoint, you may choose X 5 5 as the “center.” 
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However, none of the scores is located at X 5 5 (or even close), so this value is 
not particularly good as a representative score. On the other hand, because there 
are two separate piles of scores with one group centered at X 5 2 and the other 
centered at X 5 8, it is tempting to say that this distribution has two centers. But 
can one distribution have two centers?

Clearly, there can be problems defining the “center” of a distribution. Occasionally, 
you will find a nice, neat distribution like the one shown in Figure 3.1(a), for which 
everyone will agree on the center. But you should realize that other distributions are pos-
sible and that there may be different opinions concerning the definition of the center. To 
deal with these problems, statisticians have developed three different methods for measur-
ing central tendency: the mean, the median, and the mode. They are computed differ-
ently and have different characteristics. To decide which of the three measures is best for 
any particular distribution, you should keep in mind that the general purpose of central 
tendency is to find the single most representative score. Each of the three measures we 
present has been developed to work best in a specific situation. We examine this issue in 
more detail after we introduce the three measures.

3-2 The Mean

LE A R N I N G O B J E C T IV E S  

1. De�ne the mean, and calculate both the population mean and the sample mean.  

2. Explain the alternative de�nitions of the mean as the amount each individual 
receives when the total is divided equally and as a balancing point.  

3. Calculate a weighted mean. 

1 2 3 4 5 6 7 8 9

(a) (b)

(c)

X

f

1 2 3 4 5 6 7 8 9 X

f

1 2 3 4 5 6 7 8 9 X

f

F I G U R E  3 .1
Three distributions demonstrating the 
difficulty of defining central tendency. 
In each case, try to locate the “center” 
of the distribution.
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4. Find n, SX, and M using scores in a frequency distribution table.M using scores in a frequency distribution table.M

5. Describe the effect on the mean and calculate the outcome for each of the  
following: changing a score, adding or removing a score, adding or subtracting  
a constant from each score, and multiplying or dividing each score by a constant.

The mean, also known as the arithmetic average, is computed by adding all the scores in the 
distribution and dividing by the number of scores. The mean for a population is identified 
by the Greek letter mu, µ (pronounced “mew”), and the mean for a sample is identified by 
M or M or M X (read “x-bar”).X (read “x-bar”).X

The convention in many statistics textbooks is to use X to represent the mean for a 
sample. However, in manuscripts and in published research reports the letter M is the stanM is the stanM -
dard notation for a sample mean. Because you will encounter the letter M when reading M when reading M
research reports and because you should use the letter M when writing research reports, we M when writing research reports, we M
have decided to use the same notation in this text. Keep in mind that the X notation is still X notation is still X
appropriate for identifying a sample mean, and you may find it used on occasion, especially 
in textbooks.

The mean for a distribution is the sum of the scores divided by the number  
of scores.

The formula for the population mean is

m 5
SX

N
(3.1)

First, add all the scores in the population, and then divide by N. For a sample, the compu-
tation is exactly the same, but the formula for the sample mean uses symbols that signify 
sample values:

sample mean 5 M 5
SX
n

(3.2)

In general, we use Greek letters to identify characteristics of a population (parameters) 
and letters of our own alphabet to stand for sample values (statistics). If a mean is identi-
fied with the symbol M, you should realize that we are dealing with a sample. Also note 
that the equation for the sample mean uses a lowercase n as the symbol for the number of 
scores in the sample.

For the following population of N 5 4 scores,

3, 7, 4, 6

the mean is

m 5
SX

N
5

20

4
5 5

■ Alternative Definitions for the Mean
Although the procedure of adding the scores and dividing by the number of scores provides 
a useful definition of the mean, there are two alternative definitions that may give you a 
better understanding of this important measure of central tendency.

E X A M P L E  3 . 1

■
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Dividing the Total Equally The first alternative is to think of the mean as the amount 
each individual receives when the total (SX) is divided equally among all the individuals X) is divided equally among all the individuals X
(N) in the distribution. Consider the following example.N) in the distribution. Consider the following example.N

A group of n 5 6 boys buys a box of baseball cards at a garage sale and discovers that the 
box contains a total of 180 cards. If the boys divide the cards equally among themselves, 
how many cards will each boy get? You should recognize that this problem represents the 
standard procedure for computing the mean. Specifically, the total (SX) is divided by the X) is divided by the X
number (n) to produce the mean, 1 8 0

6 5 30 cards for each boy. ■

The previous example demonstrates that it is possible to define the mean as the amount 
that each individual gets when the total is distributed equally. This somewhat socialistic 
technique is particularly useful in problems for which you know the mean and must find 
the total. Consider the following example.

Now suppose that the 6 boys from Example 3.2 decide to sell their baseball cards on eBay. 
If they make an average of M 5 $5 per boy, what is the total amount of money for the whole 
group? Although you do not know exactly how much money each boy has, the new defi-
nition of the mean tells you that if they pool their money together and then distribute the 
total equally, each boy will get $5. For each of n 5 6 boys to get $5, the total must be 
6($5) 5 $30. To check this answer, use the formula for the mean:

M 5
SX
n

5
$30

6
5 $5 ■

The Mean as a Balance Point The second alternative definition of the mean describes 
the mean as a balance point for the distribution. Consider a population consisting of 
N 5 5 scores (1, 2, 6, 6, 10). For this population, SX 5 25 and m 5 25

5 5 5. Figure 3.2 
shows this population drawn as a histogram, with each score represented as a box that is 
sitting on a seesaw. If the seesaw is positioned so that it pivots at a point equal to the mean, 
then it will be balanced and will rest level.

The reason the seesaw is balanced over the mean becomes clear when we measure the 
distance of each box (score) from the mean:

Score Distance from the Mean

X 5 1 4 points below the mean
X 5 2 3 points below the mean
X 5 6 1 point above the mean
X 5 6 1 point above the mean
X 5 10 5 points above the mean 

E X A M P L E  3 . 2

E X A M P L E  3 . 3

1 32 4 61 32 4 61 3 5 7 92 4 65 7 92 4 6 8 15 7 98 15 7 9 0

m

F I G U R E  3 . 2
The frequency distribution shown as a seesaw 
balanced at the mean. Based on Weinberg, 
G. H., Schumaker, J. A., and Oltman, D. (1981). 
Statistics: An intuitive approach. Belmont, CA: 
Wadsworth. (p. 14)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



62 CHAPTER 3 | Central Tendency

Notice that the mean balances the distances. That is, the total distance below the mean is 
the same as the total distance above the mean:

below the mean: 4 1 3 5 7 points
above the mean: 1 1 1 1 5 5 7 points

Because the mean serves as a balance point, the value of the mean will always be located 
somewhere between the highest score and the lowest score; that is, the mean can never be 
outside the range of scores. If the lowest score in a distribution is X 5 8 and the highest is 
X 5 15, then the mean must be between 8 and 15. If you calculate a value that is outside must be between 8 and 15. If you calculate a value that is outside must
this range, then you have made an error.

The image of a seesaw with the mean at the balance point is also useful for determining 
how a distribution is affected if a new score is added or if an existing score is removed. For 
the distribution in Figure 3.2, for example, what would happen to the mean (balance point) 
if a new score were added at X 5 10?

■ The Weighted Mean
Often it is necessary to combine two sets of scores and then find the overall mean for the 
combined group. Suppose, for example, that we begin with two separate samples. The first 
sample has n 5 12 scores and a mean of M 5 6. The second sample has n 5 8 and M 5 7. 
If the two samples are combined, what is the mean for the total group?

To calculate the overall mean, we need two values:

1. the overall sum of the scores for the combined group (SX), andX), andX

2. the total number of scores in the combined group (n).

The total number of scores in the combined group can be found easily by adding the 
number of scores in the first sample (n1) and the number in the second sample (n2). In this 
case, there are 12 scores in the first sample and 8 in the second, for a total of 12 1 8 5 20 
scores in the combined group. Similarly, the overall sum for the combined group can be 
found by adding the sum for the first sample (SX1) and the sum for the second sample 
(SX2X2X ). With these two values, we can compute the mean using the basic equation

overall mean 5 M 5
SX soverall sum fofof r the combined groupd
n stotal number in the combined groupd

5
SX

1
1 SX

2
X

2
X

n
1

1 n
2

To find the sum of the scores for each sample, remember that the mean can be defined 
as the amount each person receives when the total (SX) is distributed equally. The X) is distributed equally. The X
first sample has n 5 12 and M 5 6. (Expressed in dollars instead of scores, this sample 
has n 5 12 people and each person gets $6 when the total is divided equally.) For each of 
12 people to get M 5 6, the total must be SX 5 12 3 6 5 72. In the same way, the second 
sample has n 5 8 and M 5 7 so the total must be SX 5 8 3 7 5 56. Using these values, 
we obtain an overall mean of

overall mean 5 M 5
SX

1
1 SX

2
X

2
X

n
1

1 n
2

5
72 1 56

12 1 8
5

128

20
5 6.4

When the data involve 
more than one sample 
(or population), we use 
subscripts to identify the 
sample. For example, n1 
refers to the number of 
scores in sample 1.
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The following table summarizes the calculations.

First Sample Second Sample Combined Sample

n 5 12 n 5 8 n 5 20 (12 + 8)

SX 5 72 SX 5 56 SX 5 128 (72 + 56)
M 5 6 M 5 7 M 5 6.4

Note that the overall mean is not halfway between the original two sample means. Because 
the samples are not the same size, one makes a larger contribution to the total group and 
therefore carries more weight in determining the overall mean. For this reason, the overall 
mean we have calculated is called the weighted mean. In this example, the overall mean of 
M 5 6.4 is closer to the value of M 5 6 (the larger sample) than it is to M 5 7 (the smaller 
sample). 

The following example is an opportunity for you to test your understanding by comput-
ing a weighted mean yourself.

One sample has n 5 4 scores with a mean of M 5 8 and a second sample has n 5 8 scores 
with a mean of M 5 5.  If the two samples are combined, what is the mean for the combined 
group? For this example, you should obtain a mean of M 5 6. Good luck and remember 
that you can use the example in the text as a model. ■

■ Computing the Mean From a Frequency Distribution Table
When a set of scores has been organized in a frequency distribution table, the calculation of 
the mean is usually easier if you first remove the individual scores from the table. Table 3.1 
shows a distribution of scores organized in a frequency distribution table. To compute the 
mean for this distribution you must be careful to use both the X values in the first column X values in the first column X
and the frequencies in the second column. The values in the table show that the distribution 
consists of one 10, two 9s, four 8s, and one 6, for a total of n 5 8 scores. Remember that 
you can determine the number of scores by adding the frequencies, n 5 SfSfS . To find the sum f. To find the sum f
of the scores, you must add all eight scores:

SX 5 10 1 9 1 9 1 8 1 8 1 8 1 8 1 6 5 66

Note that you can also find the sum of the scores by computing SfXSfXS  as we demonstrated fX as we demonstrated fX
in Chapter 2 (page 38). Once you have found SX and X and X n, you compute the mean as usual. 
For these data,

M 5
SX
n

5
66

8
5 8.25

Quiz Score (XQuiz Score (XQuiz Score ( ) f fX

10 1 10
9 2 18
8 4 32
7 0 0
6 1 6

E X A M P L E  3 . 4

TA B L E  3 .1
Statistics quiz scores for a 
section of n 5 8 students.
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■ Characteristics of the Mean
The mean has many characteristics that will be important in future discussions. In general, 
these characteristics result from the fact that every score in the distribution contributes to 
the value of the mean. Specifically, every score adds to the total (SX) and every score conX) and every score conX -
tributes one point to the number of scores (n). These two values (SX and X and X n) determine the 
value of the mean. We now discuss four of the more important characteristics of the mean.

Changing a Score Changing the value of any score will change the mean. For ex-
ample, a sample of quiz scores for a psychology lab section consists of 9, 8, 7, 5, and 1. 
Note that the sample consists of n 5 5 scores with SX 5 30. The mean for this sample is

M 5
SX
n

5
30

5
5 6.00

Now suppose that the score of X 5 1 is changed to X 5 8. Note that we have added 7 
points to this individual’s score, which will also add 7 points to the total (SX). After changX). After changX -
ing the score, the new distribution consists of

9, 8, 7, 5, 8

There are still n 5 5 scores, but now the total is SX 5 37. Thus, the new mean is

M 5
SX
n

5
37

5
5 7.40

Notice that changing a single score in the sample has produced a new mean. You should 
recognize that changing any score also changes the value of SX (the sum of the scores), and X (the sum of the scores), and X
thus always changes the value of the mean.

Introducing a New Score or Removing a Score Adding a new score to a dis-
tribution, or removing an existing score, will usually change the mean. The exception 
is when the new score (or the removed score) is exactly equal to the mean. It is easy 
to visualize the effect of adding or removing a score if you remember that the mean 
is defined as the balance point for the distribution. Figure 3.3 shows a distribution of 
scores represented as boxes on a seesaw that is balanced at the mean, m 5 7. Imagine 
what would happen if we added a new score (a new box) at X 5 10. Clearly, the seesaw 
would tip to the right and we would need to move the pivot point (the mean) to the 
right to restore balance.

Now imagine what would happen if we removed the score (the box) at X 5 9. This 
time the seesaw would tip to the left and, once again, we would need to change the mean 
to restore balance.

1 321 32 54 6 7 8 9 10 11 12 13
F I G U R E  3 . 3
A distribution of N 5 5 scores that is 
balanced at the mean, μ 5 7.
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Finally, consider what would happen if we added a new score of X 5 7, exactly equal to 
the mean. It should be clear that the seesaw would not tilt in either direction, so the mean 
would stay in exactly the same place. Also note that if we remove the new score at X 5 7, 
the seesaw will remain balanced and the mean will not change. In general, adding a new 
score or removing an existing score will cause the mean to change unless the new score (or 
existing score) is located exactly at the mean.

The following example demonstrates exactly how the new mean is computed when a 
new score is added to an existing sample.

Adding a score (or removing a score) has the same effect on the mean whether the original 
set of scores is a sample or a population. To demonstrate the calculation of the new mean, 
we will use the set of scores that is shown in Figure 3.3. This time, however, we will treat 
the scores as a sample with n 5 5 and M 5 7. Note that this sample must have SX 5 35. 
What will happen to the mean if a new score of X 5 13 is added to the sample?

To find the new sample mean, we must determine how the values for n and SX will be X will be X
changed by a new score. We begin with the original sample and then consider the effect of 
adding the new score. The original sample had n 5 5 scores, so adding one new score will 
produce n 5 6. Similarly, the original sample had SX 5 35. Adding a score of X 5 13 will 
increase the sum by 13 points, producing a new sum of SX 5 35 1 13 5 48. Finally, the 
new mean is computed using the new values for n and SX.

M 5
SX
n

5
48

6
5 8

The entire process can be summarized as follows:

Original 
Sample

New Sample, 
Adding X 5 13

n 5 5 n 5 6
SX 5 35 SX 5 48

M 5
35
5 5 7 M 5

48
6 5 8

The following example is an opportunity for you to test your understanding by 
determining how the mean is changed by removing a score from a distribution.

We begin with a sample of n 5 5 scores with SX 5 35 and M 5 7. If one score with a value 
of X 5 11 is removed from the sample, what is the mean for the remaining scores? You 
should obtain a mean of M 5 6. Good luck and remember that you can use Example 3.5 
as a model. ■

Adding or Subtracting a Constant from Each Score If a constant value is added to 
every score in a distribution, the same constant will be added to the mean. Similarly, if you 
subtract a constant from every score, the same constant will be subtracted from the mean.

Jones, Jones, Thomas, and Piper (2003) conducted a study showing that alcohol sig-
nificantly increased the attractiveness of opposite-sex individuals. Participants were shown 
photographs of male and female faces and asked to rate the attractiveness of each face. Par-
ticipants with moderate alcohol consumption gave noticeably higher ratings to opposite-
sex individuals compared to those who had no alcohol. Table 3.2 shows results for a sample 
of n 5 6 female participants who are rating a specific male face. The first column shows 
the ratings when the participants have had no alcohol. Note that the total for this column is 
SX 5 17 for a sample of n 5 6 participants, so the mean is M 5 17

6 5 2.83. Now suppose 

E X A M P L E  3 . 5

■

E X A M P L E  3 . 6
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that the effect of alcohol is to add a constant amount (1 point) to each individual’s rating 
score. The resulting scores, after moderate alcohol consumption, are shown in the second 
column of the table. For these scores, the total is SX 5 23, so the mean is M 5 23

6 5 3.83. 
Adding 1 point to each rating score has also added 1 point to the mean, from M 5 2.83 to 
M 5 3.83. (It is important to note that treatment effects are usually not as simple as adding 
or subtracting a constant amount. Nonetheless, the concept of adding a constant to every 
score is important and will be addressed in later chapters when we are using statistics to 
evaluate mean differences.)

Multiplying or Dividing Each Score by a Constant If every score in a distri-
bution is multiplied by (or divided by) a constant value, the mean will change in the 
same way.

Multiplying (or dividing) each score by a constant value is a common method for 
changing the unit of measurement. To change a set of measurements from minutes to 
seconds, for example, you multiply by 60; to change from inches to feet, you divide by 
12. One common task for researchers is converting measurements into metric units to 
conform to international standards. For example, publication guidelines of the American 
Psychological Association call for metric equivalents to be reported in parentheses when 
most nonmetric units are used. Table 3.3 shows how a sample of n 5 5 scores mea-
sured in inches would be transformed into a set of scores measured in centimeters. (Note 
that 1 inch equals 2.54 centimeters.) The first column shows the original scores that total 
SX 5 50 with M 5 10 inches. In the second column, each of the original scores has been 
multiplied by 2.54 (to convert from inches to centimeters) and the resulting values total 
SX 5 127, with M 5 25.4. Multiplying each score by 2.54 has also caused the mean to 
be multiplied by 2.54. You should realize, however, that although the numerical values for 
the individual scores and the sample mean have changed, the actual measurements are not 
changed.

Original Measurement 
in Inches

Conversion to Centimeters 
(Multiply by 2.54)

10 25.40
9 22.86

12 30.48
8 20.32

11 27.94

SX = 50 SX = 127.00

M = 10 M = 25.40

TA B L E  3 . 3
Measurements  
transformed from inches 
to centimeters.

Participant No Alcohol Moderate Alcohol

A 4 5
B 2 3
C 3 4
D 3 4
E 2 3
F 3 4

SX = 17 SX = 23

M = 2.83 M = 3.83

TA B L E  3 . 2
Attractiveness ratings of a 
male face for a sample of 
n 5 6 females.
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LO1 1. A sample of n 5 5 scores has a mean of M 5 12. What is SX for this sample?

a. 12
5 5 2.40

b. 5
12 5 0.417

c. 5(12) 5 60

d. Cannot be determined from the information given

LO2 2. A sample has a mean of M 5 72. If one person with a score of X 5 58 is 
removed from the sample, what effect will it have on the sample mean?

a. The sample mean will increase.

b. The sample mean will decrease.

c. The sample mean will remain the same.

d. Cannot be determined from the information given.

LO3 3. One sample of n 5 4 scores has a mean of M 5 10, and a second sample of 
n 5 4 scores has a mean of M 5 20. If the two samples are combined, then 
what value will be obtained for the mean of the combined sample?

a. Equal to 15

b. Greater than 15 but less than 20

c. Less than 15 but more than 10

d. None of the other choices is correct.

LO4 4. What is the mean for the sample presented in the following frequency 
distribution table?

a. 2.0

b. 2.5

c. 3.0

d. 3.5

LO5 5. A population of N 5 10 scores has a mean of 30. If every score in the 
distribution is multiplied by 3, then what is the value of the new mean?

a. Still 30

b. 33

c. 60

d. 90

1. c 2. a 3. a 4. a 5. d

LE A R N I N G C H E C K

X f

4 1
3 2
2 3
1 4

A N S W E R S

3-3 The Median

LE A R N I N G O B J E C T IV E

6. De�ne and calculate the median, and �nd the precise median for a continuous variable.

The second measure of central tendency we will consider is called the median. The goal 
of the median is to locate the midpoint of the distribution. Unlike the mean, there are no 
specific symbols or notation to identify the median. Instead, the median is simply identified 
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by the word median. In addition, the definition and the computations for the median are 
identical for a sample and for a population.

If the scores in a distribution are listed in order from smallest to largest, the 
median is the midpoint of the list. More speci�cally, the median is the point on the 
measurement scale below which 50% of the scores in the distribution are located.

■ Finding the Median for Most Distributions
Defining the median as the midpoint of a distribution means that that the scores are being midpoint of a distribution means that that the scores are being midpoint
divided into two equal-sized groups. We are not locating the midpoint between the highest 
and lowest X values. To find the median, list the scores in order from smallest to largest. Begin X values. To find the median, list the scores in order from smallest to largest. Begin X
with the smallest score and count the scores as you move up the list. The median is the first 
point you reach that is greater than 50% of the scores in the distribution. The median can be 
equal to a score in the list or it can be a point between two scores. Notice that the median is 
not algebraically defined (there is no equation for computing the median), which means that 
there is a degree of subjectivity in determining the exact value. However, the following two 
examples demonstrate the process of finding the median for most distributions.  

This example demonstrates the calculation of the median when N (or n) is an odd number. 
With an odd number of scores, you list the scores in order (lowest to highest), and the me-
dian is the middle score in the list. Consider the following set of N 5 5 scores, which have 
been listed in order:

3, 5, 8, 10, 11

The middle score is X 5 8, so the median is equal to 8. Using the counting method, 
with N 5 5 scores, the 50% point would be 21

2 scores. Starting with the smallest scores, we 
must count the 3, the 5, and the 8 before we reach the target of at least 50%. Again, for this 
distribution, the median is the middle score, X 5 8. ■

This example demonstrates the calculation of the median when N (or n) is an even number. 
With an even number of scores in the distribution, you list the scores in order (lowest 
to highest) and then locate the median by finding the average of the middle two scores. 
Consider the following population:

1, 1, 4, 5, 7, 8

Now we select the middle pair of scores (4 and 5), add them together, and divide by 2:

median 5
4 1 5

2
5

9

2
5 4.5

Using the counting procedure, with N 5 6 scores, the 50% point is 3 scores. Starting 
with the smallest scores, we must count the first 1, the second 1, and the 4 before we reach 
the target of at least 50%. Again, the median for this distribution is 4.5, which is the first 
point on the scale beyond X 5 4. For this distribution, exactly 3 scores (50%) are located 
below 4.5. Note: If there is a gap between the middle two scores, the convention is to define 
the median as the midpoint between the two scores. For example, if the middle two scores 
are X 5 4 and X 5 6, the median would be defined as 5. ■

The simple technique of listing and counting scores is sufficient to determine the 
median for most distributions and is always appropriate for discrete variables. Notice that 

E X A M P L E  3 . 7

E X A M P L E  3 . 8
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this technique will always produce a median that is either a whole number or is halfway 
between two whole numbers. With a continuous variable, however, it is possible to divide 
a distribution precisely in half so that exactly 50% of the distribution is located below (and 
above) a specific point. The procedure for locating the precise median is discussed in the 
following section. 

■ Finding the Precise Median for a Continuous Variable
Recall from Chapter 1 that a continuous variable consists of categories that can be split 
into an infinite number of fractional parts. For example, time can be measured in seconds, 
tenths of a second, hundredths of a second, and so on. When the scores in a distribution are 
measurements of a continuous variable, it is possible to split one of the categories into frac-
tional parts and find the median by locating the precise point that separates the bottom 50% 
of the distribution from the top 50%. The following example demonstrates this process. 

For this example, we will find the precise median for the following sample of n 5 8 scores: 

1, 2, 3, 4, 4, 4, 4, 6

The frequency distribution for this sample is shown in Figure 3.4(a). With an even 
number of scores, you normally would compute the average of the middle two scores to 
find the median. This process produces a median of X 5 4. For a discrete variable, X 5 4 
is the correct value for the median. Recall from Chapter 1 that a discrete variable consists 
of indivisible categories such as the number of children in a family. Some families have 
4 children and some have 5, but none have 4.31 children. For a discrete variable, the 
category X 5 4 cannot be divided and the whole number 4 is the median.  

However, if you look at the distribution histogram, the value X 5 4 does not appear to 
divide the distribution exactly in half. The problem comes from the tendency to interpret 
a score of X 5 4 as meaning exactly 4.00. However, if the scores are measurements of a 
continuous variable, then the score X 5 4 actually corresponds to an interval from 3.5 to 
4.5, and the median corresponds to a point within this interval.  

To find the precise median, we first observe that the distribution contains n 5 8 scores 
represented by eight boxes in the graph. The median is the point that has exactly four 
boxes (50%) on each side. Starting at the left-hand side and moving up the scale of mea-
surement, we accumulate a total of three boxes when we reach a value of 3.5 on the X-axis X-axis X

E X A M P L E  3 . 9

F I G U R E  3 . 4
A distribution with several scores clustered at the median. The median for this distribution is positioned so that each of the 
four boxes at X 5 4 is divided into two sections with 14 of each box below the median (to the left) and 34 of each box above 
the median (to the right). As a result, there are exactly 4 boxes, 50% of the distribution, on each side of the median.
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Median = 3.75
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[see Figure 3.4(a)]. What is needed is one more box to reach the goal of four boxes (50%). 
The problem is that the next interval contains four boxes. The solution is to take a fraction 
of each box so that the fractions combine to give you one box. For this example, if we 
take 1

4 of each box, the four quarters will combine to make one whole box. This solution 
is shown in Figure 3.4(b). The fraction is determined by the number of boxes needed to 
reach 50% and the number that exist in the interval

frfrf action 5
number needed to reach 50%

number in the interval

For this example, we needed one out of the four boxes in the interval, so the fraction is 14. 
To obtain 14 of each box, the median is the point that is located exactly 14 of the way into the 
interval. The interval for X 5 4 extends from 3.5 to 4.5. The interval width is 1 point, so 14
of the interval corresponds to 0.25 points. Starting at the bottom of the interval and moving 
up 0.25 points produces a value of 3.50 1 0.25 5 3.75. This is the median, with exactly 
50% of the distribution (four boxes) on each side. ■

Remember, finding the precise midpoint by dividing scores into fractional parts is 
sensible for a continuous variable; however, it is not appropriate for a discrete variable. 
For example, a median time of 3.75 seconds is reasonable, but a median family size of 
3.75 children is not.

■ The Median, the Mean, and the Middle
Earlier, we defined the mean as the “balance point” for a distribution because the distances 
above the mean must have the same total as the distances below the mean. One conse-
quence of this definition is that the mean is always located inside the group of scores, 
somewhere between the smallest score and the largest score. You should notice, however, 
that the concept of a balance point focuses on distances rather than scores. In particular, it 
is possible to have a distribution in which the vast majority of the scores are located on one 
side of the mean. Figure 3.5 shows a distribution of N 5 6 scores in which 5 out of 6 scores 
have values less than the mean. In this figure, the total of the distances above the mean is 
8 points and the total of the distances below the mean is 8 points. Thus, the mean is located 
in the middle of the distribution if you use the concept of distance to define the “middle.” 
However, you should realize that the mean is not necessarily located at the exact center of 
the group of scores.

The median, on the other hand, defines the middle of the distribution in terms of scores. 
In particular, the median is located so that half of the scores are on one side and half are 
on the other side. For the distribution in Figure 3.5, for example, the median is located at 
X 5 2.5, with exactly 3 scores above this value and exactly 3 scores below. Thus, it is 
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5 6 7 8 9 10 11 12 13
X

F I G U R E  3 . 5
A population of N 5 6 scores 
with a mean of μ 5 4. Notice 
that the mean does not 
necessarily divide the scores 
into two equal groups. In this 
example, 5 out of the 6 scores 
have values less than the mean.
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possible to claim that the median is located in the middle of the distribution, provided that 
the term “middle” is defined by the number of scores.

In summary, the mean and the median are both methods for defining and measuring 
central tendency. However, it is important to point out that although they both define the 
middle of the distribution, they use different definitions of the term “middle.”

LO6 1. What is the median for the following set of scores?

Scores: 1, 5, 7, 19

a. 5

b. 5.5

c. 6

d. 6.5

LO6 2. What is the median for the sample presented in the following frequency 
distribution table?

a. 1.5

b. 2.0

c. 2.5

d. 3.0

LO6 3. Find the precise median for the following scores measuring a continuous variable. 

Scores: 1, 4, 5, 5, 5, 6, 7, 8

a. 5

b. 5.17

c. 5.67

d. 6

1. c 2. b 3. b 

LE A R N I N G C H E C K

X f

4 1
3 2
2 2
1 3

A N S W E R S

3-4 The Mode

LE A R N I N G O B J E C T IV E   

7. De�ne and determine the mode(s) for a distribution, including the major and minor 
modes for a bimodal distribution.  

The final measure of central tendency that we will consider is called the mode. In its 
common usage, the word mode means “the customary fashion” or “a popular style.” The 
statistical definition is similar in that the mode is the most common observation among a 
group of scores.
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In a frequency distribution, the mode is the score or category that has the greatest 
frequency.

As with the median, there are no symbols or special notation used to identify the mode 
or to differentiate between a sample mode and a population mode. In addition, the defini-
tion of the mode is the same for a population and for a sample distribution.

The mode is a useful measure of central tendency because it can be used to determine the 
typical or most frequent value for any scale of measurement, including a nominal scale (see 
Chapter 1). Consider, for example, the data shown in Table 3.4. These data were obtained by 
asking a sample of 100 students to name their favorite restaurants in town. The result is a sam-
ple of n 5 100 scores with each score corresponding to the restaurant that the student named.

For these data, the mode is Luigi’s, the restaurant (score) that was named most frequently 
as a favorite place. Although we can identify a modal response for these data, you should 
notice that it would be impossible to compute a mean or a median. Specifically, you cannot 
add restaurants to obtain SX and you cannot list the scores (named restaurants) in order.X and you cannot list the scores (named restaurants) in order.X

The mode also can be useful because it is the only measure of central tendency that cor-
responds to an actual score in the data; by definition, the mode is the most frequently occur-
ring score. The mean and the median, on the other hand, are both calculated values and often 
produce an answer that does not equal any score in the distribution. For example, in Figure 3.5 
(page 70) we presented a distribution with a mean of 4 and a median of 2.5. Note that none 
of the scores is equal to 4 and none of the scores is equal to 2.5. However, the mode for this 
distribution is X 5 2 and there are three individuals who actually have scores of X 5 2.

In a frequency distribution graph, the greatest frequency will appear as the tallest part 
of the figure. To find the mode, you simply identify the score located directly beneath the 
highest point in the distribution.

Although a distribution will have only one mean and only one median, it is possible 
to have more than one mode. Specifically, it is possible to have two or more scores that 
have the same highest frequency. In a frequency distribution graph, the different modes 
will correspond to distinct, equally high peaks. A distribution with two modes is said to be 
bimodal, and a distribution with more than two modes is called multimodal. Occasionally, 
a distribution with several equally high points is said to have no mode.

Incidentally, a bimodal distribution is often an indication that two separate and distinct 
groups of individuals exist within the same population (or sample). For example, if you 
measured height for each person in a set of 100 college students, the resulting distribution 
would probably have two modes, one corresponding primarily to the males in the group 
and one corresponding primarily to the females.

Technically, the mode is the score with the absolute highest frequency. However, the term 
mode is often used more casually to refer to scores with relatively high frequencies—that 
is, scores that correspond to peaks in a distribution even though the peaks are not the abso-
lute highest points. For example, Sibbald (2014) looked at frequency distribution graphs 
of student achievement scores for individual classrooms in Ontario, Canada. The goal of 
the study was to identify bimodal distributions, which would suggest two different levels of 

Caution: The mode is a 
score or category, not  
a frequency. For this 
example, the mode is 
Luigi’s, not f 5 42.

Restaurant f

College Grill 5
George & Harry’s 16
Luigi’s 42
Oasis Diner 18
Roxbury Inn 7
Sutter’s Mill 12

TA B L E  3 . 4
Favorite restaurants 
named by a sample of  
n 5 100 students.
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student achievement within a single class. For this study, bimodal was defined as a distri-
bution having two or more significant local maximums. Figure 3.6 shows a distribution of 
scores that is similar to a graph presented in the study. There are two distinct peaks in the 
distribution, one located at X 5 17 and the other located at X 5 22. Each of these values is 
a mode in the distribution. Note, however, that the two modes do not have identical frequen-
cies. Seven students had scores of X 5 22 and only six had scores of X 5 17. Nonetheless, 
both of these points are called modes. When two modes have unequal frequencies, research-
ers occasionally differentiate the two values by calling the taller peak the major mode, and 
the shorter one the minor mode. By the way, the author interpreted a bimodal distribution as 
a suggestion for the teacher to consider using two different teaching strategies; one for the 
high achievers and one designed specifically to help low-achieving students.

F I G U R E  3 .6
A frequency distribution showing student 
achievement scores for one classroom. An 
example of a bimodal distribution.

Student achievement scores

f

19

1
2
3
4

24

5
6
7
8

15 16 17 18 20 21 22 2314

LO7 1. For the sample shown in the frequency distribution table, what is the mode?

a. 4

b. 3

c. 2.5

d. 2

LO7 2. If the mean, median, and mode are all computed for a distribution of scores, 
which of the following statements cannot be true?

a. No one had a score equal to the mean.

b. No one had a score equal to the median.

c. No one had a score equal to the mode.

d. All of the other three statements cannot be true.

LO7 3. What is the mode for the following set of n 5 7 scores? Scores: 2, 4, 4, 5, 7, 
8, 10

a. 4

b. 5

c. 5.5

d. 6

1. d 2. c 3. a

LE A R N I N G C H E C K

X f

5 1
4 2
3 3
2 4
1 2

A N S W E R S
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3-5 Central Tendency and the Shape of the Distribution

LE A R N I N G O B J E C T IV E

8. Explain how the three measures of central tendency—mean, median, and mode—
are related to each other for symmetrical and skewed distributions and predict their 
relative values based on the shape of the distribution.

We have identified three different measures of central tendency, and often a researcher 
calculates all three for a single set of data. Because the mean, the median, and the mode are 
all trying to measure the same thing, it is reasonable to expect that these three values should 
be related. In fact, there are some consistent and predictable relationships among the three 
measures of central tendency. Specifically, there are situations in which all three measures 
will have exactly the same value. On the other hand, there are situations in which the three 
measures are guaranteed to be different. In part, the relationships among the mean, median, 
and mode are determined by the shape of the distribution. We will consider two general 
types of distributions.

■ Symmetrical Distributions
For a symmetrical distribution, the right-hand side of the graph is a mirror image of the 
left-hand side. If a distribution is perfectly symmetrical, the median is exactly at the center 
because exactly half of the area in the graph will be on either side of the center. The mean 
also is exactly at the center of a perfectly symmetrical distribution because each score on 
the left side of the distribution is balanced by a corresponding score (the mirror image) on 
the right side. As a result, the mean (the balance point) is located at the center of the dis-
tribution. Thus, for a perfectly symmetrical distribution, the mean and the median are the 
same (Figure 3.7). If a distribution is roughly symmetrical, but not perfect, the mean and 
median will be close together in the center of the distribution.

If a symmetrical distribution has only one mode, it will also be in the center of the 
distribution. Thus, for a perfectly symmetrical distribution with one mode, all three mea-
sures of central tendency, the mean, the median, and the mode, have the same value. 
For a roughly symmetrical distribution, the three measures are clustered together in the 
center of the distribution. On the other hand, a bimodal distribution that is symmetrical 
[see Figure 3.7(b)] will have the mean and median together in the center with the modes 
on each side. A rectangular distribution [see Figure 3.7(c)] has no mode because all 
X values occur with the same frequency. Still, the mean and the median are in the center X values occur with the same frequency. Still, the mean and the median are in the center X
of the distribution.

Mean
Median
Mode

(a) (b) (c)

Mean
Median

Mode Mode Mean
Median

No mode

F I G U R E  3 .7
Measures of central 
tendency for three 
symmetrical 
distributions: 
normal, bimodal, 
and rectangular.
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■ Skewed Distributions
In skewed distributions, especially distributions for continuous variables, there is a 
strong tendency for the mean, median, and mode to be located in predictably differ-
ent positions. Figure 3.8(a), for example, shows a positively skewed distribution with 
the peak (highest frequency) on the left-hand side. This is the position of the mode. 
However, it should be clear that the vertical line drawn at the mode does not divide 
the distribution into two equal parts. To have exactly 50% of the distribution on each 
side, the median must be located to the right of the mode. Finally, the mean is typi-
cally located to the right of the median because it is influenced most by the extreme 
scores in the tail and is displaced farthest to the right toward the tail of the distribu-
tion. Therefore, in a positively skewed distribution, the most likely order of the three 
measures of central tendency from smallest to largest (left to right) is the mode, the 
median, and the mean.

Negatively skewed distributions are lopsided in the opposite direction, with the 
scores piling up on the right-hand side and the tail tapering off to the left. The grades 
on an easy exam, for example, tend to form a negatively skewed distribution [see 
Figure 3.8(b)]. For a distribution with negative skew, the mode is on the right-hand side 
(with the peak), while the mean is displaced toward the left by the extreme scores in the 
tail. As before, the median is usually located between the mean and the mode. There-
fore, in a negatively skewed distribution, the most probable order for the three measures 
of central tendency from smallest value to largest value (left to right), is the mean, the 
median, and the mode.

The positions of the 
mean, median, and 
mode are not as  
consistently predictable 
in distributions of  
discrete variables (see 
Von Hippel, 2005).

Notice that the mean is 
always displaced toward 
the tail of the distribu-
tion. In this situation, 
the “tail” wags the dog.

Mode
Median

Positively skewed Negatively skewed

(a) (b)

Mean

Mean
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Measures of central tendency for skewed distributions.

LO8 1. For a distribution of scores, the mean is equal to the median. What is the most 
likely shape of this distribution?

a. Symmetrical

b. Positively skewed

c. Negatively skewed

d. Impossible to determine the shape 

LE A R N I N G C H E C K
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3-6 Selecting a Measure of Central Tendency

LE A R N I N G O B J E C T IV E     

9. Explain when each of the three measures of central tendency—mean, median, and 
mode—should be used, and identify the advantages and disadvantages of each.

You usually can compute two or even three measures of central tendency for the same 
set of data. Although the three measures often produce similar results, there are situa-
tions in which they are predictably different (see Section 3.5). Deciding which measure 
of central tendency is best to use depends on several factors. Before we discuss these 
factors, however, note that whenever the scores are numerical values (interval or ratio 
scale) the mean is usually the preferred measure of central tendency. Because the mean 
uses every score in the distribution, it typically produces a good representative value. 
Remember that the goal of central tendency is to find the single value that best rep-
resents the entire distribution. Besides being a good representative, the mean has the 
added advantage of being closely related to variance and standard deviation, the most 
common measures of variability (Chapter 4). This relationship makes the mean a valu-
able measure for purposes of inferential statistics. For these reasons, and others, the 
mean generally is considered to be the best of the three measures of central tendency. 
But there are specific situations in which it is impossible to compute a mean or in which 
the mean is not particularly representative. It is in these situations that the mode and the 
median are used.

■ When to Use the Median
We will consider four situations in which the median serves as a valuable alternative to the 
mean. In the first three cases, the data consist of numerical values (interval or ratio scales) 
for which you would normally compute the mean. However, each case also involves a 
special problem so that it is either impossible to compute the mean, or the calculation of 
the mean produces a value that is not central or not representative of the distribution. The 
fourth situation involves measuring central tendency for ordinal data.

LO8  2. For a positively skewed distribution with a mode of X 5 20 and a median of 
X 5 25, what is the most likely value for the mean?

a. Greater than 25

b. Less than 20

c. Between 20 and 25

d. Cannot be determined from the information given

LO8 3. For a negatively skewed distribution, what is the most probable order for the 
three measures of central tendency from smallest to largest?

a. Mean, median, mode 

b. Mean, mode, median 

c. Mode, mean, median

d. Mode, median, mean

1. a 2. a 3. a A N S W E R S
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Extreme Scores or Skewed Distributions As noted in the previous section, when a 
distribution is skewed or has a few extreme scores—scores that are very different in value 
from most of the others—then the mean may not be a good representative of the majority 
of the distribution. The problem comes from the fact that the extreme values can have a 
large influence and cause the mean to be displaced. In this situation, the fact that the mean 
uses all of the scores equally can be a disadvantage. Consider, for example, the distribution 
of n 5 10 scores in Figure 3.9. For this sample, the mean is

M 5
SX
n

5
203

10
5 20.3

Notice that the mean is not very representative of any score in this distribution. Although 
most of the scores are clustered between 10 and 13, the extreme score of X 5 100 inflates 
the value of SX and distorts the mean.X and distorts the mean.X

The median, on the other hand, is not easily affected by extreme scores. For this sam-
ple, n 5 10, so there should be five scores on either side of the median. The median is 
11.50. Notice that this is a very representative value. Also note that the median would be 
unchanged even if the extreme score were 1,000 instead of only 100. Because it is relative-
ly unaffected by extreme scores, the median commonly is used when reporting the average 
value for a skewed distribution. For example, the distribution of personal incomes is very 
skewed, with a small segment of the population earning incomes that are astronomical. 
These extreme values distort the mean, so that it is not very representative of the salaries 
that most of us earn. As in the previous example, the median is the preferred measure of 
central tendency when extreme scores exist.

Undetermined Values Occasionally, you will encounter a situation in which an indi-
vidual has an unknown or undetermined score. This often occurs when you are measuring 
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F I G U R E  3 .9
A frequency distribution with 
one extreme score. Notice that 
the graph shows two breaks in 
the X-axis. Rather than listing X-axis. Rather than listing X
all of the scores for 0–100, 
the graph skips directly to the 
lowest score, which is X = 10, 
and then breaks again between 
X = 15 and X = 100. The 
breaks in the X-axis are the X-axis are the X
conventional way of notifying 
the reader that some values 
have been omitted.
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the number of errors (or amount of time) required for an individual to complete a task. 
For example, suppose that preschool children are asked to assemble a wooden puzzle as 
quickly as possible. The experimenter records how long (in minutes) it takes each child 
to arrange all the pieces to complete the puzzle. Table 3.5 presents results for a sample of 
n 5 6 children.

Notice that one child never completed the puzzle. After an hour, this child still showed 
no sign of solving the puzzle, so the experimenter stopped him or her. This participant has 
an undetermined score. (There are two important points to be noted. First, the experimenter 
should not throw out this individual’s score. The whole purpose for using a sample is to 
gain a picture of the population, and this child tells us that part of the population cannot 
solve the puzzle. Second, this child should not be given a score of X 5 60 minutes. Even 
though the experimenter stopped the individual after one hour, the child did not finish 
the puzzle. The score that is recorded is the amount of time needed to finish. For this 
individual, we do not know how long this is.)

It is impossible to compute the mean for these data because of the undetermined value. 
We cannot calculate the SX part of the formula for the mean. However, it is possible X part of the formula for the mean. However, it is possible X
to determine the median. For these data, the median is 12.5. Three scores are below the 
median, and three scores (including the undetermined value) are above the median.

Open-Ended Distributions A distribution is said to be open-ended when there is open-ended when there is open-ended
no upper limit (or lower limit) for one of the categories. The table at the left provides 
an example of an open-ended distribution, showing the number of pizzas eaten during a 
one-month period for a sample of n 5 20 high school students. The top category in this 
distribution shows that three of the students consumed “5 or more” pizzas. This is an open-
ended category. Notice that it is impossible to compute a mean for these data because you 
cannot find SX (the total number of pizzas for all 20 students). However, you can find the X (the total number of pizzas for all 20 students). However, you can find the X
median. Listing the 20 scores in order produces X 5 1 and X 5 2 as the middle two scores. 
For these data, the median is 1.5.

Ordinal Scale Many researchers believe that it is not appropriate to use the mean 
to describe central tendency for ordinal data. When scores are measured on an ordinal 
scale, the median is always appropriate and is usually the preferred measure of central 
tendency.

You should recall that ordinal measurements allow you to determine direction (greater 
than or less than) but do not allow you to determine distance. The median is compatible 
with this type of measurement because it is defined by direction: half of the stores are 
above the median and half are below the median. The mean, on the other hand, defines 
central tendency in terms of distance. Remember that the mean is the balance point for the 
distribution, so that the distances above the mean are exactly balanced by the distances 
below the mean. Because the mean is defined in terms of distances, and because ordinal 

Number of 
Pizzas (XPizzas (XPizzas ( )X)X f

5 or more 3
4 2
3 2
2 3
1 6
0 4

Person Time (Min.)

1 8
2 11
3 12
4 13
5 17
6 Never finished

TA B L E  3 . 5
Number of minutes 
needed to assemble a 
wooden puzzle.
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scales do not measure distance, it is not appropriate to compute a mean for scores from 
an ordinal scale.

■ When to Use the Mode
We will consider three situations in which the mode is commonly used as an alternative to 
the mean, or is used in conjunction with the mean to describe central tendency.

Nominal Scales The primary advantage of the mode is that it can be used to measure 
and describe central tendency for data that are measured on a nominal scale. Recall that 
the categories that make up a nominal scale are differentiated only by name, such as 
classifying people by occupation or college major. Because nominal scales do not mea-
sure quantity (distance or direction), it is impossible to compute a mean or a median for 
data from a nominal scale. Therefore, the mode is the only option for describing central 
tendency for nominal data. When the scores are numerical values from an interval or ratio 
scale, the mode is usually not the preferred measure of central tendency.

Discrete Variables Recall that discrete variables are those that exist only in whole, 
indivisible categories. Often, discrete variables are numerical values, such as the number 
of children in a family or the number of rooms in a house. When these variables produce 
numerical scores, it is possible to calculate means. However, the calculated means are usu-
ally fractional values that cannot actually exist. For example, computing means will gen-
erate results such as “the average family has 2.4 children and a house with 5.33 rooms.” 
The mode, on the other hand, always identifies an actual score (the most typical case) 
and, therefore, it produces more sensible measures of central tendency. Using the mode, 
our conclusion would be “the typical, or modal, family has 2 children and a house with 
5 rooms.” In many situations, especially with discrete variables, people are more comfort-
able using the realistic, whole-number values produced by the mode.

Describing Shape Because the mode requires little or no calculation, it is often included 
as a supplementary measure along with the mean or median as a no-cost extra. The value of 
the mode (or modes) in this situation is that it gives an indication of the shape of the dis-
tribution as well as a measure of central tendency. Remember that the mode identifies the 
location of the peak (or peaks) in the frequency distribution graph. For example, if you are 
told that a set of exam scores has a mean of 72 and a mode of 80, you should have a better 
picture of the distribution than would be available from the mean alone (see Section 3.5).

IN THE LITERATURE

Reporting Measures of Central Tendency
Measures of central tendency are commonly used in the behavioral sciences to summa-
rize and describe the results of a research study. For example, a researcher may report 
the sample means from two different treatments or the median score for a large sample. 
These values may be reported in text describing the results, or presented in tables or in 
graphs.

In reporting results, many behavioral science journals use guidelines adopted by 
the American Psychological Association (APA), as outlined in the Publication Manual 
of the American Psychological Association (6th ed., 2010). We will refer to the APA 
manual from time to time in describing how data and research results are reported in the 
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Treatment Control

Older Adults 1.45 8.36
Younger Adults 3.83 14.77

■ Presenting Means and Medians in Graphs
Graphs also can be used to report and compare measures of central tendency. Usually, 
graphs are used to display values obtained for sample means, but occasionally you will 
see sample medians reported in graphs (modes are rarely, if ever, shown in a graph). The 
value of a graph is that it allows several means (or medians) to be shown simultaneously 
so it is possible to make quick comparisons between groups or treatment conditions. When 
preparing a graph, it is customary to list the different groups or treatment conditions on 
the horizontal axis. Typically, these are the different values that make up the independent 
variable or the quasi-independent variable. Values for the dependent variable (the scores) 
are listed on the vertical axis. The means (or medians) are then displayed using a line 
graph, a histogram, or a bar graph, depending on the scale of measurement used for the 
independent variable.

Figure 3.10 shows an example of a line graph displaying the relationship between drug 
dose (the independent variable) and food consumption (the dependent variable). In this 
study, there were five different drug doses (treatment conditions) and they are listed along 
the horizontal axis. The five means appear as points in the graph. To construct this graph, 
a point was placed above each treatment condition so that the vertical position of the point 
corresponds to the mean score for the treatment condition. The points are then connected 
with straight lines. A line graph is used when the values on the horizontal axis are mea-
sured on an interval or a ratio scale. An alternative to the line graph is a histogram. For 
this example, the histogram would show a bar above each drug dose so that the height of 
each bar corresponds to the mean food consumption for that group, with no space between 
adjacent bars.

Figure 3.11 shows a bar graph displaying the median selling price for single-family 
homes in different regions of the United States. Bar graphs are used to present means (or 
medians) when the groups or treatments shown on the horizontal axis are measured on a 
nominal or an ordinal scale. To construct a bar graph, you simply draw a bar directly above 
each group or treatment so that the height of the bar corresponds to the mean (or median) 
for that group or treatment. For a bar graph, a space is left between adjacent bars to indicate 
that the scale of measurement is nominal or ordinal.

TA B L E  3 .6
The mean number of 
errors made on the task 
for treatment and control 
groups according to age.

scienti�c literature. The APA style uses the letter M as the symbol for the sample mean. M as the symbol for the sample mean. M
Thus, a study might state:

The treatment group showed fewer errors (M 5 2.56) on the task than the control 
group (M 5 11.76).

When there are many means to report, tables with headings provide an organized and 
more easily understood presentation. Table 3.6 illustrates this point.

The median can be reported using the abbreviation Mdn, as in “Mdn 5 8.5 errors,” 
or it can simply be reported in narrative text, as follows:

The median number of errors for the treatment group was 8.5, compared to a 
median of 13 for the control group.

There is no special symbol or convention for reporting the mode. If mentioned at all, 
the mode is usually just reported in narrative text.
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When constructing graphs of any type, you should recall the basic rules we introduced 
in Chapter 2:

1. The height of a graph should be approximately two-thirds to three-quarters of its 
length.

2. Normally, you start numbering both the X-axis and the X-axis and the X Y-axis with zero at the point Y-axis with zero at the point Y
where the two axes intersect. However, when a value of zero is part of the data, it is 
common to move the zero point away from the intersection so that the graph does 
not overlap the axes (see Figure 3.10).

Following these rules will help produce a graph that provides an accurate presentation of 
the information in a set of data. Although it is possible to construct graphs that distort the 
results of a study (see Box 2.1), researchers have an ethical responsibility to present an 
honest and accurate report of their research results.

0

5

10

15

M
e

a
n

 fo
o

d
 c

o
n

su
m

p
tio

n 20

1 2 3

30

Drug dose

4

F I G U R E  3 .1 0
The relationship between 
an independent variable 
(drug dose) and a depen-
dent variable (food con-
sumption). Because drug 
dose is a continuous vari-
able measured on a ratio 
scale, a line graph is used 
to show the relationship.
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Median cost of a new, 
single-family home by 
region.
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LO9 1. A researcher is measuring problem-solving times for a sample of n 5 20 laboratory 
rats. However, one of the rats fails to solve the problem so the researcher has an 
undetermined score. What is the best measure of central tendency for these data?

a. The mean

b. The median

c. The mode

d. Central tendency cannot be determined for these data.

LO9 2. What is the best measure of central tendency for an extremely skewed 
distribution of scores?

a. The mean

b. The median

c. The mode

d. Central tendency cannot be determined for a skewed distribution.

LO9 3. One item on a questionnaire asks students to identify their preferred costume 
for the school mascot from three different choices. What is the best measure of 
central tendency for the data from this question?

a. The mean

b. The median

c. The mode

d. Central tendency cannot be determined for these data.

1. b 2. b 3. c 

LE A R N I N G C H E C K

A N S W E R S

1. The purpose of central tendency is to determine the 
single value that identifies the center of the distribu-
tion and best represents the entire set of scores. The 
three standard measures of central tendency are the 
mode, the median, and the mean.

2. The mean is the arithmetic average. It is computed by 
adding all the scores and then dividing by the number 
of scores. Conceptually, the mean is obtained by 
dividing the total (SX) equally among the number of X) equally among the number of X
individuals (N or N or N n). The mean can also be defined as 
the balance point for the distribution. The distances 
above the mean are exactly balanced by the distances 
below the mean. Although the calculation is the same 
for a population or a sample mean, a population mean 
is identified by the symbol μ, and a sample mean is 
identified by M. In most situations with numerical 
scores from an interval or a ratio scale, the mean is  
the preferred measure of central tendency.

3. Changing any score in the distribution causes the 
mean to be changed. When a constant value is added 
to (or subtracted from) every score in a distribution, 
the same constant value is added to (or subtracted 
from) the mean. If every score is multiplied by a con-
stant, the mean is multiplied by the same constant.

4. The median is the midpoint of a distribution of scores. 
The median is the preferred measure of central ten-
dency when a distribution has a few extreme scores 
that displace the value of the mean. The median also 
is used when there are undetermined (infinite) scores 
that make it impossible to compute a mean. Finally, 
the median is the preferred measure of central  
tendency for data from an ordinal scale.

5. The mode is the most frequently occurring score in a 
distribution. It is easily located by finding the peak in 
a frequency distribution graph. For data measured on 
a nominal scale, the mode is the appropriate measure 
of central tendency. It is possible for a distribution to 
have more than one mode.

6. For symmetrical distributions, the mean will equal the 
median. If there is only one mode, then it will have 
the same value, too.

7. For skewed distributions, the mode is located toward 
the side where the scores pile up, and the mean is 
pulled toward the extreme scores in the tail. The  
median is usually located between these two values.

S U M M A R Y
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central tendency (58)

population mean (m) (60)

sample mean (M) (60)M) (60)M

weighted mean (63)

median (68)

mode (72)

bimodal (72)

multimodal (72)

major mode (73)

minor mode (73)

symmetrical distribution (74)

skewed distribution (75)

positive skew (75)

negative skew (75)

line graph (80)

KE Y TER M S

General instructions for using SPSS are presented in Appendix D. Following are detailed 
instructions for using SPSS to compute the Mean and SX for a set of scores.X for a set of scores.X

Data Entry

1. Enter all of the scores in one column of the data editor, probably VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on Descriptives.
2. Highlight the column label for the set of scores (VAR00001) in the left box and click the 

arrow to move it into the Variable box.
3. If you want SX as well as the mean, click on the X as well as the mean, click on the X Options box, select Sum, then click  

Continue.
4. Click OK.

SPSS Output

SPSS will produce a summary table listing the number of scores (N), the maximum and miniN), the maximum and miniN -
mum scores, the sum of the scores (if you selected this option), the mean, and the standard de-
viation. Note: The standard deviation is a measure of variability that is presented in Chapter 4.

FO CUS  O N  PRO B LE M  SO LVIN G

1. Although the three measures of central tendency appear to be very simple to calculate, 
there is always a chance for errors. The most common sources of error are listed next.
a. Many students find it very difficult to compute the mean for data presented in a fre-

quency distribution table. They tend to ignore the frequencies in the table and simply 
average the score values listed in the X column. You must use the frequencies X column. You must use the frequencies X and
the scores! Remember that the number of scores is found by N 5 S f,S f,S  and the sum 
of all N scores is found by N scores is found by N S fXS fXS . For the distribution shown in the margin, the mean 
is 24

10 5 2.40.
b. The median is the midpoint of the distribution of scores, not the midpoint of the scale 

of measurement. For a 100-point test, for example, many students incorrectly assume 
that the median must be X 5 50. To find the median, you must have the complete 
set of individual scores. The median separates the individuals into two equal-sized set of individual scores. The median separates the individuals into two equal-sized set
groups.

c. The most common error with the mode is for students to report the highest frequency 
in a distribution rather than the score with the highest frequency. Remember that  
the purpose of central tendency is to find the most representative score. For the  
distribution in the margin, the mode is X 5 3, not f 5 4.

SPSS ®

X f

4 1
3 4
2 3
1 2
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D E M O N S TR ATIO N  3.1

COMPUTING MEASURES OF CENTRAL TENDENCY

For the following sample, find the mean, the median, and the mode. The scores are:

5, 6, 9, 11, 5, 11, 8, 14, 2, 11

Compute the Mean The calculation of the mean requires two pieces of information: the 
sum of the scores, SX, and the number of scores, n. For this sample, n 5 10 and

SX 5 5 1 6 1 9 1 111 5 1 11 1 8 1 14 1 2 1 11 5 82

Therefore, the sample mean is

M 5
SX
n

5
82

10
5 8.2

Find the Median To find the median, first list the scores in order from smallest to largest. 
With an even number of scores, the median is the average of the middle two scores in the list. 
Listed in order, the scores are:

2, 5, 5, 6, 8, 9, 11, 11, 11, 14

The middle two scores are 8 and 9, and the median is 8.5.

Find the Mode For this sample, X 5 11 is the score that occurs most frequently. The mode 
is X 5 11.

See Example 3.9  
(page 69) if you are  
computing the precise 
median for continuous 
data.

PRO B LE M S

6. A sample with a mean of M 5 8 has SX 5 56.  
How many scores are in the sample?

7. Find the mean for the scores in the following  
frequency distribution table:

X f

6 1
5 4
4 2
3 2
2 1

8. In a sample of n 5 6 scores, five of the scores are 
each above the mean by one point. Where is the  
sixth score located relative to the mean? 

9. A population has a mean of m 5 40.
a. If 5 points are added to each score, what is the 

value for the new mean?
b. If each score is multiplied by 3, what is the value 

for the new mean?

1. A sample of n 5 9 scores has SX 5 108. What is the 
sample mean? 

2. Find the mean for the following set of scores: 2, 7, 9, 
4, 5, 3, 0, 6

3. A population of N 57 scores has a mean of m 5 13. 
What is the value of SX for this population?X for this population?X

4. One sample of n 5 10 scores has a mean of 8 and a 
second sample of n 5 5 scores has a mean of 2. If the 
two samples are combined, what is the mean for the 
combined sample?

5. One sample has a mean of M 5 6 and a second 
sample has a mean of M 5 12. The two samples are 
combined into a single set of scores.
a. What is the mean for the combined set if both of 

the original samples have n 5 4 scores?
b. What is the mean for the combined set if the first 

sample has n 5 3 and the second sample has n 5 6?
c. What is the mean for the combined set if the first 

sample has n 5 6 and the second sample has n 5 3?
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19. Find the mean, median, and mode for the distribution 
of scores in the following frequency distribution table.

X f

9 1
8 1
7 3
6 4
5 1

20. Find the mean, median, and mode for the following 
scores: 8, 7, 5, 7, 0, 10, 2, 4, 11, 7, 8, 7

21. Solve the following problems.
a. Find the mean, median, and mode for the follow-

ing scores. 

9 6 7 10 7 9 9 7
9 4 9 8 3 6 8 9

b. Based on the three values for central tendency, 
what is the most likely shape for this distribution 
of scores (symmetrical, positively skewed, or 
negatively skewed)?

22. Solve the following problems. 
a. Find the mean, median, and mode for the scores in 

the following frequency distribution table.  

X f

5 2
4 5
3 2
2 3
1 0
0 2

b. Based on the three values for central tendency, 
what is the most likely shape for this distribution 
of scores (symmetrical, positively skewed,  
or negatively skewed)?

23. Identify the circumstances in which the median may 
be better than the mean as a measure of central  
tendency and explain why.

10. Solve the following problems.
a. After 8 points are added to each score in a sample, 

the mean is found to be M 5 40. What was the 
value for the original mean?

b. After every score in a sample is multiplied by 5, 
the mean is found to be M 5 40. 
What was the value for the original mean?

11. A sample of n 5 8 scores has a mean of M 5 7. If one 
score is changed from X 5 20 to X 5 4, what is the 
value of the new sample mean?

12. A sample of n 5 5 scores has a mean of M 5 12. If 
one new score with a value of X 5 18 is added to the 
sample, then what is the mean for the new sample?

13. A population of N 5 10 scores has a mean of m 5 12. 
If one score with a value of X 5 21 is removed from 
the population, then what is the value of the new 
population mean?

14. A sample of n 5 6 scores has a mean of M 514. After 
one new score is added, the new sample has a mean 
of M 5 12. What is the value of the score that was 
added?

15. A population of N 5 7 scores has a mean of m 5 9. 
After one score is removed, the new population has a 
mean of m 5 10. What is the value of the score that 
was removed?

16. Find the median for the following set of scores: 1, 9, 
3, 6, 4, 3, 11, 10

17. Find the median for the distribution of scores in the 
following frequency distribution table.

X f

6 1
5 1
4 4
3 2
2 3
1 1

18. For the following sample of n 5 10 scores: 2, 3, 4, 4, 
5, 5, 5, 6, 6, 7
a. Assume that the scores are measurements of a 

discrete variable and find the median.
b. Assume that the scores are measurements of a  

continuous variable and find the median by  
locating the precise midpoint of the distribution.
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4-1 Introduction to Variability

4-2 Defining Variance and Standard Deviation 

4-3 Measuring Variance and Standard Deviation for a Population

4-4 Measuring Variance and Standard Deviation for a Sample

4-5 Sample Variance as an Unbiased Statistic

4-6 More about Variance and Standard Deviation

Summary

Focus on Problem Solving

Demonstration 4.1

Problems

Variability 4
CHAP TER

Tools You Will Need
The following items are con-
sidered essential background 
material for this chapter. If you 
doubt your knowledge of any of 
these items, you should review 
the appropriate chapter or section 
before proceeding.

 ■ Summation notation (Chapter 1)
 ■ Central tendency (Chapter 3)

 ■ Mean
 ■ Median
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4-1 Introduction to Variability

LE A R N I N G O B J E C T IV E S  

1. De�ne variability and explain its use and importance as a statistical measure.

2. De�ne and calculate the range as a simple measure of variability and explain its 
limitations

The term variability has much the same meaning in statistics as it has in everyday lan-
guage; to say that things are variable means that they are not all the same. In statistics, our 
goal is to measure the amount of variability for a particular set of scores, a distribution. 
In simple terms, if the scores in a distribution are all the same, then there is no variability. 
If there are small differences between scores, then the variability is small, and if there are 
large differences between scores, then the variability is large.

In this chapter we introduce variability as a statistical concept. We will describe the 
methods that are used to measure and objectively describe the differences that exist 
from one score to another within a distribution. In addition to describing distributions 
of scores, variability also helps us determine which outcomes are likely and which are 
very unlikely to be obtained. This aspect of variability will play an important role in 
inferential statistics.

Variability provides a quantitative measure of the differences between scores 
in a distribution and describes the degree to which the scores are spread out or 
clustered together.

Figure 4.1 shows two distributions of familiar values for the population of adult 
males: Part (a) shows the distribution of men’s heights (in inches), and part (b) shows 
the distribution of men’s weights (in pounds). Notice that the two distributions differ 
in terms of central tendency. The mean height is 70 inches (5 feet, 10 inches) and the 
mean weight is 170 pounds. In addition, notice that the distributions differ in terms 
of variability. For example, most heights are clustered close together, within 5 or 
6 inches of the mean. Weights, on the other hand, are spread over a much wider range. 
In the weight distribution it is not unusual to find two men whose weights differ by 
40 or 50 pounds.

X
76 82706458

(a) (b)

X

Adult weights
(in pounds)

200 230170140110
Adult heights 

(in inches)

F I G U R E  4 .1 
Population distributions of adult male heights and weights.
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Variability can also be viewed as measuring predictability, consistency, or even diversity. 
If your morning commute to work or school always takes between 15 and 17 minutes, then 
your commuting time is very predictable and you do not need to leave home 60 minutes 
early just to be sure that you arrive on time. Similarly, consistency in performance from trial 
to trial is viewed as a skill. For example, the ability to hit a target time after time is an indica-
tion of skilled performance in many sports. Finally, corporations, colleges, and government 
agencies often make attempts to increase the diversity of their students or employees. Once 
again, they are referring to the differences from one individual to the next. Thus, predict-
ability, consistency, and diversity are all concerned with the differences between scores or 
between individuals, which is exactly what is measured by variability. 

In general, a good measure of variability serves two purposes:

1. Variability describes the distribution of scores. Speci�cally, it tells whether the 
scores are clustered close together or are spread out over a large distance. Usually, 
variability is de�ned in terms of distance. It tells how much distance to expect 
between one score and another, or how much distance to expect between an indi-
vidual score and the mean. For example, we know that the heights for most adult 
males are clustered close together, within 5 or 6 inches of the average. Although 
more extreme heights exist, they are relatively rare.

2. Variability measures how well an individual score (or group of scores) represents 
the entire distribution. This aspect of variability is very important for inferential 
statistics, in which relatively small samples are used to answer questions about 
populations. For example, suppose that you selected a sample of one adult male 
to represent the entire population. Because most men have heights that are within 
a few inches of the population average (the distances are small), there is a very 
good chance that you would select someone whose height is within 6 inches of the 
population mean. For men’s weights, on the other hand, there are relatively large 
differences from one individual to another. For example, it would not be unusual 
to select an individual whose weight differs from the population average by more 
than 30 pounds. Thus, variability provides information about how much error to 
expect if you are using a sample to represent a population.

In this chapter, we consider three different measures of variability: the range, standard 
deviation, and the variance. Of these three, the standard deviation and the related measure 
of variance are by far the most important.

■ The Range
The obvious �rst step toward de�ning and measuring variability is the range, which is the 
distance covered by the scores in a distribution, from the smallest score to the largest score. 
Although the concept of the range is fairly straightforward, there are several distinct meth-
ods for computing the numerical value. One commonly used de�nition of the range simply 
measures the difference between the largest score (XmaxXmaxX ) and the smallest score (XminXminX ):

range 5 XmaxXmaxX 2 XminXminX

By this de�nition, scores having values from 1 to 5 cover a range of 4 points. Many com-
puter programs, such as SPSS, use this de�nition. This de�nition works well for variables 
with precisely de�ned upper and lower boundaries. For example, if you are measuring 
proportions of an object, like pieces of a pizza, you can obtain values such as 1

8, 1
4, 1

2, 3
4. 

Expressed as decimal values, the proportions range from 0 to 1. You can never have a 
value less than 0 (none of the pizza) and you can never have a value greater than 1 (all of 
the pizza). Thus, the complete set of proportions is bounded by 0 at one end and by 1 at the 
other. As a result, the proportions cover a range of 1 point.
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An alternative de�nition of the range is often used when the scores are measurements 
of a continuous variable. In this case, the range can be de�ned as the difference between 
the upper real limit (URL) for the largest score (XmaxXmaxX ) and the lower real limit (LRL) for 
the smallest score (XminXminX ).

range 5 URL for XmaxXmaxX 2 LRL for XminXminX

According to this de�nition, scores having values from 1 to 5 cover a range of 5.5 2
0.5 5 5 points. 

When the scores are whole numbers, the range can also be de�ned as the number of 
measurement categories. If every individual is classi�ed as either 1, 2, or 3 then there are 
three measurement categories and the range is 3 points. De�ning the range as the number of 
measurement categories also works for discrete variables that are measured with numerical 
scores. For example, if you are measuring the number of children in a family and the data 
produce values from 0 to 4, then there are �ve measurement categories (0, 1, 2, 3, and 4) and 
the range is 5 points. By this de�nition, when the scores are all whole numbers, the range 
can be obtained by

XmaxXmaxX 2 XminXminX 1 1.

Using any of these de�nitions, the range is probably the most obvious way to describe 
how spread out the scores are—simply �nd the distance between the maximum and the 
minimum scores. The problem with using the range as a measure of variability is that it 
is completely determined by the two extreme values and ignores the other scores in the 
distribution. Thus, a distribution with one unusually large (or small) score will have a large 
range even if the other scores are all clustered close together.

Because the range does not consider all the scores in the distribution, it often does 
not give an accurate description of the variability for the entire distribution. For this 
reason, the range is considered to be a crude and unreliable measure of variability. 
Therefore, in most situations, it does not matter which de�nition you use to determine 
the range.

Continuous and dis-
crete variables are 
discussed in Chapter 1 
on pages 11–13.

LO1 1. Which of the following is a consequence of increasing variability?

a. The distance from one score to another tends to increase and a sin-
gle score tends to provide a more accurate representation of the entire 
distribution.

b. The distance from one score to another tends to increase and a single score 
tends to provide a less accurate representation of the entire distribution.

c. The distance from one score to another tends to decrease and a single score 
tends to provide a more accurate representation of the entire distribution.

d. The distance from one score to another tends to decrease and a single score 
tends to provide a less accurate representation of the entire distribution.

LO2 2. What is the range for the following set of scores? Scores: 5, 7, 9, 15

a. 4 points

b. 5 points

c. 10 or 11 points

d. 15 points

LE A R N I N G C H E C K
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LO2 3. For the following scores, which of the following actions will increase the 
range? Scores: 3, 7, 10, 15

a. Add 4 points to the score X 5 3

b. Add 4 points to the score X 5 7

c. Add 4 points to the score X 5 10

d. Add 4 points to the score X 5 15

1. b 2. c 3. d A N S W E R S

4-2 Defining Variance and Standard Deviation

LE A R N I N G O B J E C T IV E S

3. De�ne variance and standard deviation and describe what is measured by each.

4. Calculate variance and standard deviation for a simple set of scores.

5. Estimate the standard deviation for a set of scores based on a visual examination of 
a frequency distribution graph of the distribution.

The standard deviation is the most commonly used and the most important measure of 
variability. Standard deviation uses the mean of the distribution as a reference point and 
measures variability by considering the distance between each score and the mean.

In simple terms, the standard deviation provides a measure of the standard, or average, 
distance from the mean, and describes whether the scores are clustered closely around the 
mean or are widely scattered. 

Although the concept of standard deviation is straightforward, the actual equations tend 
to be more complex and lead us to the related concept of variance before we �nally reach 
the standard deviation. Therefore, we begin by looking at the logic that leads to these equa-
tions. If you remember that our goal is to measure the standard, or typical, distance from 
the mean, then this logic and the equations that follow should be easier to remember.

The �rst step in �nding the standard distance from the mean is to determine the deviation, 
or distance from the mean, for each individual score. By de�nition, the deviation for each 
score is the difference between the score and the mean.

S T E P  1

A deviation or deviation scoreor deviation scoreor  is the difference between a score and the mean, and 
is calculated as:

deviation 5 X 2 m

For a distribution of scores with m 5 50, if your score is X 5 53, then your deviation 
score is

X 2 m 5 53 2 50 5 3 points

If your score is X 5 45, then your deviation score is

X 2 m 5 45 2 50 5 25 points
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Notice that there are two parts to a deviation score: the sign (1 or 2) and the number. The 
sign (1 or 2) tells the direction from the mean—that is, whether the score is located above 
(1) or below (2) the mean, and the number gives the actual distance from the mean. For 
example, a deviation score of 26 corresponds to a score that is below the mean by a distance 
of 6 points.

Because our goal is to compute a measure of the standard distance from the mean, the obvi-
ous next step is to calculate the mean of the deviation scores. To compute this mean, you 
�rst add up the deviation scores and then divide by N. This process is demonstrated in the 
following example.

We start with the following set of N 5 4 scores. These scores add up to SX 5 12, so the 
mean is m 5 12

4 5 3. For each score, we have computed the deviation.

X X 2 m

8 15
1 22
3 0
0 23

0 5 S(X 2 m) ■

Note that the deviation scores add up to zero. This should not be surprising if you 
remember that the mean serves as a balance point for the distribution. The total of the 
distances above the mean is exactly equal to the total of the distances below the mean (see 
page 61). Thus, the total for the positive deviations is exactly equal to the total for the nega-
tive deviations, and the complete set of deviations always adds up to zero.

Because the sum of the deviations is always zero, the mean of the deviations is also zero 
and is of no value as a measure of variability. Speci�cally, the mean of the deviations is 
zero if the scores are closely clustered and it is zero if the scores are widely scattered. (You 
should note, however, that the constant value of zero is useful in other ways. Whenever you 
are working with deviation scores, you can check your calculations by making sure that the 
deviation scores add up to zero.)

The average of the deviation scores will not work as a measure of variability because it is 
always zero. Clearly, this problem results from the positive and negative values canceling 
each other out. The solution is to get rid of the signs (1 and 2). The standard procedure 
for accomplishing this is to square each deviation score. Using the squared values, you 
then compute the average of the squared deviations, or the mean squared deviation, which 
is called variance.

Variance equals the mean of the squared deviations. Variance is the average 
squared distance from the mean.

Note that the process of squaring deviation scores does more than simply get rid of plus 
and minus signs. It results in a measure of variability based on squared distances. Although squared distances. Although squared
variance is valuable for some of the inferential statistical methods covered later, the coninferential statistical methods covered later, the coninferential -
cept of squared distance is not an intuitive or easy-to-understand descriptive measure. For 
example, it is not particularly useful to know that the squared distance from New York City 
to Boston is 26,244 miles squared. The squared value becomes meaningful, however, if you 
take the square root. Therefore, we continue the process one more step.

A deviation, or a devia-
tion score is often rep-
resented by a lowercase 
letter x.

S T E P  2

E X A M P L E  4 . 1

S T E P  3
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Remember that our goal is to compute a measure of the standard distance from the mean. 
Variance, which measures the average squared distance from the mean, is not exactly what 
we want. The �nal step simply takes the square root of the variance to obtain the standard 
deviation, which measures the standard distance from the mean. 

S T E P  4

Standard deviation is the square root of the variance and provides a measure of 
the standard, or average distance from the mean. 

Standard deviation 5 ÏvÏvÏ arianceÏ

Figure 4.2 shows the overall process of computing variance and standard deviation. 
Remember that our goal is to measure variability by �nding the standard distance from 
the mean. However, we cannot simply calculate the average of the distances because this 
value will always be zero. Therefore, we begin by squaring each distance, then we �nd the 
average of the squared distances, and �nally we take the square root to obtain a measure of 
the standard distance. Technically, the standard deviation is the square root of the average 
squared deviation. Conceptually, however, the standard deviation provides a measure of the 
average distance from the mean.

Although we still have not presented any formulas for variance or standard deviation, 
you should be able to compute these two statistical values from their de�nitions. The fol-
lowing example demonstrates this process.

We will calculate the variance and standard deviation for the following population of 
N 5 5 scores:

1, 9, 5, 8, 7

Remember that the purpose of standard deviation is to measure the standard distance from the 
mean, so we begin by computing the population mean. These �ve scores add up to SX 5 30 

E X A M P L E  4 . 2

Square each
deviation

The standard deviation
or standard distance

from the mean

DEAD END
This value is always 0

Take the square
root of the variance

Find the average of 
the squared deviations

(called “variance”)

Find the deviation
(distance from the mean)

for each score

Add the deviations and 
compute the average

F I G U R E  4 . 2 
The calculation of variance 
and standard deviation.
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so the mean is m 5 30
5 5 6. Next, we �nd the deviation (distance from the mean) for each score 

and then square the deviations. Using the population mean m 5 6, these calculations are shown 
in the following table.

For this set of N 5 5 scores, the squared deviations add up to 40. The mean of the 
squared deviations, the variance, is 40

5 5 8, and the standard deviation is Ï8Ï 5 2.83. ■

You should note that a standard deviation of 2.83 is a sensible answer for this dis-
tribution. The �ve scores in the population are shown in a histogram in Figure 4.3 so 
that you can see the distances more clearly. Note that the scores closest to the mean 
are only 1 point away. Also, the score farthest from the mean is 5 points away. For this 
distribution, the largest distance from the mean is 5 points and the smallest distance is 
1 point. Thus, the standard distance should be somewhere between 1 and 5. By looking 
at a distribution in this way, you should be able to make a rough estimate of the stan-
dard deviation. In this case, the standard deviation should be between 1 and 5, probably 
around 3 points. The value we calculated for the standard deviation is in excellent agree-
ment with this estimate. 

Making a quick estimate of the standard deviation can help you avoid errors in calcula-
tion. For example, if you calculated the standard deviation for the scores in Figure 4.3 and 
obtained a value of 12, you should realize immediately that you have made an error. (If the 
biggest deviation is only 5 points, then it is impossible for the standard deviation to be 12.)

The following example is an opportunity for you to test your understanding by comput-
ing variance and standard deviation yourself.

81 2 4 53 64 53 64 5 9 107
X

m = m = m 6

Fr
e

q
u

e
n

c
y

5 1

1

2

3

F I G U R E  4 . 3 
A frequency distribution 
histogram for a popula-
tion of N 5 5 scores. The 
mean for this population 
is m 5 6. The smallest 
distance from the mean 
is 1 point and the largest 
distance is 5 points. The 
standard distance (or stan-
dard deviation) should be 
between 1 and 5 points.

Score 
X

Deviation 
X 2 m

Squared 
Deviation 
 (X (X ( 2 m)2

1 25 25
9 3 9
5 21 1
8 2 4
7 1 1

40 5 the sum of the squared deviations

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 4-3 | Measuring Variance and Standard Deviation for a Population 95

LO3 1. Which of the following sets of scores has the largest variance?

a. 1, 3, 8, 12

b. 12, 13, 14, 15

c. 2, 2, 2, 2

d. 22, 24, 25, 27

LO4 2. What is the variance for the following set of scores? Scores: 4, 1, 7

a. 66
3 5 22

b. 18

c. 9

d. 6

LO5 3. A set of scores ranges from a high of X 5 24 to a low of X 5 12 and has a 
mean of 18. Which of the following is the most likely value for the standard 
deviation for these scores?

a. 3 points

b. 6 points

c. 12 points

d. 24 points

1. a 2. d 3. a 

LE A R N I N G C H E C K

A N S W E R S

4-3 Measuring Variance and Standard Deviation for a Population

LE A R N I N G O B J E C T IV E S

6. Calculate SS, the sum of the squared deviations, for a population using either the 
de�nitional or the computational formula and describe the circumstances in which 
each formula is appropriate.

7. Calculate the variance and the standard deviation for a population.

Compute the variance and standard deviation for the following set of N 5 6 scores: 
12, 0, 1, 7, 4, and 6. You should obtain a variance of 16 and a standard deviation of 4. 
Good luck. ■

Because the standard deviation and variance are de�ned in terms of distance from the 
mean, these measures of variability are used only with numerical scores that are obtained 
from measurements on an interval or a ratio scale. Recall from Chapter 1 (page 14) that 
these two scales are the only ones that provide information about distance; nominal and 
ordinal scales do not. Also, recall from Chapter 3 (pages 77279) that it is inappropriate 
to compute a mean for ordinal data and it is impossible to compute a mean for nominal 
data. Because the mean is a critical component in the calculation of standard deviation and 
variance, the same restrictions that apply to the mean also apply to these two measures of 
variability. Speci�cally, the mean, the standard deviation, and the variance should be used 
only with numerical scores from interval or ordinal scales of measurement.

E X A M P L E  4 . 3
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The concepts of variance and variance standard deviation are the same for both samples and 
populations. However, the details of the calculations differ slightly, depending on whether 
you have data from a sample or from a complete population. We �rst consider the formulas 
for populations and then look at samples in Section 4.4.

■ The Sum of Squared Deviations (SS)
Recall that variance is de�ned as the mean of the squared deviations. This mean is com-
puted exactly the same way you compute any mean: �rst �nd the sum, and then divide by 
the number of scores.

Variance 5 mean squared deviation 5
sum of squared deviations

number of scores

The value in the numerator of this equation, the sum of the squared deviations, is a basic 
component of variability, and we will focus on it. To simplify things, it is identi�ed by the 
notation SS (for sum of squared deviations), and it generally is referred to as the SS (for sum of squared deviations), and it generally is referred to as the SS sum of 
squares.

SS, or sum of squares, is the sum of the squared deviation scores.

You need to know two formulas to compute SS. These formulas are algebraically equiv-
alent (they always produce the same answer), but they look different and are used in dif-alent (they always produce the same answer), but they look different and are used in dif-alent (they always produce the same answer), but they look different and are used in dif
ferent situations.

The �rst of these formulas is called the de�nitional formula because the symbols in the 
formula literally de�ne the process of adding up the squared deviations:

Definitional formula: SS 5 S (X 2 m)2 (4.1)

To �nd the sum of the squared deviations, the formula instructs you to perform the follow-
ing sequence of calculations:

1. Find each deviation score (X 2 m).

2. Square each deviation score (X 2 m)2.

3. Add the squared deviations.

The result is SS, the sum of the squared deviations. The following example demonstrates 
using this formula.

We will compute SS for the following set of SS for the following set of SS N 5 4 scores. These scores have a sum of 
SX 5 8, so the mean is m 5 8

4 5 2. The following table shows the deviation and the squared 
deviation for each score. The sum of the squared deviations is SS 5 22.

Score 
X

Deviation 
X 2 m

Squared 
Deviation 
(X(X( 2 m)2

1 21 1 SX 5 8

0 22 4 m 5 2

6 14 16

1 21 1

22 S(X 2 m)2 5 22

E X A M P L E  4 . 4

■
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Although the de�nitional formula is the most direct method for computing SS, it can 
be awkward to use. In particular, when the mean is not a whole number, the deviations all 
contain decimals or fractions, and the calculations become dif�cult. In addition, calcula-
tions with decimal values introduce the opportunity for rounding error, which can make 
the result less accurate. For these reasons, an alternative formula has been developed for 
computing SS. The alternative, known as the computational formula, performs calculations 
with the scores (not the deviations) and therefore minimizes the complications of decimals 
and fractions.

Computational fofof rmula: SS 5 SX 2 2
sSXdXdX 2

N
(4.2)

The �rst part of this formula directs you to square each score and then add the squared 
values, SX2X2X . In the second part of the formula, you �nd the sum of the scores, SX, then 
square this total and divide the result by N. Finally, subtract the second part from the �rst. 
The use of this formula is shown in Example 4.5 with the same scores that we used to dem-
onstrate the de�nitional formula.

The computational formula is used to calculate SS for the same set of SS for the same set of SS N 5 4 scores we used 
in Example 4.4. Note that the formula requires the calculation of two sums: first, compute 
SX, and then square each score and compute SX2X2X . These calculations are shown in the fol-
lowing table. The two sums are used in the formula to compute SS.

X X2

1 1

0 0

6 36

1 1

SX 5 8 SX2 5 38

Note that the two formulas produce exactly the same value for SS. Although the formu-
las look different, they are in fact equivalent. The de�nitional formula provides the most 
direct representation of the concept of SS; however, this formula can be awkward to use, 
especially if the mean includes a fraction or decimal value. If you have a small group of 
scores and the mean is a whole number, then the de�nitional formula is �ne; otherwise the 
computational formula is usually easier to use.

■ Final Formulas and Notation
With the de�nition and calculation of SS behind you, the equations for variance and stanSS behind you, the equations for variance and stanSS -
dard deviation become relatively simple. Remember that variance is de�ned as the mean 
squared deviation. The mean is the sum of the squared deviations divided by N, so the N, so the N
equation for the population variance is

variance 5
SS

N

Standard deviation is the square root of variance, so the equation for the population 
standard deviation is

standard deviation 5ÎSSÎNÎ

E X A M P L E  4 . 5

In the same way that 
sum of squares, or SS, is 
used to refer to the sum 
of squared deviations, 
the term mean square, or 
MS, is often used to refer 
to variance, which is the 
mean squared deviation.

SS 5 SX 2 2
sSXdXdX 2

N

5 38 2
s8d2

4

5 38 2
64

4

5 38 2 16

5 22 ■
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There is one �nal bit of notation before we work completely through an example 
computing SS, variance, and standard deviation. Like the mean (m), variance and stan-
dard deviation are parameters of a population and are identi�ed by Greek letters. To 
identify the standard deviation, we use the Greek letter sigma (the Greek letter s, stand-
ing for standard deviation). The capital letter sigma (S) has been used already, so we 
now use the lowercase sigma, s, as the symbol for the population standard deviation. 
To emphasize the relationship between standard deviation and variance, we use s2 as 
the symbol for population variance (standard deviation is the square root of the vari-
ance). Thus,

population standard deviation 5 s 5 Ïs2Ï 5ÎSSÎNÎ (4.3)

population variance 5 s2 5
SS

N
(4.4)

Population variance is represented by the symbol s2 and equals the mean squared 
distance from the mean. Population variance is obtained by dividing the sum of 
squares (SS) by N.N.N

Population standard deviation is represented by the symbol s and equals the 
square root of the population variance.  

Earlier, in Examples 4.3 and 4.4, we computed the sum of squared deviations for a 
simple population of N 5 4 scores (1, 0, 6, 1) and obtained SS 5 22. For this population, 
the variance is 

s2 5
SS

N
5

22

4
5 5.50

and the standard deviation is 

s 5 Ï5.50Ï 5 2.345

LO6 1. What is SS, the sum of the squared deviations, for the following population of 
N 5 5 scores? Scores: 1, 9, 0, 2, 3

a. 10

b. 41

c. 50

d. 95

LO7 2. What is the standard deviation for the following population of scores?
Scores: 1, 3, 9, 3

a. 36

b. 9

c. 6

d. 3

LE A R N I N G C H E C K
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LO7 3. A population of N 5 8 scores has a standard deviation of s 5 3. What is the 
value of SS, the sum of the squared deviations, for this population?

a. 72

b. 24

c. 8Ï3Ï
d. 9

8 5 1.125

1. c 2. d 3. aA N S W E R S

4-4 Measuring Variance and Standard Deviation for a Sample

LE A R N I N G O B J E C T IV E S

 8. Explain why it is necessary to make a correction to the formulas for variance and 
standard deviation when computing these statistics for a sample.

 9. Calculate SS, the sum of the squared deviations, for a sample using either the 
de�nitional or the computational formula and describe the circumstances in which 
each formula is appropriate.

 10. Calculate the variance and the standard deviation for a sample.

■ The Problem with Sample Variability
The goal of inferential statistics is to use the limited information from samples to draw general 
conclusions about populations. The basic assumption of this process is that samples should be 
representative of the populations from which they come. This assumption poses a special prob-
lem for variability because samples consistently tend to be less variable than their populations. 
The mathematical explanation for this fact is beyond the scope of this book but a simple dem-
onstration of this general tendency is shown in Figure 4.4. Notice that a few extreme scores in 
the population tend to make the population variability relatively large. However, these extreme 
values are unlikely to be obtained when you are selecting a sample, which means that the 
sample variability is relatively small. The fact that a sample tends to be less variable than its 
population means that sample variability gives a biased estimate of population variability. This biased estimate of population variability. This biased
bias is in the direction of underestimating the population value rather than being right on the 
mark. (The concept of a biased statistic is discussed in more detail in Section 4.5.)

Fortunately, the bias in sample variability is consistent and predictable, which means it 
can be corrected. For example, if the speedometer in your car consistently shows speeds 
that are 5 mph slower than you are actually going, it does not mean that the speedometer is 
useless. It simply means that you must make an adjustment to the speedometer reading to 
get an accurate speed. In the same way, we will make an adjustment in the calculation of 
sample variance. The purpose of the adjustment is to make the resulting value for sample 
variance an accurate and unbiased representative of the population variance.

■ Formulas for Sample Variance and Standard Deviation
The calculations of variance and standard deviation for a sample follow the same steps that 
were used to �nd population variance and standard deviation. First, calculate the sum of 
squared deviations (SS). Second, calculate the variance. Third, �nd the square root of the 
variance, which is the standard deviation.

A sample statistic is said 
to be biased if, on the 
average, it consistently 
overestimates or un-
derestimates the cor-
responding population 
parameter.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



100 CHAPTER 4 | Variability

Population
variability

Population
distribution

SampleXXXXX XXX

Sample
variability

XX

F I G U R E  4 . 4
The population of adult heights 
forms a normal distribution. If you 
select a sample from this popula-
tion, you are most likely to obtain 
individuals who are near average 
in height. As a result, the variabil-
ity for the scores in the sample is 
smaller than the variability for the 
scores in the population.

Except for minor changes in notation, calculating the sum of squared deviations, SS, 
is exactly the same for a sample as it is for a population. The changes in notation involve 
using M for the sample mean instead of M for the sample mean instead of M m, and using n (instead of N) for the number of N) for the number of N
scores. Thus, the de�nitional formula for SS for a sample isSS for a sample isSS

Definitional formula: SS 5 S(X 2 M)M)M 2 (4.5)

Note that the sample formula has exactly the same structure as the population formula 
(Equation 4.1 on page 96) and instructs you to �nd the sum of the squared deviations using 
the following three steps:

1. Find the deviation from the mean for each score: deviation 5 X 2 M

2. Square each deviation: squared deviation 5 (X 2 M)M)M 2

3. Add the squared deviations: SS 5 S(X 2 M)M)M 2

The value of SS also can be obtained using a computational formula. Except for one minor SS also can be obtained using a computational formula. Except for one minor SS
difference in notation (using n in place of N), the computational formula for N), the computational formula for N SS is the same SS is the same SS
for a sample as it was for a population (see Equation 4.2). Using sample notation, this 
formula is:

Computational fofof rmula: SS 5 SX 2 2
sSXdXdX 2

n
(4.6)

Again, calculating SS for a sample is exactly the same as for a population, except for SS for a sample is exactly the same as for a population, except for SS
minor changes in notation. After you compute SS, however, it becomes critical to differ-
entiate between samples and populations. To correct for the bias in sample variability, it is 
necessary to make an adjustment in the formulas for sample variance and standard devia-
tion. With this in mind, sample variance (identi�ed by the symbol s2) is de�ned as

sample variance 5 s2 5
SS

n 2 1
(4.7)
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Sample standard deviation (identi�ed by the symbol s) is simply the square root of the 
variance.

sample standard deviation 5 s 5 ÏsÏsÏ 2Ï 5Î SSÎn 2 1Î (4.8)

Sample variance is represented by the symbol s2 and equals the mean squared dis-
tance from the mean. Sample variance is obtained by dividing the sum of squares 
(SS) by n 2 1.

Sample standard deviation is represented by the symbol s and equals the square 
root of the sample variance.  

Notice that the sample formulas divide by n 2 1 unlike the population formulas, which 
divide by N (see Equations 4.3 and 4.4). This is the adjustment that is necessary to correct N (see Equations 4.3 and 4.4). This is the adjustment that is necessary to correct N
for the bias in sample variability. The effect of the adjustment is to increase the value you 
will obtain. Dividing by a smaller number (n 2 1 instead of n) produces a larger result 
and makes sample variance an accurate and unbiased estimator of population variance. 
The following example demonstrates the calculation of variance and standard deviation 
for a sample.

We have selected a sample of n We have selected a sample of n We have selected a sample of 5 8 scores from a population. The scores are 4, 6, 5, 
11, 7, 9, 7, 3. The frequency distribution histogram for this sample is shown in Figure 
4.5. Before we begin any calculations, you should be able to look at the sample distribu-
tion and make a preliminary estimate of the outcome. Remember that standard deviation 
measures the standard distance from the mean. For this sample the mean is M 5 52

8 5
6.5. The scores closest to the mean are X 5 6 and X 5 7, both of which are exactly 0.50 
points away. The score farthest from the mean is X 5 11, which is 4.50 points away. 
With the smallest distance from the mean equal to 0.50 and the largest distance equal to 
4.50, we should obtain a standard distance somewhere between 0.50 and 4.50, probably 
around 2.5.

Remember, sample 
variability tends to un-
derestimate population 
variability unless some 
correction is made.

E X A M P L E  4 . 6

1 2 3 4 5 6 7 8 9 10 11
X

 = 6.5M = M = 

f

4.5

1

2

3 1
2/

F I G U R E  4 . 5 
The frequency distribution 
histogram for a sample of 
n 5 8 scores. The sample 
mean is M 5 6.5. The small-
est distance from the mean 
is 0.5 points, and the larg-
est distance from the mean 
is 4.5 points. The standard 
distance (standard deviation) 
should be between 0.5 and 
4.5 points, or about 2.5.
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We begin the calculations by finding the value of SS for this sample. Because the mean SS for this sample. Because the mean SS
is not a whole number (M 5 6.5), the computational formula is easier to use. The scores, 
and the squared scores, needed for this formula are shown in the following table.

Scores 
X

Squared Scores 
X2

4 16
6 36
5 25

11 121
7 49
9 81
7 49
3 9

SX 5 52 SX2 5 386

Using the two sums,

SS 5 SX 2 2
(SX)X)X 2

n
5 386 2

s52d2

8
5 386 2 338 
5 48

the sum of squared deviations for this sample is SS 5 48. Continuing the calculations,

sample variance 5 s2 5
SS

n 2 1
5

48

8 2 1
5 6.86

Finally, the standard deviation is

s 5 Ïs2Ï 5 Ï6.86Ï 5 2.62

Note that the value we obtained is in excellent agreement with our preliminary predic-
tion (see Figure 4.5). ■

The following example is an opportunity for you to test your understanding by comput-
ing sample variance and standard deviation yourself.

For the following sample of n 5 5 scores, compute the variance and standard deviation: 1, 
5, 5. 1, and 8. You should obtain s2 5 9 and s 5 3. Good luck. ■

Remember that the formulas for sample variance and standard deviation were constructed 
so that the sample variability provides a good estimate of population variability. For this 
reason, the sample variance is often called estimated population variance, and the sample 
standard deviation is called estimated population standard deviation. When you have only 
a sample to work with, the variance and standard deviation for the sample provide the best 
possible estimates of the population variability.

■ Sample Variability and Degrees of Freedom
Although the concept of a deviation score and the calculation SS are almost exactly the same SS are almost exactly the same SS
for samples and populations, the minor differences in notation are really very important. Spe-
ci�cally, with a population, you �nd the deviation for each score by measuring its distance 
from the population mean. With a sample, on the other hand, the value of m is unknown and 
you must measure distances from the sample mean. Because the value of the sample mean var-you must measure distances from the sample mean. Because the value of the sample mean var-you must measure distances from the sample mean. Because the value of the sample mean var
ies from one sample to another, you must �rst compute the sample mean before you can begin 

E X A M P L E  4 . 7
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to compute deviations. However, calculating the value of M places a restriction on the variM places a restriction on the variM -
ability of the scores in the sample. This restriction is demonstrated in the following example.

Suppose we select a sample of n 5 3 scores and compute a mean of M 5 5. The first two 
scores in the sample have no restrictions; they are independent of each other and they can have 
any values. For this demonstration, we will assume that we obtained X 5 2 for the first score 
and X 5 9 for the second. At this point, however, the third score in the sample is restricted.

X A sample of n 5 3 scores with a mean of M 5 5.

2

9

— d What is the third score?

For this example, the third score must be X 5 4. The reason that the third score is re-
stricted to X 5 4 is that the entire sample of n 5 3 scores has a mean of M 5 5. For 3 scores 
to have a mean of 5, the scores must have a total of SX 5 15. Because the first two scores 
add up to 11 (9 1 2), the third score must be X 5 4. ■

In Example 4.8, the �rst two out of three scores were free to have any values, but the 
�nal score was dependent on the values chosen for the �rst two. In general, with a sample 
of n scores, the �rst n 2 1 scores are free to vary, but the �nal score is restricted. As a result, 
the sample is said to have n 2 1 degrees of freedom.

For a sample of n scores, the degrees of freedom, or df, for the sample variance df, for the sample variance df
are de�ned as df 5 n 2 1. The degrees of freedom determine the number of scores 
in the sample that are independent and free to vary.

The n 2 1 degrees of freedom for a sample is the same n 2 1 that is used in the formulas 
for sample variance and standard deviation. Remember that variance is de�ned as the mean 
squared deviation. As always, this mean is computed by �nding the sum and dividing by 
the number of scores:

mean 5
sum

number

To calculate sample variance (mean squared deviation), we �nd the sum of the squared 
deviations (SS) and divide by the number of scores that are free to vary. This number is 
n 2 1 5 df. Thus, the formula for sample variance is

s2 5
sum of squared deviations

number of scores frfrf ee to vary
5

SS

dfdfd
5

SS

n 2 1

Later in this book, we use the concept of degrees of freedom in other situations. For 
now, remember that knowing the sample mean places a restriction on sample variability. 
Only n 2 1 of the scores are free to vary; df 5 n 2 1.

E X A M P L E  4 . 8

LO8 1. Which of the following explains why it is necessary to make a correction to the 
formula for sample variance?

a. If sample variance is computed by dividing by n, instead of n 2 1, the 
resulting values will tend to underestimate the population variance.

b. If sample variance is computed by dividing by n, instead of n 2 1, the 
resulting values will tend to overestimate the population variance.

LE A R N I N G C H E C K
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c. If sample variance is computed by dividing by n 2 1, instead of n, the re-
sulting values will tend to underestimate the population variance.

d. If sample variance is computed by dividing by n 2 1, instead of n, the re-
sulting values will tend to underestimate the population variance.

LO9 2. Under what circumstances is the computational formula preferred over the defini-
tional formula when computing SS, the sum of the squared deviations, for a sample?

a. When the sample mean is a whole number

b. When the sample mean is not a whole number

c. When the sample variance is a whole number

d. When the sample variance is not a whole number

LO10 3. What is the variance for the following sample of n 5 5 scores? Scores: 2, 0, 
8, 2, 3

a. 81
4 5 20.25

b. 36
4 5 9

c. 36
5 5 7.2

d. Ï9Ï 5 3

1. a 2. b 3. bA N S W E R S

4-5 Sample Variance as an Unbiased Statistic

LE A R N I N G O B J E C T IV E S  

 11. De�ne biased and unbiased statistics.

 12. Explain why the sample mean and the sample variance (dividing by n 2 1) are 
unbiased statistics.

■ Biased and Unbiased Statistics
Earlier we noted that sample variability tends to underestimate the variability in the cor-
responding population. To correct for this problem we adjusted the formula for sample 
variance by dividing by n 2 1 instead of dividing by n. The result of the adjustment is that 
sample variance provides a much more accurate representation of the population variance. 
Speci�cally, dividing by n 2 1 produces a sample variance that provides an unbiased esti-unbiased esti-unbiased
mate of the corresponding population variance. This does not mean that each individual 
sample variance will be exactly equal to its population variance. In fact, some sample 
variances will overestimate the population value and some will underestimate it. However, 
the average of all the sample variances will produce an accurate estimate of the population 
variance. This is the idea behind the concept of an unbiased statistic.

A sample statistic is unbiased if the average value of the statistic is equal to the 
population parameter. (The average value of the statistic is obtained from all the 
possible samples for a speci�c sample size, n.)

A sample statistic is biased if the average value of the statistic either underesti-
mates or overestimates the corresponding population parameter.

The following example demonstrates the concept of biased and unbiased statistics.
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We begin with a population that consists of exactly N 5 6 scores: 0, 0, 3, 3, 9, 9. With a 
few calculations you should be able to verify that this population has a mean of m 5 4 and 
a variance of s2 5 14.

Next, we select samples of n 5 2 scores from this population. In fact, we obtain every 
single possible sample with n 5 2. The complete set of samples is listed in Table 4.1. 
Notice that the samples are listed systematically to ensure that every possible sample is 
included. We begin by listing all the samples that have X 5 0 as the first score, then all 
the samples with X 5 3 as the first score, and so on. Notice that the table shows a total of 
9 samples.

Finally, we have computed the mean and the variance for each sample. Note that the 
sample variance has been computed two different ways. First, we make no correction for 
bias and compute each sample variance as the average of the squared deviations by simply 
dividing SS by SS by SS n. Second, we compute the correct sample variances for which SS is divided SS is divided SS
by n 2 1 to produce an unbiased measure of variance. You should verify our calculations 
by computing one or two of the values for yourself. The complete set of sample means and 
sample variances is presented in Table 4.1. ■

First, consider the column of biased sample variances, which were calculated dividing 
by n. These 9 sample variances add up to a total of 63, which produces an average value 
of 63

9 5 7. The original population variance, however, is s2 5 14. Note that the average 
of the sample variances is not equal to the population variance. If the sample variance is not equal to the population variance. If the sample variance is not
computed by dividing by n, the resulting values will not produce an accurate estimate of 
the population variance. On average, these sample variances underestimate the population 
variance and, therefore, are biased statistics.

Next, consider the column of sample variances that are computed using n 2 1. Although 
the population has a variance of s2 5 14, you should notice that none of the samples has a 
variance exactly equal to 14. However, if you consider the complete set of sample varianc-
es, you will �nd that the 9 values add up to a total of 126, which produces an average value 
of 126

9 5 14.00. Thus, the average of the sample variances is exactly equal to the original 

E X A M P L E  4 . 9

We have structured 
this example to mimic 
“sampling with replace-
ment,” which is covered 
in Chapter 6.

The set of all the possible samples for n 5 2 is selected from the population described in 
Example 4.9. The mean is computed for each sample, and the variance is computed two different 
ways: (1) dividing by n, which is incorrect and produces a biased statistic; and (2) dividing by 
n 2 1, which is correct and produces an unbiased statistic.

Sample Statistics

Sample
First 
Score

Second 
Score

Mean 
M

Biased 
Variance 
(Using n)

Unbiased 
Variance 

(Using n 2 1)

1 0 0 0.00 0.00 0.00
2 0 3 1.50 2.25 4.50
3 0 9 4.50 20.25 40.50
4 3 0 1.50 2.25 4.50
5 3 3 3.00 0.00 0.00
6 3 9 6.00 9.00 18.00
7 9 0 4.50 20.25 40.50
8 9 3 6.00 9.00 18.00
9 9 9 9.00 0.00 0.00

Totals 36.00 63.00 126.00

TA B L E  4 .1
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population variance. On average, the sample variance (computed using n 2 1) produces an 
accurate, unbiased estimate of the population variance.

Finally, direct your attention to the column of sample means. For this example, the 
original population has a mean of m 5 4. Although none of the samples has a mean exactly 
equal to 4, if you consider the complete set of sample means, you will �nd that the 9 sample 
means add up to a total of 36, so the average of the sample means is 36

9 5 4. Note that the 
average of the sample means is exactly equal to the population mean. Again, this is what 
is meant by the concept of an unbiased statistic. On average, the sample values provide 
an accurate representation of the population. In this example, the average of the 9 sample 
means is exactly equal to the population mean.

In summary, both the sample mean and the sample variance (using n 2 1) are examples 
of unbiased statistics. This fact makes the sample mean and sample variance extremely 
valuable for use as inferential statistics. Although no individual sample is likely to have a 
mean and variance exactly equal to the population values, both the sample mean and the 
sample variance, on average, do provide accurate estimates of the corresponding popula-
tion values.

LO11 1. A researcher takes a sample from a population and computes a statistic for the 
sample. Which of the following statements is correct?

a. If the sample statistic overestimates the corresponding population param-
eter, then the statistic is biased.

b. If the sample statistic underestimates the corresponding population param-
eter, then the statistic is biased.

c. If the sample statistic is equal to the corresponding population parameter, 
then the statistic is unbiased.

d. None of the above.

LO11 2. A researcher takes all of the possible samples of n 5 4 from a population. 
Next, the researcher computes a statistic for each sample and calculates the 
average of all the statistics. Which of the following statements is the most 
accurate?

a. If the average statistic overestimates the corresponding population param-
eter, then the statistic is biased.

b. If the average statistic underestimates the corresponding population param-
eter, then the statistic is biased.

c. If the average statistic is equal to the corresponding population parameter, 
then the statistic is unbiased.

d. All of the above.

LO12 3. All the possible samples of n 5 3 scores are selected from a population with 
m 5 30 and s 5 5 and the mean is computed for each of the samples. If the 
average is calculated for all of the sample means, what value will be obtained?

a. 30

b. Greater than 30

c. Less than 30

d. Near 30 but not exactly equal to 30.

1. d 2. d 3. a 

LE A R N I N G C H E C K

A N S W E R S
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4-6 More about Variance and Standard Deviation

LE ARN IN G O BJ EC TIV E S  

 13.   Describe how the mean and standard deviation are represented in a frequency 
distribution graph of a population or sample distribution.

 14.   Describe the effect on the mean and standard deviation and calculate the outcome Describe the effect on the mean and standard deviation and calculate the outcome Describe the ef
for each of the following: adding or subtracting a constant from each score, and 
multiplying or dividing each score by a constant.

 15.  Describe how the mean and standard deviation are reported in research journals.

 16.   Determine the general appearance of a distribution based on the values for the 
mean and standard deviation.

 17.  Explain how patterns in sample data are affected by sample variance.

■ Presenting the Mean and Standard Deviation 
in a Frequency Distribution Graph
In frequency distribution graphs, we identify the position of the mean by drawing a vertical 
line and labeling it with m or M. Because the standard deviation measures distance from the 
mean, it is represented by a horizontal line or an arrow drawn from the mean outward for a 
distance equal to the standard deviation and labeled with a s or an s. Figure 4.6(a) shows an 
example of a population distribution with a mean of m 5 80 and a standard deviation of s 5 8, 
and Figure 4.6(b) shows the frequency distribution for a sample with a mean of M 5 16 and 
a standard deviation of s 5 2. For rough sketches, you can identify the mean with a vertical 
line in the middle of the distribution. The standard deviation line should extend approximately 
halfway from the mean to the most extreme score. [Note:halfway from the mean to the most extreme score. [Note:halfway from the mean to the most extreme score. [  In Figure 4.6(a), we show the stan-
dard deviation as a line to the right of the mean. You should realize that we could have drawn 
the line pointing to the left, or we could have drawn two lines (or arrows), with one pointing to 
the right and one pointing to the left, as in Figure 4.6(b). In each case, the goal is to show the 
standard distance from the mean.]

■ Transformations of Scale
Occasionally a set of scores is transformed by adding a constant to each score or by mul-
tiplying each score by a constant value. This happens, for example, when exposure to a 

3

2

1

13 14

(b)

s 5 8

m 5 80

(a)

15 16 17 18 19

f

M 5 16

s 5 2 s 5 2

x

F I G U R E  4 .6 
Showing means and standard deviations in frequency distribution graphs. (a) A population distribution with a mean of 
m 5 80 and a standard deviation of s 5 8. (b) A sample with a mean of M 5 16 and a standard deviation of s 5 2.
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treatment adds a �xed amount to each participant’s score or when you want to change the 
unit of measurement (to convert from minutes to seconds, multiply each score by 60). What 
happens to the standard deviation when the scores are transformed in this manner?

The easiest way to determine the effect of a transformation is to remember that the 
standard deviation is a measure of distance. If you select any two scores and see what 
happens to the distance between them, you also will �nd out what happens to the stan-
dard deviation.

1. Adding a constant to each score does not change the standard deviation. If you 
begin with a distribution that has m 5 40 and s 5 10, what happens to the standard 
deviation if you add 5 points to every score? Consider any two scores in this distri-
bution: Suppose, for example, that these are exam scores and that you had a score 
of X 5 41 and your friend had X 5 43. The distance between these two scores is 
43 2 41 5 2 points. After adding the constant, 5 points, to each score, your score 
would be X 5 46, and your friend would have X 5 48. The distance between 
scores is still 2 points. Adding a constant to every score does not affect any of the 
distances and, therefore, does not change the standard deviation. This fact can be 
seen clearly if you imagine a frequency distribution graph. If, for example, you 
add 10 points to each score, then every score in the graph is moved 10 points to the 
right. The result is that the entire distribution is shifted to a new position 10 points 
up the scale. Note that the mean moves along with the scores and is increased by 
10 points. However, the variability does not change because each of the deviation 
scores (X 2 m) does not change.

2. Multiplying each score by a constant causes the standard deviation to be 
multiplied by the same constant. Consider the same distribution of exam scores 
we looked at earlier. If m 5 40 and s 5 10, what would happen to the standard 
deviation if each score were multiplied by 2? Again, we will look at two scores, 
X 5 41 and X 5 43, with a distance between them equal to 2 points. After all the 
scores have been multiplied by 2, these scores become X 5 82 and X 5 86. Now 
the distance between scores is 4 points, twice the original distance. Multiplying 
each score causes each distance to be multiplied, so the standard deviation also is 
multiplied by the same amount.

IN THE LITERATURE

Reporting the Standard Deviation
In reporting the results of a study, the researcher often provides descriptive informa-
tion for both central tendency and variability. The dependent variables in psychology 
research are often numerical values obtained from measurements on interval or ratio 
scales. With numerical scores the most common descriptive statistics are the mean 
(central tendency) and the standard deviation (variability), which are usually reported 
together. In many journals, especially those following APA style, the symbol SD is 
used for the sample standard deviation. For example, the results might state:

Children who viewed the violent cartoon displayed more aggressive responses 
(M 5 12.45, SD 5 3.7) than those who viewed the control cartoon (M 5 4.22, 
SD 5 1.04).

When reporting the descriptive measures for several groups, the �ndings may be 
summarized in a table. Table 4.2 illustrates the results of hypothetical data.
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■

TA B L E  4 . 2
The number of aggressive behaviors for male and 
female adolescents after playing a violent or nonviolent 
video game.

Type of Video Game

Violent Nonviolent

Males
M 5 7.72 M 5 4.34

SD 5 2.43 SD 5 2.16

Females
M 5 2.47 M 5 1.61

SD 5 0.92 SD 5 0.68

Sometimes the table also indicates the sample size, n, for each group. You should 
remember that the purpose of the table is to present the data in an organized, concise, 
and accurate manner.

■ Standard Deviation and Descriptive Statistics
Because standard deviation requires extensive calculations, there is a tendency to get lost 
in the arithmetic and forget what standard deviation is and why it is important. Standard 
deviation is primarily a descriptive measure; it describes how variable, or how spread out, 
the scores are in a distribution. Behavioral scientists must deal with the variability that 
comes from studying people and animals. People are not all the same; they have different 
attitudes, opinions, talents, IQs, and personalities. Although we can calculate the average 
value for any of these variables, it is equally important to describe the variability. Standard 
deviation describes variability by measuring distance from the mean. In any distribution, 
some individuals will be close to the mean, and others will be relatively far from the mean. 
Standard deviation provides a measure of the typical, or standard, distance from the mean.

Describing an Entire Distribution. Rather than listing all of the individual scores in 
a distribution, research reports typically summarize the data by reporting only the mean 
and the standard deviation. When you are given these two descriptive statistics, however, 
you should be able to visualize the entire set of data. For example, consider a sample with 
a mean of M 5 36 and a standard deviation of s 5 4. Although there are several different 
ways to picture the data, one simple technique is to imagine (or sketch) a histogram in 
which each score is represented by a box in the graph. For this sample, the data can be 
pictured as a pile of boxes (scores) with the center of the pile located at a value of M 5 36. 
The individual scores or boxes are scattered on both sides of the mean with some of the 
boxes relatively close to the mean and some farther away. As a rule of thumb, roughly 
70% of the scores in a distribution are located within a distance of one standard deviation 
from the mean, and almost all of the scores (roughly 95%) are within two standard devia-
tions of the mean. In this example, the standard distance from the mean is s 5 4 points so 
your image should have most of the boxes within 4 points of the mean, and nearly all of 
the boxes within 8 points. One possibility for the resulting image is shown in Figure 4.7.

Describing the Location of Individual Scores. Notice that Figure 4.7 not only 
shows the mean and the standard deviation, but also uses these two values to reconstruct 
the underlying scale of measurement (the X values along the horizontal line). The scale of X values along the horizontal line). The scale of X
measurement helps complete the picture of the entire distribution and helps to relate each 
individual score to the rest of the group. In this example, you should realize that a score of 
X 5 34 is located near the center of the distribution, only slightly below the mean. On the 
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other hand, a score of X 5 45 is an extremely high score, located far out in the right-hand 
tail of the distribution.

Notice that the relative position of a score depends in part on the size of the standard 
deviation. Earlier, in Figure 4.6 (page 107), for example, we show a population distribution 
with a mean of m 5 80 and a standard deviation of s 5 8, and a sample distribution with a 
mean of M 5 16 and a standard deviation of s 5 2. In the population distribution, a score that 
is 4 points above the mean is slightly above average but is certainly not an extreme value. 
In the sample distribution, however, a score that is 4 points above the mean is an extremely 
high score. In each case, the relative position of the score depends on the size of the standard 
deviation. For the population, a deviation of 4 points from the mean is relatively small, cor-
responding to only ½ of the standard deviation. For the sample, on the other hand, a 4-point 
deviation is very large, equaling twice the size of the standard deviation.

The general point of this discussion is that the mean and standard deviation are not sim-
ply abstract concepts or mathematical equations. Instead, these two values should be con-
crete and meaningful, especially in the context of a set of scores. The mean and standard 
deviation are central concepts for most of the statistics that are presented in the following 
chapters. A good understanding of these two statistics will help you with the more complex 
procedures that follow (Box 4.1).

Although the basic concepts of the mean and the stan-
dard deviation are not overly complex, the following 
analogy often helps students gain a more complete 
understanding of these two statistical measures.

In our local community, the site for a new high 
school was selected because it provides a central 
location. An alternative site on the western edge of 
the community was considered, but this site was re-
jected because it would require extensive busing for 
students living on the east side. In this example, the 
location of the high school is analogous to the con-
cept of the mean; just as the high school is located in 

the center of the community, the mean is located in 
the center of the distribution of scores.

For each student in the community, it is possible 
to measure the distance between home and the new 
high school. Some students live only a few blocks 
from the new school and others live as much as 
3  miles away. The average distance that a student 
must travel to school was calculated to be 0.80 miles. 
The average distance from the school is analogous 
to the concept of the standard deviation; that is, the 
standard deviation measures the standard distance 
from an individual score to the mean.

the center of the community, the mean is located in 
the center of the distribution of scores.

to measure the distance between home and the new 
high school. Some students live only a few blocks 
from the new school and others live as much as 
3  miles away. The average distance that a student 
must travel to school was calculated to be 0.80 miles. 
The average distance from the school is analogous 
to the concept of the standard deviation; that is, the 
standard deviation measures the standard distance 
from an individual score to the mean.

BOX 4.1 An Analogy for the Mean and the Standard Deviation

28 30 32 34 36 38 40 42 44 46

s 5 4 s 5 4

M 5 36
F I G U R E  4 .7 
A sample of n 5
20 scores with a 
mean of M 5 36 
and a standard de-
viation of s 5 4.
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■ Variance and Inferential Statistics
In very general terms, the goal of inferential statistics is to detect meaningful and signi�-
cant patterns in research results. The basic question is whether the patterns observed in 
the sample data re�ect corresponding patterns that exist in the population, or are simply 
random �uctuations that occur by chance. Variability plays an important role in the infer-
ential process because the variability in the data in�uences how easy it is to see patterns. 
In general, low variability means that existing patterns can be seen clearly, whereas high 
variability tends to obscure any patterns that might exist. The following example provides 
a simple demonstration of how variance can in�uence the perception of patterns. 

In many research studies the goal is to compare means for two (or more) sets of data. For 
example:

Is the mean level of depression lower after therapy than it was before therapy?

Is the mean attitude score for men different from the mean score for women?

Is the mean reading achievement score higher for students in a special program 
than for students in regular classrooms?

In each of these situations, the goal is to find a clear difference between two means 
that would demonstrate a significant, meaningful pattern in the results. Variability plays an 
important role in determining whether a clear pattern exists. Consider the following data 
representing hypothetical results from two experiments, each comparing two treatment 
conditions. For both experiments, your task is to determine whether there appears to be 
any consistent difference between the scores in Treatment 1 and the scores in Treatment 2.

E X A M P L E  4 . 1 0

For each experiment, the data have been constructed so that there is a 5-point mean 
difference between the two treatments—on average, the scores in Treatment 2 are 5 points 
higher than the scores in Treatment 1. The 5-point difference is relatively easy to see in 
Experiment A, where the variability is low, but the same 5-point difference is difficult to 
see in Experiment B, where the variability is large. Again, high variability tends to obscure 
any patterns in the data. This general fact is perhaps even more convincing when the data 
are presented in a graph. Figure 4.8 shows the two sets of data from Experiments A and 
B. Notice that the results from Experiment A clearly show the 5-point difference between 
treatments. One group of scores piles up around 35 and the second group piles up around 
40. On the other hand, the scores from Experiment B seem to be mixed together randomly 
with no clear difference between the two treatments. ■

In the context of inferential statistics, the variance that exists in a set of sample data is 
often classi�ed as error variance. This term is used to indicate that the sample variance 
represents unexplained and uncontrolled differences between scores. As the error variance 
increases, it becomes more dif�cult to see any systematic differences or patterns that might 
exist in the data. An analogy is to think of variance as the static that occurs on a radio sta-
tion or a cell phone when you enter an area of poor reception. In general, variance makes it 

Experiment A

Treatment 1 Treatment 2

35 39

34 40

36 41

35 40

Experiment B

Treatment 1 Treatment 2

31 46

15 21

57 61

37 32
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Treatment 1 

Data from Experiment A

34 35 36

f

1

2

3

33 37 39 40 4138 42
X

Treatment 2 

Treatment 1 

Data from Experiment B

f

1

2

3

10 20
X

Treatment 2 

30 40 50 60

M 5 35 M 5 35

M 5 40M 5 40

F I G U R E  4 . 8
Graphs showing the results from two experiments. In Experiment A, the variability is small and it is easy to see the 
5-point mean difference between the two treatments. In Experiment B, however, the 5-point mean difference between 
treatments is obscured by the large variability.

dif�cult to get a clear signal from the data. High variance can make it dif�cult or impossible 
to see a mean difference between two sets of scores, or to see any other meaningful patterns 
in the results from a research study.

LO13 1. If a normal-shaped population with m 5 40 and s 5 5 is shown in a frequency 
distribution graph, how would the mean and standard deviation be represented?

a. The mean is represented by a vertical line drawn at X 5 40 and the standard 
deviation is represented by a vertical line drawn at X 5 45.

b. The mean is represented by an arrow under the graph pointing up X 5 40 
and the standard deviation is represented by a vertical line drawn at X 5 45.

c. The mean is represented by a vertical line drawn at X 5 40 and the standard     
deviation is represented by a horizontal line drawn from X 5 40 to X 5 45.

d. The mean is represented by an arrow under the graph pointing up X 5 40 
and the standard deviation is represented by a horizontal line drawn from 
X 5 40 to X 5 45.

LO14 2. If 5 points are added to every score in a population with a mean of m 5 45 and 
a standard deviation of s 5 6, what are the new values for m and s?

a. m 5 45 and s 5 6

b. m 5 45 and s 5 11

c. m 5 50 and s 5 6

d. m 5 50 and s 5 11

LO15 3. A research study obtains a mean of 12.7 and a standard deviation of 2.3 for a 
sample of n 5 25 participants. How would the sample mean and standard de-
viation be reported in a research journal report?

a. M 5 12.7 and s 5 2.3

b. M 5 12.7 and SD 5 2.3

c. Mn 5 12.7 and s 5 2.3

d. Mn 5 12.7 and SD 5 2.3

LE A R N I N G C H E C K
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LO16 4. For which of the following distributions would X 5 35 be an extreme score?

a. m 5 30 and s 5 5

b. m 5 30 and s 5 10

c. m 5 25 and s 5 5

d. m 5 25 and s 5 10

LO17 5. One sample is selected to represent scores in treatment 1 and a second sample 
is used to represent scores in treatment 2. Which set of sample statistics 
would present the clearest picture of a real mean difference between the two 
treatments?

a. M1 5 40, M2M2M 5 45, and both variances 5 15

b. M1 5 40, M2M2M 5 45, and both variances 5 3

c. M1 5 40, M2M2M 5 42, and both variances 5 15

d. M1 5 40, M2M2M 5 42, and both variances 5 3

1. c 2. c 3. b 4. c 5. bA N S W E R S

S U M M A R Y

1. The purpose of variability is to measure and describe 
the degree to which the scores in a distribution are 
spread out or clustered together. There are three basic 
measures of variability: the range, the variance, and the 
standard deviation.

The range is the distance covered by the set of 
scores, from the smallest score to the largest score. The 
range is completely determined by the two extreme 
scores and is considered to be a relatively crude meas-
ure of variability.

Standard deviation and variance are the most 
commonly used measures of variability. Both of these 
measures are based on the idea that each score can be 
described in terms of its deviation or distance from 
the mean. The variance is the mean of the squared 
deviations. The standard deviation is the square root 
of the variance and provides a measure of the standard 
distance from the mean.

2. To calculate variance or standard deviation, you first 
need to find the sum of the squared deviations, SS. Ex-
cept for minor changes in notation, the calculation of SS
is identical for samples and populations. There are two 
methods for calculating SS:

I. By definition, you can find SS using the following SS using the following SS
steps:
a. Find the deviation (X 2 m) for each score.
b. Square each deviation.
c. Add the squared deviations.

This process can be summarized in a formula as 
follows:

Definitional formula: SS 5 S(X(X( 2 m)2

II. The sum of the squared deviations can also be 
found using a computational formula, which is 
especially useful when the mean is not a whole 
number:

Computational formula: SS 5 SX 2 2
sSXdXdX 2

N

3. Variance is the mean squared deviation and is obtained 
by finding the sum of the squared deviations and then 
dividing by the number of scores. For a population, 
variance is

s2 5
SS

N

For a sample, only n 2 1 of the scores are free to vary 
(degrees of freedom or df 5 n 2 1), so sample vari-
ance is

s2 5
SS

n 2 1
5

SS

dfdfd

Using n 2 1 in the sample formula makes the sample 
variance an accurate and unbiased estimate of the 
population variance.
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4. Standard deviation is the square root of the variance. 
For a population, this is

s 5ÎSSÎNÎ
  Sample standard deviation is

s 5Î SSÎn 2 1Î 5ÎSSÎdfdfdÎ
5. Adding a constant value to every score in a distribution 

does not change the standard deviation. Multiplying 

every score by a constant, however, causes the standard 
deviation to be multiplied by the same constant.

6. Because the mean identifies the center of a distribu-
tion and the standard deviation describes the average 
distance from the mean, these two values should allow 
you to create a reasonably accurate image of the entire 
distribution. Knowing the mean and standard deviation 
should also allow you to describe the relative location 
of any individual score within the distribution.

7. Large variance can obscure patterns in the data and, 
therefore, can create a problem for inferential statistics.

variability (88)

range (89)

deviation or deviation score (91)

variance (92)

standard deviation (93)

sum of squares (SS) (96)

population variance (s2) (98)

population standard deviation (s) (98)

sample variance (s2) (101)

sample standard deviation (s) (101)

degrees of freedom (df) (103)df) (103)df

biased statistic (104)

unbiased statistic (104)

KE Y TER M S

General instructions for using SPSS are presented in Appendix D. Following are detailed 
instructions for using SPSS to compute the Range, Standard Deviation, and Variance for a 
sample of scores.

Data Entry

1. Enter all of the scores in one column of the data editor, probably VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on Descriptives.
2. Highlight the column label for the set of scores (VAR00001) in the left box and click the 

arrow to move it into the Variable box.
3. If you want the variance and/or the range reported along with the standard deviation, click 

on the Options box, select Variance and/or Range, then click Continue.
4. Click OK.

SPSS Output

We used SPSS to find the variance and standard deviation for the sample of n 5 8 scores from 
Example 4.6 (page 101) and the SPSS output is shown in Figure 4.9. The summary table lists 
the number of scores, the maximum and minimum scores, the mean, the range, the standard 
deviation, and the variance. Note that the range and variance are included because these values 
were selected using the Options box during data analysis. Caution: SPSS computes the sample
standard deviation and sample variance using n 2 1. If your scores are intended to be a popula-
tion, you can multiply the sample standard deviation by the square root of (n 2 1)/n to obtain 
the population standard deviation.

Note: You can also obtain the mean and standard deviation for a sample if you use SPSS 
to display the scores in a frequency distribution histogram (see the SPSS section at the end of 
Chapter 2). The mean and standard deviation are displayed beside the graph.

SPSS ®
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FO CUS  O N  PRO B LE M  SO LVIN G

1. The purpose of variability is to provide a measure of how spread out the scores are in a 
distribution. Usually this is described by the standard deviation. Because the calculations 
are relatively complicated, it is wise to make a preliminary estimate of the standard devia-
tion before you begin. Remember that standard deviation provides a measure of the typical, 
or standard, distance from the mean. Therefore, the standard deviation must have a value 
somewhere between the largest and the smallest deviation scores. As a rule of thumb, the 
standard deviation should be about one-fourth of the range.

2. Rather than trying to memorize all the formulas for SS, variance, and standard deviation, 
you should focus on the definitions of these values and the logic that relates them to each 
other:

SS is the sum of squared deviations.SS is the sum of squared deviations.SS
Variance is the mean squared deviation.
Standard deviation is the square root of variance.

The only formula you should need to memorize is the computational formula for SS.

3. A common error is to use n 2 1 in the computational formula for SS when you have scores SS when you have scores SS
from a sample. Remember that the SS formula always uses SS formula always uses SS n (or N). After you compute N). After you compute N SS
for a sample, you must correct for the sample bias by using n 2 1 in the formulas for vari-
ance and standard deviation.

VAR00001VAR00001V
Valid N (listwise)Valid N (listwise)V

8 8.00 3.00 11.00 6.5000 2.61861 6.85714
8

 N Range Minimum Maximum Mean Std. Deviation Variance

F I G U R E  4 .9 
The SPSS summary table showing descriptive statistics for the sample of n 5 8 scores in 
Example 4.6.

D E M O N S T R ATIO N  4.1

COMPUTING MEASURES OF VARIAF VARIAF V BILITY

For the following sample data, compute the variance and standard deviation. The scores are:

 10, 7, 6, 10, 6, 15

Compute SS, the sum of squared deviations. We will use the computational formula. For 
this sample, n 5 6 and

SX 5 10 1 7 1 6 1 10 1 6 1 15 5 54

SX2 5 102 1 72 1 62 1 102 1 62 1 152 5 546

SS 5 SX 2 2
sSXdXdX 2

N
5 546 2

s54d2

6

5 546 2 486
5 60

STEP 1
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Compute the sample variance. For sample variance, SS is divided by the degrees of freeSS is divided by the degrees of freeSS -
dom, df 5 n 2 1.

s2 5
SS

n 2 1
5

60

5
5 12

Compute the sample standard deviation. Standard deviation is simply the square root of 
the variance.

s 5 Ï12Ï 5 3.46

STEP 2

STEP 3

PRO B LE M S

(Note: The definitional formula works well with these 
scores.)

10. Calculate SS, variance, and standard deviation for the 
following population of N 5 8 scores: 1, 3, 1, 10, 1, 
0, 1, 3. (Note: The computational formula works well 
with these scores.)

11. Calculate SS, variance, and standard deviation for the 
following population of N 5 7 scores: 8, 1, 4, 3, 5, 
3, 4. (Note: The definitional formula works well with 
these scores.)

12. For the following set of scores: 6, 2, 3, 0, 4
a. If the scores are a population, what are the vari-

ance and standard deviation?
b. If the scores are a sample, what are the variance 

and standard deviation?

13. Explain why the formula for sample variance is differ-
ent from the formula for population variance.

14. For the following sample of n 5 6 scores:  
0, 11, 5, 10, 5, 5
a. Sketch a histogram showing the sample 

distribution.
b. Locate the value of the sample mean in your 

sketch, and make an estimate of the standard 
deviation (as done in Example 4.6).

c. Compute SS, variance, and standard deviation for 
the sample. (How well does your estimate compare 
with the actual value of s?)

15. Calculate SS, variance, and standard deviation for the 
following sample of n 5 8 scores: 0, 4, 1, 3, 2, 1, 1, 0. 

16. Calculate SS, variance, and standard deviation for the 
following sample of n 5 5 scores: 2, 9, 5, 5, 9. 

17. A population has a mean of m 5 50 and a standard 
deviation of s 5 10.
a. If 3 points were added to every score in the popu-

lation, what would be the new values for the mean 
and standard deviation?

1. Briefly explain the goal for defining and measuring 
variability.

2. What is the range for the following set of scores? (You 
may have more than one answer.) Scores: 6, 12, 9, 17, 
11, 4, 14 

3. In words, explain what is measured by variance and 
standard deviation.

4. Is it possible to obtain a negative value for variance or 
standard deviation? 

5. Describe the scores in a sample that has a standard 
deviation of zero.

6. There are two different formulas or methods that can be 
used to calculate SS.
a. Under what circumstances is the definitional for-

mula easy to use?
b. Under what circumstances is the computational 

formula preferred?

7. Calculate the mean and SS (sum of squared deviations) SS (sum of squared deviations) SS
for each of the following sets of scores. Based on the 
value for the mean, you should be able to decide which 
SS formula is better to use.  SS formula is better to use.  SS

Set A: 2, 6, 3, 1

Set B: 2, 4, 1, 3

8. For the following population of N 5 9 scores: 4, 2, 0, 5, 
3, 2, 1, 7, 3
a. Sketch a histogram showing the population 

distribution.
b. Locate the value of the population mean in your 

sketch, and make an estimate of the standard 
deviation (as done in Example 4.2).

c. Compute SS, variance, and standard deviation for 
the population. (How well does your estimate com-
pare with the actual value of s?)

9. Calculate SS, variance, and standard deviation for the 
following population of N 5 5 scores: 2, 13, 4, 10, 6.
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b. If every score in the population were multiplied by 
2, then what would be the new values for the mean 
and standard deviation?

18. Solve the following problems.
a. After 6 points have been added to every score in 

a sample, the mean is found to be M 5 70 and the 
standard deviation is s 5 13. What were the values 
for the mean and standard deviation for the original 
sample?

b. After every score in a sample is multiplied by 3, the 
mean is found to be M 5 48 and the standard devia-
tion is s 5 18. What were the values for the mean 
and standard deviation for the original sample? 

19. Compute the mean and standard deviation for the 
following sample of n 5 5 scores: 70, 72, 71, 80, and 
72. Hint: To simplify the arithmetic, you can subtract 
70 points from each score to obtain a new sample. 
Then, compute the mean and standard deviation for the 
new sample. Finally, make the correction for having 
added 70 points to each score to find the mean and 
standard deviation for the original sample.

20. For the following sample of n 5 8 scores: 0, 1, 12, 0, 3, 
1
2, 0, 1
a. Simplify the arithmetic by first multiplying each 

score by 2 to obtain a new sample. Then, com-
pute the mean and standard deviation for the new 
sample.

b. Starting with the values you obtained in part a, 
make the correction for having multiplied by 2 to 
obtain the values for the mean and standard devia-
tion for the original sample.

21. For the following population of N 5 6 scores: 2, 9, 6, 
8, 9, 8
a. Calculate the range and the standard deviation. (Use 

either definition for the range.)
b. Add 2 points to each score and compute the range 

and standard deviation again. Describe how adding 
a constant to each score influences measures of 
variability.

22. The range is completely determined by the two ex-
treme scores in a distribution. The standard deviation, 
on the other hand, uses every score.
a. Compute the range (choose either definition), the 

variance, and the standard deviation for the follow-
ing sample of n 5 4 scores. Note that there are two 
scores located in the center of the distribution and 
two extreme values. Scores: 0, 6, 6, 12

b. Now we will increase the variability by moving the 
two central scores out to the extremes. Once again 
compute the range, the variance, and the standard 
deviation. New scores: 0, 0, 12, 12

c. According to the range, how do the two distribu-
tions compare in variability? How do they compare 
according to the variance and standard deviation?

23. For the data in the following sample: 1, 1, 9, 1
a. Find the SS, variance, and standard deviation.
b. Now change the score of X 5 9 to X 5 3, and 

find the new values for SS, variance, and standard 
deviation.   

c. Describe how one extreme score influences the 
mean and standard deviation.

24. Arden and Plomin (2006) published a study report-
ing that IQ scores for boys are more variable than IQ 
scores for girls. A researcher would like to know if 
this same phenomenon applies to other measures of 
cognitive ability. A standard cognitive skills test is 
given to a sample of n 5 15 adolescent boys and a 
sample of n 5 15 adolescent girls, and resulted in the 
following scores.

a. Compute the mean, the variance, and the standard 
deviation for each group.

b. Is one group of scores noticeably more variable 
than the other?

25. A population has a mean of m 5 50 and a standard 
deviation of s 5 20.
a. Would a score of X 5 70 be considered an extreme 

value (out in the tail) in this sample?
b. If the standard deviation were s 5 5, would a score 

of X 5 70 be considered an extreme value?

26. On an exam with a mean of M 5 39, you obtain a score 
of X 5 35.
a. Would you prefer a standard deviation of s 5 2 or 

s 5 8? (Hint: Sketch each distribution and find the 
location of your score.)

b. If your score were X 5 43, would you prefer s 5 2 
or s 5 8? Explain your answer.

Boys Girls

9  5  3  9  7 6  5  4  6  7

5  2  4  8  8 6  4  7  6  8

7  4  9  7  3 5  7  8  6  5

Problems 117
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5-1 Introduction 

5-2 z-Scores and Locations in a Distribution

5-3 Other Relationships between z, X, the Mean, 
and the Standard Deviation

5-4 Using z-Scores to Standardize a Distribution

5-5 Other Standardized Distributions Based on z-Scores

5-6  Looking Ahead to Inferential Statistics

Summary

Focus on Problem Solving

Demonstrations 5.1 and 5.2

Problems

z-Scores: Location of Scores 
and Standardized Distributions 5

CHAP TER

Tools You Will Need
The following items are consid-
ered essential background mate-
rial for this chapter. If you doubt 
your knowledge of any of these 
items, you should review the 
appropriate chapter and section 
before proceeding.

 ■ The mean (Chapter 3)
 ■ The standard deviation (Chapter 4)
 ■ Basic algebra (math review, 

Appendix A)
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5-1 Introduction 

In the previous two chapters, we introduced the concepts of the mean and standard devia-
tion as methods for describing an entire distribution of scores. Now we shift attention to the 
individual scores within a distribution. In this chapter, we introduce a statistical technique 
that uses the mean and the standard deviation to transform each score (X value) into a X value) into a X
z-score or a standard score. The purpose of z-scores, or standard scores, is to identify and 
describe the exact location of each score in a distribution.

The following example demonstrates why z-scores are useful and introduces the general 
concept of transforming X values into X values into X z-scores.

Suppose you received a score of X 5 76 on a statistics exam. How did you do? It should be 
clear that you need more information to predict your grade. Your score of X 5 76 could be 
one of the best scores in the class, or it might be the lowest score in the distribution. To find 
the location of your score, you must have information about the other scores in the distri-
bution. It would be useful, for example, to know the mean for the class. If the mean were 
m 5 70, you would be in a much better position than if the mean were m 5 85. Obviously, 
your position relative to the rest of the class depends on the mean. However, the mean by 
itself is not sufficient to tell you the exact location of your score. Suppose you know that 
the mean for the statistics exam is m 5 70 and your score is X 5 76. At this point, you 
know that your score is 6 points above the mean, but you still do not know exactly where it 
is located. Six points may be a relatively big distance and you may have one of the highest 
scores in the class, or 6 points may be a relatively small distance and you are only slightly 
above the average. Figure 5.1 shows two possible distributions. Both distributions have a 
mean of m 5 70, but for one distribution, the standard deviation is s 5 3, and for the other, 
s 5 12. The location of X 5 76 is identified in each of the two distributions. When the stan-
dard deviation is s 5 3, your score of X 5 76 is in the extreme right-hand tail, one of the 
highest scores in the distribution. However, in the other distribution, where s 5 12, your 
score is only slightly above average. Thus, the location of your score within the distribution 
depends on the standard deviation as well as the mean. ■

E X A M P L E  5 . 1

X

X 5 76

7370

s 5 3

X

X 5 76

8270

s 5 12

(a) (b)

F I G U R E  5.1
Two distributions of exam scores. For both distributions, μ 5 70, but for one distribution, σ 5 3, and for the other, 
σ 5 12. The relative position of X 5 76 is very different for the two distributions.
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The intent of the preceding example is to demonstrate that a score by itself does not necby itself does not necby itself -
essarily provide much information about its position within a distribution. These original, 
unchanged scores that are the direct result of measurement are called raw scores. To make 
raw scores more meaningful, they are often transformed into new values that contain more 
information. This transformation is one purpose for z-scores. In particular, we transform X
values into z-scores so that the resulting z-scores tell exactly where within a distribution the 
original scores are located.

A second purpose for z-scores is to standardize an entire distribution. A common exam-
ple of a standardized distribution is the distribution of IQ scores. Although there are several 
different tests for measuring IQ, the tests usually are standardized so that they have a mean 
of 100 and a standard deviation of 15. Because most of the different tests are standardized, 
it is possible to understand and compare IQ scores even though they come from different 
tests. For example, we all understand that an IQ score of 95 is a little below average, no 
matter which IQ test was used. Similarly, an IQ of 145 is extremely high, no matter which 
IQ test was used. In general terms, the process of standardizing takes different distributions 
and makes them equivalent. The advantage of this process is that it is possible to compare 
distributions even though they may have been quite different before standardization.

In summary, the process of transforming X values into X values into X z-scores serves two useful purposes:

1. Each z-score tells the exact location of the original X value within the distribution.X value within the distribution.X

2. The z-scores form a standardized distribution that can be directly compared to 
other distributions that also have been transformed into z-scores.

Each of these purposes is discussed in the following sections.

5-2 z-Scores and Locations in a Distribution

LE A R N I N G O B J E C T IV E S 

1. Explain how a z-score identi�es a precise location in a distribution for either a 
population or a sample of scores.

2. Using either the z-score de�nition or the z-score formula, transform X values into 
z-scores and transform z-scores into X values for both populations and samples. 

One of the primary purposes of a z-score is to describe the exact location of a score within a 
distribution. The z-score accomplishes this goal by transforming each X value into a signed X value into a signed X
number (1 or 2) so that

1. the sign tells whether the score is located above (1) or below (2) the mean, and

2. the number tells the distance between the score and the mean in terms of the num-number tells the distance between the score and the mean in terms of the num-number
ber of standard deviations.

Thus, in a distribution of IQ scores with m 5 100 and s 5 15, a score of X 5 130 would 
be transformed into z 5 12.00. The z-score value indicates that the score is located above 
the mean (1) by a distance of 2 standard deviations (30 points).

A z-score speci�es the precise location of each X value within a distribution. The X value within a distribution. The X
sign of the z-score (1 or 2) signi�es whether the score is above the mean (positive) or 
below the mean (negative). The numerical value of the z-score speci�es the distance 
from the mean by counting the number of standard deviations between X and X and X m.
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Notice that a z-score always consists of two parts: a sign (1 or 2) and a magnitude (the 
numerical value). Both parts are necessary to describe completely where a raw score is 
located within a distribution.

Figure 5.2 shows a population distribution with various positions identified by their 
z-score values. Notice that all z-scores above the mean are positive and all z-scores below 
the mean are negative. The sign of a z-score tells you immediately whether the score is 
located above or below the mean. Also, note that a z-score of z 5 11.00 corresponds to a 
position exactly 1 standard deviation above the mean. A z-score of z 5 12.00 is always 
located exactly 2 standard deviations above the mean. The numerical value of the z-score 
tells you the number of standard deviations from the mean. Finally, you should notice that 
Figure 5.2 does not give any specific values for the population mean or the standard devia-
tion. The locations identified by z-scores are the same for all distributions, no matter what 
mean or standard deviation the distributions may have.

Now we can return to the two distributions shown in Figure 5.1 and use a z-score to 
describe the position of X 5 76 within each distribution as follows:

In Figure 5.1(a), with a standard deviation of s 5 3, the score X 5 76 corresponds 
to a z-score of z 5 12.00. That is, the score is located above the mean by exactly 
2 standard deviations.

In Figure 5.1(b), with s 5 12, the score X 5 76 corresponds to a z-score of z 5 10.50. 
In this distribution, the score is located above the mean by exactly 12 standard deviation. standard deviation.

■ The z-Score Formula for a Population
The z-score definition is adequate for transforming back and forth from X values to X values to X z-scores 
as long as the arithmetic is easy to do in your head. For more complicated values, it is best 
to have an equation to help structure the calculations. Fortunately, the relationship between 
X values and X values and X z-scores is easily expressed in a formula. The formula for transforming scores 
into z-scores is

z 5
X 2 m

s
(5.1)

The numerator of the equation, X 2 m, is a deviation score (Chapter 4, page 91). The 
deviation measures the distance in points between X and m and the sign of the deviation X and m and the sign of the deviation X
indicates whether X is located above or below the mean. The deviation score is then divided X is located above or below the mean. The deviation score is then divided X

Whenever you are work-
ing with z-scores, you 
should imagine or draw 
a picture similar to that 
shown in Figure 5.2. 
Although you should 
realize that not all dis-
tributions are normal, 
we will use the normal 
shape as an example 
when showing z-scores 
for populations.

z
+1 +2

m

–1–2

X

s

0

F I G U R E  5. 2 
The relationship between z-score values and 
locations in a population distribution.
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by s because we want the z-score to measure distance in terms of standard deviation units. 
The formula performs exactly the same arithmetic that is used with the z-score definition, 
and it provides a structured equation to organize the calculations when the numbers are 
more difficult. The following examples demonstrate the use of the z-score formula.

A distribution of scores has a mean of m 5 100 and a standard deviation of s 5 10. What 
z-score corresponds to a score of X 5 130 in this distribution?

According to the definition, the z-score will have a value of 13 because the score is 
located above the mean by exactly 3 standard deviations. Using the z-score formula, we 
obtain

z 5
X 2 m

s
5

130 2 100

10
5

30

10
5 3.00

The formula produces exactly the same result that is obtained using the z-score definition. ■

A distribution of scores has a mean of m 5 86 and a standard deviation of s 5 7. What 
z-score corresponds to a score of X 5 95 in this distribution?

Note that this problem is not particularly easy, especially if you try to use the z-score 
definition and perform the calculations in your head. However, the z-score formula orga-
nizes the numbers and allows you to finish the final arithmetic with your calculator. Using 
the formula, we obtain

z 5
X 2 m

s
5

95 2 86

7
5

9

7
5 1.29

According to the formula, a score of X 5 95 corresponds to z 5 1.29. The z-score indicates a 
location that is above the mean (positive) by slightly more than 1 standard deviation. ■

When you use the z-score formula, it can be useful to pay attention to the definition of 
a z-score as well. For example, we used the formula in Example 5.3 to calculate the z-score 
corresponding to X 5 95, and obtained z 5 1.29. Using the z-score definition, we note that 
X 5 95 is located above the mean by 9 points, which is slightly more than one standard 
deviation (s 5 7). Therefore, the z-score should be positive and have a value slightly greater 
than 1.00. In this case, the answer predicted by the definition is in perfect agreement with 
the calculation. However, if the calculations produce a different value, for example z 5 0.78, 
you should realize that this answer is not consistent with the definition of a z-score. In this 
case, an error has been made and you should check the calculations.

■ Determining a Raw Score (X) from a z-Score
Although the z-score equation (Equation 5.1) works well for transforming X values into X values into X
z-scores, it can be awkward when you are trying to work in the opposite direction and 
change z-scores back into X values. In general it is easier to use the definition of a X values. In general it is easier to use the definition of a X z-score, 
rather than a formula, when you are changing z-scores into X values. Remember, the X values. Remember, the X z-score 
describes exactly where the score is located by identifying the direction and distance from 
the mean. It is possible, however, to express this definition as a formula, and we will use a 
simple problem to demonstrate how the formula can be created:

For a distribution with a mean of m 5 60 and s 5 8, what X value corresponds to a X value corresponds to a X
z-score of z 5 21.50?

To solve this problem, we will use the z-score definition and carefully monitor the step-by-
step process. The value of the z-score indicates that X is located below the mean by a distance X is located below the mean by a distance X
equal to 1.5 standard deviations. Thus, the first step in the calculation is to determine the 

E X A M P L E  5 . 2

E X A M P L E  5 . 3

SECTION 5-2 | z-Scores and Locations in a Distribution 123
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124 CHAPTER 5 | z-Scores: Location of Scores and Standardized Distributions

distance corresponding to 1.5 standard deviations. For this problem, the standard deviation 
is s 5 8 points, so 1.5 standard deviations is 1.5(8) 5 12 points. The next step is to find the 
value of X that is located below the mean by 12 points. With a mean of X that is located below the mean by 12 points. With a mean of X m 5 60, the score is 

X 5 m 2 12 5 60 2 12 5 48

The two steps can be combined to form a single formula:

X 5 m 1 zs (5.2)

In the formula, the value of zs is the deviation of X and determines both the direction and X and determines both the direction and X
the size of the distance from the mean. In this problem, zs 5 (21.5)(8) 5 212, or 12 points 
below the mean. Equation 5.2 simply combines the mean and the deviation from the mean 
to determine the exact value of X.

Finally, you should realize that Equations 5.1 and 5.2 are actually two different versions 
of the same equation. If you begin with either formula and use algebra to shuffle the terms 
around, you will soon end up with the other formula. We will leave this as an exercise for 
those who want to try it.

■ Computing z-Scores for Samples 
The definition and the purpose of a z-score is the same for a sample as for a population, 
provided that you use the sample mean and the sample standard deviation to specify each 
z-score location. Thus, for a sample, each X value is transformed into a X value is transformed into a X z-score so that

1. the sign of the z-score indicates whether the X value is above (X value is above (X 1) or below (2) the 
sample mean, and

2. the numerical value of the z-score identi�es the distance from the sample mean by 
measuring the number of sample standard deviations between the score (X) and the X) and the X
sample mean (M).M).M

Expressed as a formula, each X value in a sample can be transformed into a X value in a sample can be transformed into a X z-score as 
follows:

z 5
X 2 M

s
(5.3)

Similarly, each z-score can be transformed back into an X value, as follows:X value, as follows:X

X 5 M 1 zs (5.4)

You should recognize that these two equations are identical to the population equations 
(5.1 and 5.2) on pages 122 and 124, except that we are now using sample statistics, M and M and M
s, in place of the population parameters m and s. The following example demonstrates the 
transformation of Xs and z-scores for a sample.

In a sample with a mean of M 5 40 and a standard deviation of s 5 10, what is the z-score 
corresponding to X 5 35 and what is the X value corresponding to X value corresponding to X z 5 12.00?

The score, X 5 35, is located below the mean by 5 points, which is exactly half of 
the standard deviation. According to the z-score definition, the corresponding z-score is 
z 5 20.50. Using Equation 5.3, the z-score for X 5 35 is

z 5
X 2 M

s

5
35 2 40

10
5

25

10
5 20.50

E X A M P L E  5 . 4
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Using the z-score definition, z 5 12.00 corresponds to a location above the mean by 
2 standard deviations. With a standard deviation of s 5 10, this is a distance of 20 points. 
The score that is located 20 points above the mean is X 5 60. Using Equation 5.4, we obtain

X 5 M 1 zs

5 40 1 2.00(10)

5 40 1 20

5 60 ■

LO1 1. What location in a distribution corresponds to z 5 22.00?

a. Above the mean by 2 points

b. Above the mean by a distance equal to 2 standard deviations

c. Below the mean by 2 points

d. Below the mean by a distance equal to 2 standard deviations

LO2 2. For a population with m 5 80 and s 5 12, what is the z-score corresponding to 
X 5 92?

a. 10.50

b. 11.00

c. 11.20

d. 112.00

LO2 3. For a sample with M 5 72 and s 5 4, what is the X value corresponding to X value corresponding to X
z 5 22.00?

a. X 5 70

b. X 5 68

c. X 5 64

d. X 5 60

1. d 2. b 3. c

LE A R N I N G C H E C K

A N S W E R S

5-3 Other Relationships between z, X, the Mean,  
and the Standard Deviation

LE A R N I N G O B J E C T IV E

3. Explain how z-scores establish a relationship among X, the mean, the standard 
deviation, and the value of z, and use that relationship to �nd an unknown mean 
when given a z-score, a score, and the standard deviation; or �nd an unknown 
standard deviation when given a z-score, a score, and the mean.

In most cases, we simply transform scores (X values) into X values) into X z-scores, or change z-scores back 
into X values. However, you should realize that a X values. However, you should realize that a X z-score establishes a relationship between 
the score, the mean, and the standard deviation. This relationship can be used to answer a 
variety of different questions about scores and the distributions in which they are located. 
The following two examples demonstrate some possibilities.
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In a population with a mean of m 5 65, a score of X 5 59 corresponds to z 5 22.00. What 
is the standard deviation for the population?

To answer the question, we begin with the z-score value. A z-score of 22.00 indicates 
that the corresponding score is located below the mean by a distance of 2 standard devia-
tions. You also can determine that the score (X 5 59) is located below the mean (m 5 65) 
by a distance of 6 points. Thus, 2 standard deviations correspond to a distance of 6 points, 
which means that 1 standard deviation must be s 5 3 points. ■

The same relationships exist for samples as demonstrated in the following example.

In a sample with a standard deviation of s 5 6, a score of X 5 33 corresponds to z 5 11.50. 
What is the mean for the sample?

Again, we begin with the z-score value. In this case, a z-score of 11.50 indicates that the 
score is located above the mean by a distance corresponding to 1.50 standard deviations. 
With a standard deviation of s 5 6, this distance is (1.50)(6) 5 9 points. Thus, the score is 
located 9 points above the mean. The score is X 5 33, so the mean must be M 5 24. ■

Many students find problems like those in Examples 5.5 and 5.6 easier to understand if 
they draw a picture showing all of the information presented in the problem. For the prob-
lem in Example 5.5, the picture would begin with a distribution that has a mean of m 5 65 
(we use a normal distribution that is shown in Figure 5.3). The value of the standard devia-
tion is unknown, but you can add arrows to the sketch pointing outward from the mean for 
a distance corresponding to 1 standard deviation. Finally, use standard deviation arrows to 
identify the location of z 5 22.00 (2 standard deviations below the mean) and add X 5 59 
at that location. All of these factors are shown in Figure 5.3. In the figure, it is easy to see 
that X 5 59 is located 6 points below the mean, and that the 6-point distance corresponds 
to exactly 2 standard deviations. Again, if 2 standard deviations equal 6 points, then 1 stan-
dard deviation must be s 5 3 points.

A slight variation on Examples 5.5 and 5.6 is demonstrated in the following example. 
This time you must use the z-score information to find both the population mean and the 
standard deviation.

In a population distribution, a score of X 5 54 corresponds to z 5 12.00 and a score 
of X 5 42 corresponds to z 521.00. What are the values for the mean and the standard 

E X A M P L E  5 . 5

E X A M P L E  5 . 6

E X A M P L E  5 . 7

s

59

s

65

6 points

F I G U R E  5. 3 
A visual presentation of the question in 
Example 5.5. If two standard deviations 
correspond to a 6-point difference, then one 
standard deviation must equal 3 points.
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deviation for the population? Once again, many students find this kind of problem easier to 
understand if they can see it in a picture, so we have sketched this example in Figure 5.4.

The key to solving this kind of problem is to focus on the distance between the two 
scores. Notice that the distance can be measured in points and in standard deviations. In 
points, the distance from X 5 42 to X 5 54 is 12 points. According to the two z-scores, 
X 5 42 is located 1 standard deviation below the mean and X 5 54 is located 2 standard 
deviations above the mean (see Figure 5.4). Thus, the total distance between the two scores 
is equal to 3 standard deviations. We have determined that the distance between the two 
scores is 12 points, which is equal to 3 standard deviations. As an equation

3s 5 12 points

Dividing both sides by 3, we obtain

s 5 4 points

Finally, note that X 5 42 corresponds to z 5 21.00, which means that X 5 42 is located one 
standard deviation below the mean. With a standard deviation of s 5 4, the mean must be 
m 5 46. Thus the population has a mean of m 5 46 and a standard deviation of s 5 4. ■

The following example is an opportunity for you to test your understanding by solving 
a problem similar to the demonstration in Example 5.7.

In a sample distribution, a score of X 5 64 corresponds to z 5 0.50 and a score of X 5 72 
has a z-score of z 5 1.50. What are the values for the sample mean and standard deviation? 
You should obtain M 5 60 and s 5 8. Good luck. ■

E X A M P L E  5 . 8

z

54m42 X

s

1 2–1–2 0

12 points

F I G U R E  5. 4 
A visual presentation of the question in 
Example 5.7. The 12-point distance from 
42 to 54 corresponds to three standard devia-
tions. Therefore, the standard deviation must 
be s 5 4. Also, the score X 5 42 is below 
the mean by one standard deviation, so the 
mean must be m 5 46.

LO3 1. In a population with m 5 60, a score of X 5 58 corresponds to a z-score of 
z 5 20.50.  What is the population standard deviation?

a. 1

b. 2

c. 4

d. Cannot be determined without additional information

LE A R N I N G C H E C K

SECTION 5-3 | Other Relationships between z, X, the Mean, and the Standard Deviation 127
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LO3 2. In a sample with a standard deviation of s 5 8, a score of X 5 64 corresponds 
to z 5 20.50. What is the sample mean?

a. M 5 56

b. M 5 60

c. M 5 68

d. M 5 72

LO3 3. In a population of scores, X 5 45 corresponds to z 5 12.00 and X 5 30 cor-
responds to z 5 21.00.  What is the population mean?

a. 30

b. 35

c. 37.5

d. 40

LO3 4. In a sample, X 5 70 corresponds to z 5 12.00 and X 5 65 corresponds to 
z 5 11.00. What are the sample mean and standard deviation?

a. M 5 60 and s 5 5

b. M 5 60 and s 5 10

c. M 5 50 and s 5 10

d. M 5 50 and s 5 5

1. c 2. c 3. b  4. aA N S W E R S

5-4 Using z-Scores to Standardize a Distribution

LE A R N I N G O B J E C T IV E    

4. Describe the effects of standardizing a distribution by transforming the entire set of 
scores into z-scores and explain the advantages of this transformation.

■ Population Distributions
It is possible to transform every X value in a population into a corresponding X value in a population into a corresponding X z-score. The 
result of this process is that the entire distribution of X values is transformed into a distribuX values is transformed into a distribuX -
tion of z-scores (Figure 5.5). The new distribution of z-scores has characteristics that make 
the z-score transformation a very useful tool. Specifically, if every X value is transformed X value is transformed X
into a z-score, then the distribution of z-scores will have the following properties:

1. Shape The distribution of z-scores will have exactly the same shape as the 
original distribution of scores. If the original distribution is negatively skewed, 
for example, then the z-score distribution will also be negatively skewed. If the 
original distribution is normal, the distribution of z-scores will also be normal. 
Transforming raw scores into z-scores does not change anyone’s position in the 
distribution. For example, any raw score that is above the mean by 1 standard 
deviation will be transformed to a z-score of 11.00, which is still above the mean 
by 1 standard deviation. Transforming a distribution from X values to X values to X z values does 
not move scores from one position to another; the procedure simply relabels each 
score (see Figure 5.5). Because each individual score stays in its same position 
within the distribution, the overall shape of the distribution does not change. 

128 CHAPTER 5 | z-Scores: Location of Scores and Standardized Distributions
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X

Transform X to z

Population of scores
(X(X(  vX vX alues)

110 1201009080
m

s 5 10

z

Population of z-scores
(z(z(  vz vz alues)

11 1202122
m

s 5 1

F I G U R E  5. 5 
An entire population of scores is transformed into z-scores. The transformation does not change the shape of the 
distribution but the mean is transformed into a value of 0 and the standard deviation is transformed to a value of 1.

2. The Mean The z-score distribution will always have a mean of zero. In Figure 5.5, 
the original distribution of X values has a mean of X values has a mean of X m 5 100. When this value, X 5 100, 
is transformed into a z-score, the result is

z 5
X 2 m

s
5

100 2 100

10
5 0

Thus, the original population mean is transformed into a value of zero in the 
z-score distribution. The fact that the z-score distribution has a mean of zero makes 
the mean a convenient reference point. Recall from the de�nition of z-scores that 
all positive z-scores are above the mean and all negative z-scores are below the 
mean. In other words, for z-scores, m 5 0.

3. The Standard Deviation The distribution of z-scores will always have a stan-
dard deviation of 1. In Figure 5.5, the original distribution of X values has X values has X m 5 100 
and s 5 10. In this distribution, a value of X 5 110 is above the mean by exactly 
10 points or 1 standard deviation. When X 5 110 is transformed, it becomes 
z 5 11.00, which is above the mean by exactly 1 point in the z-score distribution. 
Thus, the standard deviation corresponds to a 10-point distance in the X distribution X distribution X
and is transformed into a 1-point distance in the z-score distribution. The advan-
tage of having a standard deviation of 1 is that the numerical value of a z-score is 
exactly the same as the number of standard deviations from the mean. For example, 
a z-score of z 5 1.50 is exactly 1.50 standard deviations from the mean.

In Figure 5.5, we showed the z-score transformation as a process that changed a 
distribution of X values into a new distribution of X values into a new distribution of X z-scores. In fact, there is no need to 
create a whole new distribution. Instead, you can think of the z-score transformation as 
simply relabeling the values along the X-axis. That is, after a z-score transformation, 
you still have the same distribution, but now each individual is labeled with a z-score 
instead of an X value. Figure 5.6 demonstrates this concept with a single distribution X value. Figure 5.6 demonstrates this concept with a single distribution X
that has two sets of labels: the X values along one line and the corresponding X values along one line and the corresponding X z-scores 
along another line. Notice that the mean for the distribution of z-scores is zero and the 
standard deviation is 1.
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m

m

X

z
0

100 110 1209080

2122 11 12

s

F I G U R E  5.6 
Following a z-score transformation, the 
X-axis is relabeled in X-axis is relabeled in X z-score units. The 
distance that is equivalent to 1 standard 
deviation on the X-axis (X-axis (X s 5 10 points in 
this example) corresponds to 1 point on the 
z-score scale.

■ Sample Distributions
If all the scores in a sample are transformed into z-scores, the result is a sample distribution 
of z-scores. The transformed distribution of z-scores will have the same properties that exist 
when a population of X value is transformed into X value is transformed into X z-scores. Specifically,

1. the distribution for the sample of z-scores will have the same shape as the original 
sample of scores.

2. the sample of z-scores will have a mean of MzMzM 5 0.

3. the sample of z-scores will have a standard deviation of sz 5 1.

Note that the set of z-scores is still considered to be a sample (just like the set of X
values) and the sample formulas must be used to compute variance and standard deviation. 
The following example demonstrates the process of transforming the scores from a sample 
into z-scores.

We begin with a sample of n 5 5 scores: 0, 2, 4, 4, 5. With a few simple calculations, you 
should be able to verify that the sample mean is M 5 3, the sample variance is s2 5 4, and 
the sample standard deviation is s 5 2. Using the sample mean and sample standard devia-
tion, we can convert each X value into a X value into a X z-score. For example, X 5 5 is located above the 
mean by 2 points. Thus, X 5 5 is above the mean by exactly 1 standard deviation and has a 
z-score of z 5 11.00. The z-scores for the entire sample are shown in the following table.

X z

0 21.50
2 20.50
4 10.50
4 10.50
5 11.00

E X A M P L E  5 . 9
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Again, a few simple calculations demonstrate that the sum of the z-score values is Sz 5 0, 
so the mean is MzMzM 5 0.

Because the mean is zero, each z-score value is its own deviation from the mean. There-
fore, the sum of the squared z-scores is equal to the sum of the squared deviations. For this 
sample of z-scores,

SS 5 Sz2 5 (21.50)2 1 (20.50)2 1 (10.50)2 1 (0.50)2 1 (11.00)2

5 2.25 1 0.25 1 0.25 1 0.25 1 1.00

5 4.00

The variance for the sample of z-scores is

s2
z

5
SS

n 2 1
5

4

4
5 1.00

Finally, the standard deviation for the sample of z-scores is s
z
5 Ï1.00Ï 5 1.00. As 

always, the distribution of z-scores has a mean of 0 and a standard deviation of 1. ■

■ Using z-Scores for Making Comparisons
When any distribution (with any mean or standard deviation) is transformed into z-scores, 
the resulting distribution will always have a mean of m 5 0 and a standard deviation of s 5 1. 
Because all z-score distributions have the same mean and the same standard deviation, the 
z-score distribution is called a standardized distribution.

A standardized distribution is composed of scores that have been transformed 
to create predetermined values for m and s. Standardized distributions are used to 
make dissimilar distributions comparable.

A z-score distribution is an example of a standardized distribution with m 5 0 and s 5 1. 
That is, when any distribution (with any mean or standard deviation) is transformed into 
z-scores, the transformed distribution will always have m 5 0 and s 5 1. One advantage of 
standardizing distributions is that it makes it possible to compare different scores or dif-standardizing distributions is that it makes it possible to compare different scores or dif-standardizing distributions is that it makes it possible to compare different scores or dif
ferent individuals even though they come from completely different distributions. Nor-
mally, if two scores come from different distributions, it is impossible to make any direct 
comparison between them. Suppose, for example, Dave received a score of X 5 60 on a 
psychology exam and a score of X 5 56 on a biology test. For which course should Dave 
expect the better grade?

Because the scores come from two different distributions, you cannot make any direct 
comparison. Without additional information, it is even impossible to determine whether Dave 
is above or below the mean in either distribution. Before you can begin to make comparisons, 
you must know the values for the mean and standard deviation for each distribution. Suppose 
the biology scores had m 5 48 and s 5 4, and the psychology scores had m 5 50 and s 5 10. 
With this new information, you could sketch the two distributions, locate Dave’s score in 
each distribution, and compare the two locations.

Instead of drawing the two distributions to determine where Dave’s two scores are 
located, we simply can compute the two z-scores to find the two locations. For psychology, 
Dave’s z-score is

z 5
X 2 m

s
5

60 2 50

10
5

10

10
5 1 1.0

Notice that the set of 
z-scores is considered 
to be a sample and the 
variance is computed 
using the sample for-
mula with df 5 n 2 1.

SECTION 5-4 | Using z-Scores to Standardize a Distribution 131
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For biology, Dave’s z-score is

z 5
56 2 48

4
5

8

4
5 12.0

Note that Dave’s z-score for biology is 12.0, which means that his test score is 2 stan-
dard deviations above the class mean. On the other hand, his z-score is 11.0 for psychol-
ogy, or 1 standard deviation above the mean. In terms of relative class standing, Dave is 
doing much better in the biology class.

Notice that we cannot compare Dave’s two exam scores (X 5 60 and X 5 56) because 
the scores come from different distributions with different means and standard deviations. 
However, we can compare the two z-scores because all distributions of z-scores have the 
same mean (m 5 0) and the same standard deviation (s 5 1).

Be sure to use the m and 
s values for the distribu-
tion to which X belongs.

LO4 1. A population with m 5 80 and s 5 15 is transformed into z-scores. After the 
transformation, what is the mean for the population of z-scores?

a. m 5 80

b. m 5 1.00

c. m 5 0

d. Cannot be determined from the information given

LO4 2. A sample with a mean of M 5 50 and a standard deviation of s 5 12 is being 
transformed into z-scores. After the transformation, what is the standard devia-
tion for the sample of z-scores?

a. 0

b. 1

c. n 2 1 

d. n

LO4 3. Which of the following is an advantage of transforming X values into X values into X z-scores?

a. All negative numbers are eliminated.

b. The distribution is transformed to a normal shape.

c. All scores are moved closer to the mean.

d. None of the other options is an advantage.

LO4 4. Last week Sarah had exams in math and in Spanish. On the math exam, the 
mean was m 5 30 with s 5 5, and Sarah had a score of X 5 45. On the 
Spanish exam, the mean was m 5 60 with s 5 6 and Sarah had a score of 
X 5 65. For which class should Sara expect the better grade?

a. Math

b. Spanish

c. The grades should be the same because the two exam scores are in the same 
location.

d. There is not enough information to determine which is the better grade.

 1. c 2. b 3. d 4. aA N S W E R S

LE A R N I N G C H E C K
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5-5 Other Standardized Distributions Based on z-Scores

LE A R N I N G O B J E C T IV E   

 5. Use z-scores to transform any distribution into a standardized distribution with a 
predetermined mean and a predetermined standard deviation.

■  Transforming z-Scores to a Distribution with a Predetermined 
Mean and Standard Deviation

Although z-score distributions have distinct advantages, many people find them cumber-
some because they contain negative values and decimals. For this reason, it is common to 
standardize a distribution by transforming the scores into a new distribution with a predeter-
mined mean and standard deviation that are positive whole numbers. The goal is to create a 
new (standardized) distribution that has “simple” values for the mean and standard deviation 
but does not change any individual’s location within the distribution. Standardized scores 
of this type are frequently used in psychological or educational testing. For example, raw 
scores of the Scholastic Aptitude Test (SAT) are transformed to a standardized distribution 
that has m 5 500 and s 5 100. For intelligence tests, raw scores are frequently converted 
to standard scores that have a mean of 100 and a standard deviation of 15. Because most IQ 
tests are standardized so that they have the same mean and standard deviation, it is possible 
to compare IQ scores even though they may come from different tests.

The procedure for standardizing a distribution to create new values for the mean and stan-
dard deviation is a two-step process that can be used either with a population or a sample:

1. The original scores are transformed into z-scores.

2. The z-scores are then transformed into new X values so that the speci�c mean and X values so that the speci�c mean and X
standard deviation are attained.

This process ensures that each individual has exactly the same z-score location in the new 
distribution as in the original distribution. The following example demonstrates the stan-
dardization procedure for a population.

An instructor gives an exam to a psychology class. For this exam, the distribution of raw 
scores has a mean of m 5 57 with s 5 14. The instructor would like to simplify the dis-
tribution by transforming all scores into a new, standardized distribution with m 5 50 and 
s 5 10. To demonstrate this process, we will consider what happens to two specific stu-
dents: Maria, who has a raw score of X 5 64 in the original distribution, and Joe, whose 
original raw score is X 5 43.

Transform each of the original raw scores into z-scores. 
For Maria, X 5 64, so her z-score is

z 5
X 2 m

s
5

64 2 57

14
5 10.5

For Joe, X 5 43, and his z-score is

z 5
X 2 m

s
5

43 2 57

14
5 21.0

Remember: the values of m and s are for the distribution from which X was taken.X was taken.X

Change each z-score into an X value in the new standardized distribution that has a mean of X value in the new standardized distribution that has a mean of X
m 5 50 and a standard deviation of s 5 10.

E X A M P L E  5 . 1 0

S T E P  1

S T E P  2

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



134 CHAPTER 5 | z-Scores: Location of Scores and Standardized Distributions

Maria’s z-score, z 5 10.50, indicates that she is located above the mean by 12 standard 
deviation. In the new, standardized distribution, this location corresponds to X 5 55 (above 
the mean by 5 points).

Joe’s z-score, z 5 21.00, indicates that he is located below the mean by exactly 1 
standard deviation. In the new distribution, this location corresponds to X 5 40 (below the 
mean by 10 points).

The results of this two-step transformation process are summarized in Table 5.1. Note 
that Joe, for example, has exactly the same z-score (z 5 21.00) in both the original distri-
bution and the new standardized distribution. This means that Joe’s position relative to the 
other students in the class has not changed. ■

Figure 5.7 provides another demonstration of the concept that standardizing a distribu-
tion does not change the individual positions within the distribution. The figure shows the 
original exam scores from Example 5.10, with a mean of m 5 57 and a standard deviation 
of s 5 14. In the original distribution, Joe is located at a score of X 5 43. In addition to the 
original scores, we have included a second scale showing the z-score value for each loca-
tion in the distribution. In terms of z-scores, Joe is located at a value of z 5 21.00. Finally, 
we have added a third scale showing the standardized scores where the mean is m 5 50 
and the standard deviation is s 5 10. For the standardized scores, Joe is located at X 5 40. 
Note that Joe is always in the same place in the distribution. The only thing that changes is 

Original Scores 
m 5 57 and s 5 14

z-Score 
Location

Standardized Scores 
m 5 50 and s 5 10

Maria X 5 64 S z 5 10.50 S X 5 55

Joe X 5 43 S z 5 21.00 S X 5 40

TA B L E  5.1
A demonstration of how 
two individual scores are 
changed when a distribu-
tion is standardized. See 
Example 5.10.

29

22

30

43

21 11 12

40

Joe

X

z

X

57

0

50

71

60

85

70

,−,−, Original scores (m 5 57 and s 5 14)

,−,−, z-Scorz-Scorz es (m 5 0 and s 5 1)

,−,−, Standardized scores (m 5 50 and s 5 10)

F I G U R E  5.7 
The distribution of exam scores from Example 5.10. The original distribution was standardized to produce a distribution 
with m 5 50 and s 5 10. Note that each individual is identified by an original score, a z-score, and a new, standardized 
score. For example, Joe has an original score of 43, a z-score of −1.00, and a standardized score of 40.
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the number that is assigned to Joe: for the original scores, Joe is at 43; for the z-scores, Joe 
is at 21.00; and for the standardized scores, Joe is at 40.

LO5 1. A set of scores has a mean of m 5 63 and a standard deviation of s 5 8. If 
these scores are standardized so that the new distribution has m 5 50 and 
s 5 10, what new value would be obtained for a score of X 5 59 from the 
original distribution?

a. The score would still be X 5 59.

b. 45

c. 46

d. 55

LO5 2. A distribution with m 5 35 and s 5 8 is being standardized so that the new 
mean and standard deviation will be m 5 50 and s 5 10. When the distribu-
tion is standardized, what value will be obtained for a score of X 5 39 from the 
original distribution?

a. X 5 54 

b. X 5 55

c. X 5 1.10

d. Impossible to determine without more information

LO5 3. Using z-scores, a sample with M 5 37 and s 5 6 is standardized so that the 
new mean is M 5 50 and s 5 10. How does an individual’s z-score in the new 
distribution compare with his/her z-score in the original sample?

a. New z 5 old z 1 13

b. New z 5 (10/6)(old z)
c. New z 5 old z

d. Cannot be determined with the information given

1. b 2. b 3. c

5-6 Looking Ahead to Inferential Statistics

LE A R N I N G O B J E C T IV E    

6. Explain how z-scores can help researchers use the data from a sample to draw 
inferences about populations.

Recall that inferential statistics are techniques that use the information from samples to 
answer questions about populations. In later chapters, we will use inferential statistics 
to help interpret the results from research studies. A typical research study begins with 
a question about how a treatment will affect the individuals in a population. Because it 
is usually impossible to study an entire population, the researcher selects a sample and 
administers the treatment to the individuals in the sample. This general research situa-
tion is shown in Figure 5.8. To evaluate the effect of the treatment, the researcher simply 
compares the treated sample with the original population. If the individuals in the sample 
are noticeably different from the individuals in the original population, the researcher has 

LE A R N I N G C H E C K

A N S W E R S
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evidence that the treatment has had an effect. On the other hand, if the sample is not notice-
ably different from the original population, it would appear that the treatment has no effect.

Notice that the interpretation of the research results depends on whether the sample is 
noticeably different from the population. One technique for deciding whether a sample noticeably different from the population. One technique for deciding whether a sample noticeably different
is noticeably different is to use z-scores. For example, an individual with a z-score near 0 
is located in the center of the population and would be considered to be a fairly typical or 
representative individual. However, an individual with an extreme z-score, beyond 12.00 
or 22.00 for example, would be considered “noticeably different” from most of the indi-
viduals in the population. Thus, we can use z-scores to help decide whether the treatment 
has caused a change. Specifically, if the individuals who receive the treatment finish the 
research study with extreme z-scores, we can conclude that the treatment does appear to 
have an effect. The following example demonstrates this process.

A researcher is evaluating the effect of a new growth hormone. It is known that regular 
adult rats weigh an average of m 5 400 grams. The weights vary from rat to rat, and the 
distribution of weights is normal with a standard deviation of s 5 20 grams. The popu-
lation distribution is shown in Figure 5.9. Note that this is the distribution of weight for 
regular rats that have not received any special treatment. Next, the researcher selects one 
newborn rat and injects the rat with the growth hormone. When the rat reaches maturity, it 
is weighed to determine whether there is any evidence that the hormone has had an effect.

First, assume that the hormone-injected rat weighs X 5 418 grams. Although this is 
more than the average nontreated rat (m 5 400 grams), is it convincing evidence that the 
hormone has an effect? If you look at the distribution in Figure 5.9, you should realize that 
a rat weighing 418 grams is not noticeably different from the regular rats that did not re-
ceive any hormone injection. Specifically, our injected rat would be located near the center 
of the distribution for regular rats with a z-score of

z 5
X 2 m

s
5

418 2 400

20
5

18

20
5 0.90

E X A M P L E  5 . 1 1

Original
population

(Without treatment)

Sample
Treated
sample

T
r
e
a
t

m
e
n
t

F I G U R E  5. 8 
A diagram of a research study. The goal 
of the study is to evaluate the effect 
of a treatment. A sample is selected 
from the population and the treatment 
is administered to the sample. If, after 
treatment, the individuals in the sample 
are noticeably different from the 
individuals in the original population, 
then we have evidence that the 
treatment does have an effect.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 5-6 | Looking Ahead to Inferential Statistics 137

X

X 5 450

m 5 400 440420380360

z
0

Population
of

nontreated rats

Representative
individuals
(z near 0)z near 0)z

Extreme
individuals

(z bez bez yond 12.00)

Extreme
individuals

(z bez bez yond 22.00)

1.00 2.0021.0022.00

X 5 418

F I G U R E  5.9 
The distribution of 
weights for the popu-
lation of adult rats. 
Note that individuals 
with z-scores near 0 
are typical or represen-
tative. However, indi-
viduals with z-scores 
beyond +2.00 
or −2.00 are extreme 
and noticeably 
different from most 
of the others in the 
distribution.

Because the injected rat still looks the same as a regular, nontreated rat, the conclusion 
is that the hormone does not appear to have an effect.

Now, assume that our injected rat weighs X 5 450 grams. In the distribution of regular 
rats (see Figure 5.9), this animal would have a z-score of

z 5
X 2 m

s
5

450 2 400

20
5

50

20
5 2.50

In this case, the hormone-injected rat is substantially bigger than most ordinary rats, and 
it would be reasonable to conclude that the hormone does have an effect on weight. ■

In the preceding example, we used z-scores to help interpret the results obtained from a 
sample. Specifically, if the individuals who receive the treatment in a research study have 
extreme z-scores compared to those who do not receive the treatment, we can conclude that 
the treatment does appear to have an effect. The example, however, used an arbitrary defini-
tion to determine which z-score values are noticeably different. Although it is reasonable to 
describe individuals with z-scores near 0 as “highly representative” of the population, and 
individuals with z-scores beyond 62.00 as “extreme,” you should realize that these z-score 
boundaries were not determined by any mathematical rule. In the following chapter we intro-
duce probability, which gives us a rationale for deciding exactly where to set the boundaries.

LO6 1. For the past 20 years, the high temperature on April 15th has averaged m 5 62 
degrees with a standard deviation of s 5 4. Last year, the high temperature 
was 72 degrees. Based on this information, last year’s temperature on April 
15th was .

a. A little above averageA little above average

b. Far above average

LE A R N I N G C H E C K
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c. Above average, but it is impossible to describe how much above average

d. There is not enough information to compare last year with the average.

LO6 2. A score of X 5 73 is obtained from a population. Which set of population 
parameters would make X 5 73 and extreme, unrepresentative score?

a. m 5 65 and s 5 8

b. m 5 65 and s 5 3

c. m 5 70 and s 5 8

d. m 5 70 and s 5 3

LO6 3. Under what circumstances would a score that is 15 points above the mean be 
considered an extreme score?

a. When the mean is much larger than 15

b. When the standard deviation is much larger than 15

c. When the mean is much smaller than 15

d. When the standard deviation is much smaller than 15

1. b 2. b 3. dA N S W E R S

S U M M A R Y

< 1. Each X value can be transformed into a X value can be transformed into a X z-score 
that specifies the exact location of X within the disX within the disX -
tribution. The sign of the z-score indicates whether 
the location is above (positive) or below (negative) 
the mean. The numerical value of the z-score 
specifies the number of standard deviations between 
X and X and X m.

2. The z-score formula is used to transform X values into X values into X
z-scores. For a population:

z 5
X 2 m

s
For a sample:

z 5
X 2 M

s

3. To transform z-scores back into X values, it usually X values, it usually X
is easier to use the z-score definition rather than a 
formula. However, the z-score formula can be trans-
formed into a new equation. For a population:

X 5 m 1 zs

For a sample:

X 5 M 1 zs

4. When an entire distribution of scores (either a popula-
tion or a sample) is transformed into z-scores, the 

result is a distribution of z-scores. The z-score distri-
bution will have the same shape as the distribution of 
raw scores, and it always will have a mean of 0 and a 
standard deviation of 1.

5. When comparing raw scores from different distribu-
tions, it is necessary to standardize the distributions 
with a z-score transformation. The distributions will 
then be comparable because they will have the same 
mean (0) and the same standard deviation (1). In prac-
tice, it is necessary to transform only those raw scores 
that are being compared.

6. In certain situations, such as psychological testing, 
a distribution may be standardized by converting the 
original X values into X values into X z-scores and then converting 
the z-scores into a new distribution of scores with 
predetermined values for the mean and the standard 
deviation.

7. In inferential statistics, z-scores provide an objective 
method for determining how well a specific score 
represents its population. A z-score near 0 indicates 
that the score is close to the population mean and 
therefore is representative. A z-score beyond 12.00 
(or 22.00) indicates that the score is extreme and 
is noticeably different from the other scores in 
the distribution.

138138138 CHAPCHAPCHAPTTTER 5ER 5ER 5 ||| zzz-Scores: Location of Scores and Standardized Distributions-Scores: Location of Scores and Standardized Distributions-Scores: Location of Scores and Standardized Distributions
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raw score (121)

z-score (121)

deviation score (122)

z-score transformation (128)

standardized distribution (131)

standardized score (134)

KE Y TER M S

General instructions for using SPSS are presented in Appendix D. Following are detailed in-
structions for using SPSS to Transform X Values into X Values into X z-Scores for a Sample.

Data Entry

1. Enter all of the scores in one column of the data editor, probably VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on Descriptives.
2. Highlight the column label for the set of scores (VAR0001) in the left box and click the 

arrow to move it into the Variable box.
3. Click the box to Save standardized values as variables at the bottom of the Descriptives

screen.
4. Click OK.

SPSS Output

The program will produce the usual output display listing the number of scores (N), the maxiN), the maxiN -
mum and minimum scores, the mean, and the standard deviation. However, if you go back to 
the Data Editor (use the tool bar at the bottom of the screen), SPSS will have produced a new 
column showing the z-score corresponding to each of the original X values.X values.X

Caution: The SPSS program computes the z-scores using the sample standard deviation 
instead of the population standard deviation. If your set of scores is intended to be a population, 
SPSS will not produce the correct z-score values. You can convert the SPSS values into popula-
tion z-scores by multiplying each z-score value by the square root of n/(n – 1).

SPSS®

FO CUS  O N  PRO B LE M  SO LVIN G

1. When you are converting an X value to a X value to a X z-score (or vice versa), do not rely entirely on 
the formula. You can avoid careless mistakes if you use the definition of a z-score (sign 
and numerical value) to make a preliminary estimate of the answer before you begin com-
putations. For example, a z-score of z 5 20.85 identifies a score located below the mean 
by almost 1 standard deviation. When computing the X value for this X value for this X z-score, be sure that 
your answer is smaller than the mean, and check that the distance between X and X and X m is 
slightly less than the standard deviation.

2. When comparing scores from distributions that have different means and standard devia-
tions, it is important to be sure that you use the correct values in the z-score formula. Use 
the mean and the standard deviation for the distribution from which the score was taken.

3. Remember that a z-score specifies a relative position within the context of a specific 
distribution. A z-score is a relative value, not an absolute value. For example, a z-score 
of z 5 22.0 does not necessarily suggest a very low raw score—it simply means that the 
raw score is among the lowest within that specific group.
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3. For a sample with a standard deviation of s 5 12, de-
scribe the location of each of the following z-scores in 
terms of its position relative to the mean. For example, 
z 5 11.00 is a location that is 12 points above the 
mean.
a. z 5 22.00
b. z 5 10.75
c. z 5 11.00
d. z 5 21.50

1. Explain how a z-score identifies an exact location in a 
distribution with a single number.

2. For a population with a standard deviation of s 5 20, 
find the z-score for each of the following locations in 
the distribution.
a. Above the mean by 5 points
b. Above the mean by 2 points
c. Below the mean by 10 points
d. Below the mean by 30 points

D E M O N S TR ATIO N  5.1

TRANSFORMING X VX VX A VA V LUES INTO z-SCORES

A distribution of scores has a mean of m 5 60 with m 5 12. Find the z-score for X 5 75.

Determine the sign of the z-score. First, determine whether X is above or below the X is above or below the X
mean. This will determine the sign of the z-score. For this demonstration, X is larger than X is larger than X
(above) m, so the z-score will be positive.

Convert the distance between X and X and X m into standard deviation units. For X 5 75 and 
m 5 60, the distance between X and X and X m is 15 points. With s 5 12 points, this distance corre-
sponds to 15

12 5 1.25 standard deviations.

Combine the sign from Step 1 with the numerical value from Step 2. The score is above 
the mean (1) by a distance of 1.25 standard deviations. Thus,

z 5 11.25

Confirm the answer using the z-score formula. For this example, X 5 75, m 5 60, and 
s 5 12.

z 5
X 2 m

s
5

75 2 60

12
5

115

12
5 11.25

D E M O N S TR ATIO N  5. 2

CONVERTING z-SCORES TO X VX VX A VA V LUES

For a sample with M 5 60 and s 5 12, what is the X value corresponding to X value corresponding to X z 5 20.50? 
Notice that in this situation we know the z-score and must find X.

Locate X in relation to the mean.X in relation to the mean.X A z-score of 20.50 indicates a location below the mean 
by half of a standard deviation.

Convert the distance from standard deviation units to points. With s 5 12, half of a 
standard deviation is 6 points.

Identify the X value.X value.X The value we want is located below the mean by 6 points. The mean 
is M 5 60, so the score must be X 5 54.

STEP 1

STEP 2

STEP 3

STEP 4

STEP 1

STEP 2

STEP 3

PRO B LE M S
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4. For a population with m 5 40 and s 5 8:
a. Find the z-score for each of the following X values. X values. X

(Note: You should be able to find these values us-
ing the definition of a z-score. You should not need 
to use a formula or do any serious calculations.)
X 5 44 X 5 48 X 5 56
X 5 38 X 5 34 X 5 32

b. Find the score (X value) that corresponds to each of X value) that corresponds to each of X
the following z-scores. (Again, you should not need 
a formula or any serious calculations.)

z 5 1.00 z 5 0.25 z 5 1.50
z 5 20.50 z 5 21.25 z 5 22.50

5. For a population with m 5 80 and s 5 9, find the 
z-score for each of the following X values. (X values. (X Note: You 
probably will need to use a formula and a calculator to 
find these values.)

X 5 83 X 5 75 X 5 91
X 5 67 X 5 85 X 5 68

6. A sample has a mean of M 5 90 and a standard devia-
tion of s 5 20.
a. Find the z-score for each of the following X values.X values.X

X 5 95 X 5 98 X 5 105
X 5 80 X 5 88 X 5 76

b. Find the X valueX valueX for each of the following z-scores.

z 5 21.00 z 5 0.50 z 5 21.50
z 5  0.75 z 5 21.25 z 5 2.60

7. A sample has a mean of M 5 60 and a standard devia-
tion of s 5 7. For this sample, find the z-score for each 
of the following X values.X values.X

X 5 69 X 5 72 X 5 63
X 5 54 X 5 49 X 5 52

8. Find the z-score corresponding to a score of X 5 30 
for each of the following distributions.
a. m 5 50 and s 5 20
b. m 5 50 and s 5 10
c. m 5 20 and s 5 5
d. m 5 20 and s 5 2

9. Find the X value corresponding to X value corresponding to X z 5 0.75 for each of 
the following distributions.
a. m 5 90 and s 5 4
b. m 5 90 and s 5 8
c. m 5 90 and s 5 12
d. m 5 90 and s 5 20

10. Find the z-score corresponding to X 5 40 and the  
X value corresponding to X value corresponding to X z 5 0.25 for each of the fol-
lowing populations.
a. m 5 50 and s 5 20
b. m 5 50 and s 5 4
c. m 5 30 and s 5 8
d. m 5 30 and s 5 4

11. Find the z-score corresponding to X 5 24 and the  
X value corresponding to X value corresponding to X z 5 1.50 for each of the fol-
lowing samples.
a. M 5 20 and s 5 12
b. M 5 20 and s 5 4
c. M 5 30 and s 5 8
d. M 5 30 and s 5 10

12. A score that is 12 points below the mean corresponds to 
a z-score of z 5 21.50. What is the standard deviation?

13. A score that is 20 points above the mean corresponds to 
a z-score of z 5 1.25. What is the standard deviation?

14. For a population with a standard deviation of s 5 14, 
a score of X 5 24 corresponds to z 5 20.50. What is 
the population mean?

15. For a population with a mean of m 5 45, a score of 
X 5 54 corresponds to z 5 1.50. What is the popula-
tion standard deviation?

16. For a sample with a standard deviation of s 5 6, a 
score of X 5 30 corresponds to z 5 21.50. What is 
the sample mean?

17. For a sample with a mean of M 5 63, a score of  
X 5 54 corresponds to z 5 20.75. What is the sample 
standard deviation?

18. In a population distribution, a score of X 5 57 corre-
sponds to z 5 20.25 and a score of X 5 87 corre-
sponds to z 5 1.25. Find the mean and standard devia-
tion for the population. (Hint: Sketch the distribution 
and locate the two scores on your sketch.)

19. In a sample distribution, a score of X 5 21 corre-
sponds to z 5 21.00 and a score of X 5 12 cor-
responds to z 5 22.50. Find the mean and standard 
deviation for the sample.

20. A distribution of exam scores has a mean of m 5 42.
a. If your score is X 5 46, which standard deviation 

would give you a better grade: s 5 5 or s 5 10?
b. If your score is X 5 38, which standard deviation 

would give you a better grade: s 5 5 or s 5 10?

21. For each of the following, identify the exam score that 
should lead to the better grade. In each case, explain 
your answer.
a. A score of X 5 70, on an exam with M 5 82 and  

s 5 8; or a score of X 5 60 on an exam with m 5
72 and s 5 12.

b. A score of X 5 58, on an exam with m 5 49 and  
s 5 6; or a score of X 5 85 on an exam with  
m 5 70 and s 5 10.

c. A score of X 5 32, on an exam with m 5 24 and  
s 5 4; or a score of X 5 26 on an exam with  
m 5 20 and s 5 2.
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c. Transform the original population into a new popu-
lation of N 5 5 scores with a mean of m 5 50 and a 
standard deviation of s 5 10.

25. A sample consists of the following n 5 5 scores: 8, 4, 
10, 0, 3.
a. Compute the mean and standard deviation for the 

sample.
b. Find the z-score for each score in the sample.
c. Transform the original sample into a new sample 

with a mean of M 5 100 and s 5 20.

26. For each of the following populations, would a score 
of X 5 85 be considered a central score (near the 
middle of the distribution) or an extreme score (far out 
in the tail of the distribution)?
a. m 5 75 and s 5 15
b. m 5 80 and s 5 2
c. m 5 90 and s 5 20
d. m 5 93 and s 5 3

22. A population with a mean of m 5 41 and a standard 
deviation of s 5 4 is transformed into a standardized 
distribution with m 5 100 and s 5 20. Find the new, 
standardized score for each of the following values 
from the original population.
a. X 5 39
b. X 5 36
c. X 5 45
d. X 5 50

23. A sample with a mean of M 5 62 and a standard 
deviation of s 5 5 is transformed into a standardized 
distribution with m 5 50 and s 5 10. Find the new, 
standardized score for each of the following values 
from the original population.
a. X 5 61
b. X 5 55
c. X 5 65
d. X 5 74

24. A population consists of the following N 5 6 scores: 
2, 4, 1, 2, 7, 2.
a. Compute m and s for the population.
b. Find the z-score for each score in the population.
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6-1 Introduction to Probability

6-2 Probability and the Normal Distribution

6-3 Probabilities and Proportions for Scores from  
a Normal Distribution

6-4 Looking Ahead to Inferential Statistics

Summary

Focus on Problem Solving

Demonstration 6.1

Problems

Probability 6
CHAP TER

Tools You Will Need
The following items are con-
sidered essential background 
material for this chapter. If you 
doubt your knowledge of any of 
these items, you should review 
the appropriate chapter or section 
before proceeding.

 ■ Proportions (math review, 
Appendix A)

 ■ Fractions
 ■ Decimals
 ■ Percentages

 ■ Basic algebra (math review, 
Appendix A)

 ■ z-Scores (Chapter 5)z-Scores (Chapter 5)z
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6-1 Introduction to Probability

LE A R N I N G O B J E C T IV E   

1. De�ne probability and calculate (from information provided or from frequency 
distribution graph) the probability of a speci�c outcome as a proportion, decimal, 
and percentage.

In Chapter 1, we introduced the idea that research studies begin with a general question 
about an entire population, but the actual research is conducted using a sample. In this 
situation, the role of inferential statistics is to use the sample data as the basis for answer-
ing questions about the population. To accomplish this goal, inferential procedures are 
typically built around the concept of probability. Specifically, the relationships between 
samples and populations are usually defined in terms of probability.

For example, suppose you are selecting a single marble from a jar that contains 50 black 
marbles and 50 white marbles. (In this example, the jar of marbles is the population and 
the single marble to be selected is the sample.) Although you cannot guarantee the exact 
outcome of your sample, it is possible to talk about the potential outcomes in terms of 
probabilities. In this case, you have a 50-50 chance of getting either color. Now consider 
another jar (population) that has 90 black marbles and only 10 white marbles. Again, you 
cannot specify the exact outcome of a sample, but now you know that the sample probably 
will be a black marble. By knowing the makeup of a population, we can determine the 
probability of obtaining specific samples. In this way, probability gives us a connection 
between populations and samples, and this connection is the foundation for the inferential 
statistics to be presented in the chapters that follow.

You may have noticed that the preceding examples begin with a population and then 
use probability to describe the samples that could be obtained. This is exactly backward 
from what we want to do with inferential statistics. Remember that the goal of inferential 
statistics is to begin with a sample and then answer a general question about the popula-
tion. We reach this goal in a two-stage process. In the first stage, we develop probability 
as a bridge from populations to samples. This stage involves identifying the types of 
samples that probably would be obtained from a specific population. Once this bridge 
is established, we simply reverse the probability rules to allow us to move from samples 
to populations (Figure 6.1). The process of reversing the probability relationship can be 
demonstrated by considering again the two jars of marbles we looked at earlier (Jar 1 has 
50 black and 50 white marbles; Jar 2 has 90 black and only 10 white marbles). This time, 
suppose you are blindfolded when the sample is selected, so you do not know which jar 
is being used. Your task is to look at the sample that you obtain and then decide which jar 

SamplePopulation

INFERENTIAL STASTAST TISTICSATISTICSA

PROBABILITY

F I G U R E  6 .1
The role of probability in inferen-
tial statistics. Probability is used to 
predict the type of samples that are 
likely to be obtained from a popula-
tion. Thus, probability establishes 
a connection between samples and 
populations. Inferential statistics rely 
on this connection when they use 
sample data as the basis for making 
conclusions about populations.
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is most likely. If you select a sample of n 5 4 marbles and all are black, which jar would 
you choose? It should be clear that it would be relatively unlikely (low probability) to 
obtain this sample from Jar 1; in four draws, you almost certainly would get at least 1 
white marble. On the other hand, this sample would have a high probability of coming 
from Jar 2, where nearly all the marbles are black. Your decision therefore is that the 
sample probably came from Jar 2. Note that you are now using the sample to make an 
inference about the population.

It may appear that selecting marbles from a jar has nothing to do with interpreting 
research results in the behavioral sciences, but the same principles apply. For example, 
suppose that a psychologist gives an anxiety questionnaire to a sample of students during 
final exams and obtains a sample mean of M 5 20. Based on this result, we can conclude 
that the sample is more likely to have come from a population with a mean near m 5 20 
than from a population with a mean that is not near 20.

■ Defining Probability 
Probability is a huge topic that extends far beyond the limits of introductory statistics, and 
we will not attempt to examine it all here. Instead, we concentrate on the few concepts 
and definitions that are needed for an introduction to inferential statistics. We begin with a 
relatively simple definition of probability.

For a situation in which several different outcomes are possible, the probability
for any speci�c outcome is de�ned as a fraction or a proportion of all the possible 
outcomes. If the possible outcomes are identi�ed as A, B, C, D, and so on, then

probability of A 5
number of outcomes classififif ed as A

total number of possible outcomes

For example, if you are selecting a card from a complete deck, there are 52 possible 
outcomes. The probability of selecting the king of hearts is p 5 1

52. The probability of 
selecting an ace is p 5 4

52 because there are 4 aces in the deck.
To simplify the discussion of probability, we use a notation system that eliminates a lot 

of the words. The probability of a specific outcome is expressed with a p (for probability) 
followed by the specific outcome in parentheses. For example, the probability of selecting 
a king from a deck of cards is written as p(king). The probability of obtaining heads for a 
coin toss is written as p(heads).

Note that probability is defined as a proportion, or a part of the whole. This definition 
makes it possible to restate any probability problem as a proportion problem. For example, 
the probability problem “What is the probability of selecting a king from a deck of cards?” 
can be restated as “What proportion of the whole deck consists of kings?” In each case, 
the answer is 4

52, or “4 out of 52.” This translation from probability to proportion may seem 
trivial now, but it will be a great aid when the probability problems become more complex. 
In most situations, we are concerned with the probability of obtaining a particular sample 
from a population. The terminology of sample and population will not change the basic 
definition of probability. For example, the whole deck of cards can be considered as a 
population, and the single card we select is the sample.

Probability Values The definition we are using identifies probability as a fraction or a 
proportion. If you work directly from this definition, the probability values you obtain are 
expressed as fractions. For example, if you are selecting a card at random,

psspaded 5
13

52
5

1

4
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Or if you are tossing a coin,

psheadsd 5
1

2

You should be aware that these fractions can be expressed equally well as either decimals 
or percentages:

p 5
1

4
5 0.25 5 25%

p 5
1

2
5 0.50 5 50%

By convention, probability values most often are expressed as decimal values. But you 
should realize that any of these three forms is acceptable.

You also should note that all the possible probability values are contained in a lim-
ited range. At one extreme, when an event never occurs, the probability is zero, or 0%. 
At the other extreme, when an event always occurs, the probability is 1, or 100%. Thus, 
all probability values are contained in a range from 0 to 1. For example, suppose that 
you have a jar containing 10 white marbles. The probability of randomly selecting a 
black marble is

psblackd 5
0

10
5 0

The probability of selecting a white marble is

pswhited 5
10

10
5 1

■ Random Sampling
For the preceding definition of probability to be accurate, it is necessary that the outcomes 
be obtained by a process called random sampling.

Random sampling requires that each individual in the population has an equal 
chance of being selected. A sample obtained by this process is called a simple 
random sample.

A second requirement, necessary for many statistical formulas, states that if more than one 
individual is being selected, the probabilities must stay constant from one selection to the stay constant from one selection to the stay constant
next. Adding this second requirement produces what is called independent random sam-
pling. The term independent refers to the fact that the probability of selecting any particular independent refers to the fact that the probability of selecting any particular independent
individual is independent of the individuals already selected for the sample. For example, 
the probability that you will be selected is constant and does not change even when other 
individuals are selected before you are.

Because an independent random sample is usually a required component for most sta-
tistical applications, we will always assume that this is the sampling method being used. 
To simplify discussion, we will typically omit the word “independent” and simply refer 
to this sampling technique as random sampling. However, you should always assume that 
both requirements (equal chance and constant probability) are part of the selection process. 
Samples that are obtained using this technique are called independent random samples or 
simply random samples.

If you are unsure how to 
convert from fractions 
to decimals or percent-
ages, you should review 
the section on propor-
tions in the math review, 
Appendix A.
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Independent random sampling requires that each individual has an equal chance of 
being selected and that the probability of being selected stays constant from one selec-
tion to the next if more than one individual is selected. A sample obtained with this 
technique is called an independent random sample or simply a random sample.

Each of the two requirements for random sampling has some interesting consequences. 
The first assures that there is no bias in the selection process. For a population with 
N individuals, each individual must have the same probability, N individuals, each individual must have the same probability, N p 5 1

N, of being selected. 
This means, for example, that you would not get a random sample of people in your city by 
selecting names from a yacht club membership list. Similarly, you would not get a random 
sample of college students by selecting individuals from your psychology classes. You also 
should note that the first requirement of random sampling prohibits you from applying the 
definition of probability to situations in which the possible outcomes are not equally likely. 
Consider, for example, the question of whether you will win a million dollars in the lottery 
tomorrow. There are only two possible alternatives:

1. You will win.

2. You will not win.

According to our simple definition, the probability of winning would be one out of two, 
or p 5 1

2. However, the two alternatives are not equally likely, so the simple definition of 
probability does not apply.

The second requirement also is more interesting than may be apparent at first glance. 
Consider, for example, the selection of n 5 2 cards from a complete deck. For the first 
draw, the probability of obtaining the jack of diamonds is

ps jack of diamondsd 5
1

52

After selecting one card for the sample, you are ready to draw the second card. What is the 
probability of obtaining the jack of diamonds this time? Assuming that you still are holding 
the first card, there are two possibilities:

ps jack of diamondsd 5
1

51
if the fifif rst card was not the jack of diamonds

or

p( jack of diamonds) 5 0 if the first card was the jack of diamonds

In either case, the probability is different from its value for the first draw. This contradicts 
the requirement for random sampling, which states that the probability must stay constant. 
To keep the probabilities from changing from one selection to the next, it is necessary to 
return each individual to the population before you make the next selection. This process is 
called sampling with replacement. The second requirement for random samples (constant 
probability) demands that you sample with replacement.

(Note: We are using a definition of random sampling that requires equal chance of 
selection and constant probabilities. This kind of sampling is also known as independent 
random sampling, and often is called random sampling with replacement. Many of the 
statistics we will encounter later are founded on this kind of sampling. However, you 
should realize that other definitions exist for the concept of random sampling. In particu-
lar, it is very common to define random sampling without the requirement of constant 
probabilities—that is, random sampling without replacement. In addition, there are many 
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different sampling techniques that are used when researchers are selecting individuals to 
participate in research studies.)

■ Probability and Frequency Distributions
The situations in which we are concerned with probability usually involve a population of 
scores that can be displayed in a frequency distribution graph. If you think of the graph as 
representing the entire population, then different portions of the graph represent different 
portions of the population. Because probabilities and proportions are equivalent, a par-
ticular portion of the graph corresponds to a particular probability in the population. Thus, 
whenever a population is presented in a frequency distribution graph, it will be possible to 
represent probabilities as proportions of the graph. The relationship between graphs and 
probabilities is demonstrated in the following example.

We will use a very simple population that contains only N 5 10 scores with values 1, 
1, 2, 3, 3, 4, 4, 4, 5, 6. This population is shown in the frequency distribution graph in 
Figure 6.2. If you are taking a random sample of n 5 1 score from this population, what 
is the probability of obtaining an individual with a score greater than 4? In probability 
notation,

p(X . 4) 5 ?

Using the definition of probability, there are 2 scores that meet this criterion out 
of the total group of N 5 10 scores, so the answer would be p = 2

10. This answer can 
be obtained directly from the frequency distribution graph if you recall that prob-
ability and proportion measure the same thing. Looking at the graph (see Figure 6.2), 
what proportion of the population consists of scores greater than 4? The answer is 
the shaded part of the distribution—that is, 2 squares out of the total of 10 squares in the 
distribution. Notice that we now are defining probability as a proportion of area in the 
frequency distribution graph. This provides a very concrete and graphic way of repre-
senting probability.

Using the same population once again, what is the probability of selecting an individual 
with a score of less than 5? In symbols,

p(X , 5) 5 ?

Going directly to the distribution in Figure 6.2, we now want to know what part of the 
graph is not shaded. The unshaded portion consists of 8 out of the 10 blocks ( 8

10 of the area 
of the graph), so the answer is p = 8

10. ■

E X A M P L E  6 . 1
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F I G U R E  6 . 2
A frequency distribution histogram for a pop-
ulation of N = 10 scores. The shaded part of 
the figure indicates the portion of the whole 
population that corresponds to scores greater 
than X = 4. The shaded portion is two-tenths 
_ 2
10+ of the whole distribution.
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LO1 1. An introductory psychology class with n 5 44 students has 9 freshman males, 
15 freshman females, 8 sophomore males, and 12 sophomore females. If one 
student is randomly selected from this class, what is the probability of getting 
a sophomore?

a. 8
24

b. 20
24

c. 20
44

d. 14
44

LO1 2. A jar contains 10 red marbles and 20 blue marbles. If one marble is selected 
from this jar, what is the probability that the marble will be red?

a. 1
30

b. 1
20

c. 10
30

d. 10
20

LO1 3. Random sampling requires sampling with replacement. What is the goal of 
sampling with replacement?

a. It ensures that every individual has an equal chance of selection.

b. It ensures that the probabilities stay constant from one selection to the next.

c. It ensures that the same individual is not selected twice.

d. All of the other options are goals of sampling with replacement.

1. c 2. c 3. b 

LE A R N I N G C H E C K

A N S W E R S

6-2 Probability and the Normal Distribution

LE A R N I N G O B J E C T IV E

2. Use the unit normal table to �nd the following: (1) proportions/probabilities  
for speci�c z-score values, and (2) z-score locations that correspond to speci�c 
proportions.

The normal distribution was first introduced in Chapter 2 as an example of a commonly 
occurring shape for population distributions. An example of a normal distribution is shown 
in Figure 6.3.

Note that the normal distribution is symmetrical, with the highest frequency in the middle 
and frequencies tapering off as you move toward either extreme. Although the exact shape 
for the normal distribution is defined by an equation (see Figure 6.3), the normal shape can 
also be described by the proportions of area contained in each section of the distribution. 
Statisticians often identify sections of a normal distribution by using z-scores. Figure 6.4 
shows a normal distribution with several sections marked in z-score units. You should recall 
that z-scores measure positions in a distribution in terms of standard deviations from the 
mean. (Thus, z 5 11 is 1 standard deviation above the mean, z 5 12 is 2 standard devia-
tions above the mean, and so on.) The graph shows the percentage of scores that fall in each 
of these sections. For example, the section between the mean (z 5 0) and the point that is 
1 standard deviation above the mean (z 5 11) contains 34.13% of the scores. Similarly, 
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13.59% of the scores are located in the section between 1 and 2 standard deviations above 
the mean. In this way it is possible to define a normal distribution in terms of its propor-
tions; that is, a distribution is normal if and only if it has all the right proportions.

There are two additional points to be made about the distribution shown in Figure 6.4. 
First, you should realize that the sections on the left side of the distribution have exactly 
the same areas as the corresponding sections on the right side because the normal distri-
bution is symmetrical. Second, because the locations in the distribution are identified by 
z-scores, the percentages shown in the figure apply to any normal distribution regardless 
of the values for the mean and the standard deviation. Remember: when any distribution is 
transformed into z-scores, the mean becomes zero and the standard deviation becomes one.

Because the normal distribution is a good model for many naturally occurring distri-
butions and because this shape is guaranteed in some circumstances (as you will see in 
Chapter 7), we devote considerable attention to this particular distribution. The process of 
answering probability questions about a normal distribution is introduced in the following 
example.

m
X

s

F I G U R E  6 . 3
The normal distribution. The exact shape of the 
normal distribution is specified by an equation 
relating each X value (score) with each Y value Y value Y
(frequency). The equation is

Y 5
1

Ï2�s2Ï
e2 sXsXs 2 md2y2s2

(p and e are mathematical constants). In simpler 
terms, the normal distribution is symmetrical 
with a single mode in the middle. 
The frequency tapers off as you 
move farther from the middle 
in either direction.

22 21 0

m

11 12

z

34.13%

13.59%

2.28%

F I G U R E  6 . 4 
The normal distribution following a 
z-score transformation.
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The population distribution of SAT scores is normal with a mean of m 5 500 and a standard 
deviation of s 5 100. Given this information about the population and the known propor-
tions for a normal distribution (see Figure 6.4), we can determine the probabilities associ-
ated with specific samples. For example, what is the probability of randomly selecting an 
individual from this population who has an SAT score greater than 700?

Restating this question in probability notation, we get

p(X > 700) X > 700) X 5 ?

We will follow a step-by-step process to find the answer to this question.

1. First, the probability question is translated into a proportion question: Out of all 
possible SAT scores, what proportion is greater than 700?

2. The set of “all possible SAT scores” is simply the population distribution. This 
population is shown in Figure 6.5. The mean is m 5 500, so the score X 5 700 is 
to the right of the mean. Because we are interested in all scores greater than 700, 
we shade in the area to the right of 700. This area represents the proportion we are 
trying to determine.

3. Identify the exact position of X 5 700 by computing a z-score. For this example, 

z 5
X 2 m

s
5

700 2 500

100
5

200

100
5 2.00

That is, an SAT score X 5 700 is exactly 2 standard deviations above the mean and 
corresponds to a z-score of z 5 12.00. We have also located this z-score in Figure 6.5.

4. The proportion we are trying to determine may now be expressed in terms of its 
z-score:

p(z > 2.00) 5 ?

According to the proportions shown in Figure 6.4, all normal distributions, 
regardless of the values for m and s, will have 2.28% of the scores in the tail 
beyond z 5 12.00. Thus, for the population of SAT scores,

p(X . 700) 5 p(z . 12.00) 5 2.28% ■

E X A M P L E  6 . 2

X
m 5 500 X 5 700

s 5 100

0
z

2.00

F I G U R E  6 . 5
The distribution of SAT 
scores described in 
Example 6.2.
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■ The Unit Normal Table
Before we attempt any more probability questions, we must introduce a more useful tool 
than the graph of the normal distribution shown in Figure 6.4. The graph shows proportions 
for only a few selected z-score values. A more complete listing of z-scores and proportions 
is provided in the unit normal table. This table lists proportions of the normal distribution 
for a full range of possible z-score values.

The complete unit normal table is provided in Appendix B, Table B.1, and part of the 
table is reproduced in Figure 6.6. Notice that the table is structured in a four-column for-
mat. The first column (A) lists z-score values corresponding to different positions in a 
normal distribution. If you imagine a vertical line drawn through a normal distribution, 
then the exact location of the line can be described by one of the z-score values listed in 
column A. You should also realize that a vertical line separates the distribution into two 
sections: a larger section called the body and a smaller section called the tail. Columns B 
and C in the table identify the proportion of the distribution in each of the two sections. 
Column B presents the proportion in the body (the larger portion), and column C presents 
the proportion in the tail. Finally, we have added a fourth column, column D, which iden-
tifies the proportion of the distribution that is located between the mean and the z-score. 

Mean z

B

Mean z

C

(A)
z

(B)
Proportion

in body

(C) (D)
Proportion
between

mean and z

Proportion
in ta il

0.00
0.01
0.02
0.03
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34

.5000

.5040

.5080

.5120
0.5793
.5832
.5871
.5910
.5948
.5987
.6026
.6064
.6103
.6141
.6179
.6217
.6255
.6293
.6331

.5000 .0000
.0040
.0080
.0120
.0120
.0832
.0871
.0910
.0948
.0987
.1026
.1064
.1103
.1141
.1179
.1217
.1255
.1293
.1331

.4960

.4920

.4880
0.4207
.4168
.4129
.4090
.4052
.4013
.3974
.3936
.3897
.3859
.3821
.3783
.3745
.3707
.3669

0.4207
0.21

0.4207 .0120
.0832

0.42070.42070.20 0.5793 0.42070.20
0.21

0.5793 0.4207

Mean z

D

F I G U R E  6 .6
A portion of the unit normal table. This table lists proportions of the normal distribution corresponding to each z-score 
value. Column A of the table lists z-scores. Column B lists the proportion in the body of the normal distribution for that 
z-score value and Column C lists the proportion in the tail of the distribution. Column D lists the proportion between the 
mean and the z-score.
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We will use the distribution in Figure 6.7(a) to help introduce the unit normal table. The 
figure shows a normal distribution with a vertical line drawn at z 5 10.25. Using the portion 
of the table shown in Figure 6.6, find the row in the table that contains z 5 0.25 in column A. 
Reading across the row, you should find that the line at z 5 1 0.25 separates the distribution 
into two sections with the larger section (the body) containing 0.5987 or 59.87% of the distri-
bution and the smaller section (the tail) containing 0.4013 or 40.13% of the distribution. Also, 
there is exactly 0.0987 or 9.87% of the distribution between the mean and z 5 10.25.

To make full use of the unit normal table, there are a few facts to keep in mind:

1. The body always corresponds to the larger part of the distribution whether it is on 
the right-hand side or the left-hand side. Similarly, the tail is always the smaller tail is always the smaller tail
section whether it is on the right or the left.

2. Because the normal distribution is symmetrical, the proportions on the right-hand 
side are exactly the same as the corresponding proportions on the left-hand side. 
Earlier, for example, we used the unit normal table to obtain proportions for  
z 5 10.25. Figure 6.7(b) shows the same proportions for z 5 20.25. For a  
negative z-score, however, notice that the tail of the distribution is on the left side 
and the body is on the right. For a positive z-score [Figure 6.7(a)], the positions  
are reversed. However, the proportions in each section are exactly the same,  
with 0.5987 in the body and 0.4013 in the tail. Once again, the table does not list 
negative z-score values. To �nd proportions for negative z-scores, you must look up 
the corresponding proportions for the positive value of z.

3. Although the z-score values change signs (1 and –) from one side to the other, 
the proportions are always positive. Thus, column C in the table always lists the 
proportion in the tail whether it is the right-hand tail or the left-hand tail.

■ Probabilities, Proportions, and z-Scores
The unit normal table lists relationships between z-score locations and proportions in a nor-
mal distribution. For any z-score location, you can use the table to look up the corresponding 
proportions. Similarly, if you know the proportions, you can use the table to find the specific 
z-score location. Because we have defined probability as equivalent to proportion, you can 
also use the unit normal table to look up probabilities for normal distributions. The follow-
ing examples demonstrate a variety of different ways that the unit normal table can be used.

0 10.25

(a) (b)

Tail
0.4013

Body
0.5987

z

020.25

Tail
0.4013

Body
0.5987

z

F I G U R E  6 .7
Proportions of a normal distribution corresponding to z = +0.25 and z = –0.25.
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Finding Proportions/Probabilities for Specific z-Score Values For each of the 
following examples, we begin with a specific z-score value and then use the unit normal 
table to find probabilities or proportions associated with the z-score.

What proportion of the normal distribution corresponds to z-score values greater than 
z 5 1.00? First, you should sketch the distribution and shade in the area you are trying to 
determine. This is shown in Figure 6.8(a). In this case, the shaded portion is the tail of the 
distribution beyond z 5 1.00. To find this shaded area, you simply look for z 5 1.00 in 
column A to find the appropriate row in the unit normal table. Then scan across the row to 
column C (tail) to find the proportion. Using the table in Appendix B, you should find that 
the answer is 0.1587.

You also should notice that this same problem could have been phrased as a probabil-
ity question. Specifically, we could have asked, “For a normal distribution, what is the 
probability of selecting a z-score value greater than z 5 11.00?” Again, the answer is 
p(z . 1.00) 5 0.1587 (or 15.87%). ■

For a normal distribution, what is the probability of selecting a z-score less than z 5 1.50? In 
symbols, p(z , 1.50) 5 ? Our goal is to determine what proportion of the normal distribution 
corresponds to z-scores less than 1.50. A normal distribution is shown in Figure 6.8(b) and 
z 5 1.50 is located in the distribution. Note that we have shaded all the values to the left of 
(less than) z 5 1.50. This is the portion we are trying to find. Clearly the shaded portion is 
more than 50% so it corresponds to the body of the distribution. Therefore, find z 5 1.50 
in column A of the unit normal table and read across the row to obtain the proportion from 
column B. The answer is p(z , 1.50) 5 0.9332 (or 93.32%). ■

Many problems require that you find proportions for negative z-scores. For example, what 
proportion of the normal distribution is contained in the tail beyond z 5 20.50? That is, 
p(z , –0.50) 5 ? This portion has been shaded in Figure 6.8(c). To answer questions with 
negative z-scores, simply remember that the normal distribution is symmetrical with a 
z-score of zero at the mean, positive values to the right, and negative values to the left. The 
proportion in the left tail beyond z 5 20.50 is identical to the proportion in the right tail 
beyond z 5 10.50. To find this proportion, look up z 5 0.50 in column A, and read across 
the row to find the proportion in column C (tail). You should get an answer of 0.3085 
(30.85%). ■

The following example is an opportunity for you to test your understanding by finding 
proportions in a normal distribution yourself.

E X A M P L E  6 . 3 A

E X A M P L E  6 . 3 B

E X A M P L E  6 . 3 C

0 1.00
m

0 1.50
m

020.5
m

(a) (b) (c)

F I G U R E  6 . 8
The distributions for Examples 6.3A to 6.3C.
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Find the proportion of a normal distribution corresponding to each of the following sections: 

a. z . 0.80
b. z . 20.75

You should obtain answers of 0.2119 and 0.7734 for a and b, respectively. ■

Finding the z-Score Location that Corresponds to Specific Proportions The 
preceding examples all involved using a z-score value in column A to look up propor-
tions in columns B or C. You should realize, however, that the table also allows you to 
begin with a known proportion and then look up the corresponding z-score. The following 
examples demonstrate this process.

For a normal distribution, what z-score separates the top 10% from the remainder of the 
distribution? To answer this question, we have sketched a normal distribution [Figure 6.9(a)] 
and drawn a vertical line that separates the highest 10% (approximately) from the rest. The 
problem is to locate the exact position of this line. For this distribution, we know that the tail 
contains 0.1000 (10%) and the body contains 0.9000 (90%). To find the z-score value, you 
simply locate the row in the unit normal table that has 0.1000 in column C or 0.9000 in col-
umn B. For example, you can scan down the values in column C (tail) until you find a propor-
tion of 0.1000. Note that you probably will not find the exact proportion, but you can use the 
closest value listed in the table. For this example, a proportion of 0.1000 is not listed in col-
umn C but you can use 0.1003, which is listed. Once you have found the correct proportion 
in the table, simply read across the row to find the corresponding z-score value in column A.

For this example, the z-score that separates the extreme 10% in the tail is z 5 1.28. At 
this point you must be careful because the table does not differentiate between the right-
hand tail and the left-hand tail of the distribution. Specifically, the final answer could be 
either z 5 11.28, which separates 10% in the right-hand tail, or z 5 21.28, which sepa-
rates 10% in the left-hand tail. For this problem we want the right-hand tail (the highest 
10%), so the z-score value is z 5 11.28. ■

For a normal distribution, what z-score values form the boundaries that separate the middle 
60% of the distribution from the rest of the scores?

Again, we have sketched a normal distribution [Figure 6.9(b)] and drawn vertical lines so 
that roughly 60% of the distribution is in the central section, with the remainder split equally 
between the two tails. The problem is to find the z-score values that define the exact locations 
for the lines. To find the z-score values, we begin with the known proportions: 0.6000 in the 
center and 0.4000 divided equally between the two tails. Although these proportions can be 
used in several different ways, this example provides an opportunity to demonstrate how col-
umn D in the table can be used to solve problems. For this problem, the 0.6000 in the center 

E X A M P L E  6 . 4

E X A M P L E  6 . 5 A

E X A M P L E  6 . 5 B

z 5 ? z 5 ?z 5 ?

10%
(.1000)

90%
(.9000) 60%

(.6000)

(a) (b)

F I G U R E  6 .9
The distributions for 
Examples 6.5A and 6.5B.
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can be divided in half with exactly 0.3000 to the right of the mean and exactly 0.3000 to the 
left. Each of these sections corresponds to the proportion listed in column D. Begin by scan-
ning down column D, looking for a value of 0.3000. Again, this exact proportion is not in the 
table, but the closest value is 0.2995. Reading across the row to column A, you should find a 
z-score value of z 5 0.84. Looking again at the sketch [Figure 6.9(b)], the right-hand line is 
located at z 5 10.84 and the left-hand line is located at z 5 20.84. ■

You may have noticed that we have sketched distributions for each of the preceding 
problems. As a general rule, you should always sketch a distribution, locate the mean with 
a vertical line, and shade in the portion you are trying to determine. Look at your sketch. It 
will help you determine which columns to use in the unit normal table. If you make a habit 
of drawing sketches, you will avoid careless errors when using the table.

LO2 1. What is the probability of randomly selecting a z-score less than z = 0.25 from 
a normal distribution?

a. 0.5987

b. 0.4013

c. 20.5987

d. 20.4013

LO2 2. In a normal distribution, what z-score value separates the highest 90% of the 
scores from the rest of the distribution?

a. z 5 1.28

b. z 5 21.28

c. z 5 0.13

d. z 5 20.13

LO2 3. In a normal distribution, what z-score value separates the lowest 20% of the 
distribution from the highest 80%?

a. z 5 0.20

b. z 5 0.80

c. z 5 0.84

d. z 5 20.84

1. a 2. b 3. d 

6-3 Probabilities and Proportions for Scores  
from a Normal Distribution

LE A R N I N G O B J E C T IV E S

 3. Calculate the probability for a speci�c X value.X value.X

 4. Calculate the score (X value) corresponding to a speci�c proportion in a X value) corresponding to a speci�c proportion in a X
distribution.

In the preceding section, we used the unit normal table to find probabilities and 
proportions corresponding to specific z-score values. In most situations, however, 

LE A R N I N G C H E C K

A N S W E R S
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it  is  necessary to find probabilities for specific X values. Consider the following X values. Consider the following X
example:

It is known that IQ scores form a normal distribution with m 5 100 and s 5 15. 
Given this information, what is the probability of randomly selecting an individual 
with an IQ score of less than 120?

This problem is asking for a specific probability or proportion of a normal distribu-
tion. However, before we can look up the answer in the unit normal table, we must first 
transform the IQ scores (X values) into X values) into X z-scores. Thus, to solve this new kind of probability 
problem, we must add one new step to the process. Specifically, to answer probability 
questions about scores (X values) from a normal distribution, you must use the following X values) from a normal distribution, you must use the following X
two-step procedure:

1. Transform the X values into X values into X z-scores.

2. Use the unit normal table to look up the proportions corresponding to the z-score 
values.

This process is demonstrated in the following examples. Once again, we suggest that you 
sketch the distribution and shade the portion you are trying to find in order to avoid care-
less mistakes.

We will now answer the probability question about IQ scores that we presented earlier. 
Specifically, what is the probability of randomly selecting an individual with an IQ score 
of less than 120? Restated in terms of proportions, we want to find the proportion of 
the IQ distribution that corresponds to scores less than 120. The distribution is drawn in 
Figure 6.10, and the portion we want has been shaded.

The first step is to change the X values into X values into X z-scores. In particular, the score of X 5 120 
is changed to

z 5
X 2 m

s
5

120 2 100

15
5

20

15
5 1.33

Thus, an IQ score of X 5 120 corresponds to a z-score of z 5 1.33, and IQ scores less than 
120 correspond to z-scores less than 1.33.

Next, look up the z-score value in the unit normal table. Because we want the propor-
tion of the distribution in the body to the left of X 5 120 (see Figure 6.10), the answer will 
be found in column B. Consulting the table, we see that a z-score of 1.33 corresponds to 

Caution: The unit 
normal table can be 
used only with normal-
shaped distributions. 
If a distribution is not 
normal, transforming 
X values to z-scores will 
not make it normal.

E X A M P L E  6 . 6

m 5 100

s 5 15

z

120

1.330

F I G U R E  6 .1 0
The distribution of IQ 
scores. The problem is to 
find the probability or pro-
portion of the distribution 
corresponding to scores 
less than 120.
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a proportion of 0.9082. The probability of randomly selecting an individual with an IQ of 
less than 120 is p 5 0.9082. In symbols,

p(X , 120) 5 p(z , 1.33) 5 0.9082 (or 90.82%)

Finally, notice that we phrased this question in terms of a probability. Specifically, we 
asked, “What is the probability of selecting an individual with an IQ of less than 120?” 
However, the same question can be phrased in terms of a proportion: “What proportion of 
all the individuals in the population have IQ scores of less than 120?” Both versions ask 
exactly the same question and produce exactly the same answer. A third alternative for 
presenting the same question is introduced in Box 6.1. ■

Finding Proportions/Probabilities Located between Two Scores The next 
example demonstrates the process of finding the probability of selecting a score that is 
located between two specific values. Although these problems can be solved using the 
proportions of columns B and C (body and tail), they are often easier to solve with the 
proportions listed in column D.

The highway department conducted a study measuring driving speeds on a local section of 
interstate highway. They found an average speed of m 5 58 miles per hour with a standard 
deviation of s 5 10. The distribution was approximately normal. Given this information, 
what proportion of the cars are traveling between 55 and 65 miles per hour? Using prob-
ability notation, we can express the problem as

p(55 , X , 65) 5 ?

The distribution of driving speeds is shown in Figure 6.11 with the appropriate area shaded. 
The first step is to determine the z-score corresponding to the X value at each end of the interval.X value at each end of the interval.X

For X 5 55: z 5
X 2 m

s
5

55 2 58

10
5

23

10
5 20.30

For X 5 65: z 5
X 2 m

s
5

65 2 58

10
5

7

10
5 0.70

Looking again at Figure 6.11, we see that the proportion we are seeking can be divided 
into two sections: (1) the area left of the mean, and (2) the area right of the mean. The first area 
is the proportion between the mean and z 5 20.30 and the second is the proportion between 

E X A M P L E  6 . 7

m 5 58

s 5 10

6555
X

02.30 .70
zF I G U R E  6 .1 1

The distribution for Example 6.7.
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the mean and z 5 10.70. Using column D of the unit normal table, these two proportions are 
0.1179 and 0.2580. The total proportion is obtained by adding these two sections:

p(55 , X , 65) 5 p(–0.30 , z , 10.70) 5 0.1179 1 0.2580 5 0.3759 ■

Using the same distribution of driving speeds from the previous example, what proportion 
of cars are traveling between 65 and 75 miles per hour?

p(65 , X , 75) 5 ?

The distribution is shown in Figure 6.12 with the appropriate area shaded. Again, we 
start by determining the z-score corresponding to each end of the interval.

For X 5 65: z 5
X 2 m

s
5

65 2 58

10
5

7

10
5 0.70

For X 5 75: z 5
X 2 m

s
5

75 2 58

10
5

17

10
5 1.70

There are several different ways to use the unit normal table to find the proportion be-
tween these two z-scores. For this example, we will use the proportions in the tail of the 
distribution (column C). According to column C in the unit normal table, the proportion in 
the tail beyond z 5 0.70 is p 5 0.2420. Note that this proportion includes the section that 
we want, but it also includes an extra, unwanted section located in the tail beyond z 5 1.70. 
Locating z 5 1.70 in the table, and reading across the row to column C, we see that the 
unwanted section is p 5 0.0446. To obtain the correct answer, we subtract the unwanted 
portion from the total proportion in the tail beyond z 5 0.70.

p(65 , X , 75) 5 p(0.70 , z , 1.70) 5 0.2420 2 0.0446 5 0.1974 ■

The following example is an opportunity for you to test your understanding by finding 
probabilities for scores in a normal distribution yourself.

For a normal distribution with m 5 60 and a standard deviation of s 5 12, find each 
probability requested.

a. p(X . 66)
b. p(48 , X , 72)

You should obtain answers of 0.3085 and 0.6826 for a and b, respectively. ■

E X A M P L E  6 . 8

E X A M P L E  6 . 9

m 5 58

s 5 10

65 75

0 .70 1.70

X

zF I G U R E  6 .1 2
The distribution for Example 6.8.
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Finding Scores Corresponding to Specific Proportions or Probabilities In 
the previous three examples, the problem was to find the proportion or probability corre-
sponding to specific X values. The two-step process for finding these proportions is shown X values. The two-step process for finding these proportions is shown X
in Figure 6.13. Thus far, we have only considered examples that move in a clockwise 
direction around the triangle shown in the figure; that is, we start with an X value that is X value that is X
transformed into a z-score, and then we use the unit normal table to look up the appropriate 
proportion. You should realize, however, that it is possible to reverse this two-step process 
so that we move backward, or counterclockwise, around the triangle. This reverse process 
allows us to find the score (X value) corresponding to a specific proportion in the distribuX value) corresponding to a specific proportion in the distribuX -
tion. Following the lines in Figure 6.13, we begin with a specific proportion, use the unit 
normal table to look up the corresponding z-score, and then transform the z-score into an 
X value. The following example demonstrates this process.X value. The following example demonstrates this process.X

The U.S. Census Bureau (2005) reports that Americans spend an average of m 5 24.3 minutes 
commuting to work each day. Assuming that the distribution of commuting times is normal 
with a standard deviation of s 5 10 minutes, how much time do you have to spend commut-
ing each day to be in the highest 10% nationwide? (An alternative form of the same question 
is presented in Box 6.1.) The distribution is shown in Figure 6.14 with a portion representing 
approximately 10% shaded in the right-hand tail.

In this problem, we begin with a proportion (10% or 0.10), and we are looking for a 
score. According to the map in Figure 6.13, we can move from p (proportion) to X (score) X (score) X
via z-scores. The first step is to use the unit normal table to find the z-score that corresponds 
to a proportion of 0.10 in the tail. First, scan the values in column C to locate the row 
that has a proportion of 0.10 in the tail of the distribution. Note that you will not find 
0.1000 exactly, but locate the closest value possible. In this case, the closest value is 0.1003. 
Reading across the row, we find z 5 1.28 in column A.

The next step is to determine whether the z-score is positive or negative. Remember 
that the table does not specify the sign of the z-score. Looking at the distribution in 
Figure 6.14, you should realize that the score we want is above the mean, so the z-score is 
positive, z 5 11.28.

The final step is to transform the z-score into an X value. By definition, a X value. By definition, a X z-score 
of 11.28 corresponds to a score that is located above the mean by 1.28 standard devia-
tions. One standard deviation is equal to 10 points (s 5 10), so 1.28 standard deviations is

1.28 s 5 1.28(10) 5 12.8 points

E X A M P L E  6 . 1 0

F I G U R E  6 .1 3
Determining probabilities or proportions 
for a normal distribution is shown as a 
two-step process with z-scores as an inter-
mediate stop along the way. Note that you 
cannot move directly along the dashed line 
between X values and probabilities and X values and probabilities and X
proportions. Instead, you must follow the 
solid lines around the corner.

X
z-score formulaz-score formulaz z-scorez-scorez

Unit
normal
table

Proportions
or

probabilities
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Thus, our score is located above the mean (m 5 24.3) by a distance of 12.8 points. 
Therefore,

X 5 24.3 1 12.8 5 37.1

The answer for our original question is that you must commute at least 37.1 minutes per 
day to be in the top 10% of American commuters. ■

Again, the distribution of commuting times for American workers is normal with a mean of 
m 5 24.3 minutes and a standard deviation of s 5 10 minutes. For this example, we will 
find the range of values that defines the middle 90% of the distribution. The entire distribu-
tion is shown in Figure 6.15 with the middle portion shaded.

The 90% (0.9000) in the middle of the distribution can be split in half with 45% 
(0.4500) on each side of the mean. Looking up 0.4500 in column D of the unit normal 

E X A M P L E  6 . 1 0E X A M P L E  6 . 1 1

m 5 24.3

0 1.28

37.1

s 5 10

Highest 10%

F I G U R E  6 .1 4
The distribution of commuting times for 
American workers. The problem is to find 
the score that separates the highest 10% of 
commuting times from the rest.

F I G U R E  6 .1 5
The distribution of commuting times for 
American workers. The problem is to find the 
middle 90% of the distribution.

m 5 24.3

Middle 90%

s 5 10

7.8 40.8

21.65 1.650
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table, you will find that the exact proportion is not listed. However, you will find 0.4495 
and 0.4505, which are equally close. Technically, either value is acceptable, but we will 
use 0.4505 so that the total area in the middle is at least 90%. Reading across the row, you 
should find a z-score of z 5 1.65 in column A. Thus, the z-score at the right boundary is 
z 5 11.65 and the z-score at the left boundary is z 5 21.65. In either case, a z-score of 1.65 
indicates a location that is 1.65 standard deviations away from the mean. For the distribution of 
commuting times, one standard deviation is s 5 10, so 1.65 standard deviations is a distance of

1.65 s 5 1.65(10) 5 16.5 points

Therefore, the score at the right-hand boundary is located above the mean by 16.5 points 
and corresponds to X 5 24.3 1 16.5 5 40.8. Similarly, the score at the left-hand boundary 
is below the mean by 16.5 points and corresponds to X 5 24.3 2 16.5 5 7.8. The middle 
90% of the distribution corresponds to values between 7.8 and 40.8. Thus, 90% of American 
commuters spend between 7.8 and 40.8 minutes commuting to work each day. Only 10% of 
commuters spend either more time or less time commuting.

Thus far we have discussed parts of distributions in 
terms of proportions and probabilities. However, there 
is another set of terminology that deals with many of 
the same concepts. Specifically, the percentile rank
for a specific score is defined as the percentage of the 
individuals in the distribution who have scores that are 
less than or equal to the specific score. For example, 
if 70% of the individuals have scores of X 5 45 or 
lower, then X 5 45 has a percentile rank of 70%. 
When a score is referred to by its percentile rank, the 
score is called a percentile. For example, a score with 
a percentile rank of 70% is called the 70th percentile.

Using this terminology, it is possible to rephrase 
some of the probability problems that we have 

been working. In Example 6.6, the problem was 
presented as “What is the probability of randomly 
selecting an individual with an IQ of less than 120?” 
Exactly the same question could be phrased as 
“What is the percentile rank for an IQ score of 120?” 
In each case, we are looking for the proportion of 
the distribution corresponding to scores equal to 
or less than 120. Similarly, Example 6.10 asked 
“How much time do you have to spend commuting 
each day to be in the highest 10% nationwide?” 
Because this score separates the top 10% from the 
bottom 90%, the same question could be rephrased 
as “What is the 90th percentile for the distribution 
of commuting times?”

been working. In Example 6.6, the problem was 
presented as “What is the probability of randomly 
selecting an individual with an IQ of less than 120?” 
Exactly the same question could be phrased as 
“What is the percentile rank for an IQ score of 120?” 
In each case, we are looking for the proportion of 
the distribution corresponding to scores equal to 
or less than 120. Similarly, Example 6.10 asked 
“How much time do you have to spend commuting 
each day to be in the highest 10% nationwide?” 
Because this score separates the top 10% from the 
bottom 90%, the same question could be rephrased 
as “What is the 90th percentile for the distribution 
of commuting times?”

BOX 6.1 Probabilities, Proportions, and Percentile Ranks

LO3 1. The population of SAT scores forms a normal distribution with a mean 
of m 5 500 and s 5 100. What proportion of the population consists of 
individuals with SAT scores lower than 400?

a. 0.1587

b. 0.8413

c. 0.34.13

d. 20.15.87

LO3 2. A normal distribution has m 5 100 and s 5 20. What is the probability of 
randomly selecting a score of less than 130 from this distribution?

a. p 5 0.9032

b. p 5 0.9332

c. p 5 0.0968

d. p 5 0.0668

LE A R N I N G C H E C K

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 6-4 | Looking Ahead to Inferential Statistics 163

LO4 3. For a normal distribution with m 5 70 and s 5 10, what is the minimum score 
necessary to be in the top 60% of the distribution?

a. 67.5

b. 62.5

c. 65.2

d. 68.4

1. a 2. b 3. a 

6-4 Looking Ahead to Inferential Statistics

LE A R N I N G O B J E C T IV E  

 5. Explain how probability can be used to evaluate a treatment effect by identifying 
likely and very unlikely outcomes.

Probability forms a direct link between samples and the populations from which they come. 
As we noted at the beginning of this chapter, this link is the foundation for the inferential 
statistics in future chapters. The following example provides a brief preview of how prob-
ability is used in the context of inferential statistics.

We ended Chapter 5 with a demonstration of how inferential statistics are used to help 
interpret the results of a research study. A general research situation was shown in Figure 5.8 
(page 136) and is repeated here in Figure 6.16. The research begins with a population that 
forms a normal distribution with a mean of m 5 400 and a standard deviation of s 5 20. A 
sample is selected from the population and a treatment is administered to the sample. The 
goal for the study is to evaluate the effect of the treatment.

To determine whether the treatment has an effect, the researcher simply compares the 
treated sample with the original population. If the individuals in the sample have scores 

A N S W E R S

Population

Normal
m 5 400
s 5 20

Sample
Treated
sample

T
r
e
a
t

m
e
n
t

F I G U R E  6 .1 6
A diagram of a research study. A 
sample is selected from the popula-
tion and receives a treatment. The 
goal is to determine whether the 
treatment has an effect.
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around 400 (the original population mean), then we must conclude that the treatment 
appears to have no effect. On the other hand, if the treated individuals have scores that are 
noticeably different from 400, then the researcher has evidence that the treatment does have 
an effect. Notice that the study is using a sample to help answer a question about a popula-
tion; this is the essence of inferential statistics.

The problem for the researcher is determining exactly what is meant by “noticeably dif-The problem for the researcher is determining exactly what is meant by “noticeably dif-The problem for the researcher is determining exactly what is meant by “noticeably dif
ferent” from 400. If a treated individual has a score of X 5 415, is that enough to say that 
the treatment has an effect? What about X 5 420 or X 5 450? In Chapter 5, we suggested 
that z-scores provide one method for solving this problem. Specifically, we suggested that 
a z-score value beyond z 5 2.00 (or 22.00) was an extreme value and therefore noticeably 
different. However, the choice of z 5 62.00 was purely arbitrary. Now we have another 
tool, probability, to help us decide exactly where to set the boundaries.

Figure 6.17 shows the original population from our hypothetical research study. Note 
that most of the scores are located close to m 5 400. Also note that we have added boundar-
ies separating the middle 95% of the distribution from the extreme 5% or 0.0500 in the two 
tails. Dividing the 0.0500 in half produces a proportion of 0.0250 in the right-hand tail and 
0.0250 in the left-hand tail. Using column C of the unit normal table, the z-score boundar-
ies for the right and left tails are z 5 11.96 and z 5 21.96, respectively. If we are selecting 
an individual from the original untreated population, then it is very unlikely that we would 
obtain a score beyond the z 5 61.96 boundaries.

The boundaries set at z 5 61.96 provide objective criteria for deciding whether our 
sample provides evidence that the treatment has an effect. Specifically, if our sample is 
located in the tail beyond one of the 61.96 boundaries, then we can conclude:

1. The sample is an extreme value, nearly 2 standard deviations away from average, and 
therefore is noticeably different from most individuals in the original population.

2. If the treatment has no effect, then the sample is a very unlikely outcome. Speci�cally, the 
probability of obtaining a sample that is beyond the 61.96 boundaries is less than 5%. 

Therefore, the sample provides clear evidence that the treatment has had an effect.

m 5 400
z 5 21.96 z 5 11.96

Middle 95%

High probability values
(scores near m 5 400)

indicating that the treatment
has no effhas no effhas no ef ect

Extreme 5%

Scores that are very unlikely
to be obtained from the original population

and therefore provide evidence of a treatment effeatment effeatment ef ect

F I G U R E  6 .1 7
Using probability to 
evaluate a treatment 
effect. Values that are 
extremely unlikely to be 
obtained from the original 
population are viewed as 
evidence of a treatment 
effect.
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LO5 1. Which of the following accurately describes a score of X 5 52 or larger in a 
normal distribution with m 5 40 and s 5 5?

a. It is an extreme, very unlikely score.

b. It is higher than average but not extreme or unlikely.

c. It is a little above average.

d. It is an average, representative score.

LO5 2. For a normal distribution with m 5 60 and s 5 10, what X values form the X values form the X
boundaries between the middle 95% of the distribution and the extreme 5% in 
the tails?

a. 51.6 and 68.4

b. 47.2 and 72.8

c. 43.5 and 65.5

d. 40.4 and 79.6

LO5 3. An individual is selected from a normal population with a mean of m 5 80 
with s 5 20, and a treatment is administered to the individual. After treatment, 
the individual’s score is found to be X 5 105. How likely is it that a score this 
large (or larger) would be obtained if the treatment has no effect?

a. p 5 0.1056

b. p 5 0.3944

c. p 5 0.8944

d. p 5 1.2500

1. a 2. d 3. a 

LE A R N I N G C H E C K

A N S W E R S

equivalent to the “proportion of the whole population 
that consists of IQs greater than 108.”

4. For normal distributions, probabilities (proportions) 
can be found in the unit normal table. The table pro-
vides a listing of the proportions of a normal distribu-
tion that correspond to each z-score value. With the 
table, it is possible to move between X values and X values and X
probabilities using a two-step procedure:
a. The z-score formula (Chapter 5) allows you to 

transform X to X to X z or to change z back to X.
b. The unit normal table allows you to look up the prob-

ability (proportion) corresponding to each z-score or 
the z-score corresponding to each probability.

5. Percentiles and percentile ranks measure the relative 
standing of a score within a distribution (see Box 6.1). 
Percentile rank is the percentage of individuals with 
scores at or below a particular X value. A percentile is X value. A percentile is X
an X value that is identified by its rank. The percentile X value that is identified by its rank. The percentile X
rank always corresponds to the proportion to the left 
of the score in question.

S U M M A R Y

1. The probability of a particular event A is defined as a 
fraction or proportion:

psAsAs d 5
number of outcomes classififif ed as A

total number of possible outcomes

2. Our definition of probability is accurate only for ran-
dom samples. There are two requirements that must 
be satisfied for a random sample:
a. Every individual in the population has an equal 

chance of being selected.
b. When more than one individual is being selected, 

the probabilities must stay constant. This means 
there must be sampling with replacement.

3. All probability problems can be restated as proportion 
problems. The “probability of selecting a king from a 
deck of cards” is equivalent to the “proportion of the 
deck that consists of kings.” For frequency distri-
butions, probability questions can be answered by 
determining proportions of area. The “probability of 
selecting an individual with an IQ greater than 108” is 
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probability (145)

random sampling (146)

simple random sample (146)

independent random sampling (147)

independent random sample (147)

random sample (147)

sampling with replacement (147)

sampling without replacement (147)

unit normal table (152)

percentile rank (162)

percentile (162)

KE Y TER M S

The statistics computer package SPSS is not structured to compute probabilities. However, the 
program does report probability values as part of the inferential statistics that we will examine 
later in this book. In the context of inferential statistics, the probabilities are called significance 
levels, and they warn researchers about the probability of misinterpreting their research results.

SPSS ®

FO CUS  O N  PRO B LE M  SO LVIN G

1. We have defined probability as being equivalent to a proportion, which means that you 
can restate every probability problem as a proportion problem. This definition is particu-
larly useful when you are working with frequency distribution graphs in which the popu-
lation is represented by the whole graph and probabilities (proportions) are represented by 
portions of the graph. When working problems with the normal distribution, you always 
should start with a sketch of the distribution. You should shade the portion of the graph 
that reflects the proportion you are looking for.

2. Remember that the unit normal table shows only positive z-scores in column A. However, 
since the normal distribution is symmetrical, the proportions in the table apply to both 
positive and negative z-score values.

3. A common error for students is to use negative values for proportions on the left-hand 
side of the normal distribution. Proportions (or probabilities) are always positive: 10% is 
10% whether it is in the left or right tail of the distribution.

4. The proportions in the unit normal table are accurate only for normal distributions. If a 
distribution is not normal, you cannot use the table.

D E M O N S TR ATIO N  6.1

FINDING PROBABILITY FROM THE UNIT NORMAL TAL TAL T BLE

A population is normally distributed with a mean of m 5 45 and a standard deviation of 
s 5 4. What is the probability of randomly selecting a score that is greater than 43? In other 
words, what proportion of the distribution consists of scores greater than 43?

Sketch the distribution. For this demonstration, the distribution is normal with m 5 45 
and s 5 4. The score of X 5 43 is lower than the mean and therefore is placed to the left of 
the mean. The question asks for the proportion corresponding to scores greater than 43, so 
shade in the area to the right of this score. Figure 6.18 shows the sketch.

Transform the X value to a X value to a X z-score.

z 5
X 2 m

s
5

43 2 45

4
5

2 2

4
5 20.5

STEP 1

STEP 2
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Find the appropriate proportion in the unit normal table. Ignoring the negative size, 
locate z 5 20.50 in column A. In this case, the proportion we want corresponds to the body 
of the distribution and the value is found in column B. For this example,

p(X . 43) 5 p(z . 20.50) 5 0.6915

STEP 3

s 5 4 

m
45

43

F I G U R E  6 .1 8
The distribution for 
Demonstration 6.1.

1. What are the two requirements for a random sample?

2. Define sampling with replacement and explain why is 
it used.

3. Around Halloween each year the grocery store sells 
three-pound bags of candy containing a mixture of 
three different mini-bars: Snickers, Milky Way, and 
Twix.  If the bag has an equal number of each of the 
three bars, then what are the probabilities for each of 
the following?
a. Randomly selecting a Milky Way bar
b. Randomly selecting either a Snickers or a Twix bar
c. Randomly selecting something other than a Twix bar

4. A psychology class consists of 28 males and 52 
females. If the professor selects names from the class 
list using random sampling,
a. what is the probability that the first student selected 

will be a female?
b. and if a random sample of n 5 3 students is selected 

and the first two are both females, what is the prob-
ability that the third student selected will be a male?

5. Draw a vertical line through a normal distribution for 
each of the following z-score locations. Determine 
whether the body is on the right or left side of the line 
and find the proportion in the body.
a. z 5 2.00
b. z 5 0.75
c. z 5 21.40
d. z 5 20.67

6. Draw a vertical line through a normal distribution for 
each of the following z-score locations. Determine 
whether the tail is on the right or left side of the line 
and find the proportion in the tail.
a. z 5 1.00
b. z 5 0.50

PRO B LE M S

c. z 5 21.25
d. z 5 20.40

7 Draw a vertical line through a normal distribution for 
each of the following z-score locations. Find the pro-
portion of the distribution located between the mean 
and the z-score.
a. z 5 1.80
b. z 5 0.55
c. z 5 21.10
d. z 5 20.85

8. Find each of the following probabilities for a normal 
distribution.
a. p(z . 2.25)
b. p(z . 21.20)
c. p(z , 0.40)
d. p(z , 21.75)

9. What proportion of a normal distribution is located 
between each of the following z-score boundaries?
a. z 5 20.50 and z 5 10.50
b. z 5 20.85 and z 5 10.85
c. z 5 21.60 and z 5 11.60

10. Find each of the following probabilities for a normal 
distribution.
a. p(21.80 , z , 0.20)
b. p(20.40 , z , 1.40)
c. p(0.25 , z , 1.25)
d. p(20.90 , z , 20.60)

11. Find the z-score location of a vertical line that separates a 
normal distribution as described in each of the following.
a. 15% in the tail on the right
b. 40% in the tail on the left
c. 75% in the body on the right
d. 60% in the body on the left
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12. Find the z-score boundaries that separate a normal 
distribution as described in each of the following.
a. The middle 20% from the 80% in the tails
b. The middle 25% from the 75% in the tails
c. The middle 70% from the 30% in the tails
d. The middle 90% from the 10% in the tails

13. A normal distribution has a mean of m 5 90 and a 
standard deviation of s 5 15. For each of the follow-
ing scores, indicate whether the tail is to the right or 
left of the score and find the proportion of the distribu-
tion located in the tail.
a. X 5 93
b. X 5 110
c. X 5 85
d. X 5 70

14. A normal distribution has a mean of m 5 60 and a 
standard deviation of s 5 16. For each of the follow-
ing scores, indicate whether the body is to the right or 
left of the score and find the proportion of the distribu-
tion located in the body.
a. X 5 64
b. X 5 80
c. X 5 52
d. X 5 28

15. For a normal distribution with a mean of m 5 85 and 
a standard deviation of s 5 20, find the proportion of 
the population corresponding to each of the following.
a. Scores greater than 89
b. Scores less than 72
c. Scores between 70 and 100

16. In 2014, the New York Yankees had a team batting 
average of m 5 245 (actually 0.245 but we will avoid 
the decimals). Of course, the batting average varies from 
game to game, but assuming that the distribution of bat-
ting averages for 162 games is normal with a standard 
deviation of s 5 40 points, answer each of the following.
a. If you randomly select one game from 2014, what 

is the probability that the team batting average was 
over 300?

b. If you randomly select one game from 2014, what 
is the probability that the team  
batting average was under 200?

17. IQ test scores are standardized to produce a normal 
distribution with a mean of m 5 100 and a standard 
deviation of s 515. Find the proportion of the popula-
tion in each of the following IQ categories.
a. Genius or near genius: IQ over 140
b. Very superior intelligence: IQ from 120 to 140
c. Average or normal intelligence: IQ from 90 to 109

18. The distribution of scores on the SAT is approxi-
mately normal with a mean of m 5 500 and a standard 

deviation of s 5 100. For the population of students 
who have taken the SAT:
a. What proportion have SAT scores less than 400?
b. What proportion have SAT scores greater than 650?
c. What is the minimum SAT score needed to be in 

the highest 20% of the population?
d. If the state college only accepts students from the 

top 40% of the SAT distribution, what is the mini-
mum SAT score needed to be accepted?

19. According to a recent report, the average American 
consumes 22.7 teaspoons of sugar each day (National 
Geographic Magazine, August 2013). Assuming that 
the distribution is approximately normal with a stan-
dard deviation of s 5 4.5, find each of the following 
values.
a. What proportion of people consume more than 30 

teaspoons of sugar a day?
b. What proportion of people consume at least 20 

teaspoons of sugar a day? 

20. A recent report indicates that 2-year-old children from 
well-educated suburban families watched an average 
of m 5 60 minutes of television each day. Assuming 
that the distribution of television-watching times is 
normal with a standard deviation of s 5 25 minutes, 
find each of the following proportions.
a. What proportion of 2-year-old children watch more 

than 2 hours of television each day?
b. What proportion of 2-year-old children watch less 

than 30 minutes a day?

21. A report in 2010 indicates that Americans between 
the ages of 8 and 18 spend an average of m 5 7.5 
hours per day using some sort of electronic device 
such as smart phones, computers, or tablets. As-
sume that the distribution of times is normal with 
a standard deviation of s 5 2.5 hours and find the 
following values.
a. What is the probability of selecting an individual 

who uses electronic devices more than 9 hours a 
day?

b. What proportion of 8- to 18-year-old Americans 
spend between 8 and 12 hours per day using elec-
tronic devices?  In symbols, p (8 , X , 12) 5 ? 

22. Seattle, Washington, averages m 5 34 inches of an-
nual precipitation. Assuming that the distribution of 
precipitation amounts is approximately normal with 
a standard deviation of s 5 6.5 inches, determine 
whether each of the following represents a fairly typi-
cal year, an extremely wet year, or an extremely dry 
year. 
a. Annual precipitation of 41.8 inches
b. Annual precipitation of 49.6 inches
c. Annual precipitation of 28.0 inches
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7-1 Samples, Populations, and the Distribution of Sample Means

7-2 Shape, Central Tendency, and Variability for the Distribution  
of Sample Means 

7-3 z-Scores and Probability for Sample Means

7-4 More about Standard Error

7-5 Looking Ahead to Inferential Statistics

Summary

Focus on Problem Solving

Demonstration 7.1

Problems

Probability and Samples: The 
Distribution of Sample Means 7

CHAP TER

Tools You Will Need
The following items are consid-
ered essential background mate-
rial for this chapter. If you doubt 
your knowledge of any of these 
items, you should review the 
appropriate chapter and section 
before proceeding.

 ■ Random sampling (Chapter 6)
 ■ Probability and the normal 

distribution (Chapter 6)
 ■ z-Scores (Chapter 5)z-Scores (Chapter 5)z
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7-1 Samples, Populations, and the Distribution of Sample Means

LE A R N I N G O B J E C T IV E  

1. De�ne the distribution of sample means, describe the logically predictable charac-
teristics of the distribution, and use this information to determine characteristics of 
the distribution of sample means for a speci�c population and sample size. 

The preceding two chapters presented the topics of z-scores and probability. Whenever a 
score is selected from a population, you should be able to compute a z-score that describes 
exactly where the score is located in the distribution. If the population is normal, you also 
should be able to determine the probability value for obtaining any individual score. In a 
normal distribution, for example, any score located in the tail of the distribution beyond 
z 5 12.00 is an extreme value, and a score this large has a probability of only p 5 0.0228.

However, the z-scores and probabilities that we have considered so far are limited to 
situations in which the sample consists of a single score. Most research studies involve 
much larger samples such as n 5 22 Amazing Race contestants or n 5 100 preschool 
children. In these situations, the sample mean, rather than a single score, is used to answer 
questions about the population. In this chapter we extend the concepts of z-scores and 
probability to cover situations with larger samples. In particular, we introduce a proce-
dure for transforming a sample mean into a z-score. Thus, a researcher is able to compute 
a z-score that describes an entire sample. As always, a z-score value near zero indicates 
a central, representative sample; a z-value beyond 12.00 or –2.00 indicates an extreme 
sample. Thus, it is possible to describe how any specific sample is related to all the other 
possible samples. In most situations, we also can use the z-score value to find the prob-
ability of obtaining a specific sample, no matter how many scores the sample contains.

In general, the difficulty of working with samples is that a sample provides an incom-
plete picture of the population. Suppose, for example, a researcher randomly selects a 
sample of n 5 25 students from a state college. Although the sample should be representa-
tive of the entire student population at that state college, there are almost certainly some 
segments of the population that are not included in the sample. In addition, any statistics 
that are computed for the sample will not be identical to the corresponding parameters 
for the entire population. For example, the average IQ for the sample of 25 students will 
not be the same as the overall mean IQ for the entire population. This difference, or error
between sample statistics and the corresponding population parameters, is called sampling 
error and was illustrated in Figure 1.2 (page 7).error and was illustrated in Figure 1.2 (page 7).error

Sampling error is the natural discrepancy, or amount of error, between a sample 
statistic and its corresponding population parameter.

Furthermore, samples are variable; they are not all the same. If you take two separate 
samples from the same population, the samples will be different. They will contain differ-
ent individuals, they will have different scores, and they will have different sample means. 
How can you tell which sample gives the best description of the population? Can you even 
predict how well a sample will describe its population? What is the probability of selecting 
a sample with specific characteristics? These questions can be answered once we establish 
the rules that relate samples and populations. 

■ The Distribution of Sample Means
As noted, two separate samples probably will be different even though they are taken from 
the same population. The samples will have different individuals, different scores, different 
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means, and so on. In most cases, it is possible to obtain thousands of different samples from 
one population. With all these different samples coming from the same population, it may 
seem hopeless to try to establish some simple rules for the relationships between samples 
and populations. Fortunately, however, the huge set of possible samples forms a relatively 
simple and orderly pattern that makes it possible to predict the characteristics of a sample 
with some accuracy. The ability to predict sample characteristics is based on the distribu-
tion of sample means.

The distribution of sample means is the collection of sample means for all the pos-
sible random samples of a particular size (nsible random samples of a particular size (nsible random samples of a particular size ( ) that can be obtained from a population.n) that can be obtained from a population.n

Notice that the distribution of sample means contains all the possible samples. It is nec-
essary to have all the possible values to compute probabilities. For example, if the entire 
set contains exactly 100 samples, then the probability of obtaining any specific sample is 
1 out of 100: p 5 1

100 (Box 7.1).
Also, you should notice that the distribution of sample means is different from dis-

tributions we have considered before. Until now we always have discussed distributions 
of scores; now the values in the distribution are not scores, but statistics (sample means). 
Because statistics are obtained from samples, a distribution of statistics is often referred to 
as a sampling distribution.

A sampling distribution is a distribution of statistics obtained by selecting all the 
possible samples of a speci�c size from a population.

Thus, the distribution of sample means is an example of a sampling distribution. In fact, 
it often is called the sampling distribution of M.

If you actually wanted to construct the distribution of sample means, you would first 
select a random sample of a specific size (n) from a population, calculate the sample mean, 
and place the sample mean in a frequency distribution. Then you select another random 
sample with the same number of scores. Again, you calculate the sample mean and add it 

I have a bad habit of losing playing cards. This habit 
is compounded by the fact that I always save the old 
deck in the hope that someday I will find the missing 
cards. As a result, I have a drawer filled with partial 
decks of playing cards. Suppose that I take one of 
these almost-complete decks, shuffle the cards care-
fully, and then randomly select one card. What is the 
probability that I will draw a king?

You should realize that it is impossible to answer 
this probability question. To find the probability of 
selecting a king, you must know how many cards 
are in the deck and exactly which cards are missing. 
(It is crucial that you know whether any kings are 
missing.) The point of this simple example is that any 
probability question requires that you have complete 

information about the population from which the 
sample is being selected. In this case, you must know 
all the possible cards in the deck before you can find 
the probability for selecting any specific card.

In this chapter, we are examining probability 
and sample means. To find the probability for any 
specific sample mean, you first must know all the pos-
sible sample means. Therefore, we begin by defining 
and describing the set of all possible sample means 
that can be obtained from a particular population. 
Once we have specified the complete set of all pos-
sible sample means (i.e., the distribution of sample 
means), we will be able to find the probability 
of selecting any specific sample means.

information about the population from which the 
sample is being selected. In this case, you must know 
all the possible cards in the deck before you can find 
the probability for selecting any specific card.

and sample means. To find the probability for any 
specific sample mean, you first must know 
sible sample means
and describing the set of all possible sample means 
that can be obtained from a particular population. 
Once we have specified the complete set of all pos
sible sample means (i.e., the distribution of sample 
means), we will be able to find the probability 
of selecting any specific sample means.

BOX 7.1 Probability and the Distribution of Sample Means

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



172 CHAPTER 7 | Probability and Samples: The Distribution of Sample Means

to your distribution. You continue selecting samples and calculating means, over and over, 
until you have the complete set of all the possible random samples. At this point, your 
frequency distribution will show the distribution of sample means.

■ Characteristics of the Distribution of Sample Means
We demonstrate the process of constructing a distribution of sample means in Example 
7.1, but first we use common sense and a little logic to predict the general characteristics 
of the distribution.

1. The sample means should pile up around the population mean. Samples are not 
expected to be perfect but they are representative of the population. As a result, 
most of the sample means should be relatively close to the population mean.

2. The pile of sample means should tend to form a normal-shaped distribution.  
Logically, most of the samples should have means close to m, and it should be  
relatively rare to �nd sample means that are substantially different from m. As a 
result, the sample means should pile up in the center of the distribution (around m) 
and the frequencies should taper off as the distance between M and M and M m increases. 
This describes a normal-shaped distribution.

3. In general, the larger the sample size, the closer the sample means should be to the 
population mean, m. Logically, a large sample should be a better representative 
than a small sample. Thus, the sample means obtained with a large sample size 
should cluster relatively close to the population mean; the means obtained from 
small samples should be more widely scattered.

As you will see, each of these three commonsense characteristics is an accurate descrip-
tion of the distribution of sample means. The following example demonstrates the process 
of constructing the distribution of sample means by repeatedly selecting samples from a 
population.

We begin with a population that consists of only four scores: 2, 4, 6, 8. This population is 
pictured in the frequency distribution histogram in Figure 7.1.

We are going to use this population as the basis for constructing the distribution of sam-
ple means for n 5 2. Remember: this distribution is the collection of sample means from all 
the possible random samples of n 5 2 from this population. We begin by looking at all the 
possible samples. For this example, there are 16 different samples, and they are all listed 
in Table 7.1. Notice that the samples are listed systematically. First, we list all the possible 
samples with X 5 2 as the first score, then all the possible samples with X 5 4 as the first 
score, and so on. In this way, we are sure that we have all of the possible random samples.

E X A M P L E  7 . 1

Remember that random 
sampling requires sam-
pling with replacement.

0 1 2 3 4 5 6 7 8 9

1

2

Fr
e

q
u

e
n

c
y

Scores

0
F I G U R E  7.1
Frequency distribution 
histogram for a population 
of 4 scores: 2, 4, 6, 8.
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SECTION 7-1 | Samples, Populations, and the Distribution of Sample Means 173

Next, we compute the mean, M, for each of the 16 samples (see the last column of 
Table 7.1). The 16 means are then placed in a frequency distribution histogram in 
Figure 7.2. This is the distribution of sample means. Note that the distribution in 
Figure 7.2 demonstrates two of the characteristics that we predicted for the distribution 
of sample means.

1. The sample means pile up around the population mean. For this example, the 
population mean is m 5 5, and the sample means are clustered around a value of 5. 
It should not surprise you that the sample means tend to approximate the popula-
tion mean. After all, samples are supposed to be representative of the population.

2. The distribution of sample means is approximately normal in shape. This is a char-
acteristic that is discussed in detail later and is extremely useful because we already 
know a great deal about probabilities and the normal distribution (Chapter 6).

Scores
Sample Mean 

(M)Sample First Second

1 2 2 2
2 2 4 3
3 2 6 4
4 2 8 5
5 4 2 3
6 4 4 4
7 4 6 5
8 4 8 6
9 6 2 4

10 6 4 5
11 6 6 6
12 6 8 7
13 8 2 5
14 8 4 6
15 8 6 7
16 8 8 8

TA B L E  7.1
The complete set of  
possible samples of  
n 5 2 scores that can be 
obtained from the  
population presented in 
Figure 7.1. Notice that the 
table lists random  
samples. This requires 
sampling with replace-
ment, so it is possible 
to select the same score 
twice.

0 1 2 3 4 5 6 7 8 9

1

2

3

4

Fr
e

q
u

e
n

c
y

Sample means

0

F I G U R E  7. 2
The distribution of sample 
means for n means for n means for 5 2. The distri-
bution shows the 16 sample 
means from Table 7.1.
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Finally, you should realize that we can use the distribution of sample means to 
achieve the goal for this chapter, which is to answer probability questions about sam-
ple means. For example, if you take a sample of n 5 2 scores from the original popu-
lation, what is the probability of obtaining a sample with a mean greater than 7? In 
symbols,

p(M . 7) 5 ?

Because probability is equivalent to proportion, the probability question can be restated as 
follows: Of all the possible sample means, what proportion have values greater than 7? In 
this form, the question is easily answered by looking at the distribution of sample means. 
All the possible sample means are pictured (see Figure 7.2), and only 1 out of the 16 means 
has a value greater than 7. The answer, therefore, is 1 out of 16, or p 5 1

16. ■

Remember that our 
goal in this chapter is 
to answer probability 
questions about samples 
with n . 1.

LO1 1. If all the possible random samples, each with n 5 9 scores, are selected from a 
normal population with µ 5 80 and s 5 18, and the mean is calculated for 
each sample, then what is the average value for all of the sample means?

a. 9

b. 80

c. 9(80) 5 720

d. Cannot be determined without additional information

LO1 2. All the possible random samples of size n 5 2 are selected from a population 
with m 5 40 and s 5 10 and the mean is computed for each sample. Then all 
the possible samples of size n 5 25 are selected from the same population and 
the mean is computed for each sample. How will the distribution of sample 
means for n 5 2 compare with the distribution for n 5 25? 

a. The two distributions will have the same mean and variance.

b. The mean and the variance for n 5 25 will both be larger than the mean 
and variance for n 5 2.

c. The mean and the variance for n 5 25 will both be smaller than the mean 
and variance for n 5 2.

d. The variance for n 5 25 will be smaller than the variance for n 5 2 but the 
two distributions will have the same mean.

LO1 3. If all the possible random samples of size n 5 25 are selected from a popula-
tion with m 5 80 and s 5 10 and the mean is computed for each sample, then 
what shape is expected for the distribution of sample means?

a. The sample means tend to form a normal-shaped distribution.

b. The distribution of sample means will have the same shape as the sample 
distribution.

c. The sample will be distributed evenly across the scale, forming a rectangular-
shaped distribution.

d. There are thousands of possible samples and it is impossible to predict the 
shape of the distribution. 

1. b 2. d 3. a

LE A R N I N G C H E C K

A N S W E R S
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7-2 Shape, Central Tendency, and Variability for the Distribution 
of Sample Means 

LE A R N I N G O B J E C T IV E S

2. Explain how the central limit theorem speci�es the shape, central tendency, and 
variability for the distribution of sample means, and use this information to con-
struct the distribution of sample means for a speci�c sample size from a speci�ed 
population.  

3. Describe how the standard error of M is calculated, explain what it measures, M is calculated, explain what it measures, M
describe how it is related to the standard deviation for the population, and use this 
information to determine the standard error for samples of a speci�c size selected 
from a speci�ed population.

■ The Central Limit Theorem
Example 7.1 demonstrates the construction of the distribution of sample means for an overly 
simplified situation with a very small population and samples that each contain only n 5 2 
scores. In more realistic circumstances, with larger populations and larger samples, the 
number of possible samples increases dramatically and it is virtually impossible to actu-
ally obtain every possible random sample. Fortunately, it is possible to determine exactly 
what the distribution of sample means looks like without taking hundreds or thousands 
of samples. Specifically, a mathematical proposition known as the central limit theorem
provides a precise description of the distribution that would be obtained if you selected 
every possible sample, calculated every sample mean, and constructed the distribution of 
the sample mean. This important and useful theorem serves as a cornerstone for much of 
inferential statistics. Following is the essence of the theorem.

Central limit theorem: For any population with mean m and standard deviation s, 
the distribution of sample means for sample size n will have a mean of m and a stan-
dard deviation of syÏnÏnÏÏ  and will approach a normal distribution as n approaches 
in�nity.

The value of this theorem comes from two simple facts. First, it describes the distribu-
tion of sample means for any population, no matter what shape, mean, or standard devia-
tion. Second, the distribution of sample means “approaches” a normal distribution very 
rapidly. By the time the sample size reaches n 5 30, the distribution is almost perfectly 
normal.

Note that the central limit theorem describes the distribution of sample means by identi-
fying the three basic characteristics that describe any distribution: shape, central tendency, 
and variability. We will examine each of these.

■ The Shape of the Distribution of Sample Means
It has been observed that the distribution of sample means tends to be a normal distribution. 
In fact, this distribution is almost perfectly normal if either of the following two conditions 
is satisfied:

1. The population from which the samples are selected is a normal distribution.

2. The number of scores (n) in each sample is relatively large, around 30 or more.
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176 CHAPTER 7 | Probability and Samples: The Distribution of Sample Means

As n gets larger, the distribution of sample means will closely approximate a normal dis-
tribution. When n . 30, the distribution is almost normal regardless of the shape of the 
original population.

As we noted earlier, the fact that the distribution of sample means tends to be normal 
is not surprising. Whenever you take a sample from a population, you expect the sample 
mean to be near to the population mean. When you take lots of different samples, you 
expect the sample means to “pile up” around m, resulting in a normal-shaped distribution. 
You can see this tendency emerging (although it is not yet normal) in Figure 7.2.

■ The Mean of the Distribution of Sample Means:  
The Expected Value of M
In Example 7.1, the distribution of sample means is centered at the mean of the popula-
tion from which the samples were obtained. In fact, the average value of all the sample 
means is exactly equal to the value of the population mean. This fact should be intuitively 
reasonable; the sample means are expected to be close to the population mean, and they do 
tend to pile up around m. The formal statement of this phenomenon is that the mean of the 
distribution of sample means always is identical to the population mean. This mean value is 
called the expected value of M. In commonsense terms, a sample mean is “expected” to be expected value of M. In commonsense terms, a sample mean is “expected” to be expected value of
near its population mean. When all of the possible sample means are obtained, the average 
value is identical to m.

The fact that the average value of M is equal to M is equal to M m was first introduced in Chapter 4 
(page 106) in the context of biased versus biased versus biased unbiased statistics. The sample mean is an unbiased statistics. The sample mean is an unbiased
example of an unbiased statistic, which means that on average the sample statistic produces 
a value that is exactly equal to the corresponding population parameter. In this case, the 
average value of all the sample means is exactly equal to m.  

The mean of the distribution of sample means is equal to the mean of the popula-
tion of scores, m, and is called the expected value of M.

■ The Standard Error of M
So far, we have considered the shape and the central tendency of the distribution of sample 
means. To completely describe this distribution, we need one more characteristic: vari-
ability. The value we will be working with is the standard deviation for the distribution of 
sample means, which is identified by the symbol sM and is called the M and is called the M standard error of M.

When the standard deviation was first introduced in Chapter 4, we noted that this mea-
sure of variability serves two general purposes. First, the standard deviation describes the 
distribution by telling whether the individual scores are clustered close together or scat-
tered over a wide range. Second, the standard deviation measures how well any individual 
score represents the population by providing a measure of how much distance is reasonable 
to expect between a score and the population mean. The standard error serves the same two 
purposes for the distribution of sample means.

1. The standard error describes the distribution of sample means. It provides a  
measure of how much difference is expected from one sample to another. When the 
standard error is small, all the sample means are close together and have similar 
values. If the standard error is large, the sample means are scattered over a wide 
range and there are big differences from one sample to another.

2. Standard error measures how well an individual sample mean represents the entire 
distribution. Speci�cally, it provides a measure of how much distance is reasonable 

Occasionally, the symbol 
mM is used to represent 
the mean of the distri-
bution of sample means. 
However, mM 5 m  
and we will use the  
symbol m to refer to the 
mean of the distribution 
of sample means.
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to expect between a sample mean and the overall mean for the distribution of sample 
means. However, because the overall mean is equal to m, the standard error also 
provides a measure of how much distance to expect between a sample mean (M) and M) and M
the population mean (m).

Remember that a sample is not expected to provide a perfectly accurate reflection of 
its population. Although a sample mean should be representative of the population mean, 
there typically is some error between the sample and the population. The standard error 
measures exactly how much difference is expected on average between a sample mean, M
and the population mean, m.

The standard deviation of the distribution of sample means, sMsMs , is called the standard 
error of M. The standard error provides a measure of how much distance is expected M. The standard error provides a measure of how much distance is expected M
on average between a sample mean (Mon average between a sample mean (Mon average between a sample mean ( ) and the population mean (m).m).m

Once again, the symbol for the standard error is sM. The s indicates that this value is 
a standard deviation, and the subscript M indicates that it is the standard deviation for the M indicates that it is the standard deviation for the M
distribution of sample means. The standard error is an extremely valuable measure because 
it specifies precisely how well a sample mean estimates its population mean—that is, how 
much error you should expect, on the average, between M and M and M m. Remember that one basic 
reason for taking samples is to use the sample data to answer questions about the popula-
tion. However, you do not expect a sample to provide a perfectly accurate picture of the 
population. There always is some discrepancy or error between a sample statistic and the 
corresponding population parameter. Now we are able to calculate exactly how much error 
to expect. For any sample size (n), we can compute the standard error, which measures the 
average distance between a sample mean and the population mean.

According to the Central Limit Theorem, the standard error is equal to syÏnÏnÏÏ . Thus, 
the magnitude of the standard error is determined by two factors: (1) the size of the sample 
and (2) the standard deviation of the population from which the sample is selected. We will 
examine each of these factors.

The Sample Size Earlier we predicted, based on common sense, that the size of a 
sample should influence how accurately the sample represents its population. Specifically, 
a large sample should be more accurate than a small sample. In general, as the sample size 
increases, the error between the sample mean and the population mean should decrease. 
This rule is also known as the law of large numbers.

The law of large numbers states that the larger the sample size (n), the more  
probable it is that the sample mean will be close to the population mean.

The Population Standard Deviation As we noted earlier, the size of the standard 
error depends on the size of the sample. Specifically, bigger samples have smaller error, 
and smaller samples have bigger error. At the extreme, the smallest possible sample 
(and the largest standard error) occurs when the sample consists of n 5 1 score. At this 
extreme, each sample is a single score and the distribution of sample means is identical to 
the original distribution of scores. In this case, the standard deviation for the distribution 
of sample means, which is the standard error, is identical to the standard deviation for the 
distribution of scores. In other words, when n 5 1, the standard error 5 sM is identical to M is identical to M

the standard deviation 5 s. 

When n 5 1, sM 5 s (standard error 5 standard deviation).
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You can think of the standard deviation as the “starting point” for standard error. When 
n 5 1, the standard error and the standard deviation are the same: sM 5 s. As sample 
size increases beyond n 5 1, the sample becomes a more accurate representative of the 
population, and the standard error decreases. The formula for standard error expresses this 
relationship between standard deviation and sample size (n).

standard error 5 sM 5
s

ÏnÏnÏÏ
(7.1)

Note that the formula satisfies all of the requirements for the standard error. Specifically,

a. As sample size (n) increases, the size of the standard error decreases. (Larger 
samples are more accurate.)

b. When the sample consists of a single score (n 5 1), the standard error is the same 
as the standard deviation (sM 5 s).

Figure 7.3 illustrates the general relationship between standard error and sample size. 
(The calculations for the data points in Figure 7.3 are presented in Table 7.2.) Again, the 
basic concept is that the larger a sample is, the more accurately it represents its popula-
tion. Also note that the standard error decreases in relation to the square root of the sample square root of the sample square root
size. As a result, researchers can substantially reduce error by increasing sample size up to 
around n 5 30. However, increasing sample size beyond n 5 30 produces relatively small 
improvement in how well the sample represents the population.

Defining the Standard Error in Terms of Variance In Equation 7.1 and in most 
of the preceding discussion, we have defined standard error in terms of the population 
standard deviation. However, the population standard deviation (s) and the population 
variance (s2) are directly related, and it is easy to substitute variance into the equation for 
standard error. Using the simple equality s 5 Ïs2Ï , the equation for standard error can be 
rewritten as follows:

standard error 5 sM 5
s

ÏnÏnÏÏ
5

Ïs2Ï
ÏnÏnÏÏ

5Îs2Î nÎ (7.2)

Throughout the rest of this chapter (and in Chapter 8), we will continue to define stan-
dard error in terms of the standard deviation (Equation 7.1). However, in later chapters 

This formula is  
contained in the  
central limit theorem.

1

Standard distance
between a sample

mean and
the population

mean

Standard Error
(based on s 5 10)

4 9 16 25 36 49 64 100

Number of scores in the sample (n)

9
8
7
6
5
4
3
2
1

10

0

F I G U R E  7. 3
The relationship between standard error and sample size. As the sample size is increased, there is less error between the 
sample mean and the population mean.
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(starting in Chapter 9) the formula based on variance (Equation 7.2) will become more 
useful.

The following example is an opportunity for you to test your understanding of the 
standard error by computing it for yourself.

If samples are selected from a population with m 5 50 and s 5 12, then what is the 
standard error of the distribution of sample means for n 5 4 and for a sample of size 
n 5 16? You should obtain answers of sM 5 6 for n 5 4 and sM 5 3 for n 5 16. ■

■ Three Different Distributions
Before we move forward with our discussion of the distribution of sample means, we will 
pause for a moment to emphasize the idea that we are now dealing with three different but 
interrelated distributions.

1. First, we have the original population of scores. This population contains the scores 
for thousands or millions of individual people, and it has its own shape, mean, and 
standard deviation. For example, the population of IQ scores consists of millions of 
individual IQ scores that form a normal distribution with a mean of m 5 100 and a 
standard deviation of s 5 15. An example of a population is shown in Figure 7.4(a).

2. Next, we have a sample that is selected from the population. The sample consists 
of a small set of scores for a few people who have been selected to represent the 
entire population. For example, we could select a sample of n 5 25 people and 
measure each individual’s IQ score. The 25 scores could be organized in a  
frequency distribution and we could calculate the sample mean and the sample 
standard deviation. Note that the sample also has its own shape, mean, and  
standard deviation. An example of a sample is shown in Figure 7.4(b).

3. The third distribution is the distribution of sample means. This is a theoretical 
distribution consisting of the sample means obtained from all the possible random 
samples of a speci�c size. For example, the distribution of sample means for samples 

E X A M P L E  7 . 2

Sample Size (n)   Standard Error

       1 sM 5 
10

Ï1Ï
5 10.00

4 sM 5
10

Ï4Ï4ÏÏ
5 5.00

9 sM 5
10

Ï9Ï
5 3.33

16 sM 5
10

Ï16Ï
5 2.50

      25 sM 5
10

Ï25Ï
5 2.00

49 sM 5
10

Ï4Ï4Ï 9Ï
5 1.43

64 sM 5
10

Ï64Ï
5 1.25

100 sM 5
10

Ï100Ï
5 1.00

TA B L E  7. 2
Calculations for the points 
shown in Figure 7.3. 
Again, notice that the 
size of the standard error 
decreases as the size of the 
sample increases.
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of n 5 25 IQ scores would be normal with a mean (expected value) of m 5 100 and 
a standard deviation (standard error) of sMsMs 5 15

Ï25Ï
5 3. This distribution, shown in 

Figure 7.4(c), also has its own shape, mean, and standard deviation. 

Note that the scores for the sample [Figure 7.4(b)] were taken from the original popu-
lation [Figure 7.4(a)] and that the mean for the sample is one of the values contained 
in the distribution of sample means [Figure 7.4(c)]. Thus, the three distributions are all 
connected, but they are all distinct.

m 5 100

s 5 15

(a) Original population of IQ scores.

80 90 100 110 120 130

s 5 11.5

M 5 M 5 M 101.2

(b) A sample of n 5 25 IQ scores.

m 5 100

sM 5 M 5 M 3

(c) The distribution of sample means. Sample means for
all the possible random samples of n 5 25 IQ scores.

F I G U R E  7. 4
Three distributions. Part (a) 
shows the population of 
IQ scores. Part (b) shows a 
sample of n sample of n sample of 5 25 IQ scores. 
Part (c) shows the distribution 
of sample means for samples 
of n of n of 5 25 IQ scores. Note 
that the mean for the sample 
in part (b) is one of the thou-
sands of sample means in the 
distribution shown in part (c).
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LO2 1. If random samples, each with n 5 4 scores, are selected from a normal popula-
tion with m 5 80 and s 5 10, then what is the expected value of the mean for 
the distribution of sample means?

a. 2.5

b. 5

c. 40

d. 80

LO3 2. If random samples, each with n 5 9 scores, are selected from a normal 
population with m 5 80 and s 5 18, and the mean is calculated for each 
sample, then how much distance is expected on average between M and M and M m? 

a. 2 points

b. 6 points

c. 18 points

d. Cannot be determined without additional information

LO3 3. A sample of n 5 4 scores has a standard error of 12. What is the standard 
deviation of the population from which the sample was obtained?

a. 48

b. 24

c. 6

d. 3

1. d 2. b 3. b

LE A R N I N G C H E C K

A N S W E R S

7-3 z-Scores and Probability for Sample Means 

LE A R N I N G O B J E C T IV E S

4. Calculate the z-score for a sample mean.

5. Describe the circumstances in which the distribution of sample means is normal 
and, in these circumstances, �nd the probability associated with a speci�c sample.

The primary use for the distribution of sample means is to find the probability of selecting 
a sample with a specific mean. Recall that probability is equivalent to proportion. Because 
the distribution of sample means presents the entire set of all possible sample means, we 
can use proportions of this distribution to determine the probability of obtaining a sample 
with a specific mean. The following example demonstrates this process.

The population of scores on the SAT forms a normal distribution with m 5 500 and 
s 5 100. If you take a random sample of n 5 16 students, what is the probability that the 
sample mean will be greater than M 5 525?

First, you can restate this probability question as a proportion question: Out of all the 
possible sample means, what proportion have values greater than 525? You know about “all 
the possible sample means”; this is the distribution of sample means. The problem is to find 
a specific portion of this distribution.

Although we cannot construct the distribution of sample means by repeatedly taking 
samples and calculating means (as in Example 7.1), we know exactly what the distribution 

E X A M P L E  7 . 3

Caution: Whenever 
you have a probability 
question about a sample 
mean, you must use the 
distribution of sample 
means.
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looks like based on the information from the central limit theorem. Specifically, the distri-
bution of sample means has the following characteristics:

a. The distribution is normal because the population of SAT scores is normal.

b. The distribution has a mean of 500 because the population mean is m 5 500.

c. For n 5 16, the distribution has a standard error of sM 5 25:

sM 5
s

ÏnÏnÏÏ
5

100

Ï16Ï
5

100

4
5 25

This distribution of sample means is shown in Figure 7.5.
We are interested in sample means greater than 525 (the shaded area in Figure 7.5), so 

the next step is to use a z-score to locate the exact position of M 5 525 in the distribution. 
The value 525 is located above the mean by 25 points, which is exactly 1 standard devia-
tion (in this case, exactly 1 standard error). Thus, the z-score for M 5 525 is z 5 11.00.

Because this distribution of sample means is normal, you can use the unit normal table 
to find the probability associated with z 5 11.00. The table indicates that 0.1587 of the 
distribution is located in the tail of the distribution beyond z 5 11.00. Our conclusion is 
that it is relatively unlikely, p 5 0.1587 (15.87%), to obtain a random sample of n 5 16 
students with an average SAT score greater than 525. ■

■ A z-Score for Sample Means
As demonstrated in Example 7.3, it is possible to use a z-score to describe the exact loca-
tion of any specific sample mean within the distribution of sample means. The z-score tells 
exactly where the sample mean is located in relation to all the other possible sample means 
that could have been obtained. As defined in Chapter 5, a z-score identifies the location 
with a signed number so that

1. the sign tells whether the location is above (1) or below (–) the mean.

2. the number tells the distance between the location and the mean in terms of the 
number of standard deviations.

However, we are now finding a location within the distribution of sample means. There-
fore, we must use the notation and terminology appropriate for this distribution. First, we 

M

z

500 525

0 21

550
m

sM 5 255 255

F I G U R E  7. 5
The distribution of sample 
means for n means for n means for 5 16. Samples 
were selected from a normal 
population with m 5 500 and 
s 5 100.
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are finding the location for a sample mean (M) rather than a score (M) rather than a score (M X). Second, the standard X). Second, the standard X
deviation for the distribution of sample means is the standard error, sM. Therefore, the 
z-score for a sample mean can be defined as a signed number that identifies the location of 
the sample mean in the distribution of sample means so that

1. the sign tells whether the sample mean is located above (1) or below (–) the mean 
for the distribution (which is the population mean, m).

2. the number tells the distance between the sample mean and m in terms of the  
number of standard errors.

With these changes, the z-score formula for locating a sample mean is

z 5
M 2 m

sM
(7.3)

Just as every score (X) has a X) has a X z-score that describes its position in the distribution of 
scores, every sample mean (M) has a M) has a M z-score that describes its position in the distribu-
tion of sample means. When the distribution of sample means is normal, it is possible to 
use z-scores and the unit normal table to find the probability associated with any specific 
sample mean (as in Example 7.3). The following example is an opportunity for you to test 
your understanding of z-scores and probability for sample means.

A sample of n 5 4 scores is selected from a normal distribution with a mean of m 5 40 and 
a standard deviation of s 5 16. 

a. Find the z-score for a sample mean of M 5 42.  

b. Determine the probability of obtaining a sample mean larger than M 5 42. 

You should obtain z 5 0.25 and p 5 0.4013. ■

The following example demonstrates that the distribution of sample means also can be 
used to make quantitative predictions about the kinds of samples that should be obtained 
from any population.

Once again, the distribution of SAT scores forms a normal distribution with a mean of 
m 5 500 and a standard deviation of s 5 100. For this example, we are going to determine 
what kind of sample mean is likely to be obtained as the average SAT score for a random 
sample of n 5 25 students. Specifically, we will determine the exact range of values that is 
expected for the sample mean 80% of the time.

We begin with the distribution of sample means for n 5 25. This distribution is normal 
with an expected value of m 5 500 and, with n 5 25, the standard error is

sM 5
s

ÏnÏnÏÏ
5

100

Ï25Ï
5

100

5
5 20

(Figure 7.6). Our goal is to find the range of values that make up the middle 80% of the 
distribution. Because the distribution is normal we can use the unit normal table to deter-
mine the boundaries for the middle 80%. First, the 80% is split in half, with 40% (0.4000) 
on each side of the mean. Looking up 0.4000 in column D (the proportion between the 
mean and z), we find a corresponding z-score of z 5 1.28. Thus, the z-score boundaries 
for the middle 80% are z 5 11.28 and z 5 –1.28. By definition, a z-score of 1.28 repre-
sents a location that is 1.28 standard deviations (or standard errors) from the mean. With 
a standard error of 20 points, the distance from the mean is 1.28(20) 5 25.6 points. The 

Caution: When comput-
ing z for a single score, 
use the standard devia-
tion, s. When comput-
ing z for a sample mean, 
you must use the stan-
dard error, sM. 

E X A M P L E  7 . 4

E X A M P L E  7 . 5
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mean is m 5 500, so a distance of 25.6 in both directions produces a range of values from 
474.4 to 525.6.

Thus, 80% of all the possible sample means are contained in a range between 474.4 and 
525.6. If we select a sample of n 5 25 students, we can be 80% confident that the mean 
SAT score for the sample will be in this range. ■

The point of Example 7.5 is that the distribution of sample means makes it possible to 
predict the value that ought to be obtained for a sample mean. Because the population mean 
is m 5 500, we know that a sample of n 5 25 students ought to have a mean SAT score 
around 500. More specifically, we are 80% confident that the value of the sample mean 
will be between 474.4 and 525.6. The ability to predict sample means in this way will be a 
valuable tool for the inferential statistics that follow.

M

z

500

40% 40% 10%10%

021.28 11.28

525.6474.4
m

20

F I G U R E  7.6
The middle 80% of the distribu-
tion of sample means for n 5 25. 
Samples were selected from a 
normal population with m 5 500 
and s 5 100.

LO4 1. A sample of n 5 16 scores is obtained from a population with m 5 70 and 
s 5 20. If the sample mean is M 5 75, then what is the z-score corresponding 
to the sample mean?

a. z 5 0.25

b. z 5 0.50

c. z 5 1.00

d. z 5 2.00

LO5 2. A random sample of n 5 4 scores is obtained from a normal population with 
m 5 20 and s 5 4. What is the probability of obtaining a mean greater than 
M 5 22 for this sample?

a. 0.50

b. 1.00

c. 0.1587

d. 0.3085

LE A R N I N G C H E C K
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LO5 3. A random sample of n 5 4 scores is obtained from a normal population with 
m 5 40 and s 5 6. What is the probability of obtaining a mean greater than 
M 5 46 for this sample?

a. 0.3085

b. 0.1587

c. 0.0668

d. 0.0228

1. c 2. c 3. dA N S W E R S

7-4 More about Standard Error

LE A R N I N G O B J E C T IV E   

6. Describe how the magnitude of the standard error is related to the size of the 
sample and determine the sample size needed to produce a speci�ed standard error 
or the new standard error produced by a speci�c change in the sample size.  

In Chapter 5, we introduced the idea of z-scores to describe the exact location of individual 
scores within a distribution. In Chapter 6, we introduced the idea of finding the probability 
of obtaining any individual score, especially scores from a normal distribution. By now, 
you should realize that most of this chapter is simply repeating the same things that were 
covered in Chapters 5 and 6, but with two adjustments:

1. We are now using the distribution of sample means instead of a distribution of 
scores.

2. We are now using the standard error instead of the standard deviation.

Of these two adjustments, the primary new concept in Chapter 7 is the standard error, and 
the single rule that you need to remember is:

Whenever you are working with a sample mean, you must use the standard error. 

This single rule encompasses essentially all of the new content of Chapter 7. Therefore, 
this section will focus on the concept of standard error to ensure that you have a good 
understanding of this new concept.

■ Sampling Error and Standard Error
At the beginning of this chapter, we introduced the idea that it is possible to obtain 
thousands of different samples from a single population. Each sample will have its own 
individuals, its own scores, and its own sample mean. The distribution of sample means 
provides a method for organizing all of the different sample means into a single picture. 
Figure 7.7 shows a prototypical distribution of sample means. To emphasize the fact 
that the distribution contains many different samples, we have constructed this figure 
so that the distribution is made up of hundreds of small boxes, each box representing 
a single sample mean. Also, notice that the sample means tend to pile up around the 
population mean (m), forming a normal-shaped distribution as predicted by the central 
limit theorem.
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The distribution shown in Figure 7.7 provides a concrete example for reviewing the 
general concepts of sampling error and standard error. Although the following points may 
seem obvious, they are intended to provide you with a better understanding of these two 
statistical concepts.

1. Sampling Error. The general concept of sampling error is that a sample typically 
will not provide a perfectly accurate representation of its population. More speci�-
cally, there typically is some discrepancy (or error) between a statistic computed 
for a sample and the corresponding parameter for the population. As you look at 
Figure 7.7, notice that the individual sample means are not exactly equal to the 
population mean. In fact, 50% of the samples have means that are smaller than 
m (the entire left-hand side of the distribution). Similarly, 50% of the samples 
produce means that overestimate the true population mean. In general, there will 
be some discrepancy, or sampling error, between the mean for a sample and the 
mean for the population from which the sample was obtained.

2. Standard Error. Again, looking at Figure 7.7, notice that most of the sample 
means are relatively close to the population mean (those in the center of the 
distribution). These samples provide a fairly accurate representation of the 
population. On the other hand, some samples produce means that are out in the 
tails of the distribution, relatively far from the population mean. These extreme 
sample means do not accurately represent the population. For each individual 
sample, you can measure the error (or distance) between the sample mean and 
the population mean. For some samples, the error will be relatively small, but for 
other samples, the error will be relatively large. The standard error provides a standard error provides a standard error
way to measure the “average,” or standard, distance between a sample mean and 
the population mean.

Thus, the standard error provides a method for defining and measuring sampling error. 
Knowing the standard error gives researchers a good indication of how accurately their 
sample data represent the populations they are studying. In most research situations, for 

M
m

F I G U R E  7.7
An example of a typical 
distribution of sample means. 
Each of the small boxes rep-
resents the mean obtained for 
one sample.
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example, the population mean is unknown, and the researcher selects a sample to help 
obtain information about the unknown population. Specifically, the sample mean provides 
information about the value of the unknown population mean. The sample mean is not 
expected to give a perfectly accurate representation of the population mean; there will be 
some error, and the standard error tells exactly how much error, on average, should exist 
between the sample mean and the unknown population mean. The following example dem-
onstrates the use of standard error and provides additional information about the relation-
ship between standard error and standard deviation.

A recent survey of students at a local college included the following question: How many 
minutes do you spend each day watching electronic video (online, TV, cell phone, tablet, 
etc.). The average response was m 5 80 minutes, and the distribution of viewing times 
was approximately normal with a standard deviation of s 5 20 minutes. Next, we take a 
sample from this population and examine how accurately the sample mean represents the 
population mean. More specifically, we will examine how sample size affects accuracy by 
considering three different samples: one with n 5 1 student, one with n 5 4 students, and 
one with n 5 100 students.

Figure 7.8 shows the distributions of sample means based on samples of n 5 1, n 5 4, 
and n 5 100. Each distribution shows the collection of all possible sample means that could 
be obtained for that particular sample size. Notice that all three sampling distributions are 
normal (because the original population is normal), and all three have the same mean, 
m 5 80, which is the expected value of M. However, the three distributions differ greatly 
with respect to variability. We will consider each one separately.

The smallest sample size is n 5 1. When a sample consists of a single student, the mean 
for the sample equals the score for the student, M 5 X. Thus, when n 5 1, the distribution 
of sample means is identical to the original population of scores. In this case, the standard 
error for the distribution of sample means is equal to the standard deviation for the original 
population. Equation 7.1 confirms this observation:

s
M

5
s

ÏnÏnÏÏ
5

20

Ï1Ï
5 20

E X A M P L E  7 . 6

80

20

80

10

80

2

Distribution of M
for n 5 100

sM 5 2

Distribution of M
for n 5 4
sM 5 10

Distribution of M
for n 5 1

sM 5 s 5 20

F I G U R E  7. 8
The distribution of sample means for (a) n 5 1, (b) n 5 4, and (c) n 5 100 obtained from a normal population with 
m 5 80 and s 5 20. Notice that the size of the standard error decreases as the sample size increases.

(a) (b) (c)
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When the sample consists of a single student, you expect, on average, a 20-point dif-When the sample consists of a single student, you expect, on average, a 20-point dif-When the sample consists of a single student, you expect, on average, a 20-point dif
ference between the sample mean and the mean for the population. As we noted earlier, 
the population standard deviation is the “starting point” for the standard error. With the 
smallest possible sample, n 5 1, the standard error is equal to the standard deviation [see 
Figure 7.8(a)].

As the sample size increases, however, the standard error gets smaller. For a sample of 
n 5 4 students, the standard error is

s
M

5
s

ÏnÏnÏÏ
5

20

Ï4Ï4ÏÏ
5

20

2
5 10

That is, the typical (or standard) distance between M and M and M m is 10 points. Figure 7.8(b) illus-
trates this distribution. Notice that the sample means in this distribution approximate the 
population mean more closely than in the previous distribution where n 5 1.

With a sample of n 5 100, the standard error is still smaller.

s
M

5
s

ÏnÏnÏÏ
5

20

Ï100Ï
5

20

10
5 2

A sample of n 5 100 students should produce a sample mean that represents the population 
much more accurately than a sample of n 5 4 or n 5 1. As shown in Figure 7.8(c), there is 
very little error between M and µ when M and µ when M n 5 100. Specifically, you would expect on average 
only a 2-point difference between the sample mean and the population mean. ■

In summary, this example illustrates that with the smallest possible sample (n 5 1), the 
standard error and the population standard deviation are the same. As sample size increases, 
the standard error gets smaller, and the sample means tend to approximate m more closely. 
Thus, standard error defines the relationship between sample size and the accuracy with 
which M represents M represents M m. 

IN THE LITERATURE

Reporting Standard Error
As we will see in future chapters, the standard error plays a very important role 
in inferential statistics. Because of its crucial role, the standard error for a sample 
mean, rather than the sample standard deviation, is often reported in scienti�c papers. 
Scienti�c journals vary in how they refer to the standard error, but frequently the 
symbols SE and SE and SE SEM (for standard error of the mean) are used. The standard error is SEM (for standard error of the mean) are used. The standard error is SEM
reported in two ways. Much like the standard deviation, it may be reported in a table 
along with the sample means (Table 7.3). Alternatively, the standard error may be 
reported in graphs.

Figure 7.9 illustrates the use of a bar graph to display information about the sample 
mean and the standard error. In this experiment, two samples (groups A and B) are 
given different treatments, and then the participants’ scores on a dependent variable 
are recorded. The mean for group A is M 5 15, and for group B, it is M 5 30. For both 
samples, the standard error of M is M is M sM 5 4. Note that the mean is represented by the 
height of the bar, and the standard error is depicted by brackets at the top of each bar. 
Each bracket extends for a distance equal to one standard error above and one standard 
error below the sample mean. Thus, the graph illustrates the mean for each group plus 
or minus one standard error (M 6 SE). When you glance at Figure 7.9, not only do you 
get a “picture” of the sample means, but also you get an idea of how much error you 
should expect for those means.
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Figure 7.10 shows how sample means and standard error are displayed in a line 
graph. In this study, two samples representing different age groups are tested on a task 
for four trials. The number of errors committed on each trial is recorded for all partici-
pants. The graph shows the mean (M) number of errors committed for each group on M) number of errors committed for each group on M
each trial. The brackets show the size of the standard error for each sample mean. Again, 
the brackets extend one standard error above and below the value of the mean.

n Mean SE

Control 17 32.23 2.31
Camera 15 45.17 2.78

TA B L E  7. 3
The mean self-consciousness scores for 
participants who were working in front of 
a video camera and those who were not 
(controls).
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F I G U R E  7.9
The mean score (6SE) for 
treatment groups A and B.

F I G U R E  7.1 0
The mean number of mistakes 
(6SE) for groups A and B on 
each trial.
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LO6 1. Which of the following would cause the standard error of M to get smaller?M to get smaller?M

a. Increasing both the sample size and standard deviation

b. Decreasing both the sample size and standard deviation

c. Increasing the sample size and decreasing the standard deviation

d. Decreasing the sample size and increasing the standard deviation

LO6 2. A sample obtained from a population with s 5 10 has a standard error of 
2 points. How many scores are in the sample?

a. n 5 5

b. n 5 10

c. n 5 20

d. n 5 25

LO6 3. A random sample is selected from a population with m 5 80 and s 5 20. How 
large must the sample be to ensure a standard error of 2 points or less?

a. n $ 10

b. n $ 25

c. n $ 100

d. It is impossible to obtain a standard error of less than 2 for any sized sample.

1. c 2. d 3. c

LE A R N I N G C H E C K

A N S W E R S

7-5 Looking Ahead to Inferential Statistics

LE A R N I N G O B J E C T IV E

7. Explain how the distribution of sample means can be used to evaluate a treatment 
effect by identifying likely and very unlikely samples, and use this information to 
determine whether a speci�c sample suggests that a treatment effect is likely or is 
very unlikely.

Inferential statistics are methods that use sample data as the basis for drawing general con-
clusions about populations. However, we have noted that a sample is not expected to give 
a perfectly accurate reflection of its population. In particular, there will be some error or 
discrepancy between a sample statistic and the corresponding population parameter. In this 
chapter, we focused on sample means and observed that a sample mean will not be exactly 
equal to the population mean. The standard error of M specifies how much difference is M specifies how much difference is M
expected on average between the mean for a sample and the mean for the population.

The natural differences that exist between samples and populations introduce a degree 
of uncertainty and error into all inferential processes. Specifically, there is always a margin 
of error that must be considered whenever a researcher uses a sample mean as the basis 
for drawing a conclusion about a population mean. Remember that the sample mean is not 
perfect. In the next six chapters we introduce a variety of statistical methods that all use 
sample means to draw inferences about population means.

In each case, the distribution of sample means and the standard error will be critical ele-
ments in the inferential process. Before we begin this series of chapters, we pause briefly 
to demonstrate how the distribution of sample means, along with z-scores and probability, 
can help us use sample means to draw inferences about population means.
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Suppose that a psychologist is planning a research study to evaluate the effect of a new 
growth hormone. It is known that regular, adult rats (with no hormone) weigh an average 
of m 5 400 grams. Of course, not all rats are the same size, and the distribution of their 
weights is normal with s 5 20. The psychologist plans to select a sample of n 5 25 new-
born rats, inject them with the hormone, and then measure their weights when they become 
adults. The structure of this research study is shown in Figure 7.11.

The psychologist will make a decision about the effect of the hormone by comparing 
the sample of treated rats with the regular untreated rats in the original population. If the 
treated rats in the sample are noticeably different from untreated rats, then the researcher 
has evidence that the hormone has an effect. The problem is to determine exactly how 
much difference is necessary before we can say that the sample is noticeably different.

The distribution of sample means and the standard error can help researchers make this 
decision. In particular, the distribution of sample means can be used to show exactly what 
would be expected for a sample of rats that do not receive any hormone injections. This 
allows researchers to make a simple comparison between

a. the sample of treated rats (from the research study).

b. samples of untreated rats (from the distribution of sample means).

If our treated sample is noticeably different from the untreated samples, then we have 
evidence that the treatment has an effect. On the other hand, if our treated sample still looks 
like one of the untreated samples, then we must conclude that the treatment does not appear 
to have any effect.

We begin with the original population of untreated rats and consider the distribution of 
sample means for all the possible samples of n 5 25 rats. The distribution of sample means 
has the following characteristics:

1. It is a normal distribution, because the population of rat weights is normal.

2. It has an expected value of 400, because the population mean for untreated rats  
is m 5 400.

3. It has a standard error of sM 5 20
Ï25Ï

5 20
5 5 4, because the population standard 

deviation is s 5 20 and the sample size is n 5 25.

E X A M P L E  7 . 7

Population
of weights

for adult rats

Normal
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a
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m
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n
t

Treated 
sample of 
n 5 25 rats

Sample of 
n 5 25 rats

m 5 400
s 5 20

F I G U R E  7.1 1
The structure of the research 
study described in Example 7.7. 
The purpose of the study is to 
determine whether the treatment 
(a growth hormone) has an 
effect on weight for rats.
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The distribution of sample means is shown in Figure 7.12. Notice that a sample of 
n 5 25 untreated rats (without the hormone) should have a mean weight around 400 grams. 
To be more precise, we can use z-scores to determine the middle 95% of all the possible 
sample means. As demonstrated in Chapter 6 (page 164), the middle 95% of a normal 
distribution is located between z-score boundaries of z 5 11.96 and z 5 –1.96 (check 
the unit normal table). These z-score boundaries are shown in Figure 7.12. With a stan-
dard error of sM 5 4 points, a z-score of z 5 1.96 corresponds to a distance of 1.96(4) 5
7.84 points from the mean. Thus, the z-score boundaries of 61.96 correspond to sample 
means of 392.16 and 407.84.

We have determined that a sample of n 5 25 untreated rats (no growth hormone) is 
almost guaranteed (95% probability) to have a mean between 392.16 and 407.84. At the 
same time, it is very unlikely (probability of 5% or less) that a sample mean would be in 
the tails beyond these two boundaries without the help of a real treatment effect. Therefore, 
if the mean for our treated sample is beyond the boundaries, then we have evidence that the 
hormone does have an effect. ■

In Example 7.7 we used the distribution of sample means, together with z-scores 
and probability, to provide a description of what is reasonable to expect for an untreated 
sample. Then, we evaluated the effect of a treatment by determining whether the treated 
sample was noticeably different from an untreated sample. This procedure forms the 
foundation for the inferential technique known as hypothesis testing that is introduced in 
Chapter 8 and repeated throughout the remainder of this book.

F I G U R E  7.1 2
The distribution of sample means 
for samples of n for samples of n for samples of 5 25 untreated 
rats (from Example 7.7).

z

m 5 400392.16

21.96 11.96

407.84

sM 5 4

LO7 1. A sample is obtained from a population with m 5 100 and s 5 20. Which of 
the following samples would produce the z-score closest to zero?

a. A sample of n 5 25 scores with M 5 102

b. A sample of n 5 100 scores with M 5 102

c. A sample of n 5 25 scores with M 5 104

d. A sample of n 5 100 scores with M 5 104

LE A R N I N G C H E C K
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LO7 2. For a normal population with m 5 80 and s 5 20, which of the following 
samples is least likely to be obtained?

a. M 5 88 for a sample of n 5 4

b. M 5 84 for a sample of n 5 4

c. M 5 88 for a sample of n 5 25

d. M 5 84 for a sample of n 5 25

LO7 3. For a sample selected from a normal population with m 5 100 and s 5 15, 
which of the following would be the most extreme and unrepresentative?

a. M 5 90 for a sample of n 5 9 scores

b. M 5 90 for a sample of n 5 25 scores

c. M 5 95 for a sample of n 5 9 scores

d. M 5 95 for a sample of n 5 25 scores

1. a 2. c 3. bA N S W E R S

1. The distribution of sample means is defined as the set 
of Ms for all the possible random samples for a specific Ms for all the possible random samples for a specific M
sample size (n) that can be obtained from a given popula-
tion. According to the central limit theorem, the param-
eters of the distribution of sample means are as follows:
a. Shape. The distribution of sample means is normal 

if either one of the following two conditions is 
satisfied:
i. The population from which the samples are 

selected is normal.
ii. The size of the samples is relatively large 

(around n 5 30 or more).
b. Central Tendency. The mean of the distribution of 

sample means is identical to the mean of the popu-
lation from which the samples are selected. The 
mean of the distribution of sample means is called 
the expected value of M.

c. Variability. The standard deviation of the distribu-
tion of sample means is called the standard error of 
M and is defined by the formulaM and is defined by the formulaM

sM 5
s

ÏnÏnÏÏ
oror sM 5Îs2Î nÎ

Standard error measures the standard distance between 
a sample mean (M) and the population mean (M) and the population mean (M m).

2. One of the most important concepts in this chapter 
is standard error. The standard error tells how much 
error to expect if you are using a sample mean to 
represent a population mean.

3. The location of each M in the distribution of sample M in the distribution of sample M
means can be specified by a z-score:

z 5
M 2 m

s
M

Because the distribution of sample means tends to be 
normal, we can use these z-scores and the unit normal 
table to find probabilities for specific sample means. 
In particular, we can identify which sample means are 
likely and which are very unlikely to be obtained from 
any given population. This ability to find probabilities 
for samples is the basis for the inferential statistics in 
the chapters ahead.

S U M M A R Y

sampling error (170)

distribution of sample means (171)

sampling distribution (171)

central limit theorem (175)

expected value of M (176)

standard error of M (177)

law of large numbers (177)

KE Y TER M S
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The statistical computer package SPSS is not structured to compute the standard error or a 
z-score for a sample mean. In later chapters, however, we introduce new inferential statistics that 
are included in SPSS. When these new statistics are computed, SPSS typically includes a report 
of standard error that describes how accurately, on average, the sample represents its population.

FO CUS  O N  PRO B LE M  SO LVIN G

1. Whenever you are working probability questions about sample means, you must use the 
distribution of sample means. Remember that every probability question can be restated 
as a proportion question. Probabilities for sample means are equivalent to proportions of 
the distribution of sample means.

2. When computing probabilities for sample means, the most common error is to use stand-
ard deviation (s) instead of standard error (sM) in the z-score formula. Standard deviation 
measures the typical deviation (or “error”) for a single score. Standard error measures the 
typical deviation (or error) for a sample. Remember: the larger the sample is, the more 
accurately the sample represents the population. Thus, sample size (n) is a critical part of 
the standard error.

Standard error 5 s
M

5
s

ÏnÏnÏÏ

3. Although the distribution of sample means is often normal, it is not always a normal 
distribution. Check the criteria to be certain the distribution is normal before you use the 
unit normal table to find probabilities (see item 1a of the Summary). Remember that all 
probability problems with a normal distribution are easier if you sketch the distribution 
and shade in the area of interest.

D E M O N S TR ATIO N  7.1

PROBABILITY AND THE DISTRIBUTION OF SAMPLE MEANS

A population forms a normal distribution with a mean of m 5 60 and a standard deviation 
of s 5 12. For a sample of n 5 36 scores from this population, what is the probability of 
obtaining a sample mean greater than 63?

p(M . 63) 5 ?

Rephrase the probability question as a proportion question. Out of all the possible 
sample means for n 5 36, what proportion will have values greater than 63? All the possible 
sample means is simply the distribution of sample means, which is normal, with a mean of 
m 5 60 and a standard error of

sM 5
s

ÏnÏnÏÏ
5

12

Ï36Ï
5

12

6
5 2

Compute the z-score for the sample mean. A sample mean of M 5 63 corresponds to a 
z-score of 

z 5
M 2 m

s
M

5
63 2 60

2
5

3

2
5 1.50

Therefore, p(M . 63) 5 p(z . 1.50).

STEP 1

STEP 2

SPSS ®
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Look up the proportion in the unit normal table. Find z 5 1.50 in column A and read 
across the row to find p 5 0.0668 in column C. This is the answer.

p(M . 63) 5 p(z . 1.50) 5 0.0668 (or 6.68%)

STEP 3

PRO B LE M S

1. Briefly define each of the following:
a. Distribution of sample means
b. Central limit theorem
c. Expected value of M
d. Standard error of M

2. A sample is selected from a population with a mean of 
m 5 65 and a standard deviation of s 5 15.
a. If the sample has n 5 9 scores, what is the expected 

value of M and the standard error of M and the standard error of M M?
b. If the sample has n 5 25 scores, what is the  

expected value of M and the standard error of M and the standard error of M M?

3. Describe the distribution of sample means (shape, 
mean, standard error) for samples of n 5 64 selected 
from a population with a mean of m 5 90 and a  
standard deviation of s 5 32.

4. Under what circumstances is the distribution of 
sample means definitely a normal distribution?

5. A random sample is selected from a population with a 
standard deviation of s 5 18.
a. On average, how much difference should there be 

between the sample mean and the population mean 
for a random sample of n 5 4 scores from this 
population?

b. On average, how much difference should there be 
for a sample of n 5 9 scores?

c. On average, how much difference should there be 
for a sample of n 5 36 scores?

6. For a sample of n 5 16 scores, what is the value 
of the population standard deviation (s) necessary 
to produce each of the following standard error 
values?
a. sM 5 8 points
b. sM 5 4 points
c. sM 5 1 point

7. For a population with a mean of m 5 40 and a standard 
deviation of s 5 8, find the z-score corresponding to 
each of the following samples.
a. X 5 34 for a sample of n 5 1 score
b. M 5 34 for a sample of n 5 4 scores
c. M 5 34 for a sample of n 5 16 scores

8. A sample of n 5 25 scores has a mean of M 5 68. 
Find the z-score for this sample: 
a. If it was obtained from a population with m 5 60 

and s 5 10

b. If it was obtained from a population with m 5 60 
and s 5 20

c. If it was obtained from a population with m 5 60 
and s 5 40

9. A population forms a normal distribution with a mean 
of m 5 85 and a standard deviation of s 5 24. For 
each of the following samples, compute the z-score for 
the sample mean.
a. M 5 91 for n 5 4 scores
b. M 5 91 for n 5 9 scores
c. M 5 91 for n 5 16 scores
d. M 5 91 for n 5 36 scores

10. Scores on a standardized reading test for fourth-grade 
students form a normal distribution with m 5 60 and 
s 5 20. What is the probability of obtaining a sample 
mean greater than M 5 65 for each of the following?
a. A sample of n 5 16 students
b. A sample of n 5 25 students
c. A sample of n 5 100 students

11. Scores from a questionnaire measuring social anxiety 
form a normal distribution with a mean of m 5 50 and 
a standard deviation of s 5 10. What is the probabil-
ity of obtaining a sample mean greater than M 5 53,
a. for a random sample of n 5 4 people?
b. for a random sample of n 5 16 people?
c. for a random sample of n 5 25 people?

12. A normal distribution has a mean of m 5 54 and a 
standard deviation of s 5 6.
a. What is the probability of randomly selecting a 

score less than X 5 51?
b. What is the probability of selecting a sample of  

n 5 4 scores with a mean less than M 5 51?
c. What is the probability of selecting a sample of  

n 5 36 scores with a mean less than M 5 51?

13. A population has a mean of m 5 30 and a standard 
deviation of s 5 8
a. If the population distribution is normal, what is the 

probability of obtaining a sample mean greater than 
M 5 32 for a sample of n 5 4?

b. If the population distribution is positively skewed, 
what is the probability of obtaining a sample mean 
greater than M 5 32 for a sample of n 5 4?

c. If the population distribution is normal, what is the 
probability of obtaining a sample mean greater than 
M 5 32 for a sample of n 5 64?
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20. Jones, Thomas, and Piper (2003) conducted a study 
to evaluate the effect of alcohol on judgments of at-
tractiveness for members of the opposite sex. Male 
college students who had either no alcohol or moder-
ate alcohol consumption were shown photographs of 
females and asked to judge the attractiveness of each 
face on a 7-point scale (7 5 highest). Data similar to 
the results obtained in the study are shown in the fol-
lowing table.

Alcohol Consumption Mean SE

None 3.49 0.20
Moderate 4.09 0.22

a. Construct a bar graph that incorporates all of the 
information in the table.

b. Looking at your graph, do you think that alcohol con-
sumption has an effect on perceived attractiveness?

21. A normal distribution has a mean of m 5 60 and a 
standard deviation of s 5 12. For each of the follow-
ing samples, compute the z-score for the sample mean 
and determine whether the sample mean is a typical, 
representative value or an extreme value for a sample 
of this size.
a. M 5 64 for n 5 4 scores
b. M 5 64 for n 5 9 scores
c. M 5 66 for n 5 16 scores
d. M 5 66 for n 5 36 scores

22. A random sample is obtained from a normal popula-
tion with a mean of m 5 76 and a standard deviation 
of s 5 20. The sample mean is M 5 84.
a. Is this a representative sample mean or an extreme 

value for a sample of n 5 4 scores?
b. Is this a representative sample mean or an extreme 

value for a sample of n 5 25 scores?

23. A sample of n 5 36 scores is selected from a normal 
distribution with a mean of m 5 65. If the sample 
mean is M 5 59, then compute the z-score for the 
sample mean and determine whether the sample mean 
is a typical, representative value or an extreme value 
for each of the following:
a. A population standard deviation of s 5 12
b. A population standard deviation of s 5 30

d. If the population distribution is positively skewed, 
what is the probability of obtaining a sample mean 
greater than M 5 32 for a sample of n 5 64?

14. For random samples of size n 5 16 selected from a 
normal distribution with a mean of m 5 75 and a stan-
dard deviation of s 5 20, find each of the following:
a. The range of sample means that defines the middle 

95% of the distribution of sample means
b. The range of sample means that defines the middle 

99% of the distribution of sample means

15. The distribution exam grades for an introductory 
psychology class is negatively skewed with a mean of 
m 5 71.5 and a standard deviation of s 5 12.
a. What is the probability of selecting a random 

sample of n 5 9 students with an average grade 
greater than 75?  (Careful:  This is a trick question.)

b. What is the probability of selecting a random 
sample of n 5 36 students with an average grade 
greater than 75?

c. For a sample of n 5 36 students, what is the prob-
ability that the average grade is between 70 and 75?

16. By definition, jumbo shrimp are those that require 
between 10 and 15 shrimp to make a pound. Suppose 
that the number of jumbo shrimp in a 1-pound bag  
averages m 5 12.5 with a standard deviation of  
s 5 1.5, and forms a normal distribution. What is the 
probability of randomly picking a sample of n 5 25 
1-pound bags that average more than M 5 13 shrimp 
per bag?  

17. For a population with a mean of m 5 72 and a standard 
deviation of s 5 10, what is the standard error of the 
distribution of sample means for each of the following 
sample sizes?
a. n 5 4 scores
b. n 5 25 scores

18. For a population with s 5 16, how large a sample is 
necessary to have a standard error that is
a. less than 8 points?
b. less than 4 points?
c. less than 2 points?

19. If the population standard deviation is s 5 10, how 
large a sample is necessary to have a standard error 
that is
a. less than 5 points?
b. less than 2 points?
c. less than 1 point?
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8-1 The Logic of Hypothesis Testing

8-2 Uncertainty and Errors in Hypothesis Testing

8-3 More about Hypothesis Tests

8-4 Directional (One-Tailed) Hypothesis Tests

8-5 Concerns about Hypothesis Testing: Measuring Effect Size

8-6 Statistical Power

Summary

Focus on Problem Solving

Demonstrations 8.1 and 8.2

Problems

8
CHAP TER

Tools You Will Need
The following items are con-
sidered essential background 
material for this chapter. If you 
doubt your knowledge of any of 
these items, you should review 
the appropriate chapter or section 
before proceeding.

 ■ z-Scores (Chapter 5)z-Scores (Chapter 5)z
 ■ Distribution of sample means 

(Chapter 7)
 ■ Expected value
 ■ Standard error
 ■ Probability and sample 

means

Introduction to Hypothesis 
Testing
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8-1 The Logic of Hypothesis Testing

LE A R N I N G O B J E C T IV E S   

1. Describe the purpose of a hypothesis test and explain how the test accomplishes its 
goal.

2. De�ne the null hypothesis and the alternative hypothesis for a hypothesis test, and 
determine each for a speci�c research example.

3. De�ne the alpha level (level of signi�cance) and the critical region for a hypothesis 
test and explain how the outcome of a hypothesis test is in�uenced by a change in 
alpha level.

4. Conduct a hypothesis test using the standard 4-step procedure and make a statisti-
cal decision about the effect of a treatment.

It usually is impossible or impractical for a researcher to observe every individual in a 
population. Therefore, researchers usually collect data from a sample and then use the 
sample data to help answer questions about the population. Hypothesis testing is a sta-
tistical procedure that allows researchers to use sample data to draw inferences about the 
population of interest.

Hypothesis testing is one of the most commonly used inferential procedures. In fact, 
most of the remainder of this book examines hypothesis testing in a variety of different 
situations and applications. Although the details of a hypothesis test change from one situa-
tion to another, the general process remains constant. In this chapter, we introduce the gen-
eral procedure for a hypothesis test. You should notice that we use the statistical techniques 
that have been developed in the preceding three chapters—that is, we combine the concepts 
of z-scores, probability, and the distribution of sample means to create a new statistical 
procedure known as hypothesis testing.

Hypothesis testing is a statistical method that uses sample data to evaluate a 
hypothesis about a population.

In very simple terms, the logic underlying the hypothesis-testing procedure is as follows:

1. First, we state a hypothesis about a population. Usually the hypothesis concerns 
the value of a population parameter. For example, we might hypothesize that 
American adults gain an average of m 5 7 pounds between Thanksgiving and New 
Year’s Day each year.

2. Before we select a sample, we use the hypothesis to predict the characteristics that 
the sample should have. For example, if we predict that the average weight gain 
for the population is m 5 7 pounds, then we would predict that our sample should 
have a mean around 7 pounds. Remember: the sample should be similar to the  around 7 pounds. Remember: the sample should be similar to the  around
population, but you always expect a certain amount of error.

3. Next, we obtain a random sample from the population. For example, we might 
select a sample of n 5 200 American adults and measure the average weight 
change for the sample between Thanksgiving and New Year’s Day.

4. Finally, we compare the obtained sample data with the prediction that was made 
from the hypothesis. If the sample mean is consistent with the prediction, we con-
clude that the hypothesis is reasonable. But if there is a big discrepancy between 
the data and the prediction, we decide that the hypothesis is wrong.
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A hypothesis test is typically used in the context of a research study. That is, a researcher 
completes a research study and then uses a hypothesis test to evaluate the results. Depend-
ing on the type of research and the type of data, the details of the hypothesis test change 
from one research situation to another. In later chapters, we examine different versions of 
hypothesis testing that are used for different kinds of research. For now, however, we focus 
on the basic elements that are common to all hypothesis tests. To accomplish this general 
goal, we will examine a hypothesis test as it applies to the simplest possible situation—
using a sample mean to test a hypothesis about a population mean. 

In the five chapters that follow, we consider hypothesis testing in more complex research 
situations involving sample means and mean differences. In Chapter 14, we look at cor-
relational research and examine how the relationships obtained for sample data are used 
to evaluate hypotheses about relationships in the population. Finally, in Chapter 15, we 
examine how the proportions that exist in a sample are used to test hypotheses about the 
corresponding proportions in the population. 

■ The Elements of a Hypothesis Test
Once again, we introduce hypothesis testing with a situation in which a researcher is using 
one sample mean to evaluate a hypothesis about one unknown population mean.

The Unknown Population Figure 8.1 shows the general research situation that we will 
use to introduce the process of hypothesis testing. Notice that the researcher begins with 
a known population. This is the set of individuals as they exist before treatment. For this 
example, we are assuming that the original set of scores forms a normal distribution with 
m 5 16 and s 5 3. The purpose of the research is to determine the effect of a treatment 
on the individuals in the population. That is, the goal is to determine what happens to the 
population after the treatment is administered.

To simplify the hypothesis-testing situation, one basic assumption is made about the 
effect of the treatment: If the treatment has any effect, it is simply to add a constant amount 
to (or subtract a constant amount from) each individual’s score. You should recall from 
Chapters 3 and 4 that adding (or subtracting) a constant changes the mean but does not 
change the shape of the population, nor does it change the standard deviation. Thus, we 
assume that the population after treatment has the same shape as the original population 
and the same standard deviation as the original population. This assumption is incorporated 
into the situation shown in Figure 8.1.

Note that the unknown population, after treatment, is the focus of the research question. 
Specifically, the purpose of the research is to determine what would happen if the treatment 
were administered to every individual in the population.

m 5 16

Known population
before treatment

s 5 3

m 5 ?

Unknown population
after treatment

s 5 3

T
r
e
a
t

m
e
n
t

F I G U R E  8 .1
The basic research situation 
for hypothesis testing. It is 
assumed that the parameter 
m is known for the popula-
tion before treatment. The 
purpose of the study is 
to determine whether the 
treatment has an effect on 
the population mean.
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T
r
e
a
t

m
e
n
t

Known
original

population
m 5 16

Treated
sampleSample

Unknown
treated

population
m 5 ?

F I G U R E  8 . 2
From the point of view of the 
hypothesis test, the entire pop-
ulation receives the treatment 
and then a sample is selected 
from the treated population. In 
the actual research study, how-
ever, a sample is selected from 
the original population and the 
treatment is administered to 
the sample. From either per-
spective, the result is a treated 
sample that represents the 
treated population.

The Sample in the Research Study The goal of the hypothesis test is to determine 
whether the treatment has any effect on the individuals in the population (see Figure 8.1). 
Usually, however, we cannot administer the treatment to the entire population so the 
actual research study is conducted using a sample. Figure 8.2 shows the structure of the 
research study from the point of view of the hypothesis test. The original population, be-
fore treatment, is shown on the left-hand side. The unknown population, after treatment, 
is shown on the right-hand side. Note that the unknown population is actually hypotheti-
cal (the treatment is never administered to the entire population). Instead, we are asking 
what would happen if the treatment were administered to the entire population. The what would happen if the treatment were administered to the entire population. The what would happen if
research study involves selecting a sample from the original population, administering 
the treatment to the sample, and then recording scores for the individuals in the treated 
sample. Notice that the research study produces a treated sample. Although this sample 
was obtained indirectly, it is equivalent to a sample that is obtained directly from the un-
known treated population. The hypothesis test uses the treated sample on the right-hand 
side of Figure 8.2 to evaluate a hypothesis about the unknown treated population on the 
right side of the figure.

A hypothesis test is a formalized procedure that follows a standard series of opera-
tions. In this way, researchers have a standardized method for evaluating the results of 
their research studies. Other researchers will recognize and understand exactly how the 
data were evaluated and how conclusions were reached. To emphasize the formal structure 
of a hypothesis test, we will present hypothesis testing as a four-step process that is used 
throughout the rest of the book. The following example provides a concrete foundation for 
introducing the hypothesis-testing procedure.

Previous research indicates that men rate women who are wearing red as being more at-
tractive than when they are wearing other colors (Elliot & Niesta, 2008). Based on these 
results, Guéguen and Jacob (2012) reasoned that the same phenomenon might influence 
the way that men react to waitresses wearing red. In their study, waitresses in five different 
restaurants wore the same T-shirt in six different colors (red, blue, green, yellow, black, and 
white) on different days during a six-week period. Except for the T-shirts, the waitresses 
were instructed to act normally and to record each customer’s gender and how much was 
left as a tip. The results show that male customers gave significantly bigger tips to wait-
resses wearing red but that color had no effect on tipping for female customers.  

E X A M P L E  8 . 1
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A researcher decided to test this result by repeating the basic study at a local restaurant. 
Waitresses (and waiters) at the restaurant routinely wear white shirts with black pants and 
restaurant records indicate that the waitresses’ tips from male customers average m 5 16 
percent with a standard deviation of s 5 3 percentage points. The distribution of tip amounts 
is roughly normal. During the study, the waitresses are asked to wear red shirts and the re-
searcher plans to record tips for a sample of n 5 36 male customers. 

If the mean tip for the sample is noticeably different from the baseline mean (when 
wearing white shirts), the researcher can conclude that wearing the color red does appear to 
have an effect on tipping. On the other hand, if the sample mean is still around 16 percent 
(the same as the baseline), the researcher must conclude that the red shirt does not appear 
to have any effect. ■

■ The Four Steps of a Hypothesis Test
Figure 8.2 depicts the same general structure as the research situation described in the pre-
ceding example. The original population before treatment (before the red shirt) has a mean 
tip of m 5 16 percent. However, the population after treatment is unknown. Specifically, 
we do not know what will happen to the mean score if the waitresses wear red for the entire 
population of male customers. However, we do have a sample of n 5 36 participants who 
were served when waitresses wore red and we can use this sample to help draw inferences 
about the unknown population. The following four steps outline the hypothesis-testing pro-
cedure that allows us to use sample data to answer questions about an unknown population.

State the hypothesis. As the name implies, the process of hypothesis testing begins 
by stating a hypothesis about the unknown population. Actually, we state two opposing 
hypotheses. Notice that both hypotheses are stated in terms of population parameters.

The first and most important of the two hypotheses is called the null hypothesis. The null
hypothesis states that the treatment has no effect. In general, the null hypothesis states that 
there is no change, no effect, no difference—nothing happened, hence the name null. The 
null hypothesis is identified by the symbol H0H0H . (The H stands for H stands for H hypothesis, and the zero 
subscript indicates that this is the zero-effect hypothesis.) For the study in Example 8.1, the zero-effect hypothesis.) For the study in Example 8.1, the zero-effect
null hypothesis states that the red shirt has no effect on tipping behavior for the population 
of male customers. In symbols, this hypothesis is

H0H0H  : mred shirt 5 16 (Even with a red shirt, the mean 
tip is still 16 percent.)

S T E P  1

The goal of inferential 
statistics is to make gen-
eral statements about 
the population by using 
sample data. Therefore, 
when testing hypotheses, 
we make our predictions 
about the population 
parameters.

The null hypothesis (H (H ( 0H0H ) states that in the general population there is no change, 
no difference, or no relationship. In the context of an experiment, H0H0H  predicts 
that the independent variable (treatment) has no effect on the dependent variable has no effect on the dependent variable has no effect
(scores) for the population.

The alternative hypothesis (H (H ( 1) states that there is a change, a difference, or a 
relationship for the general population. In the context of an experiment, H1 pre-
dicts that the independent variable (treatment) does have an effect on the dependoes have an effect on the dependoes have an effect -
dent variable.

The second hypothesis is simply the opposite of the null hypothesis, and it is called the 
scientific, or alternative, hypothesis (H1). This hypothesis states that the treatment has an 
effect on the dependent variable.
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For this example, the alternative hypothesis states that the red shirt does have an effect on For this example, the alternative hypothesis states that the red shirt does have an effect on For
tipping for the population and will cause a change in the mean score. In symbols, the alter-
native hypothesis is represented as

H1 : mwith red shirt ? 16 (With a red shirt, the mean tip 
will be different from 16 percent.)

Notice that the alternative hypothesis simply states that there will be some type of change. 
It does not specify whether the effect will be increased or decreased tips. In some circum-
stances, it is appropriate for the alternative hypothesis to specify the direction of the effect. 
For example, the researcher might hypothesize that a red shirt will increase tips (m . 16). 
This type of hypothesis results in a directional hypothesis test, which is examined in detail 
later in this chapter. For now we concentrate on nondirectional tests, for which the hypoth-
eses simply state that the treatment has no effect (H0H0H ) or has some effect (H1).

Set the criteria for a decision. Eventually the researcher will use the data from the 
sample to evaluate the credibility of the null hypothesis. The data will either provide sup-
port for the null hypothesis or tend to refute the null hypothesis. In particular, if there is a 
big discrepancy between the data and the hypothesis, we will conclude that the hypothesis 
is wrong.

To formalize the decision process, we use the null hypothesis to predict the kind of 
sample mean that ought to be obtained. Specifically, we determine exactly which sample 
means are consistent with the null hypothesis and which sample means are at odds with 
the null hypothesis.

For our example, the null hypothesis states that the red shirt has no effect and the popu-
lation mean is still m 5 16 percent. If this is true, then the sample mean should have a value 
around 16. Therefore, a sample mean near 16 is consistent with the null hypothesis. On 
the other hand, a sample mean that is very different from 16 is not consistent with the null 
hypothesis. To determine exactly which values are “near” 16 and which values are “very 
different from” 16, we will examine all of the possible sample means that could be obtained 
if the null hypothesis is true. For our example, this is the distribution of sample means for 
n 5 36. According to the null hypothesis, this distribution is centered at m 5 16. The dis-
tribution of sample means is then divided into two sections:

1. Sample means that are likely to be obtained if H0H0H  is true; that is, sample means that 
are close to the null hypothesis

2. Sample means that are very unlikely to be obtained if H0H0H  is true; that is, sample 
means that are very different from the null hypothesis

Figure 8.3 shows the distribution of sample means divided into these two sections. 
Notice that the high-probability samples are located in the center of the distribution and 
have sample means close to the value specified in the null hypothesis. On the other hand, 
the low-probability samples are located in the extreme tails of the distribution. After 
the distribution has been divided in this way, we can compare our sample data with the 
values in the distribution. Specifically, we can determine whether our sample mean is 
consistent with the null hypothesis (like the values in the center of the distribution) or 
whether our sample mean is very different from the null hypothesis (like the values in 
the extreme tails).

The Alpha Level To find the boundaries that separate the high-probability samples 
from the low-probability samples, we must define exactly what is meant by “low” prob-
ability and “high” probability. This is accomplished by selecting a specific probability 
value, which is known as the level of significance, or the alpha level, for the hypothesis 

The null hypothesis and 
the alternative hy-
pothesis are mutually 
exclusive and exhaus-
tive. They cannot both 
be true. The data will 
determine which one 
should be rejected.

S T E P  2

With rare exceptions, 
an alpha level is never 
larger than .05.
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The distribution of sample means
if the null hypothesis is true
(all the possible outcomes)

Sample means
close to H0:

 high-probability values
if H0 is true

Extreme, low-
probability values

if H0 is true

Extreme, low-
probability values

if H0 is true

m frm frm om H0

F I G U R E  8 . 3
The set of potential samples 
is divided into those that are 
likely to be obtained and 
those that are very unlikely 
to be obtained if the null 
hypothesis is true.

test. The alpha (a) value is a small probability that is used to identify the low-probability 
samples. By convention, commonly used alpha levels are a 5.05 (5%), a 5.01 (1%), and 
a 5 .001 (0.1%). For example, with a 5.05, we separate the most unlikely 5% of the 
sample means (the extreme values) from the most likely 95% of the sample means (the 
central values).

The extremely unlikely values, as defined by the alpha level, make up what is called the 
critical region. These extreme values in the tails of the distribution define outcomes that 
are not consistent with the null hypothesis; that is, they are very unlikely to occur if the null 
hypothesis is true. Whenever the data from a research study produce a sample mean that 
is located in the critical region, we conclude that the data are not consistent with the null 
hypothesis, and we reject the null hypothesis.

The alpha level, or the level of signi�cance, is a probability value that is used to 
de�ne the concept of “very unlikely” in a hypothesis test.

The critical region is composed of the extreme sample values that are very unlikely 
(as de�ned by the alpha level) to be obtained if the null hypothesis is true. The 
boundaries for the critical region are determined by the alpha level. If sample data 
fall in the critical region, the null hypothesis is rejected.

Technically, the critical region is defined by sample outcomes that are very unlikely to 
occur if the treatment has no effect (that is, if the null hypothesis is true). Reversing the 
point of view, we can also define the critical region as sample values that provide convinc-
ing evidence that the treatment really does have an effect. For our example, the regular 
population of male customers leaves a mean tip of m 5 16 percent. We selected a sample 
from this population and administered a treatment (the red shirt) to the individuals in the 
sample. What kind of sample mean would convince you that the treatment has an effect? 
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Middle 95%:
High-probability values

if H0 is true

Critical region:
Extreme 5%

m frm frm om H0

Reject H0 Reject H0

0

m 5 m 5 16

z 5 21.96 z 5 1.96
F I G U R E  8 . 4
The critical region (very 
unlikely outcomes) for 
a 5 .05.

It should be obvious that the most convincing evidence would be a sample mean that is 
really different from m 5 16 percent. In a hypothesis test, the critical region is determined 
by sample values that are “really different” from the original population.

The Boundaries for the Critical Region To determine the exact location for the 
boundaries that define the critical region, we use the alpha-level probability and the unit 
normal table. In most cases, the distribution of sample means is normal, and the unit normal 
table provides the precise z-score location for the critical region boundaries. With a 5.05, 
for example, the boundaries separate the extreme 5% from the middle 95%. Because the 
extreme 5% is split between two tails of the distribution, there is exactly 2.5% (or 0.0250) 
in each tail. In the unit normal table, you can look up a proportion of 0.0250 in column 
C (the tail) and find that the z-score boundary is z 5 1.96. Thus, for any normal distribu-
tion, the extreme 5% is in the tails of the distribution beyond z 5 11.96 and z 5 21.96. 
These values define the boundaries of the critical region for a hypothesis test using a 5.05 
(Figure 8.4).

Similarly, an alpha level of a 5.01 means that 1% or .0100 is split between the two tails. 
In this case, the proportion in each tail is .0050, and the corresponding z-score boundaries are 
z 5 62.58 (62.57 is equally good). For a 5.001, the boundaries are located at z 5 63.30. 
You should verify these values in the unit normal table and be sure that you understand 
exactly how they are obtained.

Collect data and compute sample statistics. At this time, we begin recording tips 
for male customers while the waitresses are wearing red. Notice that the data are collected 
after the researcher has stated the hypotheses and established the criteria for a decision. after the researcher has stated the hypotheses and established the criteria for a decision. after
This sequence of events helps ensure that a researcher makes an honest, objective evalua-
tion of the data and does not tamper with the decision criteria after the experimental out-
come is known.

S T E P  3
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Next, the raw data from the sample are summarized with the appropriate statistics: For 
this example, the researcher would compute the sample mean. Now it is possible for the 
researcher to compare the sample mean (the data) with the null hypothesis. This is the heart 
of the hypothesis test: comparing the data with the hypothesis.

The comparison is accomplished by computing a z-score that describes exactly where 
the sample mean is located relative to the hypothesized population mean from H0H0H . In step 2, 
we constructed the distribution of sample means that would be expected if the null hypoth-
esis were true—that is, the entire set of sample means that could be obtained if the treat-
ment has no effect (see Figure 8.4). Now we calculate a z-score that identifies where our 
sample mean is located in this hypothesized distribution. The z-score formula for a sample 
mean is

z 5
M 2 m

s
M

In the formula, the value of the sample mean (M) is obtained from the sample data, and the M) is obtained from the sample data, and the M
value of m is obtained from the null hypothesis. Thus, the z-score formula can be expressed 
in words as follows:

z 5
sample mean 2 hypothesized population mean

standard error between M and m

Notice that the top of the z-score formula measures how much difference there is between 
the data and the hypothesis. The bottom of the formula measures the standard distance that 
ought to exist between a sample mean and the population mean.

Make a decision. In the �nal step, the researcher uses the z-score value obtained in Step 3 
to make a decision about the null hypothesis according to the criteria established in Step 2. 
There are two possible outcomes:

1. The sample data are located in the critical region. By de�nition, a sample value in 
the critical region is very unlikely to occur if the null hypothesis is true. Therefore, 
we conclude that the sample is not consistent with H0H0H  and our decision is to reject 
the null hypothesis. Remember, the null hypothesis states that there is no treatment 
effect, so rejecting H0H0H  means we are concluding that the treatment did have an effect. 

For the example we have been considering, suppose the sample produced a 
mean tip of M 5 17.2 percent. The null hypothesis states that the population mean 
is m 5 16 percent and, with n 5 36 and s 5 3, the standard error for the sample 
mean is

s
M

5
s

ÏnÏnÏÏ
5

3

6
5 0.5

Thus, a sample mean of M 5 17.2 produces a z-score of

z 5
M 2 m

s
M

5
17.2 2 16

0.5
5

1.2

0.5
5 2.40

With an alpha level of a 5 .05, this z-score is far beyond the boundary of 1.96. 
Because the sample z-score is in the critical region, we reject the null hypothesis 
and conclude that the red shirt did have an effect on tipping behavior.

2. The sample data are not in the critical region. In this case, the sample mean is 
reasonably close to the population mean speci�ed in the null hypothesis (in the 
center of the distribution). Because the data do not provide strong evidence that the 
null hypothesis is wrong, our conclusion is to fail to reject the null hypothesis. This 
conclusion means that the treatment does not appear to have an effect. 

S T E P  4
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For the research study examining the effect of a red shirt, suppose our sample 
produced a mean tip of M 5 16.4 percent. As before, the standard error for a 
sample of n 5 36 is sM 5 0.5, and the null hypothesis states that m 5 16 percent. 
These values produce a z-score of

z 5
M 2 m

s
M

5
16.4 2 16

0.5
5

0.4

0.5
5 0.80

The z-score of 0.80 is not in the critical region. Therefore, we would fail to reject 
the null hypothesis and conclude that the red shirt does not appear to have an effect 
on male tipping behavior.

In general, the final decision is made by comparing our treated sample with the distribu-
tion of sample means that would be obtained for untreated samples. If our treated sample 
(red shirt) looks much the same as untreated samples (white shirt), we conclude that the 
treatment does not appear to have any effect. On the other hand, if the treated sample is 
noticeably different from the majority of untreated samples, we conclude that the treatment 
does have an effect.

The following example is an opportunity to test your understanding of the process of a 
hypothesis test.

A normal population has a mean m 5 40 and a standard deviation of s 5 8. After a treat-
ment is administered to a sample of n 5 16 individuals from the population, the sample 
mean is found to be M 5 45. A hypothesis test is used to evaluate the treatment effect. State 
the null hypothesis and determine whether the sample provides sufficient evidence to reject 
the null hypothesis and conclude that there is a significant treatment effect with an alpha 
level of a 5 .05. Your null hypothesis should be m 5 40 and you should obtain z 5 2.50, 
which is in the critical region and rejects the null hypothesis. ■

An Analogy for Hypothesis Testing It may seem awkward to phrase both of the two 
possible decisions in terms of rejecting the null hypothesis; either we reject H0H0H  or we fail 
to reject H0H0H . These two decisions may be easier to understand if you think of a research 
study as an attempt to gather evidence to prove that a treatment works. From this perspec-
tive, the process of conducting a hypothesis test is similar to the process that takes place 
during a jury trial. For example:  

1. The test begins with a null hypothesis stating that there is no treatment effect. 
The trial begins with a null hypothesis that there is no crime (innocent until 
proven guilty).

2. The research study gathers evidence to show that the treatment actually does have 
an effect, and the police gather evidence to show that there really is a crime. Note 
that both are trying to refute the null hypothesis.

3. If there is enough evidence, the researcher rejects the null hypothesis and 
concludes that there really is a treatment effect. If there is enough evidence, 
the jury rejects the hypothesis and concludes that the defendant is guilty of 
a crime.

4. If there is not enough evidence, the researcher fails to reject the null hypothesis. 
Note that the researcher does not conclude that there is no treatment effect, simply 
that there is not enough evidence to conclude that there is an effect. Similarly, if 
there is not enough evidence, the jury fails to �nd the defendant guilty. Note that 
the jury does not conclude that the defendant is innocent, simply that there is not 
enough evidence for a guilty verdict.

E X A M P L E  8 . 2

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 8-1 | The Logic of Hypothesis Testing 207

■ A Closer Look at the z-Score Statistic
The z-score statistic that is used in the hypothesis test is the first specific example of what 
is called a test statistic. The term test statistic simply indicates that the sample data are 
converted into a single, specific statistic that is used to test the hypotheses. In the chapters 
that follow, we introduce several other test statistics that are used in a variety of different 
research situations. However, most of the new test statistics have the same basic structure 
and serve the same purpose as the z-score. We have already described the z-score equa-
tion as a formal method for comparing the sample data and the population hypothesis. In 
this section, we discuss the z-score from two other perspectives that may give you a better 
understanding of hypothesis testing and the role that z-scores play in this inferential tech-
nique. In each case, keep in mind that the z-score serves as a general model for other test 
statistics that will come in future chapters.

The z-Score Formula as a Recipe The z-score formula, like any formula, can be 
viewed as a recipe. If you follow instructions and use all the right ingredients, the for-
mula produces a z-score. In the hypothesis-testing situation, however, you do not have 
all the necessary ingredients. Specifically, you do not know the value for the population 
mean (m), which is one component or ingredient in the formula.

This situation is similar to trying to follow a cake recipe where one of the ingredients is 
not clearly listed. For example, the recipe may call for flour but there is a grease stain on 
the page that makes it impossible to read how much flour. Faced with this situation, you 
might try the following steps:

1. Make a hypothesis about the amount of �our. For example, hypothesize that the 
correct amount is 2 cups.

2. To test your hypothesis, add the rest of the ingredients along with the hypothesized 
�our and bake the cake.

3. If the cake turns out to be good, you can reasonably conclude that your hypoth-
esis was correct. But if the cake is terrible, you conclude that your hypothesis 
was wrong.

In a hypothesis test with z-scores, we do essentially the same thing. We have a formula 
(recipe) for z-scores but one ingredient is missing. Specifically, we do not know the value 
for the population mean, m. Therefore, we try the following steps:

1. Make a hypothesis about the value of m. This is the null hypothesis.

2. Plug the hypothesized value into the formula along with the other values (ingredients).

3. If the formula produces a z-score near zero (which is where z-scores are supposed 
to be), we conclude that the hypothesis was correct. On the other hand, if the 
formula produces an extreme value (a very unlikely result), we conclude that the 
hypothesis was wrong.

The z-Score Formula as a Ratio In the context of a hypothesis test, the z-score for-
mula has the following structure:

z 5
M 2 m

s
M

5
sample mean 2 hypothesized population mean

standard error between M and m

Notice that the numerator of the formula involves a direct comparison between the sample 
data and the null hypothesis. In particular, the numerator measures the obtained difference 
between the sample mean and the hypothesized population mean. The standard error in the 
denominator of the formula measures the standard amount of distance that exists naturally 
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between a sample mean and the population mean without any treatment effect that causes the 
sample to be different. Thus, the z-score formula (and many other test statistics) forms a ratio:

z 5
actual difffff efef rence between the sample sMdMdM and the hypothesis smd

standard difffff efef rence between M and m with no treatment efffff efef ct

Thus, for example, a z-score of z 5 3.00 means that the obtained difference between the sam-
ple and the hypothesis is 3 times bigger than would be expected if the treatment had no effect.

In general, a large value for a test statistic like the z-score indicates a large discrepancy between 
the sample data and the null hypothesis. Specifically, a large value indicates that the sample data 
are very unlikely to have occurred by chance alone. Therefore, when we obtain a large value (in 
the critical region), we conclude that it must have been caused by a treatment effect.

LO1 1. In general terms, what is a hypothesis test?

a. A descriptive technique that allows researchers to describe a sample

b. A descriptive technique that allows researchers to describe a population

c. An inferential technique that uses the data from a sample to draw inferences 
about a population

d. An inferential technique that uses information about a population to make 
predictions about a sample

LO2 2. A sample is selected from a population with a mean of m 5 60 and a treatment is 
administered to the individuals in the sample. If a hypothesis test is used to evalu-
ate the treatment effect, then what is the correct statement of the null hypothesis?

a. m 5 60

b. m ? 60

c. M 5 60

d. M ? 60

LO3 3. Which of the following accurately describes the critical region for a hypothesis test?

a. Outcomes that have a very low probability if the null hypothesis is true

b. Outcomes that have a high probability if the null hypothesis is true

c. Outcomes that have a very low probability whether or not the null hypoth-
esis is true

d. Outcomes that have a high probability whether or not the null hypothesis is 
true

LO4 4. A sample of n 5 25 individuals is selected from a population with m 5 80 and 
a treatment is administered to the sample. Which of the following is the most 
likely outcome if the treatment has a large effect?

a. The sample mean should be very different from 80 and should lead you to 
reject the null hypothesis.

b. The sample mean should be very different from 80 and should lead you to 
fail to reject the null hypothesis. 

c. The sample mean should be close to 80 and should lead you to reject the 
null hypothesis.

d. The sample mean should be close to 80 and should lead you to fail to reject 
the null hypothesis.

1. c 2. a 3. a 4. a 

LE A R N I N G C H E C K

A N S W E R S
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8-2 Uncertainty and Errors in Hypothesis Testing

LE A R N I N G O B J E C T IV E  

 5. De�ne a Type I error and a Type II error, explain the consequences of each, and 
describe how a Type I error is related to the alpha level.

Hypothesis testing is an inferential process, which means that it uses limited information as 
the basis for reaching a general conclusion. Specifically, a sample provides only limited or 
incomplete information about the whole population, and yet a hypothesis test uses a sample 
to draw a conclusion about the population. In this situation, there is always the possibility 
that an incorrect conclusion will be made. Although sample data are usually representative 
of the population, there is always a chance that the sample is misleading and will cause a 
researcher to make the wrong decision about the research results. In a hypothesis test, there 
are two different kinds of errors that can be made.

■ Type I Errors
It is possible that the data will lead you to reject the null hypothesis when in fact the treat-
ment has no effect. Remember: samples are not expected to be identical to their popula-
tions, and some extreme samples can be very different from the populations they are sup-
posed to represent. If a researcher selects one of these extreme samples by chance, then the 
data from the sample may give the appearance of a strong treatment effect, even though 
there is no real effect. In the previous section, for example, we discussed a research study 
examining how the tipping behavior of male customers is influenced by a waitress wearing 
the color red. Suppose the researcher selects a sample of n 5 36 men who already were 
good tippers. Even if the red shirt (the treatment) has no effect at all, these men will still 
leave higher than average tips. In this case, the researcher is likely to conclude that the 
treatment does have an effect, when in fact it really does not. This is an example of what is 
called a Type I error.

A Type I error occurs when a researcher rejects a null hypothesis that is actually 
true. In a typical research situation, a Type I error means the researcher concludes 
that a treatment does have an effect when in fact it has no effect.

You should realize that a Type I error is not a stupid mistake in the sense that a researcher 
is overlooking something that should be perfectly obvious. On the contrary, the researcher 
is looking at sample data that appear to show a clear treatment effect. The researcher then 
makes a careful decision based on the available information. The problem is that the infor-
mation from the sample is misleading.

In most research situations, the consequences of a Type I error can be very serious. 
Because the researcher has rejected the null hypothesis and believes that the treatment has 
a real effect, it is likely that the researcher will report or even publish the research results. 
A Type I error, however, means that this is a false report. Thus, Type I errors lead to false 
reports in the scientific literature. Other researchers may try to build theories or develop 
other experiments based on the false results. A lot of precious time and resources may be 
wasted.

The Probability of a Type I Error A Type I error occurs when a researcher unknow-
ingly obtains an extreme, nonrepresentative sample. Fortunately, the hypothesis test is 
structured to minimize the risk that this will occur. Figure 8.4 shows the distribution 
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of sample means and the critical region for the waitress-tipping study we have been 
discussing. This distribution contains all of the possible sample means for samples of 
n 5 36 if the null hypothesis is true. Notice that most of the sample means are near the 
hypothesized population mean, m 516, and that means in the critical region are very 
unlikely to occur.

With an alpha level of a 5 .05, only 5% of the samples have means in the critical 
region. Therefore, there is only a 5% probability (pregion. Therefore, there is only a 5% probability (pregion. Therefore, there is only a 5% probability ( 5 .05) that one of these samples will 
be obtained. Thus, the alpha level determines the probability of obtaining a sample mean 
in the critical region when the null hypothesis is true. In other words, the alpha level deter-
mines the probability of a Type I error.

The alpha level for a hypothesis test is the probability that the test will lead to a 
Type I error. That is, the alpha level determines the probability of obtaining sample 
data in the critical region even though the null hypothesis is true.

In summary, whenever the sample data are in the critical region, the appropriate decision 
for a hypothesis test is to reject the null hypothesis. Normally this is the correct decision 
because the treatment has caused the sample to be different from the original population. 
In this case, the hypothesis test has correctly identified a real treatment effect. Occasion-
ally, however, sample data are in the critical region just by chance, without any treatment 
effect. When this occurs, the researcher will make a Type I error; that is, the researcher will 
conclude that a treatment effect exists when in fact it does not. Fortunately, the risk of a 
Type I error is small and is under the control of the researcher. Specifically, the probability 
of a Type I error is equal to the alpha level.

■ Type II Errors
Whenever a researcher rejects the null hypothesis, there is a risk of a Type I error. Simi-
larly, whenever a researcher fails to reject the null hypothesis, there is a risk of a Type II 
error. By definition, a Type II error is the failure to reject a false null hypothesis. In more 
straightforward English, a Type II error means that a treatment effect really exists, but the 
hypothesis test fails to detect it.

A Type II error occurs when a researcher fails to reject a null hypothesis that is in 
fact false. In a typical research situation, a Type II error means that the hypothesis 
test has failed to detect a real treatment effect.

A Type II error occurs when the sample mean is not in the critical region even though 
the treatment has an effect on the sample. Often this happens when the effect of the treat-
ment is relatively small. In this case, the treatment does influence the sample, but the 
magnitude of the effect is not big enough to move the sample mean into the critical region. 
Because the sample is not substantially different from the original population (it is not in 
the critical region), the statistical decision is to fail to reject the null hypothesis and to con-
clude that there is not enough evidence to say there is a treatment effect.

The consequences of a Type II error are usually not as serious as those of a Type I error. 
In general terms, a Type II error means that the research data do not show the results that 
the researcher had hoped to obtain. The researcher can accept this outcome and conclude 
that the treatment either has no effect or has only a small effect that is not worth pursuing, 
or the researcher can repeat the experiment (usually with some improvement, such as a 
larger sample) and try to demonstrate that the treatment really does work.
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Unlike a Type I error, it is impossible to determine a single, exact probability for a 
Type II error. Instead, the probability of a Type II error depends on a variety of factors 
and therefore is a function, rather than a specific number. Nonetheless, the probability of a 
Type II error is represented by the symbol b, the Greek letter beta.

In summary, a hypothesis test always leads to one of two decisions:

1. The sample data provide suf�cient evidence to reject the null hypothesis and con-
clude that the treatment has an effect.

2. The sample data do not provide enough evidence to reject the null hypothesis. In 
this case, you fail to reject H0H0H  and conclude that the treatment does not appear to 
have an effect.

In either case, there is a chance that the data are misleading and the decision is wrong. 
In summary, a hypothesis test always has two possibilities for error:  

1. Type I error (alpha): rejecting a true null hypothesis. The sample data are extreme 
by chance and may give the appearance of a treatment effect, even though there is 
no real effect.    

2. Type II error (beta): failing to reject a false null hypothesis. The sample data are 
not in the critical region even though the treatment has an effect on the sample.  

The complete set of decisions and outcomes is shown in Table 8.1. The risk of an error 
is especially important in the case of a Type I error, which can lead to a false report. 
Fortunately, the probability of a Type I error is determined by the alpha level, which is 
completely under the control of the researcher. At the beginning of a hypothesis test, the 
researcher states the hypotheses and selects the alpha level, which immediately determines 
the risk of a Type I error.

■ Selecting an Alpha Level
As you have seen, the alpha level for a hypothesis test serves two very important functions. 
First, alpha helps determine the boundaries for the critical region by defining the concept 
of “very unlikely” outcomes. At the same time, alpha determines the probability of a Type I 
error. When you select a value for alpha at the beginning of a hypothesis test, your decision 
influences both of these functions.

The primary concern when selecting an alpha level is to minimize the risk of a Type I 
error. Thus, alpha levels tend to be very small probability values. By convention, the largest 
permissible value is a 5.05 (Cowles & Davis, 1982). When there is no treatment effect, an 
alpha level of .05 means that there is still a 5% risk, or a 1-in-20 probability, of rejecting 
the null hypothesis and committing a Type I error. Because the consequences of a Type I 
error can be relatively serious, many individual researchers and many scientific publica-
tions prefer to use a more conservative alpha level such as .01 or .001 to reduce the risk that 
a false report is published and becomes part of the scientific literature. 

At this point, it may appear that the best strategy for selecting an alpha level is to choose 
the smallest possible value to minimize the risk of a Type I error. However, there is a differ-
ent kind of risk that develops as the alpha level is lowered. Specifically, a lower alpha level 

Actual Situation

No Effect, H0 True Effect Exists, H0 False

Researcher’s Decision
Reject H0 Type I error Decision correct

Fail to Reject H0 Decision correct Type II error

TA B L E  8 .1
Possible outcomes of a 
statistical decision.
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1.96
z

021.96
2.5822.58

3.3023.30
m from H0H0H

a 5 .01

a 5 .05

a 5 .001

F I G U R E  8 . 5
The locations of the critical 
region boundaries for three 
different levels of signifi-
cance: a 5 .05, a 5 .01, 
and a 5 .001.

means less risk of a Type I error, but it also means that the hypothesis test demands more 
evidence from the research results.

The trade-off between the risk of a Type I error and the demands of the test is controlled 
by the boundaries of the critical region. For the hypothesis test to conclude that the treat-
ment does have an effect, the sample data must be in the critical region. If the treatment 
really has an effect, it should cause the sample to be different from the original population; 
essentially, the treatment should push the sample into the critical region. However, as the 
alpha level is lowered, the boundaries for the critical region move farther out and become 
more difficult to reach. Figure 8.5 shows how the boundaries for the critical region move 
farther into the tails as the alpha level decreases. Notice that z 5 0, in the center of the dis-
tribution, corresponds to the value of m specified in the null hypothesis. The boundaries for 
the critical region determine how much distance between the sample mean and m is needed 
to reject the null hypothesis. As the alpha level gets smaller, this distance gets larger.

Thus, an extremely small alpha level, such as .000001 (one in a million), would mean 
almost no risk of a Type I error but would push the critical region so far out that it would 
become essentially impossible to ever reject the null hypothesis; that is, it would require 
an enormous treatment effect before the sample data would reach the critical boundaries.

In general, researchers try to maintain a balance between the risk of a Type I error 
and the demands of the hypothesis test. Alpha levels of .05, .01, and .001 are considered 
reasonably good values because they provide a low risk of error without placing excessive 
demands on the research results.

LO5 1. What does a Type II error mean?

a. A researcher has falsely concluded that a treatment has an effect.

b. A researcher has correctly concluded that a treatment has no effect.

c. A researcher has falsely concluded that a treatment has no effect.

d. A researcher has correctly concluded that a treatment has an effect.

LE A R N I N G C H E C K
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LO5 2. Which of the following defines a Type I error?

a. Rejecting a false null hypothesisRejecting a false null hypothesisRejecting a f

b. Rejecting a true null hypothesis

c. Failing to reject a false null hypothesis

d. Failing to reject a true null hypothesis

LO5 3. What is the consequence of increasing the alpha level (for example, from .01 to 
.05)?

a. It will increase the likelihood of rejecting H0H0H  and increase the risk of a Type 
I error.

b. It will decrease the likelihood of rejecting H0H0H  and increase the risk of a Type 
I error.

c. It will increase the likelihood of rejecting H0H0H  and decrease the risk of a Type 
I error.

d. It will decrease the likelihood of rejecting H0H0H  and decrease the risk of a 
Type I error.

1. c 2. b 3. aA N S W E R S

8-3 More about Hypothesis Tests

LE A R N I N G O B J E C T IV E S

 6. Describe how the results of a hypothesis test with a z-score test statistic are 
reported in the literature.

 7. Explain how the outcome of a hypothesis test is in�uenced by the sample size, the 
standard deviation, and the difference between the sample mean and the hypoth-
esized population mean.  

 8. Describe the assumptions underlying a hypothesis test with a z-score test statistic.

■ A Summary of the Hypothesis Test
In Example 8.1 we presented a complete example of a hypothesis test evaluating the effect 
of waitresses wearing red on male customers’ tipping behavior. The four-step process for 
the hypothesis test is summarized as follows:

Step 1: State the hypotheses and select an alpha level. 

Step 2: Locate the critical region.

Step 3: Compute the test statistic (the z-score).

Step 4: Make a decision about the null hypothesis.

IN THE LITERATURE

Reporting the Results of the Statistical Test
When you are writing a research report or reading a published report, a special jargon 
and notational system are used to discuss the outcome of a hypothesis test. If the 
results from the waitress-tipping study in Example 8.1 were reported in a scienti�c 
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journal, for example, you would not be told explicitly that the researcher evaluated the 
data using a z-score as a test statistic with an alpha level of .05. Nor would you be told 
“the null hypothesis is rejected.” Instead, you would see a statement such as

Wearing a red shirt had a signi�cant effect on the size of the tips left by male cus-
tomers, z 5 2.40, p , .05.

Let us examine this statement piece by piece. First, in statistical tests, a signi�-
cant result means that the null hypothesis has been rejected. For this example, the null cant result means that the null hypothesis has been rejected. For this example, the null cant
hypothesis stated that the red shirt has no effect; however, the data clearly indicated that 
wearing a red shirt did have an effect. Speci�cally, it is very unlikely that the data would 
have been obtained if the red shirt did not have an effect.

A result is said to be signi�cant or statistically signi�cant if it is very unlikely to statistically signi�cant if it is very unlikely to statistically signi�cant
occur when the null hypothesis is true. That is, the result is suf�cient to reject the 
null hypothesis. Thus, a treatment has a signi�cant effect if the decision from the 
hypothesis test is to reject H0H0H .

Next, z 5 2.40 indicates that a z-score was used as the test statistic to evaluate the 
sample data and that its value is 2.40. Finally, p , .05 is the conventional way of speci-
fying the alpha level that was used for the hypothesis test. It also acknowledges the pos-
sibility (and the probability) of a Type I error. Speci�cally, the researcher is reporting 
that the treatment had an effect but admits that this could be a false report. That is, it is 
possible that the sample mean was in the critical region even though the red shirt had no 
effect. However, the probability (peffect. However, the probability (peffect. However, the probability ( ) of obtaining a sample mean in the critical region is 
extremely small (less than .05) if there is no treatment effect.

In circumstances in which the statistical decision is to fail to reject H0fail to reject H0fail to reject H , the report 
might state that

The red shirt did not have a signi�cant effect on the size of the tips left by male 
customers, z 5 0.75, p . .05. 

In that case, we would be saying that the obtained result, z 5 0.75, is not unusual 
(not in the critical region) and that it has a relatively high probability of occurring 
(greater than .05) even if the null hypothesis is true and there is no treatment effect.

When a hypothesis test is conducted using a computer program, the printout often 
includes not only a z-score value but also an exact value for p, the probability that the 
result occurred without any treatment effect. In this case, researchers are encouraged 
to report the exact p value instead of using the less-than or greater-than notation. For 
example, a research report might state that the treatment effect was signi�cant, with 
z 5 2.40, p 5 .0164. When using exact values for p, however, you must still satisfy the 
traditional criterion for signi�cance; speci�cally, the p value must be smaller than .05 
to be considered statistically signi�cant. Remember: the p value is the probability that 
the result would occur if H0H0H  were true (without any treatment effect), which is also the 
probability of a Type I error. It is essential that this probability be very small.

■ Factors That Influence a Hypothesis Test
The final decision in a hypothesis test is determined by the value obtained for the z-score 
statistic. If the z-score is large enough to be in the critical region, we reject the null hypoth-
esis and conclude that there is a significant treatment effect. Otherwise, we fail to reject 
H0 H0 H and conclude that the treatment does not have a significant effect. The most obvious 

The APA style does 
not use a leading zero 
in a probability value 
that refers to a level of 
significance.
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factor influencing the size of the z-score is the difference between the sample mean and the 
hypothesized population mean from H0H0H . A big mean difference indicates that the treated 
sample is noticeably different from the untreated population and usually supports a conclu-
sion that the treatment effect is significant. In addition to the mean difference, however, 
the size of the z-score is also influenced by the standard error, which is determined by the 
variability of the scores (standard deviation or the variance) and the number of scores in 
the sample (n).

s
M

5
s

ÏnÏnÏÏ
Therefore, these two factors also help determine whether the z-score will be large enough 
to reject H0H0H . In this section we examine how the variability of the scores and the size of the 
sample can influence the outcome of a hypothesis test. 

We will use the research study from Example 8.1 to examine each of these factors. The 
study used a sample of n 5 36 male customers and concluded that wearing the color red 
has a significant effect on the tips that waitresses receive, z 5 2.40, p , .05.

The Variability of the Scores In Chapter 4 (page 111) we noted that high variability 
can make it very difficult to see any clear patterns in the results from a research study. 
In a hypothesis test, higher variability can reduce the chances of finding a significant 
treatment effect. For the study in Example 8.1, the standard deviation is s 5 3. With a 
sample of n 5 36, this produced a standard error of sM 5 0.5 points and a significant 
z-score of z 5 2.40. Now  consider what happens if the standard deviation is increased to 
s 5 6. With the increased variability, the standard error becomes sM 5 6

Ï36Ï
5 1 point. 

Using the same 1.2-point mean difference from the original example (17.2 vs. 16.0) the 
new z-score becomes

z 5
M 2 m

s
M

5
17.2 2 16.0

1
5

1.2

1
5 1.2

The z-score is no longer beyond the critical boundary of 1.96, so the statistical decision 
is to fail to reject the null hypothesis. The increased variability means that the sample data 
are no longer sufficient to conclude that the treatment has a significant effect. In general, 
increasing the variability of the scores produces a larger standard error and a smaller value 
(closer to zero) for the z-score. If other factors are held constant, the larger the variability, 
the lower the likelihood of finding a significant treatment effect.

The Number of Scores in the Sample The second factor that influences the outcome 
of a hypothesis test is the number of scores in the sample. The study in Example 8.1 using a 
sample of n 5 36 male customers obtained a standard error of sM 5 3

Ï36Ï
5 0.5 points and a 

significant z-score of z 5 2.40. Now consider what happens if we decrease the sample 
size to only n 5 16 customers. With n 5 16, the standard error becomes sM 5 3

Ï16Ï
5

0.75 points, and the z-score becomes

z 5
M 2 m

s
M

5
17.2 2 16.0

0.75
5

1.2

0.75
5 1.60

Decreasing the sample size from n 5 36 to n 5 16 has reduced the size of the z-score. For 
this example, the z-score is no longer in the critical region and we conclude that there is 
no significant treatment effect. In general, decreasing the number of scores in the sample 
produces a larger standard error and a smaller value (closer to zero) for the z-score. If all 
other factors are held constant, a larger sample is more likely to result in a significant treat-
ment effect. 
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■ Assumptions for Hypothesis Tests with z-Scores
The mathematics used for a hypothesis test are based on a set of assumptions. When these 
assumptions are satisfied, you can be confident that the test produces a justified conclusion. 
However, if the assumptions are not satisfied, the hypothesis test may be compromised. In 
practice, researchers are not overly concerned with the assumptions underlying a hypoth-
esis test because the tests usually work well even when the assumptions are violated. How-
ever, you should be aware of the fundamental conditions that are associated with each type 
of statistical test to ensure that the test is being used appropriately. The assumptions for 
hypothesis tests with z-scores are summarized as follows.

Random Sampling It is assumed that the participants used in the study were selected 
randomly. Remember, we wish to generalize our findings from the sample to the popula-
tion. Therefore, the sample must be representative of the population from which it has 
been drawn. Random sampling helps to ensure that it is representative.

Independent Observations The values in the sample must consist of independent obindependent obindependent -
servations. In everyday terms, two observations are independent if there is no consistent, pre-
dictable relationship between the first observation and the second. More precisely, two events 
(or observations) are independent if the occurrence of the first event has no effect on the 
probability of the second event. Specific examples of independence and non-independence 
are examined in Box 8.1. Usually, this assumption is satisfied by using a random sample, 

Independent observations are a basic requirement for 
nearly all hypothesis tests. The critical concern is that 
each observation or measurement is not influenced by 
any other observation or measurement. An example of 
independent observations is the set of outcomes ob-
tained in a series of coin tosses. Assuming that the coin 
is balanced, each toss has a 50250 chance of coming 
up either heads or tails. More important, each toss is 
independent of the tosses that came before. On the independent of the tosses that came before. On the independent
fifth toss, for example, there is a 50% chance of heads 
no matter what happened on the previous four tosses; 
the coin does not remember what happened earlier and 
is not influenced by the past. (Noteis not influenced by the past. (Noteis not influenced by the past. ( : Many people fail 
to believe in the independence of events. For example, 
after a series of four tails in a row, it is tempting to think 
that the probability of heads must increase because the 
coin is overdue to come up heads. This is a mistake, 
called the “gambler’s fallacy.” Remember that the coin 
does not know what happened on the preceding tosses 
and cannot be influenced by previous outcomes.)

In most research situations, the requirement for in-
dependent observations is typically satisfied by using 
a random sample of separate, unrelated individuals. 
Thus, the measurement obtained for each individual is 
not influenced by other participants in the study. The 
following two situations demonstrate circumstances 
in which the observations are not independent.not independent.not

1. A researcher interested in the mathematical 
ability for new freshmen at the state college 
selects a sample of n 5 20 from the group 
of students who attend a brief orientation 
describing the school’s physics program. It 
should be obvious that the researcher does 
not have 20 independent observations. In not have 20 independent observations. In not
addition to being a biased and unrepresen-
tative sample, the students in this group 
probably share an unusually high level of 
mathematics experience. Thus, the score 
for each student is likely to be similar to the 
scores for the others in the group. 

2. The principle of independent observa-
tions is violated if the sample is obtained 
using sampling without replacement. 
For example, if you are selecting from 
a group of 20 potential participants, 
each individual has a 1 in 20 chance of 
being selected �rst. After the �rst person 
is selected, however, there are only 19 
people remaining and the probability 
of being selected changes to 1 in 19. 
Because the probability of the second 
selection depends on the �rst, the two 
selections are not independent.

BOX 8.1 Independent Observations
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LO6 1. A research report includes the statement, “z 5 2.18, p , .05.” What happened 
in the hypothesis test?

a. The obtained sample mean was very unlikely if the null hypothesis is true, 
so H0H0H  was rejected.

b. The obtained sample mean was very likely if the null hypothesis is true, so 
H0H0H  was rejected.

c. The obtained sample mean was very unlikely if the null hypothesis is true, 
and the test failed to reject H0H0H .

d. The obtained sample mean was very likely if the null hypothesis is true, and 
the test failed to reject H0H0H .

LO7 2. A sample of n 5 4 individuals is selected from a population with m 5 80 and 
s 5 5, and a treatment is administered to the sample. If the treatment really 
does have an effect, then what would be the effect of increasing the sample size 
to n 5 25?

a. Increase the chances that the sample will produce an extreme z-score 
and increase the likelihood that you will conclude that a treatment 
effect exists

b. Increase the chances that the sample will produce an extreme z-score and 
increase the likelihood that you will conclude that a treatment effect does 
not exist

LE A R N I N G C H E C K

which also helps ensure that the sample is representative of the population and that the results 
can be generalized to the population.

The Value of s Is Unchanged by the Treatment A critical part of the z-score 
formula in a hypothesis test is the standard error, sM. To compute the value for the 
standard error, we must know the sample size (n) and the population standard deviation 
(s). In a hypothesis test, however, the sample comes from an unknown population (see 
Figure 8.2). If the population is really unknown, it would suggest that we do not know 
the standard deviation and, therefore, we cannot calculate the standard error. To solve 
this dilemma, we have made an assumption. Specifically, we assume that the standard 
deviation for the unknown population (after treatment) is the same as it was for the 
population before treatment.

Actually, this assumption is the consequence of a more general assumption that is part of 
many statistical procedures. This general assumption states that the effect of the treatment is 
to add a constant amount to (or subtract a constant amount from) every score in the popula-
tion. You should recall that adding (or subtracting) a constant changes the mean but has no 
effect on the standard deviation. You also should note that this assumption is a theoretical 
ideal. In actual experiments, a treatment generally does not show a perfect and consistent 
additive effect.

Normal Sampling Distribution To evaluate hypotheses with z-scores, we have used 
the unit normal table to identify the critical region. This table can be used only if the dis-
tribution of sample means is normal.
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c. Increase the chances that the sample will produce a z-score near zero and 
increase the likelihood that you will conclude that a treatment effect exists.

d. Increase the chances that the sample will produce a z-score near zero and 
increase the likelihood that you will conclude that a treatment effect does 
not exist.

LO8 3. What assumption is needed before you can use the unit normal table to find What assumption is needed before you can use the unit normal table to find What assumption is needed before you can use the unit normal table to f
critical values for a z-score hypothesis test?

a. The population of scores before treatment is normal.

b. The scores are obtained by random sampling.

c. The scores in the sample are independent observations.

d. The distribution of sample means is normal.

1. a 2. a 3. dA N S W E R S

8-4 Directional (One-Tailed) Hypothesis Tests

LE A R N I N G O B J E C T IV E

 9. Describe the hypotheses and the critical region for a directional (one-tailed) 
hypothesis test.

The hypothesis-testing procedure presented in Sections 8.2 and 8.3 is the standard, or 
two-tailed, test format. The term two-tailed comes from the fact that the critical region two-tailed comes from the fact that the critical region two-tailed
is divided between the two tails of the distribution. This format is by far the most widely 
accepted procedure for hypothesis testing. Nonetheless, there is an alternative that is dis-
cussed in this section.

Usually a researcher begins an experiment with a specific prediction about the direction 
of the treatment effect. For example, a special training program is expected to increase
student performance, or alcohol consumption is expected to slow reaction times. In these 
situations, it is possible to state the statistical hypotheses in a manner that incorporates the 
directional prediction into the statement of H0H0H  and H1. The result is a directional test, or 
what commonly is called a one-tailed test.

In a directional hypothesis test, or a one-tailed test, the statistical hypotheses  
(H(H( 0H0H  and H1) specify either an increase or a decrease in the population mean. That 
is, they make a statement about the direction of the effect.

Earlier, in Example 8.1, we discussed a research study that examined the effect of wait-
resses wearing red on the tips given by male customers. In the study, each participant in a 
sample of n 5 36 was served by a waitress wearing a red shirt and the size of the tip was 
recorded. For the general population of male customers (without a red shirt), the distribu-
tion of tips was roughly normal with a mean of m 5 16 percent and a standard deviation 
of s 5 3 percentage points. For this example, the expected effect is that the color red will 
increase tips. If the researcher obtains a sample mean of M 5 16.9 percent for the n 5 36 
participants, is the result sufficient to conclude that the red shirt really increases tips? ■

E X A M P L E  8 . 3
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The following example demonstrates the elements of a one-tailed hypothesis test.
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■ The Hypotheses for a Directional Test
Because a specific direction is expected for the treatment effect, it is possible for the 
researcher to perform a directional test. The first step (and the most critical step) is to state 
the statistical hypotheses. Remember that the null hypothesis states that there is no treatment 
effect and that the alternative hypothesis says that there is an effect. For this example, the 
predicted effect is that the red shirt will increase tips. Thus, the two hypotheses would state:

H0H0H : Tips are not increased. (The treatment does not work.)

H1: Tips are increased. (The treatment works as predicted.)

To express directional hypotheses in symbols, it usually is easier to begin with the alterna-
tive hypothesis (H1). Again, we know that the general population has an average of m 5 16, and 
H1 states that this value will be increased with the red shirt. Therefore, expressed in symbols, 
H1 states,

H1: m . 16 (With the red shirt, the average tip is greater than 16 percent.)

The null hypothesis states that the red shirt does not increase tips. In symbols,

H0H0H : m # 16 (With the red shirt, the average tip is not greater than 16 percent.)

Note again that the two hypotheses are mutually exclusive and cover all of the possibilities. 
Also note that the two hypotheses concern the general population of male customers, not 
just the 36 men in the study. We are asking what would happen if all male customers were 
served by a waitress wearing a red shirt.

■ The Critical Region for Directional Tests
The critical region is defined by sample outcomes that are very unlikely to occur if the null 
hypothesis is true (that is, if the treatment has no effect). Earlier (page 203), we noted that 
the critical region can also be defined in terms of sample values that provide convincing 
evidence that the treatment really does have an effect. For a directional test, the concept of 
“convincing evidence” is the simplest way to determine the location of the critical region. 
We begin with all the possible sample means that could be obtained if the null hypothesis is 
true. This is the distribution of sample means and it will be normal (because the population 
of test scores is normal), have an expected value of m 5 16 (from H0H0H ), and, for a sample 
of n 5 36, will have a standard error of sM 5 3

Ï36Ï
5 0.5 points. The distribution is shown 

in Figure 8.6.

z

16
M

0 1.65

m

sM 5 0.5
Reject H0
Data indicate
that H0 is wrong

F I G U R E  8 .6
Critical region for Example 8.3.
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For this example, the treatment is expected to increase test scores. If the regular popula-
tion of male customers has an average tip of m 5 16 percent, then a sample mean that is sub-
stantially more than 16 would provide convincing evidence that the red shirt worked. Thus, 
the critical region is located entirely in the right-hand tail of the distribution corresponding 
to sample means much greater than m 5 16 (Figure 8.6). Because the critical region is 
contained in one tail of the distribution, a directional test is commonly called a one-tailed
test. Also note that the proportion specified by the alpha level is not divided between two 
tails, but rather is contained entirely in one tail. Using a 5 .05 for example, the whole 5% is 
located in one tail. In this case, the z-score boundary for the critical region is z 5 1.65, which 
is obtained by looking up a proportion of .05 in column C (the tail) of the unit normal table.

Notice that a directional (one-tailed) test requires two changes in the step-by-step 
hypothesis-testing procedure.

1. In the �rst step of the hypothesis test, the directional prediction is incorporated into 
the statement of the hypotheses.

2. In the second step of the process, the critical region is located entirely in one tail of 
the distribution.

After these two changes, a one-tailed test continues exactly the same as a regular two-tailed 
test. Specifically, you calculate the z-score statistic and then make a decision about H0H0H
depending on whether the z-score is in the critical region.

For this example, the researcher obtained a mean of M 5 16.9 percent for the 36 par-
ticipants who were served by a waitress in a red shirt. This sample mean corresponds to a 
z-score of

z 5
M 2 m

s
M

5
16.9 2 16.0

0.5
5

0.9

0.5
5 1.80

A z-score of z 5 1.80 is in the critical region for a one-tailed test (see Figure 8.6). This 
is a very unlikely outcome if H0H0H  is true. Therefore, we reject the null hypothesis and con-
clude that the red shirt produces a significant increase in tips from male customers. In the 
literature, this result would be reported as follows:

Wearing a red shirt produced a significant increase in tips, z 5 1.80, p , .05, one-tailed.

Note that the report clearly acknowledges that a one-tailed test was used.

■ Comparison of One-Tailed versus Two-Tailed Tests
The general goal of hypothesis testing is to determine whether a treatment has an effect 
on a population. The test is performed by selecting a sample, administering the treatment 
to the sample, and then comparing the result with the original population. If the treated 
sample is noticeably different from the original population, then we conclude that the treat-
ment has an effect, and we reject H0H0H . On the other hand, if the treated sample is still similar 
to the original population, then we conclude that there is no convincing evidence for a 
treatment effect, and we fail to reject H0H0H . The critical factor in this decision is the size of 
the difference between the treated sample and the original population. A large difference 
is evidence that the treatment worked; a small difference is not sufficient to say that the 
treatment has any effect.

The major distinction between one-tailed and two-tailed tests is in the criteria they use 
for rejecting H0H0H . A one-tailed test allows you to reject the null hypothesis when the differ-
ence between the sample and the population is relatively small, provided the difference is 
in the specified direction. A two-tailed test, on the other hand, requires a relatively large 
difference independent of direction. This point is illustrated in the following example.

If the prediction is 
that the treatment will 
produce a decrease in 
scores, the critical re-
gion is located entirely 
in the left-hand tail of 
the distribution.
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Consider again the one-tailed test in Example 8.3 evaluating the effect of waitresses wear-
ing red on the tips from male customers. If we had used a standard two-tailed test, the 
hypotheses would be

H0H0H : m 5 16 (The red shirt has no effect on tips.)

H1: m ? 16 (The red shirt does have an effect on tips.)

For a two-tailed test with a 5 .05, the critical region consists of z-scores beyond 61.96. 
The data from Example 8.3 produced a sample mean of M 5 16.9 percent and z 5 1.80. 
For the two-tailed test, this z-score is not in the critical region, and we conclude that the red 
shirt does not have a significant effect. ■

With the two-tailed test in Example 8.4, the 0.9-point difference between the sample mean 
and the hypothesized population mean (M 5 16.9 and m 5 16) is not big enough to reject 
the null hypothesis. However, with the one-tailed test in Example 8.3, the same 0.9-point dif-the null hypothesis. However, with the one-tailed test in Example 8.3, the same 0.9-point dif-the null hypothesis. However, with the one-tailed test in Example 8.3, the same 0.9-point dif
ference is large enough to reject H0H0H  and conclude that the treatment had a significant effect.

All researchers agree that one-tailed tests are different from two-tailed tests. However, 
there are several ways to interpret the difference. One group of researchers contends that 
a two-tailed test is more rigorous and, therefore, more convincing than a one-tailed test. 
Other researchers feel that one-tailed tests are preferable because they are more sensitive. 
That is, a relatively small treatment effect may be significant with a one-tailed test but fail 
to reach significance with a two-tailed test. 

In general, two-tailed tests should be used in research situations when there is no strong 
directional expectation or when there are two competing predictions. For example, a two-
tailed test would be appropriate for a study in which one theory predicts an increase in 
scores but another theory predicts a decrease. One-tailed tests should be used only in situa-
tions when the directional prediction is made before the research is conducted and there is 
a strong justification for making the directional prediction. In particular, if a two-tailed test 
fails to reach significance, you should never follow up with a one-tailed test as a second 
attempt to salvage a significant result for the same data.

E X A M P L E  8 . 4

LO9 1. A population is known to have a mean of m 5 50. A treatment is expected to 
increase scores for individuals in this population. If the treatment is evaluated 
using a one-tailed hypothesis, then which of the following is the correct state-
ment of the null hypothesis?

a. m $ 50

b. m . 50

c. m # 50

d. m , 50

LO9 2. A researcher is conducting an experiment to evaluate a treatment that is ex-
pected to decrease the scores for individuals in a population which is known to 
have a mean of m 5 80. The results will be examined using a one-tailed hy-
pothesis test. Which of the following is the correct statement of the alternative 
hypothesis (H1)?

a. m . 80

b. m $ 80

c. m , 80

d. m # 80

LE A R N I N G C H E C K
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LO9 3. A researcher expects a treatment to produce an increase in the population 
mean. Assuming a normal distribution, what is the critical z-score for a one-
tailed test with a 5 .01?

a. 12.33

b. 62.58

c. 11.65

d. 62.33

1. c 2. c 3. aA N S W E R S

8-5 Concerns about Hypothesis Testing: Measuring Effect Size

LE A R N I N G O B J E C T IV E S

 10. Explain why it is necessary to report a measure of effect size in addition to the 
outcome of a hypothesis test.

 11. Calculate Cohen’s d as a measure of effect size.d as a measure of effect size.d

 12. Explain how measures of effect size such as Cohen’s d are in�uenced by the d are in�uenced by the d
sample size and the standard deviation.

Although hypothesis testing is the most commonly used technique for evaluating and inter-
preting research data, a number of scientists have expressed a variety of concerns about the 
hypothesis testing procedure (for example, see Loftus, 1996; Hunter, 1997; and Killeen, 2005).

The primary concern is that demonstrating a significant treatment effect does not necsignificant treatment effect does not necsignificant -
essarily indicate a substantial treatment effect. In particular, statistical significance does substantial treatment effect. In particular, statistical significance does substantial
not provide any real information about the absolute size of a treatment effect. Instead, the 
hypothesis test has simply established that the results obtained in the research study are 
very unlikely to have occurred if there is no treatment effect. The hypothesis test reaches 
this conclusion by (1) calculating the standard error, which measures how much difference 
is reasonable to expect between M and M and M m if there is no treatment effect, and (2) demonstrat-
ing that the obtained mean difference is substantially bigger than the standard error.

Notice that the test is making a relative comparison: the size of the treatment effect is 
being evaluated relative to the standard error. If the standard error is very small, then the 
treatment effect can also be very small and still be large enough to be significant. Thus, a 
significant effect does not necessarily mean a big effect.

The idea that a hypothesis test evaluates the relative size of a treatment effect, rather 
than the absolute size, is illustrated in the following example.

We begin with a population of scores that forms a normal distribution with m 5 50 and 
s 5 10. A sample is selected from the population and a treatment is administered to the 
sample. After treatment, the sample mean is found to be M 5 51. Does this sample provide 
evidence of a statistically significant treatment effect?

Although there is only a 1-point difference between the sample mean and the original 
population mean, the difference may be enough to be significant. In particular, the outcome 
of the hypothesis test depends on the sample size.

For example, with a sample of n 5 25 the standard error is

s
M

5
s

ÏnÏnÏÏ
5

10

Ï25Ï
5

10

5
5 2.00

E X A M P L E  8 . 5
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and the z-score for M 5 51 is

z 5
M 2 m

s
M

5
51 2 50

2
5

1

2
5 0.50

This z-score fails to reach the critical boundary of z 5 1.96, so we fail to reject the null 
hypothesis. In this case, the 1-point difference between M and M and M m is not significant because 
it is being evaluated relative to a standard error of 2 points.

Now consider the outcome with a sample of n 5 400. With a larger sample, the standard 
error is

s
M

5
s

ÏnÏnÏÏ
5

10

Ï4Ï4Ï 00Ï
5

10

20
5 0.50

and the z-score for M 5 51 is

z 5
M 2 m

s
M

5
51 2 50

0.5
5

1

0.5
5 2.00

Now the z-score is beyond the 1.96 boundary, so we reject the null hypothesis and conclude 
that there is a significant effect. In this case, the 1-point difference between M and M and M m is 
considered statistically significant because it is being evaluated relative to a standard error 
of only 0.5 points. ■

The point of Example 8.5 is that a small treatment effect can still be statistically signifi-
cant. If the sample size is large enough, any treatment effect, no matter how small, can be 
enough for us to reject the null hypothesis.

■ Measuring Effect Size
As noted in the previous section, one concern with hypothesis testing is that a hypothesis 
test does not really evaluate the absolute size of a treatment effect. To correct this problem, 
it is recommended that whenever researchers report a statistically significant effect, they 
also provide a report of the effect size (see the guidelines presented by L. Wilkinson and the 
APA Task Force on Statistical Inference, 1999). Therefore, as we present different hypoth-
esis tests we will also present different options for measuring and reporting effect size. The 
goal is to measure and describe the absolute size of the treatment effect in a way that is not 
influenced by the number of scores in the sample. 

A measure of effect size is intended to provide a measurement of the absolute mag-
nitude of a treatment effect, independent of the size of the sample(s) being used.

One of the simplest and most direct methods for measuring effect size is Cohen’s
d. Cohen (1988) recommended that effect size can be standardized by measuring the mean 
difference in terms of the standard deviation. The resulting measure of effect size is com-
puted as

Cohen’s d 5
mean difffff efef rence

standard deviation
5

m
treatment

2 m
no treatment

s
(8.1)

For the z-score hypothesis test, the mean difference is determined by the difference 
between the population mean before treatment and the population mean after treatment. 
However, the population mean after treatment is unknown. Therefore, we must use the 
mean for the treated sample in its place. Remember, the sample mean is expected to be 
representative of the population mean and provides the best measure of the treatment 
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effect. Thus, the actual calculations are really estimating the value of Cohen’s d as d as d
follows:

estimated Cohen’s d 5
mean difffff efef rence

standard deviation
5

M
t

M
t

M
reatment

2 m
no treatment

s
(8.2)

The standard deviation is included in the calculation to standardize the size of the mean 
difference in much the same way that z-scores standardize locations in a distribution. For 
example, a 15-point mean difference can be a relatively large treatment effect or a relatively 
small effect depending on the size of the standard deviation. This phenomenon is demon-
strated in Figure 8.7. The top portion of the figure (part a) shows the results of a treatment 
that produces a 15-point mean difference in SAT scores; before treatment, the average SAT 
score is m 5 500, and after treatment the average is 515. Notice that the standard deviation 
for SAT scores is s 5 100, so the 15-point difference appears to be small. For this example, 
Cohen’s d isd isd

Cohen’s d 5
mean difffff efef rence

standard deviation
5

15

100
5 0.15

Cohen’s d measures the 
distance between two 
means and is typically 
reported as a positive 
number even when the 
formula produces a 
negative value.

m 5 500

s 5 100

Distribution of SATDistribution of SATDistribution of SA
scores before treatment
m 5 500 and s 5 100

d 5 0.15

m 5 100

s 5 15

Distribution of IQ
scores before treatment
m 5 100 and s 5 15

Distribution of SAT
scores after treatment
m 5 515 and s 5 100

Distribution of IQ
scores after treatment
m 5 115 and s 5 15

d 5 1.00

(a)

(b)

F I G U R E  8 .7
The appearance of a 15-point treatment effect in two different situations. In part (a), the standard deviation is s 5 100 and 
the 15-point effect is relatively small. In part (b), the standard deviation is s 5 15 and the 15-point effect is relatively large. 
Cohen’s d uses the standard deviation to help measure effect size.d uses the standard deviation to help measure effect size.d
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Now consider the treatment effect shown in Figure 8.7(b). This time, the treatment pro-
duces a 15-point mean difference in IQ scores; before treatment the average IQ is 100, and 
after treatment the average is 115. Because IQ scores have a standard deviation of s 5 15, 
the 15-point mean difference now appears to be large. For this example, Cohen’s d isd isd

Cohen’s d 5
mean difffff efef rence

standard deviation
5

15

15
5 1.00

Notice that Cohen’s d measures the size of the treatment effect in terms of the standard d measures the size of the treatment effect in terms of the standard d
deviation. For example, a value of d 5 0.50 indicates that the treatment changed the mean 
by half of a standard deviation; similarly, a value of d 5 1.00 indicates that the size of the 
treatment effect is equal to one whole standard deviation. 

Cohen (1988) also suggested criteria for evaluating the size of a treatment effect as 
shown in Table 8.2.

As one final demonstration of Cohen’s d, consider the two hypothesis tests in Example 8.5. 
For each test, the original population had a mean of m 5 50 with a standard deviation of 
s 5 10. For each test, the mean for the treated sample was M 5 51. Although one test used 
a sample of n 5 25 and the other test used a sample of n 5 400, the sample size is not con-
sidered when computing Cohen’s d. Therefore, both of the hypothesis tests would produce 
the same value:

Cohen’s d 5
mean difffff efef rence

standard deviation
5

1

10
5 0.10

Notice that Cohen’s d simply describes the size of the treatment effect and is not influenced d simply describes the size of the treatment effect and is not influenced d
by the number of scores in the sample. For both hypothesis tests, the original population 
mean was m 5 50 and, after treatment, the sample mean was M 5 51. Thus, treatment 
appears to have increased the scores by 1 point, which is equal to one-tenth of a standard 
deviation (Cohen’s d 5 0.1).

Magnitude of d Evaluation of Effect Size

d 5 0.2 Small effect (mean difference around 0.2 standard deviation)
d 5 0.5 Medium effect (mean difference around 0.5 standard deviation)
d 5 0.8 Large effect (mean difference around 0.8 standard deviation)

TA B L E  8 . 2
Evaluating effect size with 
Cohen’s d

LO10 1. Under what circumstances can a very small treatment effect be statistically 
significant?

a. With a large sample and a large standard deviation

b. With a large sample and a small standard deviation

c. With a small sample and a large standard deviation

d. With a small sample and a small standard deviation

LO11 2. A sample of n 5 9 scores is selected from a population with a mean of  m 5 80 
and s 5 12, and a treatment is administered to the sample. After the treatment, 
the researcher measures effect size with Cohen’s d and obtains d and obtains d d 5 0.25. What 
was the sample mean?

a. M 5 81

b. M 5 82

LE A R N I N G C H E C K
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c. M 5 83

d. M 5 84

LO12 3. If other factors are held constant, then how does sample size affect the likeli-
hood of rejecting the null hypothesis and the value for Cohen’s d?

a. A larger sample increases the likelihood of rejecting the null hypothesis and 
increases the value of Cohen’s d.

b. A larger sample increases the likelihood of rejecting the null hypothesis but 
decreases the value of Cohen’s d.

c. A larger sample increases the likelihood of rejecting the null hypothesis but 
has no effect on the value of Cohen’s d.

d. A larger sample decreases the likelihood of rejecting the null hypothesis but 
has no effect on the value of Cohen’s d.

1. b 2. c 3. c

8-6 Statistical Power

LE A R N I N G O B J E C T IV E S

 13. De�ne the power of a hypothesis test and explain how power is related to the 
probability of a Type II error.

 14. Identify the factors that in�uence power and explain how power is affected 
by each.

Instead of measuring effect size directly, an alternative approach to determining the size or 
strength of a treatment effect is to measure the power of the statistical test. The power of a power of a power
test is defined as the probability that the test will reject the null hypothesis if the treatment 
really has an effect.

The power of a statistical test is the probability that the test will correctly reject a 
false null hypothesis. That is, power is the probability that the test will identify a 
treatment effect if one really exists.

Whenever a treatment has an effect, there are only two possible outcomes for a hypoth-
esis test: 

1. Fail to reject the null hypothesis.

2. Reject the null hypothesis.

The first outcome, failing to reject H0H0H  when there is a real effect, was defined earlier 
(page 210) as a Type II error. The second outcome, rejecting H0H0H  when there is a real effect, 
is defined as the power of the test. Because there are only two possible outcomes, the prob-
ability for the first and the probability for the second must add up to 1.00. We have already 
identified the probability of a Type II error (outcome 1) as p 5 b. Therefore, the power of 
the test (outcome 2) must be p 5 1 2 b.

In the examples that follow, we demonstrate the calculation of power for hypothesis 
tests; that is, the probability that the test will correctly reject the null hypothesis. At the 

A N S W E R S
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same time, however, we are computing the probability that the test will result in a Type II 
error. For example, if the power of the test is calculated to be 70% (1 2 b) then the prob-
ability of a Type II error must be 30% (b).

Calculating Power Researchers typically calculate power as a means of determining 
whether a research study is likely to be successful. Thus, researchers usually calculate the 
power of a hypothesis test before they actually conduct the research study. In this way, 
they can determine the probability that the results will be significant (reject H0H0H ) before 
investing time and effort in the actual research. To calculate power, however, it is first 
necessary to make assumptions about a variety of factors that influence the outcome of a 
hypothesis test. Factors such as the sample size, the size of the treatment effect, and the 
value chosen for the alpha level can all influence a hypothesis test. The following example 
demonstrates the calculation of power for a specific research situation.

We start with a normal-shaped population with a mean of m 5 80 and a standard deviation 
of s 5 10. A researcher plans to select a sample of n 5 4 individuals from this population 
and administer a treatment to each individual. It is expected that the treatment will have an 
8-point effect; that is, the treatment will add 8 points to each individual’s score.

We will consider two possible outcomes for this research study: first, the outcome pre-
dicted by the null hypothesis, which is that the treatment has no effect; second, the pre-
dicted outcome, which is that the treatment adds eight points to each score. Figure 8.8 
shows the distribution of sample means for each of these two outcomes. According to the 
null hypothesis, the sample means are centered at m 5 80 (left). With an 8-point treatment 
effect, the sample means are centered at m 5 88 (right). With sample of size n 5 4, both 
distributions have a standard error of

s
M

5
s

ÏnÏnÏÏ
5

10

Ï4Ï4ÏÏ
5

10

2
5 5

Notice that the distribution on the left shows all of the possible sample means if the null 
hypothesis is true. This is the distribution we use to locate the critical region for the hypoth-
esis test. Using a 5 .05, the critical region consists of extreme values in this distribution, 
specifically sample means beyond z 5 1.96 or z 5 21.96. These values are shown in 
Figure 8.8 and, for both distributions, we have shaded all the sample means located in the 
critical region.

E X A M P L E  8 . 6

Reject
H0H0H

21.96 0

80

11.96
z

Reject H0H0H

Distribution of sample means
for n 5 4 if H0H0H  is true

Distribution of sample means
for n 5 4 with 8-point eff 4 with 8-point eff 4 with 8-point ef ect

82 84 86 88 90 92 94 9670 72 74 76 78 98

sM 5 5sM 55 5 5

F I G U R E  8 . 8
A demonstration of measuring power for a 
hypothesis test. The left-hand side shows 
the distribution of sample means that would 
occur if the null hypothesis were true. The 
critical region is defined for this distribution. 
The right-hand side shows the distribution 
of sample means that would be obtained 
if there were an 8-point treatment effect. 
Notice that, if there were an 8-point effect, 
roughly one-third of the sample means 
would be in the critical region. Thus, the 
power of the test (the probability of reject-
ing H0H0H ) is roughly 33% for an 8-point treat-
ment effect.
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Now turn your attention to the distribution on the right, which shows all of the possible 
sample means if there is an 8-point treatment effect. Notice that roughly one-third of these 
sample means are located beyond the z 5 1.96 boundary. This means that, if there is an 
8-point treatment effect, you should obtain a sample mean in the critical region and reject 
the null hypothesis about one-third of the time. Thus, the power of the test (the probability 
of rejecting H0H0H ) is close to 33% if there is an 8-point treatment effect.

To calculate the exact value for the power of the test we must determine what portion of 
the distribution on the right-hand side is shaded. Thus, we must locate the exact boundary 
for the critical region and find the probability value in the unit normal table. The first step 
is to determine the sample mean corresponding the critical boundary of z 5 11.96. By 
definition, this boundary corresponds to a location that is above the mean by 1.96 standard 
deviations. With a standard deviation (standard error) of 5 points, this distance is equal to

1.96sM 5 1.96(5) 5 9.80 points

Thus, the critical boundary of z 5 11.96 corresponds to a sample mean of M 5 80 1
9.80 5 89.80. Any sample mean greater than M 5 89.80 is in the critical region and would 
lead to rejecting the null hypothesis. Next, we determine what proportion of the treated 
samples are greater than M 5 89.80. For the treated distribution (right-hand side), the 
population mean is m 5 88 and a sample mean of M 5 89.80 corresponds to a z-score of

z 5
M 2 m

s
M

5
89.80 2 88

5
5

1.80

5
5 0.36

Finally, look up z 5 0.36 in the unit normal table and determine that the shaded area 
(z . 0.36) corresponds to p 5 0.3594 (or 35.94%). Thus, if the treatment has an 8-point 
effect, 35.94% of all the possible sample means will be in the critical region and we will 
reject the null hypothesis. In other words, the power of the test is 35.94%. In practical 
terms, this means that the research study has a relatively small chance of being successful. 
If the researcher selects a sample of n 5 4 individuals, and if the treatment really does have 
an 8-point effect, then a hypothesis test will conclude that there is a significant effect only 
35.94% of the time. ■

■ Power and Effect Size
Logically, it should be clear that power and effect size are related. Figure 8.8 shows the 
calculation of power for an 8-point treatment effect. Now consider what would happen 
if the treatment effect were 16 points. With a 16-point treatment effect, the distribution on 
the right-hand side would shift to the right so that it is centered at m 5 96, which increases 
the separation between the two distributions. In this new position, approximately 90% 
of the treated sample means would be beyond the z 5 1.96 boundary. Thus, with a 16-point 
treatment effect, there is a 90% probability of selecting a sample that leads to rejecting the 
null hypothesis. In other words, the power of the test is around 90% for a 16-point effect 
compared to only 36% with an 8-point effect (Example 8.5). Again, it is possible to find 
the z-score corresponding to the exact location of the critical boundary and to look up the 
probability value for power in the unit normal table. For a 16-point treatment effect, you 
should find that the critical boundary (M 5 89.80) corresponds to z 5 21.24 and the exact 
power of the test is p 5 0.8925, or 89.25%.

In general, as the effect size increases, the distribution of sample means on the right-
hand side moves even farther to the right so that more and more of the samples are beyond 
the z 5 1.96 boundary. Thus, as the effect size increases, the probability of rejecting H0H0H
also increases, which means that the power of the test increases. Thus, measures of effect 
size such as Cohen’s d and measures of power both provide an indication of the strength or d and measures of power both provide an indication of the strength or d
magnitude of a treatment effect.
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■ Other Factors That Affect Power
Although the power of a hypothesis test is directly influenced by the size of the treatment 
effect, power is not meant to be a pure measure of effect size. Instead, power is influenced 
by several factors, other than effect size, that are related to the hypothesis test. Some of 
these factors are considered in the following section.

Sample Size One factor that has a huge influence on power is the size of the sample. 
In Example 8.6 we demonstrated power for an 8-point treatment effect using a sample of 
n 5 4. If the researcher decided to conduct the study using a sample of n 5 25, then the 
power would be dramatically different. With n 5 25, the standard error for the sample 
means would be

s
M

5
s

ÏnÏnÏÏ
5

10

Ï25Ï
5

10

5
5 2

Figure 8.9 shows the two distributions of sample means with n 5 25 and a standard 
error of sM 5 2 points. Again, the distribution on the left is centered at m 5 80 and shows 
the set of all possible sample means if H0H0H  is true. As always, this distribution is used to 
locate the critical boundaries for the hypothesis test, z 5 21.96 and z 5 11.96. The distri-
bution on the right is centered at m 5 88 and shows all possible sample means if there is an 
8-point treatment effect. Note that almost all of the treated sample means in the right-hand 
distribution are now located beyond the 1.96 boundary. Thus, with a sample of n 5 25, you 
are almost guaranteed to obtain a sample mean in the critical region and reject H0H0H . Earlier, 
in Example 8.6, we found power equal to 35.94% for a sample of n 5 4. However, when 
the sample size is increased to n 5 25, power increases to about 98%. In general, a larger 
sample produces greater power for a hypothesis test.

sM 5 2

Reject
H0H0H

21.96 0

80

11.96
z

Reject
H0H0H

Distribution of sample means
for n 5 25 if H0H0H  is true

Distribution of sample means
for n 5 25 with 8-point eff 25 with 8-point eff 25 with 8-point ef ect

7876 868482 929088

sM 5 2

F I G U R E  8 .9
A demonstration of how sample size affects power for a hypothesis test. The left-hand side shows the distribution of 
sample means that would occur if the null hypothesis were true. The critical region is defined for this distribution. The 
right-hand side shows the distribution of sample means that would be obtained if there were an 8-point treatment effect. 
Notice that increasing the sample size to n 5 25 has increased the power to nearly 100% compared to only 33% for a 
sample of n 5 4 in Figure 8.8.
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The following example is an opportunity to test your understanding of statistical power.

Find the exact value of the power for the hypothesis test shown in Figure 8.9. You should 
find that the critical boundary corresponds to a sample mean of M 5 83.92 in the treatment 
distribution, and power is p 5 0.9793 or 97.93%. ■

Because power is directly related to sample size, one of the primary reasons for com-
puting power is to determine what sample size is necessary to achieve a reasonable prob-
ability for a successful research study. Before a study is conducted, researchers can com-
pute power to determine the probability that their research will successfully reject the null 
hypothesis. If the probability (power) is too small, they always have the option of increas-
ing sample size to increase power.

Alpha Level Reducing the alpha level for a hypothesis test also reduces the power of 
the test. For example, lowering a from .05 to .01 lowers the power of the hypothesis 
test. The effect of reducing the alpha level can be seen by looking at Figure 8.9. In this 
figure, the boundaries for the critical region are drawn using a 5 .05. Specifically, the 
critical region on the right-hand side begins at z 5 1.96. If a were changed to .01, the 
boundary would be moved farther to the right, out to z 5 2.58. It should be clear that 
moving the critical boundary to the right means that a smaller portion of the treatment 
distribution (the distribution on the right-hand side) will be in the critical region. Thus, 
there would be a lower probability of rejecting the null hypothesis and a lower value for 
the power of the test.

One-Tailed versus Two-Tailed Tests Changing from a regular two-tailed test to a 
one-tailed test increases the power of the hypothesis test. Again, this effect can be seen 
by referring to Figure 8.9. The figure shows the boundaries for the critical region using 
a two-tailed test with a 5 .05 so that the critical region on the right-hand side begins at 
z 5 1.96. Changing to a one-tailed test would move the critical boundary to the left to a value of 
z 5 1.65. Moving the boundary to the left would cause a larger proportion of the treatment 
distribution to be in the critical region and, therefore, would increase the power of the test.

E X A M P L E  8 . 7

LO13 1. If the power of a hypothesis test is found to be p 5 0.80, then what is the prob-
ability of a Type II error for the same test?

a. p 5 0.20

b. p 5 0.80

c. The probability of a Type II error is not related to power.

d. It is impossible to determine without knowing the alpha level for the test.

LO14 2. How does the sample size influence the likelihood of rejecting the null hypoth-
esis and the power of the hypothesis test?

a. Increasing sample size increases both the likelihood of rejecting H0H0H  and the 
power of the test.

b. Increasing sample size decreases both the likelihood of rejecting H0H0H  and the 
power of the test.

c. Increasing sample size increases the likelihood of rejecting H0H0H  but the 
power of the test is unchanged.

d. Increasing sample size decreases the likelihood of rejecting H0H0H  but the 
power of the test is unchanged.

LE A R N I N G C H E C K
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LO14 3. How is the power of a hypothesis test related to sample size and the alpha 
level?

a. A larger sample and a larger alpha level will both increase power.

b. A larger sample and a larger alpha level will both decrease power.

c. A larger sample will increase power but a larger alpha will decrease power.

d. A larger sample will decrease power but a larger alpha will increase power.

1. a 2. a 3. aA N S W E R S

1. Hypothesis testing is an inferential procedure that uses 
the data from a sample to draw a general conclusion 
about a population. The procedure begins with a hy-
pothesis about an unknown population. Then a sample 
is selected, and the sample data provide evidence that 
either supports or refutes the hypothesis.

2. In this chapter, we introduced hypothesis testing using 
the simple situation in which a sample mean is used to 
test a hypothesis about an unknown population mean. 
The goal for the test is to determine whether a treatment 
has an effect on the population mean (see Figure 8.2).

3. Hypothesis testing is structured as a four-step process 
that is used throughout the remainder of the book.
a. State the null hypothesis (H0H0H ), and select an alpha 

level. The null hypothesis states that there is no 
effect or no change. In this case, H0H0H  states that the 
mean for the population after treatment is the same 
as the mean before treatment. The alpha level, usu-
ally a 5 .05 or a 5 .01, provides a definition of the 
term very unlikely and determines the risk of a Type 
I error. Also state an alternative hypothesis (H1), 
which is the exact opposite of the null hypothesis.

b. Locate the critical region. The critical region is 
defined as sample outcomes that would be very 
unlikely to occur if the null hypothesis is true. The 
alpha level defines “very unlikely.” 

c. Collect the data, and compute the test statistic. The 
sample mean is transformed into a z-score by the 
formula

z 5
M 2 m

s
M

The value of m is obtained from the null hypoth-
esis. The z-score test statistic identifies the location 
of the sample mean in the distribution of sample 
means. Expressed in words, the z-score formula is

z 5

sample mean 2
hypothesized

population mean

standard error

d. Make a decision. If the obtained z-score is in the 
critical region, reject H0H0H  because it is very un-
likely that these data would be obtained if H0H0H  were 
true. In this case, conclude that the treatment has 
changed the population mean. If the z-score is not 
in the critical region, fail to reject H0H0H  because the 
data are not significantly different from the null 
hypothesis. In this case, the data do not provide 
sufficient evidence to indicate that the treatment 
has had an effect.

4. Whatever decision is reached in a hypothesis test, 
there is always a risk of making the incorrect decision. 
There are two types of errors that can be committed:

A Type I error is defined as rejecting a true H0H0H . 
This is a serious error because it results in falsely 
reporting a treatment effect. The risk of a Type I 
error is determined by the alpha level and therefore 
is under the experimenter’s control.

A Type II error is defined as the failure to reject a 
false H0H0H . In this case, the experiment fails to detect 
an effect that actually occurred. The probability of 
a Type II error cannot be specified as a single value 
and depends in part on the size of the treatment ef-and depends in part on the size of the treatment ef-and depends in part on the size of the treatment ef
fect. It is identified by the symbol b (beta).

5. When a researcher expects that a treatment will change 
scores in a particular direction (increase or decrease), 
it is possible to do a directional, or one-tailed, test. 
The first step in this procedure is to incorporate the di-
rectional prediction into the hypotheses. To locate the 
critical region, you must determine what kind of data 
would refute the null hypothesis by demonstrating that 
the treatment worked as predicted. These outcomes 
will be located entirely in one tail of the distribution.

6. In addition to using a hypothesis test to evaluate the 
significance of a treatment effect, it is recommended 
that you also measure and report the effect size. One 
measure of effect size is Cohen’s d, which is a  

S U M M A R Y
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standardized measure of the mean difference. Cohen’s 
d is computed asd is computed asd

Cohen’s d 5
mean difffff efef rence

standard deviation

7. The size of the sample influences the outcome of the 
hypothesis test, but has little or no effect on measures 
of effect size. As sample size increases, the likelihood 
of rejecting the null hypothesis also increases. The 
variability of the scores influences both the outcome 
of the hypothesis test and measures of effect size. 
Increased variability reduces the likelihood of rejecting 
the null hypothesis and reduces measures of effect size.

8. The power of a hypothesis test is defined as the 
probability that the test will correctly reject the null 
hypothesis.

9. To determine the power for a hypothesis test, you 
must first identify the boundaries for the critical 
region. Then, you must specify the magnitude of 
the treatment effect, the size of the sample, and the 
alpha level. With these assumptions, the power of the 
hypothesis test is the probability of obtaining a sample 
mean in the critical region.

10. As the size of the treatment effect increases, statistical 
power increases. Also, power is influenced by several 
factors that can be controlled by the experimenter:
a. Increasing the alpha level increases power.
b. A one-tailed test has greater power than a two-

tailed test.
c. A large sample results in more power than a small 

sample.

hypothesis testing (198)

null hypothesis (201)

scientific or alternative hypothesis 
(201)

alpha level or level of significance 
(202)

critical region (203)

test statistic (207)

Type I error (209)

Type II error (210)

beta (211)

significant or statistically significant 
(214)

directional hypothesis test (218)

one-tailed test (218)

effect size (223)

Cohen’s d (223)

power (226)

KE Y TER M S

The statistical computer package SPSS is not structured to conduct hypothesis tests using 
z-scores. In truth, the z-score test presented in this chapter is rarely used in actual research 
situations. The problem with the z-score test is that it requires that you know the value of 
the population standard deviation, and this information is usually not available. Researchers 
rarely have detailed information about the populations that they wish to study. Instead, they 
must obtain information entirely from samples. In the following chapters we introduce new 
hypothesis-testing techniques that are based entirely on sample data. These new techniques are 
included in SPSS.

FO CUS  O N  PRO B LE M  SO LVIN G

1. Hypothesis testing involves a set of logical procedures and rules that enable us to make 
general statements about a population when all we have are sample data. This logic is 
reflected in the four steps that have been used throughout this chapter. Hypothesis-testing 
problems will become easier to tackle when you learn to follow the steps.

State the hypotheses and set the alpha level.

Locate the critical region.

STEP 1

STEP 2

SPSS®
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Compute the test statistic (in this case, the z-score) for the sample.

Make a decision about H0H0H  based on the result of Step 3.

2. Take time to consider the implications of your decision about the null hypothesis. The 
null hypothesis states that there is no effect. If your decision is to reject H0H0H , you should 
conclude that the sample data provide evidence for a treatment effect. If your decision 
is to fail to reject H0H0H , you conclude that there is not enough evidence to conclude that an 
effect exists. 

3. When you are doing a directional hypothesis test, read the problem carefully, and watch 
for key words (such as increase or decrease, raise or lower, and more or less) that tell you 
which direction the researcher is predicting. The predicted direction will determine the 
alternative hypothesis (H1) and the critical region. 

D E M O N S TR ATIO N  8.1

HYPOTHESIS TEST WITH z

It is known that the scores on a standardized reading test are normally distributed with m 5 65 
and s 5 15. A researcher suspects that special training in reading skills will produce a 
change in the scores for the individuals in the population. A sample of n 5 25 individuals is 
selected, and the treatment is given to this sample. Following treatment, the average score for 
this sample is M 5 70. Is this enough evidence to conclude that the training has an effect on 
test scores?

State the hypothesis and select an alpha level. The null hypothesis states that the special 
training has no effect. In symbols,

H0H0H : m 5 65 (After special training, the mean is still 65.)

The alternative hypothesis states that the treatment does have an effect.

H1: m ? 65 (After training, the mean is different from 65.)

At this time you also select the alpha level. For this demonstration, we will use a 5 .05. 
Thus, there is a 5% risk of committing a Type I error if we reject H0H0H .

Locate the critical region. With a 5 .05, the critical region consists of sample means that 
correspond to z-scores beyond the critical boundaries of z 5 61.96.

Obtain the sample data, and compute the test statistic. For this example, the distribu-
tion of sample means, according to the null hypothesis, will be normal with an expected 
value of m 5 65 and a standard error of

s
M

5
s

ÏnÏnÏÏ
5

15

Ï25Ï
5

15

5
5 3

In this distribution, our sample mean of M 5 70 corresponds to a z-score of

z 5
M 2 m

s
M

5
70 2 65

3
5

5

3
5 11.67

Make a decision about H0, and state the conclusion. The z-score we obtained is not in 
the critical region. This indicates that our sample mean of M 5 70 is not an extreme or un-
usual value to be obtained from a population with m 5 65. Therefore, our statistical decision 
is to fail to reject H0fail to reject H0fail to reject H . Our conclusion for the study is that the data do not provide sufficient 
evidence that the special training changes test scores.

STEP 3

STEP 4

STEP 1

STEP 2

STEP 3

STEP 4
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D E M O N S TR ATIO N  8. 2

EFFECT SIZE USING COHEN’S d

We will compute Cohen’s d using the research situation and the data from Demonstration 8.1. d using the research situation and the data from Demonstration 8.1. d
Again, the original population mean was m 5 65 and, after treatment (special training), the 
sample mean was M 5 70. Thus, there is a 5-point mean difference. Using the population stan-
dard deviation, s 5 15, we obtain an effect size of

Cohen’s d 5
mean difffff efef rence

standard deviation
5

5

15
5 0.33

According to Cohen’s evaluation standards (see Table 8.2), this is a medium treatment effect.

PRO B LE M S

b. Using the standard four-step procedure, conduct a 
two-tailed hypothesis test with a 5 .05 to evaluate 
the effect of studying from an electronic screen.

7. Babcock and Marks (2010) review survey data from 
2003–2005, and obtained an average of m 5 14 hours 
per week spent studying by full-time students at 
four-year colleges in the United States. To determine 
whether this average has changed in recent years, a 
researcher selected a sample of n 5 64 of today’s 
college students and obtained an average of M 5 12.5 
hours. If the standard deviation for the distribution is 
s 5 4.8 hours per week, does this sample indicate a 
significant change in the number of hours spent study-
ing? Use a two-tailed test with a 5 .05.

8. Childhood participation in sports, cultural groups, and 
youth groups appears to be related to improved self-
esteem for adolescents (McGee, Williams, Howden-
Chapman, Martin, & Kawachi, 2006). In a representa-
tive study, a sample of n 5 100 adolescents with a 
history of group participation is given a standardized 
self-esteem questionnaire. For the general popula-
tion of adolescents, scores on this questionnaire form 
a normal distribution with a mean of m 5 50 and a 
standard deviation of s 5 15. The sample of group-
participation adolescents had an average of M 5 53.8.
a. Does this sample provide enough evidence to con-

clude that self-esteem scores for these adolescents 
are significantly different from those of the general 
population? Use a two-tailed test with a 5 .05.

b. Compute Cohen’s d to measure the size of the  d to measure the size of the  d
difference.

c. Write a sentence describing the outcome of the 
hypothesis test and the measure of effect size as it 
would appear in a research report.

9. The psychology department is gradually changing its 
curriculum by increasing the number of online course 
offerings. To evaluate the effectiveness of this change, 

1. Identify the four steps of a hypothesis test as presented 
in this chapter.

2. Define the alpha level and the critical region for a 
hypothesis test.

3. Define a Type I error and a Type II error and explain 
the consequences of each.

4. If the alpha level is changed from a 5 .05 to a 5 .01,
a. what happens to the boundaries for the critical 

region?
b. what happens to the probability of a Type I error?

5. Explain how each of the following influences the 
value of the z-score in a hypothesis test. 
a. Increasing the difference between the sample mean 

and the original population mean
b. Increasing the population standard deviation
c. Increasing the number of scores in the sample

6. Ackerman and Goldsmith (2011) report that students 
who study from a screen (phone, tablet, or comput-
er) tended to have lower quiz scores than students 
who studied the same material from printed pages. 
To test this finding, a professor identifies a sample 
of n 5 16 students who used the electronic ver-
sion of the course textbook and determines that 
this sample had an average score of M 5 72.5 on 
the final exam. During the previous three years, 
the final exam scores for the general population of 
students taking the course averaged m 5 77 with a 
standard deviation of s 5 8 and formed a roughly 
normal distribution. The professor would like to use 
the sample to determine whether students studying 
from an electronic screen had exam scores that are 
significantly different from those for the general 
population. 
a. Assuming a two-tailed test, state the null hypoth-

esis in a sentence that includes the two variables 
being examined.
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a random sample of n 5 36 students who registered 
for Introductory Psychology is placed in the online 
version of the course. At the end of the semester, all 
students take the same final exam. The average score 
for the sample is M 5 76. For the general population 
of students taking the traditional lecture class, the final 
exam scores form a normal distribution with a mean 
of m 5 71.
a. If the final exam scores for the population have 

a standard deviation of s 5 12, does the sample 
provide enough evidence to conclude that the new 
online course is significantly different from the tra-
ditional class? Use a two-tailed test with a 5 .05.

b. If the population standard deviation is s 5 18, is the 
sample sufficient to demonstrate a significant differ-
ence? Again, use a two-tailed test with a 5 .05.

c. Comparing your answers for parts a and b, explain 
how the magnitude of the standard deviation influ-
ences the outcome of a hypothesis test.

10. A random sample is selected from a normal popula-
tion with a mean of m 5 40 and a standard deviation 
of s 5 6. After a treatment is administered to the 
individuals in the sample, the sample mean is found to 
be M 5 37.
a. If the sample consists of n 5 36 scores, is the 

sample mean sufficient to conclude that the treat-
ment has a significant effect? Use a two-tailed test 
with a 5 .05.

b. If the sample consists of n 5 9 scores, is the sample 
mean sufficient to conclude that the treatment has 
a significant effect? Use a two-tailed test with  
a 5 .05.

c. Comparing your answers for parts a and b, explain 
how the size of the sample influences the outcome 
of a hypothesis test.

11. A random sample of n 5 16 scores is selected from 
a normal population with a mean of m 5 50. After 
a treatment is administered to the individuals in the 
sample, the sample mean is found to be M 5 54.
a. If the population standard deviation is s 5 8, is the 

sample mean sufficient to conclude that the treat-
ment has a significant effect? Use a two-tailed test 
with a 5 .05.

b. If the population standard deviation is s 5 12, is 
the sample mean sufficient to conclude that the 
treatment has a significant effect? Use a two-tailed 
test with a 5 .05.

c. Comparing your answers for parts a and b, explain 
how the magnitude of the standard deviation influ-
ences the outcome of a hypothesis test.

12. In a study examining the effect of humor on interper-
sonal attractions, McGee and Shevlin (2009) found 
that a man’s sense of humor had a significant effect on 
how he was perceived by women. In the study, female 

college students were given brief descriptions of a po-
tential romantic partner and then rated the attractiveness 
of the male on a scale from 1 (low) to 7 (high). The 
fictitious male was described positively as being single, 
ambitious, and having good job prospects. In one con-
dition, the description also said that he had a great sense 
of humor. The results showed that the description was 
rated significantly higher when “a sense of humor” was 
included. To further examine this effect, a researcher 
selected a sample of n 5 16 college males and asked 
them to read a brief description of a female and then 
rate the attractiveness of the woman in the description. 
The description had been used in previous research but 
was modified by adding a statement describing a good 
sense of humor. Based on the previous research, the 
rating scores for the original description were known 
to form a normal distribution with m 5 4.0 with a 
standard deviation of s 5 0.60. The sample mean for 
the modified description was M 5 4.42. Do the sample 
data indicate that adding a sense of humor to the 
description significantly increases the rating scores? 
Use a one-tailed test with a 5 .05.

13. A random sample is selected from a normal popula-
tion with a mean of m 5 40 and a standard deviation 
of s 5 10. After a treatment is administered to the 
individuals in the sample, the sample mean is found to 
be M 5 46.
a. How large a sample is necessary for this sample 

mean to be statistically significant? Assume a two-
tailed test with a 5 .05.

b. If the sample mean were M 5 43, what sample size 
is needed to be significant for a two-tailed test with 
a 5 .05?

14. Researchers at a National Weather Center in the 
northeastern United States recorded the number of 
90° Fahrenheit days each year since records first 
started in 1875. The numbers form a normal-shaped 
distribution with a mean of m 5 9.6 and a standard 
deviation of s 5 1.9. To see if the data showed any 
evidence of global warming, they also computed the 
mean number of 90° days for the most recent 
n 5 4 years and obtained M 5 12.25. Do the data 
indicate that the past four years have had signifi-
cantly more 90° days than would be expected for a 
random sample from this population? Use a one-
tailed test with a 5 .05.

15. A high school teacher has designed a new course 
intended to help students prepare for the mathemat-
ics section of the SAT. A sample of n 5 20 students 
is recruited for the course and, at the end of the year, 
each student takes the SAT. The average score for 
this sample is M 5 562. For the general population, 
scores on the SAT are standardized to form a normal 
distribution with m 5 500 and s 5 100.
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a. Can the teacher conclude that students who take the 
course score significantly higher than the general 
population? Use a one-tailed test with a 5 .01.

b. Compute Cohen’s d to estimate the size of the effect.d to estimate the size of the effect.d
c. Write a sentence demonstrating how the results of 

the hypothesis test and the measure of effect size 
would appear in a research report.

16. Miller (2008) examined the energy drink consumption 
of college undergraduates and found that males use 
energy drinks significantly more often than females. 
To further investigate this phenomenon, suppose that 
a researcher selects a random sample of n 5 36 male 
undergraduates and a sample of n 5 25 females. On 
average, the males reported consuming M 5 2.45 
drinks per month and females had an average of  
M 5 1.28. Assume that the overall level of consump-
tion for college undergraduates averages m 5 1.85 
energy drinks per month, and that the distribution of 
monthly consumption scores is approximately normal 
with a standard deviation of s 5 1.2.
a. Does this sample of males support the conclusion 

that males consume significantly more energy 
drinks than the overall population average? Use a 
one-tailed test with a 5 .01.

b. Does the sample of females support the conclusion 
that females consume significantly fewer energy 
drinks than the overall population average? Again, 
use a one-tailed test with a 5 .01.

17. After examining over one million online restaurant 
reviews and the associated weather conditions, Bakhshi, 
Kanuparthy, and Gilbert (2014) reported significantly 
higher ratings during moderate weather compared to 
very hot or very cold conditions. To verify this result, a 
researcher collected a sample of n 5 25 reviews of local 
restaurants during an unusually hot period during July 
and August and obtained an average rating of M 5 7.29. 
The complete set of reviews during the previous year av-
eraged m 5 7.52 with a standard deviation of s 5 0.60.
a. Can the researcher conclude that reviews during hot 

weather are significantly lower than the general popu-
lation average? Use a one-tailed test with a 5 .05.

b. Compute Cohen’s d to measure effect size for this d to measure effect size for this d
study.

c. Write a sentence demonstrating how the outcome 
of the hypothesis test and the measure of effect size 
would appear in a research report.

18. A researcher is evaluating the influence of a treatment 
using a sample selected from a normally distributed 
population with a mean of m 5 40 and a standard 
deviation of s 5 12. The researcher expects a 6-point 

treatment effect and plans to use a two-tailed hypoth-
esis test with a 5 .05.
a. Compute the power of the test if the researcher uses 

a sample of n 5 9 individuals (See Example 8.6.). 
b. Compute the power of the test if the researcher uses 

a sample of n 5 16 individuals.

19. A researcher plans to conduct an experiment evalu-
ating the effect of a treatment. A sample of n 5 9 
participants is selected and each person receives the 
treatment before being tested on a standardized dex-
terity task. The treatment is expected to lower scores 
on the test by an average of 30 points. For the regular 
population, scores on the dexterity task form a normal 
distribution with m 5 240 and s 5 30.
a. If the researcher uses a two-tailed test with a 5 .05, 

what is the power of the hypothesis test?
b. Again assuming a two-tailed test with a 5 .05, 

what is the power of the hypothesis test if the 
sample size is increased to n 5 25?

20. Research has shown that IQ scores have been increas-
ing for years (Flynn, 1984, 1999). The phenomenon is 
called the Flynn effect and the data indicate that the in-
crease appears to average about 7 points per decade. To 
examine this effect, a researcher obtains an IQ test with 
instructions for scoring from 10 years ago and plans to 
administers the test to a sample of n 5 25 of today’s 
high school students. Ten years ago, the scores on this 
IQ test produced a standardized distribution with a 
mean of m 5 100 and a standard deviation s 5 15. If 
there actually has been a 7-point increase in the average 
IQ during the past ten years, then find the power of the 
hypothesis test for each of the following.
a. The researcher uses a two-tailed hypothesis test 

with a 5 .05 to determine the data indicate a sig-
nificant change in IQ over the past 10 years.

b. The researcher uses a one-tailed hypothesis test 
with a 5 .05 to determine the data indicate a sig-
nificant increase in IQ over the past 10 years.

21. Briefly explain how increasing sample size influences 
each of the following. Assume that all other factors 
are held constant.
a. The size of the z-score in a hypothesis test
b. The size of Cohen’s d
c. The power of a hypothesis test

22. Explain how the power of a hypothesis test is influ-
enced by each of the following. Assume that all other 
factors are held constant.
a. Increasing the alpha level from .01 to .05
b. Changing from a one-tailed test to a two-tailed test
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9-1 The t Statistic: An Alternative to z

9-2 Hypothesis Tests with the t Statistic

9-3 Measuring Effect Size for the t Statistic

9-4 Directional Hypotheses and One-Tailed Tests

Summary

Focus on Problem Solving

Demonstrations 9.1 and 9.2

Problems

9
CHAP TER

Introduction to the t Statistic

Tools You Will Need
The following items are consid-
ered essential background mate-
rial for this chapter. If you doubt 
your knowledge of any of these 
items, you should review the 
appropriate chapter or section 
before proceeding.

 ■ Sample standard deviation 
(Chapter 4)

 ■ Degrees of freedom (Chapter 4)
 ■ Standard error (Chapter 7)
 ■ Hypothesis testing (Chapter 8)
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9-1 The t Statistic: An Alternative to z

LE A R N I N G O B J E C T IV E S  

1. Describe the circumstances in which a t statistic is used for hypothesis testing t statistic is used for hypothesis testing t
instead of a z-score and explain the fundamental difference between a t statistic t statistic t
and a z-score for a sample mean.

2. Calculate the estimated standard error of M for a speci�c sample size and sample 
variance, and explain what it measures.

3. Explain the relationship between the t distribution and the normal distribution.t distribution and the normal distribution.t

In the previous chapter, we presented the statistical procedures that permit researchers to 
use a sample mean to test hypotheses about an unknown population mean. These statistical 
procedures were based on a few basic concepts, which we summarize as follows:

1. A sample mean (M) is expected to approximate its population mean (M) is expected to approximate its population mean (M m). This per-
mits us to use the sample mean to test a hypothesis about the population mean.

2. The standard error provides a measure of how much difference is reasonable to 
expect between a sample mean (M) and the population mean (M) and the population mean (M m).

s
M

s
M

s 5
s

ÏnÏnÏÏ
or s

M
s

M
s 5Îs2Î nÎ

3. To test the hypothesis, we compare the obtained sample mean (M) with the hypoth-M) with the hypoth-M
esized population mean (m) by computing a z-score test statistic.

z 5
M 2 m

s
M

s
M

s
5

obtained difffff efef rence between data and hypothesis

standard distance between M and m

The goal of the hypothesis test is to determine whether the obtained difference between 
the data and the hypothesis is significantly greater than would be expected by chance. 
When the z-scores form a normal distribution, we are able to use the unit normal table 
(Appendix B) to find the critical region for the hypothesis test.

■ The Problem with z-Scores
The shortcoming of using a z-score for hypothesis testing is that the z-score formula requires 
more information than is usually available. Specifically, a z-score requires that we know 
the value of the population standard deviation (or variance), which is needed to compute 
the standard error. In most situations, however, the standard deviation for the population is 
not known. In fact, the whole reason for conducting a hypothesis test is to gain knowledge 
about an unknown population. This situation appears to create a paradox: You want to use a 
z-score to find out about an unknown population, but you must know about the population 
before you can compute a z-score. Fortunately, there is a relatively simple solution to this 
problem. When the variance (or standard deviation) for the population is not known, we use 
the corresponding sample value in its place.

■ Introducing the t Statistic
In Chapter 4, the sample variance was developed specifically to provide an unbiased esti-
mate of the corresponding population variance. Recall that the formulas for sample vari-
ance and sample standard deviation are as follows:
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Finally, you should recognize that we have shown formulas for standard error (actual 
or estimated) using both the standard deviation and the variance. In the past (Chapters 7 
and 8), we concentrated on the formula using the standard deviation. At this point, however, 
we shift our focus to the formula based on variance. Thus, throughout the remainder of this 
chapter, and in following chapters, the estimated standard error of M typically is presented M typically is presented M
and computed using

s
M

5Îs2ÎnÎ
There are two reasons for making this shift from standard deviation to variance:

1. In Chapter 4 (page 104) we saw that the sample variance is an unbiased staunbiased staunbiased -
tistic; on average, the sample variance (s2) provides an accurate and unbiased 
estimate of the population variance (s2). Therefore, the most accurate way to 
estimate the standard error is to use the sample variance to estimate the popula-
tion variance.

2. In future chapters we will encounter other versions of the t statistic that require t statistic that require t
variance (instead of standard deviation) in the formulas for estimated standard 
error. To maximize the similarity from one version to another, we will use variance 
in the formula for all of the different all of the different all t statistics. Thus, whenever we present a t statistics. Thus, whenever we present a t t
statistic, the estimated standard error will be computed as

estimated standard error 5Îsample varianceÎ sample sizeÎ

sample variance 5 s2 5
SS

n 2 1
5

SS

dfdfd

sample standard deviation 5 s 5Î SSÎn 2 1Î 5ÎSSÎdfdfdÎ
Using the sample values, we can now estimate the standard error. Recall from Chapters 7 
and 8 that the value of the standard error can be computed using either standard deviation 
or variance:

standard error 5 s
M

s
M

s 5
s

ÏnÏnÏÏ
or s

M
s

M
s 5Îs2Î nÎ

Now we estimate the standard error by simply substituting the sample variance or standard 
deviation in place of the unknown population value:

estimated standard error 5 s
M

5
s

ÏnÏnÏÏ
or s

M
5Îs2ÎnÎ  (9.1)

Notice that the symbol for the estimated standard error of M is of M is of sM instead of M instead of M sM, indicating 
that the estimated value is computed from sample data rather than from the actual popula-
tion parameter.

The concept of degrees 
of freedom, df 5 n 2 1,  
was introduced in 
Chapter 4 (page 103) 
and is discussed later in 
this chapter (page 240).

The estimated standard error (sM) is used as an estimate of the real standard M) is used as an estimate of the real standard M

error sM when the value of M when the value of M s is unknown. It is computed from the sample variance 
or sample standard deviation and provides an estimate of the standard distance 
between a sample mean between a sample mean MM and the population mean  and the population mean M and the population mean MM and the population mean M mm.
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Now we can substitute the estimated standard error in the denominator of the z-score 
formula. The result is a new test statistic called a t statistic:

t 5
M 2 m

s
M

(9.2)

The t statistict statistict  is used to test hypotheses about an unknown population mean, m, 
when the value of s is unknown. The formula for the t statistic has the same struc-t statistic has the same struc-t
ture as the z-score formula, except that the t statistic uses the estimated standard t statistic uses the estimated standard t
error in the denominator.

The only difference between the t formula and the t formula and the t z-score formula is that the z-score 
uses the actual population variance, s2 (or the standard deviation), and the t formula uses t formula uses t
the corresponding sample variance (or standard deviation) when the population value is 
not known.

z 5
M 2 m

s
M

5
M 2 m

Ïs2y2y2 nynyÏ
t 5

M 2 m

s
M

5
M 2 m

ÏsÏsÏ 2y2y2 nynyÏ

The following example is an opportunity for you to test your understanding of the esti-
mated standard error for a t statistic.t statistic.t

For a sample of n 5 9 scores with SS 5 288, compute the sample variance and the esti-
mated standard error for the sample mean. You should obtain s2 5 36 and sM 5 2. ■

■ Degrees of Freedom and the t Statistic
In this chapter, we have introduced the t statistic as a substitute for a t statistic as a substitute for a t z-score. The basic dif--score. The basic dif--score. The basic dif
ference between these two is that the t statistic uses sample variance (t statistic uses sample variance (t s2) and the z-score uses 
the population variance (s2). To determine how well a t statistic approximates a t statistic approximates a t z-score, 
we must determine how well the sample variance approximates the population variance.

According to the law of large numbers (Chapter 7, page 177), the larger the sample size (n), 
the more likely it is that the sample mean is close to the population mean. The same principle 
holds true for sample variance and the t statistic: As sample size increases, the better the sample t statistic: As sample size increases, the better the sample t
variance, s2, represents the population variance, s2, and the better the t statistic approximates t statistic approximates t
the z-score. For t statistics, however, this relationship is typically expressed in terms of the 
degrees of freedom, or the df value (df value (df n 2 1) for the sample variance instead of sample size (n): 
As the df value increases, the better a df value increases, the better a df t statistic approximates a t statistic approximates a t z-score. Thus, the degrees of 
freedom associated with s2 also describe how well t represents t represents t z. 

degrees of freedom 5 df 5 n 2 1 (9.3)

E X A M P L E  9 . 1

The concept of degrees 
of freedom for sample 
variance was introduced 
in Chapter 4 (page 103).

Degrees of freedom describe the number of scores in a sample that are indepen-
dent and free to vary. Because the sample mean places a restriction on the value 
of one score in the sample, there are n 2 1 degrees of freedom for a sample with n
scores (see Chapter 4).

■ The t Distribution
Every sample from a population can be used to compute a z-score or a t statistic. If you t statistic. If you t
select all the possible samples of a particular size (n), and compute the z-score for each 
sample mean, then the entire set of z-scores will form a z-score distribution. In the same 
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way, you can compute the t statistic for every sample and the entire set of t statistic for every sample and the entire set of t t values will t values will t
form a t distribution. As we saw in Chapter 7, the distribution of z-scores for sample means 
tends to be a normal distribution. Specifically, if the sample size is large (around n 5 30 or 
more) or if the sample is selected from a normal population, then the distribution of sample 
means is a nearly perfect normal distribution. In these same situations, the t distribution 
approximates a normal distribution, just as a t statistic approximates a t statistic approximates a t z-score. How well a 
t distribution approximates a normal distribution is determined by degrees of freedom. In t distribution approximates a normal distribution is determined by degrees of freedom. In t
general, the greater the sample size (n) is, the larger the degrees of freedom (n 2 1) are, and 
the better the t distribution approximates the normal distribution. This fact is demonstrated t distribution approximates the normal distribution. This fact is demonstrated t
in Figure 9.1, which shows a normal distribution and two t distributions with df 5 5 and 
df 5 20.

A t distribution is the complete set of t values computed for every possible random t values computed for every possible random t
sample for a speci�c sample size (n) or a speci�c degrees of freedom (df) or a speci�c degrees of freedom (df) or a speci�c degrees of freedom (df ). The t
distribution approximates the shape of a normal distribution.

■ The Shape of the t Distribution
The exact shape of a t distribution changes with degrees of freedom. In fact, statisticians t distribution changes with degrees of freedom. In fact, statisticians t
speak of a “family” of t distributions. That is, there is a different sampling distribution t distributions. That is, there is a different sampling distribution t
of t (a distribution of all possible sample t (a distribution of all possible sample t t values) for each possible number of degrees of t values) for each possible number of degrees of t
freedom. As df gets very large, the df gets very large, the df t distribution gets closer in shape to a normal t distribution gets closer in shape to a normal t z-score 
distribution. A quick glance at Figure 9.1 reveals that distributions of t are bell-shaped and t are bell-shaped and t
symmetrical and have a mean of zero. However, the t distribution has more variability than t distribution has more variability than t
a normal z distribution, especially when df values are small (see Figure 9.1). The df values are small (see Figure 9.1). The df t distribut distribut -
tion tends to be flatter and more spread out, whereas the normal z distribution has more of 
a central peak.

The reason that the t distribution is flatter and more variable than the normal t distribution is flatter and more variable than the normal t z-score dis-
tribution becomes clear if you look at the structure of the formulas for z and t. For both z and 
t, the top of the formula, M 2 m, can take on different values because the sample mean (M) M) M
varies from one sample to another. For z-scores, however, the bottom of the formula does 

0

Normal distribution
t distribution,t distribution,t df 5 20
t distribution,t distribution,t df 5 5

F I G U R E  9.1
Distributions of the t statistic for 
different values of degrees of 
freedom are compared to a normal 
z-score distribution. Like the nor-
mal distribution, t distributions are 
bell-shaped and symmetrical and 
have a mean of zero. However,
t distributions are more variable 
than the normal distribution as 
indicated by the flatter and more 
spread-out shape. The larger the 
value of df value of df value of is, the more closely 
the t distribution approximates a 
normal distribution.

SECTION 9-1 | The t Statistic: An Alternative to t Statistic: An Alternative to t zz 241
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not vary, provided that all of the samples are the same size and are selected from the same 
population. Specifically, all the z-scores have the same standard error in the denominator, 
s

M
5 Ïs2ynÏ , because the population variance and the sample size are the same for every 

sample. For t statistics, on the other hand, the bottom of the formula varies from one sample t statistics, on the other hand, the bottom of the formula varies from one sample t
to another. Specifically, the sample variance (s2) changes from one sample to the next, 
so the estimated standard error also varies, sM = ÏsÏsÏ 2y2y2 nÏ . Thus, only the numerator of the 
z-score formula varies, but both the numerator and the denominator of the t statistic vary. t statistic vary. t
As a result, t statistics are more variable than are t statistics are more variable than are t z-scores, and the t distribution is flatter and t distribution is flatter and t
more spread out. As sample size and df increase, however, the variability in the df increase, however, the variability in the df t distribution t distribution t
decreases, and it more closely resembles a normal distribution.

■ Determining Proportions and Probabilities for t Distributions
Just as we used the unit normal table to locate proportions associated with z-scores, we use 
a t distribution table to find proportions for t distribution table to find proportions for t t statistics. The complete t statistics. The complete t t distribution table is t distribution table is t
presented in Appendix B, page 537, and a portion of this table is reproduced in Table 9.1. 
The two rows at the top of the table show proportions of the t distribution contained in either t distribution contained in either t
one or two tails, depending on which row is used. The first column of the table lists degrees 
of freedom for the t statistic. Finally, the numbers in the body of the table are the t statistic. Finally, the numbers in the body of the table are the t t values t values t
that mark the boundary between the tails and the rest of the t distribution.t distribution.t

For example, with df 5 3, exactly 5% of the t distribution is located in the tail beyond t distribution is located in the tail beyond t
t 5 2.353 (Figure 9.2). The process of finding this value is highlighted in Table 9.1. Begin 
by locating df 5 3 in the first column of the table. Then locate a proportion of 0.05 (5%) in 
the one-tail proportion row. When you line up these two values in the table, you should find 
t 5 2.353. Because the distribution is symmetrical, 5% of the t distribution is also located in t distribution is also located in t
the tail beyond t 5 22.353 (see Figure 9.2). Finally, notice that a total of 10% (or 0.10) is 
contained in the two tails beyond t 5 62.353 (check the proportion value in the “two-tails 
combined” row at the top of the table).

A close inspection of the t distribution table in Appendix B will demonstrate a point we t distribution table in Appendix B will demonstrate a point we t
made earlier: As the value for df increases, the df increases, the df t distribution becomes more similar to a nort distribution becomes more similar to a nort -
mal distribution. For example, examine the column containing t values for a 0.05 proportion t values for a 0.05 proportion t
in two tails. You will find that when df 5 1, the t values that separate the extreme 5% (0.05) t values that separate the extreme 5% (0.05) t
from the rest of the distribution are t 5 612.706. As you read down the column, however, 
you should find that the critical t values become smaller and smaller, ultimately reaching t values become smaller and smaller, ultimately reaching t

TA B L E  9.1
A portion of the t-distribution table. The numbers in the table are the values of t that separate the t that separate the t
tail from the main body of the distribution. Proportions for one or two tails are listed at the top of 
the table, and df values for df values for df t are listed in the first column.t are listed in the first column.t

Proportion in One Tail

0.25 0.10 0.05 0.025 0.01 0.005

Proportion in Two Tails Combined

df 0.50 0.20 0.10 0.05 0.02 0.01

1 1.000 3.078 6.314 12.706 31.821 63.657
2 0.816 1.886 2.920 4.303 6.965 9.925
3 0.765 1.638 2.353 3.182 4.541 5.841
4 0.741 1.533 2.132 2.776 3.747 4.604
5 0.727 1.476 2.015 2.571 3.365 4.032
6 0.718 1.440 1.943 2.447 3.143 3.707
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22.353 0 2.35300 200 2
t

5% 5%

F I G U R E  9. 2
The t distribution with 
df = 3. Note that 5% of the 
distribution is located in the 
tail beyond t = 2.353. Also, 
5% is in the tail beyond
t = –2.353. Thus, a total 
proportion of 10% (0.10) is 
in the two tails combined.

61.96. You should recognize 61.96 as the z-score values that separate the extreme 5% 
in a normal distribution. Thus, as df increases, the proportions in a df increases, the proportions in a df t distribution become t distribution become t
more like the proportions in a normal distribution. When the sample size (and degrees of 
freedom) is sufficiently large, the difference between a t distribution and the normal distrit distribution and the normal distrit -
bution becomes negligible.

Caution: The t distribution table printed in this book has been abridged and does t distribution table printed in this book has been abridged and does t
not include entries for every possible df value. For example, the table lists df value. For example, the table lists df t values for t values for t
df 5 40 and for df 5 60, but does not list any entries for df values between 40 and 60. df values between 40 and 60. df
Occasionally, you will encounter a situation in which your t statistic has a t statistic has a t df value that df value that df
is not listed in the table. In these situations, you should look up the critical t for both 
of the surrounding df values listed and then use the df values listed and then use the df larger value for larger value for larger t. If, for example, 
you have df 5 53 (not listed), look up the critical t value for both t value for both t df 5 40 and df 5 60 
and then use the larger t value. If your sample t statistic is greater than the larger value t statistic is greater than the larger value t
listed, you can be certain that the data are in the critical region, and you can confidently 
reject the null hypothesis.

LO1 1. In what circumstances is the t statistic used instead of a t statistic used instead of a t z-score for a hypothesis 
test?

a. The t statistic is used when the sample size is t statistic is used when the sample size is t n 5 30 or larger.

b. The t statistic is used when the population mean is unknown.t statistic is used when the population mean is unknown.t

c. The t statistic is used when the population variance (or standard deviation) 
is unknown.

d. The t statistic is used if you are not sure that the population distribution 
is normal.

LO2 2. A sample of n 5 4 scores has SS 5 48. What is the estimated standard error 
for the sample mean? 

a. 48

b. 16

c. 4

d. 2

LE A R N I N G C H E C K

SECTION 9-1 | The t Statistic: An Alternative to t Statistic: An Alternative to t zz 243
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LO3 3. On average, what value is expected for the t statistic when the null hypothesis t statistic when the null hypothesis t
is true?

a. 0

b. 1

c. 1.96

d. t . 1.96

1. c 2. d 3. a

9-2 Hypothesis Tests with the t Statistic

LE A R N I N G O B J E C T IV E S  

 4. Conduct a hypothesis test using the t statistic.t statistic.t

 5. Explain how the likelihood of rejecting the null hypothesis for a t test is in�uenced t test is in�uenced t
by sample size and sample variance.

In the hypothesis-testing situation, we begin with a population with an unknown mean and 
an unknown variance, often a population that has received some treatment (Figure 9.3). 
The goal is to use a sample from the treated population (a treated sample) as the basis for 
determining whether the treatment has any effect.

■ Using the t Statistic for Hypothesis Testing
As always, the null hypothesis states that the treatment has no effect; specifically, H0H0H  states 
that the population mean is unchanged. Thus, the null hypothesis provides a specific value 
for the unknown population mean. The sample data provide a value for the sample mean. 
Finally, the variance and estimated standard error are computed from the sample data. 
When these values are used in the t formula, the result becomest formula, the result becomest

t 5

sample mean
(from the data)

2
population mean

(hypothesized from H
0

H
0

H )

estimated standard error
(computed from the sample data)

A N S W E R S

m 5 30 m 5 ?

Known population
before treatment

Unknown population
after treatment

T
r
e
a
t

m
e
n
t

F I G U R E  9. 3
The basic research situation for 
the t the t the statistic hypothesis test. It is 
assumed that the parameter μ is 
known for the population before 
treatment. The purpose of the 
research study is to determine 
whether the treatment has an ef-whether the treatment has an ef-whether the treatment has an ef
fect. Note that the population after 
treatment has unknown values for 
the mean and the variance. We 
will use a sample to test a hypoth-
esis about the population mean.

244 CHAPTER 9 | Introduction to the t Statistic t Statistic t
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As with the z-score formula, the t statistic forms a ratio. The numerator measures the t statistic forms a ratio. The numerator measures the t
actual difference between the sample data (M) and the population hypothesis (M) and the population hypothesis (M m). The esti-
mated standard error in the denominator measures how much difference is reasonable to 
expect between a sample mean and the population mean. When the obtained difference 
between the data and the hypothesis (numerator) is much greater than expected (denomina-
tor), we obtain a large value for t (either large positive or large negative). In this case, we t (either large positive or large negative). In this case, we t
conclude that the data are not consistent with the hypothesis, and our decision is to “reject 
H0H0H .” On the other hand, when the difference between the data and the hypothesis is small 
relative to the standard error, we obtain a t statistic near zero, and our decision is “fail to t statistic near zero, and our decision is “fail to t
reject H0H0H .”

The Unknown Population As mentioned earlier, the hypothesis test often concerns 
a population that has received a treatment. This situation is shown in Figure 9.3. Note 
that the value of the mean is known for the population before treatment. The question 
is whether the treatment influences the scores and causes the mean to change. In this 
case, the unknown population is the one that exists after the treatment is administered, 
and the null hypothesis simply states that the value of the mean is not changed by the 
treatment.

Although the t statistic can be used in the “before and after” type of research shown t statistic can be used in the “before and after” type of research shown t
in Figure 9.3, it also permits hypothesis testing in situations for which you do not have a 
known population mean to serve as a standard. Specifically, the t test does not require any t test does not require any t
prior knowledge about the population mean or the population variance. All you need to 
compute a t statistic is a null hypothesis and a sample from the unknown population. Thus, t statistic is a null hypothesis and a sample from the unknown population. Thus, t
a t test can be used in situations for which the null hypothesis is obtained from a theory, t test can be used in situations for which the null hypothesis is obtained from a theory, t
a logical prediction, or just wishful thinking. For example, many studies use rating-scale 
questions to measure perceptions or attitudes. Participants are presented with a statement 
and asked to express their opinion on a scale from 1 to 7, with 1 indicating “strongly nega-
tive” and 7 indicating “strongly positive.” A score of 4 indicates a neutral position, with no 
strong opinion one way or the other. In this situation, the null hypothesis would state that 
there is no preference, or no strong opinion, in the population, and use a null hypothesis of 
H0H0H : m 5 4. The data from a sample is then used to evaluate the hypothesis. Note that the 
researcher has no prior knowledge about the population mean and states a hypothesis that 
is based on logic.

■ Hypothesis Testing Example
The following research situation demonstrates the procedures of hypothesis testing with 
the t statistic. t statistic. t

Chang, Aeschbach, Duffy, and Czeisler (2015) report that reading from a light-emitting 
eReader before bedtime can significantly affect sleep and lower alertness the next morning. 
To test this finding, a researcher obtains a sample of n 5 9 volunteers who agree to spend at 
least 15 minutes using an eReader during the hour before sleeping and then take a standard-
ized cognitive alertness test the next morning. For the general population, scores on the test 
average m 5 50 and form a normal distribution. The sample of research participants had an 
average score of M 5 46 with SS 5 162.

State the hypotheses and select an alpha level. In this case, the null hypothesis 
states that late-night reading from a light-emitting screen has no effect on alertness the fol-
lowing morning. In symbols, the null hypothesis states

H0H0H : m screen reading 5 50 (same as the general population)

E X A M P L E  9 . 2

S T E P  1
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The alternative hypothesis states that reading from a screen at bedtime does affect alert-
ness the next morning. A directional, one-tailed test would specify whether alertness is in-
creased or decreased, but the nondirectional alternative hypothesis is expressed as follows:

H1: mscreen reading ? 50 

We will set the level of significance at a 5 .05 for two tails.

Locate the critical region. The test statistic is a t statistic because the population varit statistic because the population varit -
ance is not known. Therefore, the value for degrees of freedom must be determined before 
the critical region can be located. For this sample

df 5 n 2 1 5 9 2 1 5 8

For a two-tailed test at the .05 level of significance and with 8 degrees of freedom, the criti-
cal region consists of t values greater than t values greater than t 12.306 or less than 22.306. Figure 9.4 depicts 
the critical region in this t distribution.t distribution.t

Calculate the test statistic. The t statistic typically requires more computation than t statistic typically requires more computation than t
is necessary for a z-score. Therefore, we recommend that you divide the calculations into 
a three-stage process as follows:

a. First, calculate the sample variance. Remember that the population variance is 
unknown, and you must use the sample value in its place. (This is why we are 
using a t statistic instead of a t statistic instead of a t z-score.)

s2 5
SS

n 2 1
5

SS

dfdfd

5
162

8
5 20.25

b. Next, use the sample variance (s2) and the sample size (n) to compute the estimated 
standard error. This value is the denominator of the t statistic and measures how t statistic and measures how t
much difference is reasonable to expect by chance between a sample mean and the 
corresponding population mean.

s
M

5Îs2ÎnÎ
5Î20.25Î 9Î 5 Ï2.25Ï 5 1.50

S T E P  2

S T E P  3

Reject H0 Reject H0

df 5 8

Fail to reject H0

12.30622.306
t

F I G U R E  9. 4
The critical region in the
t distribution for α = .05 
and df = 8.
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c. Finally, compute the t statistic for the sample data.t statistic for the sample data.t

t 5
M 2 m

s
M

5
46 2 50

1.50
5 22.67

Make a decision regarding H0. The obtained t statistic of t statistic of t 22.67 falls into the critical 
region on the left-hand side of the t distribution (see Figure 9.4). Our statistical decision is t distribution (see Figure 9.4). Our statistical decision is t
to reject H0H0H  and conclude that reading from a light-emitting screen at bedtime does affect 
alertness the following morning. As indicated by the sample mean, there is a tendency for 
the level of alertness to be reduced after reading a screen before bedtime. ■

■ Assumptions of the t Test
Two basic assumptions are necessary for hypothesis tests with the t statistic.t statistic.t

1. The values in the sample must consist of independent observations.independent observations.independent
In everyday terms, two observations are independent if there is no consis-

tent, predictable relationship between the �rst observation and the second. More 
precisely, two events (or observations) are independent if the occurrence of the �rst 
event has no effect on the probability of the second event. We examined speci�c 
examples of independence and non-independence in Box 8.1 (page 216).

2. The population sampled must be normal.
This assumption is a necessary part of the mathematics underlying the 

development of the t statistic and the t statistic and the t t distribution table. However, violating t distribution table. However, violating t
this assumption has little practical effect on the results obtained for a t statistic, t statistic, t
especially when the sample size is relatively large. With very small samples, a 
normal population distribution is important. With larger samples, this assump-
tion can be violated without affecting the validity of the hypothesis test. If you 
have reason to suspect that the population distribution is not normal, use a large 
sample to be safe.

■ The Influence of Sample Size and Sample Variance
As we noted in Chapter 8 (page 214), a variety of factors can influence the outcome of a 
hypothesis test. In particular, the number of scores in the sample and the magnitude of the 
sample variance both have a large effect on the t statistic and thereby influence the statistit statistic and thereby influence the statistit -
cal decision. The structure of the t formula makes these factors easier to understand:t formula makes these factors easier to understand:t

t 5
M 2 m

s
M

where s
M

5Îs2ÎnÎ
Because the estimated standard error, sM, appears in the denominator of the formula, a 
larger value for sM produces a smaller value (closer to zero) for M produces a smaller value (closer to zero) for M t. Thus, any factor that 
influences the standard error also affects the likelihood of rejecting the null hypothesis and 
finding a significant treatment effect. The two factors that determine the size of the stan-
dard error are the sample variance, s2, and the sample size, n. 

The estimated standard error is directly related to the sample variance so that the larger 
the variance, the larger the error. Thus, large variance means that you are less likely to 
obtain a significant treatment effect. In general, large variance is bad for inferential sta-
tistics. Large variance means that the scores are widely scattered, which makes it difficult 
to see any consistent patterns or trends in the data. In general, high variance reduces the 
likelihood of rejecting the null hypothesis.

On the other hand, the estimated standard error is inversely related to the number of 
scores in the sample. The larger the sample is, the smaller the error is. If all other factors 

S T E P  4

SECTION 9-2 | Hypothesis Tests with the t Statistict Statistict 247

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



248 CHAPTER 9 | Introduction to the t Statistic t Statistic t

are held constant, large samples tend to produce bigger t statistics and therefore are more t statistics and therefore are more t
likely to produce significant results. For example, a 2-point mean difference with a sample 
of n 5 4 may not be convincing evidence of a treatment effect. However, the same 2-point 
difference with a sample of n 5 100 is much more compelling.

9-3 Measuring Effect Size for the t Statistic

LE A R N I N G O B J E C T IV E S  

 6. Calculate Cohen’s d or the percentage of variance accounted for (d or the percentage of variance accounted for (d r2r2r ) to measure 
effect size for a hypothesis test with a t statistic.t statistic.t

 7. Explain how measures of effect size for a t test are in�uenced by sample size and t test are in�uenced by sample size and t
sample variance.

 8. Explain how a con�dence interval can be used to describe the size of a treatment 
effect for a test and describe the factors that affect the width of a con�dence interval.

 9. Describe how the results from a hypothesis test using a t statistic are reported in t statistic are reported in t
the literature.

LO4 1. A sample of n 5 9 scores is selected from a population with a mean of m 5 70, 
and a treatment is administered to the sample. After treatment, the sample has 
M 5 74 and SS 5 288. If a hypothesis test with a t statistic is used to evaluate 
the treatment effect, then what value will be obtained for the t statistic?

a. t 5 1

b. t 5 1.50

c. t 5 2

d. t 5 4

LO4 2. A hypothesis test produces a t statistic of t statistic of t t 5 2.30. If the researcher is using 
a two-tailed test with a 5 .05, how large does the sample have to be in order to 
reject the null hypothesis?

a. at least n 5 8

b. at least n 5 9

c. at least n 5 10

d. at least n 5 11

LO5 3. A sample is selected from a population and a treatment is administered to the 
sample. For a hypothesis test with a t statistic, if there is a 5-point difference t statistic, if there is a 5-point difference t
between the sample mean and the original population mean, which set of sam-
ple characteristics is most likely to lead to a decision that there is a significant 
treatment effect?

a. Small variance for a large sample

b. Small variance for a small sample

c. Large variance for a large sample

d. Large variance for a small sample

1. c 2. c 3. a

LE A R N I N G C H E C K

A N S W E R S
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In Chapter 8 we noted that one criticism of a hypothesis test is that it does not really evalu-
ate the size of the treatment effect. Instead, a hypothesis test simply determines whether the 
treatment effect is greater than chance, where “chance” is measured by the standard error. 
In particular, it is possible for a very small treatment effect to be “statistically significant,” 
especially when the sample size is very large. To correct for this problem, it is recom-
mended that the results from a hypothesis test be accompanied by a report of effect size 
such as Cohen’s d.

■ Estimated Cohen’s d
When Cohen’s d was originally introduced (page 223), the formula was presented asd was originally introduced (page 223), the formula was presented asd

Cohen’s d 5
mean difffff efef rence

standard deviation
5

m
treatment 2 m

no treatment

s

Cohen defined this measure of effect size in terms of the population mean difference and 
the population standard deviation. However, in most situations the population values are 
not known and you must substitute the corresponding sample values in their place. When 
this is done, many researchers prefer to identify the calculated value as an “estimated d” 
or name the value after one of the statisticians who first substituted sample statistics into 
Cohen’s formula (e.g., Glass’s g or Hedges’s g). For hypothesis tests using the t statistic, t statistic, t
the population mean with no treatment is the value specified by the null hypothesis. How-
ever, the population mean with treatment and the standard deviation are both unknown. 
Therefore, we use the mean for the treated sample and the standard deviation for the sample 
after treatment as estimates of the unknown parameters. With these substitutions, the for-
mula for estimating Cohen’s d becomesd becomesd

estimated d 5
mean difffff efef rence

sample standard deviation
5

M 2 m

s
(9.4)

The numerator measures that magnitude of the treatment effect by finding the differ-
ence between the mean for the treated sample and the mean for the untreated population 
(m from H0H0H ). The sample standard deviation in the denominator standardizes the mean 
difference into standard deviation units. Thus, an estimated d of 1.00 indicates that the d of 1.00 indicates that the d
size of the treatment effect is equivalent to one standard deviation. The following example 
demonstrates how the estimated d is used to measure effect size for a hypothesis test using d is used to measure effect size for a hypothesis test using d
a t statistic.t statistic.t

For the bedtime-reading study in Example 9.2, the participants averaged M 5 46 on the 
alertness test. If the light-emitting eReader has no effect (as stated by the null hypothesis), 
the population mean would be m 5 50. Thus, the results show a 4-point difference between 
the mean with bedtime reading (M 5 46) and the mean for the general population (m 5 50). 
Also, for this study the sample standard deviation is simply the square root of the sample 
variance, which was found to be s2 5 20.25.

s 5 ÏsÏsÏ 2Ï 5 Ï20.25Ï 5 4.50

Thus, Cohen’s d for this example is estimated to bed for this example is estimated to bed

Cohen’s d 5
M 2 m

s
5

46 2 50

4.50
5 0.89

According to the standards suggested by Cohen (Table 8.2, page 225), this is a large 
treatment effect. ■

E X A M P L E  9 . 3

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



250 CHAPTER 9 | Introduction to the t Statistic t Statistic t

To help you visualize what is measured by Cohen’s d, we have constructed a set of n 5
9 scores with a mean of M 5 46 and a standard deviation of s 5 4.5 (the same values as in 
Examples 9.2 and 9.3). The set of scores is shown in Figure 9.5. Notice that the figure also 
includes an arrow that locates m 5 50. Recall that m 5 50 is the value specified by the null 
hypothesis and identifies what the mean ought to be if the treatment has no effect. Clearly, 
our sample is not centered at m 5 50. Instead, the scores have been shifted to the left so that 
the sample mean is M 5 46. This shift, from 50 to 46, is the 4-point mean difference that was 
caused by the treatment effect. Also notice that the 4-point mean difference is almost equal to 
the standard deviation. Thus, the size of the treatment effect is close to 1 standard deviation. 
In other words, Cohen’s d 5 0.89 is an accurate description of the treatment effect.

The following example is an opportunity for you to test your understanding of hypoth-
esis testing and effect size with the t statistic.t statistic.t

A sample of n 5 16 individuals is selected from a population with a mean of m 5 40. A 
treatment is administered to the individuals in the sample and, after treatment, the sample 
has a mean of M 5 44 and a variance of s2 5 16. Use a two-tailed test with a 5 .05 to 
determine whether the treatment effect is significant and compute Cohen’s d to measure the d to measure the d
size of the treatment effect. You should obtain t 5 4.00 with df 5 15, which is large enough 
to reject H0H0H  with Cohen’s d 5 1.00. ■

■ Measuring the Percentage of Variance Explained, r2

An alternative method for measuring effect size is to determine how much of the variability 
in the scores is explained by the treatment effect. The concept behind this measure is that 
the treatment causes the scores to increase (or decrease), which means that the treatment is 
causing the scores to vary. If we can measure how much of the variability is explained by 
the treatment, we will obtain a measure of the size of the treatment effect.

To demonstrate this concept we will use the data from the hypothesis test in Example 9.2. 
Recall that the null hypothesis stated that the treatment (bedtime reading from a light-emitting 
screen) has no effect on alertness the following morning. According to the null hypothesis, 
individuals who read from a light-emitting screen at bedtime should have the same alertness 
level as the general population, and therefore should average m 5 50 on the standardized test.

However, if you look at the data in Figure 9.5, the scores are not centered at m 5 50. 
Instead, the scores are shifted to the left so that they are centered around the sample mean, 

E X A M P L E  9 . 4

Fr
e

q
u

e
n

c
y

1

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

M 5 46

s 5 4.5

m 5 50
(from H0)

s 5 4.5

2

F I G U R E  9. 5
The sample distribution for 
the scores that were used in 
Examples 9.2 and 9.3. The popu-
lation mean, μ = 10 second, is 
the value that would be expected 
if attractiveness has no effect on 
the infants’ behavior. Note that 
the sample mean is displaced 
away from μ =away from μ =away from  10 by a distance 
equal to one standard deviation.
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M 5 46. This shift is the treatment effect. To measure the size of the treatment effect we cal-
culate deviations from the mean and the sum of squared deviations, SS, two different ways.

Figure 9.6(a) shows the original set of scores. For each score, the deviation from 
m 5 50 is shown as a colored line. Recall that m 5 50 comes from the null hypothesis and 
represents the population mean if the treatment has no effect. Note that almost all of the scores 
are located on the left-hand side of m 5 50. This shift to the left is the treatment effect. Spe-
cifically, the late-night reading has caused a reduced level of alertness the following morning, 
which means that the participants’ scores are generally lower than 50. Thus, the treatment has 
pushed the scores away from m 5 50 and has increased the size of the deviations.

Next, we will see what happens if the treatment effect is removed. In this example, the 
treatment has a 4-point effect (the average decreases from m 5 50 to M 5 46). To remove 
the treatment effect, we simply add 4 points to each score. The adjusted scores are shown in 
Figure 9.6(b) and, once again, the deviations from m 5 50 are shown as colored lines. First, 
notice that the adjusted scores are centered at m 5 50, indicating that there is no treatment 
effect. Also notice that the deviations—the colored lines—are noticeably smaller when the 
treatment effect is removed.

To measure how much the variability is reduced when the treatment effect is removed, 
we compute the sum of squared deviations, SS, for each set of scores. The left-hand columns 
of Table 9.2 show the calculations for the original scores [Figure 9.6(a)], and the right-hand 
columns show the calculations for the adjusted scores [Figure 9.6(b)]. Note that the total 
variability, including the treatment effect, is SS 5 306. However, when the treatment effect 
is removed, the variability is reduced to SS 5 162. The difference between these two values, 
306 2 162 5 144 points, is the amount of variability that is accounted for by the treatment 
effect. This value is usually reported as a proportion or percentage of the total variability:

Variability accounted fofof r

total variability
5

144

306
5 0.47 sor 47%d

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

 No eff No eff No ef ect
m 5 50

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

 No eff No eff No ef ect
m 5 50

Original scores, including the treatment efincluding the treatment efincluding the tr featment effeatment ef ect

Adjusted scores with the treatment effeatment effeatment ef ect removed

(a)

(b)

F I G U R E  9.6
Deviations from μ = 10 
(no treatment effect) for 
the scores in Example 9.2. 
The colored lines in part 
(a) show the deviations for 
the original scores, includ-
ing the treatment effect. In 
part (b) the colored lines 
show the deviations for the 
adjusted scores after the 
treatment effect has been 
removed.
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Thus, removing the treatment effect reduces the variability by 47%. This value is called the 
percentage of variance accounted for by the treatment and is identified as percentage of variance accounted for by the treatment and is identified as percentage of variance accounted for by the treatment r2r2r .

Rather than computing r2r2r  directly by comparing two different calculations for SS, the 
value can be found from a single equation based on the outcome of the t test:t test:t

r2r2r 5
t2t2t

t2t2t 1 dfdfd
(9.5)

The letter r is the traditional symbol used for a correlation, and the concept of r is the traditional symbol used for a correlation, and the concept of r r2r2r  is dis-
cussed again when we consider correlations in Chapter 15. Also, in the context of t statist statist -
tics, the percentage of variance that we are calling r2r2r  is often identified by the Greek letter 
omega squared (v2).

For the hypothesis test in Example 9.2, we obtained t 5 22.67 with df 5 8. These 
values produce

(22.67)2

(22.67)2 1 8
5

7.13

15.13
5 0.47

Note that this is the same value we obtained with the direct calculation of the percentage of 
variability accounted for by the treatment.

Interpreting r2r2r In addition to developing the Cohen’s d measure of effect size, Cohen d measure of effect size, Cohen d
(1988) also proposed criteria for evaluating the size of a treatment effect that is measured 
by r2r2r . The criteria were actually suggested for evaluating the size of a correlation, r, but are 
easily extended to apply to r2r2r . Cohen’s standards for interpreting r2r2r  are shown in Table 9.3.

According to these standards, the data we constructed for Examples 9.1 and 9.2 show a 
very large effect size with r2r2r 5 0.47.

As a final note, we should remind you that, although sample size affects the hypothesis 
test, this factor has little or no effect on measures of effect size. In particular, estimates of 
Cohen’s d are not influenced at all by sample size, and measures of d are not influenced at all by sample size, and measures of d r2 are only slightly 

Calculation of SS including SS including SS
the treatment effect

Calculation of SS after the SS after the SS
treatment effect is removed

Score
Deviation 

from m 5 50
Squared 

Deviation
Adjusted 

Score
Deviation 

from m 5 50
Squared 
Deviation

39 211 121 39 1 4 5 43 27 49
41 29 81 41 1 4 5 45 25 25
43 27 49 43 1 4 5 47 23 9
45 25 25 45 1 4 5 49 21 1
46 24 16 46 1 4 5 50 0 0
47 23 9 47 1 4 5 51 1 1
50 0 0 50 1 4 5 54 4 16
51 1 1 51 1 4 5 55 5 25
52 2 4 52 1 4 5 56 6 36

SS 5 306 SS 5 162

TA B L E  9. 2 
Calculation of SS, the sum 
of squared deviations, for 
the data in Figure 9.6. The 
first three columns show 
the calculations for the 
original scores, including 
the treatment effect. The 
last three columns show 
the calculations for the 
adjusted scores after the 
treatment effect has been 
removed.

TA B L E  9. 3
Criteria for interpreting 
the value of r2r2r  as proposed 
by Cohen (1988).

Percentage of Variance Explained, r2r2r

r2r2r 5 0.01 Small effect
r2r2r 5 0.09 Medium effect
r2r2r 5 0.25 Large effect
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affected by changes in the size of the sample. The sample variance, on the other hand, influ-
ences hypothesis tests and measures of effect size. Specifically, high variance reduces the 
likelihood of rejecting the null hypothesis and it reduces measures of effect size.

■ Confidence Intervals for Estimating m
An alternative technique for describing the size of a treatment effect is to compute an esti-
mate of the population mean after treatment. For example, if the mean before treatment is 
known to be m 5 80 and the mean after treatment is estimated to be m 5 86, then we can 
conclude that the size of the treatment effect is around 6 points.  

Estimating an unknown population mean involves constructing a confidence interval. 
A confidence interval is based on the observation that a sample mean tends to provide a 
reasonably accurate estimate of the population mean. The fact that a sample mean tends 
to be near to the population mean implies that the population mean should be near to the 
sample mean. Thus, if we obtain a sample mean of M 5 86, we can be reasonably confident 
that the population mean is around 86. Thus, a confidence interval consists of an interval 
of values around a sample mean, and we can be reasonably confident that the unknown 
population mean is located somewhere in the interval.

A con�dence interval is an interval, or range of values centered around a sample 
statistic. The logic behind a con�dence interval is that a sample statistic, such as a 
sample mean, should be relatively near to the corresponding population parameter. 
Therefore, we can con�dently estimate that the value of the parameter should be 
located in the interval near to the statistic.

■ Constructing a Confidence Interval
The construction of a confidence interval begins with the observation that every sample 
mean has a corresponding t value defined by the equationt value defined by the equationt

t 5
M 2 m

s
M

Although the values for M and M and M sM are available from the sample data, we do not know the M are available from the sample data, we do not know the M

values for t or for t or for t m. However, we can estimate the t value. For example, if the sample has t value. For example, if the sample has t
n 5 9 scores, then the t statistic has df 5 8, and the distribution of all possible t values t values t
can be pictured as seen in Figure 9.7. Notice that the t values pile up around t 5 0, so we 
can estimate that the t value for our sample should have a value around 0. Furthermore, t value for our sample should have a value around 0. Furthermore, t
the t distribution table lists a variety of different t distribution table lists a variety of different t t values that correspond to specific prot values that correspond to specific prot -
portions of the t distribution. With t distribution. With t df 5 8, for example, 80% of the t values are located t values are located t
between t 5 11.397 and t 5 21.397. To obtain these values, simply look up a two-tailed 
proportion of 0.20 (20%) for df 5 8. Because 80% of all the possible t values are located t values are located t
between 61.397, we can be 80% confident that our sample mean corresponds to a t value t value t
in this interval. Similarly, we can be 95% confident that the mean for a sample of n 5 9 
scores corresponds to a t value between 62.306. Notice that we are able to estimate the 
value of t with a specific level of confidence. To construct a confidence interval for t with a specific level of confidence. To construct a confidence interval for t m, we 
plug the estimated t value into the t value into the t t equation, and then we can calculate the value of t equation, and then we can calculate the value of t m.  

Before we demonstrate the process of constructing a confidence interval for an unknown 
population mean, we simplify the calculations by regrouping the terms in the t equation. t equation. t
Because the goal is to compute the value of m, we use simple algebra to solve the equation 
for m. The result is m 5 M 2 tsM. However, we estimate that the t value is in an interval t value is in an interval t
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t distributiont distributiont
df 5 8

t 5 11.397t 5 21.397
t 5 0

Middle 80%Middle 80%
of t distribution distributiont distributiont

F I G U R E  9.7
The distribution of t The distribution of t The distribution of statistics 
for df for df for = 8. The t values pile 
up around t = 0 and 80% of 
all the possible values are 
located between t = –1.397 
and t = +1.397.

around 0, with one end at 1t and the other end at t and the other end at t 2t. The 6t can be incorporated in the t can be incorporated in the t
equation to produce

m 5 M 6 tsM  (9.6) 

This is the basic equation for a confidence interval. Notice that the equation produces an 
interval around the sample mean. One end of the interval is located at M 1 tsM and the other M and the other M

end is at M 2 tsM. The process of using this equation to construct a confidence interval is 
demonstrated in the following example.

Example 9.2 describes a study in which reading from a light-emitting screen just before 
bedtime resulted in lower alertness the following morning. Specifically, a sample of n 5 9 
participants who read from an eReader for at least 15 minutes during the hour before 
bedtime had an average score of M 5 46 the next morning on an alertness test for which 
the general population mean is m 5 50. The data produced an estimated standard error of 
sM 5 1.50. We will use this sample to construct a confidence interval to estimate the mean 
alertness score for the population of individuals who read from light-emitting screens at 
bedtime. That is, we will construct an interval of values that is likely to contain the un-
known population mean.  

Again, the estimation formula is

m 5 M 6 t(sM) 

In the equation, the value of M 5 46 and sM 5 1.50 are obtained from the sample data. The 
next step is to select a level of confidence that will determine the value of t in the equation. t in the equation. t
The most commonly used confidence level is probably 95%, but values of 80%, 90%, and 
99% are also common values. For this example, we will use a confidence level of 80%, 
which means that we will construct the confidence interval so that we are 80% confident 
that the population mean is actually contained in the interval. Because we are using a 
confidence level of 80%, the resulting interval is called the 80% confidence interval for m.

To obtain the value for t in the equation, we simply estimate that the t in the equation, we simply estimate that the t t statistic for our t statistic for our t
sample is located somewhere in the middle 80% of the t distribution. With t distribution. With t df 5 n 2 1 5 8, the 
middle 80% of the distribution is bounded by t values of t values of t 11.397 and 21.397 (see Figure 9.7). 
Using the sample data and the estimated range of t values, we obtaint values, we obtaint

m 5 M 6 t(sM) 5 46 6 1.397(1.50) 5 46 6 2.096

E X A M P L E  9 . 5

To have 80% in the 
middle there must be 
20% (or .20) in the tails. 
To find the t values, look 
under two tails, .20 in 
the t table.
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At one end of the interval, we obtain m 5 46 1 2.096 5 48.096, and at the other end we 
obtain m 5 46 2 2.096 5 43.904. Our conclusion is that the average next-morning alert-
ness score for the population of individuals who read from an eReader before bedtime is 
between m 5 43.904 and m 5 48.096, and we are 80% confident that the true population 
mean is located within this interval. The confidence comes from the fact that the calcula-
tion was based on only one assumption. Specifically, we assumed that the t statistic was t statistic was t
located between 11.397 and 21.397, and we are 80% confident that this assumption is 
correct because 80% of all the possible t values are located in this interval. Finally, note t values are located in this interval. Finally, note t
that the confidence interval is constructed around the sample mean. As a result, the sample 
mean, M 5 46, is located exactly in the center of the interval. ■

■ Factors Affecting the Width of a Confidence Interval
Two characteristics of the confidence interval should be noted. First, notice what hap-
pens to the width of the interval when you change the level of confidence (the percent 
confidence). To gain more confidence in your estimate, you must increase the width of the 
interval. Conversely, to have a smaller, more precise interval, you must give up confidence. 
In the estimation formula, the percentage of confidence influences the value of t. A larger 
level of confidence (the percentage), produces a larger t value and a wider interval. This t value and a wider interval. This t
relationship can be seen in Figure 9.7. In the figure, we identified the middle 80% of the 
t distribution in order to find an 80% confidence interval. It should be obvious that if we t distribution in order to find an 80% confidence interval. It should be obvious that if we t
were to increase the confidence level to 95%, it would be necessary to increase the range 
of t values and thereby increase the width of the interval.t values and thereby increase the width of the interval.t

Second, note what happens to the width of the interval if you change the sample size. 
This time the basic rule is as follows: the bigger the sample (n), the smaller the interval. 
This relationship is straightforward if you consider the sample size as a measure of the 
amount of information. A bigger sample gives you more information about the popula-
tion and allows you to make a more precise estimate (a narrower interval). The sample 
size controls the magnitude of the standard error in the estimation formula. As the sample 
size increases, the standard error decreases, and the interval gets smaller. Notice that a 
researcher has the ability to control the width of a confidence interval by adjusting either 
the sample size or the level of confidence. For example, if a researcher feels that an interval 
is too broad (producing an imprecise estimate of the mean), the interval can be narrowed by 
either increasing the sample size or lowering the level of confidence. You also should note 
that because confidence intervals are influenced by sample size, they do not provide an 
unqualified measure of absolute effect size and are not an adequate substitute for Cohen’s 
d or d or d r2r2r . Nonetheless, they can be used in a research report to provide a description of the 
size of the treatment effect.

IN THE LITERATURE

SECTION 9-3 | Measuring Effect Size for the t Statistict Statistict 255

Reporting the Results of a t Test
In Chapter 8, we noted the conventional style for reporting the results of a hypothesis 
test, according to APA format. First, recall that a scienti�c report typically uses the 
term signi�cant to indicate that the null hypothesis has been rejected and the term signi�cant to indicate that the null hypothesis has been rejected and the term signi�cant not 
signi�cant to indicate failure to reject signi�cant to indicate failure to reject signi�cant H0H0H . Additionally, there is a prescribed format for 
reporting the calculated value of the test statistic, degrees of freedom, alpha level, and 
effect size for a t test. This format parallels the style introduced in Chapter 8 (page 213).t test. This format parallels the style introduced in Chapter 8 (page 213).t

In Example 9.2 we calculated a t statistic of t statistic of t 22.67 with df 5 8, and we decided to 
reject H0H0H  with alpha set at .05. Using the same data, we obtained r2r2r 5 0.47 (47%) for 
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LO6 1. A sample of n 5 25 is selected from a population with m 5 40, and a treatment 
is administered to each individual in the sample. After treatment, the sample 
mean is M 5 44 with a sample variance of s2 5 100. Based on this informa-
tion, what is the size of the treatment effect as measured by Cohen’s d?

a. d 5 0.04

b. d 5 0.40

c. d 5 1.00

d. d 5 2.00  

LO7 2. A sample is selected from a population with a mean of m 5 75, and a treat-
ment is administered to the individuals in the sample. The researcher intends 
to use a t statistic to evaluate the effect of the treatment. If the sample mean t statistic to evaluate the effect of the treatment. If the sample mean t
is M 5 79, then which of the following outcomes would produce the largest 
value for Cohen’s d?

a. n 5 4 and s2 5 30

b. n 5 16 and s2 5 30

LE A R N I N G C H E C K

the percentage of variance explained by the treatment effect. In a scienti�c report, this 
information is conveyed in a concise statement, as follows:

The participants had an average of M 5 46 with SD 5 4.50 on a standardized 
alertness test the morning following bedtime reading from a light-emitting screen. 
Statistical analysis indicates that the mean level of alertness was signi�cantly lower 
than scores for the general population, t(8) 5 22.67, p , .05, r2r2r 5 0.47.

The �rst statement reports the descriptive statistics, the mean (M 5 46) and the standard 
deviation (SD 5 4.50), as previously described (Chapter 4, page 108). The next state-
ment provides the results of the inferential statistical analysis. Note that the degrees of 
freedom are reported in parentheses immediately after the symbol t. The value for the 
obtained t statistic follows (t statistic follows (t 22.67), and next is the probability of committing a Type I 
error (less than 5%). Finally, the effect size is reported, r2r2r 5 47%. If the 80% con�dence 
interval from Example 9.5 were included in the report as a description of effect size, it 
would be added after the results of the hypothesis test as follows:

t(8) 5 22.67, p , .05, 80% CI [43.904, 48.096].

Often, researchers use a computer to perform a hypothesis test like the one in 
Example 9.2. In addition to calculating the mean, standard deviation, and the t statistic t statistic t
for the data, the computer usually calculates and reports the exact probability (or a
level) associated with the t value. In Example 9.2 we determined that any t value. In Example 9.2 we determined that any t t value beyond t value beyond t
62.306 has a probability of less than .05 (see Figure 9.4). Thus, the obtained t value, t value, t
t 5 22.67, is reported as being very unlikely, p , .05. A computer printout, however, 
would have included an exact probability for our speci�c t value.t value.t

Whenever a speci�c probability value is available, you are encouraged to use it in a 
research report. For example, the computer analysis of these data reports an exact p value 
of p 5 .029, and the research report would state “t(8) 5 22.67, p 5 .029” instead of 
using the less speci�c “pusing the less speci�c “pusing the less speci�c “ , .05.” As one �nal caution, we note that occasionally a t value t value t
is so extreme that the computer reports p 5 0.000. The zero value does not mean that the 
probability is literally zero; instead, it means that the computer has rounded off the prob-
ability value to three decimal places and obtained a result of 0.000. In this situation, you 
do not know the exact probability value, but you can report p , .001.
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c. n 5 25 and s2 5 30

d. All three samples would produce the same value for Cohen’s d.

LO8 3. A sample of n 5 4 scores is selected from a population with an unknown 
mean.  The sample has a mean of M 5 40 and a variance of s2 5 16. Which of 
the following is the correct 90% confidence interval for m?

a. m 5 40 6 2.353(4)

b. m 5 40 6 1.638(4)

c. m 5 40 6 2.353(2)

d. m 5 40 6 1.638(2)

LO9 4. A researcher uses a sample of n 5 25 individuals to evaluate the effect of a 
treatment. The hypothesis test uses a 5 .05 and produces a significant result 
with t 5 2.15.  How would this result be reported in the literature? 

a. t(25) 5 2.15, p , .05

b. t(24) 5 2.15, p , .05

c. t(25) 5 2.15, p . .05

d. t(24) 5 2.15, p . .05

1. b 2. d 3. c 4. bA N S W E R S
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9-4 Directional Hypotheses and One-Tailed Tests

LE A R N I N G O B J E C T IV E  

 10. Conduct a directional (one-tailed) hypothesis test using the t statistic.t statistic.t

As noted in Chapter 8, the nondirectional (two-tailed) test is more commonly used than 
the directional (one-tailed) alternative. On the other hand, a directional test may be used in 
some research situations, such as exploratory investigations or pilot studies or when there 
is a priori justification (for example, a theory or previous findings). The following example 
demonstrates a directional hypothesis test with a t statistic, using the same experimental t statistic, using the same experimental t
situation presented in Example 9.2.

The research question is whether reading from a light-emitting screen before bedtime af-The research question is whether reading from a light-emitting screen before bedtime af-The research question is whether reading from a light-emitting screen before bedtime af
fects alertness the following morning. Based on previous studies, the researcher is expect-
ing the level of alertness to be reduced on the morning after late-night reading. Therefore, 
the researcher predicts that the participants will have an average alertness score that is 
lower than the mean for the general population, which is m 5 50. For this example we will 
use the same sample data that were used in the original hypothesis test in Example 9.2. 
Specifically, the researcher tested a sample of n 5 9 participants and obtained a mean score 
of M 5 46 with SS 5 162.

State the hypotheses, and select an alpha level. With most directional tests, it is 
usually easier to state the hypothesis in words, including the directional prediction, and 
then convert the words into symbols. For this example, the researcher is predicting that 
reading from a light-emitting screen at bedtime will lower alertness scores the next morn-
ing. In general, the null hypothesis states that the predicted effect will not happen. For this 

E X A M P L E  9 . 6

S T E P  1
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study, the null hypothesis states that alertness scores will not be lowered by reading from a 
screen late at night. In symbols,

H0H0H : mscreen reading $ 50   (Scores will not be lower than the 
general population average)

Similarly, the alternative hypothesis states that the treatment will work. In this case, H1

states that alertness scores will be lowered by reading from a light-emitting screen before 
bedtime. In symbols,

H1: mscreen reading , 50 (Alertness after late-night reading will be lower 
than the general population average)

We will set the level of significance at a 5 .05.

Locate the critical region. In this example, the researcher is predicting that the sam-
ple mean (M) will be less than 50. Thus, if the participants’ average score is less than 50, M) will be less than 50. Thus, if the participants’ average score is less than 50, M
the data will provide support for the researcher’s prediction and will tend to refute the null 
hypothesis. Also note that a sample mean less than 50 will produce a negative value for the 
t statistic. Thus, the critical region for the one-tailed test will consist of negative t statistic. Thus, the critical region for the one-tailed test will consist of negative t t values t values t
located in the left-hand tail of the distribution. However, we must still determine exactly 
how large the t value must be to justify rejecting the null hypothesis. To �nd the critical valt value must be to justify rejecting the null hypothesis. To �nd the critical valt -
ue, you must look in the t distribution table using the one-tail proportions. With a sample t distribution table using the one-tail proportions. With a sample t
of n 5 9, the t statistic will have t statistic will have t df 5 8; using a 5 .05, you should �nd a critical value of 
t 5 1.860. Therefore, if we obtain a sample mean of less than 50 and the t statistic is beyond t statistic is beyond t
the 21.860 critical boundary on the left-hand side, we will reject the null hypothesis and 
conclude that reading from a light-emitting screen before bedtime signi�cantly lowers 
alertness the next morning. Figure 9.8 shows the one-tailed critical region for this test.

Calculate the test statistic. The computation of the t statistic is the same for either t statistic is the same for either t
a one-tailed or a two-tailed test. Earlier (in Example 9.2), we found that the data for this 
experiment produce a test statistic of t 5 22.67.

Make a decision. The test statistic is in the critical region, so we reject H0H0H . In terms of 
the experimental variables, we have decided that reading from a light-emitting screen at 

S T E P  2

S T E P  3

S T E P  4

df 5 8

021.86

F I G U R E  9. 8
The one-tailed critical region 
for the hypothesis test in 
Example 9.6 with
df = 8 and α = .05.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 9-4 | Directional Hypotheses and One-Tailed Tests 259

bedtime reduces alertness the following morning. In a research report the results would be 
presented as follows:

After reading from a light-emitting screen at bedtime, alertness scores the next 
morning were signi�cantly lower than would be expected if there were no effect, 
t(8) 5 22.67, p , .05, one tailed.

Note that the report clearly acknowledges that a one-tailed test was used. ■

■ The Critical Region for a One-Tailed Test
In Step 2 of Example 9.6, we determined that the critical region is in the left-hand tail of 
the distribution. However, it is possible to divide this step into two stages that eliminate 
the need to determine which tail (right or left) should contain the critical region. The first 
stage in this process is simply to determine whether the sample mean is in the direction 
predicted by the original research question. For this example, the researcher predicted that 
the alertness scores would be lowered. Specifically, the researcher expects the participants 
to have scores lower than the general population average of m 5 50. The obtained sample 
mean, M 5 46, is in the correct direction. This first stage eliminates the need to determine 
whether the critical region is in the left- or right-hand tail. Because we already have deter-
mined that the effect is in the correct direction, the sign of the t statistic (t statistic (t 1 or 2) no longer 
matters. The second stage of the process is to determine whether the effect is large enough 
to be significant. For this example, the requirement is that the sample produces a t statistic t statistic t
greater than 1.860. If the magnitude of the t statistic, independent of its sign, is greater than t statistic, independent of its sign, is greater than t
1.860, the result is significant and H0H0H  is rejected.

LO10 1. A sample is selected from a population with a mean of m 5 30 and a treatment 
is administered to the sample. If the treatment is expected to increase scores 
and a t statistic is used for a one-tailed hypothesis test, then which of the fol-
lowing is the correct null hypothesis?

a. m # 30

b. m , 30

c. m $ 30

d. m . 30

LO10 2. A researcher predicts that a treatment will increase scores. To test the treatment 
effect, a sample of n 5 16 is selected from a population with m 5 80 and a 
treatment is administered to the individuals in the sample. After treatment, the 
sample mean is M 5 78 with s2 5 16. If the researcher uses a one-tailed test 
with a 5 .05, then what decision should be made?

a. Reject H0H0H  with a 5 .05 or with a 5 .01

b. Fail to reject H0H0H  with a 5 .05 or with a 5 .01

c. Reject H0H0H  with a 5 .05 but not with a 5 .01

d. Reject H0H0H  with a 5 .01 but not with a 5 .05

LO10 3. A researcher fails to reject the null hypothesis with a regular two-tailed test 
using a 5 .05. If the researcher used a directional (one-tailed) test with the 
same data and the same alpha level, then what decision would be made?

LE A R N I N G C H E C K
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a. De�nitely reject the null hypothesis

b. De�nitely reject the null hypothesis if the treatment effect is in the predicted 
direction

c. De�nitely fail to reject the null hypothesis

d. Possibly reject the null hypothesis if the treatment effect is in the predicted 
direction

 1. a 2. b 3. d< E O C S M TA N S W E R S

1. The t statistic is used instead of a t statistic is used instead of a t z-score for hypoth-
esis testing when the population standard deviation (or 
variance) is unknown.

2. To compute the t statistic, you must first calculate the t statistic, you must first calculate the t
sample variance (or standard deviation) as a substitute 
for the unknown population value.

sample variance 5 s2 5
SS

dfdfd

Next, the standard error is estimated by substituting estimated by substituting estimated
s2 in the formula for standard error. The estimated 
standard error is calculated in the following manner:

estimated standard error 5 s
M

5Îs2ÎnÎ
Finally, a t statistic is computed using the estimated t statistic is computed using the estimated t
standard error. The t statistic is used as a substitute t statistic is used as a substitute t
for a z-score, which cannot be computed when the 
population variance or standard deviation is unknown.

t 5
M 2 m

s
M

3. The structure of the t formula is similar to that of the t formula is similar to that of the t
z-score.

z or t 5
sample mean 2 population mean

sestimatedd standard error

For a hypothesis test, you hypothesize a value for the 
unknown population mean and plug the hypothesized 
value into the equation along with the sample mean 
and the estimated standard error, which are computed 
from the sample data. If the hypothesized mean 
produces an extreme value for t, you conclude that the 
hypothesis was wrong.

4. The t distribution is symmetrical with a mean of zero. t distribution is symmetrical with a mean of zero. t
To evaluate a t statistic for a sample mean, the critical t statistic for a sample mean, the critical t
region must be located in a t distribution. There is a t distribution. There is a t
family of t distributions, with the exact shape of a part distributions, with the exact shape of a part -
ticular distribution of t values depending on degrees t values depending on degrees t
of freedom (n 2 1). Therefore, the critical t values de-t values de-t
pend on the value for df associated with the df associated with the df t test. As t test. As t
df increases, the shape of the df increases, the shape of the df t distribution approaches t distribution approaches t
a normal distribution.

5. When a t statistic is used for a hypothesis test, t statistic is used for a hypothesis test, t
Cohen’s d can be computed to measure effect size. In d can be computed to measure effect size. In d
this situation, the sample standard deviation is used in 
the formula to obtain an estimated value for d:

estimated d 5
mean difffff efef rence

standard deviation
5

M 2 m

s

6. A second measure of effect size is r2, which measures 
the percentage of the variability that is accounted for 
by the treatment effect. This value is computed as 
follows:

r2r2r 5
t2t2t

t2t2t 1 dfdfd

7. An alternative method for describing the size of a 
treatment effect is to use a confidence interval for 
m. A confidence interval is a range of values that 
estimates the unknown population mean. The con-
fidence interval uses the t equation, solved for the t equation, solved for the t
unknown mean:

m 5 M 6 t(sM) 

First, select a level of confidence and then look up the 
corresponding t values to use in the equation. For ex-t values to use in the equation. For ex-t
ample, for 95% confidence, use the range of tample, for 95% confidence, use the range of tample, for 95% confidence, use the range of  values  t values  t
that determine the middle 95% of the distribution.

S U M M A R Y
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estimated standard error (239)

t statistic (240)t statistic (240)t

degrees of freedom (240)

t distribution (241)t distribution (241)t

estimated d (249)

percentage of variance accounted for 
by the treatment (r2r2r ) (252)

confidence interval (253)

KE Y TER M S

General instructions for using SPSS are presented in Appendix D. Following are detailed in-
structions for using SPSS to perform the t Testt Testt  presented in this chapter.

Data Entry

1. Enter all of the scores from the sample in one column of the data editor, probably VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on One-Sample T Test.
2. Highlight the column label for the set of scores (VAR0001) in the left box and click the Highlight the column label for the set of scores (VAR0001) in the left box and click the Highlight the column label for the set of scores (V

arrow to move it into the Test Variable(s) box.
3. In the Test Value box at the bottom of the One-Sample t Test window, enter the hypothe-t Test window, enter the hypothe-t

sized value for the population mean from the null hypothesis. Note: The value is automati-
cally set at zero until you type in a new value.

4. In addition to performing the hypothesis test, the program will compute a confidence in-
terval for the population mean difference. The confidence level is automatically set at 95% 
but you can select Options and change the percentage.

5. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the bedtime-screen-reading study in 
Example 9.2, and the program output is shown in Figure 9.9. The output includes a table of 
sample statistics with the mean, standard deviation, and standard error for the sample mean. A 
second table shows the results of the hypothesis test, including the values for t, df, and the level df, and the level df
of significance (the p value for the test), as well as the mean difference from the hypothesized 
value of m 5 50 and a 95% confidence interval for the mean difference. To obtain a 95% con-
fidence interval for the mean, simply add m 5 50 points to the values in the table. 

SPSS ®

One-Sample Statistics

VAR00001 9 46.00009 46.0000

22.667 8 .029 24.00000 27.4590 2.5410

1.50000

N

t df Sig. (2-tailed)
Mean

Difference Lower Upper

95% Confidence Interval of the
Difference

Mean

4.50000

Std. Deviation
Std. Error

Mean

One-Sample Test

VAR00001

Test Value = 50

df Sig. (2-tailed)

F I G U R E  9.9
The SPSS output for the hypothesis test in Example 9.2.
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FO CUS  O N  PRO B LE M  SO LVIN G

1. The first problem we confront in analyzing data is determining the appropriate statistical 
test. Remember that you can use a z-score for the test statistic only when the value for s
is known. If the value for s is not provided, then you must use the t statistic.t statistic.t

2. For the t test, the sample variance is used to find the value for estimated standard error. t test, the sample variance is used to find the value for estimated standard error. t
Remember that when computing the sample variance, use n 2 1 in the denominator (see 
Chapter 4). When computing estimated standard error, use n in the denominator.

D E M O N S TR ATIO N  9.1

A HYPOTHESIS TEST WITH THE t STt STt A STA ST TATA ISTIC

A psychologist has prepared an “Optimism Test” that is administered yearly to graduating col-
lege seniors. The test measures how each graduating class feels about its future—the higher the 
score, the more optimistic the class. Last year’s class had a mean score of m 5 15. A sample of 
n 5 9 seniors from this year’s class was selected and tested. The scores for these seniors are 7, 
12, 11, 15, 7, 8, 15, 9, and 6, which produce a sample mean of M 5 10 with SS 5 94.

On the basis of this sample, can the psychologist conclude that this year’s class has a differ-
ent level of optimism than last year’s class?

Note that this hypothesis test will use a t statistic because the population variance (t statistic because the population variance (t s2) is 
not known.

State the hypotheses, and select an alpha level. The statements for the null hypothesis 
and the alternative hypothesis follow the same form for the t statistic and the t statistic and the t z-score test.

H0H0H : m 5 15 (There is no change.)

H1: m ? 15 (This year’s mean is different.)

For this demonstration, we will use a 5 .05, two tails.

Locate the critical region. With a sample of n 5 9 students, the t statistic has t statistic has t df 5 n 2 1 5 8. 
For a two-tailed test with a 5 .05 and df 5 8, the critical t values are t values are t t 5 62.306. These critical 
t values define the boundaries of the critical region. The obtained t values define the boundaries of the critical region. The obtained t t value must be more extreme t value must be more extreme t
than either of these critical values to reject H0H0H .

Compute the test statistic. As we have noted, it is easier to separate the calculation of the 
t statistic into three stages.t statistic into three stages.t

Sample variance.

s2 5
SS

n 2 1
5

94

8
5 11.75

Estimated standard error. The estimated standard error for these data is

s
M

5Îs2ÎnÎ 5Î11.75Î 9Î 5 1.14

The t statistic. Now that we have the estimated standard error and the sample mean, we can 
compute the t statistic. For this demonstration,t statistic. For this demonstration,t

t 5
M 2 m

s
M

5
10 2 15

1.14
5

2 5

1.14
5 24.39

Make a decision about H0, and state a conclusion. The t statistic we obtained (t statistic we obtained (t t 5 24.39) 
is in the critical region. Thus, our sample data are unusual enough to reject the null hypothesis 

STEP 1

STEP 2

STEP 3

STEP 4
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at the .05 level of significance. We can conclude that there is a significant difference in the 
level of optimism between this year’s and last year’s graduating classes, t(8)5 24.39, p , .05, 
two-tailed.

D E M O N S TR ATIO N  9. 2

EFFECT SIZE: ESTIMATATA ING COHEN’S d AND COMPUTING r2

We will estimate Cohen’s d for the same data used for the hypothesis test in Demonstration d for the same data used for the hypothesis test in Demonstration d
9.1. The mean optimism score for the sample from this year’s class was 5 points lower than the 
mean from last year (M 5 10 versus m 5 15). In Demonstration 9.1 we computed a sample 
variance of s2 5 11.75, so the standard deviation is Ï11.75Ï 5 3.43. With these values,

estimated d 5
mean difffff efef rence

standard deviation
5

5

3.43
5 1.46

To calculate the percentage of variance explained by the treatment effect, r2r2r , we need the 
value of t and the t and the t df value from the hypothesis test. In Demonstration 9.1 we obtained df value from the hypothesis test. In Demonstration 9.1 we obtained df t 5
24.39 with df 5 8. Using these values in Equation 9.5, we obtain

r2r2r 5
t2t2t

t2t2t 1 dfdfd
5

s24.39d2

s24.39d2 1 8
5

19.27

27.27
5 0.71

PRO B LE M S

5. The following sample was obtained from a population 
with unknown parameters. Scores: 13, 7, 6, 12, 0, 4
a. Compute the sample mean and standard deviation. 

(Note that these are descriptive values that sum-
marize the sample data.)

b. Compute the estimated standard error for M. (Note 
that this is an inferential value that describes how 
accurately the sample mean represents the un-
known population mean.)

6. Explain why t distributions tend to be flatter and more t distributions tend to be flatter and more t
spread out than the normal distribution.

7. Find the t values that form the boundaries of the criti-t values that form the boundaries of the criti-t
cal region for a two-tailed test with a 5 .05 for each 
of the following sample sizes:
a. n 5 4
b. n 5 15
c. n 5 24

8. Find the t value that forms the boundary of the critical t value that forms the boundary of the critical t
region in the right-hand tail for a one-tailed test with 
a 5 .01 for each of the following sample sizes.
a. n 5 10
b. n 5 20
c. n 5 30

1. Under what circumstances is a t statistic used instead 
of a z-score for a hypothesis test?

2. A sample of n 5 16 scores has a mean of M 5 56 and 
a standard deviation of s 5 20. 

 a. Explain what is measured by the sample standard 
deviation.

b. Compute the estimated standard error for the 
sample mean and explain what is measured by the 
standard error.

3. Find the estimated standard error for the sample mean 
for each of the following samples.
a. n 5 9 with SS 5 1152
b. n 5 16 with SS 5 540
c. n 5 25 with SS 5 600

4. The following sample of n 5 4 scores was obtained 
from a population with unknown parameters. Scores: 
2, 2, 6, 2
a. Compute the sample mean and standard deviation. 

(Note that these are descriptive values that sum-
marize the sample data.)

b. Compute the estimated standard error for M. (Note 
that this is an inferential value that describes how 
accurately the sample mean represents the un-
known population mean.)
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9. A random sample of n 5 12 individuals is selected 
from a population with m 5 70, and a treatment is 
administered to each individual in the sample. After 
treatment, the sample mean is found to be M 5 74.5 
with SS 5 297.
a. How much difference is there between the mean 

for the treated sample and the mean for the original 
population? (Note: In a hypothesis test, this value 
forms the numerator of the t statistic.)t statistic.)t

b. If there is no treatment effect, how much differ-
ence is expected just by chance between the sample 
mean and its population mean? That is, find the 
standard error for M. (Note: In a hypothesis test, 
this value is the denominator of the t statistic.)t statistic.)t

c. Based on the sample data, does the treatment have a 
significant effect? Use a two-tailed test with a 5 .05.

10. A random sample of n 5 4 individuals is selected 
from a population with m 5 35, and a treatment is 
administered to each individual in the sample. After 
treatment, the sample mean is found to be M 5 40.1 
with SS 5 48.
a. How much difference is there between the mean 

for the treated sample and the mean for the original 
population? (Note: In a hypothesis test, this value 
forms the numerator of the t statistic.)t statistic.)t

b. If there is no treatment effect, how much differ-
ence is expected between the sample mean and its 
population mean? That is, find the standard error 
for M. (Note: In a hypothesis test, this value is the 
denominator of the t statistic.)t statistic.)t

c. Based on the sample data, does the treatment have a 
significant effect? Use a two-tailed test with a 5 .05.

11. Infants, even newborns, prefer to look at attractive 
faces compared to less attractive faces (Slater, et al., 
1998). In the study, infants from 1 to 6 days old were 
shown two photographs of women’s faces. Previ-
ously, a group of adults had rated one of the faces as 
significantly more attractive than the other. The babies 
were positioned in front of a screen on which the pho-
tographs were presented. The pair of faces remained 
on the screen until the baby accumulated a total of 20 
seconds of looking at one or the other. The number 
of seconds looking at the attractive face was recorded 
for each infant. Suppose that the study used a sample 
of n 5 9 infants and the data produced an average of 
M 5 13 seconds for the attractive face with SS 5 72. 
If there were no preference, the 20 seconds should be 
divided equally between the two photographs. Note 
that all the available information comes from the 
sample. Specifically, we do not know the population 
mean or the population standard deviation. State the 
null hypothesis and use a two-tailed test with a 5 .05 
to evaluate the hypothesis.

12. The spotlight effect refers to overestimating the extent 
to which others notice your appearance or behavior, 
especially when you commit a social faux pas.  
Effectively, you feel as if you are suddenly standing in 
a spotlight with everyone looking. In one demonstra-
tion of this phenomenon, Gilovich, Medvec, and Sav-
itsky (2000) asked college students to put on a Barry 
Manilow T-shirt that fellow students had previously 
judged to be embarrassing. The participants were then 
led into a room in which other students were already 
participating in an experiment. After a few minutes, 
the participant was led back out of the room and was 
allowed to remove the shirt. Later, each participant 
was asked to estimate how many people in the room 
had noticed the shirt. The individuals who were in the 
room were also asked whether they noticed the shirt. 
In the study, the participants significantly overestimat-
ed the actual number of people who had noticed.
a. In a similar study using a sample of n 5 9 partici-

pants, the individuals who wore the shirt produced 
an average estimate of M 5 6.4 with SS 5 162. 
The average number who said they noticed was 
3.1. Is the estimate from the participants signifi-
cantly different from the actual number? Test the 
null hypothesis that the true mean is m 5 3.1 using 
a two-tailed test with a 5 .05.

b. Is the estimate from the participants significantly 
higher than the actual number (m 5 3.1)? Use a 
one-tailed test with a 5 .05.

13. To evaluate the effect of a treatment, a sample is ob-
tained from a population with a mean of m 5 40, and 
the treatment is administered to the individuals in the 
sample. After treatment, the sample mean is found to 
be M 5 44.5 with a variance of s2 5 36.
a. If the sample consists of n 5 4 individuals, are the 

data sufficient to conclude that the treatment has a 
significant effect using a two-tailed test with a 5 .05?

b. If the sample consists of n 5 16 individuals, are the 
data sufficient to conclude that the treatment has a 
significant effect using a two-tailed test with a 5 .05?

c. Comparing your answers for parts a and b, how 
does the size of the sample influence the outcome 
of a hypothesis test?

14. To evaluate the effect of a treatment, a sample of 
n 5 6 is obtained from a population with a mean of 
m 5 80, and the treatment is administered to the in-
dividuals in the sample. After treatment, the sample 
mean is found to be M 5 72.
a. If the sample variance is s2 5 54, are the data suffi-

cient to conclude that the treatment has a signifi-
cant effect using a two-tailed test with a 5 .05?

b. If the sample variance is s2 5 150, are the data 
sufficient to conclude that the treatment has a sig-
nificant effect using a two-tailed test with a 5 .05?
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c. Comparing your answers for parts a and b, how 
does the variability of the scores in the sample 
influence the outcome of a hypothesis test?

15. Weinstein, McDermott, and Roediger (2010) report 
that students who were given questions to be answered 
while studying new material had better scores when 
tested on the material compared to students who were 
simply given an opportunity to reread the material. 
In a similar study, a group of students from a large 
psychology class were given questions to be answered 
while studying for the final exam. The overall average 
for the exam was m 5 73.4 but the n 5 16 students 
who answered questions had a mean of M 5 78.3 with 
a standard deviation of s 5 8.4. Use a two-tailed test 
with a 5 .01 to determine whether answering ques-
tions while studying produced significantly higher 
exam scores.

16. To evaluate the effect of a treatment, a sample is ob-
tained from a population with a mean of m 5 20, and 
the treatment is administered to the individuals in the 
sample. After treatment, the sample mean is found to 
be M 5 21.3 with a variance of s2 5 9.
a. Assuming that the sample consists of n 5 16 

individuals, use a two-tailed hypothesis test with 
a 5 .05 to determine whether the treatment effect 
is significant and compute both Cohen’s d and d and d r2r2r
to measure effect size. Are the data sufficient to 
conclude that the treatment has a significant effect 
using a two-tailed test with a 5 .05?

b. Assuming that the sample consists of n 5 36 indi-
viduals, repeat the test and compute both measures 
of effect size.

c. Comparing your answers for parts a and b, how 
does the size of the sample influence the outcome 
of a hypothesis test and measures of effect size?

17. To evaluate the effect of a treatment, a sample of 
n 5 8 is obtained from a population with a mean of 
m 5 50, and the treatment is administered to the in-
dividuals in the sample. After treatment, the sample 
mean is found to be M 5 55.
a. Assuming that the sample variance is s2 5 32, use a 

two-tailed hypothesis test with a 5 .05 to determine 
whether the treatment effect is significant and com-
pute both Cohen’s d and d and d r2r2r  to measure effect size. 

b. Assuming that the sample variance is s2 5 72, 
repeat the test and compute both measures of effect 
size.

c. Comparing your answers for parts a and b, how 
does the variability of the scores in the sample 
influence the outcome of a hypothesis test and 
measures of effect size?

18. Standardized measures seem to indicate that the 
average level of anxiety has increased gradually over 

the past 50 years (Twenge, 2000). In the 1950s, the 
average score on the Child Manifest Anxiety Scale 
was m 5 15.1. A sample of n 5 16 of today’s children 
produces a mean score of M 5 23.3 with SS 5 240.
a. Based on the sample, has there been a significant 

change in the average level of anxiety since the 
1950s? Use a two-tailed test with a 5 .01.

b. Make a 90% confidence interval estimate of to-
day’s population mean level of anxiety.

c. Write a sentence that demonstrates how the 
outcome of the hypothesis test and the confidence 
interval would appear in a research report.

19. Ackerman and Goldsmith (2011) found that students 
who studied text from printed hardcopy had better test 
scores than students who studied from text presented 
on a screen. In a related study, a professor noticed 
that several students in a large class had purchased the 
e-book version of the course textbook. For the final 
exam, the overall average for the entire class was m 5
81.7 but the n 5 9 students who used e-books had a 
mean of M 5 77.2 with a standard deviation of s 5 5.7.
a. Is the sample sufficient to conclude that scores for 

students using e-books were significantly different 
from scores for the regular class? Use a two-tailed 
test with a 5 .05.

b. Construct the 90% confidence interval to estimate 
the mean exam score if the entire population used 
e-books.

c. Write a sentence demonstrating how the results 
from the hypothesis test and the confidence interval 
would appear in a research report.

20. Oishi and Shigehiro (2010) report that people who 
move from home to home frequently as children tend 
to have lower than average levels of well-being as 
adults. To further examine this relationship, a psychol-
ogist obtains a sample of n 5 12 young adults who 
each experienced 5 or more different homes before 
they were 16 years old. These participants were given 
a standardized well-being questionnaire for which the 
general population has an average score of m 5 40. 
The well-being scores for this sample are as follows: 
38, 37, 41, 35, 42, 40, 33, 33, 36, 38, 32, 39.
a. On the basis of this sample, is well-being for 

frequent movers significantly different from well-
being in the general population? Use a two-tailed 
test with a 5 .05.

b. Compute the estimated Cohen’s d to measure the d to measure the d
size of the difference.

c. Write a sentence showing how the outcome of 
the hypothesis test and the measure of effect size 
would appear in a research report.

21. McGee and Shevlin (2009) demonstrated that an 
individual’s sense of humor had a significant effect 
on how the individual was perceived by others. In one 
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part of the study, female college students were given 
brief descriptions of a potential romantic partner. 
The fictitious male was described positively and, for 
one group of participants, the description also said 
that he had a great sense of humor. Another group of 
female students read the same description except it 
now said that he has no sense of humor. After reading 
the description, each participant was asked to rate the 
attractiveness of the man on a seven-point scale from 
1 (very unattractive) to 7 (very attractive) with a score 
of 4 indicating a neutral rating.
a. A sample of n 5 16 females who read the “great 

sense of humor” description gave the potential part-
ner an average attractiveness score of M 5 4.53 with 
a standard deviation of s 5 1.04. For this sample of 
n 5 16 participants, is the average rating signifi-
cantly higher than neutral (m 5 4)? Use a one-tailed 
test with a 5 .05.

b. A sample of n 5 16 females who read the description 
saying “no sense of humor” gave the potential part-
ner an average attractiveness score of M 5 3.30 with 
a standard deviation of s 5 1.18. For this sample of 
n 5 16 participants, is the average rating significantly 
lower than neutral (m 5 4)? Use a one-tailed test with 
a 5 .05.

22. Belsky, Weinraub, Owen, and Kelly (2001) reported 
on the effects of preschool child care on the devel-
opment of young children. One result suggests that 
children who spend more time away from their moth-
ers are more likely to show behavioral problems in 
kindergarten. Using a standardized scale, the aver-
age rating of behavioral problems for kindergarten 
children is m 5 35. A sample of n 5 16 kindergarten 
children who had spent at least 20 hours per week in 
child care during the previous year produced a mean 
score of M 5 42.7 with a standard deviation of s 5 6.
a. Are the data sufficient to conclude that children 

with a history of child care show significantly more 
behavioral problems than the average kindergarten 
child? Use a one-tailed test with a 5 .01.

b. Compute the 90% confidence interval for the mean 
rating of behavioral problems for the population of 

kindergarten children who have a history of child 
care.

c. Write a sentence showing how the outcome of the 
hypothesis test and the confidence interval would 
appear in a research report.

23. An example of the vertical-horizontal illusion is 
shown in the figure. Although the two lines are ex-
actly the same length, the vertical line appears to be 
much longer. To examine the strength of this illusion, 
a researcher prepared an example in which both lines 
were exactly 10 inches long. The example was shown 
to individual participants who were told that the hori-
zontal line was 10 inches long and then were asked to 
estimate the length of the vertical line. For a sample 
of n 5 25 participants, the average estimate was M 5
12.2 inches with a standard deviation of s 5 1.00.
a. Use a one-tailed hypothesis test with a 5 .01 to 

demonstrate that the individuals in the sample sig-
nificantly overestimate the true length of the line. 
(Note: Accurate estimation would produce a mean 
of m 5 10 inches.)

b. Calculate the estimated d and d and d r2r2r , the percentage of 
variance accounted for, to measure the size of this 
effect.

c. Construct a 95% confidence interval for the popu-
lation mean estimated length of the vertical line.

An example of the vertical-
horizontal illusion
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10
CHAP TER

The t Test for Two 
Independent Samples

Tools You Will Need
The following items are con-
sidered essential background 
material for this chapter. If you 
doubt your knowledge of any of 
these items, you should review 
the appropriate chapter or section 
before proceeding.

 ■ Sample variance (Chapter 4)
 ■ Standard error formulas 

(Chapter 7)
 ■ The t statistic (Chapter 9)t statistic (Chapter 9)t

 ■ Distribution of t valuest valuest
 ■ df for the df for the df t statistict statistict
 ■ Estimated standard error

10-1 Introduction to the Independent-Measures Design

10-2  The Hypotheses and the Independent-Measures t Statistic

10-3 Hypothesis Tests with the Independent-Measures t Statistic

10-4  Effect Size and Confidence Intervals for the Independent-
Measures t 

10-5  The Role of Sample Variance and Sample Size in the 
Independent-Measures t Test

Summary

Focus on Problem Solving

Demonstrations 10.1 and 10.2

Problems
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10-1 Introduction to the Independent-Measures Design

LE A R N I N G O B J E C T IV E   

1. De�ne independent-measures designs and repeated-measures designs and identify 
examples of each.

Until this point, all the inferential statistics we have considered involve using one sample 
as the basis for drawing conclusions about one population. Although these single-sample
techniques are used occasionally in real research, most research studies require the com-
parison of two (or more) sets of sample data. For example, a social psychologist may 
want to compare men and women in terms of their political attitudes, an educational 
psychologist may want to compare two methods for teaching mathematics, or a clinical 
psychologist may want to evaluate a therapy technique by comparing depression scores 
for patients before therapy with their scores after therapy. When the scores are numerical 
values, the research question concerns a mean difference between two sets of data. The 
research designs that are used to obtain the two sets of sample data can be classified in 
two general categories:

1. The two sets of data could come from two completely separate groups of partici-
pants. For example, the study could involve a sample of men compared with a 
sample of women. Or the study could compare grades for one group of freshmen 
who are given laptop computers with the grades for a second group who are not 
given computers.

2. The two sets of data could come from the same group of participants. For example, 
the researcher could obtain one set of scores by measuring depression for a sample 
of patients before they begin therapy and then obtain a second set of data by mea-
suring the same individuals after six weeks of therapy.

The first research strategy, using completely separate groups, is called an 
independent-measures research design or a between-subjects design. These terms 
emphasize the fact that the design involves separate and independent samples and 
makes a comparison between two groups of individuals. The structure of an indepen-
dent-measures research design is shown in Figure 10.1. Notice that the research study 
uses two separate samples to represent the two different populations (or two different 
treatments) being compared.

A research design that uses a separate group of participants for each treatment con-
dition (or for each population) is called an independent-measures research design
or a between-subjects design.

In this chapter, we examine the statistical techniques used to evaluate the data from an 
independent-measures design. More precisely, we introduce the hypothesis test that allows 
researchers to use the data from two separate samples to evaluate the mean difference 
between two populations or between two treatment conditions.

The second research strategy, in which the two sets of data are obtained from the same 
group of participants, is called a repeated-measures research design or a within-subjects
design. The statistics for evaluating the results from a repeated-measures design are intro-
duced in Chapter 11. Also, at the end of Chapter 11, we discuss some of the advantages and 
disadvantages of independent-measures and repeated-measures designs.
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Unknown
m 5  ?

Sample A

Unknown
m 5  ?

Sample B

Population A
Taught Taught T by method A

Population B
Taught Taught T by method B

F I G U R E  1 0.1
The structure of an independent-measures 
research study. Two separate samples are used 
to obtain information about two unknown 
populations or treatment conditions.

LO1 1. Which of the following is most likely to be an independent-measures design?

a. A study comparing self-esteem for children from single-parent homes and 
children from two-parent homes

b. A study comparing classroom learning with and without background music

c. A study comparing blood pressure before and after a workout

d. A study evaluating jet lag by comparing cognitive performance at the begin-
ning and at the end of a cross-country �ight

LO1 2. Which of the following is most likely to be a repeated-measures design?

a. A study comparing motor-skills performance for left-handed adolescents 
and right-handed adolescents

b. A study comparing cholesterol levels before and after a diet featuring oatmeal

c. A study comparing self-esteem for 6-year-old boys and 6-year-old girls

d. A study comparing Facebook use for adolescents and over-30 adults

LO1 3. An independent-measures study comparing two treatment conditions uses 
_____________ groups of participants and obtains _____________ score(s) for 
each participant.

a. 1, 1

b. 1, 2

c. 2, 1

d. 2, 2

1. a 2. b 3. c

LE A R N I N G C H E C K

A N S W E R S
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10-2 The Hypotheses and the Independent-Measures t Statistic

LE A R N I N G O B J E C T IV E S   

 2. Describe the hypotheses for an independent-measures t test.t test.t

 3. Describe the structure of the independent-measures t statistic and explain how it is t statistic and explain how it is t
related to the single-sample t.

 4. Calculate the pooled variance for two samples and the estimated standard error for 
the sample mean difference, and explain what each one measures.

 5. Calculate the complete independent-measures t statistic and its degrees of freedom.t statistic and its degrees of freedom.t

Because an independent-measures study involves two separate samples, we need some special 
notation to help specify which data go with which sample. This notation involves the use of 
subscripts, which are small numbers written beside a sample statistic. For example, the num-
ber of scores in the first sample is identified by n1; for the second sample, the number of scores 
is n2. The sample means are identified by M1 and M2M2M . The sums of squares are SS1 and SS2SS2SS .

■ The Hypotheses for an Independent-Measures Test
The goal of an independent-measures research study is to evaluate the mean difference 
between two populations (or between two treatment conditions). Using subscripts to dif-between two populations (or between two treatment conditions). Using subscripts to dif-between two populations (or between two treatment conditions). Using subscripts to dif
ferentiate the two populations, the mean for the first population is m1, and the second popu-
lation mean is m2. The difference between means is simply m1 2 m2. As always, the null 
hypothesis states that there is no change, no effect, or, in this case, no difference. Thus, in 
symbols, the null hypothesis for the independent-measures test is

H0H0H : m1 2 m2 5 0 (No difference between the population means)

You should notice that the null hypothesis could also be stated as m1 5 m2. However, the 
first version of H0H0H  produces a specific numerical value (zero) that is used in the calculation 
of the t statistic. Therefore, we prefer to phrase the null hypothesis in terms of the differt statistic. Therefore, we prefer to phrase the null hypothesis in terms of the differt -
ence between the two population means.

The alternative hypothesis states that there is a mean difference between the two 
populations,

H1: m1 2 m2 ? 0 (There is a mean difference.)

Equivalently, the alternative hypothesis can simply state that the two population means 
are not equal: m1 ? m2.

■ The Formulas for an Independent-Measures Hypothesis Test
The independent-measures hypothesis test uses another version of the t statistic. The fort statistic. The fort -
mula for this new t statistic has the same general structure as the t statistic has the same general structure as the t t statistic formula that was t statistic formula that was t
introduced in Chapter 9. To help distinguish between the two t formulas, we refer to the t formulas, we refer to the t
original formula (Chapter 9) as the single-sample t statistict statistict  and we refer to the new formula 
as the independent-measures t statistict statistict . Because the new independent-measures t includes t includes t
data from two separate samples and hypotheses about two populations, the formulas may 
appear to be a bit overpowering. However, the new formulas are easier to understand if you 
view them in relation to the single-sample t formulas from Chapter 9. In particular, there t formulas from Chapter 9. In particular, there t
are two points to remember:

1. The basic structure of the t statistic is the same for both the independent-measures t statistic is the same for both the independent-measures t
and the single-sample hypothesis tests. In both cases,
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t 5
sample statistic 2 hypothesized population parameter

estimated standard error

2. The independent-measures t is basically a two-samplet is basically a two-samplet  t that doubles all the ele-
ments of the single-sample t formulas.

To demonstrate the second point, we examine the two t formulas piece by piece.t formulas piece by piece.t

The Overall t Formulat Formulat The single-sample t uses one sample mean to test a hypothesis t uses one sample mean to test a hypothesis t
about one population mean. The sample mean and the population mean appear in the 
numerator of the t formula, which measures how much difference there is between the t formula, which measures how much difference there is between the t
sample data and the population hypothesis.

t 5
sample mean 2 population mean

estimated standard errrror
5

M 2 m

s
M

The independent-measures t uses the difference between t uses the difference between t two sample means to evaluate a 
hypothesis about the difference between two population means. Thus, the independent-
measures t formula ist formula ist

t 5
sample mean difffff efef rence 2 population mean difffff efef rence

estimated standard error
5

sM
1

2 M
2

M
2

M d 2 sm
1

2 m
2
d

ssM
1
2M

2
M

2
M d

In this formula, the value of M1 2 M2M2M  is obtained from the sample data and the value for 
m1 2 m2 comes from the null hypothesis. In a hypothesis test, the null hypothesis sets the 
population mean difference equal to zero, so the independent measures t formula can be t formula can be t
simplified further,

t 5
sample mean difffff efef rence

estimated standard error

In this form, the t statistic is a simple ratio comparing the actual mean difference (numerat statistic is a simple ratio comparing the actual mean difference (numerat -
tor) with the difference that is expected by chance (denominator).

The Estimated Standard Error In each of the t-score formulas, the standard error in 
the denominator measures how much error is expected between the sample statistic and 
the population parameter. In the single-sample t formula, the standard error measures the t formula, the standard error measures the t
amount of error expected for a sample mean and is represented by the symbol sM. For the 
independent-measures t formula, the standard error measures the amount of error that is t formula, the standard error measures the amount of error that is t
expected between a sample mean difference (M1 2 M2M2M ) and the population mean differ-
ence (m1 2 m2). The standard error for the sample mean difference is represented by the 
symbol ssM

1
2M

2
M

2
M d.

Caution: Do not let the notation for standard error confuse you. In general, the symbol 
2

: Do not let the notation for standard error confuse you. In general, the symbol 
2

for standard error takes the form sstatistic. When the statistic is a sample mean, M, the symbol 
for standard error is sM. For the independent-measures test, the statistic is a sample mean 
difference (M1 2 M2M2M ), and the symbol for standard error is ssM

1
2M

2
M

2
M d. In each case, the stan-

dard error tells how much discrepancy is reasonable to expect between the sample statistic 
1

dard error tells how much discrepancy is reasonable to expect between the sample statistic 
1 2

dard error tells how much discrepancy is reasonable to expect between the sample statistic 
2

and the corresponding population parameter.

Interpreting the Estimated Standard Error The estimated standard error of M1 2 M2M2M
that appears in the bottom of the independent-measures t statistic can be interpreted in two ways. t statistic can be interpreted in two ways. t
First, the standard error is defined as a measure of the standard or average distance between a 
sample statistic (Msample statistic (Msample statistic ( 1 2 M2M2M ) and the corresponding population parameter (m1 2 m2). As always, 
samples are not expected to be perfectly accurate and the standard error measures how much 
difference is reasonable to expect between a sample statistic and the population parameter.
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When the null hypothesis is true, however, the population mean difference is zero. In 
this case, the standard error is measuring how far, on average, the sample mean difference 
is from zero. However, measuring how far it is from zero is the same as measuring how 
big it is. Thus, there are two ways to interpret the estimated standard error of (M1 2 M2M2M ):

1. It measures the standard distance between (M1 2 M2M2M ) and (m1 2 m2).

2. When the null hypothesis is true, it measures the standard, or average size of  
(M1 2 M2M2M ). That is, it measures how much difference is reasonable to expect 
between the two sample means.

■ Calculating the Estimated Standard Error
To develop the formula for ssM

1
2M

2
M

2
M d we consider the following three points:

1. Each of the two sample means represents its own population mean, but in each 
case there is some error.

M1 approximates m1 with some error.

M2M2M  approximates m2 with some error.

Thus, there are two sources of error.

2. The amount of error associated with each sample mean is measured by the esti-
mated standard error of M. Using Equation 9.1 (page 239), the estimated standard 
error for each sample mean is computed as follows:

For M
1
, s

M
5Îs2

1În
1

Î For M
2

M
2

M , s
M

5Îs2
2În
2

Î
3. For the independent-measures t statistic, we want to know the total amount of error t statistic, we want to know the total amount of error t

involved in using two sample means to approximate two population means. To do 
this, we will �nd the error from each sample separately and then add the two errors 
together. The resulting formula for standard error is

ssM
1
2M

2
M

2
M d 5Îs2

1În
1

1
s2

2

n
2

Î (10.1)

Because the independent-measures t statistic uses two sample means, the formula for the t statistic uses two sample means, the formula for the t
estimated standard error simply combines the error for the first sample mean and the error 
for the second sample mean (Box 10.1).

It may seem odd that the independent-measures t
statistic adds together the two sample errors when 
it subtracts to find the difference between the two 
sample means. The logic behind this apparently un-
usual procedure is demonstrated here.

We begin with two populations, I and II (Figure 10.2). 
The scores in Population I range from a high of 70 to a 
low of 50. The scores in Population II range from 30 to 

20. We will use the range as a measure of how spread out 
(variable) each population is:

For Population I, the scores cover a range of 
20 points.

For Population II, the scores cover a range of 
10 points.

BOX 10.1 The Variability of Difference Scores

(continues)

20. We will use the range as a measure of how spread out 
(variable) each population is:
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If we randomly select one score from Population 
I and one score from Population II and compute the 
difference between these two scores (X1 2 X2X2X ), what 
range of values is possible for these differences? To 
answer this question, we need to find the biggest pos-
sible difference and the smallest possible difference. 
Look at Figure 10.2; the biggest difference occurs 
when X1 5 70 and X2X2X 5 20. This is a difference of 
X1 2 X2X2X 5 50 points. The smallest difference occurs 
when X1 5 50 and X2X2X 5 30. This is a difference of 

X1 2 X2X2X 5 20 points. Notice that the differences go 
from a high of 50 to a low of 20. This is a range of 
30 points:

Range for Population I (X1 scores) 5 20 points

Range for Population II (X2X2X  scores) 5 10 points

Range for the differences (X1 2 X2X2X ) 5 30 points

Note that the variability for the difference in scores 
is found by adding together the variability for each of 
the two populations.

BOX 10.1 The Variability of Difference Scores (continued)

20

Population II Population I

10 30 40 50 60 70 80

Smallest diffeSmallest diffeSmallest dif rence
20 points

Biggest diffeBiggest diffeBiggest dif rence
50 points

F I G U R E  1 0. 2
Two population distributions. The scores in 
population I range from 50 to 70 (a 20-point 
spread) and the scores in population II 
range from 20 to 30 (a 10-point spread). 
If you select one score from each of these 
two populations, the closest two values are 
X1 5 50 and X2X2X 5 30. The two values that 
are farthest apart are X1 5 70 and X2X2X 5 20. 

■ Pooled Variance
Although Equation 10.1 accurately presents the concept of standard error for the independent-
measures t statistic, this formula is limited to situations in which the two samples are exactly t statistic, this formula is limited to situations in which the two samples are exactly t
the same size (that is, n1 5 n2). For situations in which the two sample sizes are different, 
the formula is biased and, therefore, inappropriate. The bias comes from the fact that Equabiased and, therefore, inappropriate. The bias comes from the fact that Equabiased -
tion 10.1 treats the two sample variances equally. However, when the sample sizes are dif-tion 10.1 treats the two sample variances equally. However, when the sample sizes are dif-tion 10.1 treats the two sample variances equally. However, when the sample sizes are dif
ferent, the two sample variances are not equally good and should not be treated equally. In 
Chapter 7, we introduced the law of large numbers, which states that statistics obtained from 
large samples tend to be better (more accurate) estimates of population parameters than sta-
tistics obtained from small samples. This same fact holds for sample variances: The variance 
obtained from a large sample is a more accurate estimate of s2 than the variance obtained 
from a small sample.

One method for correcting the bias in the standard error is to combine the two sample 
variances into a single value called the pooled variance. The pooled variance is obtained by 
averaging or “pooling” the two sample variances using a procedure that allows the bigger 
sample to carry more weight in determining the final value.

SECTION 10-2 | The Hypotheses and the Independent-Measures t Statistict Statistict 273

X
from a high of 50 to a low of 20. This is a range of 
30 points:

is found by 
the two populations.
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You should recall that when there is only one sample, the sample variance is computed 
as

s2 5
SS

dfdfd

For the independent-measures t statistic, there are two t statistic, there are two t SS values and two SS values and two SS df values (one df values (one df
from each sample). The values from the two samples are combined to compute what is 
called the pooled variance. The pooled variance is identified by the symbol s2

p
 and is com-

puted as

pooled variance 5 s2
p

5
SS

1
1 SS

2

dfdfd
1

f
1

f 1 dfdfd
2

f
2

f
(10.2)

With one sample, the variance is computed as SS divided by SS divided by SS df. With two samples, the df. With two samples, the df
pooled variance is computed by combining the two SS values and then dividing by the 
combination of the two df values.df values.df

As we mentioned earlier, the pooled variance is actually an average of the two sample 
variances, but the average is computed so that the larger sample carries more weight in 
determining the final value. The following examples demonstrate this point.

Equal Samples Sizes We begin by computing the pooled variance for two samples 
that are exactly the same size. The first sample has n 5 6 scores with SS 5 50, and the 
second sample has n 5 6 scores with SS 5 30. Individually, the two sample variances are

Variance for sample 1: s2 5
SS

dfdfd
5

50

5
5 10

Variance fofof r sample 2: s2 5
SS

dfdfd
5

30

5
5 6

The pooled variance for these two samples is

s2
p

5
SS

1
1 SS

2

dfdfd
1

f
1

f 1 dfdfd
2

f
2

f
5

50 1 30

5 1 5
5

80

10
5 8.00

Note that the pooled variance is exactly halfway between the two sample variances. 
Because the two samples are exactly the same size, the pooled variance is simply the aver-
age of the two sample variances.

Unequal Samples Sizes Now consider what happens when the samples are not the 
same size. This time the first sample has n 5 3 scores with SS 5 20, and the second sample 
has n 5 9 scores with SS 5 48. Individually, the two sample variances are

Variance fofof r sample 1: s2 5
SS

dfdfd
5

20

2
5 10

Variance fofof r sample 2: s2 5
SS

dfdfd
5

48

8
5 6

The pooled variance for these two samples is

s2
p

5
SS

1
1 SS

2

dfdfd
1

f
1

f 1 dfdfd
2

f
2

f
5

20 1 48

2 1 8
5

68

10
5 6.80

This time the pooled variance is not located halfway between the two sample variances. 
Instead, the pooled value is closer to the variance for the larger sample (n 5 9 and s2 5 6) 
than to the variance for the smaller sample (n 5 3 and s2 5 10). The larger sample carries 
more weight when the pooled variance is computed.
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When computing the pooled variance, the weight for each of the individual sample vari-
ances is determined by its degrees of freedom. Because the larger sample has a larger df
value, it carries more weight when averaging the two variances. This produces an alterna-
tive formula for computing pooled variance.

pooled variance 5 s2
p

5
dfdfd

1
f
1

f s2
1

1 dfdfd
2

f
2

f s2
2

dfdfd
1

f
1

f 1 dfdfd
2

f
2

f
(10.3)

For example, if the first sample has df1df1df 5 2 and the second sample has df2df2df 5 8, then the 
formula instructs you to take 2 of the first sample variance and 8 of the second sample vari-
ance for a total of 10 variances. You then divide by 10 to obtain the average. The alternative 
formula is especially useful if the sample data are summarized as means and variances. 
Finally, you should note that because the pooled variance is an average of the two sample 
variances, the value obtained for the pooled variance is always located between the two 
sample variances.

■ Estimated Standard Error
Using the pooled variance in place of the individual sample variances, we can now obtain 
an unbiased measure of the standard error for a sample mean difference. The resulting for-
mula for the independent-measures estimated standard error is

estimated standard errr or of M
1

2 M
2

M
2

M 5 ssM
1
2M

2
M

2
M d 5Îs2

pÎn
1

1
s2

p

n
2

Î (10.4)

Conceptually, this standard error measures how accurately the difference between two 
sample means represents the difference between the two population means. In a hypothesis 
test, H0H0H  specifies that m1 2 m2 5 0, and the standard error also measures how much dif- 0, and the standard error also measures how much dif- 0, and the standard error also measures how much dif
ference is expected on average between the two sample means. In either case, the formula 
combines the error for the first sample mean with the error for the second sample mean. 
Also note that the pooled variance from the two samples is used to compute the standard 
error for the two samples.

The following example is an opportunity to test your understanding of the pooled vari-
ance and the estimated standard error.

One sample from an independent-measures study has n 5 4 with SS 5 72. The other sample 
has n 5 8 and SS 5 168. For these data, compute the pooled variance and the estimated stan-
dard error for the mean difference. You should find that the pooled variance is 240y10 5 24 
and the estimated standard error is 3. ■

■ The Final Formula and Degrees of Freedom
The complete formula for the independent-measures t statistic is as follows:t statistic is as follows:t

t 5
sM

1
2 M

2
M

2
M d 2 sm

1
2 m

2
d

ssM
1
2M

2
M

2
M d

5
sample mean difference 2 population mean difference

estimated standard error
(10.5)

In the formula, the estimated standard error in the denominator is calculated using Equa-
tion 10.4, and requires calculation of the pooled variance using either Equation 10.2 
or 10.3.

E X A M P L E  1 0 . 1
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The degrees of freedom for the independent-measures t statistic are determined by the t statistic are determined by the t
df values for the two separate samples:df values for the two separate samples:df

df for the df for the df t statistic t statistic t 5 df for the first sample df for the first sample df 1 df for the second sampledf for the second sampledf

5 df1df1df 1 df2df2df
5 (n1 2 1) 1 (n2 2 1) (10.6)

Equivalently, the df value for the independent-measures df value for the independent-measures df t statistic can be expressed ast statistic can be expressed ast

df 5 n1 1 n2 2 2   (10.7)

Note that the df formula subtracts 2 points from the total number of scores; 1 point for the df formula subtracts 2 points from the total number of scores; 1 point for the df
first sample and 1 for the second.

The independent-measures t statistic is used for hypothesis testing. Specifically, we use t statistic is used for hypothesis testing. Specifically, we use t
the difference between two sample means (M1 2 M2M2M ) as the basis for testing hypotheses 
about the difference between two population means (m1 2 m2). In this context, the overall 
structure of the t statistic can be reduced to the following:t statistic can be reduced to the following:t

t 5
data 2 hypothesis

error
This same structure is used for both the single-sample t from Chapter 9 and the new indet from Chapter 9 and the new indet -
pendent-measures t that was introduced in the preceding pages. Table 10.1 identifies each t that was introduced in the preceding pages. Table 10.1 identifies each t
component of these two t statistics and should help reinforce the point that we made earlier t statistics and should help reinforce the point that we made earlier t
in the chapter; that is, the independent-measures t statistic simply doubles each aspect of t statistic simply doubles each aspect of t
the single-sample t statistic.t statistic.t

An alternative formula 
for the independent-
measures t statistic that 
does not require using 
pooled variance is pre-
sented in Box 10.2,  
page 283.

Sample  
Data

Hypothesized  
Population  
Parameter

Estimated  
Standard  

Error
Sample  

Variance

Single-sample tt
statistic

M m Îs2

nÎ s2 5
SS

df

Independent- 
measures 

(M1 2 M2M2M ) (m1 2 m2) Îs2
p

n
1

1
s2

p

n
2

Î s2
p

5
SS

1
1 SS

2

df
1

df
1

df 1 df
2

df
2

df

TA B L E  1 0.1
The basic elements of a t
statistic for the single-
sample t and the  t and the  t
independent-measures t.

LO2 1. Which of the following is the correct null hypothesis for an independent-
measures t test?t test?t

a. There is no difference between the two sample means.There is no difference between the two sample means.There is no dif

b. There is no difference between the two population means. There is no difference between the two population means. There is no dif

c. The difference between the two sample means is identical to the difference The difference between the two sample means is identical to the difference The dif
between the two population means.  

d. None of the other three choices is correct. 

LO3 2. Which of the following does not accurately describe the relationship between 
the formulas for the single-sample t and the independent-measures t and the independent-measures t t?

a. The single-sample t has one sample mean and the independent-measures t 
has two.

b. The single-sample t has one population mean and the independent-measures
t has two.

c. The single-sample t uses one sample variance to compute the standard error 
and the independent-measures t uses two.

d. All of the above accurately describe the relationship.

LE A R N I N G C H E C K
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LO4 3. One sample has n 5 4 and a second sample has n 5 8. If the pooled variance 
for the two samples is 24, then what is the estimated standard error for the 
sample mean difference?

a. 9

b. 4

c. 3

d. 2

LO5 4. A researcher obtains M 5 34 with SS 5 190 for a sample of n 5 10 girls and 
M 5 29 with SS 5 170 for a sample of n 5 10 boys. If the two samples are 
used to evaluate the mean difference between the two populations, what value 
will be obtained for the t statistic? t statistic? t

a. 5
4 5 1.25

b. 5
2 5 2.50

c. 5

Ï2Ï
5 3.54

d. 5
1 5 5.00

1. b 2. d 3. c 4. bA N S W E R S

10-3 Hypothesis Tests with the Independent-Measures t Statistic

LE A R N I N G O B J E C T IV E S   

 6. Use the data from two samples to conduct an independent-measures t test evaluat-t test evaluat-t
ing the signi�cance of the difference between two population means.

 7. Conduct a directional (one-tailed) hypothesis test using the independent-measures 
t statistic.t statistic.t

 8. Describe the basic assumptions underlying the independent-measures t hypoth-t hypoth-t
esis test, especially the homogeneity of variance assumption, and explain how the 
homogeneity assumption can be tested.

The independent-measures t statistic uses the data from two separate samples to help t statistic uses the data from two separate samples to help t
decide whether there is a significant mean difference between two populations or between 
two treatment conditions. A complete example of a hypothesis test with two independent 
samples follows.

Research has shown that people are more likely to show dishonest and self-interested be-
haviors in darkness than in a well-lit environment (Zhong, Bohns, & Gino, 2010). In one 
experiment, participants were given a set of 20 puzzles and were paid $0.50 for each one 
solved in a 5-minute period. However, the participants reported their own performance and 
there was no obvious method for checking their honesty. Thus, the task provided a clear 
opportunity to cheat and receive undeserved money. One group of participants was tested 
in a room with dimmed lighting and a second group was tested in a well-lit room. The 
reported number of solved puzzles was recorded for each individual. The following data 
represent results similar to those obtained in the study.

E X A M P L E  1 0 . 2

SECTION 10-3 | Hypothesis Tests with the Independent-Measures t Statistict Statistict 277

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



278 CHAPTER 10 | The t Test for Two Independent Samplest Test for Two Independent Samplest

State the hypotheses and select the alpha level. The null hypothesis says that 
for the general population, the brightness of the lighting in the room has no effect on the 
number of solved problems reported by the participants.

H0H0H : m1 2 m2 5 0 (No difference.)

H1: m1 2 m2 ? 0 (There is a difference.)

We will set a 5 .05.
Directional hypotheses could be used and would specify whether the students who 

were tested in a dimly lit room should have higher or lower scores.

Locate the critical region. This is an independent-measures design. The t statistic for t statistic for t
these data has degrees of freedom determined by

df 5 df1df1df 1 df2df2df

5 (n1 2 1) 1 (n2 2 1)

5 7 1 7

5 14

With df 5 14 and a 5 .05, the t distribution has critical boundaries of t distribution has critical boundaries of t t 5 12.145 and 
t 5 22.145 (see Figure 10.3).

S T E P  1

S T E P  2

Number of Solved Puzzles

Well-Lit Room Dimly Lit Room

11 6 7 9
9 7 13 11
4 12 14 15
5 10 16 11

n 5 8 n 5 8

M 5 8 M 5 12

SS 5 60 SS 5 66

t 5 22.145 t 5 0 t 5 12.145

Reject H0H0H Reject H0H0H

t distributiont distributiont
df 5 14

F I G U R E  1 0. 3
The critical region for 
the independent-
measures hypothesis 
test in Example 10.2 
with df 5 14 and 
a 5 .05.
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Obtain the data and compute the test statistic. As with the single-sample t test in t test in t
Chapter 9, we recommend that the calculations be divided into three parts.

First, find the pooled variance for the two samples:

s2
p

5
SS

1
1 SS

2

df
1

df
1

df 1 df
2

df
2

df

5
60 1 66

7 1 7
5

126

14
5 9

Second, use the pooled variance to compute the estimated standard error:

ssM12M2M2M d 5Î s2
pspsÎ n1

1
s2

psps

n2
Î 5Î9Î8

1
9

8Î
5 Ï2.25Ï
5 1.50

Third, compute the t statistic:t statistic:t

t 5
sM

1
2 M

2
M

2
M d 2 sm

1
2 m

2
d

ssM
1
2M

2
M

2
M d

5
s8 2 12d 2 0

1.5

5
24

1.5
5 22.67

Make a decision. The obtained value (t 5 22.67) is in the critical region. In this exam-
ple, the obtained sample mean difference is 2.67 times greater than would be expected if 
there were no difference between the two populations. In other words, this result is very 
unlikely if H0H0H  is true. Therefore, we reject H0H0H  and conclude that there is a signi�cant differ-
ence between the reported scores in the dimly lit room and the scores in the well-lit room. 
Speci�cally, the students in the dimly lit room reported signi�cantly higher scores than 
those in the well-lit room. ■

■ Directional Hypotheses and One-Tailed Tests
When planning an independent-measures study, a researcher usually has some expecta-
tion or specific prediction for the outcome. For the cheating study in Example 10.2, the 
researchers expect the students in the dimly lit room to claim higher scores than the 
students in the well-lit room. This kind of directional prediction can be incorporated 
into the statement of the hypotheses, resulting in a directional, or one-tailed, test. Recall 
from Chapter 8 that one-tailed tests can lead to rejecting H0H0H  when the mean difference 
is relatively small compared to the magnitude required by a two-tailed test. As a result, 
one-tailed tests should be used when clearly justified by theory or previous findings. The 
following example demonstrates the procedure for stating hypotheses and locating the 
critical region for a one-tailed test using the independent-measures t statistic.t statistic.t

We will use the same research situation that was described in Example 10.2. The researcher 
is using an independent-measures design to examine the relationship between lighting and 
dishonest behavior. The prediction is that students in a dimly lit room are more likely to 
cheat (report higher scores) than are students in a well-lit room.

State the hypotheses and select the alpha level. As always, the null hypothesis 
states that there is no effect, and the alternative hypothesis states that there is an effect. For 

S T E P  3
Caution: The pooled 
variance combines the 
two samples to obtain a 
single estimate of vari-
ance. In the formula, the 
two samples are com-
bined in a single fraction.

Caution: The standard 
error adds the errors 
from two separate sam-
ples. In the formula, these 
two errors are added as 
two separate fractions. In 
this case, the two errors 
are equal because the 
sample sizes are the same.

S T E P  4

E X A M P L E  1 0 . 3

S T E P  1
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this example, the predicted effect is that the students in the dimly lit room will claim to 
have higher scores. Thus, the two hypotheses are as follows.

H0H0H : mDimly Lit # mWell-Lit  Well-Lit  Well-Lit (Reported scores are not higher in the dimly lit room.)

H1: mDimly Lit . mWell-LitWell-Lit  (Reported scores are higher in the dimly lit room.)

Note that it is usually easier to state the hypotheses in words before you try to write 
them in symbols. Also, it usually is easier to begin with the alternative hypothesis (H1), 
which states that the treatment works as predicted. Also note that the equal sign goes in 
the null hypothesis, indicating no difference between the two treatment conditions. The 
idea of zero difference is the essence of the null hypothesis, and the numerical value of 
zero is used for (m1 2 m2) during the calculation of the t statistic. For this test we will t statistic. For this test we will t
use a 5 .01.

Locate the critical region. For a directional test, the critical region is located entirely 
in one tail of the distribution. Rather than trying to determine which tail, positive or nega-
tive, is the correct location, we suggest you identify the criteria for the critical region in 
a two-step process as follows. First, look at the data and determine whether the sample 
mean difference is in the direction that was predicted. If the answer is no, then the data 
obviously do not support the predicted treatment effect, and you can stop the analysis. On 
the other hand, if the difference is in the predicted direction, then the second step is to 
determine whether the difference is large enough to be signi�cant. To test for signi�cance, 
simply �nd the one-tailed critical value in the t distribution table. If the calculated t distribution table. If the calculated t t statist statist -
tic is more extreme (either positive or negative) than the critical value, then the difference 
is signi�cant.

For this example, the students in the dimly lit room reported higher scores, as predicted. 
With df 5 14, the one-tailed critical value for a 5 .01 is t 5 2.624.

Collect the data and calculate the test statistic. The details of the calculations 
were shown in Example 10.2. The data produce a t statistic of t statistic of t t 5 22.67.

Make a decision. The t statistic of t statistic of t t 5 22.67 is more extreme than the critical value of 
t 5 2.624. Therefore, we reject the null hypothesis and conclude that the reported scores 
for students in the dimly lit room are signi�cantly higher than the scores for students in the 
well-lit room. In a research report, the one-tailed test would be clearly noted:

Reported scores were significantly higher for students in the dimly lit room, t(14) 5 22.67, 
p , .01, one-tailed. ■

■ Assumptions Underlying the Independent-Measures t Formula
There are three assumptions that should be satisfied before you use the independent-
measures t formula for hypothesis testing:t formula for hypothesis testing:t

1. The observations within each sample must be independent (see page 216).

2. The two populations from which the samples are selected must be normal.

3. The two populations from which the samples are selected must have equal  
variances.

The first two assumptions should be familiar from the single-sample t hypothesis t hypothesis t
test presented in Chapter 9. As before, the normality assumption is the less important 
of the two, especially with large samples. When there is reason to suspect that the 

S T E P  2

S T E P  3

S T E P  4
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populations are far from normal, you should compensate by ensuring that the samples 
are relatively large.

The third assumption is referred to as homogeneity of variance and states that the 
two populations being compared must have the same variance. You may recall a similar 
assumption for the z-score hypothesis test in Chapter 8. For that test, we assumed that the 
effect of the treatment was to add a constant amount to (or subtract a constant amount from) 
each individual score. As a result, the population standard deviation after treatment was the 
same as it had been before treatment. We now are making essentially the same assumption 
but phrasing it in terms of variances.

Recall that the pooled variance in the t-statistic formula is obtained by averaging 
together the two sample variances. It makes sense to average these two values only if they 
both are estimating the same population variance—that is, if the homogeneity of variance 
assumption is satisfied. If the two sample variances are estimating different population 
variances, then the average is meaningless. (Note: If two people are asked to estimate 
the same thing—for example, your weight—it is reasonable to average the two estimates. 
However, it is not meaningful to average estimates of two different things. If one person 
estimates your weight and another estimates the number of beans in a pound of whole-bean 
coffee, it is meaningless to average the two numbers.)

Homogeneity of variance is most important when there is a large discrepancy between 
the sample sizes. With equal (or nearly equal) sample sizes, this assumption is less criti-
cal, but still important. Violating the homogeneity of variance assumption can negate any 
meaningful interpretation of the data from an independent-measures experiment. Specifi-
cally, when you compute the t statistic in a hypothesis test, all the numbers in the formula t statistic in a hypothesis test, all the numbers in the formula t
come from the data except for the population mean difference, which you get from H0H0H . 
Thus, you are sure of all the numbers in the formula except one. If you obtain an extreme 
result for the t statistic (a value in the critical region), you conclude that the hypotht statistic (a value in the critical region), you conclude that the hypotht -
esized value was wrong. But consider what happens when you violate the homogeneity 
of variance assumption. In this case, you have two questionable values in the formula 
(the hypothesized population value and the meaningless average of the two variances). 
Now if you obtain an extreme t statistic, you do not know which of these two values is t statistic, you do not know which of these two values is t
responsible. Specifically, you cannot reject the hypothesis because it may have been the 
pooled variance that produced the extreme t statistic. Without satisfying the homogeneity t statistic. Without satisfying the homogeneity t
of variance requirement, you cannot accurately interpret a t statistic, and the hypothesis t statistic, and the hypothesis t
test becomes meaningless.

■ Hartley’s F-Max Test
How do you know whether the homogeneity of variance assumption is satisfied? One sim-
ple test involves just looking at the two sample variances. Logically, if the two population 
variances are equal, then the two sample variances should be very similar. When the two 
sample variances are reasonably close, you can be reasonably confident that the homo-
geneity assumption has been satisfied and proceed with the test. However, if one sample 
variance is more than three or four times larger than the other, then there is reason for 
concern. A more objective procedure involves a statistical test to evaluate the homogeneity 
assumption. Although there are many different statistical methods for determining whether 
the homogeneity of variance assumption has been satisfied, Hartley’s F-max test is one of 
the simplest to compute and to understand. An additional advantage is that this test can also 
be used to check homogeneity of variance with more than two independent samples. Later, 
in Chapter 12, we examine statistical methods for comparing several different samples, and 
Hartley’s test will be useful again. The following example demonstrates the F-max test for 
two independent samples.
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The F-max test is based on the principle that a sample variance provides an unbiased esti-
mate of the population variance. The null hypothesis for this test states that the population 
variances are equal; therefore, the sample variances should be very similar. The procedure 
for using the F-max test is as follows:

1. Compute the sample variance, s2 5 SS
dfdfd , for each of the separate samples.

2. Select the largest and the smallest of these sample variances and compute

F{max 5
s2slargestd

s2ssmallestd

A relatively large value for F-max indicates a large difference between the sample 
variances. In this case, the data suggest that the population variances are different and 
that the homogeneity assumption has been violated. On the other hand, a small value of 
F-max (near 1.00) indicates that the sample variances are similar and that the homogeneity 
assumption is reasonable.

3. The F-max value computed for the sample data is compared with the critical value 
found in Table B.3 (Appendix B). If the sample value is larger than the table value, 
you conclude that the variances are different and that the homogeneity assumption 
is not valid.

To locate the critical value in the table, you need to know

a. k 5 number of separate samples. (For the independent-measures t test, t test, t k 5 2.)

b. df 5 n 2 1 for each sample variance. The Hartley test assumes that all samples are 
the same size.

c. the alpha level. The table provides critical values for a 5 .05 and a 5 .01. Gener-
ally a test for homogeneity would use the larger alpha level.

Suppose, for example, that two independent samples each have n 5 10 with sample 
variances of 12.34 and 9.15. For these data,

F{max 5
s2slargestd

s2ssmallestd
5

12.34

9.15
5 1.35

With a 5 .05, k 5 2, and df 5 n 2 1 5 9, the critical value from the table is 4.03. Because the 
obtained F-max is smaller than this critical value, you conclude that the data do not provide F-max is smaller than this critical value, you conclude that the data do not provide F
evidence that the homogeneity of variance assumption has been violated. ■

The goal for most hypothesis tests is to reject the null hypothesis to demonstrate a 
significant difference or a significant treatment effect. However, when testing for homo-
geneity of variance, the preferred outcome is to fail to reject H0H0H . Failing to reject H0H0H  with 
the F-max test means that there is no significant difference between the two population 
variances and the homogeneity assumption is satisfied. In this case, you may proceed with 
the independent-measures t test using pooled variance.t test using pooled variance.t

If the F-max test rejects the hypothesis of equal variances, or if you simply suspect 
that the homogeneity of variance assumption is not justified, you should not com-
pute an independent-measures t statistic using pooled variance. However, there is an 
alternative formula for the t statistic that does not pool the two sample variances and t statistic that does not pool the two sample variances and t
does not require the homogeneity assumption. The alternative formula is presented in 
Box 10.2.

E X A M P L E  1 0 . 4
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Computing the independent-measures t statistic using t statistic using t
pooled variance requires that the data satisfy the homo-
geneity of variance assumption. Specifically, the two 
distributions from which the samples are obtained must 
have equal variances. To avoid this assumption, many 
statisticians recommend an alternative formula for com-
puting the independent-measures t statistic that does not t statistic that does not t
require pooled variance or the homogeneity assump-
tion. The alternative procedure consists of two steps:

1. The standard error is computed using the two 
separate sample variances as in Equation 10.1.

2. The value of degrees of freedom for the t sta-t sta-t
tistic is adjusted using the following equation:

dfdfd 5
sV

1
V

1
V 1 V

2
V

2
V d2

V 2
1

V
1

V

n
1

2 1
1

V 2
2

n
2

2 1

where V
1

V
1

V 5
s2

1

n
1

and V
2

V
2

V 5
s2

2

n
2

Decimal values for df should be rounded down to the df should be rounded down to the df
next lower integer.

The adjustment to degrees of freedom lowers the 
value of df, which pushes the boundaries for the critical df, which pushes the boundaries for the critical df
region farther out. Thus, the adjustment makes the test 
more demanding and therefore corrects for the same 
bias problem that the pooled variance attempts to avoid.

Note: Many computer programs that perform sta-
tistical analysis (such as SPSS) report two versions 
of the independent-measures t statistic; one using t statistic; one using t
pooled variance (with equal variances assumed) and 
one using the adjustment shown here (with equal 
variances not assumed).

Decimal values for 
next lower integer.

value of 
region farther out. Thus, the adjustment makes the test 
more demanding and therefore corrects for the same 
bias problem that the pooled variance attempts to avoid.

tistical analysis (such as SPSS) report two versions 
of the independent-measures 
pooled variance (with equal variances assumed) and 
one using the adjustment shown here (with equal 
variances not assumed).

BOX 10.2 An Alternative to Pooled Variance

LO6 1. What is the value of the independent-measures t statistic for a study with t statistic for a study with t n 5 10 
participants in each treatment if the data produce M 5 38 and SS 5 200 for the 
first treatment and M 5 33 and SS 5 160 for the second treatment?

a. t 5 1.25

b. t 5 2.50

c. t 5 0.25

d. t 5 5

Ï20Ï
5 1.12

LO7 2. A researcher uses two samples, each with n 5 15 participants, to evaluate the 
mean difference in performance scores between 8-year-old and 10-year-old 
children. The prediction is that the older children will have higher scores. The 
sample mean for the older children is five points higher than the mean for the 
younger children and the pooled variance for the two samples is 30. For a one-
tailed test, what decision should be made?  

a. Reject the null hypothesis with a 5 .05 but not with a 5 .01.

b. Reject the null hypothesis with either a 5 .05 or a 5 .01.

c. Fail to reject the null hypothesis with a 5 .05 but not with a 5 .01.

d. Fail to reject the null hypothesis with either a 5 .05 or a 5 .01.

LO8 3. Hartley’s F-max test is used to evaluate the homogeneity of variance assump-
tion. What is the null hypothesis for this test?

a. The two sample variances are equal.

b. The two sample variances are not equal.

c. The two population variances are equal.

d. The two population variances are not equal.

1. b 2. b 3. c

LE A R N I N G C H E C K

A N S W E R S
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10-4 Effect Size and Confidence Intervals 
for the Independent-Measures t

LE A R N I N G O B J E C T IV E S   

 9. Measure effect size for an independent-measures Measure effect size for an independent-measures Measure ef t test using either Cohen’s t test using either Cohen’s t d or d or d
r2r2r , the percentage of variance accounted for.

 10. Use the data from two separate samples to compute a con�dence interval describ-
ing the size of the mean difference between two treatment conditions or two 
populations. 

 11. Describe the relationship between a hypothesis test with an independent-measures 
t statistic using a 5 .05 and the corresponding 95% con�dence interval for the 
mean difference.

 12. Describe how the results of an independent-measures t test and measures of effect t test and measures of effect t
size are reported in the scienti�c literature.

As noted in Chapters 8 and 9, the outcome of a hypothesis test is influenced by a variety of 
factors, including the size of the sample(s) used in the research study. In general, increas-
ing the size of the sample increases the likelihood of rejecting the null hypothesis. As a 
result, even a very small treatment effect can be significant if the sample is large enough. 
Therefore, a hypothesis test is usually accompanied by a report of effect size to provide an 
indication of the absolute magnitude of the treatment effect independent of the size of the 
sample. One technique for measuring effect size is Cohen’s d, which produces a standard-
ized measure of mean difference. In its general form, Cohen’s d is defined asd is defined asd

d 5
mean difference

standard deviation
5

m
1

2 m
2

s

In the context of an independent-measures research study, the difference between the 
two sample means (M1 2 M2M2M ) is used as the best estimate of the mean difference between 
the two populations, and the pooled standard deviation (the square root of the pooled vari-
ance) is used to estimate the population standard deviation. Thus, the formula for estimat-
ing Cohen’s d becomesd becomesd

estimated d 5
estimated mean difference

estimated standard deviation
5

M
1

2 M
2

M
2

M

ÏsÏsÏ 2
pÏ

(10.8)

For the data from Example 10.2, the two sample means are 8 and 12, and the pooled vari-
ance is 9. The estimated d for these data isd for these data isd

d 5
M

1
2 M

2
M

2
M

ÏsÏsÏ 2
pÏ

5
8 2 12

Ï9Ï
5

24

3
5 21.33

Note: Cohen’s d is typically reported as a positive value; in this case d is typically reported as a positive value; in this case d d 5 1.33. Using the 
criteria established to evaluate Cohen’s d (see Table 8.2 on page 225), this value indicates d (see Table 8.2 on page 225), this value indicates d
a very large treatment effect.

The independent-measures t hypothesis test also allows for measuring effect size by t hypothesis test also allows for measuring effect size by t
computing the percentage of variance accounted for, r2r2r . As we saw in Chapter 9, r2r2r  mea-
sures how much of the variability in the scores can be explained by the treatment effects. 
For example, some of the variability in the reported scores for the cheating study can be 
explained by knowing the room in which a particular student was tested; students in the 
dimly lit room tend to report higher scores and students in the well-lit room tend to report 
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lower scores. By measuring exactly how much of the variability can be explained, we can 
obtain a measure of how big the treatment effect actually is. The calculation of r2r2r  for the 
independent-measures t is exactly the same as it was for the single-sample t is exactly the same as it was for the single-sample t t in Chapter 9:t in Chapter 9:t

r2r2r 5
t2t2t

t2t2t 1 dfdfd
(10.9)

For the data in Example 10.2, we obtained t 5 22.67 with df 5 14. These values produce 
an r2r2r  of

r2r2r 5
22.672

22.672 1 14
5

7.13

7.13 1 14
5

7.13

21.13
5 0.337

For this study, 33.7% of the variability in the scores can be explained by the difference 
between the two lighting conditions. According to the standards used to evaluate r2r2r  (see 
Table 9.3 on page 252), this value also indicates a large treatment effect.

The following example is an opportunity to test your understanding of Cohen’s d and d and d r2r2r
for the independent-measures t statistic.t statistic.t

In an independent-measures study with n 5 16 scores in each treatment, one sample has 
M 5 89.5 with SS 5 1,005 and the second sample has M 5 82.0 with SS 5 1,155. The 
data produce t(30) 5 2.50. Use these data to compute Cohen’s d and d and d r2r2r  for these data. You 
should find that d 5 0.883 and r2r2r 5  0.172. ■

■ Confidence Intervals for Estimating m1 2 m2

As noted in Chapter 9, it is possible to compute a confidence interval as an alternative meth-
od for measuring and describing the size of the treatment effect. For the single-sample t, we 
used a single sample mean, M, to estimate a single population mean. For the independent-
measures t, we use a sample mean difference, M1 2 M2M2M , to estimate the population mean 
difference, m1 2 m2. In this case, the confidence interval literally estimates the size of the 
population mean difference between the two populations or treatment conditions.  

As with the single-sample t, the first step is to solve the t equation for the unknown t equation for the unknown t
parameter. For the independent-measures t statistic, we obtaint statistic, we obtaint

m
1

2 m
2

5 M
1

2 M
2

M
2

M 6 tstst sM
1
2M

2
M

2
M d (10.10)

In the equation, the values for M1 2 M2M2M  and for ssM
1
2M

2
M

2
M d are obtained from the sample data. 

Although the value for the t statistic is unknown, we can use the degrees of freedom for the 
1

 statistic is unknown, we can use the degrees of freedom for the 
1 2

 statistic is unknown, we can use the degrees of freedom for the 
2

t statistic is unknown, we can use the degrees of freedom for the t
t statistic and the t statistic and the t t distribution table to estimate the t value. Using the estimated t value. Using the estimated t t and the t and the t
known values from the sample, we can then compute the value of m1 2 m2. The following 
example demonstrates the process of constructing a confidence interval for a population 
mean difference.

In Example 10.2 we presented a research study comparing puzzle-solving scores for stu-
dents who were tested in a dimly lit room and scores for students tested in a well-lit room 
(page 277). The results of the hypothesis test indicated a significant mean difference be-
tween the two populations of students. Now, we will construct a 95% confidence interval 
to estimate the size of the population mean difference.  

The data from the study produced a mean score of M 5 12 for the group in the dimly 
lit room and a mean of M 5 8 for the group in the well-lit room. The estimated standard 
error for the mean difference was ssM

1
2M

2
M

2
M d 5 1.5. With n 5 8 scores in each sample, the 

independent-measures t statistic has df 5 14. To have 95% confidence, we simply estimate 
that the t statistic for the sample mean difference is located somewhere in the middle 95% t statistic for the sample mean difference is located somewhere in the middle 95% t
of all the possible t values. According to the t values. According to the t t distribution table, with t distribution table, with t df 5 14, 95% of the t

E X A M P L E  1 0 . 5

E X A M P L E  1 0 . 6
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values are located between t 5 12.145 and t 5 22.145. Using these values in the estimation 
equation, we obtain

m
1

2 m
2

5 M
1

2 M
2

M
2

M 6 tstst sM
1
2M

2
M

2
M d

5 12 2 8 6 2.145(1.5)

5 4 6 3.218

This produces an interval of values ranging from 4 2 3.218 5 0.782 to 4 1 3.218 5 7.218. 
Thus, our conclusion is that students who were tested in the dimly lit room had higher 
scores than those who were tested in a well-lit room, and the mean difference between the 
two populations is somewhere between 0.782 points and 7.218 points. Furthermore, we are 
95% confident that the true mean difference is in this interval because the only value esti-
mated during the calculations was the t statistic, and we are 95% confident that thet statistic, and we are 95% confident that thet  t value  t value  t
is located in the middle 95% of the distribution. Finally note that the confidence interval is 
constructed around the sample mean difference. As a result, the sample mean difference, 
M1 2 M2M2M 5 12 2 8 5 4 points, is located exactly in the center of the interval. ■

As with the confidence interval for the single-sample t (page 255), the confidence intert (page 255), the confidence intert -
val for an independent-measures t is influenced by a variety of factors other than the actual t is influenced by a variety of factors other than the actual t
size of the treatment effect. In particular, the width of the interval depends on the percent-
age of confidence used so that a larger percentage produces a wider interval. Also, the 
width of the interval depends on the sample size, so that a larger sample produces a nar-
rower interval. Because the interval width is related to sample size, the confidence interval 
is not a pure measure of effect size like Cohen’s d or d or d r2r2r . 

■ Confidence Intervals and Hypothesis Tests
In addition to describing the size of a treatment effect, estimation can be used to get an indi-
cation of the significance of the effect. Example 10.6 presented an independent-measures 
research study examining the effect of room lighting on performance scores (cheating). 
Based on the results of the study, the 95% confidence interval estimated that the population 
mean difference for the two groups of students was between 0.782 and 7.218 points. The 
confidence interval estimate is shown in Figure 10.4. In addition to the confidence interval 
for m1 2 m2, we have marked the spot where the mean difference is equal to zero. You should 
recognize that a mean difference of zero is exactly what would be predicted by the null 
hypothesis if we were doing a hypothesis test. You also should realize that a zero difference 
(m1 2 m2 5 0) is outside the 95% confidence interval. In other words, m1 2 m2 5 0 is not 
an acceptable value if we want 95% confidence in our estimate. To conclude that a value of 

0.782 7.218

0 1 2 3 4 5 6 7 8 9

95% confidence interval
estimate for m1 2 m2

m1 5 m2
according to H0H0H

(                                              (                                              ))

F I G U R E  1 0. 4
The 95% confidence interval for the 
population mean difference 
(μ1 5 μ2) from Example 10.6. Note 
that μ1 2 μ2 5 0 is excluded from 
the confidence interval, indicat-
ing that a zero difference is not 
an acceptable value (H0H0H  would be 
rejected in a hypothesis test with 
a 5 .05).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



zero is not acceptable with 95% confidence is equivalent to concluding that a value of zero 
is rejected with 95% confidence. This conclusion is equivalent to rejecting rejected with 95% confidence. This conclusion is equivalent to rejecting rejected H0H0H  with a 5 .05. 
On the other hand, if a mean difference of zero were included within the 95% confidence 
interval, then we would have to conclude that m1 2 m2 5 0 is an acceptable value, which is 
the same as failing to reject H0H0H .

The hypothesis test for 
these data was con-
ducted in Example 10.2 
(page 277) and the deci-
sion was to reject  
H0 with a 5 .05.

IN THE LITERATURE

■

LO9 1. A researcher obtains a mean of M 5 26 for a sample in one treatment condi-
tion and M 5 28 for a sample in another treatment. The pooled variance for the 
two samples is 16. What value would be obtained if Cohen’s d were used to d were used to d
measure the effect size? 

a. 2
16

b. 4
16

c. 2
4

d. There is not enough information to determine Cohen’s d.

LE A R N I N G C H E C K
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Reporting the Results of an Independent-Measures t Test
A research report typically presents the descriptive statistics followed by the results 
of the hypothesis test and measures of effect size (inferential statistics). In Chapter 4 
(page 108), we demonstrated how the mean and the standard deviation are reported in 
APA format. In Chapter 9 (page 255), we illustrated the APA style for reporting the 
results of a t test. Now we use the APA format to report the results of Example 10.2, t test. Now we use the APA format to report the results of Example 10.2, t
an independent-measures t test. A concise statement might read as follows:t test. A concise statement might read as follows:t

The students who were tested in a dimly lit room reported higher performance scores 
(M(M( 5 12, SD 5 2.93) than the students who were tested in the well-lit room (M 2.93) than the students who were tested in the well-lit room (M 2.93) than the students who were tested in the well-lit room ( 5 8, 
SD 5 3.07). The mean difference was signi�cant, t(14) 5 2.67, p , .05, d 5 1.33.

You should note that standard deviation is not a step in the computations for the inde-
pendent-measures t test, yet it is useful when providing descriptive statistics for each t test, yet it is useful when providing descriptive statistics for each t
treatment group. It is easily computed when doing the t test because you need t test because you need t SS and SS and SS
df for both groups to determine the pooled variance. Note that the format for reporting df for both groups to determine the pooled variance. Note that the format for reporting df
t is exactly the same as that described in Chapter 9 (page 255) and that the measure of t is exactly the same as that described in Chapter 9 (page 255) and that the measure of t
effect size is reported immediately after the results of the hypothesis test.

Also, as we noted in Chapter 9, if an exact probability is available from a computer 
analysis, it should be reported. For the data in Example 10.2, the computer analysis 
reports a probability value of p 5 .018 for t 5 2.67 with df 5 14. In the research report, 
this value would be included as follows:

The difference was signi�cant, t(14) 5 2.67, p 5 .018, d 5 1.33.

Finally, if a con�dence interval is reported to describe effect size, it appears imme-
diately after the results from the hypothesis test. For the cheating behavior examples 
(Examples 10.2 and 10.6) the report would be as follows:

The difference was signi�cant, t(14) 5 2.67, p 5 .018, 95% CI [0.782, 7.218].

Because the direction 
of the mean difference 
is described in the sen-
tence, the t statistic can 
be reported as a positive 
value.
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LO10 2. Which of the following is not an accurate description of a confidence interval 
for a mean difference using the independent-measures t statistic?t statistic?t

a. The sample mean difference,The sample mean difference,The sample mean dif M1 2 M2M2M , will be located in the center of the 
interval.

b. If other factors are held constant, the width of the interval will decrease if If other factors are held constant, the width of the interval will decrease if If other f
the sample size is increased.

c. If other factors are held constant, the width of the interval will increase if If other factors are held constant, the width of the interval will increase if If other f
the percentage of con�dence is increased.

d. If other factors are held constant, the width of the interval will increase if If other factors are held constant, the width of the interval will increase if If other f
the difference between the two sample means is increased.

LO11 3. Which of the following accurately describes the 95% confidence interval for an 
independent-measures study for which a hypothesis test concludes that there is 
no significant mean difference with a 5 .05.

a. The con�dence interval will include the value 0.

b. The con�dence interval will not include the value 0.

c. The con�dence interval will not include the value M1 2 M2M2M .

d. None of the other options is accurate.

LO12 4. The results of a hypothesis test with an independent-measures t statistic are t statistic are t
reported as follows: t(22) 5 2.48, p , .05, d 5 0.27. Which of the following is 
an accurate description of the study and the result?

a. The study used a total of 24 participants and the null hypothesis was 
rejected.

b. The study used a total of 22 participants and the null hypothesis was 
rejected.

c. The study used a total of 24 participants and the null hypothesis was 
not rejected.

d. The study used a total of 22 participants and the null hypothesis was 
not rejected.

1. c 2. d 3. a 4. aA N S W E R S

10-5 The Role of Sample Variance and Sample Size  
in the Independent-Measures t Test

LE A R N I N G O B J E C T IV E

 12. Describe how sample size and sample variance in�uence the outcome of a hypoth-
esis test and measures of effect size for the independent-measures t statistic.t statistic.t

In Chapter 9 (page 247) we identified several factors that can influence the outcome of a 
hypothesis test. Two factors that play important roles are the variability of the scores and 
the size of the samples. Both factors influence the magnitude of the estimated standard 
error in the denominator of the t statistic. The standard error is directly related to sample t statistic. The standard error is directly related to sample t
variance so that larger variance leads to larger error. As a result, larger variance produces 
a smaller value for the t statistic (closer to zero) and reduces the likelihood of finding a t statistic (closer to zero) and reduces the likelihood of finding a t
significant result. By contrast, the standard error is inversely related to sample size (larger 
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size leads to smaller error). Thus, a larger sample produces a larger value for the t statistic t statistic t
(farther from zero) and increases the likelihood of rejecting H0H0H .

Although variance and sample size both influence the hypothesis test, only variance 
has a large influence on measures of effect size such as Cohen’s d and d and d r2r2r ; larger variance 
produces smaller measures of effect size. Sample size, on the other hand, has no effect on 
the value of Cohen’s d and only a small influence on d and only a small influence on d r2r2r . 

The following example provides a visual demonstration of how large sample variance 
can obscure a mean difference between samples and lower the likelihood of rejecting H0H0H
for an independent-measures study.

We will use the data in Figure 10.5 to demonstrate the influence of sample variance. The 
figure shows the results from a research study comparing two treatments. Notice that the 
study uses two separate samples, each with n 5 9, and there is a 5-point mean difference 
between the two samples: M 5 8 for Treatment 1 and M 5 13 for Treatment 2. Also notice 
that there is a clear difference between the two distributions; the scores for Treatment 2 are 
clearly higher than the scores for Treatment 1.

For the hypothesis test, the data produce a pooled variance of 1.50 and an estimated 
standard error of 0.58. The t statistic ist statistic ist

t 5
mean difference

estimated standard error
5

5

0.58
5 8.62

With df 5 16, this value is far into the critical region (for a 5 .05 or a 5 .01), so we 
reject the null hypothesis and conclude that there is a significant difference between the 
two treatments.

Now consider the effect of increasing sample variance. Figure 10.6 shows the results 
from a second research study comparing two treatments. Notice that there are still n 5 9 
scores in each sample, and the two sample means are still M 5 8 and M 5 13. However, 
the sample variances have been greatly increased: Each sample now has s2 5 44.25 as com-
pared with s2 5 1.5 for the data in Figure 10.5. Notice that the increased variance means 
that the scores are now spread out over a wider range, with the result that the two samples 
are mixed together without any clear distinction between them.

The absence of a clear difference between the two samples is supported by the hy-
pothesis test. The pooled variance is 44.25, the estimated standard error is 3.14, and the 
independent-measures t statistic ist statistic ist

t 5
mean difference

estimated standard error
5

5

3.14
5 1.59

E X A M P L E  1 0 . 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Treatment 1

n 5 9
M 5 8
ss 5 1.22

Treatment 2

n 5 9
M 5 13
ss 5 1.22

F I G U R E  1 0. 5
Two sample distribu-
tions representing two 
different treatments. 
These data show a 
significant difference 
between treatments, 
t(16) 5 8.62, p < .01, 
and both measures of 
effect size indicate a 
very large treatment 
effect, d 5 4.10 and 
r2r2r 5 0.82.
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With df 5 16 and a 5 .05, this value is not in the critical region. Therefore, we fail to 
reject the null hypothesis and conclude that there is no significant difference between the 
two treatments. Although there is still a 5-point difference between sample means (as 
in Figure 10.6), the 5-point difference is not significant with the increased variance. In 
general, large sample variance can obscure any mean difference that exists in the data and 
reduces the likelihood of obtaining a significant difference in a hypothesis test. ■

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Treatment 1

n 5 9
M 5 8
ss 5 6.65

Treatment 2

n 5 9
M 5 13
ss 5 6.65

F I G U R E  1 0.6
Two sample distributions representing two different treatments. These data show exactly the same mean difference as the 
scores in Figure 10.6, however the variance has been greatly increased. With the increased variance, there is no longer a 
significant difference between treatments, t(16) 5 1.59, p > .05, and both measures of effect size are substantially reduced, 
d 5 0.75 and r2r2r 5 0.14.

LO12 1. Which of the following accurately describes how the outcome of a hypothesis 
test and measures of effect size with the independent-measures t statistic are t statistic are t
affected when sample size is increased?

a. The likelihood of rejecting the null hypothesis and measures of effect size 
both increase. 

b. The likelihood of rejecting the null hypothesis and measures of effect size 
both decrease. 

c. The likelihood of rejecting the null hypothesis increases and there is little or 
no effect on measures of effect size. 

d. The likelihood of rejecting the null hypothesis decreases and there is little 
or no effect on measures of effect size. 

LO12 2. Which of the following accurately describes how the outcome of a hypothesis 
test and measures of effect size with the independent-measures t statistic are t statistic are t
affected when sample variance increases?

a. The likelihood of rejecting the null hypothesis and measures of effect size 
both increase. 

b. The likelihood of rejecting the null hypothesis and measures of effect size 
both decrease. 

c. The likelihood of rejecting the null hypothesis increases and there is little or 
no effect on measures of effect size. 

d. The likelihood of rejecting the null hypothesis decreases and there is little 
or no effect on measures of effect size. 

LE A R N I N G C H E C K
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LO12 3. Which of the following sets of data would produce the largest value for an 
independent-measures t statistic?t statistic?t

a. Two sample means of 10 and 12 with sample variances of 20 and 25

b. Two sample means of 10 and 12 with variances of 120 and 125

c. Two sample means of 10 and 20 with variances of 20 and 25

d. Two sample means of 10 and 20 with variances of 120 and 125

1. c 2. b 3. cA N S W E R S

1. The independent-measures t statistic uses the data t statistic uses the data t
from two separate samples to draw inferences about 
the mean difference between two populations or be-
tween two different treatment conditions.

2. The formula for the independent-measures t statistic t statistic t
has the same structure as the original z-score or the 
single-sample t:

t 5
sample statistic 2 population parameter

estimated standard error
For the independent-measures t, the sample statistic is 
the sample mean difference (M1 2 M2M2M ). The population 
parameter is the population mean difference, 
(m1 2 m2). The estimated standard error for the sample 
mean difference is computed by combining the errors 
for the two sample means. The resulting formula is

t 5
sM

1
2 M

2
M

2
M d 2 sm

1
2 m

2
d

ssM
1
2M

2
M

2
M d

where the estimated standard error is

ssM
1
2M

2
M

2
M d 5Îs2

pÎn
1

1
s2

p

n
2

Î
The pooled variance in the formula, s2

p
, is the weighted 

mean of the two sample variances:

s2
p

5
SS

1
1 SS

2

dfdfd
1

f
1

f 1 dfdfd
2

f
2

f

This t statistic has degrees of freedom determined by t statistic has degrees of freedom determined by t
the sum of the df values for the two samples:df values for the two samples:df

df 5 df1df1df 1 df 2df 2df
5 (n1 2 1) 1 (n2 2 1)

3. For hypothesis testing, the null hypothesis states that 
there is no difference between the two population 
means:

H0H0H : m1 5 m2 or m1 2 m2 5 0

4. When a hypothesis test with an independent-measures 
t statistic indicates a significant difference, it is t statistic indicates a significant difference, it is t

recommended that you also compute a measure of 
the effect size. One measure of effect size is Cohen’s 
d, which is a standardized measured of the mean 
difference. For the independent-measures t statistic, t statistic, t
Cohen’s d is estimated as follows:d is estimated as follows:d

estimated d 5
M

1
2 M

2
M

2
M

ÏsÏsÏ 2
pÏ

A second common measure of effect size is the percent-
age of variance accounted for by the treatment effect. 
This measure is identified by r2r2r  and is computed as

r2r2r 5
t2t2t

t2t2t 1 dfdfd

5. An alternative method for describing the size of the 
treatment effect is to construct a confidence interval 
for the population mean difference, m1 2 m2. The 
confidence interval uses the independent-measures 
t equation, solved for the unknown mean difference:t equation, solved for the unknown mean difference:t

m
1

2 m
2

5 M
1

2 M
2

M
2

M 6 tstst sM
1
2M

2
M

2
M d

First, select a level of confidence and then look up 
the corresponding t values. For example, for 95% t values. For example, for 95% t
confidence, use the range of tconfidence, use the range of tconfidence, use the range of  values that determine  t values that determine  t
the middle 95% of the distribution. The t values are  t values are  t
then used in the equation along with the values for the 
sample mean difference and the standard error, which 
are computed from the sample data.

6. Appropriate use and interpretation of the t statistic t statistic t
using pooled variance require that the data satisfy the 
homogeneity of variance assumption. This assumption 
stipulates that the two populations have equal vari-
ances. An informal test of the assumption can be made 
by verifying that the two sample variances are approxi-
mately equal. Hartley’s F-max test provides a statistical F-max test provides a statistical F
technique for determining whether the data satisfy the 
homogeneity assumption. An alternative technique that 
avoids pooling variances and eliminates the need for 
the homogeneity assumption is presented in Box 10.2.

S U M M A R Y

Summary 291
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independent-measures research design 
(268)

between-subjects research design 
(268)

repeated-measures research design 
(268)

within-subjects research design (268)

independent-measures t statistic (270)t statistic (270)t

estimated standard error of M1 2 M2M2M
(271)

pooled variance (273)

homogeneity of variance (281)

KE Y TER M S

General instructions for using SPSS are presented in Appendix D. Following are detailed instruc-
tions for using SPSS to perform The Independent-Measures t Testt Testt  presented in this chapter. Test presented in this chapter. Test

Data Entry

1. The scores are entered in what is called stacked format, which means that all the scores 
from both samples are entered in one column of the data editor (probably VAR00001). 
Enter the scores for sample #2 directly beneath the scores from sample #1 with no gaps or 
extra spaces.

2. Values are then entered into a second column (VAR00002) to identify the sample or treat-
ment condition corresponding to each of the scores. For example, enter a 1 beside each 
score from sample #1 and enter a 2 beside each score from sample #2.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on Independent- 
Samples T Test.

2. Highlight the column label for the set of scores (VAR0001) in the left box and click the 
arrow to move it into the Test Variable(s) box.

3. Highlight the label from the column containing the sample numbers (VAR0002) in the left 
box and click the arrow to move it into the Group Variable box.

4. Click on Define Groups.
5. Assuming that you used the numbers 1 and 2 to identify the two sets of scores, enter the 

values 1 and 2 into the appropriate group boxes.
6. Click Continue.
7. In addition to performing the hypothesis test, the program will compute a confidence in-

terval for the population mean difference. The confidence level is automatically set at 95% 
but you can select Options and change the percentage.

8. Click OK.

SPSS Output

We used the SPSS program to analyze the data from Example 10.2, which examined the re-
lationship between cheating and room lighting. The program output is shown in Figure 10.7. 
The output includes a table of sample statistics with the mean, standard deviation, and standard 
error of the mean for each group. A second table, which is split into two sections in Figure 10.7, 
begins with the results of Levene’s test for homogeneity of variance. This test should not be not be not
significant (you do not want the two variances to be different), so you want the reported Sig. 
value to be greater than .05. Next, the results of the independent-measures t test are presented t test are presented t
using two different assumptions. The top row shows the outcome assuming equal variances, 
using the pooled variance to compute t. The second row does not assume equal variances and 
computes the t statistic using the alternative method presented in Box 10.2. Each row reports t statistic using the alternative method presented in Box 10.2. Each row reports t
the calculated t value, the degrees of freedom, the level of significance (the t value, the degrees of freedom, the level of significance (the t p value for the test), 
the size of the mean difference, and the standard error for the mean difference (the denominator 
of the t statistic). Finally, the output includes a 95% confidence interval for the mean difference.t statistic). Finally, the output includes a 95% confidence interval for the mean difference.t

SPSS ®
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FO CUS  O N  PRO B LE M  SO LVIN G

1. As you learn more about different statistical methods, one basic problem will be deciding 
which method is appropriate for a particular set of data. Fortunately, it is easy to identify 
situations in which the independent-measures t statistic is used. First, the data will always t statistic is used. First, the data will always t
consist of two separate samples (two ns, two Ms, two SSs, and so on). Second, this t
statistic is always used to answer questions about a mean difference: On the average, is 
one group different (better, faster, smarter) than the other group? If you examine the data 
and identify the type of question that a researcher is asking, you should be able to decide 
whether an independent-measures t is appropriate.t is appropriate.t

2. When computing an independent-measures t statistic from sample data, we suggest that t statistic from sample data, we suggest that t
you routinely divide the formula into separate stages rather than trying to do all the calcu-
lations at once. First, find the pooled variance. Second, compute the standard error. Third, 
compute the t statistic.t statistic.t

3. One of the most common errors for students involves confusing the formulas for pooled vari-
ance and standard error. When computing pooled variance, you are “pooling” the two samples 
together into a single variance. This variance is computed as a single fraction, with two SS valSS valSS -
ues in the numerator and two df values in the denominator. When computing the standard erdf values in the denominator. When computing the standard erdf -
ror, you are adding the error from the first sample and the error from the second sample. These 
two separate errors are added as two separate fractions under the square root symbol.

Group Statistics

Independent Samples TestIndependent Samples TestIndependent Samples T

Independent Samples TestIndependent Samples TestIndependent Samples T

VAR00001

VAR00001

VAR00002

1.00

2.00

Equal variances assumed

Equal variances not
assumed

VAR00001 Equal variances assumed

Equal variances not
assumed

.018

.018

24.00000

24.00000

1.50000

1.50000

27.21718

27.21786

2.78282

2.78214

22.667

22.667

14

13.968

1.000.000

Sig. (2-tailed)
Mean

Difference
Std. Error
Difference

8

8

8.0000

12.0000

2.92770

3.07060

1.03510

1.08562

Sig.F

Levene’s Test for Equality of
Variances t-test for Equality of Means

t-test for Equality of Means

t df

Lower Upper

95%
Confidence

Interval of the
Difference

MeanN Std. Deviation
Std. Error

Mean

t d

F I G U R E  1 0.7
The SPSS output for the independent-measures hypothesis test in Example 10.2.
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D E M O N S TR ATIO N  10.1
THE INDEPENDENT-MEASURES t Tt Tt EST

In a study of jury behavior, two samples of participants were provided details about a trial 
in which the defendant was obviously guilty. Although Group 2 received the same details as 
Group 1, the second group was also told that some evidence had been withheld from the jury 
by the judge. Later the participants were asked to recommend a jail sentence. The length of 
term suggested by each participant is presented here. Is there a significant difference between 
the two groups in their responses?

Group 1 Group 2

4 3

4 7

3 8 for Group 1: M 5 3 and SS 5 16

2 5

5 4 for Group 2: M 5 6 and SS 5 24

1 7

1 6

4 8

There are two separate samples in this study. Therefore, the analysis will use the independent-
measures t test.t test.t

State the hypotheses, and select an alpha level.

H0H0H : m1 2 m2 5 0 (For the population, knowing evidence has been withheld has no 
effect on the suggested sentence.)

H1: m1 2 m2 ? 0 (For the population, knowledge of withheld evidence has an ef-(For the population, knowledge of withheld evidence has an ef-(For the population, knowledge of withheld evidence has an ef
fect on the jury’s response.)

We will set the level of significance to a 5 .05, two tails.

Identify the critical region. For the independent-measures t statistic, degrees of freet statistic, degrees of freet -
dom are determined by

df 5 df1df1df 1 df2df2df

5 7 1 7 
5 14

The t distribution table is consulted for a two-tailed test with t distribution table is consulted for a two-tailed test with t a 5 .05 and df 5 14. The critical 
t values are t values are t 12.145 and 22.145.

Compute the test statistic. As usual, we recommended that the calculation of the t
statistic be separated into three stages.

Pooled variance For these data, the pooled variance equals

s2
p

5
SS

1
1 SS

2

dfdfd
1

f
1

f 1 dfdfd
2

f
2

f
5

16 1 24

7 1 7
5

40

14
5 2.86

Estimated standard error Now we can calculate the estimated standard error for mean 
differences.

ssM
1
2M

2
M

2
M d 5Îs2

pÎn
1

1
s2

p

n
2

Î 5Î2.86Î 8
1

2.86

8Î 5 Ï0Ï0Ï .358 1 0.358Ï 5 Ï0Ï0Ï .716Ï 5 0.85

STEP 1

STEP 2

STEP 3
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The t statistic Finally, the t statistic can be computed.t statistic can be computed.t

t 5
sM

1
2 M

2
M

2
M d 2 sm

1
2 m

2
d

ssM
1
2M

2
M

2
M d

5
s3 2 6d 2 0

0.85
5

23

0.85
5 23.53

Make a decision about H0, and state a conclusion. The obtained t value of t value of t 23.53 falls 
in the critical region of the left tail (critical t 5 62.145). Therefore, the null hypothesis is 
rejected. The participants who were informed about the withheld evidence gave significantly 
longer sentences, t(14)5 23.53, p , .05, two tails.

D E M O N S TR ATIO N  10. 2

EFFECT SIZE FOR THE INDEPENDENT-MEASURES t

We will estimate Cohen’s d and compute d and compute d r2r2r  for the jury decision data in Demonstration 10.1. 
For these data, the two sample means are M1 5 3 and M2M2M 5 6, and the pooled variance is 2.86. 
Therefore, our estimate of Cohen’s d is d is d

estimated d 5
M

1
2 M

2
M

2
M

ÏsÏsÏ 2
pÏ

5
3 2 6

Ï2.86Ï
5

3

1.69
5 1.78

With a t value of t value of t t 5 3.53 and df 5 14, the percentage of variance accounted for is

r2r2r 5
t2t2t

t2t2t 1 dfdfd
5

s3.53d2

s3.53d2 1 14
5

12.46

26.46
5 0.47 sor 47%d

STEP 4

PRO B LE M S

b. Now assume that n 5 7 for the first sample and 
n 5 5 for the second. Again, calculate the two 
sample variances and the pooled variance. You 
should find that the pooled variance is closer to the 
variance for the larger sample.

5. Two separate samples, each with n 5 9 individuals, 
receive different treatments. After treatment, the first 
sample has SS 5 546 and the second has SS 5 606.

 a. Find the pooled variance for the two samples.
b. Compute the estimated standard error for the 

sample mean difference.
c. If the sample mean difference is 8 points, is this 

enough to reject the null hypothesis and conclude 
that there is a significant difference for a two-tailed 
test at the .05 level?

6. Two separate samples receive different treatments. 
After treatment, the first sample has n 5 6 with  
SS 5 236, and the second has n 5 12 with SS 5 340.
a. Compute the pooled variance for the two samples.
b. Calculate the estimated standard error for the 

sample mean difference.
c. If the sample mean difference is 7 points, is this 

enough to reject the null hypothesis using a two-
tailed test with a 5 .05?

7. Research results suggest a relationship between the 
TV viewing habits of 5-year-old children and their 

1. Describe the basic characteristics that define an 
independent-measures, or a between-subjects, research 
study.

2. Describe what is measured by the estimated standard 
error in the bottom of the independent-measures  
t statistic.t statistic.t

3. One sample has SS 5 36 and a second sample has 
SS 5 24.
a. If n 5 5 for both samples, find each of the sample 

variances and compute the pooled variance. Be-
cause the samples are the same size, you should 
find that the pooled variance is exactly halfway 
between the two sample variances.

b. Now assume that n 5 5 for the first sample and 
n 5 13 for the second. Again, calculate the two 
sample variances and the pooled variance. You 
should find that the pooled variance is closer to the 
variance for the larger sample.

4. One sample has SS 5 60 and a second sample has  
SS 5 48.
a. If n 5 7 for both samples, find each of the sample 

variances, and calculate the pooled variance. 
Because the samples are the same size, you should 
find that the pooled variance is exactly halfway 
between the two sample variances.
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material on multiple occasions rather than one time 
only. This effect is commonly known as distributed 
practice or spacing effects. In a recent paper exam-
ining this effect, Cepeda et al. (2008) looked at the 
influence of different delays or gaps between study 
sessions. The results suggest that optimal long-term 
memory occurs when the study periods are spaced one 
to three weeks apart. In one part of the study, a group 
of participants studied a set of obscure trivia facts one 
day, returned the next day for a second study period, 
and then was tested five weeks later. A second group 
went through the same procedure but had a one-week 
gap between the two study sessions. The following 
data are similar to the results obtained in the study. Do 
the data indicate a significant difference between the 
two study conditions? Test with a 5 .05.

One-Day Gap 
between Study Sessions

One-Week Gap 
between Study Sessions

n 5 20 n 5 20

M 5 26.4 M 5 29. 6

SS 5 395 SS 5 460

10. Recent research has shown that creative people are 
more likely to cheat than their less-creative counter-
parts (Gino & Ariely, 2011). Participants in the study 
first completed creativity assessment questionnaires 
and then returned to the lab several days later for a 
series of tasks. One task was a multiple-choice general 
knowledge test for which the participants circled their 
answers on the test sheet. Afterward, they were asked 
to transfer their answers to a bubble sheet for computer 
scoring. However, the experimenter admitted that the 
wrong bubble sheet had been copied so that the correct 
answers were still faintly visible. Thus, the participants 
had an opportunity to cheat and inflate their test scores. 
Higher scores were valuable because participants were 
paid based on the number of correct answers. Howev-
er, the researchers had secretly coded the original tests 
and the bubble sheets so that they could measure the 
degree of cheating for each participant. Assuming that 
the participants were divided into two groups based on 
their creativity scores, the following data are similar to 
the cheating scores obtained in the study.

High-Creativity 
Participants

Low-Creativity 
Participants

n 5 27 n 5 27

M 5 7.41 M 5 4.78

SS 5 749.5 SS 5 830

a. Use a one-tailed test with a 5 .05 to determine 
whether these data are sufficient to conclude that 
high-creativity people are more likely to cheat than 
people with lower levels of creativity.

future performance in high school. For example, An-
derson, Huston, Wright, and Collins (1998) report that 
high school students who regularly watched Sesame 
Street as children had better grades in high school than Street as children had better grades in high school than Street
their peers who did not watch Sesame Street. Suppose 
that a researcher intends to examine this phenomenon 
using a sample of 20 high school students.

The researcher first surveys the students’ parents 
to obtain information on the family’s TV viewing 
habits during the time that the students were 5 years 
old. Based on the survey results, the researcher selects 
a sample of n 5 10 students with a history of watching 
Sesame Street and a sample of Sesame Street and a sample of Sesame Street n 5 10 students who did 
not watch the program. The average high school grade 
is recorded for each student and the data are as follows:

Average High School Grade

Watched Sesame 
Street

Did Not Watch Sesame 
Street

86 99 90 79
87 97 89 83
91 94 82 86
97 89 83 81
98 92 85 92

n 5 10 n 5 10
M 5 93 M 5 85
SS 5 200 SS 5 160

Use an independent-measures t test with t test with t a 5 .01 to 
determine whether there is a significant difference 
between the two types of high school student.

8. Does posting calorie content for menu items affect 
people’s choices in fast-food restaurants? Accord-
ing to results obtained by Elbel, Gyamfi, and Kersh 
(2011), the answer is no. The researchers monitored 
the calorie content of food purchases for children and 
adolescents in four large fast-food chains before and 
after mandatory labeling began in New York City. Al-
though most of the adolescents reported noticing the 
calorie labels, apparently the labels had no effect on 
their choices. Data similar to the results obtained show 
an average of M 5 786 calories per meal with s 5
85 for n 5 100 children and adolescents before the 
labeling, compared to an average of M 5 772 calories 
with s 5 91 for a similar sample of n 5 100 after the 
mandatory posting.
a. Use a two-tailed test with a 5 .05 to determine 

whether the mean number of calories after the 
posting is significantly different than before calorie 
content was posted.

b. Calculate r2r2r  to measure effect size for the mean dif-
ference.

9. A long history of psychology research has demon-
strated that memory is usually improved by studying 
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13. Zhou and Vohs (2009) published a study showing 
that handling money reduces the perception pain. 
In the experiment, a group of college students was 
told that they were participating in a manual dexter-
ity study. Half of the students were given a stack 
of money to count and the other half got a stack 
of blank pieces of paper. After the counting task, 
the participants were asked to dip their hands into 
bowls of very hot water (122°F) and rate how un-
comfortable it was. The following data show ratings 
of pain similar to the results obtained in the study.

Counting Money Counting Paper

7 9

8 11

10 13

6 10

8 11

5 9

7 15

12 14

5 10

a. Is there a significant difference in reported pain 
between the two conditions? Use a two-tailed test 
with a 5 .01.

b. Compute Cohen’s d to estimate the size of the d to estimate the size of the d
treatment effect.

14. In a classic study in the area of problem solving, 
Katona (1940) compared the effectiveness of two 
methods of instruction. One group of participants 
was shown the exact, step-by-step procedure for 
solving a problem and was required to memorize the 
solution. Participants in a second group were encour-
aged to study the problem and find the solution on 
their own. They were given helpful hints and clues, 
but the exact solution was never explained. The 
study included the problem in the following figure 
showing a pattern of five squares made of match-
sticks. The problem is to change the pattern into 
exactly four squares by moving only three matches. 
(All matches must be used, none can be removed, 
and all the squares must be the same size.) After 
three weeks, both groups returned to be tested again. 
The two groups did equally well on the matchstick 
problem they had learned earlier. But when they 
were given new problems (similar to the matchstick 
problem), the memorization group had much lower 
scores than the group who explored and found the 
solution on their own. The following data demon-
strate this result.

b. Compute Cohen’s d to measure the size of the  d to measure the size of the  d
effect.

c. Write a sentence demonstrating how the results 
from the hypothesis test and the measure of effect 
size would appear in a research report.

11. Recent research has demonstrated that music-based 
physical training for elderly people can improve 
balance, walking efficiency, and reduce the risk of 
falls (Trombetti et al., 2011). As part of the training, 
participants walked in time to music and responded to 
changes in the music’s rhythm during a one-hour per 
week exercise program. After six months, participants 
in the training group increased their walking speed 
and their stride length compared to individuals in the 
control group. The following data are similar to the 
results obtained in the study.

Exercise Group 
Stride Length

Control Group 
Stride Length

24 25 22 24 26 23 20 23
26 17 21 22 20 16 21 17
22 19 24 23 18 23 16 20
23 28 25 23 25 19 17 16

Do the results indicate a significant difference in the 
stride length for the two groups? Use a two-tailed test 
with a 5 .05.

12. McAllister et al. (2012) compared varsity football and 
hockey players with varsity athletes from noncontact 
sports to determine whether exposure to head impacts 
during one season have an effect on cognitive perfor-
mance. In the study, tests of new learning performance 
were significantly poorer for the contact sport athletes 
compared to the noncontact sport athletes. The follow-
ing table presents data similar to the results obtained 
in the study.

Noncontact Athletes Contact Athletes

10 7

8 4

7 9

9 3

13 7

7 6

6 10

12 2

a. Are the test scores significantly lower for the con-
tact sport athletes than for the noncontact athletes? 
Use a one-tailed test with a 5 .05.

b. Compute the value of r2r2r  (percentage of variance 
accounted for) for these data.
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Find a Solution 
on Your Own

Memorization 
of the Solution

n 5 8 n 5 8

M 5 10.50 M 5 6.16

SS 5 108 SS 5 116

a. Is there a significant difference in performance on 
new problems for these two groups? Use a two-
tailed test with a 5 .05.

b. Construct a 90% confidence interval to estimate the 
size of the mean difference.

Incidentally, if you still have not discovered 
the solution to the matchstick problem, keep trying. 
According to Katona’s results, it would be very poor 
teaching strategy for us to give you the answer. If you 
still have not discovered the solution, however, check 
Appendix C at the beginning of the Chapter 10 prob-
lem solutions and we will show you how it is done.

15. A researcher conducts an independent-measures study 
comparing two treatments and reports the t statistic as t statistic as t
t(18) 5 2.15.
a. How many individuals participated in the entire 

study?
b. Using a two-tailed test with a 5 .05, is there a 

significant difference between the two treatments?
c. Compute r2r2r  to measure the percentage of variance 

accounted for by the treatment effect.

16. In a recent study, Piff, Kraus, Côté, Cheng, and 
Keltner (2010) found that people from lower socio-
economic classes tend to display greater prosocial 
behavior than their higher-class counterparts. In one 
part of the study, participants played a game with an 
anonymous partner. Part of the game involved sharing 
points with the partner. The lower economic class 
participants were significantly more generous with 
their points compared with the upper-class individu-
als. Results similar to those found in the study, show 
that n 5 12 lower-class participants shared an average 
of M 5 5.2 points with SS 5 11.91, compared to an 
average of M 5 4.3 with SS 5 9.21 for the n 5 12 
upper-class participants.

a. Are the data sufficient to conclude that there is a 
significant mean difference between the two eco-
nomic populations? Use a two-tailed test with  
a 5 .05.

b. Construct an 80% confidence interval to estimate 
the size of the population mean difference.

17. Describe the homogeneity of variance assumption 
and explain why it is important for the independent-
measures t test.t test.t

18. If other factors are held constant, explain how each of 
the following influences the value of the independent-
measures t statistic, the likelihood of rejecting the null t statistic, the likelihood of rejecting the null t
hypothesis, and the magnitude of measures of effect size:
a. Increasing the number of scores in each sample
b. Increasing the variance for each sample

19. As noted on page 275, when the two population means 
are equal, the estimated standard error for the indepen-
dent-measures t test provides a measure of how much t test provides a measure of how much t
difference to expect between two sample means. For 
each of the following situations, assume that m1 5 m2

and calculate how much difference should be expected 
between the two sample means.
a. One sample has n 5 6 scores with SS 5 70 and the 

second sample has n 5 10 scores with SS 5 140.
b. One sample has n 5 6 scores with SS 5 310 and the 

second sample has n 5 10 scores with SS 5 530.
c. In Part b, the samples have larger variability (big-

ger SS values) than in Part a, but the sample sizes SS values) than in Part a, but the sample sizes SS
are unchanged. How does larger variability affect 
the magnitude of the standard error for the sample 
mean difference?

20. Two samples are selected from the same population. 
For each of the following, calculate how much differ-
ence is expected, on average, between the two sample 
means.
a. One sample has n 5 4, the second has n 5 6, and 

the pooled variance is 60.
b. One sample has n 5 12, the second has n 5 15, 

and the pooled variance is 60.
c. In Part b, the sample sizes are larger but the pooled 

variance is unchanged. How does larger sample 
size affect the magnitude of the standard error for 
the sample mean difference?

21. For each of the following, assume that the two 
samples are obtained from populations with the same 
mean, and calculate how much difference should be 
expected, on average, between the two sample means.
a. Each sample has n 5 4 scores with s2 5 68 for the 

first sample and s2 5 76 for the second. (Note: Be-
cause the two samples are the same size, the pooled 
variance is equal to the average of the two sample 
variances.)
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b. Now assume that each sample has n 5 15 partici-
pants and repeat the hypothesis test and calculation 
of Cohen’s d.

c. Comparing your answers for Parts a and b, describe 
how sample size influences the outcome of the 
hypothesis test and the measure of effect size.

24. In 1974, Loftus and Palmer conducted a classic study 
demonstrating how the language used to ask a ques-
tion can influence eyewitness memory. In the study, 
college students watched a film of an automobile 
accident and then were asked questions about what 
they saw. One group was asked, “About how fast were 
the cars going when they smashed into each other?” 
Another group was asked the same question except the 
verb was changed to “hit” instead of “smashed into.” 
The “smashed into” group reported significantly high-
er estimates of speed than the “hit” group. Suppose a 
researcher repeats this study with a sample of today’s 
college students and obtains the following results:

Estimated Speed

Smashed into Hit

n 5 15 n 5 15

M 5 40.8 M 5 34.9

SS 5 510 SS 5 414

a. Use an independent-measures t test with a 5 .05 
to determine whether there is a significant differ-
ence between the two conditions and compute r2r2r  to 
measure effect size.

b. Now, increase the variability by doubling the two 
SS values to SS values to SS SS1 5 1,020 and SS2 5 828. Repeat 
the hypothesis test and the measure of effect size.

c. Comparing your answers for Parts a and b, describe 
how sample variability influences the outcome of 
the hypothesis test and the measure of effect size.

b. Each sample has n 5 16 scores with s2 5 68 for the 
first sample and s2 5 76 for the second.

c. In Part b, the two samples are bigger than in Part a, 
but the variances are unchanged. How does sample 
size affect the size of the standard error for the 
sample mean difference?

22. For each of the following, calculate the pooled vari-
ance and the estimated standard error for the sample 
mean difference
a. The first sample has n 5 4 scores and a variance of 

s2 5 17, and the second sample has n 5 8 scores 
and a variance of s2 5 27.  

b. Now the sample variances are increased so that the 
first sample has n 5 4 scores and a variance of  
s2 5 68, and the second sample has n 5 8 scores 
and a variance of s2 5 108.

c. Comparing your answers for Parts a and b, how 
does increased variance influence the size of the 
estimated standard error?

23. It appears that there is some truth to the old adage 
“That which doesn’t kill us makes us stronger.” Seery, 
Holman, and Silver (2010) found that individuals with 
some history of adversity report better mental health 
and higher well-being compared to people with little 
or no history of adversity. In an attempt to examine 
this phenomenon, a researcher surveys a group of col-
lege students to determine the negative life events that 
they experienced in the past 5 years and their current 
feeling of well-being. For n 5 7 participants with 2 
or fewer negative experiences, the average well-being 
score is M 5 41 with s2 5 50, and for n 5 7 partici-
pants with 5 to 10 negative experiences the average 
score is M 5 48 with s2 5 62.
a. Use an independent-measures t hypothesis test with t hypothesis test with t

a 5 .05 to determine whether there is a significant 
difference between the two populations represented 
by these two samples and calculate Cohen’s d to 
measure effect size for the mean difference.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



301

11
CHAP TER

Tools You Will Need
The following items are con-
sidered essential background 
material for this chapter. If you 
doubt your knowledge of any of 
these items, you should review 
the appropriate chapter or section 
before proceeding.

 ■ Introduction to the t statistic t statistic t
(Chapter 9)

 ■ Estimated standard error
 ■ Degrees of freedom
 ■ t Distributiont Distributiont
 ■ Hypothesis tests with the 
t statistict statistict

 ■ Independent-measures design 
(Chapter 10)

11-1 Introduction to Repeated-Measures Designs

11-2 The t Statistic for a Repeated-Measures Research Design

11-3 Hypothesis Tests for the Repeated-Measures Design

11-4 Effect Size, Confidence Intervals, and the Role of Sample 
Size and Sample Variance for the Repeated-Measures t

11-5  Comparing Repeated- and Independent-Measures Designs

Summary

Focus on Problem Solving

Demonstrations 11.1 and 11.2

Problems

The t Test for Two 
Related Samples
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11-1 Introduction to Repeated-Measures Designs

LE A R N I N G O B J E C T IV E

1. De�ne a repeated-measures design, explain how it differs from an independent-
measures design, and identify examples of each.

In the previous chapter, we introduced the independent-measures research design as one 
strategy for comparing two treatment conditions or two populations. The independent-
measures design is characterized by the fact that two separate samples are used to obtain 
the two sets of scores that are to be compared. In this chapter, we examine an alternative 
strategy known as a repeated-measures design, or a within-subjects design. With a repeat-
ed-measures design, one group of participants is measured in two different treatment con-
ditions so there are two separate scores for each individual in the sample. For example, a 
group of patients could be measured before therapy and then measured again after therapy. 
Or, response time could be measured in a driving simulation task for a group of individuals 
who are first tested when they are sober and then tested again after two alcoholic drinks. In 
each case, the same variable is being measured twice for the same set of individuals; that 
is, we are literally repeating measurements on the same sample. 

A research design that uses the same group of individuals in all of the different 
treatment conditions is called a repeated-measures design or a within-subject 
design.

In a repeated-measures design comparing two treatments each participant is measured 
twice, once in Treatment #1 and once in Treatment #2, to produce the two groups of scores 
that will be used to compare the treatments. An example of the data from a repeated mea-
sures design is shown in Table 11.1. Notice that the scores are organized as pairs corre-
sponding to the first and second scores for each participant. As a result, the first score for 
each individual is compared with the second score for that same individual to evaluate the 
difference between the two treatments.

The main advantage of a repeated-measures study is that it uses exactly the same indi-
viduals in all treatment conditions. Thus, there is no risk that the participants in one treat-
ment are substantially different from the participants in another. With an independent-mea-
sures design, on the other hand, there is always a risk that the results are biased because the 
individuals in one sample are systematically different (smarter, faster, more extroverted, 
and so on) than the individuals in the other sample. At the end of this chapter, we present a 

TA B L E  1 1 .1

Participant
Treatment #1  

First Score
Treatment #2 
Second Score

#1 12 15 d the 2 scores for 
one participant#2 10 14

#3 15 17
#4 17 17
#5 12 18

An example of the data from a repeated-measures study using n 5 5  
participants to evaluate the difference between two treatments.
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more detailed comparison of repeated-measures studies and independent-measures studies, 
considering the advantages and disadvantages of both types of research.

Now we will examine the statistical techniques that allow a researcher to use the sample 
data from a repeated-measures study to draw inferences about the general population.

LO1 1. In a repeated-measures study, the same group of individuals participates in all 
of the treatment conditions. Which of the following situations is not an exam-
ple of a repeated-measures design?

a. A researcher would like to study the effect of practice on performance.

b. A researcher would like to compare individuals from two different populations.

c. The effect of a treatment is studied in a small group of individuals with a The effect of a treatment is studied in a small group of individuals with a The ef
rare disease by measuring their symptoms before and after treatment.

d. A developmental psychologist examines how behavior unfolds by observing 
the same group of children at different ages.

LO1 2. A researcher conducts a research study comparing two treatment conditions 
and obtains 20 scores in each treatment. If the researcher used a repeated-mea-
sures design, then how many subjects participated in the research study?

a. 10

b. 20

c. 21

d. 40

LO1 3. For an experiment comparing two treatment conditions, an independent-
measures design would obtain ____ score(s) for each subject and a repeated-
measures design would obtain ____ score(s) for each subject.

a. 1, 1

b. 1, 2

c. 2, 1

d. 2, 2

1. b 2. b 3. b

LE A R N I N G C H E C K

A N S W E R S

11-2 The t Statistic for a Repeated-Measures Research Design

LE A R N I N G O B J E C T IV E S

2. Describe the data (difference scores) that are used for the repeated-measures Describe the data (difference scores) that are used for the repeated-measures Describe the data (dif t
statistic.

3. Determine the hypotheses for a repeated-measures t test.t test.t

4. Describe the structure of the repeated-measures t statistic, including the estimated t statistic, including the estimated t
standard error and the degrees of freedom, and explain how the formula is related 
to the single-sample t.  

5. Calculate the estimated standard error for the mean of the difference scores and Calculate the estimated standard error for the mean of the difference scores and Calculate the estimated standard error for the mean of the dif
explain what it measures.
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The t statistic for a repeated-measures design is structurally similar to the other t statistic for a repeated-measures design is structurally similar to the other t t statistics t statistics t
we have examined. As we shall see, it is essentially the same as the single-sample t statistic t statistic t
covered in Chapter 9. The major distinction of the repeated-measures t is that it is based on t is that it is based on t
difference scores rather than raw scores (X values). In this section, we examine difference X values). In this section, we examine difference X
scores and develop the t statistic for repeated-measures designs. t statistic for repeated-measures designs. t

■ Difference Scores: The Data for a Repeated-Measures Study
Many over-the-counter cold medications include the warning “may cause drowsiness.” 
Table 11.2 shows an example of data from a study that examines this phenomenon. Note 
that there is one sample of n 5 4 participants, and that each individual is measured twice. 
The first score for each person (X1) is a measurement of reaction time before the medication 
was administered. The second score (X2X2X ) measures reaction time one hour after taking the 
medication. Because we are interested in how the medication affects reaction time, we have 
computed the difference between the first score and the second score for each individual. 
The difference scores, or D values, are shown in the last column of the table. Notice that the 
difference scores measure the amount of change in reaction time for each person. Typically, 
the difference scores are obtained by subtracting the first score (before treatment) from the 
second score (after treatment) for each person:

difference score difference score dif 5 D 5 X2X2X 2 X1 (11.1)

Note that the sign of each D score tells you the direction of the change. Person A, for 
example, shows a decrease in reaction time after taking the medication (a negative change), 
but person B shows an increase (a positive change).

The sample of difference scores (D values) serves as the sample data for the hypothesis 
test and all calculations are done using the D scores. To compute the t statistic, for example, t statistic, for example, t
we use the number of D scores (n) as well as the mean for the sample of D scores (MDMDM ) and 
the value of SS for the sample of SS for the sample of SS D scores.

■ The Hypotheses for a Repeated-Measures t Test
The researcher’s goal is to use the sample of difference scores to answer questions about 
the general population. In particular, the researcher would like to know whether there is 
any difference between the two treatment conditions for the general population. Note that 
we are interested in a population of difference scores. That is, we would like to know what 
would happen if every individual in the population were measured in two treatment condi-
tions (X1 and X2X2X ) and a difference score (D) were computed for everyone. Specifically, we 
are interested in the mean for the population of difference scores. We identify this popula-
tion mean difference with the symbol mD (using the subscript letter D to indicate that we 
are dealing with D values rather than X scores).X scores).X

Because this new 
hypothesis test compares 
two sets of scores that 
are related to each 
other (they come from 
the same group of 
individuals), it often 
is called the t test for 
two related samples, 
in contrast to the t test 
for two independent 
samples described in 
Chapter 10.

Person Before Medication (XBefore Medication (XBefore Medication ( 1) After Medication (XAfter Medication (XAfter Medication ( 2X2X ) Difference D

A 215 210 −5
B 221 242 21
C 196 219 23
D 203 228 25

∑D = 64

M
D

M
D

M 5
oD

n
5

64

4
5  16

TA B L E  1 1 . 2
Reaction time measure-
ments taken before and 
after taking an over-the-
counter cold medication.

Note that MDMDM  is the 
mean for the sample of 
D scores.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



As always, the null hypothesis states that for the general population there is no effect, 
no change, or no difference. For a repeated-measures study, the null hypothesis states that 
the mean difference for the general population is zero. In symbols,

H0H0H : mD 5 0

Again, this hypothesis refers to the mean for the entire population of difference scores. 
Although the population mean is zero, the individual scores in the population are not 
all equal to zero. Thus, even when the null hypothesis is true, we still expect some indi-
viduals to have positive difference scores and some to have negative difference scores. 
However, the positives and negatives are unsystematic and, in the long run, balance out 
to mD 5 0. Also note that a sample selected from this population will probably not have a 
mean exactly equal to zero. As always, there will be some error between a sample mean 
and the population mean, so even if mD 5 0 (H0H0H  is true), we do not expect MDMDM  to be exactly 
equal to zero.

The alternative hypothesis states that there is a treatment effect that causes the scores in 
one treatment condition to be systematically higher (or lower) than the scores in the other 
condition. In symbols,

H1: mD ? 0

According to H1, the difference scores for the individuals in the population tend to be sys-
tematically positive (or negative), indicating a consistent, predictable difference between 
the two treatments.  

■ The Repeated-Measures t Statistic 
Figure 11.1 shows the general situation that exists for a repeated-measures hypothesis test. 
You may recognize that we are facing essentially the same situation that we encountered in 
Chapter 9. In particular, we have a population for which the mean and the standard deviation 

mD

Population of
diffediffedif rence scores

= ?

Sample of
diffediffedif rence scores

Subject

A
B
C
D

I II

10
15
12
11

14
13
15
12

D

4
22

3
1

F I G U R E  1 1 .1 
A sample of n = 4 people is 
selected from the population. Each 
individual is measured twice, once 
in treatment I and once in treat-
ment II, and a difference score, 
D is computed for each individual. 
This sample of difference scores 
is intended to represent the 
population. Note that we are using 
a sample of difference scores to 
represent a population of differ-
ence scores. Note that the mean 
for the population of difference 
scores is unknown. The null hy-
pothesis states that there is 
no consistent or systematic 
difference between the two 
treatment conditions, so the 
population mean difference is 
μD = 0.

SECTION 11-2 | The t Statistic for a Repeated-Measures Research Designt Statistic for a Repeated-Measures Research Designt 305
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are unknown, and we have a sample that will be used to test a hypothesis about the unknown 
population. In Chapter 9, we introduced the single-sample t statistic, which allowed us to t statistic, which allowed us to t
use a sample mean as a basis for testing hypotheses about an unknown population mean. 
This t-statistic formula will be used again here to develop the repeated-measures t test. To t test. To t
refresh your memory, the single-sample t statistic (Chapter 9) is defined by the formulat statistic (Chapter 9) is defined by the formulat

t 5
M 2 m

sM

In this formula, the sample mean, M, is calculated from the data, and the value for the popu-
lation mean, m, is obtained from the null hypothesis. The estimated standard error, sM, is 
also calculated from the data and provides a measure of how much difference is reasonable 
to expect between a sample mean and the population mean.

For the repeated-measures design, the sample data are difference scores and are identi-
fied by the letter D, rather than X. Therefore, we will use Ds in the formula to emphasize 
that we are dealing with difference scores instead of X values. Also, the population mean X values. Also, the population mean X
that is of interest to us is the population mean difference (the mean amount of change for 
the entire population), and is identified by the symbol mD. With these simple changes, the t
formula for the repeated-measures design becomes

t 5
MDMDM 2 mD

sMDMDM
(11.2)

In this formula, the estimated standard error, sMDMDM , is computed in exactly the same way as it 
is computed for the single-sample t statistic. To calculate the estimated standard error, the t statistic. To calculate the estimated standard error, the t
first step is to compute the variance (or the standard deviation) for the sample of D scores. 

s2 5
SS

n 2 1
5

SS

dfdfd
or s 5ÎSSÎdfdfdÎ

The estimated standard error for MDMDM  is then computed using the sample variance (or sam-
ple standard deviation) and the sample size, n.

sMDMDM 5Îs2Î nÎ or sMDMDM 5
s

ÏnÏnÏÏ
(11.3)

The following example is an opportunity to test your understanding of variance and 
estimated standard error for the repeated-measures t statistic.t statistic.t

A repeated-measures study with a sample of n 5 10 participants produces a mean differ-
ence of MDMDM 5 5.5 points with SS 5 360 for the difference scores. For these data, find the 
variance for the difference scores and the estimated standard error for the sample mean. 
You should obtain a variance of 40 and an estimated standard error of 2. ■

Notice that all of the calculations are done using the difference scores (the D scores) and 
that there is only one D score for each subject. With a sample of n participants, the number 
of D scores is n, and the t statistic has t statistic has t df 5 n 2 1. Remember that n refers to the number 
of D scores, not the number of X scores in the original data.X scores in the original data.X

You should also note that the repeated-measures t statistic is conceptually similar to the 
t statistics we have previously examined:t statistics we have previously examined:t

t 5
sample statistic 2 population parameter

estimated standard error

In this case, the sample data are represented by the mean for the sample of difference scores 
(MDMDM ), the population parameter is the value predicted by H0H0H  (mD 5 0), and the amount of 
sampling error is measured by the standard error for the sample mean difference (sMDMDM ).

E X A M P L E  1 1 . 1
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LO2 1. What is the mean for the difference scores for the following data from a reWhat is the mean for the difference scores for the following data from a reWhat is the mean for the dif -
peated-measures study? 

a. 5

b. 6

c. 11

d. 44

LO3 2. Which of the following is the correct statement of the null hypothesis for a 
repeated-measures hypothesis test?

a. MDMDM 5 0

b. mD 5 0

c. m1 5 m2

d. M1 5 M2M2M

LO4 3. Which of the following accurately describes the relationship between the 
repeated-measures t statistic and the single-sample t statistic and the single-sample t t statistic?t statistic?t

a. Each uses one sample mean.

b. Each uses one population mean.

c. Each uses one sample variance to compute the standard error.

d. All of the above.

LO5 4. What is the value for the estimated standard error for a set of n 5 9 difference 
scores with SS 5 72?

a. 72

b. 9

c. 3

d. 1

1. b 2. b 3. d 4. d

LE A R N I N G C H E C K

A N S W E R S

I II

5 13

2 10

6 6

7 15

11-3 Hypothesis Tests for the Repeated-Measures Design

LE A R N I N G O B J E C T IV E S

6. Conduct a repeated-measures t test to evaluate the signi�cance of the population t test to evaluate the signi�cance of the population t
mean difference using the data from a repeated-measures study comparing two 
treatment conditions.

7. Conduct a directional (one-tailed) hypothesis test using the repeated-measures 
t statistic.t statistic.t

In a repeated-measures study, each individual is measured in two different treatment condi-
tions and we are interested in whether there is a systematic difference between the scores in 
the first treatment condition and the scores in the second treatment condition. A difference 
score (D value) is computed for each person and the hypothesis test uses the difference 
scores from the sample to evaluate the overall mean difference, mD, for the entire popula-
tion. The hypothesis test with the repeated-measures t statistic follows the same four-step t statistic follows the same four-step t
process that we have used for other tests. The complete hypothesis-testing procedure is 
demonstrated in Example 11.2.
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It’s the night before an exam. It is getting late and you are trying to decide whether to study 
or to sleep. There are obvious advantages to studying, especially if you feel that you do not 
have a good grasp of the material to be tested. On the other hand, a good night’s sleep will 
leave you better prepared to deal with the stress of taking an exam. “To study or to sleep?” 
was the question addressed by a recent research study (Gillen-O’Neel, Huynh, & Fuligni, 
2013). The researchers started with a sample of 535 ninth-grade students and followed up 
when the students were in the tenth and twelfth grades. Each year the students completed 
a diary every day for two weeks, recording how much time they spent studying outside of 
school and how much time they slept the night before. The students also reported the occur-
rence of academic problems each day such as “did not understand something taught in class” 
and “did poorly on a test, quiz, or homework.” The primary result from the study is that the 
students reported more academic problems following nights with less-than-average sleep 
than they did after nights with more-than-average sleep, especially for the older students.  

Recently, a researcher attempted to replicate the study using a sample of n 5 8 college 
freshmen and obtained the data shown in Table 11.3. 

State the hypotheses, and select the alpha level.

H0H0H : mD 5 0 (There is no difference between the two conditions.)

H1: mD ? 0 (There is a difference.)

For this test, we use a 5 .05

Locate the critical region. For this example, n 5 8, so the t statistic has t statistic has t df 5 n 2 1 5 7. 
For a 5 .05, the critical value listed in the t distribution table is t distribution table is t 62.365. 

Calculate the t statistic.t statistic.t Table 11.3 shows the sample data and the calculations of 
MDMDM 5 4 and SS 5 112. Note that all calculations are done with the difference scores. As we 
have done with the other t statistics, we present the calculation of the t statistics, we present the calculation of the t t statistic as a three-t statistic as a three-t
step process.

First, compute the sample variance  

s2 5
SS

n 2 1
5

112

7
5 16

E X A M P L E  1 1 . 2

S T E P  1

S T E P  2

S T E P  3

TA B L E  1 1 . 3
Academic problems for 
students after a night of 
below-average or above-
average sleep.

Participant
Above-Average 

Sleep
Below-Average 

Sleep D D2

A 7 10 3 9
B 8 7 21 1
C 4 14 10 100
D 6 13 7 49
E 3 11 8 64
F 9 10 1 1
G 4 4 0 0
H 7 11  4 16

∑D = 32 ∑D2 = 240

MDMDM 5
32

8
5 4 SSDSDS 5 oD2 2

soDd2

n
5 240 2

s32d2

8
5 112
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Next, use the sample variance to compute the estimated standard error.

sMDMDM 5Îs2Î nÎ 5Î16Î 8Î 5 1.41

Finally, use the sample mean (MDMDM ) and the hypothesized population mean (mD) along with 
the estimated standard error to compute the value for the t statistic.t statistic.t

t 5
MDMDM 2 mD

sMDMDM
5

4 2 0

1.41
5 2.84

Make a decision. The t value we obtained is beyond the critical value of t value we obtained is beyond the critical value of t 12.365. The 
researcher rejects the null hypothesis and concludes that the amount of sleep at night has a 
signi�cant effect on academic problems the following day. ■

■ Directional Hypotheses and One-Tailed Tests
In many repeated-measures studies, the researcher has a specific prediction concerning the 
direction of the treatment effect. For example, in the study described in Example 11.2, the 
researcher could predict that academic problems will be greater when a student has less 
than average sleep the previous night. This kind of directional prediction can be incorpo-
rated into the statement of the hypotheses, resulting in a directional, or one-tailed, hypoth-
esis test. The following example demonstrates how the hypotheses and critical region are 
determined for a directional test.

We will reexamine the experiment presented in Example 11.2. The researcher is using 
a repeated-measures design to investigate how academic problems are influenced by the 
amount of sleep the night before. The researcher predicts that academic problems will in-
crease when the participants have less than average sleep the previous night.

State the hypotheses and select the alpha level. For this example, the researcher 
predicts that academic problems increase after participants get less-than-normal sleep. On 
the other hand, the null hypothesis states that academic problems will not increase but rather 
will be unchanged or even decreased after nights with less-than-average sleep. In symbols,

H0H0H : mD # 0 (There is no increase with less sleep.)

The alternative hypothesis says that the treatment does work. For this example, H1 says that 
having less sleep will increase academic problems.

H1: mD . 0 (Academic problems are increased.) 

We use a 5 .05.

Locate the critical region. As we demonstrated with the independent-measures t stat stat -
tistic (page 280), the critical region for a one-tailed test can be located using a two-stage 
process. Rather than trying to determine which tail of the distribution contains the critical 
region, you �rst look at the sample mean difference to verify that it is in the predicted 
direction. If not, then the treatment clearly did not work as expected and you can stop the 
test. If the change is in the correct direction, then the question is whether it is large enough 
to be signi�cant. For this example, change is in the predicted direction (the researcher 
predicted increased problems and the sample mean shows an increase.) With n 5 8, we 
obtain df 5 7 and a critical value of t 5 1.895 for a one-tailed test with a 5 .05. Thus, 
any t statistic beyond 1.895 (positive or negative) is suf�cient to reject the null hypothesis.t statistic beyond 1.895 (positive or negative) is suf�cient to reject the null hypothesis.t

Compute the t statistic.t statistic.t We calculated the t statistic in Example 11.2, and obtained t statistic in Example 11.2, and obtained t t 5 2.84.

S T E P  4

E X A M P L E  1 1 . 3

S T E P  1

S T E P  2

S T E P  3
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Make a decision. The obtained t statistic is beyond the critical boundary. Therefore, we t statistic is beyond the critical boundary. Therefore, we t
reject the null hypothesis and conclude that less-than-average sleep signi�cantly increased 
academic problems the following day.  ■

■ Assumptions of the Related-Samples t Test
The repeated-measures t statistic requires two basic assumptions:t statistic requires two basic assumptions:t

1. The observations within each treatment condition must be independent (see page 216). 
Notice that the assumption of independence refers to the scores within each treatment. 
Inside each treatment, the scores are obtained from different individuals and should be 
independent of one another.

2. The population distribution of difference scores (D values) must be normal.

As before, the normality assumption is not a cause for concern unless the sample size 
is relatively small. In the case of severe departures from normality, the validity of the t test t test t
may be compromised with small samples. However, with relatively large samples (n . 30), 
this assumption can be ignored.

S T E P  4

11-4 Effect Size, Confidence Intervals, and the Role of Sample 
Size and Sample Variance for the Repeated-Measures t

LE A R N I N G O B J E C T IV E S

 8. Measure effect size for a repeated-measures Measure effect size for a repeated-measures Measure ef t test using either Cohen’s t test using either Cohen’s t d or d or d r2r2r , the 
percentage of variance accounted for.

 9. Use the data from a repeated-measures study to compute a con�dence interval 
describing the size of the population mean difference.

LO6 1. A researcher conducts a repeated-measures study comparing two treatment 
conditions with a sample of n 5 25 participants and obtains a t statistic of t statistic of t
t 5 2.21. Which of the following is the correct decision for a two-tailed test?

a. Reject the null hypothesis with a 5 .05 but fail to reject with a 5 .01

b. Reject the null hypothesis with either a 5 .05 or a 5 .01

c. Fail to reject the null hypothesis with either a 5 .05 or a 5 .01

d. Cannot determine the correct decision without more information

LO7 2. A researcher is using a one-tailed hypothesis test to evaluate the significance 
of a mean difference between two treatments in a repeated-measures study. If 
the treatment is expected to increase scores, then which of the following is the 
correct statement of the alternative hypothesis (H1)?

a. uD $ 0

b. uD # 0

c. uD . 0

d. uD , 0

1. a 2. c

LE A R N I N G C H E C K

A N S W E R S
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 10. Describe how the results of a repeated-measures t test and measures of effect size t test and measures of effect size t
are reported in the scienti�c literature.

 11. Describe how the outcome of a hypothesis test and measures of effect size using 
the repeated-measures t statistic are in�uenced by sample size and sample variance.t statistic are in�uenced by sample size and sample variance.t

 12. Describe how the consistency of the treatment effect is re�ected in the variabil-
ity of the difference scores and explain how this in�uences the outcome of a 
hypothesis test.

■ Effect Size for the Repeated-Measures t 
As we noted with other hypothesis tests, whenever a treatment effect is found to be sta-
tistically significant, it is recommended that you also report a measure of the absolute 
magnitude of the effect. The most commonly used measures of effect size are Cohen’s d
and r2r2r , the percentage of variance accounted for. The size of the treatment effect also can 
be described with a confidence interval estimating the population mean difference, mD. 
Using the data from Example 11.2, we will demonstrate how these values are calculated to 
measure and describe effect size.

Cohen’s d In Chapters 8 and 9 we introduced Cohen’s d as a standardized measure of d as a standardized measure of d
the mean difference between treatments. The standardization simply divides the popula-
tion mean difference by the standard deviation. For a repeated-measures study, Cohen’s d
is defined as

d 5
population mean difffff efef rence

standard deviation
5

mD

sD

Because the population mean and standard deviation are unknown, we use the sample 
values instead. The sample mean, MDMDM , is the best estimate of the actual mean difference, and 
the sample standard deviation (square root of sample variance) provides the best estimate 
of the actual standard deviation. Thus, we are able to estimate the value of d as follows:d as follows:d

estimated d 5
sample mean difffff efef rence

sample standard deviation
5

MDMDM

s
(11.4)

For the repeated-measures study in Example 11.2, the sample mean difference is MDMDM 5 4 
and the sample variance is s2 5 16.00, so the data produce

estimated d 5
MDMDM

s
5

4

Ï16Ï
5

4

4
5 1.00

Any value greater than 0.80 is considered to be a large effect, and these data are clearly in 
that category (see Table 8.2 on page 225).

The Percentage of Variance Accounted for, r2r2r Percentage of variance is computed 
using the obtained t value and the t value and the t df value from the hypothesis test, exactly as was done df value from the hypothesis test, exactly as was done df
for the single-sample t (see page 252) and for the independent-measures t (see page 252) and for the independent-measures t t (see page 285). t (see page 285). t
For the data in Example 11.2, we obtained t 5 2.84 with df 5 7, which produces

r2r2r 5
t2

t2t2t 1 dfdfd
5

s2.84d2

s2.84d2 1 7
5

8.07

15.07
5 0.536

For these data, 53.6% of the variance in the scores is explained by the amount of sleep. 
More specifically, the difference between below-average and above-average sleep pro-
duced consistently positive difference scores rather than differences near zero as predicted 
by the null hypothesis. Thus, the deviations from zero are largely explained by the differ-
ence between the two conditions.

Because we are measur-
ing the size of the effect 
and not the direction, 
it is customary to ignore 
a minus sign and report 
Cohen’s d as a positive 
value. 
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The following example is an opportunity to test your understanding of Cohen’s d and d and d r2r2r
to measure effect size for the repeated-measures t statistic.t statistic.t

A repeated-measures study with n 5 16 participants produces a mean difference of MDMDM 5 6 
points, SS 5 960 for the difference scores, and t 5 3.00. Calculate Cohen’s d and d and d r2r2r  to measure 
the effect size for this study. You should obtain d 5 6

8 5 0.75 and r2r2r 5 9
245 0.375. ■

■ Confidence Intervals for Estimating mD  
As noted in the previous two chapters, it is possible to compute a confidence interval as 
an alternative method for measuring and describing the size of the treatment effect. For 
the repeated-measures t, we use a sample mean difference, MDMDM , to estimate the population 
mean difference, mD. In this case, the confidence interval literally estimates the size of the 
treatment effect by estimating the population mean difference between the two treatment 
conditions.  

As with the other t statistics, the first step is to solve the t statistics, the first step is to solve the t t equation for the unknown t equation for the unknown t
parameter. For the repeated-measures t statistic, we obtaint statistic, we obtaint

m
D

5 M
D

M
D

M 6 tstst
M

D
M

D
M

(11.5)

In the equation, the values for MDMDM  and for sMDMDM , are obtained from the sample data. Although 
the value for the t statistic is unknown, we can use the degrees of freedom for the t statistic is unknown, we can use the degrees of freedom for the t t statistic t statistic t
and the t distribution table to estimate the t distribution table to estimate the t t value. Using the estimated t value. Using the estimated t t and the known valt and the known valt -
ues from the sample, we can then compute the value of mD. The following example demon-
strates the process of constructing a confidence interval for a population mean difference.

In Example 11.2 we presented a research study demonstrating how the amount of sleep in-
fluenced academic problems the next day. In the study, a sample of n 5 8 college freshmen 
experienced significantly more academic problems following nights of less-than-average 
sleep compared to nights of above-average sleep. The mean difference between the two 
conditions was MDMDM 5 4 points and the estimated standard error for the mean difference was 
sMDMDM 5 1.41. Now, we construct a 95% confidence interval to estimate the size of the popula-
tion mean difference.

With a sample of n 5 8 participants, the repeated-measures t statistic has t statistic has t df 5 7. To 
have 95% confidence, we simply estimate that the t statistic for the sample mean differ t statistic for the sample mean differ t -
ence is located somewhere in the middle 95% of all the possible t values. According to the t values. According to the t
t distribution table, with t distribution table, with t df 5 7, 95% of the t values are located between t values are located between t t 5 12.365 and 
t 5 22.365. Using these values in the estimation equation, together with the values for the 
sample mean and the standard error, we obtain

m
D

5 M
D

M
D

M 6 tstst
M

D
M

D
M

5 4 6 2.365(1.41)

5 4 6 3.33

This produces an interval of values ranging from 4 2 3.33 5 0.67 to 4 1 3.33 5 7.33. 
Our conclusion is that for the general population, a night of below-average sleep instead 
of above-average sleep increases academic problems between 0.67 and 7.33 points. We are 
95% confident that the true mean difference is in this interval because the only value esti-
mated during the calculations was the t statistic, and we are 95% confident that thet statistic, and we are 95% confident that thet  t value  t value  t
is located in the middle 95% of the distribution. Finally note that the confidence interval is 
constructed around the sample mean difference. As a result, the sample mean difference, 
MDMDM 5 4 points, is located exactly in the center of the interval. ■

E X A M P L E  1 1 . 4

E X A M P L E  1 1 . 5
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As with the other confidence intervals presented in Chapters 9 and 10, the confidence 
interval for a repeated-measures t is influenced by a variety of factors other than the actual t is influenced by a variety of factors other than the actual t
size of the treatment effect. In particular, the width of the interval depends on the percent-
age of confidence used so that a larger percentage produces a wider interval. Also, the 
width of the interval depends on the sample size, so that a larger sample produces a nar-
rower interval. Because the interval width is related to sample size, the confidence interval 
is not a pure measure of effect size like Cohen’s d or d or d r2r2r . 

Finally, we should note that the 95% confidence interval computed in Example 11.5 
does not include the value mD 5 0. In other words, we are 95% confident that the popula-
tion mean difference is not mD 5 0. This is equivalent to concluding that a null hypothesis 
specifying that mD 5 0 would be rejected with a test using a 5 .05. If mD 5 0 were included 
in the 95% confidence interval, it would indicate that a hypothesis test would fail to reject 
H0H0H  with a 5 .05.

IN THE LITERATURE

Reporting the Results of a Repeated-Measures t Test
As we have seen in Chapters 9 and 10, the APA format for reporting the results of t tests t tests t
consists of a concise statement that incorporates the t value, degrees of freedom, alpha t value, degrees of freedom, alpha t
level, and effect size. One typically includes values for means and standard deviations, 
either in a statement or a table (Chapter 4). For Example 11.2, we observed a mean differ-
ence of MDMDM 5 4.00 with s 5 4.00. Also, we obtained a t statistic of t statistic of t t 5 2.84 with df 5 7, 
and our decision was to reject the null hypothesis at the .05 level of signi�cance. Finally, 
we measured effect size by computing the percentage of variance explained and obtained 
r2r2r 5 0.536. A published report of this study might summarize the results as follows:

Experiencing a night of below-average sleep increased academic problems the fol-
lowing day by an average of M 5 4.00 points with SD 5 4.00. The treatment effect 
was statistically signi�cant, t(7) 5 2.84, p , .05, r2r2r 5 0.536.

When the hypothesis test is conducted with a computer program, the printout typi-
cally includes an exact probability for the level of signi�cance. The p-value from the 
printout is then stated as the level of signi�cance in the research report. For example, 
the data from Example 11.2 produced a signi�cance level of p 5 .025, and the results 
would be reported as “statistically signi�cant, t(7) 5 2.84, p 5 .017, r2r2r 5 0.536.” Occa-
sionally, a probability is so small that the computer rounds it off to 3 decimal points and 
produces a value of zero. In this situation you do not know the exact probability value 
and should report p , .001.

If the con�dence interval from Example 11.5 is reported as a description of effect 
size together with the results from the hypothesis test, it would appear as follows:

A night of below-average sleep compared to above-average sleep signi�cantly increased 
academic problems the next day, t(7) 5 2.84, p , .05, 95% CI [0.67, 7.33]. ■

■ Descriptive Statistics and the Hypothesis Test
Often, a close look at the sample data from a research study makes it easier to see the size of 
the treatment effect and to understand the outcome of the hypothesis test. In Example 11.2, 
we obtained a sample of n 5 8 participants who produce a mean difference of MDMDM 5 4.00 
points with a standard deviation of s 5 4 points. The sample mean and standard deviation 
describe a set of scores centered at MDMDM 5 4.00 with most of the scores located within 4 points 

SECTION 11-4 | Effect Size, Con�dence Intervals, and the Role of Sample Size 313
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of the mean. Figure 11.2 shows the actual set of difference scores that were obtained in Exam-
ple 11.2. In addition to showing the scores in the sample, we have highlighted the position of 
mD 5 0; that is, the value specified in the null hypothesis. Notice that the scores in the sample 
are displaced away from zero. Specifically, the data are not consistent with a population mean 
of mD 5 0, which is why we rejected the null hypothesis. In addition, note that the sample 
mean is located one standard deviation above zero. This distance corresponds to the effect 
size measured by Cohen’s d 5 1.00. For these data, the picture of the sample distribution (see 
Figure 11.2) should help you to understand the measure of effect size and the outcome of the 
hypothesis test.

■ Sample Variance and Sample Size in the Repeated-Measures 
t Test
In previous chapters we identified sample variability and sample size as two factors that 
can influence the outcome of a hypothesis test. Both of these factors affect the magnitude 
of the estimated standard error in the denominator of the t statistic. The standard error is t statistic. The standard error is t
inversely related to sample size (larger size leads to smaller error) and is directly related 
to sample variance (larger variance leads to larger error). As a result, a bigger sample pro-
duces a larger value for the t statistic (farther from zero) and increases the likelihood of t statistic (farther from zero) and increases the likelihood of t
rejecting H0H0H . Larger variance, on the other hand, produces a smaller value for the t statistic t statistic t
(closer to zero) and reduces the likelihood of finding a significant result.

Although variance and sample size both influence the hypothesis test, only variance 
has a large influence on measures of effect size such as Cohen’s d and d and d r2r2r ; larger variance 
produces smaller measures of effect size. Sample size, on the other hand, has no effect on 
the value of Cohen’s d and only a small influence on d and only a small influence on d r2r2r .

Variability as a Measure of Consistency for the Treatment Effect In a repeated-
measures study, the variability of the difference scores becomes a relatively concrete and 
easy-to-understand concept. In particular, the sample variability describes the consistency
of the treatment effect. For example, if a treatment consistently adds a few points to each 
individual’s score, then the set of difference scores will be clustered together with relatively 
small variability. This is the situation that we observed in Example 11.2 (see Figure 11.2) 

622 21 0 1 2 3 4 5 1110987 D

MDMDM 5 4

s 5 4

mD 5 0

F I G U R E  1 1 . 2 
The sample of difference scores from Example 11.2. The sample mean is MDMDM = 4 and the standard deviation is 
s = 4. The difference scores are consistently positive so that the sample mean is displaced away from mD 5 0 by a 
distance equal to one standard deviation. 
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in which nearly all of the participants had more academic problems in the below-average 
sleep condition. In this situation, with small variability, it is easy to see the treatment effect 
and it is likely to be significant.

Now consider what happens when the variability is large. Suppose that the sleep and 
academic problems study in Example 11.2 produced a sample of n 5 9 difference scores 
consisting of 13, 26, 10, 22, 24, 19, 23, 115 and 14. These difference scores also have 
a mean of MDMDM 5 4.00, but now the variability is substantially increased so that SS 5 512 
and the standard deviation is s 5 8. Figure 11.3 shows the new set of difference scores. 
Again, we have highlighted the position of mD 5 0, which is the value specified in the 
null hypothesis. Notice that the high variability means that there is no consistent treatment 
effect. Some participants have more academic problems with below-average sleep (the 
positive differences) and some less (the negative differences). In the hypothesis test, the 
high variability increases the size of the estimated standard error and results in a hypothesis 
test that produces t 5 1.41, which is not in the critical region. With these data, we would 
fail to reject the null hypothesis and conclude that the amount of sleep has no effect on 
academic problems the following day.

With small variability (see Figure 11.2), the 4-point treatment effect is easy to see and 
is statistically significant. With large variability (see Figure 11.3), the 4-point effect is not 
easy to see and is not significant. As we have noted several times in the past, large vari-
ability can obscure patterns in the data and reduces the likelihood of finding a significant 
treatment effect.

6222324252627 21 0 1 2 3 4 5 11 12 13 14 15 1610987 D

MDMDM 5 4

s 5 8

mD 5 0

F I G U R E  1 1 . 3 
A sample of difference scores with a mean of MDMDM 5 4 and a standard deviation of s 5 8. The difference scores do not show 
a consistent increase or decrease. Because there is no consistent treatment effect, the null hypothesis mD 5 0 is not rejected.

LO8 1. The results of a repeated-measures study with n 5 25 participants produce a 
mean difference of MDMDM 5 1.2 points with SS 5 96 for the difference scores and 
a t statistic of t 5 3.00. If the percentage of variance, r2r2r , is used to measure 
effect size, then what is the value of r2r2r ?

a. 9
33 5 0.27

b. 3
27 5 0.11

c. 1.2
2 5 0.60

d. 1.2
4 5 0.30

LO9 2. For a repeated-measures study with n 5 12 scores in each treatment, a researcher 
constructs an 80% confidence interval to describe the mean difference between 

LE A R N I N G C H E C K
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treatments. What value is at the center of the interval and what t values are used t values are used t
to construct the interval?

a. The sample mean difference is at the center andThe sample mean difference is at the center andThe sample mean dif t 5 61.363.

b. The sample mean difference is at the center andThe sample mean difference is at the center andThe sample mean dif t 5 61.316.

c. Zero is at the center and t 5 61.363.

d. Zero is at the center and t 5 61.316.

LO10 3. A research report describing the results from a repeated-measures study states, 
“The data showed a significant difference between treatments, t(22) 5 4.71,  
p , .01.”  From this report, what can you conclude about the outcome of the 
hypothesis test?

a. The test rejected the null hypothesis.

b. The test failed to reject the null hypothesis.The test failed to reject the null hypothesis.The test f

c. The test resulted in a Type I error.

d. The test resulted in a Type II error.

LO11 4. A repeated-measures study finds a mean difference of A repeated-measures study finds a mean difference of A repeated-measures study f MDMDM 5 5 points between 
two treatment conditions. Which of the following sample characteristics is most 
likely to produce a significant t statistic for the hypothesis test?

a. A large sample size (n) and a large variance

b. A large sample size (n) and a small variance

c. A small sample size (n) and a large variance

d. A small sample size (n) and a small variance

LO12 5. If the results of a repeated-measures study show that nearly all of the partici-
pants score around 5 points higher in Treatment A than in Treatment B, then 
which of the following accurately describes the data?

a. The variance of the difference scores is small and the likelihood of a signi�-
cant result is low.

b. The variance of the difference scores is small and the likelihood of a signi�-
cant result is high.

c. The variance of the difference scores is large and the likelihood of a signi�-
cant result is low.

d. The variance of the difference scores is large and the likelihood of a signi�-
cant result is high.

1. a 2. a 3. a 4. b 5. b

11-5 Comparing Repeated- and Independent-Measures Designs

LE A R N I N G O B J E C T IV E S

 13. Describe the advantages and disadvantages of choosing a repeated-measures 
design instead of an independent-measures design to compare two treatment con-
ditions, and with that information in mind, evaluate the situations in which each 
design would be more appropriate.

 14. De�ne a matched-subjects design and explain how it differs from repeated-mea-
sures and independent-measures designs.

A N S W E R S
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■ Repeated-Measures versus Independent-Measures Designs
In many research situations, it is possible to use either a repeated-measures design or an 
independent-measures design to compare two treatment conditions. The independent-mea-
sures design would use two separate samples (one in each treatment condition) and the 
repeated-measures design would use only one sample with the same individuals participat-
ing in both treatments. The decision about which design to use is often made by consider-
ing the advantages and disadvantages of the two designs. In general, the repeated-measures 
design has most of the advantages.

Number of Subjects A repeated-measures design typically requires fewer subjects 
than an independent-measures design. The repeated-measures design uses the subjects 
more efficiently because each individual is measured in both of the treatment conditions. 
This can be especially important when there are relatively few subjects available (for ex-
ample, when you are studying a rare species or individuals in a rare profession).

Study Changes over Time The repeated-measures design is especially well suited for 
studying learning, development, or other changes that take place over time. Remember 
that this design often involves measuring individuals at one time and then returning to 
measure the same individuals at a later time. In this way, a researcher can observe behav-
iors that change or develop over time.

Individual Differences The primary advantage of a repeated-measures design is that 
it reduces or eliminates problems caused by individual differences. Individual differences
are characteristics such as age, IQ, gender, and personality that vary from one individual to 
another. These individual differences can influence the scores obtained in a research study, 
and they can affect the outcome of a hypothesis test. Consider the data in Table 11.4. The 
first set of data represents the results from a typical independent-measures study and the 
second set represents a repeated-measures study. Note that we have identified each partici-
pant by name to help demonstrate the effects of individual differences.

For the independent-measures data, note that every score represents a different person. 
For the repeated-measures study, on the other hand, the same participants are measured in 
both of the treatment conditions. This difference between the two designs has some impor-
tant consequences.

1. We have constructed the data so that both research studies have exactly the same 
scores and they both show the same 5-point mean difference between treatments. 

Independent-Measures Study 
(2 separate samples)

Repeated-Measures Study (same sample 
in both treatments)

Treatment 1 Treatment 2 Treatment 1 Treatment 2 D

(John) X = 18
(Mary) X = 27

(Bill) X = 33

(Sue) X = 15
(Tom) X = 20
(Dave) X = 28

(John) X = 18
(Mary) X = 27

(Bill) X = 33

(John) X = 15
(Mary) X = 20

(Bill) X = 28

−3
−7
−5

M = 26
SS = 114

M = 21
SS = 86

MDMDM = −5
SS = 8

Hypothetical data showing the results from an independent-measures study and a repeated-meas-
ures study. The two sets of data use exactly the same numerical scores and they both show the same 
5-point mean difference between treatments.

TA B L E  1 1 . 4
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In each case, the researcher would like to conclude that the 5-point difference 
was caused by the treatments. However, with the independent-measures design, 
there is always the possibility that the participants in Treatment 1 have different 
characteristics than those in Treatment 2. For example, the three participants in 
Treatment 1 may be more intelligent than those in Treatment 2 and their higher 
intelligence caused them to have higher scores. Note that this problem disappears 
with the repeated-measures design. Speci�cally, with repeated measures there is no 
possibility that the participants in one treatment are different from those in another 
treatment because the same participants are used in all the treatments.

2. Although the two sets of data contain exactly the same scores and have exactly 
the same 5-point mean difference, you should realize that they are very different 
in terms of the variance used to compute standard error. For the independent-
measures study, you calculate the SS or variance for the scores in each of the two SS or variance for the scores in each of the two SS
separate samples. Note that in each sample there are big differences between 
participants. In Treatment 1, for example, Bill has a score of 33 and John’s score 
is only 18. These individual differences produce a relatively large sample variance 
and a large standard error. For the independent-measures study, the standard error 
is 5.77, which produces a t statistic of t statistic of t t 5 0.87. For these data, the hypothesis test 
concludes that there is no signi�cant difference between treatments.

In the repeated-measures study, the SS and variance are computed for the dif-SS and variance are computed for the dif-SS
ference scores. If you examine the repeated-measures data in Table 11.4, you will 
see that the big differences between John and Bill that exist in Treatment 1 and 
in Treatment 2 are eliminated when you get to the difference scores. Because the 
individual differences are eliminated, the variance and standard error are dramati-
cally reduced. For the repeated-measures study, the standard error is 1.15 and the t
statistic is t 5 24.35. With the repeated-measures t, the data show a signi�cant dif-
ference between treatments. Thus, one big advantage of a repeated-measures study 
is that it reduces variance by removing individual differences, which increases the 
chances of �nding a signi�cant result.

■ Time-Related Factors and Order Effects
The primary disadvantage of a repeated-measures design is that the structure of the design 
allows for factors other than the treatment effect to cause a participant’s score to change 
from one treatment to the next. Specifically, in a repeated-measures design, each indi-
vidual is measured in two different treatment conditions, often at two different times. In 
this situation, outside factors that change over time may be responsible for changes in the 
participants’ scores. For example, a participant’s health or mood may change over time and 
cause a difference in the participant’s scores. Outside factors such as the weather can also 
change and may have an influence on participants’ scores. Because a repeated-measures 
study often takes place over time, it is possible that time-related factors (other than the two 
treatments) are responsible for causing changes in the participants’ scores.

Also, it is possible that participation in the first treatment influences the individual’s 
score in the second treatment. If the researcher is measuring individual performance, for 
example, the participants may gain experience during the first treatment condition, and 
this extra practice helps their performance in the second condition. In this situation, the 
researcher would find a mean difference between the two conditions; however, the dif-researcher would find a mean difference between the two conditions; however, the dif-researcher would find a mean difference between the two conditions; however, the dif
ference would not be caused by the treatments, instead it would be caused by practice 
effects. Changes in scores that are caused by participation in an earlier treatment are 
called order effects and can distort the mean differences found in repeated-measures 
research studies.
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Counterbalancing One way to deal with time-related factors and order effects is 
to counterbalance the order of presentation of treatments. That is, the participants are 
randomly divided into two groups, with one group receiving Treatment 1 followed by 
Treatment 2, and the other group receiving Treatment 2 followed by Treatment 1. The goal 
of counterbalancing is to distribute any outside effects evenly over the two treatments. For 
example, if practice effects are a problem, then half of the participants will gain experience 
in Treatment 1, which then helps their performance in Treatment 2. However, the other 
half will gain experience in Treatment 2, which helps their performance in Treatment 1. 
Thus, prior experience helps the two treatments equally.

Finally, if there is reason to expect strong time-related effects or strong order effects, your 
best strategy is not to use a repeated-measures design. Instead, use independent-measures 
so that each individual participates in only one treatment and is measured only one time.

■ The Matched-Subjects Design
Occasionally, researchers try to approximate the advantages of independent-measures and 
repeated-measures designs by using a technique known as matched subjects. A matched-sub-
jects design involves two separate samples, but each individual in one sample is matched one-
to-one with an individual in the other sample. Typically, the individuals are matched on one 
or more variables that are considered to be especially important for the study. For example, a 
researcher studying verbal learning might want to be certain that the two samples are matched 
in terms of IQ. In this case, a participant with an IQ of 120 in one sample would be matched 
with another participant with an IQ of 120 in the other sample. Although the participants in one 
sample are not identical to the participants in the other sample, the matched-subjects design at identical to the participants in the other sample, the matched-subjects design at identical
least ensures that the two samples are equivalent (or matched) with respect to a specific variable.

Notice that a matched-subjects design has characteristics of both an independent-mea-
sures design and a repeated-measures design. First, it uses a separate sample of participants in 
each of the two treatment conditions, which means that it literally is an independent-measures 
design. As a result, each participant is measured only one time in only one treatment condi-
tion and there is no risk of order effects or carry-over effects. At the same time, the matching 
process simulates a repeated-measures design because each individual in the first treatment 
is matched with an individual in the second treatment, and a difference score is computed for 
each matched pair. In a repeated-measures design, the matching is perfect because the same 
individual is used in both conditions. In a matched-subjects design the matching is based on 
the specific variable(s) that are matched. In each case, however, the data are used to compute 
difference scores and the hypothesis test for the matched-subjects design is the same as the t
test used for the repeated-measures design. As a result, both designs are able to measure the 
individual differences and remove them from the variance in the data.

Thus, matched-subjects designs have the advantages of both an independent- and a 
repeated-measures design without the disadvantages of either one. We should note, how-
ever, that a matched-subjects design is not the same as a repeated-measures design. The 
matched pairs of participants in a matched-subjects design are not really the same people. 
Instead, they are merely “similar” individuals with the degree of similarity limited to the 
variable(s) that are used for the matching process.  

In a matched-subjects study, each individual in one sample is matched with an 
individual in the other sample. The matching is done so that the two individuals are 
equivalent (or nearly equivalent) with respect to a speci�c variable (or variables) 
that the researcher would like to control.
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LO13 1. Which of the following possibilities is a concern with a repeated-measures 
study?

a. Negative values for the difference scores

b. Carry-over effects

c. Obtaining a mean difference that is due to individual differences rather than 
treatment differences

d. All of the other options are major concerns.

LO13 2. For which of the following situations would an independent-measures design 
have the maximum advantage over a repeated-measures design?

a. When individual differences are small and participating in one treatment is 
likely to produce a permanent change in the participant’s performance

b. When individual differences are small and participating in one treatment is 
not likely to produce a permanent change in the participant’s performance

c. When individual differences are large and participating in one treatment is 
likely to produce a permanent change in the participant’s performance

d. When individual differences are large and participating in one treatment is 
not likely to produce a permanent change in the participant’s performance

LO14 3. A matched-subjects study comparing two treatments with 10 scores in each 
treatment requires a total of ___ participants and measures ___ score(s) for 
each individual.

a. 10, 1

b. 10, 2

c. 20, 1

d. 20, 2

1. b 2. a 3. c

LE A R N I N G C H E C K

A N S W E R S

1. In a repeated-measures research study, the same 
sample of individuals is tested in all of the treatment 
conditions. This design literally repeats measurements 
on the same subjects. 

2. The repeated-measures t test begins by computing a dift test begins by computing a dift - test begins by computing a dif- test begins by computing a dif
ference between the first and second measurements for 
each subject (or the difference for each matched pair). 
The difference scores, or D scores, are obtained by

D 5 X2X2X 2 X1

The sample mean, MDMDM , and sample variance, s2, are 
used to summarize and describe the set of difference 
scores.

3. The formula for the repeated-measures t statistic ist statistic ist

t 5
M

D
M

D
M 2 m

D

s
M

D
M

D
M

In the formula, the null hypothesis specifies mD 5 0, 
and the estimated standard error is computed by

sMDMDM 5Îs2Î nÎ
4. For a repeated-measures design, effect size can be 

measured using either r2 (the percentage of vari-
ance accounted for) or Cohen’s d (the standardized d (the standardized d
mean difference). The value of r2 is computed the 
same for both independent and repeated-measures 
designs:

r2r2r 5
t2t2t

t2t2t 1 dfdfd

Cohen’s d is defined as the sample mean difference 
divided by standard deviation for both repeated- and 

S U M M A R Y
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independent-measures designs. For repeated-measures 
studies, Cohen’s d is estimated as

estimated d 5
M

D
M

D
M

s

5. An alternative method for describing the size of the 
treatment effect is to construct a confidence interval 
for the population mean difference, mD. The confi-
dence interval uses the repeated-measures t equation, t equation, t
solved for the unknown mean difference:

�
D

5 M
D

M
D

M 6 ts
M

D
M

D
M

First, select a level of confidence and then look up 
the corresponding t values. For example, for 95% 
confidence, use the range of t values that determine t values that determine t
the middle 95% of the distribution. The t values are t values are t
then used in the equation along with the values for the 
sample mean difference and the standard error, which 
are computed from the sample data.

6. A repeated-measures design may be preferred to an
independent-measures study when one wants to 
observe changes in behavior in the same subjects, 
as in learning or developmental studies. An impor-
tant advantage of the repeated-measures design is 
that it removes or reduces individual differences, 
which in turn lowers sample variability and tends 
to increase the chances for obtaining a significant 
result.

7. In a matched-subjects design the individuals in one 
sample are matched one-to-one with individuals in 
another sample. The matching is based on a variable 
(or variables) relevant to the study. The matched-sub-
jects design has elements of an independent-measures 
study and a repeated-measures study, and is intended 
to produce the advantages of both designs without the 
disadvantages. However, the quality of a matched-
subjects study is limited by the quality of the match-
ing process.

repeated-measures design (302)

within-subjects design (302)

difference scores (304)

estimated standard error for MDMDM (306)

repeated-measures t statistic (306) t statistic (306) t

individual differences (317)

order effects (318)

matched-subjects design (319)

KE Y TER M S

General instructions for using SPSS are presented in Appendix D. Following are detailed in-
structions for using SPSS to perform The Repeated-Measures t Testt Testt  presented in this chapter.

Data Entry

1. Enter the data into two columns (VAR0001 and VAR0002) in the data editor with the first 
score for each participant in the first column and the second score in the second column. 
The two scores for each participant must be in the same row.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on Paired-Samples T 
Test.

2. One at a time, highlight the column labels for the two data columns and click the arrow to 
move them into the Paired Variables box.

3. In addition to performing the hypothesis test, the program will compute a confidence in-
terval for the population mean difference. The confidence level is automatically set at 95% 
but you can select Options and change the percentage.

4. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the study in Example 11.2 examining how 
quality of sleep affects academic problems the following day (the program output is shown in 

SPSS ®
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Figure 11.4). The output includes a table of sample statistics with the mean and standard devia-
tion for each condition. A second table shows the correlation between the two sets of scores 
(correlations are presented in Chapter 15). The final table, which is split into two sections in 
Figure 11.4, shows the results of the hypothesis test, including the mean and standard deviation 
for the difference scores, the standard error for the mean, a 95% confidence interval for the 
mean difference, and the values for t, df, and the level of significance (the df, and the level of significance (the df p value for the test).  

FO CUS  O N  PRO B LE M  SO LVIN G

1. Once data have been collected, we must then select the appropriate statistical analy-
sis. How can you tell whether the data call for a repeated-measures t test? Look at the t test? Look at the t
experiment carefully. Is there only one sample of subjects? Are the same subjects tested a 
second time? If your answers are yes to both of these questions, then a repeated-measures 

Paired Samples Statistics

Paired Samples Correlations

Paired Samples Tested Samples Tested Samples T

VAR00001

VAR00002

VAR00001 & VAR00002

Pair 1

Pair 1

Pair 1 VAR00001 - VAR00002 –.65592 –2.828 7 .025

.844–.0838

8

8

2.13809

3.20713

.75593

1.13389

CorrelationN

Paired Differences

Sig.

Upper t df Sig. (2-tailed)

95% Confidence Interval
of the Difference

N

6.0000

10.0000

Mean Std. Deviation
Std. Error

Mean

t d

Paired Samples Tested Samples Tested Samples T

VAR00001 - VAR00002Pair 1 –7.344084.00000 1.41421–4.00000

Std. Deviation Lower

95% Confidence Interval
of the Difference

Paired Differences

Mean Std. Error Mean

F I G U R E  1 1 . 4 
The SPSS output for the repeated-measures hypothesis test in Example 11.2.
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t test should be done. There is only one situation in which the repeated-measures t test should be done. There is only one situation in which the repeated-measures t t can be t can be t
used for data from two samples, and that is for a matched-subjects study (page 319).

2. The repeated-measures t test is based on difference scores. In finding difference scores, be t test is based on difference scores. In finding difference scores, be t
sure you are consistent with your method. That is, you may use either X2X2X 2 X1 or X1 2 X2X2X
to find D scores, but you must use the same method for all subjects.

D E M O N S TR ATIO N  11.1

A REPEATED-MEASURES t TEST

A major oil company would like to improve its tarnished image following a large oil spill. Its 
marketing department develops a short television commercial and tests it on a sample of n 5 7 
participants. People’s attitudes about the company are measured with a short questionnaire, both 
before and after viewing the commercial. The data are as follows:

Person X1 (Before) X2X2X  (After) D (Difference)

A 15 15 0
B 11 13 12 SD 5 21
C 10 18 18
D 11 12 11 MDMDM 5 21

7 5 3.00
E 14 16 12
F 10 10 0 SS 5 74
G 11 19 18

Was there a significant change? Note that participants are being tested twice—once before 
and once after viewing the commercial. Therefore, we have a repeated-measures design.

State the hypotheses, and select an alpha level. The null hypothesis states that the com-
mercial has no effect on people’s attitude, or in symbols,

H0H0H : mD 5 0  (The mean difference is zero.)

The alternative hypothesis states that the commercial does alter attitudes about the company, or

H1: mD ? 0 (There is a mean change in attitudes.)

For this demonstration, we will use an alpha level of .05 for a two-tailed test.

Locate the critical region. Degrees of freedom for the repeated-measures t test are obt test are obt -
tained by the formula

df 5 n 2 1

For these data, degrees of freedom equal

df 5 7 2 1 5 6

The t distribution table is consulted for a two-tailed test with t distribution table is consulted for a two-tailed test with t a 5 .05 for df 5 6. The critical 
t values for the critical region are t values for the critical region are t t 5 62.447.

Compute the test statistic. Once again, we suggest that the calculation of the t statistic be t statistic be t
divided into a three-part process.

Variance for the D scores The variance for the sample of D scores is:

s2 5
SS

n 2 1
5

74

6
5 12.33

STEP 1

STEP 2

STEP 3
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Estimated standard error for MDEstimated standard error for MDEstimated standard error for M  The estimated standard error for the sample mean differ-
ence is computed as follows:

s
M

D
M

D
M

5Îs2ÎnÎ 5Î12.33Î 7Î 5 Ï1.76Ï 5 1.33

The repeated-measures t statistic Now we have the information required to calculate the t
statistic:

t 5
M

D
M

D
M 2 m

D

s
M

D
M

D
M

5
3 2 0

1.33
5 2.26

Make a decision about H0, and state the conclusion. The obtained t value is not ext value is not ext -
treme enough to fall in the critical region. Therefore, we fail to reject the null hypothesis. 
We conclude that the commercial did not produce a significant change in people’s attitudes, 
t(6) 5 2.26, p . .05, two-tailed. (Note that we state that p is greater than .05 because we 
failed to reject H0H0H .)

D E M O N S TR ATIO N  11. 2

EFFECT SIZE FOR THE REPEATREPEATREPEA ED-MEASURES t

We will estimate Cohen’s d and calculate d and calculate d r2r2r  for the data in Demonstration 11.1. The data pro-
duced a sample mean difference of MDMDM 5 3.00 with a sample variance of s2 5 12.33. Based 
on these values, Cohen’s d is

estimated d 5
mean difffff efef rence

standard deviation
5

M
D

M
D

M

s
5

3.00

Ï12.33Ï
5

3.00

3.51
5 0.86

The hypothesis test produced t 5 2.26 with df 5 6. Based on these values,

r2r2r 5
t2t2t

t2t2t 1 dfdfd
5

s2.26d2

s2.26d2 1 6
5

5.11

11.11
5 0.46 sor 46%d

STEP 4

PRO B LE M S

2. What is the defining characteristic of a repeated-mea-
sures or within-subjects research design?

3. A researcher conducts an experiment comparing two 
treatment conditions with 15 scores in each treatment 
condition.
a. If an independent-measures design is used, how 

many subjects are needed for the experiment?
b. If a repeated-measures design is used, how many 

subjects are needed for the experiment?

4. A repeated-measures and an independent-measures 
study both produce a t statistic with t statistic with t df 5 20. How 
many subjects participated in each experiment?

5. A sample of n 5 16 individuals participates in a 
repeated-measures study that produces a sample mean 
difference of MDMDM 5 6.45 with SS 5 960 for the differ-
ence scores.

1. For the each of the following studies determine 
whether a repeated-measures t test is the appropriate t test is the appropriate t
analysis. Explain your answers.
a. A researcher is examining the effect of violent 

video games on behavior by comparing aggressive 
behaviors for one group who just finished playing 
a violent game with another group who played a 
neutral game. 

b. A researcher is examining the effect of humor on 
memory by presenting a group of participants with 
a series of humorous and not humorous sentences 
and then recording how many of each type of sen-
tence is recalled by each participant. 

c. A researcher is evaluating the effectiveness of a 
new cholesterol medication by recording the cho-
lesterol level for each individual in a sample before 
they start taking the medication and again after 
eight weeks with the medication. 
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a. Calculate the standard deviation for the sample of 
difference scores. Briefly explain what is measured 
by the standard deviation.

b. Calculate the estimated standard error for the 
sample mean difference. Briefly explain what is 
measured by the estimated standard error.

6. Resenhoeft, Villa, and Wiseman (2008) conducted a 
study showing that a woman shown in a photograph 
was judged as less attractive when the photograph 
showed a visible tattoo compared to the same pho-
tograph with the tattoo removed. Suppose a similar 
experiment is conducted as a repeated-measures 
study. A sample of n 5 12 males looks at a set of 
30 photographs of women and rates the attractiveness 
of each woman using a 5-point scale (5 5 most posi-
tive). One photograph appears twice in the set, once 
with a tattoo and once with the tattoo removed. For 
each participant, the researcher records the difference 
between the two ratings of the same photograph. On 
average, the photograph without the tattoo is rated 
MDMDM 5 1.2 points higher than the photograph with the 
tattoo, with SS 5 33 for the difference scores. Does 
the presence of a visible tattoo have a significant 
effect on the attractiveness ratings? Use a two-tailed 
test with a 5 .05.

7. The following data are from a repeated-measures 
study examining the effect of a treatment by measur-
ing a group of n 5 9 participants before and after they 
receive the treatment.
a. Calculate the difference scores and MDMDM .
b. Compute SS, sample variance, and estimated stan-

dard error.
c. Is there a significant treatment effect? Use a 5 .05, 

two tails.

Participant Before Treatment After Treatment

A 8 7
B 7 5
C 6 6
D 7 6
E 9 7
F 8 5
G 5 4
H 9 4
I 7 4

8. When you get a surprisingly low price on a product 
do you assume that you got a really good deal or that 
you bought a low-quality product? Research indicates 
that you are more likely to associate low price and low 
quality if someone else makes the purchase rather than 
yourself (Yan & Sengupta, 2011). In a similar study, 
n 5 16 participants were asked to rate the quality of 
low-priced items under two scenarios: purchased by a 

friend or purchased yourself. The results produced a 
mean difference of MDMDM 5 2.6 and SS 5 135, with self-
purchases rated higher.
a. Is the judged quality of objects significantly differ-

ent for self-purchases than for purchases made by 
others? Use a two-tailed test with a 5 .05.

b. Compute Cohen’s d to measure the size of the d to measure the size of the d
treatment effect.

9. Masculine-themed words (such as competitive, inde-
pendent, analyze, strong) are commonly used in job re-
cruitment materials, especially for job advertisements 
in male-dominated areas (Gaucher, Friesen, & Kay, 
2010). The same study found that these words also 
make the jobs less appealing to women. In a similar 
study, female participants were asked to read a series 
of job advertisements and then rate how interesting or 
appealing the job appeared to be. Half of the advertise-
ments were constructed to include several masculine-
themed words and the others were worded neutrally. 
The average rating for each type of advertisement 
was obtained for each participant. For n 5 25 partici-
pants, the mean difference between the two types of 
advertisements is MDMDM 5 1.32 points (neutral ads rated 
higher) with SS 5 150 for the difference scores.
a. Is this result sufficient to conclude that there is a 

significant difference in the ratings for two types of 
advertisements? Use a two-tailed test with a 5 .05.

b. Compute r2r2r  to measure the size of the treatment 
effect.

c. Write a sentence describing the outcome of the 
hypothesis test and the measure of effect size as it 
would appear in a research report.

10. The stimulant Ritalin has been shown to increase atten-
tion span and improve academic performance in chil-
dren with ADHD (Evans et al., 2001). To demonstrate 
the effectiveness of the drug, a researcher selects a 
sample of n 5 20 children diagnosed with the disorder 
and measures each child’s attention span before and af-and measures each child’s attention span before and af-and measures each child’s attention span before and af
ter taking the drug. The data show an average increase 
of attention span of MDMDM 5 4.8 minutes with a variance 
of s2 5 125 for the sample of difference scores.
a. Is this result sufficient to conclude that Ritalin 

significantly improves attention span? Use a one-
tailed test with a 5 .05.

b. Compute the 80% confidence interval for the mean 
change in attention span for the population.

11. College athletes, especially males, are often per-
ceived as having very little interest in the academic 
side of their college experience. One common prob-
lem is class attendance. To address the problem of 
class attendance, a group of researchers developed 
and demonstrated a relatively simple but effec-
tive intervention (Bicard, Lott, Mills, Bicard, & 
Baylot-Casey, 2012). The researchers asked each 
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14. There is some evidence suggesting that you are likely 
to improve your test score if you rethink and change 
answers on a multiple-choice exam (Johnston, 1975). 
To examine this phenomenon, a teacher gave the same 
final exam to two sections of a psychology course. The 
students in one section were told to turn in their exams 
immediately after finishing, without changing any 
of their answers. In the other section, students were 
encouraged to reconsider each question and to change 
answers whenever they felt it was appropriate. Before 
the final exam, the teacher had matched 9 students in 
the first section with 9 students in the second section 
based on their midterm grades. For example, a student 
in the no-change section with an 89 on the midterm 
exam was matched with student in the change section 
who also had an 89 on the midterm. The difference be-
tween the two final exam grades for each matched pair 
was computed and the data showed that the students 
who were allowed to change answers scored higher by 
an average of MDMDM 5 7 points with SS 5 288. 
a. Do the data indicate a significant difference 

between the two conditions? Use a two-tailed test 
with a 5 .05.

b. Construct a 95% confidence interval to estimate the 
size of the population mean difference.

c. Write a sentence demonstrating how the results 
of the hypothesis test and the confidence interval 
would appear in a research report.

15. In Example 8.1 (page 200) we discussed a research 
study by Guéguen and Jacob (2012) showing that 
waitresses received significantly larger tips when 
they were wearing red T-shirts compared to other 
colors. The actual study used a repeated-measures 
design in which waitresses in five different restau-
rants wore the same T-shirt in six different colors 
(red, blue, green, yellow, black, and white) on dif-
ferent days during a six-week period. Each waitress 
recorded the average tip received while wearing red 
and the average while wearing another color and 
computed the difference between the two scores. 
A similar study also found that tips were higher 
when waitresses wore red, with a mean difference 
of MDMDM 5 32 cents for each $10 of restaurant bill 
for a sample of n 5 11 waitresses. If the difference 
scores had s2 5 539, are the data sufficient to decide 
that tips are significantly higher when waitresses 
wear red? Use a one-tailed test with a 5 .01.

16. Solve the following problems.
a. A repeated-measures study with a sample of n 5 16 

participants produces a mean difference of MDMDM 5 3 
with a standard deviation of s 5 4. Use a two-tailed 
hypothesis test with a 5 .05 to determine whether 
this sample provides evidence of a significant treat-
ment effect.

athlete to text his academic counselor “in class” as 
soon as he arrived at the classroom. The research-
ers found significantly better attendance after the 
students began texting. In a similar study, a researcher 
monitored class attendance for a sample of n 5 16 
male athletes during the first three weeks of the 
semester and recorded the number of minutes that 
each student was late to class. The athletes were then 
asked to begin texting their arrival at the classroom 
and the researcher continued to monitor attendance 
for another three weeks. For each athlete, the average 
lateness for the first three weeks and for the second 
three weeks were calculated, and the difference score 
was recorded. The data showed that lateness to class 
decreased by an average of MDMDM 5 21 minutes with
SS 5 2,940 when the students were texting.
a. Use a two-tailed test with a 5 .01 to determine 

whether texting produced a significant change in 
attendance.

b. Compute a 95% confidence interval to estimate the 
mean change in attendance for the population.

12. Callahan (2009) demonstrated that tai chi can signifi-
cantly reduce symptoms for individuals with arthritis. 
Participants were 18 years old or older with doctor-
diagnosed arthritis. Self-reports of pain and stiffness 
were measured at the beginning of an eight-week tai 
chi course and again at the end. Suppose that the data 
produced an average decrease in pain and stiffness of
MDMDM 5 8.5 points with a standard deviation of 21.5 for 
a sample of n 5 40 participants.
a. Use a two-tailed test with a 5 .05 to determine 

whether the tai chi had a significant effect on pain 
and stiffness.

b. Compute Cohen’s d to measure the size of the d to measure the size of the d
treatment effect.

13. Research results indicate that physically attractive 
people are also perceived as being more intelligent 
(Eagly, Ashmore, Makhijani, & Longo, 1991). As 
a demonstration of this phenomenon, a researcher 
obtained a set of 10 photographs, 5 showing men who 
were judged to be attractive and 5 showing men who 
were judged to be unattractive. The photographs were 
shown to a sample of n 5 25 college students and 
the students were asked to rate the intelligence of the 
person in the photo on a scale from 1 to 10. For each 
student, the researcher determined the average rating 
for the 5 attractive photos and the average for the 5 
unattractive photos, and then computed the difference 
between the two scores. For the entire sample, the 
average difference was MDMDM 5 2.7 (attractive photos 
rated higher) with s 5 2.00. Are the data sufficient 
to conclude that there was a significant difference in 
perceived intelligence for the two sets of photos? Use 
a two-tailed test with a 5 .05.
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After a brief rest, the two groups switched words 
and repeated the ice water plunge. Thus, all the 
participants experienced both conditions (swearing 
and neutral) with half swearing on their first plunge 
and half on their second. The data in the following 
table are representative of the results obtained in the 
study and represented the reports of pain level of 
n 5 9 participants.

Participant Neutral Word Swearing

A 9 7
B 9 8
C 9 5
D 4 5
E 10 8
F 9 4
G 6 5
H 10 10
I 6 2

a. Treat the data as if the scores are from an indepen-
dent-measures study using two separate samples, 
each with n 5 9 participants. Compute the pooled 
variance, the estimated standard error for the mean 
difference, and the independent-measures t statistic. t statistic. t
Using a 5 .05, is there a significant difference 
between the two sets of scores?

b. Now assume that the data are from a repeated-
measures study using the same sample of n 5 9 
participants in both treatment conditions. Com-
pute the variance for the sample of difference 
scores, the estimated standard error for the mean 
difference, and the repeated-measures t statistic. t statistic. t
Using a 5 .05, is there a significant difference 
between the two sets of scores? (You should find 
that the repeated-measures design substantially 
reduces the variance and increases the likelihood 
of rejecting H0H0H .)

21. The previous problem demonstrates that remov-
ing individual differences can substantially reduce 
variance and lower the standard error. However, this 
benefit only occurs if the individual differences are 
consistent across treatment conditions. In Problem 
20, for example, the participants with the highest 
scores in the neutral-word condition also had the 
highest scores in the swear-word condition. Simi-
larly, participants with the lowest scores in the first 
condition also had the lowest scores in the second 
condition. To construct the following data, we 
started with the scores in Problem 20 and scrambled 
the scores in Treatment 2 to eliminate the consis-
tency of the individual differences.

b. Now assume that the sample standard deviation is 
s 5 12 and repeat the hypothesis test.

c. Explain how the size of the sample standard devia-
tion influences the likelihood of finding a signifi-
cant mean difference.

17. Solve the following problems. 
a. A repeated-measures study with a sample of n 5 16 

participants produces a mean difference of MDMDM 5 4 
with a standard deviation of s 5 8. Use a two-tailed 
hypothesis test with a 5 .05 to determine whether 
it is likely that this sample came from a population 
with mD 5 0.

b. Now assume that the sample mean difference is 
MDMDM 5 10, and once again use a two-tailed hypoth-
esis test with a 5 .05 to determine whether it is 
likely that this sample came from a population with 
mD 5 0.

c. Explain how the size of the sample mean difference 
influences the likelihood of finding a significant 
mean difference.

18. A sample of difference scores from a repeated-
measures experiment has a mean of MDMDM 5 3 with a 
standard deviation of s 5 4.
a. If n 5 4, is this sample sufficient to reject the null 

hypothesis using a two-tailed test with a 5 .05?
b. Would you reject H0H0H  if n 5 16? Again, assume a 

two-tailed test with a 5 .05.
c. Explain how the size of the sample influences 

the likelihood of finding a significant mean 
difference.

19. Participants enter a research study with unique 
characteristics that produce different scores from 
one person to another. For an independent-measures 
study, these individual differences can cause prob-
lems. Identify the problems and briefly explain how 
they are eliminated or reduced with a repeated-
measures study.

20. Swearing is a common, almost reflexive, response 
to pain. Whether you knock your shin into the edge 
of a coffee table or smash your thumb with a ham-
mer, most of us respond with a streak of obscenities. 
One question, however, is whether swearing has 
any effect on the amount of pain that you feel. To 
address this issue, Stephens, Atkins, and Kings-
ton (2009) conducted an experiment comparing 
swearing with other responses to pain. In the study, 
participants were asked to place one hand in icy 
cold water for as long as they could bear the pain. 
Half of the participants were told to repeat their fa-
vorite swear word over and over for as long as their 
hands were in the water. The other half repeated a 
neutral word. The researchers recorded how long 
each participant was able to tolerate the ice water. 
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participants in both treatment conditions. Compute 
the variance for the sample of difference scores, 
the estimated standard error for the mean differ-
ence and the repeated-measures t statistic. Using t statistic. Using t
a 5 .05, is there a significant difference between 
the two sets of scores? (Because there no longer 
are consistent individual differences you should 
find that the repeated-measures t no longer reduces t no longer reduces t
the variance.)

22. Explain the difference between a matched-subjects 
design and a repeated-measures design.

23. A researcher conducts an experiment comparing two 
treatment conditions with 10 scores in each treatment 
condition.
a. If an independent-measures design is used, how 

many participants are needed for the study?
b. If a repeated-measures design is used, how many 

participants are needed for the study?
c. If a matched-subjects design is used, how many 

participants are needed for the study?

24. A repeated-measures, a matched-subjects, and an 
independent-measures study all produce a t statistic t statistic t
with df 5 16. How many participants were used in 
each study?

Participant Neutral Word Swearing

A 9 5

B 9 2

C 9 5

D 4 10

E 10 8

F 9 4

G 6 7

H 10 5

I 6 8

a. If the data were from an independent-measures 
study using two separate samples, each with n 5 9 
participants, what value would be obtained for the 
independent-measures t statistic. t statistic. t Note: The scores 
in each treatment, the sample means, and the SS 
values are the same as in Problem 20. Nothing has 
changed. With a 5 .05, is there a significant differ-
ence between the two treatment conditions?

b. Now assume that the data are from a repeated-
measures study using the same sample of n 5 9 
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12
CHAP TER

Tools You Will Need
The following items are con-
sidered essential background 
material for this chapter. If you 
doubt your knowledge of any of 
these items, you should review 
the appropriate chapter or section 
before proceeding.

 ■ Variability (Chapter 4)
 ■ Sum of squares
 ■ Sample variance
 ■ Degrees of freedom

 ■ Introduction to hypothesis 
testing (Chapter 8)

 ■ The logic of hypothesis testing
 ■ Uncertainty and errors in 

hypothesis testing  
 ■ Independent-measures t

statistic (Chapter 10)

12-1 Introduction (An Overview of Analysis of Variance)

12-2 The Logic of Analysis of Variance

12-3 ANOVA Notation and Formulas

12-4 Examples of Hypothesis Testing and Effect Size with ANOVA

12-5 Post Hoc Tests

12-6 More about ANOVA 

Summary

Focus on Problem Solving

Demonstrations 12.1 and 12.2

Problems

Introduction to Analysis  
of Variance
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12-1 Introduction (An Overview of Analysis of Variance)

LE A R N I N G O B J E C T IV E S  

1. Describe the terminology that is used for ANOVA, especially the terms factor and factor and factor
level, identify the hypotheses for this test, and identify each in the context of a 
research example.

2. Identify the circumstances in which you should use ANOVA instead of t tests to t tests to t
evaluate mean differences, and explain why.

3. Describe the F-ratio that is used in ANOVA and explain how it is related to the 
t statistic.t statistic.t

Analysis of variance (ANOVA) is a hypothesis-testing procedure that is used to evaluate 
mean differences between two or more treatments (or populations). As with all inferential 
procedures, ANOVA uses sample data as the basis for drawing general conclusions about 
populations. It may appear that ANOVA and t tests are simply two different ways of doing t tests are simply two different ways of doing t
exactly the same job: testing for mean differences. In some respects, this is true—both tests 
use sample data to test hypotheses about population means. However, ANOVA has a tre-
mendous advantage over t tests. Specifically, t tests. Specifically, t t tests are limited to situations in which there t tests are limited to situations in which there t
are only two treatments to compare. The major advantage of ANOVA is that it can be used 
to compare two or more treatments. Thus, ANOVA provides researchers with much greater 
flexibility in designing experiments and interpreting results.

Figure 12.1 shows a typical research situation for which ANOVA would be used. Note 
that the study involves three samples representing three populations. The goal of the analy-
sis is to determine whether the mean differences observed among the samples provide 
enough evidence to conclude that there are mean differences among the three populations. 
Specifically, we must decide between two interpretations:

1. There really are no differences between the populations (or treatments). The 
observed differences between the sample means are caused by random, unsystem-
atic factors (sampling error) that differentiate one sample from another.

2. The populations (or treatments) really do have different means, and these popula-
tion mean differences are responsible for causing systematic differences between 
the sample means.

Population 2
(Tr(Tr(T eatment 2)

Population 1
(Tr(Tr(T eatment 1)

Population 3
(Tr(Tr(T eatment 3)

m3m3m = ?m2 = ?m1 = ?

Sample 3Sample 2Sample 1
n 5 15

M 5 23.1
SS 5 114

n 5 15
M 5 28.5
SS 5 130

n 5 15
M 5 20.8
SS 5 101

F I G U R E  1 2 .1
A typical situation in 
which ANOVA would 
be used. Three separate 
samples are obtained to 
evaluate the mean differ-
ences among three popu-
lations (or treatments) 
with unknown means.
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You should recognize that these two interpretations correspond to the two hypotheses (null 
and alternative) that are part of the general hypothesis-testing procedure.

■ Terminology in Analysis of Variance
Before we continue, it is necessary to introduce some of the terminology that is used to 
describe the research situation shown in Figure 12.1. Recall (from Chapter 1) that when a 
researcher manipulates a variable to create the treatment conditions in an experiment, the 
variable is called an independent variable. For example, Figure 12.1 could represent a study 
examining driving performance under three different telephone conditions: driving with 
no phone, talking on a hands-free phone, and talking on a hand-held phone. Note that the 
three conditions are created by the researcher. On the other hand, when a researcher uses 
a nonmanipulated variable to designate groups, the variable is called a quasi-independent 
variable. For example, the three groups in Figure 12.1 could represent six-year-old, eight-
year-old, and ten-year-old children. In the context of ANOVA, an independent variable or a 
quasi-independent variable is called a factor. Thus, Figure 12.1 could represent an experi-
mental study in which the telephone condition is the factor being evaluated, or it could 
represent a nonexperimental study in which age is the factor being examined.

In analysis of variance, the variable (independent or quasi-independent) that desig-
nates the groups being compared is called a factor.

In addition, the individual groups or treatment conditions that are used to make up a 
factor are called the levels of the factor. For example, a study that examined performance 
under three different telephone conditions would have three levels of the factor.

The individual conditions or values that make up a factor are called the levels of 
the factor.

Like the t tests presented in Chapters 10 and 11, ANOVA can be used with either an t tests presented in Chapters 10 and 11, ANOVA can be used with either an t
independent-measures or a repeated-measures design. Recall that an independent-measures 
design means that there is a separate group of participants for each of the treatments (or 
populations) being compared. In a repeated-measures design, on the other hand, the same 
group is tested in all of the different treatment conditions. In addition, ANOVA can be 
used to evaluate the results from a research study that involves more than one factor. For 
example, a researcher may want to compare two different therapy techniques, examining 
their immediate effectiveness as well as the persistence of their effectiveness over time. In 
this case, the ANOVA would evaluate mean differences between the two therapies as well 
as mean differences between the scores obtained at different times. A study that combines 
two factors is called a two-factor design or a factorial design. The ability to combine dif-. The ability to combine dif-. The ability to combine dif
ferent factors and to mix different designs within one study provides researchers with the 
flexibility to develop studies that address scientific questions that could not be answered by 
a single design using a single factor.

Although ANOVA can be used in a wide variety of research situations, this chapter intro-
duces ANOVA in its simplest form. Specifically, we consider only single-factor designs. 
That is, we examine studies that have only one independent variable (or only one quasi-
independent variable). Second, we consider only independent-measures designs; that is, 
studies that use a separate group of participants for each treatment condition. The basic logic 
and procedures that are presented in this chapter form the foundation for more complex 
applications of ANOVA. For example, in Chapter 13 we extend the analysis to single-factor, 
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repeated-measures designs and we introduce two-factor designs. But for now, in this chap-
ter, we limit our discussion of ANOVA to single-factor, independent-measures designs.

■ Statistical Hypotheses for ANOVA
The research situation shown in Figure 12.1 can be used to introduce the statistical hypoth-
eses for ANOVA. Three samples of participants are selected, one sample for each treatment 
condition. The purpose of the study is to determine whether there are significant differ-
ences between the treatment conditions. In statistical terms, we want to decide between 
two hypotheses: the null hypothesis (H0H0H ), which states that the treatment conditions have 
no effect on the participant’s scores; and the alternative hypothesis (H1), which states that 
the treatment conditions do affect scores. In symbols, the null hypothesis states

H0H0H : m1 5 m2 5 m3

In words, the null hypothesis states that the treatment conditions have no effect on perfor-
mance. That is, the population means for the three conditions are all the same. In general, 
H0H0H  states that there is no treatment effect. 

The alternative hypothesis states that the population means are not all the same:

H1: There is at least one mean difference among the populations.

In general, H1 states that the treatment conditions are not all the same; that is, there is a real 
treatment effect. As always, the hypotheses are stated in terms of population parameters, 
even though we use sample data to test them.

Notice that we are not stating a specific alternative hypothesis. This is because many 
different alternatives are possible, and it would be tedious to list them all. One alternative, 
for example, would be that the first two populations are identical, but that the third is dif-for example, would be that the first two populations are identical, but that the third is dif-for example, would be that the first two populations are identical, but that the third is dif
ferent. Another alternative states that the last two means are the same, but that the first is 
different. Other alternatives might be

H1: m1 ? m2 ? m3 (All three means are different.)

H1: m1 5 m3, but m2 is different.

We should point out that a researcher typically entertains only one (or at most a few) of 
these alternative hypotheses. Usually a theory or the outcomes of previous studies will dic-
tate a specific prediction concerning the treatment effect. For the sake of simplicity, we will 
state a general alternative hypothesis rather than try to list all possible specific alternatives.

■ Type I Errors and Multiple-Hypothesis Tests
If we already have t tests for comparing mean differences, you might wonder why ANOVA t tests for comparing mean differences, you might wonder why ANOVA t
is necessary. Why create a whole new hypothesis-testing procedure that simply duplicates 
what the t tests can already do? The answer to this question is based in a concern about t tests can already do? The answer to this question is based in a concern about t
Type I errors.

Remember that each time you do a hypothesis test, you select an alpha level that deter-
mines the risk of a Type I error (see Chapter 8 page 210). With a 5 .05, for example, there 
is a 5% (or a 1-in-20) risk of a Type I error, whenever your decision is to reject the null 
hypothesis. Often a single experiment requires several hypothesis tests to evaluate all the 
mean differences. However, each test has a risk of a Type I error, and the more tests you 
do, the more risk there is.

For this reason, researchers often make a distinction between the testwise alpha level
and the experimentwise alpha level. The testwise alpha level is simply the alpha level 
you select for each individual hypothesis test. The experimentwise alpha level is the 
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total probability of a Type I error accumulated from all of the separate tests in the experiment. 
As the number of separate tests increases, so does the experimentwise alpha level.

The testwise alpha level is the risk of a Type I error, or alpha level, for an indi-
vidual hypothesis test.  

When an experiment involves several different hypothesis tests, the experimentwise 
alpha level is the total probability of a Type I error that is accumulated from all of 
the individual tests in the experiment. Typically, the experimentwise alpha level is 
substantially greater than the value of alpha used for any one of the individual tests.

For example, an experiment involving three treatments would require three separate t
tests to compare all of the mean differences:

Test 1 compares Treatment I versus Treatment II.

Test 2 compares Treatment I versus Treatment III.

Test 3 compares Treatment II versus Treatment III.

If all tests use a 5 .05, then there is a 5% risk of a Type I error for the first test, a 5% risk for 
the second test, and another 5% risk for the third test. The three separate tests accumulate to 
produce a relatively large experimentwise alpha level. The advantage of ANOVA is that it per-
forms all three comparisons simultaneously in one hypothesis test. Thus, no matter how many 
different means are being compared, ANOVA uses one test with one alpha level to evaluate the 
mean differences and thereby avoids the problem of an inflated experimentwise alpha level.

■ The Test Statistic for ANOVA
The test statistic for ANOVA is very similar to the t statistics used in earlier chapters. For t statistics used in earlier chapters. For t
the t statistic, we first computed the standard error, which measures the difference between t statistic, we first computed the standard error, which measures the difference between t
two sample means that is reasonable to expect if there is no treatment effect (that is, if H0H0H
is true). Then we computed the t statistic with the following structure:t statistic with the following structure:t

t 5
obtained difffff efef rence between two sample means

standard errrror sthe difffff efef rence expected with no treatment efffff efef ctd

For ANOVA, however, we want to compare differences among two or more sample 
means. With more than two samples, the concept of “difference between sample means” 
becomes difficult to define or measure. For example, if there are only two samples and they 
have means of M 5 20 and M 5 30, then there is a 10-point difference between the sample 
means. Suppose, however, that we add a third sample with a mean of M 5 35. Now how 
much difference is there between the sample means? It should be clear that we have a prob-
lem. The solution to this problem is to use variance to define and measure the size of the 
differences among the sample means. Consider the following two sets of sample means:

Set 1 Set 2

M1 5 20 M1 5 28

M2M2M 5 30 M2M2M 5 30

M3M3M 5 35 M3M3M 5 31

If you compute the variance for the three numbers in each set, then the variance is s2 5 58.33 
for Set 1 and the variance is s2 5 2.33 for Set 2. Notice that the two variances provide an accu-
rate representation of the size of the differences. In Set 1 there are relatively large differences 
between sample means and the variance is relatively large. In Set 2 the mean differences are 
small and the variance is small. 
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Thus, we can use variance to measure sample mean differences when there are two or 
more samples. The test statistic for ANOVA uses this fact to compute an F-ratio with the 
following structure:

F 5
variance sdifferencesd between sample means

variance sdifferencesd expected with no treatment effect

Note that the F-ratio has the same basic structure as the t statistic but is based on t statistic but is based on t variance
instead of sample mean difference. The variance in the numerator of the F-ratio provides a 
single number that measures the differences among all of the sample means. The variance 
in the denominator of the F-ratio, like the standard error in the denominator of the t statistic, t statistic, t
measures the mean differences that would be expected if there is no treatment effect. Thus, 
the t statistic and the t statistic and the t F-ratio provide the same basic information. In each case, a large value 
for the test statistic provides evidence that the sample mean differences (numerator) are 
larger than would be expected if there were no treatment effects (denominator).

LO1 1. How many levels are there in a single-factor independent-measures design 
comparing depression scores of participants with and without treatment?

a. 1

b. 2

c. 3 

d. 4

LO2 2. When is the distinction between the “testwise” alpha level and the 
“experimentwise” alpha level important?

a. Whenever you do an analysis of variance

b. When the study is comparing exactly two treatments

c. When the study is comparing more than two treatments

d. Only when there are fewer than 30 scores in each treatment

LO3 3. Which of the following accurately describes the F-ratio in an analysis 
of variance?

a. The F-ratio is a ratio of two (or more) sample means.

b. The F-ratio is a ratio of two variances.

c. The F-ratio is a ratio of sample means divided by sample variances.

d. None of the above.

1. b 2. c 3. b

LE A R N I N G C H E C K

A N S W E R S

12-2 The Logic of Analysis of Variance

LE A R N I N G O B J E C T IV E

 4. Identify the sources that contribute to the variance between-treatments and the 
variance within-treatments, and describe how these two variances are compared in 
the F-ratio to evaluate the null hypothesis.

The formulas and calculations required in ANOVA are somewhat complicated, but the 
logic that underlies the whole procedure is fairly straightforward. Therefore, this section 
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Treatment 1 
(Sample 1)

Treatment 2 
(Sample 2)

Treatment 3
(Sample 3)

4 0 1
3 1 2
6 3 2
3 1 0
4 0 0

M 5 4 M 5 1 M 5 1

TA B L E  1 2 .1
Data from an experiment 
examining performance in 
three treatment conditions.

gives a general picture of ANOVA before we start looking at the details. We will introduce 
the logic of ANOVA with the help of the data in Table 12.1. These data represent the results 
of an independent-measures experiment using three separate samples, each with n 5 5 
participants, to compare performance in three treatment conditions.

One obvious characteristic of the data in Table 12.1 is that the scores are not all the 
same. In everyday language, the scores are different; in statistical terms, the scores are 
variable. Our goal is to measure the amount of variability (the size of the differences) and 
to explain why the scores are different.

The first step is to determine the total variability for the entire set of data. To compute the 
total variability, we combine all the scores from all the separate samples to obtain one general 
measure of variability for the complete experiment. Once we have measured the total variabil-
ity, we can begin to break it apart into separate components. The word analysis means dividing 
into smaller parts. Because we are going to analyze variability, the process is called analysis of 
variance. This analysis process divides the total variability into two basic components.

1. Between-Treatments Variance. Looking at the data in Table 12.1, we clearly see 
that much of the variability in the scores results from general differences between 
treatment conditions. For example, the scores in Treatment 1 tend to be much 
higher (M 5 4) than the scores in Treatment 2 (M 5 1). We will calculate the vari-
ance between treatments to provide a measure of the overall differences between 
treatment conditions. Notice that the variance between treatments is really measur-
ing the differences between sample means.

2. Within-Treatments Variance. In addition to the general differences between treat-
ment conditions, there is variability within each sample. Looking again at Table 12.1, 
we see that the scores in Treatment 1 are not all the same; they are variable. The 
within-treatments variance provides a measure of the variability inside each treat-
ment condition.

Analyzing the total variability into these two components is the heart of ANOVA. We will 
now examine each of the components in more detail.

■ Between-Treatments Variance
Remember that calculating variance is simply a method for measuring how big the differ-
ences are for a set of numbers. When you see the term variance, you can automatically 
translate it into the term differences. Thus, the between-treatments variance simply mea-
sures how much difference exists between the treatment conditions. There are two possible 
explanations for these between-treatment differences:

1. The differences between treatments are not caused by any treatment effect but are sim-
ply the naturally occurring, random and unsystematic differences that exist between 
one sample and another. That is, the differences are the result of sampling error.
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2. The differences between treatments have been caused by the treatment effects.  For 
example, if treatments really do affect performance, then scores in one treatment 
should be systematically different from scores in another condition. 

Thus, when we compute the between-treatments variance, we are measuring differ-
ences that could be caused by a systematic treatment effect or could simply be random 
and unsystematic mean differences caused by sampling error. To demonstrate that there 
really is a treatment effect, we must establish that the differences between treatments 
are bigger than would be expected by sampling error alone. To accomplish this goal, 
we determine how big the differences are when there is no systematic treatment effect; 
that is, we measure how much difference (or variance) can be explained by random and 
unsystematic factors. To measure these differences, we compute the variance within 
treatments.

■ Within-Treatments Variance
Inside each treatment condition, we have a set of individuals who all receive exactly the 
same treatment; that is, the researcher does not do anything that would cause these individ-
uals to have different scores. In Table 12.1, for example, the data show that five individuals 
were tested in Treatment 2 (Sample 2). Although these five individuals all received exactly 
the same treatment, their scores are different. Why are the scores different? The answer is 
that there is no specific cause for the differences. Instead, the differences that exist within 
a treatment represent random and unsystematic differences that occur when there are no 
treatment effects causing the scores to be different. Thus, the within-treatments variance
provides a measure of how big the differences are when H0H0H  is true.

Figure 12.2 shows the overall ANOVA and identifies the sources of variability that are 
measured by each of the two basic components.

■ The F-Ratio: The Test Statistic for ANOVA
Once we have analyzed the total variability into two basic components (between treat-
ments and within treatments), we simply compare them. The comparison is made by 
computing an F-ratio. For the independent-measures ANOVA, the F-ratio has the fol-
lowing structure:

F 5
variance between treatments

variance within treatments
5

difffff efef rences including any treatment efffff efef cts

difffff efef rences with no treatment efffff efef cts
(12.1)

Total
variability

Numerator of F -ratio

Between-treatments variance

1. Syst1. Syst1. ematic treatment effeatment effeatment ef ects
2. Random,2. Random,2.  unsyst Random, unsyst Random, ematic factors

Denominator of F -ratio

Within-treatments variance

1. Random,1. Random,1.  unsyst Random, unsyst Random, ematic factors

F I G U R E  1 2 . 2
The independent-measures 
ANOVA partitions, or ana-
lyzes, the total variability into 
two components: variance 
between treatments and 
variance within treatments.
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When we express each component of variability in terms of its sources (see Figure 12.2), 
the structure of the F-ratio is

F 5
systematic treatment efffff efef cts 1 random, unsystematic difffff efef rences

random, unsystematic difffff efef rences
(12.2)

The value obtained for the F-ratio helps determine whether any treatment effects exist. 
Consider the following two possibilities:

1. When there are no systematic treatment effects, the differences between treatments 
(numerator) are entirely caused by random, unsystematic factors. In this case, the 
numerator and the denominator of the F-ratio are both measuring random differ-
ences and should be roughly the same size. With the numerator and denominator  
roughly equal, the F-ratio should have a value around 1.00. In terms of the formula, F
when the treatment effect is zero, we obtain

F 5
0 1 random, unsystematic difffff efef rences

random, unsystematic difffff efef rences

Thus, an F-ratio near 1.00 indicates that the differences between treatments 
(numerator) are random and unsystematic, just like the differences in the denomi-
nator. With an F-ratio near 1.00, we conclude that there is no evidence to suggest 
that the treatment has any effect.

2. When the treatment does have an effect, causing systematic differences between 
samples, then the combination of systematic and random differences in the 
numerator should be larger than the random differences alone in the denominator.  
In this case, the numerator of the F-ratio should be noticeably larger than the 
denominator, and we should obtain an F-ratio noticeably larger than 1.00. Thus, a 
large F-ratio is evidence for the existence of systematic treatment effects; that is, 
there are signi�cant differences between treatments.

Because the denominator of the F-ratio measures only random and unsystematic vari-
ability, it is called the error term. The numerator of the F-ratio always includes the same 
unsystematic variability as in the error term, but it also includes any systematic differences 
caused by the treatment effect. The goal of ANOVA is to find out whether a treatment 
effect exists.

For ANOVA, the denominator of the F-ratio is called the F-ratio is called the F error term. The error 
term provides a measure of the variance caused by random, unsystematic differ-term provides a measure of the variance caused by random, unsystematic differ-term provides a measure of the variance caused by random, unsystematic differ
ences. When the treatment effect is zero (Hences. When the treatment effect is zero (Hences. When the treatment effect is zero ( 0H0H  is true), the error term measures the 
same sources of variance as the numerator of the F-ratio, so the value of the F-ratio, so the value of the F F-ratio F-ratio F
is expected to be nearly equal to 1.00.

LO4 1. For an analysis of variance, the differences between the sample means contrib-
ute to the _________ and appears in the _________ of the F-ratio.  

a. variance between treatments, numerator  

b. variance between treatments, denominator

c. variance within treatments, numerator

d. variance within treatments, denominator

LE A R N I N G C H E C K
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LO4 2. What is suggested by a large value for the F-ratio in an ANOVA?

a. There is a treatment effect and the null hypothesis should be rejected.There is a treatment effect and the null hypothesis should be rejected.There is a treatment ef

b. There is no treatment effect and the null hypothesis should be rejected.There is no treatment effect and the null hypothesis should be rejected.There is no treatment ef

c. There is a treatment effect and you should fail to reject the null hypothesis.There is a treatment effect and you should fail to reject the null hypothesis.There is a treatment ef

d. There is no treatment effect and you should fail to reject the null hypothesis.There is no treatment effect and you should fail to reject the null hypothesis.There is no treatment ef

1. a 2. aA N S W E R S

12-3 ANOVA Notation and Formulas

LE A R N I N G O B J E C T IV E

 5. Calculate the three SS values, the three df values, and the two mean squares df values, and the two mean squares df
(MS values) that are needed for the F-ratio and describe the relationships 
among them.

Because ANOVA typically is used to examine data from more than two treatment condi-
tions (and more than two samples), we need a notational system to keep track of all the 
individual scores and totals. To help introduce this notational system, we use the data from 
the following example.

Over the years, students and teachers have developed a variety of strategies to help pre-
pare for an upcoming test. But how do you know which is best? A partial answer to this 
question comes from a research study comparing three different strategies (Weinstein, 
McDermott, & Roediger, 2010). In the study, students read a passage knowing that they 
would be tested on the material. In one condition, participants simply reread the material 
to be tested. In a second condition, the students answered prepared comprehension ques-
tions about the material, and in a third condition, the students generated and answered 
their own questions. 

The data in Table 12.2 show the pattern of results obtained in the Weinstein et al. (2010) 
study. The data show the notation and statistics that will be described.

1. The letter k is used to identify the number of treatment conditions—that is, the k is used to identify the number of treatment conditions—that is, the k
number of levels of the factor. For an independent-measures study, k also speci�es k also speci�es k

E X A M P L E  1 2 . 1

Read and 
Reread

Read, then Answer 
Prepared Questions

Read, then Create 
and Answer Questions

2 5 8

3 9 6 N 5 18
8 10 12 G 5 144
6 13 11 SX2X2X 5 1324
5 8 11 k 5 3
6 9 12

T 5 30 T 5 54 T 5 60

M 5 5 M 5 9 M 5 10

SS 5 24 SS 5 34 SS 5 30

TA B L E  1 2 . 2
Test scores for students 
using three different study 
strategies.
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■
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the number of separate samples. For the data in Table 12.2, there are three treat-
ments, so k 5 3.

2. The number of scores in each treatment is identi�ed by a lowercase letter n. For the 
example in Table 12.2, n 5 6 for all the treatments. If the samples are of different 
sizes, you can identify a speci�c sample by using a subscript. For example, n2 is 
the number of scores in Treatment 2.

3. The total number of scores in the entire study is speci�ed by a capital letter N. 
When all the samples are the same size (n is constant), N 5 kn. For the data in 
Table 12.2, there are n 5 6 scores in each of the k 5 3 treatments, so we have a 
total of N 5 3(6) 5 18 scores in the entire study.

4. The sum of the scores (SX) for each treatment condition is identi�ed by the capital X) for each treatment condition is identi�ed by the capital X
letter T (for treatment total). The total for a speci�c treatment can be identi�ed by T (for treatment total). The total for a speci�c treatment can be identi�ed by T
adding a numerical subscript to the T. For example, the total for the second treat-T. For example, the total for the second treat-T
ment in Table 12.2 is T2T2T 5 54.

5. The sum of all the scores in the research study (the grand total) is identi�ed by G. You 
can compute G by adding up all G by adding up all G N scores or by adding up the treatment totals: N scores or by adding up the treatment totals: N G 5 ST.T.T

6. Although there is no new notation involved, we also have computed SS and SS and SS M for M for M
each sample, and we have calculated SX2X2X  for the entire set of N 5 18 scores in the 
study. These values are given in Table 12.2 and are important in the formulas and 
calculations for ANOVA.

Finally, we should note that there is no universally accepted notation for ANOVA. 
Although we are using Gs and Ts, for example, you may find that other sources use Ts, for example, you may find that other sources use T
other symbols.

■ ANOVA Formulas
Because ANOVA requires extensive calculations and many formulas, one common prob-
lem for students is simply keeping track of the different formulas and numbers. Therefore, 
we will examine the general structure of the procedure and look at the organization of the 
calculations before we introduce the individual formulas.

1. The �nal calculation for ANOVA is the F-ratio, which is composed of two variances:F-ratio, which is composed of two variances:F

F 5
variance between treatments

variance within treatments

2. Each of the two variances in the F-ratio is calculated using the basic formula for 
sample variance:

sample variance 5 s2 5
SS

dfdfd

Therefore, we need to compute an SS and a SS and a SS df for the variance between treatments df for the variance between treatments df
(numerator of F), and we need another F), and we need another F SS and SS and SS df for the variance within treat-df for the variance within treat-df
ments (denominator of F). To obtain these F). To obtain these F SS and SS and SS df values, we must go through df values, we must go through df
two separate analyses: First, compute SS for the total study, and analyze it into two SS for the total study, and analyze it into two SS
components (between and within). Then compute df for the total study, and analyze df for the total study, and analyze df
it into two components (between and within).

Thus, the entire process of ANOVA requires nine calculations: three values for SS, three 
values for df, two variances (between and within), and a final df, two variances (between and within), and a final df F-ratio. However, these nine 
calculations are all logically related and are all directed toward finding the final F-ratio. 
Figure 12.3 shows the logical structure of ANOVA calculations.

Because ANOVA for-
mulas require SX for 
each treatment and 
SX for the entire set of 
scores, we have intro-
duced new notation (T 
and G) to help identify 
which SX is being used. 
Remember: T stands for 
treatment total, and G 
stands for grand total.
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To obtain each of
the SS and SS and SS df values,df values,df
the total variability
is analyzed into the
two components

Each variance in
the F -ratio is
computed as SS/df

The final goal for the
ANOVA is an F -ratio F 5F 5F

Variance between treatments
Variance within treatments

5
Variance
between

treatments

SS between

SS between SS within

SS total

df between
5

Variance
within

treatments

SS within
df within

df between df within

df total

F I G U R E  1 2 . 3
The structure and 
sequence of calculations 
for the ANOVA.

■ Analysis of Sum of Squares (SS)
The ANOVA requires that we first compute a total sum of squares and then partition this 
value into two components: between treatments and within treatments. This analysis is 
outlined in Figure 12.4. We will examine each of the three components separately.

1. Total Sum of Squares, SStotal. As the name implies, SStotal is the sum of squares for 
the entire set of N scores. As described in Chapter 4 (pages 96N scores. As described in Chapter 4 (pages 96N 297), this SS value SS value SS
can be computed using either a de�nitional or a computational formula. However, 
ANOVA typically involves a large number of scores and the mean is often not a 
whole number. Therefore, it is usually much easier to calculate SStotal using the 
computational formula:

SS 5 SX2X2X 2
sSXdXdX 2

N

SS within trSS within trSS eatments
SSS inside each treatment

SS between treatments
n (SS fSS fSS or the treatment means)

or

S 
G2

N

T 2

n

SS ToSS ToSS tal

N
G2

S X 22

2

F I G U R E  1 2 . 4
Partitioning the sum of squares 
(SS) for the independent-
measures ANOVA.
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To make this formula consistent with the ANOVA notation, we substitute the letter 
G in place of SX and obtainX and obtainX

SStStS otal 5 SX2X2X 2
G2

N
(12.3)

Applying this formula to the set of data in Table 12.2, we obtain

SStStS otal 5 SX2X2X 2
G2

N
5 1324 2 1152

5 172

2. Within-Treatments Sum of Squares, SSwithin treatments. Now we are looking at the 
variability inside each of the treatment conditions. We already have computed the 
SS within each of the three treatment conditions (Table 12.2): SS within each of the three treatment conditions (Table 12.2): SS SS1 5 24, SS2 5 34, 
and SS3 5 30. To �nd the overall within-treatment sum of squares, we simply add 
these values together:

SSwithin treatments 5 SSSinside each treatment (12.4)

For the data in Table 12.2, this formula gives

SSwithin treatments 5 SSSinside each treatment 5 24 1 34 1 30 5 88

3. Between-Treatments Sum of Squares, SSbetween treatments. Before we introduce 
any equations for SSbetween treatmentsSSbetween treatmentsSS , consider what we have found so far. The total 
variability for the data in Table 12.2 is SStotal 5 172. We intend to partition this 
total into two parts (see Figure 12.4). One part, SSwithin treatments, has been found to 
be equal to 88. This means that SSbetween treatmentsSSbetween treatmentsSS  must be equal to 84 so that the two 
parts (88 and 84) add up to the total (172). Thus, the value for SSbetween treatmentsSSbetween treatmentsSS  can 
be found simply by subtraction:

SSbetweenSSbetweenSS 5 SStotal 2 SSwithin (12.5)

However, it is also possible to compute SSbetweenSSbetweenSS  independently, using one of the 
two formulas presented in Box 12.1. The advantage of computing all three SS
values independently is that you can check your calculations by ensuring that the 
two components, between and within, add up to the total. 

To simplify the nota-
tion we will use the 
subscripts between 
and within in place of 
 between treatments and 
within treatments.

Recall that the variability between treatments is 
measuring the differences between treatment means. 
Conceptually, the most direct way of measuring the 
amount of variability among the treatment means is 
to compute the sum of squares for the set of sample 
means, SSmeans. For the data in Table 12.2, the samples 
means are 5, 9, and 10. Computing SS for these SS for these SS
three values produces SSmeansSSmeansSS 5 14. However, each of 
the three means represents a group of n 5 6 scores. 

Therefore, the final value for SSbetweenSSbetweenSS  is obtained by 
multiplying SSmeans by n.  

SSbetweenSSbetweenSS 5 n(SSmeans) (12.6)

For the data in Table 12.2, we obtain

SSbetweenSSbetweenSS 5 n(SSmeans) 5 6(14) 5 84

(continues)

Therefore, the final value for 
multiplying 

BOX 12.1 Alternative Formulas for SSbetween
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Unfortunately, Equation 12.6 can only be used when 
all of the samples are exactly the same size (equal 
n’s), and the equation can be very awkward, especially 
when the treatment means are not whole numbers. 
Therefore, we also present a computational formula 
for SSbetweenSSbetweenSS  that uses the treatment totals (T) instead T) instead T
of the treatment means.

SS
b

S
b

S
etween

5 S
T2T2T
n

2
G2

N
(12.7)

For the data in Table 12.2 this formula produces:

SSbSbS etween 5
302

6
1

542

6
1

602

6
2

1442

18
5 150 1 486 1 600 2 1152

5 1236 2 1152

5 84

Note that all three techniques (Equations 12.5, 
12.6, and 12.7) produce the same result, SSbetweenSSbetweenSS 5 84. 

For the data in Table 12.2 this formula produces:

12.6, and 12.7) produce the same result, 

BOX 12.1 Alternative Formulas for SSbetween (continued)

Computing SSbetween Including the two formulas in Box 12.1, we have presented three 
different equations for computing SSbetweenSSbetweenSS . Rather than memorizing all three, however, we 
suggest that you pick one formula and use it consistently. There are two reasonable alter-
natives to use. The simplest is Equation 12.5, which finds SSbetweenSSbetweenSS  simply by subtraction: 
First you compute SStotal and SSwithin, then subtract

SSbetweenSSbetweenSS 5 SStotal 2 SSwithin

The second alternative is to use Equation 12.7, which computes SSbetweenSSbetweenSS  using the treat-
ment totals (the T values). The advantage of this alternative is that it provides a way to T values). The advantage of this alternative is that it provides a way to T
check your arithmetic: Calculate SStotalSStotalSS , SSbetweenSSbetweenSS , and SSwithin separately, and then check to 
be sure that the two components add up to equal SStotal.

Using Equation 12.6, which computes SS for the set of sample means, is usually not a SS for the set of sample means, is usually not a SS
good choice. Unless the sample means are all whole numbers, this equation can produce 
very tedious calculations. In most situations, one of the other two equations is a better 
alternative.

The following example is an opportunity for you to test your understanding of the anal-
ysis of SS in ANOVA.SS in ANOVA.SS

Three samples, each with n 5 5 participants, are used to evaluate the mean differences 
among three treatment conditions. The three sample totals and SS values are SS values are SS T1T1T 5 10 with 
SS1 5 16, T2T2T 5 25 with SS2 5 20, and T3T3T 5 40 with SS3 5 24. If SStotalSStotalSS 5 150, then what are 
the values for SSbetweenSSbetweenSS  and SSwithinSSwithinSS ? You should find that SSbetweenSSbetweenSS 5 90 and SSwithinSSwithinSS 5 60. ■

■ The Analysis of Degrees of Freedom (df)
The analysis of degrees of freedom (df ) follows the same pattern as the analysis of SS. 
First, we find df for the total set of df for the total set of df N scores, and then we partition this value into two comN scores, and then we partition this value into two comN -
ponents: degrees of freedom between treatments and degrees of freedom within treatments. 
In computing degrees of freedom, there are two important considerations to keep in mind:

1. Each df value is associated with a speci�c df value is associated with a speci�c df SS value.SS value.SS

2. Normally, the value of df is obtained by counting the number of items that were df is obtained by counting the number of items that were df
used to calculate SS and then subtracting 1. For example, if you compute SS and then subtracting 1. For example, if you compute SS SS for a SS for a SS
set of n scores, then df 5 n 2 1.

With this in mind, we will examine the degrees of freedom for each part of the analysis.

E X A M P L E  1 2 . 2
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1. Total Degrees of Freedom, dftotaldftotaldf . To �nd the df associated with df associated with df SStotal, you must 
�rst recall that this SS value measures variability for the entire set of SS value measures variability for the entire set of SS N scores. N scores. N
Therefore, the df value isdf value isdf

dftotaldftotaldf 5 N 2 1 (12.8)

For the data in Table 12.2, the total number of scores is N 5 18, so the total 
degrees of freedom are

dftotaldftotaldf 5 18 2 1

5 17

2. Within-Treatments Degrees of Freedom, dfwithindfwithindf . To �nd the df associated with df associated with df
SSwithinSSwithinSS , we must look at how this SS value is computed. Remember, we �rst �nd SS value is computed. Remember, we �rst �nd SS SS
inside of each of the treatments and then add these values together. Each of the treat-
ment SS values measures variability for the SS values measures variability for the SS n scores in the treatment, so each SS has SS has SS
df 5 n 2 1. When all these individual treatment values are added together, we obtain

dfwithindfwithindf 5 S(n 2 1) 5 Sdfin each treatmentdfin each treatmentdf (12.9)

For the experiment we have been considering, each treatment has n 5 6 scores. 
This means there are n 2 1 5 5 degrees of freedom inside each treatment. Because 
there are three different treatment conditions, this gives a total of 15 for the within-
treatments degrees of freedom. Notice that this formula for df simply adds up the df simply adds up the df
number of scores in each treatment (the n values) and subtracts 1 for each treat-
ment. If these two stages are done separately, you obtain

dfwithindfwithindf 5 N 2 k (12.10)

(Adding up all the n values gives N. If you subtract 1 for each treatment, then 
altogether you have subtracted k because there are k because there are k k treatments.) For the data in k treatments.) For the data in k
Table 12.2, N 5 18 and k 5 3, so

dfwithindfwithindf 5 18 2 3

5 15

3. Between-Treatments Degrees of Freedom, dfbetweendfbetweendf . The df associated with df associated with df
SSbetween can be found by considering how the SS value is obtained. These 
SS formulas measure the variability for the set of treatments (totals or means). To 
�nd dfbetweendfbetweendf , simply count the number of treatments and subtract 1. Because the 
number of treatments is speci�ed by the letter k, the formula for df isdf isdf

dfbetweendfbetweendf 5 k 2 1 (12.11)

For the data in Table 12.2, there are three different treatment conditions (three 
T values or three sample means), so the between-treatments degrees of freedom are T values or three sample means), so the between-treatments degrees of freedom are T
computed as follows:

dfbetweendfbetweendf 5 3 2 1

5 2

Notice that the two parts we obtained from this analysis of degrees of freedom add 
up to equal the total degrees of freedom:

dftotaldftotaldf 5 dfwithindfwithindf 1 dfbetweendfbetweendf

17 5 15 1 2

The complete analysis of degrees of freedom is shown in Figure 12.5.
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N221

df within trdf within trdf eatmentsdf between treatments

k S(n 21) 5 k

df todf todf tal

N21

F I G U R E  1 2 . 5
Partitioning the degrees of 
freedom (df) for the independent-df) for the independent-df
measures ANOVA.

As you are computing the SS and SS and SS df values for ANOVA, keep in mind that the labels that df values for ANOVA, keep in mind that the labels that df
are used for each value can help you understand the formulas. Specifically,

1. the term total refers to the entire set of scores. We compute SS for the whole set of SS for the whole set of SS
N scores, and the N scores, and the N df value is simply df value is simply df N 2 1.

2. the term within treatments refers to differences that exist inside the individual treat-
ment conditions. Thus, we compute SS and SS and SS df inside each of the separate treatments.df inside each of the separate treatments.df

3. The term between treatments refers to differences from one treatment to another. 
With three treatments, for example, we are comparing three different means (or 
totals) and have df 5 3 2 1 5 2.

■ Calculation of Variances (MS) and the F-Ratio
After computing the three SS and three SS and three SS df values, the next step in the ANOVA procedure is df values, the next step in the ANOVA procedure is df
to compute the variance between treatments and the variance within treatments, which are 
used to calculate the F-ratio (see Figure 12.3).

In ANOVA, it is customary to use the term mean square, or simply MS, in place of the 
term variance. Recall (from Chapter 4) that variance is defined as the mean of the squared 
deviations. In the same way that we use SS to stand for the sum of the squared deviations, SS to stand for the sum of the squared deviations, SS
we now will use MS to stand for the mean of the squared deviations. For the final MS to stand for the mean of the squared deviations. For the final MS F-ratio 
we will need an MS (variance) between treatments for the numerator and an MS (variance) between treatments for the numerator and an MS MS (variance) MS (variance) MS
within treatments for the denominator. In each case

MSMSM 5 s2 5
SS

dfdfd
(12.12)

For the data we have been considering,

MSMSM bSbS etween 5 s2
between 5

SSbSbS etween

dfdfd bfbf etween
5

84

2
5 42

and

MSMSM within 5 s2
within 5

SSwithin

dfdfd wfwf ithin
5

88

15
5 5.87
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We now have a measure of the variance (or differences) between the treatments and a 
measure of the variance within the treatments. The F-ratio simply compares these two 
variances:

F 5
s2

between

s2
within

5
MSMSM bSbS etween

MSMSM within
(12.13)

For the experiment we have been examining, the data give an F-ratio of  

F 5
MSMSM bSbS etween

MSMSM within
5

42

5.87
5 7.16

For this example, the obtained value of F 5 7.16 indicates that the numerator of the 
F-ratio is substantially bigger than the denominator. If you recall the conceptual structure 
of the F-ratio as presented in Equations 12.1 and 12.2, the F value we obtained indicates F value we obtained indicates F
that the differences between treatments are more than seven times bigger than what would 
be expected if there is no treatment effect. Stated in terms of the experimental variables, the 
strategy used for studying does appear to have an effect on test performance. However, to 
properly evaluate the F-ratio, we must select an a level and consult the F-distribution table 
that is discussed in the next section.

LO5 1. An analysis of variances produces dfbetween treatmentsdfbetween treatmentsdf 5 2 and dfwithin treatmentsdfwithin treatmentsdf 5 24.  
For this analysis, what is dftotaldftotaldf ?

a. 26

b. 27

c. 28

d. Cannot be determined without additional information

LO5 2. An analysis of variance is used to evaluate the mean differences among three treat-
ment conditions. The analysis produces SSwithin treatmentsSSwithin treatmentsSS 5 20, SSbetween treatmentsSSbetween treatmentsSS 5 40, 
and SStotalSStotalSS 5 60. For this analysis, what is MSbetween treatmentsMSbetween treatmentsMS ? 

a. 20
3

b. 20
2

c. 40
3

d. 40
2

LO5 3. A research study compares three treatments with n 5 5 in each treatment. If 
the SS values for the three treatments are 25, 20, and 15, then the analysis of SS values for the three treatments are 25, 20, and 15, then the analysis of SS
variance would produce SSwithin equal to ______.

a. 12

b. 20

c. 60

d. Cannot be determined from the information given

1. a 2. d 3. c

LE A R N I N G C H E C K

A N S W E R S
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12-4 Examples of Hypothesis Testing and Effect Size  
with ANOVA

LE A R N I N G O B J E C T IV E S  

 6. De�ne the df values for an df values for an df F-ratio and use the df values, together with an alpha 
level, to locate the critical region in the distribution of F-ratios.

 7. Conduct a complete ANOVA to evaluate the differences among a set of means and 
compute a measure of effect size to describe the mean differences.

 8. Explain how the results from an ANOVA and measures of effect size are reported 
in the scienti�c literature.

■ The Distribution of F-Ratios
In analysis of variance, the F-ratio is constructed so that the numerator and denominator 
of the ratio are measuring exactly the same variance when the null hypothesis is true (see 
Equation 12.2). In this situation, we expect the value of F to be around 1.00.F to be around 1.00.F

If the null hypothesis is false, the F-ratio should be much greater than 1.00. The prob-
lem now is to define precisely which values are “around 1.00” and which are “much greater 
than 1.00.” To answer this question, we need to look at all the possible F values that can be F values that can be F
obtained when the null hypothesis is true—that is, the distribution of F-ratios.

Before we examine this distribution in detail, you should note two obvious characteristics:

1. Because F-ratios are computed from two variances (the numerator and denomina-
tor of the ratio), F values always are positive numbers. Remember that variance is F values always are positive numbers. Remember that variance is F
always positive.

2. When H0H0H  is true, the numerator and denominator of the F-ratio are measuring the 
same variance. In this case, the two sample variances should be about the same 
size, so the ratio should be near 1. In other words, the distribution of F-ratios 
should pile up around 1.00.

With these two factors in mind, we can sketch the distribution of F-ratios. The distribu-
tion is cut off at zero (all positive values), piles up around 1.00, and then tapers off to the 
right (Figure 12.6). The exact shape of the F distribution depends on the degrees of freeF distribution depends on the degrees of freeF -
dom for the two variances in the F-ratio. You should recall that the precision of a sample 
variance depends on the number of scores or the degrees of freedom. In general, the vari-
ance for a large sample (large df ) provides a more accurate estimate of the population vari-
ance. Because the precision of the MS values depends on MS values depends on MS df, the shape of the df, the shape of the df F distribution F distribution F
also depends on the df values for the numerator and denominator of the df values for the numerator and denominator of the df F-ratio. With very 
large df values, nearly all the df values, nearly all the df F-ratios are clustered very near to 1.00. With the smaller df
values, the F distribution is more spread out.F distribution is more spread out.F

■ The F Distribution Table
For ANOVA, we expect F near 1.00 if F near 1.00 if F H0H0H  is true. An F-ratio that is much larger than 1.00 is 
an indication that H0H0H  is not true. In the F distribution, we need to separate those values that F distribution, we need to separate those values that F
are reasonably near 1.00 from the values that are significantly greater than 1.00. These criti-
cal values are presented in an F distribution table in Appendix B, page 539. A portion of the F distribution table in Appendix B, page 539. A portion of the F
F distribution table is shown in Table 12.3. To use the table, you must know the F distribution table is shown in Table 12.3. To use the table, you must know the F df values for df values for df
the F-ratio (numerator and denominator), and you must know the alpha level for the hypoth-
esis test. It is customary for an F table to have the F table to have the F df values for the numerator of the df values for the numerator of the df F-ratio 
printed across the top of the table. The df values for the denominator of df values for the denominator of df F are printed in a F are printed in a F
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column on the left-hand side. For the experiment we have been considering, the numerator 
of the F-ratio (between treatments) has df 5 2, and the denominator of the F-ratio (within 
treatments) has df 5 15. This F-ratio is said to have “degrees of freedom equal to 2 and 15.” 
The degrees of freedom would be written as df 5 2, 15. To use the table, you would first 
find df 5 2 across the top of the table and df 5 15 in the first column. When you line up 
these two values, they point to a pair of numbers in the middle of the table. These numbers 
give the critical cutoffs for a 5 .05 and a 5 .01. With df 5 2, 15, for example, the numbers 
in the table are 3.68 and 6.36. Thus, only 5% of the distribution (a 5 .05) corresponds to 
values greater than 3.68 and only 1% of the distribution (a 5 .01) corresponds to values 
greater than 6.36 (see Figure 12.6).

F
0 1 2 3 4 5 6 7

5%

1%

3.68 6.36

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

F I G U R E  1 2 .6
The distribution of 
F-ratios with df 5 2, 12. 
Of all the values in the 
distribution, only 5% 
are larger than F 5 3.88 
and only 1% are larger 
than F 5 6.93.

Degrees of Freedom: 
Denominator

Degrees of Freedom: Numerator

1 2 3 4 5 6

11 4.84 3.98 3.59 3.36 3.20 3.09
9.65 7.20 6.22 5.67 5.32 5.07

12 4.75 3.88 3.49 3.26 3.11 3.00
9.33 6.93 5.95 5.41 5.06 4.82

13 4.67 3.80 3.41 3.18 3.02 2.92
9.07 6.70 5.74 5.20 4.86 4.62

14 4.60 3.74 3.34 3.11 2.96 2.85
8.86 6.51 5.56 5.03 4.69 4.46

15 4.54 3.68 3.29 3.06 2.90 2.79
8.68 6.36 5.42 4.89 4.56 4.32

16 4.49 3.63 3.24 3.01 2.85 2.74
8.53 6.23 5.29 4.77 4.44 4.20

TA B L E  1 2 . 3
A portion of the F distri-F distri-F
bution table. Entries in 
roman type are critical 
values for the .05 level 
of significance, and bold 
type values are for the .01 
level of significance. The 
critical values for df 5 2, 
15 have been highlighted 
(see text).
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■ An Example of Hypothesis Testing and Effect Size with ANOVA
The Hypothesis Test Although we have now seen all the individual components of 
ANOVA, we now demonstrate the complete ANOVA process using the research examin-
ing different strategies for studying presented in Example 12.1. All of the calculations for 
the ANOVA were completed in the previous section and are summarized in Table 12.4, 
which is called an ANOVA summary table. The table shows the source of variability (be-
tween treatments, within treatments, and total variability): SS, df, df, df MS, and the final F-ratio. 

Although these tables are no longer used in published reports, they are a common part 
of computer printouts, and they do provide a concise method for presenting the results of an 
analysis. (Note that you can conveniently check your work: Adding the first two entries in 
the SS column, 84 SS column, 84 SS 1 88, produces SStotal. The same applies to the df column.) When using df column.) When using df
ANOVA, you might start with a blank ANOVA summary table and then fill in the values 
as they are calculated. With this method, you are less likely to “get lost” in the analysis, 
wondering what to do next.

Using the results in Table 12.4, we can now present the complete ANOVA using the 
standard four-step procedure for hypothesis testing.

State the hypotheses and select an alpha level

H0H0H : m1 5 m2 5 m3 (There is no treatment effect.)

H1: At least one of the treatment means is different.

We will use a 5 .05.

Locate the critical region We have found that dfbetweendfbetweendf 5 2 and dfwithindfwithindf 5 15. Thus, the 
F-ratio has F-ratio has F df 5 2,15 and with a 5 .05 the critical region consists of F-ratios greater than 3.68.F-ratios greater than 3.68.F

Compute the F-ratio The calculations were completed in the previous section and are 
summarized in Table 12.4. The data produce F 5 7.16.

Make a decision The F value we obtained, F value we obtained, F F 5 7.16, is in the critical region. It is very 
unlikely (punlikely (punlikely ( , .05) that we would obtain a value this large if H0H0H  is true. Therefore, we reject 
H0H0H  and conclude that there are signi�cant differences among the three strategies for studying.

This completes the step-by-step demonstration of the ANOVA procedure. However, 
there is one additional point that can be made using this example.

The research study compared the effectiveness of three different strategies for studying: 
simply rereading the material, answering prepared questions about the material, or creating 
and answering your own questions. The statistical decision is to reject H0H0H , which means 
that the three strategies are not all the same. However, we have not determined which ones 
are different. Is answering prepared questions different from making up and answering 
your own questions? Is answering prepared questions different from simply rereading?  
Unfortunately, these questions remain unanswered. We do know that at least one difference 
exists (we rejected H0H0H ), but additional analysis is necessary to find out exactly where this 
difference is. We address this problem in Section 12.5.

The current method for 
reporting the results 
from an ANOVA is pre-
sented on page 349.

S T E P  1

S T E P  2

S T E P  3

S T E P  4

Source SS df MS

Between treatments 84 2 42.00 F 5 7.16
Within treatments 88 15 5.87

Total 172 17

TA B L E  1 2 . 4
An ANOVA summary 
showing the results of the 
ANOVA calculations for 
the data in Example 12.1.
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■ Measuring Effect Size for ANOVA
As we noted previously, a significant mean difference simply indicates that the difference significant mean difference simply indicates that the difference significant
observed in the sample data is very unlikely to have occurred just by chance. Thus, the 
term significant does not necessarily mean large, it simply means larger than expected by 
chance. To provide an indication of how large the effect actually is, it is recommended that 
researchers report a measure of effect size in addition to the measure of significance.

For ANOVA, the simplest and most direct way to measure effect size is to compute the 
percentage of variance accounted for by the treatment conditions. Like the r2r2r  value used to 
measure effect size for the t tests in Chapters 9, 10, and 11, this percentage measures how t tests in Chapters 9, 10, and 11, this percentage measures how t
much of the variability in the scores is accounted for by the differences between treatments. 
For ANOVA, the calculation and the concept of the percentage of variance is extremely 
straightforward. Specifically, we determine how much of the total SS is accounted for by SS is accounted for by SS
the SSbetween treatmentsSSbetween treatmentsSS .

The percentage of variance accounted fofof r 5
SS

b
S

b
S

etween treatments

SS
t

S
t

S
otal

(12.14)

For the data in Example 12.1, we obtain

The percentage of variance accounted for 5 84
172 5 0.488 (or 48.8%) 

In published reports of ANOVA results, the percentage of variance accounted for by the 
treatment effect is usually called h2 (the Greek letter eta squared) instead of using r2r2r . Thus, 
for the study in Example 12.1, h2 5 0.488.

The following example is an opportunity for you to test your understanding of comput-
ing h2 to measure effect size in ANOVA.
< E X A L B >EXAMPLE 12.3

The ANOVA from an independent-measures study is summarized in the following table.

Source SS df MS

Between treatments 84 2 42 F(2, 12) 5 7.00
Within treatments 72 12 6
Total 156 14

Compute h2 to measure effect size for this study.  You should find that h2 5 0.538. ■

E X A M P L E  1 2 . 3

IN THE LITERATURE

Reporting the Results of Analysis of Variance
The APA format for reporting the results of ANOVA begins with a presentation of 
the treatment means and standard deviations in the narrative of the article, a table, or 
a graph. These descriptive statistics are not needed in the calculations of the actual 
ANOVA, but you can easily determine the treatment means from n and T (T (T M 5 T/T/T n) and 
the standard deviations from the SS values for each treatment SS values for each treatment SS [s 5 ÏSÏSÏ S/S/S (n21)Ï ]. Next, 
report the results of the ANOVA. For the study described in Example 12.1, the report 
might state the following:

The means and standard deviations are presented in Table 1. The analysis of variance 
indicates that there are signi�cant differences among the three strategies for studying, 
F(2, 15) 5 7.16, p , .05, h2 5 0.488.
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■

Simply Reread
Answer Prepared 

Questions
Create and Answer 

Your Own Questions

M 5.00 9.00 10.00

SD 2.19 2.61 2.45

Note how the F-ratio is reported. In this example, degrees of freedom for between 
and within treatments are df 5 2, 15, respectively. These values are placed in parenthe-
ses immediately following the symbol F. Next, the calculated value for F is reported, F is reported, F
followed by the probability of committing a Type I error (the alpha level) and the mea-
sure of effect size.

When an ANOVA is done using a computer program, the F-ratio is usually accompa-
nied by an exact value for p. The data from Example 12.1 were analyzed using the SPSS 
program (see SPSS at the end of this chapter) and the computer output included a signifi-
cance level of p 5 .007. Using the exact p value from the computer output, the research 
report would conclude, “The analysis of variance revealed significant differences among 
the three strategies for studying, F(2, 15) 5 7.16, p 5 .007, h2 5 0.488.”

■ An Example with Unequal Sample Sizes
In the previous examples, all the samples were exactly the same size (equal n’s). How-
ever, the formulas for ANOVA can be used when the sample size varies within an 
experiment. You also should note, however, that the general ANOVA procedure is most 
accurate when used to examine experimental data with equal sample sizes. Therefore, 
researchers generally try to plan experiments with equal ns. However, there are circum-
stances in which it is impossible or impractical to have an equal number of participants 
in every treatment condition. In these situations, ANOVA still provides a valid test, 
especially when the samples are relatively large and when the discrepancy between 
sample sizes is not extreme.

The following example demonstrates an ANOVA with samples of different sizes.

A researcher is interested in the amount of homework required by different academic ma-
jors. Students were recruited from Biology, English, and Psychology to participate in the 
study. The researcher randomly selects one course that each student is currently taking 
and asks the student to record the amount of out-of-class work required each week for the 
course. The researcher used all of the volunteer participants, which resulted in unequal 
sample sizes. The data are summarized in Table 12.5.

State the hypotheses, and select the alpha level.

H0H0H : m1 5 m2 5 m3

H1: At least one population is different.

a 5 .05

E X A M P L E  1 2 . 4

S T E P  1

Biology English Psychology

n 5 4 n 5 10 n 5 6 N 5 20
M 5 9 M 5 13 M 5 14 G 5 250
T 5 36 T 5 130 T 5 84 SX2X2X 5 3377

SS 5 37 SS 5 90 SS 5 60

TA B L E  1 2 . 5
Average hours of home-
work per week for one 
course for students in 
three academic majors.

TA B L E  1
Quiz scores following 
three different strategies 
for studying.
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Locate the critical region. To �nd the critical region, we �rst must determine the df
values for the F-ratio:

dftotaldftotaldf 5 N 2 1 5 20 2 1 5 19

dfbetweendfbetweendf 5 k 2 1 5 3 2 1 5 2

dfwithindfwithindf 5 N 2 k 5 20 2 3 5 17

The F-ratio for these data has df 5 2, 17. With a 5 .05, the critical value for the F-ratio 
is 3.59.

Compute the F-ratio. F-ratio. F First, compute the three SS values. As usual, SS values. As usual, SS SStotalSStotalSS  is the SS for SS for SS
the total set of N 5 20 scores, and SSwithin combines the SS values from inside each of the SS values from inside each of the SS
treatment conditions.    

SS
t

S
t

S
otal

5 SX2X2X 2
G2

N

5 3377 2
2502

20

5 3377 2 3125
5 252

SSwithin 5 SSSinside each treatment

5 37 1 90 1 60

5 187     

SSbetweenSSbetweenSS  can be found by subtraction (Equation 12.5).

SSbetweenSSbetweenSS 5 SStotal 2 SSwithin

5 252 2 187

5 65

Or, SSbetweenSSbetweenSS  can be calculated using the computation formula (Equation 12.7). If you use 
the computational formula, be careful to match each treatment total (T) with the appropriT) with the appropriT -
ate sample size (n) as follows:

SSbSbS etween 5 S
T 2

n
2

G2

N

5
362

4
1

1302

10
1

842

6
2

2502

20

5 324 1 1690 1 1176 2 3125

5 65

Finally, compute the MS values and the MS values and the MS F-ratio:

MSMSM
b

S
b

S
etween

5
SS

dfdfd
5

65

2
5 32.5

MSMSM
within

5
SS

dfdfd
5

187

17
5 11

F 5
MSMSM

b
S

b
S

etween

MSMSM
within

5
32.5

11
5 2.95

S T E P  2

S T E P  3
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Make a decision. Because the obtained F-ratio is not in the critical region, we 
fail to reject the null hypothesis and conclude that there are no signi�cant differences 
among the three populations of students in terms of the average amount of homework 
each week. ■

■ Assumptions for the Independent-Measures ANOVA
The independent-measures ANOVA requires the same three assumptions that were neces-
sary for the independent-measures t hypothesis test:t hypothesis test:t

1. The observations within each sample must be independent (see page 216).

2. The populations from which the samples are selected must be normal.

3. The populations from which the samples are selected must have equal variances 
(homogeneity of variance).

Ordinarily, researchers are not overly concerned with the assumption of normality, 
especially when large samples are used, unless there are strong reasons to suspect the 
assumption has not been satisfied. The assumption of homogeneity of variance is an impor-
tant one. If a researcher suspects it has been violated, it can be tested by Hartley’s F-max 
test for homogeneity of variance (Chapter 10, page 281).

S T E P  4

LO6 1. A researcher uses analysis of variance to test for mean differences among four 
treatments with a sample of n 5 6 in each treatment. The F-ratio for this analy-
sis would have what df values?df values?df

a. df 5 3, 5

b. df 5 3, 15

c. df 5 3, 20

d. df 5 4, 24

LO7 2. The following table shows the results of an analysis of variance comparing two 
treatment conditions with a sample of n 5 11 participants in each treatment. 
Note that several values are missing in the table. What is the missing value for 
the F-ratio?    

a. 2

b. 7 

c. 14 

d. 28

LO8 3. A research report concludes that there are significant differences among treat-
ments, with “F(2, 27) 5 8.62, p , .01, h2 5 0.46.” How many treatment con-
ditions were compared in this study?

a. 2

b. 3

c. 29

d. 30

1. c 2. a 3. b

LE A R N I N G C H E C K

Source SS df MS

Between xx xx 14 F 5 xx
Within xx xx xx
Total 154 xx

A N S W E R S

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 12-5 | Post Hoc Tests 353

12-5 Post Hoc Tests

LE A R N I N G O B J E C T IV E  

 9. Describe the circumstances in which post hoc tests are necessary and explain what 
the tests accomplish.

As noted earlier, the primary advantage of ANOVA (compared to t tests) is it allows researcht tests) is it allows researcht -
ers to test for significant mean differences when there are more than two treatment conditions. 
ANOVA accomplishes this feat by comparing all the individual mean differences simultane-
ously within a single test. Unfortunately, the process of combining several mean differences 
into a single test statistic creates some difficulty when it is time to interpret the outcome of 
the test. Specifically, when you obtain a significant F-ratio (reject F-ratio (reject F H0H0H ), it simply indicates 
that somewhere among the entire set of mean differences there is at least one that is statisti-
cally significant. In other words, the overall F-ratio only tells you that a significant difference F-ratio only tells you that a significant difference F
exists; it does not tell exactly which means are significantly different and which are not.

In Example 12.1 we presented an independent-measures study using three samples to 
compare three strategies for studying in preparation for a quiz: rereading the material to 
be tested, answering prepared questions on the material, creating and answering your own 
questions. The three sample means were M1 5 5, M2M2M 5 9, and M3M3M 5 10. In this study there 
are three mean differences:

1. There is a 4-point difference between There is a 4-point difference between There is a 4-point dif M1 and M2M2M .

2. There is a 1-point difference between There is a 1-point difference between There is a 1-point dif M2M2M  and M3M3M .

3. There is a 5-point difference between There is a 5-point difference between There is a 5-point dif M1 and M3M3M .

The ANOVA used to evaluate these data produced a significant F-ratio indicating that at 
least one of the sample mean differences is large enough to satisfy the criterion of statis-
tical significance. In this example, the 5-point difference is the biggest of the three and, 
therefore, it must indicate a significant difference between the first treatment and the third 
treatment (m1 ? m3). But what about the 4-point difference? Is it also large enough to be 
significant? And what about the 1-point difference between M2M2M  and M3M3M ? Is it also signifi-
cant? The purpose of post hoc tests is to answer these questions.

Post hoc tests (or Post hoc tests (or Post hoc tests posttests) are additional hypothesis tests that are done after an posttests) are additional hypothesis tests that are done after an posttests ANOVA 
to determine exactly which mean differences are signi�cant and which are not.

As the name implies, post hoc tests are done after an ANOVA. More specifically, these 
tests are done after ANOVA when

1. you reject H0H0H  and

2. there are three or more treatments (k $ 3).

Rejecting H0H0H  indicates that at least one difference exists among the treatments. If there are 
only two treatments, then there is no question about which means are different and, there-
fore, no need for posttests. However, with three or more treatments (k $ 3), the problem is 
to determine exactly which means are significantly different.

■ Posttests and Type I Errors
In general, a post hoc test enables you to go back through the data and compare the 
individual treatments two at a time. In statistical terms, this is called making pairwise 
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comparisons. For example, with k 5 3, we would compare m1 versus m2, then m2 versus 
m3, and then m1 versus m3. In each case, we are looking for a significant mean difference. 
The process of conducting pairwise comparisons involves performing a series of separate 
hypothesis tests, and each of these tests includes the risk of a Type I error. As you do more 
and more separate tests, the risk of a Type I error accumulates and is called the experiment-
wise alpha level (see page 333).wise alpha level (see page 333).wise alpha level

We have seen, for example, that a research study with three treatment conditions pro-
duces three separate mean differences, each of which could be evaluated using a post hoc 
test. If each test uses a 5 .05, then there is a 5% risk of a Type I error for the first post-
test, another 5% risk for the second test, and one more 5% risk for the third test. Although 
the probability of error is not simply the sum across the three tests, it should be clear that 
increasing the number of separate tests definitely increases the total, experimentwise prob-
ability of a Type I error.

Whenever you are conducting posttests, you must be concerned about the experiment-
wise alpha level. Statisticians have worked with this problem and have developed several 
methods for trying to control Type I errors in the context of post hoc tests. We will consider 
two alternatives.

■ Tukey’s Honestly Significant Difference (HSD) Test
The first post hoc test we consider is Tukey’s HSD test. We selected Tukey’s HSD test because 
it is a commonly used test in psychological research. Tukey’s test allows you to compute a 
single value that determines the minimum difference between treatment means that is neces-
sary for significance. This value, called the honestly significant difference, or HSD, is then 
used to compare any two treatment conditions. If the mean difference exceeds Tukey’s HSD, 
you conclude that there is a significant difference between the treatments. Otherwise, you can-
not conclude that the treatments are significantly different. The formula for Tukey’s HSD is

HSHSH DSDS 5 qÎMSMSM
withinÎ nÎ (12.15)

where the value of q is found in Table B.5 (Appendix B, page 542), MSwithin treatments is the 
within-treatments variance from the ANOVA, and n is the number of scores in each treat-
ment. Tukey’s test requires that the sample size, n, be the same for all treatments. To locate 
the appropriate value of q, you must know the number of treatments in the overall experi-
ment (k), the degrees of freedom for MSwithin treatments (the error term in the F-ratio), and you 
must select an alpha level (generally the same a used for the ANOVA).

To demonstrate the procedure for conducting post hoc tests with Tukey’s HSD, we use the 
data from Example 12.1, which are summarized in Table 12.6. Note that the table displays 
summary statistics for each sample and the results from the overall ANOVA. With k 5 3 
treatments, n 5 6, and a 5 .05, you should find that the value of q for the test is q 5 3.67 
(see Table B.5). Therefore, Tukey’s HSD is

HSHSH DSDS 5 qÎMSMSM
withinÎ nÎ 5 3.67Î5.87Î 6Î 5 3.63

Thus, the mean difference between any two samples must be at least 3.63 to be significant. 
Using this value, we can make the following conclusions:

1. Treatment A is signi�cantly different from Treatment B (MAMAM 2 MBMBM 5 4.00).

2. Treatment A is also signi�cantly different from Treatment C (MAMAM 2 MCMCM 5 5.00).

3. Treatment B is not signi�cantly different from Treatment C (MBMBM 2 MCMCM 5 1.00).

The q value used in 
Tukey’s HSD test is 
called a Studentized 
range statistic.

E X A M P L E  1 2 . 5
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■ The Scheffé Test
Because it uses an extremely cautious method for reducing the risk of a Type I error, 
the Scheffé test has the distinction of being one of the safest of all possible post hoc Scheffé test has the distinction of being one of the safest of all possible post hoc Scheffé test
tests (smallest risk of a Type I error). The Scheffé test uses an F-ratio to evaluate the 
significance of the difference between any two treatment conditions. The numerator 
of the F-ratio is an MS between treatments that is calculated using only the two treat-
ments you want to compare. The denominator is the same MSwithin that was used for the 
overall ANOVA. The “safety factor” for the Scheffé test comes from the following two 
considerations:

1. Although you are comparing only two treatments, the Scheffé test uses the value of 
k from the original experiment to compute k from the original experiment to compute k df between treatments. Thus, df between treatments. Thus, df df for the df for the df
numerator of the F-ratio is k 2 1.

2. The critical value for the Scheffé F-ratio is the same as was used to evaluate the 
F-ratio from the overall ANOVA. Thus, Scheffé requires that every posttest satisfy 
the same criterion that was used for the complete ANOVA. The following example 
uses the data from Example 12.1 (see Table 12.6) to demonstrate the Scheffé post-
test procedure.

Remember that the Scheffé procedure requires a separate SSbetweenSSbetweenSS , MSbetweenMSbetweenMS , and F-ratio 
for each comparison being made. Although Scheffé computes SSbetweenSSbetweenSS  using the regular 
computational formula (Equation 12.7), you must remember that all the numbers in the 
formula are entirely determined by the two treatment conditions being compared. We begin 
with the smallest mean difference, which involves comparing Treatment B (with T 5 54 
and n 5 6) and Treatment C (with T 5 60 and n 5 6). The first step is to compute SSbetweenSSbetweenSS
for these two groups. In the formula for SS, notice that the grand total for the two groups is 
G 5 54 1 60 5 114, and the total number of scores for the two groups is N 5 6 1 6 5 12.

SSbSbS etween 5 S
T 2

n
2

G2

N

5
(54)2

6
1

(60)2

6
2

(114)2

12

5 486 1 600 2 1083

5 3

Although we are comparing only two groups, these two were selected from a study consist-
ing of k 5 3 samples. The Scheffé test uses the overall study to determine the degrees of 
freedom between treatments. Therefore, dfbetweendfbetweendf 5 3 2 1 5 2, and the MS between treatMS between treatMS -
ments is

MSMSM
b

S
b

S
etween

5
SS

b
S

b
S

etween

dfdfd
b

f
b

f
etween

5
3

2
5 1.5

E X A M P L E  1 2 . 6

TA B L E  1 2 .6
Results from the research 
study in Example 12.1. 
Summary statistics are pre-
sented for each treatment 
along with the outcome 
from the ANOVA.

Treatment A 
Reread

Treatment B 
Prepared 
Questions

Treatment C 
Create 

Questions

n 5 6 n 5 6 n 5 6
T 5 30 T 5 54 T 5 60

M 5 5.00 M 5 9.00 M 5 10.00
■

Source SS df MS

Between 84 2 42
Within 88 15 5.87
Total 172 17
Overall F(2, 15) 5 7.16
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Finally, the Scheffé procedure uses the error term from the overall ANOVA to compute the 
F-ratio. In this case, F-ratio. In this case, F MSwithinMSwithinMS 5 5.87 with dfwithindfwithindf 5 15. Thus, the Scheffé test produces an 
F-ratio ofF-ratio ofF

F 5
MSMSM

b
S

b
S

etween

MSMSM
within

5
1.5

5.87
5 0.26

With df 5 2, 15 and a 5 .05, the critical value for F is 3.68 (see Table B.4). Therefore, F is 3.68 (see Table B.4). Therefore, F
our obtained F-ratio is not in the critical region, and we conclude that these data show no 
significant difference between Treatment B and Treatment C.

The second largest mean difference involves Treatment A (T 5 30) versus Treat-
ment B (T 5 54). This time the data produce SSbetween 5 48, MSbetween 5 24, and 
F(2, 15) 5 4.09 (check the calculations for yourself). Once again the critical value for 
F is 3.68, so we conclude that there is a significant difference between Treatment A F is 3.68, so we conclude that there is a significant difference between Treatment A F
and Treatment B.

The final comparison is Treatment A (M 5 5) versus Treatment C (M 5 10). We have 
already found that the 4-point mean difference between A and B is significant, so the 5-point 
difference between A and C also must be significant. Thus, the Scheffé posttest indicates 
that both B and C (answering prepared questions and creating and answering your own 
questions) are significantly different from Treatment A (simply rereading), but there is no 
significant difference between B and C. ■

In this case, the two post-test procedures, Tukey’s HSD and Scheffé, produce exactly 
the same results. You should be aware, however, that there are situations in which 
Tukey’s test will find a significant difference but Scheffé will not. Again, the Scheffé 
test is one of the safest of the posttest techniques because it provides the greatest pro-
tection from Type I errors. To provide this protection, the Scheffé test simply requires 
a larger difference between sample means before you may conclude that the difference 
is significant.

LO9 1. Under what circumstances are post hoc tests necessary after an ANOVA?

a. When H0H0H is rejected

b. When there are more than two treatments

c. When H0H0H is rejected and there are more than two treatments

d. You always should do post hoc tests after an ANOVA.

LO9 2. An ANOVA finds significant treatment effects for a study comparing three 
treatments with means of M1 5 8, M2M2M 5 4, M3 5 2. If Tukey’s HSD is 
computed to be HSD 5 2.50, then which of the treatments are significantly 
different?

a. 1 vs. 2 and 2 vs. 3

b. 1 vs. 2 and 1 vs. 3

c. 1 vs. 3 and 2 vs. 3

d. 1 vs. 2 and 1 vs. 3 and 2 vs. 3

1. c 2. b

LE A R N I N G C H E C K

A N S W E R S
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12-6 More about ANOVA

LE A R N I N G O B J E C T IV E S

 10. Explain how the outcome of an ANOVA and measures of effect size are in�u-
enced by sample size, sample variance, and sample mean differences.

 11. Explain the relationship between the independent-measures t test and an ANOVA t test and an ANOVA t
when evaluating the difference between two means from an independent-measures 
study.

■ A Conceptual View of ANOVA
Because analysis of variance requires relatively complex calculations, students encounter-
ing this statistical technique for the first time often tend to be overwhelmed by the formulas 
and arithmetic and lose sight of the general purpose for the analysis. The following two 
examples are intended to minimize the role of the formulas and shift attention back to the 
conceptual goal of the ANOVA process.

The following data represent the outcome of an experiment using two separate samples to 
evaluate the mean difference between two treatment conditions. Take a minute to look at 
the data and, without doing any calculations, try to predict the outcome of an ANOVA for 
these values. Specifically, predict what values should be obtained for the between-treat-
ments variance (MS) and the F-ratio. If you do not “see” the answer after 20 or 30 seconds, 
try reading the hints that follow the data.

Treatment I Treatment II

4 2 N 5 8
0 1 G 5 16
1 0 SX2X2X 5 56
3 5

T 5 8 T 5 8
SS 5 10 SS 5 14

If you are having trouble predicting the outcome of the ANOVA, read the following hints, 
and then go back and look at the data.

Hint 1:  Remember that SSbetweenSSbetweenSS  and MSbetweenMSbetweenMS  provide a measure of how much dif- provide a measure of how much dif- provide a measure of how much dif
ference there is between treatment conditions. 

Hint 2: Find the mean or total (T) for each treatment, and determine how much difT) for each treatment, and determine how much difT -) for each treatment, and determine how much dif-) for each treatment, and determine how much dif
ference there is between the two treatments. 

You should realize by now that the data have been constructed so that there is zero differ-
ence between treatments. The two sample means (and totals) are identical, so SSbetweenSSbetweenSS 5 0, 
MSbetweenMSbetweenMS 5 0, and the F-ratio is zero.F-ratio is zero.F ■

Conceptually, the numerator of the F-ratio always measures how much difference exists 
between treatments. In Example 12.7, we constructed an extreme set of scores with zero 
difference. However, you should be able to look at any set of data and quickly compare 
the means (or totals) to determine whether there are big differences between treatments or 
small differences between treatments.

E X A M P L E  1 2 . 7
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Being able to estimate the magnitude of between-treatment differences is a good first 
step in understanding ANOVA and should help you to predict the outcome of an ANOVA. 
However, the between-treatment differences are only one part of the analysis. You must between-treatment differences are only one part of the analysis. You must between-treatment
also understand the within-treatment differences that form the denominator of the within-treatment differences that form the denominator of the within-treatment F-ratio. 
The following example is intended to demonstrate the concepts underlying SSwithin and 
MSwithin. In addition, the example should give you a better understanding of how the 
between-treatment differences and the within-treatment differences act together within 
the ANOVA.

The purpose of this example is to present a visual image for the concepts of between-
treatments variability and within-treatments variability. In this example, we compare two 
hypothetical outcomes for the same experiment. In each case, the experiment uses two 
separate samples to evaluate the mean difference between two treatments. The following 
data represent the two outcomes, which we call Experiment A and Experiment B.

Experiment A Experiment B

Treatment Treatment

I II I II

8 12 4 12
8 13 11 9
7 12 2 20
9 11 17 6
8 13 0 16
9 12 8 18
7 11 14 3

M 5 8 M 5 12 M 5 8 M 5 12
s 5 0.82 s 5 0.82 s 5 6.35 s 5 6.35

The data from Experiment A are displayed in a frequency distribution graph in 
Figure 12.7(a). Notice that there is a 4-point difference between the treatment means 
(M1 5 8 and M2M2M 5 12). This is the between-treatments difference that contributes to 
the numerator of the F-ratio. Also notice that the scores in each treatment are clustered 
close around the mean, indicating that the variance inside each treatment is relatively 
small. This is the within-treatments variance that contributes to the denominator of the 
F-ratio. Finally, you should realize that it is easy to see the mean difference between the 
two samples. The fact that there is a clear mean difference between the two treatments 
is confirmed by computing the F-ratio for Experiment A.

F 5
between{treatments difffff efef rence

within{treatments difffff efef rences
5

MSMSM
b

S
b

S
etween

MSMSM
within

5
56

0.667
5 83.96

An F-ratio of F 5 83.96 is sufficient to reject the null hypothesis, so we conclude that there 
is a significant difference between the two treatments.

Now consider the data from Experiment B, which are shown in Figure 12.7(b) and 
present a very different picture. This experiment has the same 4-point difference between 
treatment means that we found in Experiment A (M1 5 8 and M2M2M 5 12). However, for these 
data the scores in each treatment are scattered across the entire scale, indicating relatively 
large variance inside each treatment. In this case, the large variance within treatments over-
whelms the relatively small mean difference between treatments. In the figure it is almost 
impossible to see the mean difference between treatments. The within-treatments variance 

E X A M P L E  1 2 . 8
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Between
treatments

Treatment 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Treatment 2

18 19 20
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1
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3

Between
treatments

Treatment 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Treatment 2

18 19 20

Fr
e

q
u

e
n

c
y

1
2
3

M1 5 8
SS1 5 4

M2M2M 5 12
SS2 SS2 SS 5 4

M2M2M 5 12
SS2 SS2 SS 5 242

M1 5 8
SS1 5 242

Experiment B

Experiment A(a)

(b)

F I G U R E  1 2 .7
A visual representation of 
the between-treatments 
variability and the within-
treatments variability that 
form the numerator and 
denominator, respectively, 
of the F-ratio. In (a) the F-ratio. In (a) the F
difference between treat-
ments is relatively large 
and easy to see. In (b) the 
same 4-point differ-
ence between treatments 
is relatively small and 
is overwhelmed by the 
within-treatments vari-
ability.

appears in the bottom of the F-ratio and, for these data, the F-ratio confirms that there is no 
clear mean difference between treatments.

F 5
between{treatments difffff efef rence

within{treatments difffff efef rences
5

MSMSM
b

S
b

S
etween

MSMSM
within

5
56

40.33
5 1.39

For Experiment B, the F-ratio is not large enough to reject the null hypothesis, so we 
conclude that there is no significant difference between the two treatments. Once again, 
the statistical conclusion is consistent with the appearance of the data in Figure 12.7(b). 
Looking at the figure, we see that the scores from the two samples appear to be intermixed 
randomly with no clear distinction between treatments.

As a final point, note that the denominator of the F-ratio, F-ratio, F MSwithinMSwithinMS , is a measure of the 
variability (or variance) within each of the separate samples. As we have noted in previous 
chapters, high variability makes it difficult to see any patterns in the data. In Figure 12.7(a), 
the 4-point mean difference between treatments is easy to see because the sample variability 
is small. In Figure 12.7(b), the 4-point difference gets lost because the sample variability is 
large. In general, you can think of variance as measuring the amount of “noise” or “confu-
sion” in the data. With large variance there is a lot of noise and confusion and it is difficult to 
see any clear patterns. ■

Although Examples 12.7 and 12.8 present somewhat simplified demonstrations with 
exaggerated data, the general point of the examples is to help you see what happens when 
you perform an ANOVA. Specifically:

1. The numerator of the F-ratio (F-ratio (F MS-ratio (MS-ratio ( betweenMSbetweenMS ) measures how much difference exists 
between the treatment means. The bigger the mean differences, the bigger the F-ratio.F-ratio.F
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2. The denominator of the F-ratio (MSwithin) measures the variance of the scores inside 
each treatment; that is, the variance for each of the separate samples. In general, 
larger sample variance produces a smaller F-ratio.

We should note that the number of scores in the samples also influences the outcome of 
an ANOVA. As with most other hypothesis tests, if other factors are held constant, increas-
ing the sample size tends to increase the likelihood of rejecting the null hypothesis. How-
ever, changes in sample size have little or no effect on measures of effect size such as h2.

■ The Relationship Between ANOVA and t Tests
When you are evaluating the mean difference from an independent-measures study com-
paring only two treatments (two separate samples), you can use either an independent-
measures t test (Chapter 10) or the ANOVA presented in this chapter. In practical terms, it t test (Chapter 10) or the ANOVA presented in this chapter. In practical terms, it t
makes no difference which you choose. These two statistical techniques always result in 
the same statistical decision. In fact the two methods use many of the same calculations and 
are very closely related in several other respects. The basic relationship between t statistics t statistics t
and F-ratios can be stated in an equation:

F 5 t2

This relationship can be explained by first looking at the structure of the formulas for F and F and F t. 
The t statistic compares t statistic compares t distances: the distance between two sample means (numerator) and 
the distance computed for the standard error (denominator). The F-ratio, on the other hand, F-ratio, on the other hand, F
compares variances. You should recall that variance is a measure of squared distance. Hence, 
the relationship:

F 5 t2.

There are several other points to consider in comparing the t statistic to the t statistic to the t F-ratio.

1. It should be obvious that you will be testing the same hypotheses whether you choose a 
t test or an ANOVA. With only two treatments, the hypotheses for either test aret test or an ANOVA. With only two treatments, the hypotheses for either test aret

H0H0H : m1 5 m2

H1: m1 ? m2

2. The degrees of freedom for the t statistic and the t statistic and the t df for the denominator of the df for the denominator of the df
F-ratio (dfwithindfwithindf ) are identical. For example, if you have two samples, each with six 
scores, the independent-measures t statistic will have t statistic will have t df 5 10, and the F-ratio will 
have df 5 1, 10. In each case, you are adding the df from the �rst sample (df from the �rst sample (df n 2 1) 
and the df from the second sample (df from the second sample (df n 2 1).

3. The distribution of t and the distribution of t and the distribution of t F-ratios match perfectly if you take into 
consideration the relationship F 5 t2. Consider the t distribution with t distribution with t df 5 18 and 
the corresponding F distribution with F distribution with F df 5 1, 18 that are presented in Figure 12.8. 
Notice the following relationships:

a. If each of the t values is squared, then all of the negative values become posi-t values is squared, then all of the negative values become posi-t
tive. As a result, the whole left-hand side of the t distribution (below zero) will t distribution (below zero) will t
be �ipped over to the positive side. This creates an asymmetrical, positively 
skewed distribution—that is, the F distribution.F distribution.F

b. For a 5 .05, the critical region for t is determined by values greater than t is determined by values greater than t 12.101 
or less than 22.101. When these boundaries are squared, you get 62.1012 5 4.41.

Notice that 4.41 is the critical value for a 5 .05 in the F distribution. Any value that is in F distribution. Any value that is in F
the critical region for t will end up in the critical region for t will end up in the critical region for t F-ratios after it is squared.
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0 1 2 3 4 50 1 2 3 4 5

4.41
(2.1012)

95 %

95 %

–2.101 0 2.101

F I G U R E  1 2 . 8
The distribution of t statist statist -
tics with df 5 18 and the 
corresponding distribution 
of F-ratios with df 5 1, 18. 
Notice that the critical values 
for α 5 .05 are t 5 ±2.101 
and F 5 2.1012 5 4.41.

LO10 1. Which combination of factors is most likely to produce a large value for the 
F-ratio and a large value for h2?

a. Large mean differences and large sample variances

b. Large mean differences and small sample variances

c. Small mean differences and large sample variances

d. Small mean differences and small sample variances

LO10 2. If an analysis of variance is used for the following data, what would be the 
effect of changing the value of M2M2M  to 30? 

a. Increase SSbetweenSSbetweenSS  and increase the size of the F-ratio

b. Increase SSbetweenSSbetweenSS  and decrease the size of the F-ratio 

c. Decrease SSbetweenSSbetweenSS and increase the size of the F-ratio

d. Decrease SSbetweenSSbetweenSS and decrease the size of the F-ratio

LO11 3. A researcher uses an ANOVA to evaluate the mean difference between two 
treatment conditions and obtains F 5 4.00 with df 5 1, 16. If an independent-
measures t statistic had been used instead of the ANOVA, then what t value t value t
would be obtained and what is the df value for df value for df t?

a. t 5 2.00 with df 5 16

b. t 5 2.00 with df 5 17

c. t 5 16 with df 5 16

d. t 5 16  with df 5 17

1. b 2. a 3. a

LE A R N I N G C H E C K

A N S W E R S

Sample Data

M1 5 15 M2M2M 5 25

SS1 5 90 SS2 5 70
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1. Analysis of variance (ANOVA) is a statistical technique 
that is used to test for mean differences among two or 
more treatment conditions. The null hypothesis for this 
test states that in the general population there are no 
mean differences among the treatments. The alternative 
states that at least one mean is different from another.

2. The test statistic for ANOVA is a ratio of two vari-
ances called an F-ratio. The variances in the F-ratio 
are called mean squares, or MS values. Each MS is 
computed by

MSMSM 5
SS

dfdfd
3. For the independent-measures ANOVA, the F-ratio is

F 5
MSMSM

b
S

b
S

etween

MSMSM
within

The MSbetweenMSbetweenMS  measures differences between the treat-
ments by computing the variability of the treatment 
means or totals. These differences are assumed to be 
produced by
a. treatment effects (if they exist).
b. differences resulting from chance.

The MSwithinMSwithinMS  measures variability inside each of the treatwithin measures variability inside each of the treatwithin -
ment conditions. Because individuals inside a treatment 

condition are all treated exactly the same, any differ-
ences within treatments cannot be caused by treatment 
effects. Thus, the within-treatments MS is produced only MS is produced only MS
by differences caused by chance. With these factors in 
mind, the F-ratio has the following structure:F-ratio has the following structure:F

F 5
treatment efffff efef ct 1 difffff efef rences due to chance

difffff efef rences due to chance

When there is no treatment effect (H0H0H  is true), the nu-
merator and the denominator of the F-ratio are measurF-ratio are measurF -
ing the same variance, and the obtained ratio should be 
near 1.00. If there is a significant treatment effect, the 
numerator of the ratio should be larger than the denomi-
nator, and the obtained F value should be much greater F value should be much greater F
than 1.00.

4. The formulas for computing each SS, df, and df, and df MS value MS value MS
are presented in Figure 12.9, which also shows the 
general structure for the ANOVA.

5. The F-ratio has two values for degrees of freedom, 
one associated with the MS in the numerator and one MS in the numerator and one MS
associated with the MS in the denominator. These  MS in the denominator. These  MS
df values are used to find the critical value for the  df values are used to find the critical value for the  df
F-ratio in the F distribution table.F distribution table.F

S U M M A R Y

Within treatments

SS = SS = SS SSSeach trSSeach trSS eatmenteach treatmenteach tr

Between treatments
SS = SS = SS SStoSStoSS tal 2 SSwithinSSwithinSS

          or           or SS =

df = k 2 1

MS = MS = MS

Total

df = df = df N 2 1
N
G2

SS = SS = SS S X 22

S 
G2

N

T 2

n
2

SS
df

 df =  df =  df N 2 k

MS = MS = MS
SS
df

MS between treatments
MS within treatments

F -ratio = F I G U R E  1 2 .9
Formulas for ANOVA.
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7. When the decision from an ANOVA is to reject the 
null hypothesis and when the experiment has more 
than two treatment conditions, it is necessary to con-
tinue the analysis with a post hoc test, such as Tukey’s 
HSD test or the Scheffé test. The purpose of these 
tests is to determine exactly which treatments are 
significantly different and which are not.

6. Effect size for the independent-measures ANOVA is 
measured by computing eta squared, the percentage of 
variance accounted for by the treatment effect.

�2 5
SS

between
SS

between
SS

SS
between

SS
between

SS 1 SS
within

5
SS

between
SS

between
SS

SS
total

SS
total

SS

analysis of variance 
(ANOVA) (330)

factor (331)

levels (331)

two-factor design or factorial 
design (331)

single-factor design (331)

single-factor, independent measures 
design (332)

testwise alpha level (333)

experimentwise alpha level (333)

between-treatments variance (335)

treatment effect (336)

within-treatments variance (336)

F-ratio (336)

error term (337)

mean square (MS) (344)

distribution of F-ratios (346)

ANOVA summary table (348)

eta squared (h2) (349)

post hoc tests or posttests (353)

pairwise comparisons (353)

Tukey’s HSD test (354)

Scheffé test (355)

KE Y TER M S

General instructions for using SPSS are presented in Appendix D. Following are detailed in-
structions for using SPSS to perform The Single-Factor, Independent-Measures Analysis of 
Variance (ANOVA) presented in this chapter.

Data Entry

1. The scores are entered in a stacked format in the data editor, which means that all the 
scores from all of the different treatments are entered in a single column (VAR00001). 
Enter the scores for Treatment #2 directly beneath the scores from Treatment #1 with no 
gaps or extra spaces. Continue in the same column with the scores from Treatment #3, and 
so on.

2. In the second column (VAR00002), enter a number to identify the treatment condition In the second column (VAR00002), enter a number to identify the treatment condition In the second column (V
for each score. For example, enter a 1 beside each score from the first treatment, enter a 2 
beside each score from the second treatment, and so on.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on One-Way ANOVA.
2. Highlight the column label for the set of scores (VAR0001) in the left box and click the Highlight the column label for the set of scores (VAR0001) in the left box and click the Highlight the column label for the set of scores (V

arrow to move it into the Dependent List box.
3. Highlight the label for the column containing the treatment numbers (VAR0002) in the left Highlight the label for the column containing the treatment numbers (VAR0002) in the left Highlight the label for the column containing the treatment numbers (V

box and click the arrow to move it into the Factor box.
4. If you want descriptive statistics for each treatment, click on the Options box, select De-

scriptives, and click Continue.
5. Click OK.

SPSS ®
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SPSS Output

We used the SPSS program to analyze the data from the study in Example 12.1 and the program 
output is shown in Figure 12.10. The output begins with a table showing descriptive statistics 
(number of scores, mean, standard deviation, standard error for the mean, a 95% confidence 
interval for the mean, maximum and minimum scores) for each sample. The second part of the 
output presents a summary table showing the results from the ANOVA.

FO CUS  O N  PRO B LE M  SO LVIN G

1. It can be helpful to compute all three SS values separately, then check to verify that the two SS values separately, then check to verify that the two SS
components (between and within) add up to the total. However, you can greatly simplify 
the calculations if you simply find SStotalSStotalSS  and SSwithin treatmentsSSwithin treatmentsSS , then obtain SSbetweenSSbetweenSS treatments by 
subtraction.

2. Remember that an F-ratio has two separate values for df : a value for the numerator and 
one for the denominator. Properly reported, the dfbetweendfbetweendf  value is stated first. You will need 
both df values when consulting the df values when consulting the df F distribution table for the critical F distribution table for the critical F F value. You should F value. You should F
recognize immediately that an error has been made if you see an F-ratio reported with a 
single value for df.df.df

VAR00001

Descriptives

1.00

2.00

3.00

TotalTotalT

Between Groups

Within Groups

TotalTotalT

84.000

88.000

172.000

2

15

17

42.000

5.867

7.159 .007

6

6

6

18

5.0000

9.0000

10.0000

8.0000

2.19089

2.60768

2.44949

3.18082

.89443

1.06458

1.00000

.74973

2.7008

6.2634

7.4294

6.4182

7.2992

11.7366

12.5706

9.5818

2.00

5.00

6.00

2.00

8.00

13.00

12.00

13.00

N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum

95% Confidence Interval
for Mean

VAR00001

ANOVAANOVAANOV

df
Sum of
Squares Mean Square F Sig.

F I G U R E  1 2 .1 0
The SPSS output from the ANOVA for the studying strategy experiment in Example 12.2.
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3. When you encounter an F-ratio and its F-ratio and its F df values reported in the literature, you should be df values reported in the literature, you should be df
able to reconstruct much of the original experiment. For example, if you see “F(2, 36) 5
4.80,” you should realize that the experiment compared k 5 3 treatment groups (because 
dfbetweendfbetweendf 5 k 2 1 5 2), with a total of N 5 39 subjects participating in the experiment 
(because dfwithindfwithindf 5 N 2 k 5 36).

D E M O N S TR ATIO N  12.1

ANALYSIS OF VARIANCE

A human factors psychologist studied three computer keyboard designs. Three samples of 
individuals were given material to type on a particular keyboard, and the number of errors 
committed by each participant was recorded. The data are as follows:

Keyboard A Keyboard B Keyboard C

0 6 6 N 5 15

4 8 5 G 5 60

0 5 9 ΣX2X2X 5 356
1 4 4
0 2 6

T 5 5 T 5 25 T 5 30
SS 5 12 SS 5 20 SS 5 14

Are these data sufficient to conclude that there are significant differences in typing perfor-
mance among the three keyboard designs?

State the hypotheses, and specify the alpha level. The null hypothesis states that there 
is no difference among the keyboards in terms of number of errors committed. In symbols, 

H0H0H : m1 5 m2 5 m3 (Type of keyboard used has no effect.)(Type of keyboard used has no effect.)(T

As noted previously in this chapter, there are a number of possible statements for the alterna-
tive hypothesis. Here we state the general alternative hypothesis:

H1: At least one of the treatment means is different.

We will set alpha at a 5 .05.

Locate the critical region. To locate the critical region, we must obtain the values for To locate the critical region, we must obtain the values for T
dfbetweendfbetweendf  and dfwithindfwithindf .

dfbetweendfbetweendf 5 k 2 1 5 3 2 1 5 2

dfwithindfwithindf 5 N 2 k 5 15 2 3 5 12

The F-ratio for this problem has df 5 2, 12. Consult the F-distribution table for df 5 2 in the 
numerator and df 5 12 in the denominator. The critical F value for F value for F a 5 .05 is F 5 3.88. The 
obtained F-ratio must exceed this value to reject H0H0H .

Perform the analysis. The analysis involves the following steps, which produce the nine The analysis involves the following steps, which produce the nine The analysis in
values needed to fill an ANOVA summary table: 

Source SS df MS

Between treatments __ __ __ F 5 __

Within treatments __ __ __

Total __ __

STEP 1

STEP 2

STEP 3
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The analysis of SS. We will compute SStotal followed by its two components.

SStStS otal 5 SX2X2X 2
G2

N
5 356 2

602

15
5 356 2

3600

15
5 356 2 240 5 116

SSwithin 5 SSSinside each treatment

5 12 1 20 1 14

5 46

SSbetweenSSbetweenSS 5 SStotal 2 SSwithin

5 116 2 46 

5 70

Analyze degrees of freedom. We will compute dftotaldftotaldf . Its components, dfbetweendfbetweendf  and dfwithindfwithindf , 
were previously calculated (Step 2).

dftotaldftotaldf 5 N 2 1 5 15 2 1 5 14

dfbetweendfbetweendf 5 2

dfwithindfwithindf 5 12

Calculate the MS values. The values for MSbetweenMSbetweenMS  and MSwithin are determined.

MSMSM
b

S
b

S
etween

5
SS

b
S

b
S

etween

dfdfd
b

f
b

f
etween

5
70

2
5 35

MSMSM
within

5
SS

within

dfdfd
w

f
w

f
ithin

5
46

12
5 3.83

Compute the F-ratio. Finally, we can compute F.

F 5
MSMSM

b
S

b
S

etween

MSMSM
within

5
35

3.83
5 9.14

Make a decision about H0, and state a conclusion. The obtained F of 9.14 exceeds the F of 9.14 exceeds the F
critical value of 3.88. Therefore, we can reject the null hypothesis. The type of keyboard used 
has a significant effect on the number of errors committed, F(2, 12) 5 9.14, p , .05. 

D E M O N S TR ATIO N  12. 2

COMPUTING EFFECT SIZE FOR ANALYSIS OF VARIAF VARIAF V NCE

We will compute eta squared (h2), the percentage of variance explained, for the data that 
were analyzed in Demonstration 12.1. The data produced a between-treatments SS of 70 and SS of 70 and SS
a total SS of 116. Thus,SS of 116. Thus,SS

h2 5
SSbSbS etween

SStStS otal
5

70

116
5 0.60 sor 60%d

STEP 4
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PRO B LE M S

1. Why should you use ANOVA instead of several t
tests to evaluate mean differences when an experiment 
consists of three or more treatment conditions?

2. What value is expected for the F-ratio, on average, if 
the null hypothesis is true in an ANOVA?  Explain 
why.

3. Describe the similarities between an F-ratio and a 
t statistic.t statistic.t

4. Calculate SStotal, SSbetweenSSbetweenSS , and SSwithin for the following 
set of data:

Treatment 1 Treatment 2 Treatment 3

n 5 10 n 5 10 n 5 10 N 5 30
T 5 10 T 5 20 T 5 30 G 5 60

SS 5 27 SS 5 16 SS 5 23 ΣX2X2X 5 206

5. A researcher uses an ANOVA to compare three treat-
ment conditions with a sample of n 5 8 in each treat-
ment. For this analysis, find dftotaldftotaldf , dfbetweendfbetweendf , and dfwithindfwithindf .

6. A researcher reports an F-ratio with dfbetweendfbetweendf 5 2 and 
dfwithindfwithindf 5 30 for an independent-measures ANOVA. 
a. How many treatment conditions were compared in 

the experiment? 
b. How many subjects participated in the experiment?

7. A researcher reports an F-ratio with df 5 3, 24 from 
an independent-measures research study.
a. How many treatment conditions were compared in 

the study?
b. What was the total number of participants in the 

study?

8. The following values are from an independent-mea-
sures study comparing three treatment conditions.

Treatment

I II III

n 5 8 n 5 8 n 5 8

SS 5 35 SS 5 42 SS 5 70

a. Compute the variance for each sample.
b. Compute MSwithin, which would be the denominator 

of the F-ratio for an ANOVA.

Because the samples are all the same size, you should 
find that MSwithin is equal to the average of the three 
sample variances.

9. A researcher conducts an experiment comparing four 
treatment conditions with a separate sample of n 5 6 
in each treatment. An ANOVA is used to evaluate the 
data, and the results of the ANOVA are presented in 

the following table. Complete all missing values in the 
table. Hint: Begin with the values in the df column.df column.df

Source SS df MS

Between treatments ____ ____ ____ F 5 ____
Within treatments ____ ____ 2

Total 58 ____

10. The following summary table presents the results 
from an ANOVA comparing four treatment condi-
tions with n 5 10 participants in each condition. 
Complete all missing values. (Hint: Start with the df
column.)

Source SS df MS

Between treatments ____ ____ 10 F 5 ____
Within treatments ____ ____ ____
Total 174 ____

11. A developmental psychologist is examining the devel-
opment of language skills from age 2 to age 4. Three 
different groups of children are obtained, one for each 
age, with n 5 18 children in each group. Each child is 
given a language-skills assessment test. The resulting 
data were analyzed with an ANOVA to test for mean 
differences between age groups. The results of the 
ANOVA are presented in the following table. Fill in 
all missing values.

Source SS df MS

Between treatments 48 ____ ____ F 5 ____
Within treatments ____ ____ ____
Total 252 ____

12. The following data were obtained from an inde-
pendent-measures research study comparing three 
treatment conditions. Use an ANOVA with a 5 .05 
to determine whether there are any significant mean 
differences among the treatments.

Treatment

I II III

5 2 7
1 6 3
2 2 2
3 3 4
0 5 5
1 3 2
2 0 4
2 3 5
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13. The following data were obtained from an inde-
pendent-measures research study comparing three 
treatment conditions. Use an ANOVA with a 5 .05 
to determine whether there are any significant mean 
differences among the treatments.

Treatment

I II III

n 5 8 n 5 6 n 5 4 N 5 18
T 5 16 T 5 24 T 5 32 G 5 72

SS 5 40 SS 5 24 SS 5 16 ΣX2X2X 5 464

14. A research study comparing three treatment condi-
tions produces T 5 20 with n 5 4 for the first treat-
ment, T 5 10 with n 5 5 for the second treatment, and 
T 5 30 with n 5 6 for the third treatment. Calculate 
SSbetween treatmentsSSbetween treatmentsSS  for these data.

15. The following values are from an independent-mea-
sures study comparing three treatment conditions.

Treatments

I II III
n 5 8 n 5 8 n 5 8

SS 5 42 SS 5 28 SS 5 98

a. Compute the variance for each sample.
b. Compute MSwithin, which would be the denominator 

of the F-ratio for an ANOVA. Because the samples 
are all the same size, you should find that MSwithin is 
equal to the average of the three sample variances.

16. A research report from an independent-measures study 
states that there are significant differences between 
treatments, F(2, 36) 5 3.45, p , .05.
a. How many treatment conditions were compared in 

the study?
b. What was the total number of participants in the 

study?

17. Several factors influence the size of the F-ratio. For 
each of the following, indicate whether it would influ-
ence the numerator or the denominator of the F-ratio, 
and indicate whether the size of the F-ratio would 
increase or decrease.
a. Increase the differences between the sample means.
b. Increase the size of the sample variances.

18. A researcher used ANOVA and computed F 5 4.25 
for the following data.

Treatments

I II III

n 5 10 n 5 10 n 5 10

M 5 20 M 5 28 M 5 35

SS 5 1,005 SS 5 1,391 SS 5 1,180

a. If the mean for Treatment III were changed to  
M 5 25, what would happen to the size of the F-ratio F-ratio F
(increase or decrease)? Explain your answer.

b. If the SS for Treatment I were changed to SS for Treatment I were changed to SS SS 5 1,400, 
what would happen to the size of the F-ratio 
(increase or decrease)? Explain your answer.

19. The following data were obtained from an independent-
measures study comparing three treatment 
conditions.

Treatment

I II III

n 5 6 n 5 6 n 5 6 N 5 18

M 5 1 M 5 2 M 5 6 G 5 54

SS 5 60 SS 5 65 SS 5 40 SX2X2X 5 411

a. Calculate the sample variance for each of the three 
samples.

b. Use an ANOVA with a 5 .05 to determine wheth-
er there are any significant differences among the 
three treatment means. (Note: In the ANOVA you 
should find that MSwithin is equal to the average of 
the three sample variances.)

20. For the preceding problem you should find that there 
are significant differences among the three treatments. 
One reason for the significance is that the sample 
variances are relatively small. To create the following 
data, we kept the same sample means that appeared 
in problem 19 but doubled the SS values within each SS values within each SS
sample. 

Treatment

I II III

n 5 6 n 5 6 n 5 6 N 5 18

M 5 1 M 5 2 M 5 6 G 5 54

SS 5 120 SS 5 130 SS 5 80 SX2X2X 5 576

a. Calculate the sample variance for each of the three 
samples. Describe how these sample variances 
compare with those from problem 19.

 b. Predict how the increase in sample variance should 
influence the outcome of the analysis. That is, how 
will the F-ratio for these data compare with the 
value obtained in problem 19?

c. Use an ANOVA with a 5 .05 to determine wheth-
er there are any significant differences among the 
three treatment means. (Does your answer agree 
with your prediction in part b?)

21. The following data summarize the results from an 
independent-measures study comparing three treat-
ment conditions.
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b. Predict how the increase in sample size should 
affect the value of h2 for these data compared to 
the h2 in problem 21. Calculate h2 to check your 
prediction.

23. An ANOVA produces an F-ratio with df 5 1, 34. 
Could the data have been analyzed with a t test? What t test? What t
would be the degrees of freedom for the t statistic?t statistic?t

24. The following scores are from an independent- 
measures study comparing two treatment conditions.
a. Use an independent-measures t test with t test with t a 5 .05 

to determine whether there is a significant mean 
difference between the two treatments.

b. Use an ANOVA with a 5 .05 to determine wheth-
er there is a significant mean difference between 
the two treatments. You should find that F 5 t2.

Treatment I Treatment II

10 7
8 4
7 9 N 5 16
9 3 G 5 120

13 7 SX2X2X 5 1036
 7 6
6 10

12 2

Treatment

I II III

n 5 5 n 5 5 n 5 5

M 5 1 M 5 5 M 5 6 N 5 15

T 5 5 T 5 25 T 5 30 G 5 60

s2 5 9.00 s2 5 10.00 s2 5 11.00 SX2X2X 5 430

SS 5 36 SS 5 40 SS 5 44

a. Use an ANOVA with a 5 .05 to determine wheth-
er there are any significant differences among the 
three treatment means. Note: Because the samples 
are all the same size, MSwithin is the average of the 
three sample variances.

b. Calculate h2 to measure the effect size for this 
study.

22. To create the following data we started with the same 
sample means and variances that appeared in problem 
21 but doubled the sample size to n 5 10. 

Treatment

I II III

n 5 10 n 5 10 n 5 10

M 5 1 M 5 5 M 5 6 N 5 30

T 5 10 T 5 50 T 5 60 G 5 120

s2 5 9.00 s2 5 10.00 s2 5 11.00 SX2X2X 5 890

SS 5 81 SS 5 90 SS 5 99

a. Predict how the increase in sample size should 
affect the F-ratio for these data compared to the 
values obtained in problem 21. Use an ANOVA 
with a 5 .05 to check your prediction. Note: Be-
cause the samples are all the same size, MSwithin is 
the average of the three sample variances.
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13
CHAP TER

Tools You Will Need
The following items are con-
sidered essential background 
material for this chapter. If you 
doubt your knowledge of any of 
these items, you should review 
the appropriate chapter or section 
before proceeding.

 ■ Independent-measures analysis 
of variance (Chapter 12)

 ■ Repeated-measures designs 
(Chapter 11)

 ■ Individual differences (page 317) 

13-1 Introduction to the Repeated-Measures ANOVA

13-2 Hypothesis Testing and Effect Size with the Repeated-
Measures ANOVA

13-3 More about the Repeated-Measures Design

13-4 An Overview of the Two-Factor, Independent-Measures 
ANOVA

13-5 An Example of the Two-Factor ANOVA and Effect Size

Summary

Focus on Problem Solving

Demonstrations 13.1 and 13.2

Problems

Repeated-Measures and Two-
Factor Analysis of Variance
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■ Chapter Overview
In the preceding chapter we introduced analysis of variance (ANOVA) as a hypothesis-
testing procedure for evaluating differences among two or more sample means. The 
specific advantage of ANOVA, especially in contrast to t tests, is that ANOVA can be t tests, is that ANOVA can be t
used to evaluate the significance of mean differences in situations in which there are 
more than two sample means being compared. However, the presentation of ANOVA in 
Chapter 12 was limited to single-factor, independent-measures research designs. Recall 
that single factor indicates that the research study involves only one independent varisingle factor indicates that the research study involves only one independent varisingle factor -
able (or only one quasi-independent variable), and the term independent-measures indi-
cates that the study uses a separate sample for each of the different treatment conditions 
being compared. 

In this chapter we extend the ANOVA procedure to some more sophisticated research 
situations in which ANOVA is used. Specifically, we will introduce the following ANOVA 
topics:

1. Repeated-Measures ANOVA. It is possible to compare several different treatment 
conditions using a repeated-measures research design in which the same group of 
individuals participates in every treatment. We will demonstrate how the ANOVA 
procedure can be adapted to test for mean differences from a repeated-measures 
study.

2. Two-Factor ANOVA. Often, research questions are concerned with how 
behavior is in�uenced by several different variables acting simultaneously. 
For example, a researcher may want to examine how weight loss is related to 
different combinations of diet and exercise. In this situation, two variables are 
manipulated (diet and exercise) while a third variable is observed (weight loss). 
In statistical terminology, the research study has two independent variables, 
or two factors. In the �nal sections of this chapter, we show how the general 
ANOVA procedure from Chapter 12 can be used to test for mean differences in a 
two-factor research study.

13-1 Introduction to the Repeated-Measures ANOVA

LE A R N I N G O B J E C T IV E

1. Describe the F-ratio for the repeated-measures ANOVA and explain how it is 
related to the F-ratio for an independent-measures ANOVA.

■ The Repeated-Measures ANOVA
The defining characteristic of a repeated-measures design is that one group of individuals 
participates in all of the different treatment conditions. The repeated-measures ANOVA is 
used to evaluate mean differences in two general research situations:

1. An experimental study in which the researcher manipulates an independent vari-
able to create two or more treatment conditions, with the same group of individuals 
tested in all of the conditions. 

2. A nonexperimental study in which the same group of individuals is simply 
observed at two or more different times. 

Examples of these two research situations are presented in Table 13.1. Table 13.1(a) shows 
data from an experiment in which the researcher creates three treatment conditions. One 

The repeated-measures 
ANOVA, unlike the 
repeated-measures t, 
can be used to compare 
means for two or more 
treatment conditions.

An independent variable 
is a manipulated vari-
able in an experiment. A 
quasi-independent vari-
able is not manipulated 
but defines the groups 
of scores in a nonexperi-
mental design.
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(a) Data from an experimental study comparing performance scores in three different treatment 
conditions.

Performance Scores

Participant Treatment 1 Treatment 2 Treatment 3

A 47 22 41
B 57 31 52
C 38 18 40
D 45 32 43

(b) Data from a nonexperimental design evaluating the effectiveness of a clinical therapy for treat-
ing depression.

Depression Scores

Participant Before Therapy
Immediately 

After Therapy
Six-Month 
Follow-Up

A 71 53 55
B 62 45 44
C 82 56 61
D 77 50 46
E 81 54 55

TA B L E  1 3 .1
Two sets of data represent-
ing typical examples of 
single-factor, repeated-
measures research 
designs.

group of participants is then tested in all three conditions. In this study, the factor being 
examined is the set of different treatments.

Table 13.1(b) shows a nonexperimental study in which a researcher observes depres-
sion scores for the same group of individuals at three different times. In this study, the time 
of measurement is the factor being examined. Another common example of the nonex-
perimental design is found in developmental psychology when the participants’ age is the 
factor being studied. For example, a researcher could study the development of vocabulary 
skill by measuring vocabulary for a sample of three-year-old children, then measuring the 
same children again at ages four and five.

■ The Hypotheses and Logic for the Repeated-Measures ANOVA
The hypotheses for the repeated-measures ANOVA are exactly the same as those for the 
independent-measures ANOVA presented in Chapter 12. Specifically, the null hypothesis 
states that for the general population there are no mean differences among the treatment con-
ditions being compared. When comparing three treatment conditions, the null hypothesis is:

H0H0H : m1 5 m2 5 m3

According to the null hypothesis, any differences that may exist among the sample means 
are not caused by systematic treatment effects but rather are the result of random and 
unsystematic factors. 

The alternative hypothesis states that there are mean differences among the treatment 
conditions. Rather than specifying exactly which treatments are different, we use a generic 
version of H1, which simply states that differences exist:

H1: At least one treatment mean (m) is different from another.

Notice that the alternative says that, on average, the treatments do have different effects. 
Thus, the treatment conditions may be responsible for causing mean differences among the 
samples. As always, the goal of the ANOVA is to use the sample data to determine which 
of the two hypotheses is more likely to be correct.
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■ The F-Ratio for Repeated-Measures ANOVA 
The F-ratio for the repeated-measures ANOVA has the same structure that was used for 
the independent-measures ANOVA in Chapter 12. In each case, the F-ratio compares the 
actual mean differences between treatments (the numerator) with the amount of difference 
that would be expected if there were no treatment effect (the denominator). As always, 
the F-ratio uses variance to measure the size of the differences. Thus, the F-ratio for both 
ANOVAs has the general structure

F 5
variance (difffff efef rences) between treatments

variance (difffff efef rences) expected if there is no treatment efffff efef ct

A large value for the F-ratio indicates that the differences between treatments are greater 
than would be expected without any treatment effect. If the F-ratio is larger than the critical 
value in the F distribution table, we can conclude that the differences between treatments F distribution table, we can conclude that the differences between treatments F
are significantly larger than would be caused by chance.

Individual Differences in the F-ratioF-ratioF Although the structure of the F-ratio is the 
same for independent-measures and repeated-measures designs, there is a fundamental 
difference between the two designs that produces a corresponding difference in the two 
F-ratios. Specifically, individual differences are a part of the independent-measures 
F-ratio but are eliminated from the repeated-measures F-ratio. 

You should recall that the term individual differences (Chapter 11, page 317) refers to 
participant characteristics such as age, personality, and gender that vary from one person 
to another and may influence the measurements that you obtain for each person. Suppose, 
for example, that you are measuring reaction time. The first participant in your study is a 
19-year-old female with an IQ of 136 who is on the college varsity volleyball team. The 
next participant is a 42-year-old male with an IQ of 111 who returned to college after losing 
his job and comes to the research study with a head cold. Would you expect to obtain the 
same reaction time score for these two individuals?

Individual differences are a part of the variance in the numerator and in the denomina-
tor of the F-ratio for the independent-measures ANOVA. However, individual differences 
do not exist or are eliminated from the variances in the F-ratio for the repeated measures 
ANOVA. The idea that individual differences do not exist in a repeated-measures hypothe-
sis test was first presented in Chapter 11 when we introduced the repeated-measures design 
(page 317), but we will repeat it briefly now.

In a repeated-measures study, exactly the same individuals participate in all of the treat-
ment conditions. Therefore, any mean differences between treatment conditions cannot 
be explained by individual differences. Thus, individual differences do not exist in the 
numerator of the repeated-measures F-ratio.  

A repeated-measures design also allows you to remove individual differences from the vari-
ance in the denominator of the F-ratio. Because the same individuals are measured in every treatF-ratio. Because the same individuals are measured in every treatF -
ment condition, it is possible to measure the size of the individual differences. In Table 13.1(a), 
for example, Participant A has scores that are consistently 10 points lower than the scores for Par-for example, Participant A has scores that are consistently 10 points lower than the scores for Par-for example, Participant A has scores that are consistently 10 points lower than the scores for Par
ticipant B. Because the individual differences are systematic and predictable, they can be mea-
sured and separated from the random, unsystematic differences in the denominator of the F-ratio.F-ratio.F

Thus, individual differences do not exist in the numerator of the repeated-measures 
F-ratio and they can be measured and removed from the denominator. As a result, the 
structure of the final F-ratio is as follows:

F 5

variance/difffff efef rences between treatments
(without individual difffff efef rences)

variance/difffff efef rences with no treatment efffff efef ct
(with individual difffff efef rences removed)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 13-2 | Hypothesis Testing and Effect Size with the Repeated-Measures ANOVAypothesis Testing and Effect Size with the Repeated-Measures ANOVA 375

The process of removing individual differences is an important part of the procedure for a 
repeated-measures ANOVA.

LO1 1. Where are individual differences located in the F-ratio for a repeated-measures 
ANOVA?

a. In both the numerator and the denominator

b. In the numerator but not in the denominator

c. In the denominator but not in the numerator

d. There are no individual differences in the numerator and they have been 
removed from the denominator.

LO1 2. What happens to the variability due to individual differences in the F-ratio for 
a repeated-measures ANOVA?

a. It is automatically eliminated from the numerator but must be computed and 
subtracted out of the denominator.

b. It is automatically eliminated from the denominator but must be computed 
and subtracted out of the numerator.

c. It is automatically eliminated from both the numerator and the denominator.

d. It must be computed and subtracted out of the numerator and the denominator.

1. d 2. a 

LE A R N I N G C H E C K

A N S W E R S

13-2 Hypothesis Testing and Effect Size 
with the Repeated-Measures ANOVA

LE A R N I N G O B J E C T IV E S

 2. Describe the two-stage structure of the repeated-measures ANOVA and explain 
what happens in each stage.

 3. Calculate all of the SS, df, and df, and df MS values needed for a repeated-measures ANOVA MS values needed for a repeated-measures ANOVA MS
and explain the relationships among them.

 4. Conduct a complete repeated-measures ANOVA and a measure of effect size.

 5. Describe how the results of a repeated-measures ANVOA are reported in the lit-
erature and explain how to determine the number of treatments and the number of 
participants from the reported df values for the df values for the df F-ratio.

The overall structure of the repeated-measures ANOVA is shown in Figure 13.1. Note that 
the ANOVA can be viewed as a two-stage process. In the first stage, the total variance is 
partitioned into two components: between-treatments variance and within-treatments vari-
ance. This stage is identical to the analysis that we conducted for the independent-measures 
design in Chapter 12.

The second stage of the analysis removes the individual differences from the denomina-
tor of the F-ratio. In the second stage, we begin with the variance within treatments and 
then measure and subtract out the between-subjects variance, which measures the size of 
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Stage 2

Stage 1

Between-treatments
variance

Denominator of
F -ratio

1. Treatment effeatment effeatment ef ect
2. Err2. Err2. or or chance
    (excluding individual
    diffe    diffe    dif rences)

Between-subjects
variance

1. Individual
difdiffediffedif rences

Error
variance

1. Err1. Err1. or (excluding
    individual
    diffe    diffe    dif rences)

Total
variance

Within-treatments
variance

1. Individual
diffediffedif rences

2. Other err2. Other err2. or

Numerator of
F -ratio

F I G U R E  1 3 .1
The partitioning 
of variance for a 
repeated-measures 
research study.

the individual differences. The remaining variance, often called the residual variance, or 
error variance, provides a measure of how much variance is reasonable to expect after 
the treatment effects and individual differences have been removed. The second stage of 
the analysis is what differentiates the repeated-measures ANOVA from the independent-
measures ANOVA. Specifically, the repeated-measures design requires that the individual 
differences be removed.

In a repeated-measures ANOVA, the denominator of the F-ratio is called the F-ratio is called the F
residual variance, or the error variance, and measures how much variance is 
expected if there are no systematic treatment effects and no individual differences 
contributing to the variability of the scores.

■ Notation for the Repeated-Measures ANOVA
We will use the data in Table 13.2 to introduce the notation for the repeated-measures 
ANOVA. The data are similar to the results of a study by Weinstein, McDermott, and Roed-
iger (2010) comparing three strategies for studying in preparation for a test (Chapter 12, 
page 338). In the study, students read a passage knowing that they would be tested on the 
material. In one condition, participants simply reread the material to be tested. In a second 
condition, the students answered prepared comprehension questions about the material, 
and in a third condition, the students generated and answered their own questions. Each 
participant was tested in all three conditions and the order of the conditions was balanced 
across the participants. The data are the three test scores for each student. You may notice 
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TA B L E  1 3 . 2
Test scores for six stu-
dents using three different 
study strategies.

Student Reread
Answer Prepared 

Questions
Create and Answer 

Questions
Person 
Totals

A 2 5 8 P 5 15 n 5 6

B 3 9 6 P 5 18 k 5 3
C 8 10 12 P 5 30 N 5 18
D 6 13 11 P 5 30 G 5 144
E 5 8 11 P 5 24 SX2X2X 5 1324

F 6 9 12 P 5 27

T 5 30 T 5 54 T 5 60
M 5 5 M 5 9 M 5 10
SS 5 24 SS 5 34 SS 5 30

that this research study and the numerical values in the table are identical to those used to 
demonstrate the independent-measures ANOVA in the previous chapter (Example 12.1, 
page 338). In this case, however, the data represent a repeated-measures study in which the 
same group of n 5 6 students is tested in all three treatment conditions.

You also should recognize that most of the notation in Table 13.2 is identical to the nota-
tion used in an independent-measures analysis (Chapter 12). For example, there are n 5 6 
participants who are tested in k 5 3 treatment conditions, producing a total of N 5 18 scores 
that add up to a grand total of G 5 144. Note, however, that N 5 18 now refers to the total 
number of scores in the study, not the number of participants.

The repeated-measures ANOVA introduces only one new notational symbol. The let-
ter P is used to represent the total of all the scores for each individual in the study. You 
can think of the P values as “Person totals” or “Participant totals.” In Table 13.2, for 
example, Participant A had scores of 2, 5, and 8 for a total of P 5 15. The P values are 
used to define and measure the magnitude of the individual differences in the second 
stage of the analysis.

We use the data in Table 13.2 to demonstrate the repeated-measures ANOVA. Again, the 
goal of the test is to determine whether there are any significant differences among the 
three strategies being compared. Specifically, are any of the mean differences in the data 
greater than would be expected if there were no systematic differences among the three 
strategies? ■

■ Stage 1 of the Repeated-Measures Analysis
The first stage of the repeated-measures analysis is identical to the independent-measures 
ANOVA that was presented in Chapter 12. Specially, the SS and SS and SS df for the total set of scores df for the total set of scores df
are analyzed into within-treatments and between-treatments components.

Because the numerical values in Table 13.2 are the same as the values used in 
Example  12.1 (page 338), the computations for the first stage of the repeated-measures 
analysis are identical to those in Example 12.1. Rather than repeating the same arithmetic, 
the results of the first stage of the repeated-measures analysis can be summarized as follows.

Total: 

SS
t

S
t

S
otal

5 SX2X2X 2
G2

N

5 1324 2 1152 5 172

5 172

E X A M P L E  1 3 . 1
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Within treatments:

SSwithin treatments 5 SSSinside each treatment 5 24 1 34 1 30 5 88

dfwithin treatmentsdfwithin treatmentsdf 5 Sdfinside each treatmentdfinside each treatmentdf 5 5 1 5 1 5 5 15

Between treatments: for this example we will use the computational formula.

SSbSbS etween treatments 5 S
T 2

n
2

G2

N
5

302

6
1

542

6
1

602

6
2

1442

18
5 84

dfdfd bfbf etween treatments 5 k 2 1 5 2

For more details on the formulas and calculations see Example 12.1, pages 340–343.
This completes the first stage of the repeated-measures analysis. Note that the two com-

ponents, between and within, add up to the total for the SS values and for the SS values and for the SS df values. Also df values. Also df
note that the between-treatments SS and SS and SS df values provide a measure of the mean differences df values provide a measure of the mean differences df
between treatments and are used to compute the variance in the numerator of the final F-ratio. F-ratio. F

■ Stage 2 of the Repeated-Measures Analysis
The second stage of the analysis involves measuring the individual differences and then 
removing them from the denominator of the F-ratio. 

Measuring Individual Differences Because the same individuals are used in every 
treatment, it is possible to measure the size of the individual differences. For the data in 
Table 13.2, for example, Person A tends to have the lowest scores and Participants C 
and D tend to have the highest scores. These individual differences are reflected in the 
P values, or person totals, in the right-hand column. We will use these P values to create 
a computational formula for SSbetween subjectsSSbetween subjectsSS  in much the same way that we used the treat-
ment totals, the T values, in the computational formula for T values, in the computational formula for T SSbetween treatmentsSSbetween treatmentsSS . Specifically, 
the formula for the between-subjects SS isSS isSS

SSbSbS etween subjbjb ects 5 S
P2

k
2

G2

N
(13.1)

Notice that the formula for the between-subjects SS has exactly the same structure as SS has exactly the same structure as SS
the computational formula for the between-treatments SS (see the calculation above). In SS (see the calculation above). In SS
this case we use the person totals (P values) instead of the treatment totals (T values). Each T values). Each T
P value is squared and divided by the number of scores that were added to obtain the total. 
In this case, each person has k scores, one for each treatment. Box 13.1 presents another k scores, one for each treatment. Box 13.1 presents another k
demonstration of the similarity of the formulas for SS between subjects and SS between subjects and SS SS between SS between SS
treatments. For the data in Table 13.2,

SS
b

S
b

S
etween subjbjb ects

5 S
P2

k
2

G2

N
5

152

3
1

182

3
1

302

3
1

302

3
1

242

3
1

272

3
2

1442

18
5 66

The value of SSbetween subjectsSSbetween subjectsSS  provides a measure of the size of the individual differences—
that is, the differences between subjects. 

The data for a repeated-measures study are normally 
presented in a matrix, with the treatment conditions de-
termining the columns and the participants defining the 

rows. The data in Table 13.2 demonstrate this normal 
presentation. The calculation of SSbetween treatmentsSSbetween treatmentsSS  pro-
vides a measure of the differences between treatment 

(continues)

BOX 13.1 SSbetween subjects and SSbetween treatments

rows. The data in Table 13.2 demonstrate this normal 
presentation. The calculation of 
vides a measure of the differences between 
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conditions—that is, a measure of the mean differences 
between the columns in the data matrix. For the data in 
Table 13.2, the column totals are 30, 54, and 60. These 
values are variable, and SSbetween treatmentsSSbetween treatmentsSS  measures the 
amount of variability.

The following table reproduces the data from 
Table 13.2, but now we have turned the data matrix 
on its side so that the participants define the columns 
and the treatment conditions define the rows.

In this new format, the differences between the 
columns represent the between-subjects variability. 
The column totals are now P values (instead of T valT valT -
ues) and the number of scores in each column is now 
identified by k (instead of k (instead of k n). With these changes in 

notation, the formula for SSbetween subjectsSSbetween subjectsSS  has exactly the 
same structure as the formula for SSbetween treatmentsSSbetween treatmentsSS . If 
you examine the two equations, the similarity should 
be clear.

notation, the formula for 
same structure as the formula for 
you examine the two equations, the similarity should 
be clear.

Participant

A B C D E F

RereadReread 2 3 8 6 5 6 T = 30

Prepared Prepared 
QuestionsQuestions

5 9 10 13 8 9 T = 54

Create Create 
QuestionsQuestions

8 6 12 11 11 12 T = 60

P = 15P = 18 P= 30 P= 30 P= 24 P= 27

Removing the Individual Differences SSbetween subjectsSSbetween subjectsSS  measures the individual differ-
ences. The next step is to subtract out the individual differences to obtain the measure of 
error that forms the denominator of the F-ratio. Thus, the final step in the analysis of SS isSS isSS

SSerror 5 SSwithin treatments 2 SSbetween subjectsSSbetween subjectsSS (13.2)

We have already computed SSwithin treatments 5 88 and SSbetween subjectsSSbetween subjectsSS 5 66, therefore

SSerror 5 88 2 66 5 22

The analysis of degrees of freedom follows exactly the same pattern that was used to 
analyze SS. We begin with the within-treatments df, then subtract the value that is computed df, then subtract the value that is computed df
for the between-subjects df. Remember that we use the df. Remember that we use the df P values to calculate SSbetween subjectsSSbetween subjectsSS . 
The number of P values corresponds to the number of subjects, n, so the corresponding df isdf isdf

dfbetween subjectsdfbetween subjectsdf 5 n 2 1 (13.3)

For the data in Table 13.2, there are n 5 6 participants and

dfbetween subjectsdfbetween subjectsdf 5 6 2 15 5

Next, we subtract the individual differences from the within-subjects component to obtain 
a measure of error. For degrees of freedom,

dferrordferrordf 5 dfwithin treatmentsdfwithin treatmentsdf 2 dfbetween subjectsdfbetween subjectsdf (13.4)

For the data in Table 13.2,

dferrordferrordf 5 15 2 5 5 10

An algebraically equivalent formula for dferrordferrordf  uses only the number of treatment condierror uses only the number of treatment condierror -
tions (k) and the number of participants (n): 

dferrordferrordf 5 (k 2 1)(n 2 1) (13.5)

The usefulness of Equation 13.5 is discussed in Box 13.2.
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The statistics presented in a research report not 
only describe the significance of the results but 
typically provide enough information to recon-
struct the research design. The alternative formula 
for dferrordferrordf  is particularly useful for this purpose. 
Suppose, for example, that a research report for a 
repeated-measures study includes an F-ratio with 
df 5 2, 10. How many treatment conditions were 
compared in the study and how many individuals 
participated?

To answer these questions, begin with the first df
value, which is dfbetween treatmentsdfbetween treatmentsdf 5 2 5 k 2 1. From 

this value, it is clear that k 5 3 treatments. Next, use 
the second df value, which is df value, which is df dferrordferrordf 5 10. Using this 
value and the fact that k 2 1 5 2, use Equation 13.6 
to find the number of participants. 

dferrordferrordf 5 10 5 (k 2 1)(n 2 1) 5 2(n 2 1)

If 2(n 2 1) 5 10, then n 2 1 must equal 5. Therefore, 
n 5 6.  

Therefore, we conclude that a repeated-measures 
study producing an F-ratio with df 5 2, 10 must have 
compared three treatment conditions using a sample 
of six participants.

this value, it is clear that 
the second 
value and the fact that 
to find the number of participants. 

If 2(
n

study producing an 
compared three treatment conditions using a sample 
of six participants.

BOX 13.2 Using the Alternate Formula for dferror

Remember: The purpose for the second stage of the analysis is to measure the individual 
differences and then remove the individual differences from the denominator of the F-ratio. 
This goal is accomplished by computing SS and SS and SS df between subjects (the individual differdf between subjects (the individual differdf -
ences) and then subtracting these values from the within-treatments values. The result is a 
measure of variability with the individual differences removed. This error variance (SS and SS and SS
dfdf ) is used in the denominator of the F-ratio.F-ratio.F

■ Calculation of the Variances (MS Values) and the F-Ratio
The final calculation in the analysis is the F-ratio, which is a ratio of two variances. Each 
variance is called a mean square, or MS, and is obtained by dividing the appropriate SS by SS by SS
its corresponding df value. The df value. The df MS in the numerator of the MS in the numerator of the MS F-ratio measures the size of the 
differences between treatments and is calculated as

MSMSM bSbS etween treatments 5
SSbSbS etween treatments

dfdfd bfbf etween treatments
(13.6)

For the data in Table 13.2,

MSMSM bSbS etween treatments 5
SSbSbS etween treatments

dfdfd bfbf etween treatments
5

84

2
5 42

The denominator of the F-ratio measures how much difference is reasonable to expect if 
there are no systematic treatment effects and the individual differences have been removed. 
This is the error variance or the residual obtained in stage 2 of the analysis.

MSMSM error 5
SSerror

dfdfd efef rror
(13.7)

For the data in Table 13.2,

MSMSM error 5
SSerror

dfdfd efef rror
5

22

10
5 2.20

Finally, the F-ratio is computed as

F 5
MSMSM bSbS etween treatments

MSMSM error
(13.8)
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For the data in Table 13.2,

F 5
MSMSM bSbS etween treatments

MSMSM error
5

42

2.20
5 19.09

Once again, notice that the repeated-measures ANOVA uses MSerror in the denominator of error in the denominator of error

the F-ratio. This MS value is obtained in the second stage of the analysis, after the indiMS value is obtained in the second stage of the analysis, after the indiMS -
vidual differences have been removed. As a result, individual differences are completely 
eliminated from the repeated-measures F-ratio, so that the general structure is

F 5
treatment efffff efef cts 1 unsystematic difffff efef rences swithout individual difffff ’sd

unsystematic difffff efef rences swithout individual difffff ’sd

For the data we have been examining, the F-ratio is F 5 19.09, indicating that the dif- 19.09, indicating that the dif- 19.09, indicating that the dif
ferences between treatments (numerator) are almost 20 times bigger than you would expect 
without any treatment effects (denominator). A ratio this large provides clear evidence that 
there is a real treatment effect. To verify this conclusion you must consult the F distribution F distribution F
table to determine the appropriate critical value for the test. The degrees of freedom for the 
F-ratio are determined by the two variances that form the numerator and the denominator. 
For a repeated-measures ANOVA, the df values for the df values for the df F-ratio are reported as

df 5 dfbetween treatmentsdfbetween treatmentsdf , dferrordferrordf

For the example we are considering, the F-ratio has df 5 2, 10 (“degrees of freedom equal 
two and ten”). Using the F distribution table (page 539) with F distribution table (page 539) with F a 5 .05, the critical value is 
F 5 4.10, and with a 5 .01 the critical value is F 5 7.56. Our obtained F-ratio, F 5 19.09, 
is well beyond either of the critical values, so we can conclude that the differences between 
treatments are significantly greater than expected by chance using either a 5 .05 or a 5 .01.

The summary table for the repeated-measures ANOVA from Example 13.1 is presented 
in Table 13.3. Although these tables are no longer commonly used in research reports, they 
provide a concise format for displaying all of the elements of the analysis.

The following example is an opportunity to test your understanding of the calculation 
of SS values for the repeated-measures ANOVA.SS values for the repeated-measures ANOVA.SS

TA B L E  1 3 . 3
A summary table for 
the repeated-measures 
ANOVA for the data from 
Example 13.1.

Source SS df MS F

Between treatments 84 2 42.00 F(2, 10) = 19.09
Within treatments 88 15
Between subjects 66 5
Error  22 10 2.20
Total 172 18

Treatment

Subject 1 2 3 4

A 2 2 2 2 G = 32

B 4 0 0 4 ΣX2X2X = 96
C 2 0 2 0
D 4 2 2 4

T = 12 T = 4 T = 6 T = 10

You should find that SSbetween treatmentsSSbetween treatmentsSS 5 10 and SSbetween subjectsSSbetween subjectsSS 5 8. ■

For the following data, compute SSbetween treatmentsSSbetween treatmentsSS  and SSbetween subjectsSSbetween subjectsSS .E X A M P L E  1 3 . 2
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■ Measuring Effect Size for the Repeated-Measures ANOVA
The most common method for measuring effect size with ANOVA is to compute the per-
centage of variance that is explained by the treatment differences. In the context of ANO-
VA, the percentage of variance is commonly identified as h2 (eta squared). In Chapter 12, 
for the independent-measures analysis, we computed h2 as

h2 5
SSbSbS etween treatments

SSbSbS etween treatments 1 SSwithin treatments
5

SSbSbS etween treatments

SStStS otal

The intent is to measure how much of the total variability is explained by the differences 
between treatments. With a repeated-measures design, however, there is another compo-
nent that can explain some of the variability in the data. Specifically, part of the total vari-
ability is caused by differences between individuals. In Table 13.2, for example, Person C 
consistently scored higher than Persons A or B. This consistent difference explains some 
of the variability in the data. When computing the size of the treatment effect, it is custom-
ary to remove any variability that can be explained by other factors, and then compute the 
percentage of the remaining variability that can be explained by the treatment effects. Thus, 
for a repeated-measures ANOVA, the variability from the individual differences is removed 
before computing h2. As a result, h2 is computed as

h2 5
SSbSbS etween treatments

SStStS otal 2 SSbSbS etween subjbjb ects
(13.9)

Because Equation 13.9 computes a percentage that is not based on the total variability 
of the scores (one part, SSbetween subjectsSSbetween subjectsSS , is removed), the result is often called a partial eta partial eta partial
squared.

Note that the denominator of Equation 13.9 consists of variability from the treatment 
differences and variability that is exclusively from random, unsystematic factors. With this 
in mind, an equivalent version of the h2 formula is

h2 5
SSbSbS etween treatments

SSbSbS etween treatments 1 SSerror
(13.10)

In this new version of the eta-squared formula, the denominator consists of the vari-
ability that is explained by the treatment differences plus the unexplained variability. Using unexplained variability. Using unexplained
either formula, the data from Example 13.1 produce

h2 5
84

106
5 0.79

This result means that 79% of the variability in the data (except for the individual differ-
ences) is accounted for by the differences between treatments.

The following example is an opportunity to test your understanding of effect size for the 
repeated-measures ANOVA.

The results from a repeated-measures ANOVA are presented in the following summary 
table. Compute h2 to measure the size of the treatment effect. You should obtain h2 5 0.579.

E X A M P L E  1 3 . 3

Source SS df MS F

Between treatments 44 2 22 F(2, 16) = 11
Within treatments 98 24
Between subjects 66 8
Error 32 16 2
Total 142 26

■
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■ Post Hoc Tests with Repeated Measures
Recall that ANOVA provides an overall test of significance for the mean differences 
between treatments. When the null hypothesis is rejected, it indicates only that there is a 
difference between at least two of the treatment means. If k 5 2, it is obvious which two 
treatments are different. However, when k is greater than 2, the situation becomes more k is greater than 2, the situation becomes more k
complex. To determine exactly which differences are significant, the researcher must fol-
low the ANOVA with post hoc tests. In Chapter 12, we used Tukey’s HSD and the Scheffé 
test to make these multiple comparisons among treatment means. These two procedures 
attempt to control the overall alpha level by making adjustments for the number of poten-
tial comparisons.

For a repeated-measures ANOVA, Tukey’s HSD and the Scheffé test can be used in 
the exact same manner as was done for the independent-measures ANOVA, provided that provided that provided
you substitute MSerror in place of MSwithin treatments in the formulas and use dferrordferrordf  in place of 
dfwithin treatmentsdfwithin treatmentsdf  when locating the critical value in a statistical table. 

■ Assumptions of the Repeated-Measures ANOVA
The basic assumptions for the repeated-measures ANOVA are identical to those required 
for the independent-measures ANOVA.

1. The observations within each treatment condition must be independent (see 
page 216).

2. The population distribution within each treatment must be normal. (As before, the 
assumption of normality is important only with small samples.)

3. The variances of the population distributions for each treatment should be 
equivalent.

IN THE LITERATURE

Reporting the Results of a Repeated-Measures ANOVA
As described in Chapter 12 (page 349), the format for reporting ANOVA results in 
journal articles consists of:

1. A summary of descriptive statistics (at least treatment means and standard 
deviations, and tables or graphs as needed)

2. A concise statement of the outcome of the ANOVA

For the study in Example 13.1, the report could state:

The means and variances for the three strategies are shown in Table 1. A repeated-
measures analysis of variance indicated signi�cant mean differences in the partici-
pants’ test scores for the three study strategies, F (2, 10) F (2, 10) F 5 19.09, p , .01, h2 5 0.79.

TA B L E  1
Test scores using three different study strategies.

Reread
Answer Prepared 

Questions
Create and 

Answer Questions

M 5.00 9.00 10.00

SD 2.19 2.61 2.45
■
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LO2 1. What happens during the second stage of a repeated-measures ANOVA?

a. The variability from individual differences is measured and subtracted from 
the numerator of the F-ratio.

b. The variability from individual differences is measured and subtracted from 
the denominator of the F-ratio.

c. The variability from individual differences is measured and subtracted from 
the numerator and the denominator of the F-ratio.

d. None of the above

LO3 2. For a repeated-measures ANOVA, which of the following accurately defines 
the degrees of freedom for SSerror?

a. n 2 1  

b. k 2 1 

c. (N 2 k) 2 (n 2 1)
d. N 2 1 

LO4 3. For the following data, what are the df values for the repeated-measures 
F-ratio? 

a. 2, 4 

b. 2, 6

c. 3, 4

d. 3, 6

LO5 4. The results of a repeated-measures ANOVA are reported as follows: F(3, 27) 5
1.12, p . .05. h2 5 0.17. How many participants were in the study?

a. 40

b. 36

c. 10

d. 9

1. b 2. c 3. a 4. c

LE A R N I N G C H E C K

Treatments

Subject I II III P-totals

A 3 4 5 12

B 1 1 4 6

C 2 1 6 9

A N S W E R S

13-3 More about the Repeated-Measures Design

LE A R N I N G O B J E C T IV E S

 6. Describe the general advantages and disadvantages of repeated-measures versus 
independent-measures designs and identify the circumstances in which each is 
more appropriate.

 7. Explain the relationship between the repeated-measures t test and a repeated-t test and a repeated-t
measures ANOVA when evaluating the difference between two means from a 
repeated-measures design.

■ Advantages and Disadvantages of the Repeated-Measures Design
When we first encountered the repeated-measure design (Chapter 11), we noted that 
this type of research study has certain advantages and disadvantages compared to the 

384 CHAPTER 13 | Repeated-Measures and Two-Factor Analysis of Variance
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independent-measures design (pages 317–318). On the bright side, a repeated-measures 
study may be desirable if the supply of participants is limited. A repeated-measures study 
is economical in that the research requires relatively few participants. Also, a repeated-
measures design eliminates or minimizes most of the problems associated with individual 
differences. In particular, removing individual differences from the variance in the denomi-
nator of the F-ratio tends to increase the value of F and, therefore, increase the likelihood F and, therefore, increase the likelihood F
of rejecting the null hypothesis. In statistical terms, a repeated-measures test tends to have 
more power than an independent-measures test; that is, it is more likely to detect a real power than an independent-measures test; that is, it is more likely to detect a real power
treatment effect. However, disadvantages also exist. These take the form of order effects, 
such as fatigue, that can make the interpretation of the data difficult.

As we noted, one advantage of a repeated-measures design is that it removes individual 
differences from the denominator of the F-ratio, which usually increases the likelihood of 
obtaining a significant result. However, removing individual differences is an advantage 
only when the treatment effects are reasonably consistent for all of the participants. If the 
treatment effects are not consistent across participants, the individual differences tend to 
disappear and value in the denominator is not noticeably reduced by removing them.

■ Factors That Influence the Outcome of a Repeated-Measures 
ANOVA and Measures of Effect Size
In previous chapters addressing hypothesis testing, we have repeatedly noted that the out-
come of a hypothesis test is influenced by three major factors: the size of the treatment 
effect, the size of the sample(s), and the variance of the scores. Obviously, the bigger 
the treatment effect, the more likely it is to be significant. Also, a larger treatment effect 
tends to produce a larger measure of effect size. Similarly, a treatment effect demonstrat-
ed with a large sample is more convincing than an effect obtained with a small sample. 
Thus, larger samples tend to increase the likelihood of rejecting the null hypothesis. 
However, sample size has little or no effect on measures of effect size. These factors also 
apply to the repeated-measures ANOVA. The role of variance in the repeated-measures 
ANOVA, however, is somewhat more complicated. In general, the size of the within-
treatments variance does not have a large influence in the repeated-measures ANOVA 
because much of this variance consists of individual differences, which are removed 
during the analysis. However, if the individual differences are not consistent across the 
treatment conditions, then large variance within treatments will reduce the likelihood of 
rejecting the null hypothesis.

■ Repeated-Measures ANOVA and Repeated-Measures t
As we noted in Chapter 12 (pages 360–361), whenever you are evaluating the difference 
between two sample means, you can use either a t test or analysis of variance. In Chapter t test or analysis of variance. In Chapter t
12 we demonstrated that the two tests are related in many respects, including:

1. The two tests always reach the same conclusion about the null hypothesis.

2. The basic relationship between the two test statistics is F 5 t2.

3. The df value for the df value for the df t statistic is identical to the t statistic is identical to the t df value for the denominator of the df value for the denominator of the df
F-ratio.

4. If you square the critical value for the two-tailed t test, you will obtain the critical t test, you will obtain the critical t
value for the F-ratio. Again, the basic relationship is F 5 t2.

In Chapter 12, these relationships were demonstrated for the independent-measures 
tests, but they are also true for repeated-measures designs comparing two treatment condi-
tions. The following example demonstrates the relationships.
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The following table shows the data from a repeated-measures study comparing two treat-
ment conditions. We have structured the data in a format that is compatible with the 
repeated-measures t test. Note that the calculations for the t test. Note that the calculations for the t t test are based on the difference t test are based on the difference t
scores (D values) in the final column.

Treatment

Participant I II D

A 3 5 2
B 4 14 10
C 5 7 2
D 4 6 2

MDMDM 5 4
SSDSSDSS 5 48

The Repeated-Measures t Testt Testt The null hypothesis for the t test states that for the t test states that for the t
general population there is no mean difference between the two treatment conditions.

H0H0H :  mD 5 0

With n 5 4 participants, the test has df 5 3 and the critical boundaries for a two-tailed test 
with a 5 .05 are t 5 63.182.  

For these data, the sample mean difference is MDMDM 5 4, the variance for the difference 
scores is s2 5 16, and the standard error is sMDMDM 5 2 points. These values produce a t statistic 
of

t 5
MDMDM 2 mD

sMDMDM

5
4 2 0

2
5 2.00

The t value is not in the critical region so we fail to reject t value is not in the critical region so we fail to reject t H0H0H  and conclude that there is no 
significant difference between the two treatments.

The Repeated-Measures ANOVAVAV Now we will reorganize the data into a for-
mat that is compatible with a repeated-measures ANOVA. Notice that the ANOVA 
uses the original scores (not the difference scores) and requires the P totals for each 
participant. 

Treatment

Participant I II P

A 3 5 8 G 5 48
B 4 14 18 SX2X2X 5 372
C 5 7 12 N 5 8
D 4 6 10

Again, the null hypothesis states that for the general population there is no mean differ-
ence between the two treatment conditions.

H0H0H :  m1 2 m2 5 0

E X A M P L E  1 3 . 4
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For this study, dfbetween treatmentsdfbetween treatmentsdf 5 1, dfwithin treatmentsdfwithin treatmentsdf 5 6, dfbetween subjectsdfbetween subjectsdf 5 3, which produce 
dferrordferrordf 5 (6 2 3) 5 3. Thus, the F-ratio has df 5 1, 3 and the critical value for a 5 .05 
is F 5 10.13. Note that the denominator of the F-ratio has the same df value as thedf value as thedf  t
statistic (df 5 3) and that the critical value for F is equal to the squared critical value for F is equal to the squared critical value for F
t (10.13 t (10.13 t 5 3.1822).

For these data, SStotal 5 84,

SSwithin 5 52

SSbetween treatmentsSSbetween treatmentsSS 5 (84 2 52) 5 32

SSbetween subjectsSSbetween subjectsSS 5 28

SSerror 5 (52 2 28) 5 24

The two variances in the F-ratio are

MSMSM
b

S
b

S
etween treatments

5
SS

b
S

b
S

etween treatments

dfdfd
b

f
b

f
etween treatments

5
32

1
5 32

and MSMSM
error

5
SS

error

dfdfd
e

f
e

f
rror

5
24

3
5 8

and the F-ratio is F 5
MSMSM

b
S

b
S

etween treatments

MSMSM
error

5
32

8
5 4.00

Notice that the F-ratio and the t statistic are related by the equation t statistic are related by the equation t F 5 t2 (4 5 22). The 
F-ratio (like the t statistic) is not in the critical region, so once again we fail to reject t statistic) is not in the critical region, so once again we fail to reject t H0H0H  and 
conclude that there is no significant difference between the two treatments. ■

LO6 1. Which of the following are advantages of a repeated-measures ANOVA com-
pared to an independent-measures ANOVA?

a. It requires fewer participants and reduces the risk of order effects such as 
practice or fatigue. 

b. It minimizes problems from individual differences and reduces the risk of 
order effects such as practice or fatigue.

c. It requires fewer participants and minimizes problems from individual 
differences. 

d. None of the above are completely correct.

LO7 2. A repeated-measures ANOVA produced an F-ratio of F 5 4.00 with df 5 1, 
12. If the same data were analyzed with a repeated-measures t test, what t test, what t df
value would the t statistic have?t statistic have?t

a. 11

b. 12

c. 13

d. Cannot be determined without more information

1. c 2. b

LE A R N I N G C H E C K

A N S W E R S
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13-4 An Overview of the Two-Factor, Independent-Measures 
ANOVA

LE A R N I N G O B J E C T IV E S

 8. Describe the structure of a factorial research design, especially a two-factor Describe the structure of a factorial research design, especially a two-factor Describe the structure of a f
independent-measures design, using the terms factor and factor and factor level and identify the fac-level and identify the fac-level
tors and levels for a speci�c example of a two-factor design. 

 9. De�ne a main effect and an interaction and identify the patterns of data that pro-De�ne a main effect and an interaction and identify the patterns of data that pro-De�ne a main ef
duce main effects and interactions.

 10. Identify the three F-ratios for a two-factor ANOVA and explain how they are 
related to each other.

In most research situations, the goal is to examine the relationship between two variables. 
Typically, the research study attempts to isolate the two variables to eliminate or reduce the 
influence of any outside variables that may distort the relationship being studied. A typical 
experiment, for example, focuses on one independent variable (which is expected to influ-
ence behavior) and one dependent variable (which is a measure of the behavior). In real 
life, however, variables rarely exist in isolation. That is, behavior usually is influenced by a 
variety of different variables acting and interacting simultaneously. To examine these more 
complex, real-life situations, researchers often design research studies that include more 
than one independent variable. Thus, researchers systematically change two (or more) vari-
ables and then observe how the changes influence another (dependent) variable.

In Chapter 12 and earlier in this chapter, we examined ANOVA for single-factor
research designs—that is, designs that included only one independent variable or only 
one quasi-independent variable. When a research study involves more than one factor, it 
is called a factorial design. In this chapter, we consider the simplest version of a factorial 
design. Specifically, we examine ANOVA as it applies to research studies with exactly two 
factors. In addition, we limit our discussion to studies that use a separate sample for each 
treatment condition—that is, independent-measures designs. Finally, we consider only 
two-factor designs for which the sample size (n) is the same for all treatment conditions. 
In the terminology of ANOVA, this chapter examines two-factor, independent-measures,
equal n designs. The following example introduces the two-factor research design.

Bartholow and Anderson (2002) conducted a research study to determine whether expe-
riencing violence in video games has an effect on the players’ behavior. The researchers 
randomly assigned male and female undergraduate students to play either a violent video 
game or a nonviolent game. After the game, each participant was asked to take part in a 
competitive reaction time game with another student who was actually part of the research 
team (a confederate). Both students were instructed to respond as quickly as possible to a 
stimulus tone and, on each trial, the loser was punished with a blast of white noise deliv-
ered through headphones. Part of the instructions allowed the participant to set the level of 
intensity for the punishment noise and the level selected was used as a measure of aggres-
sive behavior for that participant, with higher levels indicating more aggressive behavior. 
Table 13.4 shows the structure of the study. Note that the study involves two separate fac-
tors: One factor is manipulated by the researcher, changing from a violent to a nonviolent 
game, and the second factor is gender, which is not manipulated but simply varies from 
male to female. The two factors are used to create a matrix with the different genders definmatrix with the different genders definmatrix -
ing the rows and the different levels of violence defining the columns. The resulting two-
by-two matrix shows four different combinations of the variables, producing four different 
conditions. Thus, the research study would require four separate samples, one for each 

An independent variable 
is a manipulated vari-
able in an experiment. A 
quasi-independent vari-
able is not manipulated 
but defines the groups 
of scores in a nonexperi-
mental study.
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TA B L E  13. 4
The structure of a 
two-factor experiment 
presented as a matrix. The 
two factors are gender 
and level of violence in 
a video game, with two 
levels for each factor.

Factor B: Level of Violence

Nonviolent Violent

Factor A:  Gender

Male
Scores for a group of 
males who play a nonvio-
lent video game 

Scores for a group of 
males who play a violent 
video game 

Female
Scores for a group of 
females who play a non-
violent video game 

Scores for a group of fe-
males who play a violent 
video game

cell, or box, in the matrix. The dependent variable for the study is the level of aggressive 
behavior for the participants in each of the four conditions. 

The two-factor ANOVA tests for mean differences in research studies that are structured 
like the gender-and-video-violence study in Table 13.4. For this example, the two-factor 
ANOVA evaluates three separate sets of mean differences:

1. What happens to the level of aggressive behavior when violence is added or taken 
away from the game?

2. Is there a difference in the aggressive behavior for male participants compared to 
females?

3. Is aggressive behavior affected by speci�c combinations of game violence and 
gender? (For example, a violent game may have a large effect on males but only a 
small effect on females.)

Thus, the two-factor ANOVA allows us to examine three types of mean differences 
within one analysis. In particular, we conduct three separate hypotheses tests for the same 
data, with a separate F-ratio for each test. The three F-ratios have the same basic structure:

F 5
variance (difffff efef rences) between treatments

variance (difffff efef rences) expected if there is no treatment efffff efef ct

In each case, the numerator of the F-ratio measures the actual mean differences in the 
data, and the denominator measures the differences that would be expected if there is no 
treatment effect. As always, a large value for the F-ratio indicates that the sample mean 
differences are greater than would be expected by chance alone, and therefore provides 
evidence of a treatment effect. To determine whether the obtained F-ratios are significant, 
we need to compare each F-ratio with the critical values found in the F-distribution table 
in Appendix B.

■ Main Effects and Interactions
As noted in the previous section, a two-factor ANOVA actually involves three distinct 
hypothesis tests. In this section, we examine these three tests in more detail.

Traditionally, the two independent variables in a two-factor experiment are identified 
as factor A and factor B. For the study presented in Table 13.4, gender is factor A, and the 
level of violence in the game is factor B. The goal of the study is to evaluate the mean dif-level of violence in the game is factor B. The goal of the study is to evaluate the mean dif-level of violence in the game is factor B. The goal of the study is to evaluate the mean dif
ferences that may be produced by either of these factors acting independently or by the two 
factors acting together.

■ Main Effects
One purpose of the study is to determine whether differences in gender (factor A) result 
in differences in behavior. To answer this question, we compare the mean score for all the 
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Nonviolent Game Violent Game

Males M 5 7 M 5 9 M 5 8

Females M 5 3 M 5 5 M 5 4

M 5 5 M 5 7

TA B L E  13. 5
Hypothetical data for an 
experiment examining 
the effect of violence in a 
video game on the aggres-
sive behavior of males and 
females.

males with the mean for the females. Note that this process evaluates the mean difference 
between the top row and the bottom row in Table 13.4.

To make this process more concrete, we present a set of hypothetical data in Table 13.5. 
The table shows the mean score for each of the treatment conditions (cells) as well as the 
overall mean for each column (each level of violence) and the overall mean for each row 
(each gender group). These data indicate that the male participants (the top row) had an 
overall mean of M 5 8. This overall mean was obtained by computing the average of the two 
means in the top row. In contrast, the female participants had an overall mean of M 5 4 (the 
mean for the bottom row). The difference between these means constitutes what is called the 
main effect for gender, or the main effect for gender, or the main effect main effect for factor A.

Similarly, the main effect for factor B (level of violence) is defined by the mean differ-
ence between the columns of the matrix. For the data in Table 13.5, the two groups of par-
ticipants who played a nonviolent game had an overall mean score of M 5 5. Participants 
who played a violent game had an overall average score of M 5 7. The difference between 
these means constitutes the main effect for the level of game violence, or the main effect for the level of game violence, or the main effect main effect 
for factor B.

The mean differences among the levels of one factor are referred to as the main 
effect of that factor. When the design of the research study is represented as a 
matrix with one factor determining the rows and the second factor determining the 
columns, then the mean differences among the rows describe the main effect of one 
factor, and the mean differences among the columns describe the main effect for 
the second factor.

The mean differences between columns or rows simply describe the main effects 
for a two-factor study. As we have observed in earlier chapters, the existence of sample 
mean differences does not necessarily imply that the differences are statistically sig-
nificant. In general, two samples are not expected to have exactly the same means. 
There will always be small differences from one sample to another, and you should not 
automatically assume that these differences are an indication of a systematic treatment 
effect. In the case of a two-factor study, any main effects that are observed in the data 
must be evaluated with a hypothesis test to determine whether they are statistically 
significant effects. Unless the hypothesis test demonstrates that the main effects are 
significant, you must conclude that the observed mean differences are simply the result 
of sampling error.

The evaluation of main effects accounts for two of the three hypothesis tests in a two-
factor ANOVA. We state hypotheses concerning the main effect of factor A and the main 
effect of factor B and then calculate two separate F-ratios to evaluate the hypotheses.

For the example we are considering, factor A involves the comparison of two different 
genders. The null hypothesis would state that there is no difference between the two levels; 
that is, gender has no effect on aggressive behavior. In symbols,

H0H0H : mA1
5 mA2

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 13-4 | An Overview of the Two-Factor, Independent-Measures ANOVAAn Overview of the Two-Factor, Independent-Measures ANOVA 391

The alternative hypothesis is that the two genders do produce different aggression scores:

H1: mA1
± mA2

To evaluate these hypotheses, we compute an F-ratio that compares the actual mean dif--ratio that compares the actual mean dif--ratio that compares the actual mean dif
ferences between the two genders versus the amount of difference that would be expected 
without any systematic difference.

F 5
variance (difffff efef rences) between the means fofof r fafaf ctor A

variance (difffff efef rences) expected if there is no treatment efffff efef ct

F 5
variance (difffff efef rences) between the row means

variance (difffff efef rences) expected if there is no treatment efffff efef ct

Similarly, factor B involves the comparison of the two different violence conditions. The 
null hypothesis states that there is no difference in the mean level of aggression between 
the two conditions. In symbols,

H0H0H : mB1
5 mB2

As always, the alternative hypothesis states that the means are different:

H1: mB1
± mB2

Again, the F-ratio compares the obtained mean difference between the two violence con-
ditions versus the amount of difference that would be expected if there is no systematic 
treatment effect.

F 5
variance (difffff efef rences) between the means fofof r fafaf ctor B

variance (difffff efef rences) expected if there is no treatment efffff efef ct

F 5
variance (difffff efef rences) between the column means

variance (difffff efef rences) expected if there is no treatment efffff efef ct

■ Interactions
In addition to evaluating the main effect of each factor individually, the two-factor ANOVA 
allows you to evaluate other mean differences that may result from unique combinations 
of the two factors. For example, specific combinations of game violence and gender acting 
together may have effects that are different from the effects of gender or game violence acting 
alone. Any “extra” mean differences that are not explained by the main effects are called an 
interaction, or an interaction between factors. The real advantage of combining two factors 
within the same study is the ability to examine the unique effects caused by an interaction.

An interaction between two factors occurs whenever the mean differences 
between individual treatment conditions, or cells, are different from what would be 
predicted from the overall main effects of the factors.

To make the concept of an interaction more concrete, we reexamine the data shown in 
Table 13.5. For these data, there is no interaction; that is, there are no extra mean differ-
ences that are not explained by the main effects. For example, within each violence condi-
tion (each column of the matrix) the average level of aggression for the male participants is 
4 points higher than the average for the female participants. This 4-point mean difference 
is exactly what is predicted by the overall main effect for gender. 
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Now consider a different set of data shown in Table 13.6. These new data show exactly 
the same main effects that existed in Table 13.5 (the column means and the row means have 
not been changed). There is still a 4-point mean difference between the two rows (the main 
effect for gender) and a 2-point mean difference between the two columns (the main effect 
for violence). But now there is an interaction between the two factors. For example, for the 
male participants (top row), there is a 4-point difference in the level of aggression after a 
violent game versus a nonviolent game. This 4-point difference cannot be explained by the 
2-point main effect for the violence factor. Also, for the female participants (bottom row), 
the data show no difference between the two game violence conditions. Again, the zero 
difference is not what would be expected based on the 2-point main effect for the game vio-
lence factor. Mean differences that are not explained by the main effects are an indication of 
an interaction between the two factors.

To evaluate the interaction, the two-factor ANOVA first identifies mean differences that 
are not explained by the main effects. The extra mean differences are then evaluated by an 
F-ratio with the following structure:

F 5
Variance (mean difffff efef rences) not explained by the main efffff efef cts

Variance (mean difffff efef rences) expected if there are no treatment efffff efef cts

The null hypothesis for this F-ratio simply states that there is no interaction:

H0H0H : There is no interaction between factors A and B. The mean differences between 
treatment conditions are explained by the main effects of the two factors.

The alternative hypothesis is that there is an interaction between the two factors:

H1: There is an interaction between factors. The mean differences between treat-
ment conditions are not what would be predicted from the overall main effects of 
the two factors.

■ More about Interactions
In the previous section, we introduced the concept of an interaction as the unique effect 
produced by two factors working together. This section presents two alternative definitions 
of an interaction. These alternatives are intended to help you understand the concept of an 
interaction and to help you identify an interaction when you encounter one in a set of data. 
You should realize that the new definitions are equivalent to the original and simply present 
slightly different perspectives on the same concept.

The first new perspective on the concept of an interaction focuses on the notion of 
independence for the two factors. More specifically, if the two factors are independent, so 
that one factor does not influence the effect of the other, then there is no interaction. On 
the other hand, when the two factors are not independent, so that the effect of one factor 
depends on the other, then there is an interaction. The notion of dependence between fac-
tors is consistent with our earlier discussion of interactions. If one factor influences the 
effect of the other, then unique combinations of the factors produce unique effects.

The data in Table 13.6 
show the same pattern 
of results that was ob-
tained in the Bartholow 
and Anderson (2002) 
research study.

TA B L E  13.6 Hypothetical data for an experiment examining the effect of violence 
in a video game on the aggressive behavior of males and females. The 
data show the same main effects as the values in Table 13.5 but the 
individual treatment means have been modified to create an interaction.

Nonviolent Game Violent Game

Male M 5 6 M 5 10 M 5 8

Female M 5 4 M 5 4 M 5 4

M 5 5 M 5 7
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When the effect of one factor depends on the different levels of a second factor, 
then there is an interaction between the factors.

This definition of an interaction should be familiar in the context of a “drug interaction.” 
Your doctor and pharmacist are always concerned that the effect of one medication may be 
altered or distorted by a second medication that is being taken at the same time. Thus, the 
effect of one drug (factor A) depends on a second drug (factor B), and you have an interac-
tion between the two drugs.

Returning to Table 13.5, you will notice that the size of the game-violence effect (first 
column versus second column) does not depend on the gender of the participants. For these does not depend on the gender of the participants. For these does not depend
data, adding violence produces the same 2-point increase in aggressive behavior for both 
groups of participants. Thus, the effect of game violence does not depend on gender and 
there is no interaction. Now consider the data in Table 13.6. This time, the effect of adding 
violence depends on the gender of the participants. For example, there is a 4-point increase 
in aggressive behavior for the males but adding violence has no effect on aggression for the 
females. Thus, the effect of game violence depends on gender, which means that there is an 
interaction between the two factors.

The second alternative definition of an interaction is obtained when the results of a 
two-factor study are presented in a graph. In this case, the concept of an interaction can be 
defined in terms of the pattern displayed in the graph. Figure 13.2 shows the two sets of 
data we have been considering. The original data from Table 13.5, where there is no inter-
action, are presented in Figure 13.2(a). To construct this figure, we selected one of the fac-
tors to be displayed on the horizontal axis; in this case, the different levels of game violence 
are displayed. The dependent variable, the level of aggressive behavior, is shown on the 
vertical axis. Note that the figure actually contains two separate graphs: The top line shows 
the relationship between game violence and aggression for the males, and the bottom line 
shows the relationship for the females. In general, the picture in the graph matches the 
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F I G U R E  1 3 . 2
(a) Graph showing the treatment means for Table 13.5, for which there is no interaction. (b) Graph for Table 13.6, for 
which there is an interaction.
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structure of the data matrix; the columns of the matrix appear as values along the X-axis, X-axis, X
and the rows of the matrix appear as separate lines in the graph.

For the original set of data, Figure 13.2(a), note that the two lines are parallel; that is, 
the distance between lines is constant. In this case, the distance between lines reflects the 
2-point difference in the mean aggression scores for males and females, and this 2-point 
difference is the same for both game violence conditions.

Now look at a graph that is obtained when there is an interaction in the data. Figure 
13.2(b) shows the data from Table 13.6. This time, note that the lines in the graph are not 
parallel. The distance between the lines changes as you scan from left to right. For these 
data, the distance between the lines corresponds to the gender effect—that is, the mean 
difference in aggression for male versus female participants. The fact that this difference 
depends on the level of game violence is an indication of an interaction between the two 
factors. 

When the results of a two-factor study are presented in a graph, the existence of 
nonparallel lines (lines that cross or converge) indicates an interaction between the 
two factors.

For many students, the concept of an interaction is easiest to understand using the per-
spective of interdependency; that is, an interaction exists when the effects of one variable 
depend on another factor. However, the easiest way to identify an interaction within a set depend on another factor. However, the easiest way to identify an interaction within a set depend
of data is to draw a graph showing the treatment means. The presence of nonparallel lines 
is an easy way to spot an interaction.

■ Independence of Main Effects and Interactions
The two-factor ANOVA consists of three hypothesis tests, each evaluating specific mean 
differences: the A effect, the B effect, and the A 3 B interaction. As we have noted, these 
are three separate tests, but you should also realize that the three tests are independent. 
That is, the outcome for any one of the three tests is totally unrelated to the outcome for 
either of the other two. Thus, it is possible for data from a two-factor study to display any 
possible combination of significant and/or not significant main effects and interactions. 
The data sets in Table 13.7 show several possibilities.

Table 13.7(a) shows data with mean differences between levels of factor A (an A
effect) but no mean differences for factor B and no interaction. To identify the A effect, 
notice that the overall mean for A1 (the top row) is 10 points higher than the overall 
mean for A2 (the bottom row). This 10-point difference is the main effect for factor A. 
To evaluate the B effect, notice that both columns have exactly the same overall mean, 
indicating no difference between levels of factor B; hence, there is no B effect. Finally, 
the absence of an interaction is indicated by the fact that the overall A effect (the 10-point 
difference) is constant within each column; that is, the A effect does not depend on the does not depend on the does not depend
levels of factor B. (Alternatively, the data indicate that the overall B effect is constant 
within each row.)

Table 13.7(b) shows data with an A effect and a B effect but no interaction. For these 
data, the A effect is indicated by the 10-point mean difference between rows, and the B
effect is indicated by the 20-point mean difference between columns. The fact that the 
10-point A effect is constant within each column indicates no interaction.

Finally, Table 13.7(c) shows data that display an interaction but no main effect for factor 
A or for factor B. For these data, there is no mean difference between rows (no A effect) 
and no mean difference between columns (no B effect). However, within each row (or 
within each column), there are mean differences. The “extra” mean differences within the 

The A 3 B interaction 
typically is called “A by 
B” interaction. If there 
is an interaction be-
tween video game vio-
lence and gender, it may 
be called the “violence 
by gender” interaction.
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TA B L E  1 3 .7
Three sets of data showing 
different combinations of 
main effects and interac-
tion for a two-factor study. 
(The numerical value in 
each cell of the matrices 
represents the mean value 
obtained for the sample in 
that treatment condition.)

(a) Data showing a main effect for factor A but no B effect and no interaction

B1 B2

A1 20 20 A1 mean = 20
10-point difference

A2 10 10 A2 mean = 10

B1 mean B2 mean
= 15 = 15

No difference

(b) Data showing main effects for both factor A and factor B but no interaction

B1 B2

A1 10 30 A1 mean = 20
10-point difference

A2 20 40 A2 mean = 30

B1 mean B2 mean
= 15 = 35

20-point difference

(c) Data showing no main effect for either factor but an interaction

B1 B2

A1 10 20 A1 mean = 15
No difference

A2 20 10 A2 mean = 15

B1 mean
= 15

B2 mean 
= 15

No difference

rows and columns cannot be explained by the overall main effects and therefore indicate 
an interaction.

The following example is an opportunity to test your understanding of main effects and 
interactions.

The following matrix represents the outcome of a two-factor experiment. Describe the 
main effect for factor A and the main effect for factor B. Does there appear to be an interac-
tion between the two factors?

Experiment I

B1 B2

A1 M 5 10 M 5 20

A2 M 5 30 M 5 40

You should conclude that there is a main effect for factor A (the scores in A2 average 
20 points higher than in A1) and there is a main effect for factor B (the scores in B2 average 
10 points higher than in B1) but there is no interaction; there is a constant 20-point differ-
ence between A1 and A2 that does not depend on the levels of factor B. ■

E X A M P L E  1 3 . 5
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LO8 1. A two-factor study with two levels of factor A and three levels of factor B
uses a separate sample of n 5 5 participants in each treatment condition. How 
many participants are needed for the entire study?

a. 5

b. 10

c. 25

d. 30

LO9 2. Which of the following accurately describes an interaction between two 
variables?

a. The effect of one variable depends on the levels of the second variable.The effect of one variable depends on the levels of the second variable.The ef

b. Both variables are equally in�uenced by a third factor.

c. The two variables are differentially affected by a third variable.

d. Both variables produce a change in the subjects’ scores.

LO10 3. The results from a two-factor analysis of variance show that both main effects are 
significant. From this information, what can you conclude about the interaction?

a. The interaction also must be signi�cant.

b. The interaction cannot be signi�cant.

c. There must be an interaction but it may not be statistically signi�cant.

d. You can make no conclusions about the signi�cance of the interaction.You can make no conclusions about the signi�cance of the interaction.Y

1. d 2. a 3. d

LE A R N I N G C H E C K

A N S W E R S

13-5 An Example of the Two-Factor ANOVA and Effect Size

LE A R N I N G O B J E C T IV E S

 11. Describe the two-stage structure of a two-factor ANOVA and explain what hap-
pens in each stage.

 12. Compute the SS, df, and df, and df MS values needed for a two-factor ANOVA, explain MS values needed for a two-factor ANOVA, explain MS
the relationships among them, and used the df values from a speci�c ANOVA to df values from a speci�c ANOVA to df
describe the structure of the study and the number of participants.

 13. Conduct a two-factor ANOVA including measures of effect size for both main 
effects and the interaction.

The two-factor ANOVA is composed of three distinct hypothesis tests:

1. The main effect of factor The main effect of factor The main ef A (often called the A-effect). Assuming that factor A
is used to de�ne the rows of the matrix, the main effect of factor A evaluates the 
mean differences between rows.

2. The main effect of factor The main effect of factor The main ef B (called the B-effect). Assuming that factor B is used to 
de�ne the columns of the matrix, the main effect of factor B evaluates the mean 
differences between columns.

3. The interaction (called the A 3 B interaction). The interaction evaluates mean dif-
ferences between treatment conditions that are not predicted from the overall main 
effects from factor A or factor B.

396 CHAPTER 13 | Repeated-Measures and Two-Factor Analysis of Variance
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For each of these three tests, we are looking for mean differences between treatments that 
are larger than would be expected if there are no treatment effects. In each case, the sig-
nificance of the treatment effect is evaluated by an F-ratio. All three F-ratios have the same 
basic structure:

F 5
variance (mean difffff efef rences) between treatments

variance (mean difffff efef rences) expected if there are no treatment efffff efef cts
(13.11)

The general structure of the two-factor ANOVA is shown in Figure 13.3. Note that the 
overall analysis is divided into two stages. In the first stage, the total variability is separat-
ed into two components: between-treatments variability and within-treatments variability. 
This first stage is identical to the single-factor ANOVA introduced in Chapter 12 with each 
cell in the two-factor matrix viewed as a separate treatment condition. The within-treat-
ments variability that is obtained in Stage 1 of the analysis is used as the denominator for 
the F-ratios. As we noted in Chapter 12, within each treatment, all of the participants are 
treated exactly the same. Thus, any differences that exist within the treatments cannot be 
caused by treatment effects. As a result, the within-treatments variability provides a mea-
sure of the differences that exist when there are no systematic treatment effects influencing 
the scores (see Equation 13.11).

The between-treatments variability obtained in Stage 1 of the analysis combines all 
the mean differences produced by factor A, factor B, and the interaction. The purpose of 
the second stage is to partition the differences into three separate components: differences 
attributed to factor A, differences attributed to factor B, and any remaining mean differ-
ences that define the interaction. These three components form the numerators for the three 
F-ratios in the analysis.

The goal of this analysis is to compute the variance values needed for the three F-ratios. 
We need three between-treatments variances (one for factor A, one for factor B, and one 
for the interaction), and we need a within-treatments variance. Each of these variances 

Stage 1

Stage 2

Between-treatments
variance

Factor A
variance

Factor B
variance

Interaction
variance

Total
variance

Within-treatments
variance

Numerator
for A F -ratio

Numerator 
for B F -ratio

Numerator
for AxB F -ratio

Denominator for
all 3 F -ratios

F I G U R E  1 3 . 3
Structure of the analysis 
for a two-factor ANOVA.
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(or mean squares) is determined by a sum of squares value (SS) and a degrees of freedom 
value (dfdf  df ):

mean square 5 MSMSM 5
SS

dfdfd

To demonstrate the two-factor ANOVA, we will use a research study based on previous 
work by Ackerman and Goldsmith (2011). Their study compared learning performance by 
students who studied text either from printed pages or from a computer screen. The results 
from the study indicate that students do much better studying from printed pages if their 
study time is self-regulated. However, when the researchers fixed the time spent studying, 
there was no difference between the two conditions. Apparently, students are less accurate 
predicting their learning performance or have trouble regulating study time when working 
with a computer screen compared to working with paper. Table 13.8 shows data from a 
two-factor study replicating the Ackerman and Goldsmith experiment. The two factors are 
mode of presentation (paper or computer screen) and time control (self-regulated or fixed). 
A separate group of n 5 5 students was tested in each of the four conditions. The dependent 
variable is student performance on a quiz covering the text that was studied. 

The data are displayed in a matrix with the two levels of time control (factor A) making 
up the rows and the two levels of presentation mode (factor B) making up the columns. 
Note that the data matrix has a total of four cells or treatment conditions with a separate 
sample of n 5 5 participants in each condition. Most of the notation should be familiar 
from the single-factor ANOVA presented in Chapter 12. Specifically, the treatment totals 
are identified by T values, the total number of scores in the entire study is T values, the total number of scores in the entire study is T N 5 20, and the 
grand total (sum) of all 20 scores is G 5 155. In addition to these familiar values, we have 
included the totals for each row and for each column in the matrix. The goal of the ANOVA 
is to determine whether the mean differences observed in the data are significantly greater 
than would be expected if there were no treatment effects.

Remember that in 
ANOVA a variance is 
called a mean square, 
or MS.

E X A M P L E  1 3 . 6

TA B L E  13. 8 
Data for a two-factor 
study comparing two 
levels of time control 
(self-regulated or fixed by 
the researchers) and two 
levels of text presenta-
tion (paper and computer 
screen). The dependent 
variable is performance 
on a quiz covering the 
text that was presented. 
The study involves four 
treatment conditions with 
n 5 5 participants in each 
treatment.

Factor B:  
Text Presentation Mode

Paper
Computer 

Screen

Self-regulated

Factor A
Time Control

Fixed

11
8
9
10
7

M 5 9
T 5 45

SS 5 10

4
4
8
5
4

M = 5
T = 25

SS = 12

TrowTrowT = 70

N = 20
G = 155

10
7
10
6
7

M = 8
T = 40

SS = 14

10
6
10
10
9

M = 9
T = 45

SS = 12

ΣX2X2X = 1303

TrowTrowT = 85

TcolTcolT = 85 TcolTcolT = 70
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SECTION 13-5 | An Example of the Two-Factor ANOVA and Effect Size 399

■ Stage 1 of the Two-Factor Analysis
The first stage of the two-factor analysis separates the total variability into two compo-
nents: between-treatments and within-treatments. The formulas for this stage are identical 
to the formulas used in the single-factor ANOVA in Chapter 12 with the provision that each 
cell in the two-factor matrix is treated as a separate treatment condition. The formulas and 
the calculations for the data in Table 13.8 are as follows:

Total Variability

SStStS otal 5 SX2X2X 2
G2

N
(13.12)

For these data,

SStStS otal 5 1303 2
1552

20

5 1303 2 1201.25

5 101.75

This SS value measures the variability for all SS value measures the variability for all SS N 5 20 scores and has degrees of freedom 
given by

dftotaldftotaldf 5 N 2 1 (13.13)

For the data in Table 13.8, dftotaldftotaldf 5 19.

Within-Treatments Variability To compute the variance within treatments, we first 
compute SS and SS and SS df 5 n 2 1 for each of the individual treatment conditions. Then the 
within-treatments SS is defined asSS is defined asSS

SSwithin treatments 5 SSSeach treatment (13.14)

And the within-treatments df is defined asdf is defined asdf

dfwithin treatmentsdfwithin treatmentsdf 5 Sdfeach treatmentdfeach treatmentdf (13.15)

For the four treatment conditions in Table 13.8,  

SSwithin treatments 5 10 1 12 1 14 1 12

5 48

dfwithin treatmentsdfwithin treatmentsdf 5 4 1 4 1 4 1 4  

5 16

Between-Treatments Variability Because the two components in Stage 1 must add 
up to the total, the easiest way to find SSbetween treatmentsSSbetween treatmentsSS  is by subtraction.

SSbetween treatmentsSSbetween treatmentsSS 5 SStotal 2 SSwithin (13.16)

For the data in Table 13.8, we obtain

SSbetween treatmentsSSbetween treatmentsSS 5 101.75 2 48 5 53.75

However, you can also use the computational formula to calculate SSbetween treatmentsSSbetween treatmentsSS  directly.

SSbSbS etween treatments 5 S
T 2

n
2

G2

N
(13.17)
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400 CHAPTER 13 | Repeated-Measures and Two-Factor Analysis of Variance

For the data in Table 13.8, there are four treatments (four T values), each with T values), each with T n 5 5 scores, 
and the between-treatments SS is  SS is  SS

SSbSbS etween treatments 5
452

5
1

252

5
1

402

5
1

452

5
2

1552

20

5 405 1 125 1 320 1 405 2 1201.25

5 53.75

The between-treatments df value is determined by the number of treatments (or the number df value is determined by the number of treatments (or the number df
of T values) minus one. For a two-factor study, the number of treatments is equal to the T values) minus one. For a two-factor study, the number of treatments is equal to the T
number of cells in the matrix. Thus,

dfbetween treatmentsdfbetween treatmentsdf 5 number of cells 2 1 (13.18)

For these data, dfbetweendfbetweendf treatments 5 3.
This completes the first stage of the analysis. Note that the two components add to equal 

the total for both SS values and SS values and SS df values.  df values.  df

SSbetween treatmentsSSbetween treatmentsSS 1 SSwithin treatments 5 SStotal

53.75 1 48 5 101.75 

dfbetween treatmentsdfbetween treatmentsdf 1 dfwithin treatmentsdfwithin treatmentsdf 5 dftotaldftotaldf

3 1 16 5 19

■ Stage 2 of the Two-Factor Analysis
The second stage of the analysis determines the numerators for the three F-ratios. Specifi-
cally, this stage determines the between-treatments variance for factor A, factor B, and the 
interaction.

1. Factor A The main effect for factor A evaluates the mean differences between 
the levels of factor A. For this example, factor A de�nes the rows of the matrix, so 
we are evaluating the mean differences between rows. To compute the SS for factor SS for factor SS
A, we calculate a between-treatment SS using the row totals exactly the same as we SS using the row totals exactly the same as we SS
computed SSbetween treatmentsSSbetween treatmentsSS  using the treatment totals (T values) earlier. For factor T values) earlier. For factor T A, 
the row totals are 70 and 85, and each total was obtained by adding 10 scores.

Therefore,

SSASAS 5 S
T2T2TROTROT W

nROW
2

G2

N
(13.19)

For our data,  

SSASAS 5
702

10
1

852

10
2

1552

20

5 490 + 722.5 2 1201.25 

5 11.25

Factor A involves two treatments (or two rows), easy and dif�cult, so the df value isdf value isdf

dfAdfAdf 5 number of rows 2 1 (13.20)

5 2 2 1

5 1
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2. Factor B. The calculations for factor B follow exactly the same pattern that was 
used for factor A, except for substituting columns in place of rows. The main effect 
for factor B evaluates the mean differences between the levels of factor B, which 
de�ne the columns of the matrix.

SSBSBS 5 S
T2T2TCTCT OL

nCOL
2

G2

N
(13.21)

For our data, the column totals are 85 and 70, and each total was obtained by add-
ing 10 scores. Thus,  

SSBSBS 5
852

10
1

702

10
2

1552

20

5 722.5 + 490 2 1201.25 

5 11.25

dfBdfBdf 5 number of columns 21 (13.22)
5 2 2 1

51

3. The A 3 B Interaction. The A 3 B interaction is de�ned as the “extra” mean 
differences not accounted for by the main effects of the two factors. We use this 
de�nition to �nd the SS and SS and SS df values for the interaction by simple subtraction. df values for the interaction by simple subtraction. df
Speci�cally, the between-treatments variability is partitioned into three parts: the A
effect, the B effect, and the interaction (see Figure 13.3). We have already com-
puted the SS and SS and SS df values for df values for df A and B, so we can �nd the interaction values by 
subtracting to �nd out how much is left. Thus,

SSASSASS 3B 5 SSbetween treatmentsSSbetween treatmentsSS 2 SSASSASS 2 SSBSSBSS (13.23)

For our data,

SSASSASS 3B 5 53.75 2 11.25 2 11.25

5 31.25

Similarly,

dfAdfAdf 3B 5 dfbetween treatmentsdfbetween treatmentsdf 2 dfAdfAdf 2 dfBdfBdf (13.24)

5 3 2 1 2 1

5 1

An easy to remember alternative formula for dfAdfAdf 3B is

dfAdfAdf 3B 5 dfAdfAdf 3 dfBdfBdf (13.25)

5 1 3 1 5 1

■ Mean Squares and F-Ratios for the Two-Factor ANOVA
The two-factor ANOVA consists of three separate hypothesis tests with three separate F-ratios. F-ratios. F
The denominator for each F-ratio is intended to measure the variance (differences) that would F-ratio is intended to measure the variance (differences) that would F
be expected if there are no treatment effects. As we saw in Chapter 12, the within-treatments 
variance is the appropriate denominator for an independent-measures design (see page 336). 
The within-treatments variance is called a mean square, or MS, and is computed as follows:

MSMSM within treatments 5
SSwithin treatments

dfdfd wfwf ithin treatments
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For the data in Table 13.8,  

MSMSM within treatments 5
48

16
5 3

This value forms the denominator for all three F-ratios.
The numerators of the three F-ratios all measured variance or differences between treat-

ments: differences between levels of factor A, differences between levels of factor B, and 
extra differences that are attributed to the A 3 B interaction. These three variances are 
computed as follows:

MSMSM ASAS 5
SSASAS

dfdfd AfAf
MSMSM BSBS 5

SSBSBS

dfdfd BfBf
MSMSM ASAS 3B 5

SSASAS 3B

dfdfd AfAf 3B

For the data in Table 13.8, the three MS values are  MS values are  MS

MSMSM ASAS 5
11.25

1
5 11.25 MSMSM BSBS 5

11.25

1
5 11.25 MSMSM ASAS 3B 5

31.25

1
5 31.25

Finally, the three F-ratios are   

FAFAF 5
MSMSM ASAS

MSMSM within treatments
5

11.25

3
5 3.75

FBFBF 5
MSMSM BSBS

MSMSM within treatments
5

11.25

3
5 3.75

FAFAF 3B 5
MSMSM ASAS 3B

MSMSM within treatments
5

31.25

3
5 10.42

To determine the significance of each F-ratio, we must consult the F distribution table F distribution table F
using the df values for each of the individual df values for each of the individual df F-ratios. For this example, all three F-ratios 
have df 5 1 for the numerator and df 5 16 for the denominator. Checking the table with 
df 5 1, 16, we find a critical value of 4.49 for a 5 .05 and a critical value of 8.53 for 
a 5 .01. For both main effects, we obtained F 5 3.75, so neither of the main effects is 
significant. For the interaction, we obtained F 5 10.41, which exceeds both of the critical 
values, so we conclude that there is a significant interaction between the two factors. That 
is, the difference between the two modes of presentation depends on how studying time is 
controlled. ■

Table 13.9 is a summary table for the complete two-factor ANOVA from Example 13.6. 
Although these tables are no longer commonly used in research reports, they provide a 
concise format for displaying all of the elements of the analysis.

The following example is an opportunity to test your understanding of the calculations 
required for a two-factor ANOVA.

Source SS df MS F

Between treatments 53.75 3
Factor A (time) 11.25 1 11.25 F(1, 16) 5 3.75
Factor B (mode) 11.25 1 11.25 F(1, 16) 5 3.75
A 3 B 31.25 1 31.25 F(1, 16) 5 10.42

Within treatments 48 16 3
Total 101.75 19

TA B L E  1 3 .9
A summary table for the 
two-factor ANOVA for the 
data from Example 13.6.
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The following data summarize the results from a two-factor independent-measures experiment:

Factor B

B1 B2 B3

Factor A

A1

n 5 10 n 5 10 n 5 10

T = 0 T = 10 T = 20
SS = 30 SS = 40 SS = 50

A2

n = 10 n = 10 n = 10
T = 40 T = 30 T = 20

SS = 60 SS = 50 SS = 40

Calculate the total for each level of factor A and compute SS for factor SS for factor SS A, then calculate the 
totals for factor B, and compute SS for this factor. You should find that the totals for factor SS for this factor. You should find that the totals for factor SS
A are 30 and 90, and SSASSASS 5 60. All three totals for factor B are equal to 40. Because they 
are all the same, there is no variability, and SSBSSBSS 5 0. ■

■ Measuring Effect Size for the Two-Factor ANOVA
The general technique for measuring effect size with an ANOVA is to compute a value for 
h2, the percentage of variance that is explained by the treatment effects. For a two-factor 
ANOVA, we compute three separate values for eta squared: one measuring how much of 
the variance is explained by the main effect for factor A, one for factor B, and a third for the 
interaction. As we did with the repeated-measures ANOVA (page 382) we remove any vari-
ability that can be explained by other sources before we calculate the percentage for each of 
the three specific treatment effects. Thus, for example, before we compute the h2 for factor 
A, we remove the variability that is explained by factor B and the variability explained by 
the interaction. The resulting equation is

fofof r fafaf ctor A, h2 5
SSASAS

SStStS otal 2 SSBSBS 2 SSASAS 3B
(13.26)

Note that the denominator of Equation 13.26 consists of the variability that is explained by 
factor A and the other unexplained variability. Thus, an equivalent version of the equation isunexplained variability. Thus, an equivalent version of the equation isunexplained

fofof r fafaf ctor A, h2 5
SSASAS

SSASAS 1 SSwithin treatments
(13.27)

Similarly, the h2 formulas for factor B and for the interaction are as follows:

fofof r fafaf ctor B, h2 5
SSBSBS

SStStS otal 2 SSASAS 2 SSASAS 3B
5

SSBSBS

SSBSBS 1 SSwithin treatments
(13.28)

fofof r A 3 B, h2 5
SSASAS 3B

SStStS otal 2 SSASAS 2 SSBSBS
5

SSASAS 3B

SSASAS 3B 1 SSwithin treatments
(13.29)

Because each of the h2 equations computes a percentage that is not based on the total 
variability of the scores, the results are often called partial eta squares. For the data in partial eta squares. For the data in partial
Example 13.6, the equations produce the following values:  

h2 fofof r fafaf ctor A stime controld 5
11.25

11.25 1 48
5 0.190

h2 fofof r fafaf ctor B spresentation moded 5
11.25

11.25 1 48
5 0.190

h2 fofof r the A 3 B interaction 5
31.25

31.25 1 48
5 0.394

E X A M P L E  1 3 . 7
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IN THE LITERATURE

Reporting the Results of a Two-Factor ANOVA
The APA format for reporting the results of a two-factor ANOVA follows the same 
basic guidelines as the single-factor report. First, the means and standard deviations 
are reported. Because a two-factor design typically involves several treatment condi-
tions, these descriptive statistics often are presented in a table or a graph. Next, the 
results of all three hypothesis tests (F-ratios) are reported. The results for the study in 
Example 13.6 could be reported as follows:

The means and standard deviations for all treatment conditions are shown in Table 1. 
The two-factor analysis of variance showed no signi�cant main effect for time con-
trol, F(1, 16) 5 3.75, p . .05, h2 5 0.190 or for presentation mode, F(1, 16) 5 3.75, 
p . .05, h2 5 0.190. However, the interaction between factors was signi�cant, 
F(1, 16) 5 10.41, p , .01, h2 5 0.394.

TA B L E  1
Mean quiz score for each treatment condition.

Presentation Mode

Paper Computer Screen

Self-regulated
M = 9.00 M = 5.00

Time Control
SD = 1.58 SD = 1.73

Fixed
M = 8.00 M = 9.00

SD = 1.87 SD = 1.73
■

■ Interpreting the Results from a Two-Factor ANOVA
Because the two-factor ANOVA involves three separate tests, you must consider the 
overall pattern of results rather than focusing on the individual main effects or the inter-
action. In particular, whenever there is a significant interaction, you should be cautious 
about accepting the main effects at face value (whether they are significant or not). 
Remember, an interaction means that the effect of one factor depends on the level of the 
second factor. Because the effect changes from one level to the next, there is no consis-
tent “main effect.”

Figure 13.4 shows the sample means obtained from the paper versus computer screen 
study. Recall that the analysis showed that both main effects were not significant but 
the interaction was significant. Although both main effects were too small to be signifi-
cant, it would be incorrect to conclude that neither factor influenced behavior. For this 
example, the difference between studying text presented on paper versus on a computer 
screen depends on how studying time is controlled. Specifically, there is little or no dif-screen depends on how studying time is controlled. Specifically, there is little or no dif-screen depends on how studying time is controlled. Specifically, there is little or no dif
ference between paper and a computer screen when the time spent studying is fixed by 
the researchers. However, studying text from paper produces much higher quiz scores 
when participants regulate their own study time. Thus, the difference between studying 
from paper and studying from a computer screen depends on how the time spent study-
ing is controlled. This interdependence between factors is the source of the significant 
interaction.
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■ Assumptions for the Two-Factor ANOVA
The validity of the ANOVA presented in this chapter depends on the same three assump-
tions we have encountered with other hypothesis tests for independent-measures designs 
(the t test in Chapter 10 and the single-factor ANOVA in Chapter 12):t test in Chapter 10 and the single-factor ANOVA in Chapter 12):t

1. The observations within each sample must be independent (see page 216).

2. The populations from which the samples are selected must be normal.

3. The populations from which the samples are selected must have equal variances 
(homogeneity of variance).

As before, the assumption of normality generally is not a cause for concern, especially 
when the sample size is relatively large. The homogeneity of variance assumption is more 
important, and if it appears that your data fail to satisfy this requirement, you should con-
duct a test for homogeneity before you attempt the ANOVA. Hartley’s F-max test (see 
page 281) allows you to use the sample variances from your data to determine whether 
there is evidence for any differences among the population variances. Remember, for the 
two-factor ANOVA, there is a separate sample for each cell in the data matrix. The test for 
homogeneity applies to all these samples and the populations they represent.

10

9

8

7

6

5

4

3

2

1

Paper

Mode of Text Presentation

Computer
screen

Fixed time

Self-regulated time

Mean

quiz

score

F I G U R E  1 3 . 4
Sample means for the data in 
Example 13.6. The data are quiz 
scores from a two-factor study 
examining the effect of studying 
text on paper vs. on a computer 
screen for either a fixed time or a 
self-regulated time.

LO11 1. Which of the following accurately describes the two stages of a two-factor 
ANOVA?

a. The �rst stage partitions the total variability and the second stage parti-
tions the within-treatment variability.

b. The �rst stage partitions the total variability and the second stage parti-
tions the between-treatment variability.

c. The �rst stage partitions the between-treatment variability and the second 
stage partitions the within-treatment variability.

d. None of the other options is accurate.

LE A R N I N G C H E C K
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1. The repeated-measures ANOVA is used to evaluate 
the mean differences obtained in a research study 
comparing two or more treatment conditions using the 
same sample of individuals in each condition. The test 
statistic is an F-ratio, where the numerator measures 
the variance (differences) between treatments and the 
denominator measures the variance (differences) that 
are expected without any treatment effects or indi-
vidual differences.

F 5
MSMSM bSbS etween treatments

MSMSM error

2. The first stage of the repeated-measures ANOVA is 
identical to the independent-measures analysis and 
separates the total variability into two components: 
between-treatments and within-treatments. Because 
a repeated-measures design uses the same subjects in 
every treatment condition, the differences between 
treatments cannot be caused by individual differ-
ences. Thus, individual differences are automatically 
eliminated from the between-treatments variance in 
the numerator of the F-ratio.

3. In the second stage of the repeated-measures analysis, 
the variability from individual differences is computed 
and removed from the denominator of the F-ratio. To 
remove the individual differences, you first compute 

the variability between subjects (SS and SS and SS dfdf ) and then 
subtract these values from the corresponding within-
treatments values. The residual provides a measure of 
error excluding individual differences, which is the 
appropriate denominator for the repeated-measures 
F-ratio. 

4. Effect size for the repeated-measures ANOVA is 
measured by computing eta squared, the percentage of 
variance accounted for by the treatment effect. For the 
repeated-measures ANOVA

h2 5
SSbSbS etween treatments

SStStS otal 2 SSbSbS etween subjbjb ects

5
SSbSbS etween treatments

SSbSbS etween treatments 1 SSerror

Because part of the variability (the SS due to indi-SS due to indi-SS
vidual differences) is removed before computing h2, 
this measure of effect size is often called a partial eta 
squared.

5. A research study with two independent variables 
is called a two-factor design. Such a design can be 
diagrammed as a matrix with the levels of one factor 
defining the rows and the levels of the other factor 
defining the columns. Each cell in the matrix corre-
sponds to a specific combination of the two factors.

S U M M A R Y

LO12 2. In a two-factor analysis of variance, the F-ratio for factor A has df 5 2, 60 
and the F-ratio for factor B has df 5 3, 60. Based on this information, what 
are the df values for the df values for the df F-ratio for the interaction? 

a. 3, 60

b. 5, 60

c. 6, 60

d. Cannot be determined without additional information

LO13 3. The following table shows the results for a repeated-measures ANOVA. Based 
on this table, what is the value for h2 for factor A?      

a. 12
36

b. 12
96

c. 12
99

d. 12
120

1. b 2. c 3. b

Source SS df MS 

Between 36  3
A 12 1 12 F 5 4.00
B  3 1 3 F 5 1.00 
A 3 B 21 1 21 F 5 7.00

Within 84 28 3
Total 120 31

A N S W E R S

406 CHAPTER 13 | Repeated-Measures and Two-Factor Analysis of Variance
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6. Traditionally, the two factors are identified as factor 
A and factor B. The purpose of the ANOVA is to 
determine whether there are any significant mean 
differences among the treatment conditions or cells in 
the experimental matrix. These treatment effects are 
classified as follows:
a. The A-effect: overall mean differences among the 

levels of factor A.
b. The B-effect: overall mean differences among the 

levels of factor B.

c. The A 3 B interaction: extra mean differences that 
are not accounted for by the main effects.

7. The two-factor ANOVA produces three F-ratios: one 
for factor A, one for factor B, and one for the A 3 B
interaction. Each F-ratio has the same basic structure:

F 5
MStreatment effectMStreatment effectMS seither A or B or A 3 Bd

MSwithin treatments

The formulas for the SS, df, and df, and df MS values for the MS values for the MS
two-factor ANOVA are presented in Figure 13.5.

SS

SS SS

df (number of cells) 1

Between treatments

T 2

n
G 2

N

G 2

N
G 2

N
df (levels of B ) 1

Factor B (columns)
SS is found by
subtraction

df is found by
subtraction

Interaction

df ( levels of A) 1

Factor A (rows)

SS SSeach cell

df df each cell

Within treatments

SS X2

df N 1

Total
G2

N

SS for the factor
df for the factor

MSfactor
SSwithin treatments

df within treatments
MSwithin

5 S

5 S

5 S

5 S

5 S

2

2 5 S 2

25

5

5 5

2 5 2

5 2

2

T 2
ROW

nROW

T 2
COL

nCOL

F I G U R E  1 3 . 5
The ANOVA for 
an independent-
measures two-factor 
design.

Repeated-measures design (372)

Repeated-measures ANOVA (372)

individual differences (374)

between-treatments variance (375)

within-treatments variance (375)

between-subjects variance (375)

residual variance or error variance 
(376)

factorial design (388)

two-factor designs (388)

two-factor, independent-measures, 
equal n designs (388)

matrix (388)

cell (389)

main effect (390)

interaction (391)

KE Y TER M S
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General instructions for using SPSS are presented in Appendix D. Following are detailed 
instructions for using SPSS to perform the Single-Factor, Repeated-Measures Analysis of 
Variance (ANOVA) presented in this chapter.

Data Entry

1. Enter the scores for each treatment condition in a separate column, with the scores for 
each individual in the same row. All the scores for the first treatment go in the VAR00001 
column, the second treatment scores in the VAR00002 column, and so on.

Data Analysis

1. Click Analyze on the tool bar, select General Linear Model, and click on Repeated-
Measures.

2. SPSS will present a box titled Repeated-Measures Define Factors. Within the box, the 
Within-Subjects Factor Name should already contain Factor 1. If not, type in Factor 1.

3. Enter the Number of levels (number of different treatment conditions) in the next box.
4. Click on Add.
5. Click Define.
6. One by one, move the column labels for your treatment conditions into the Within Sub-

jects Variables box. (Highlight the column label on the left and click the arrow to move it 
into the box.)

7. If you want descriptive statistics for each treatment, click on the Options box, select 
Descriptives, and click Continue.

8. Click OK.

SPSS Output

We used the SPSS program to analyze the data from Example 13.1 comparing three strategies for 
studying before an exam. Portions of the program output are shown in Figure 13.6. Note that large 
portions of the SPSS output are not relevant for our purposes and are not included. The first item 
of interest is the table of Descriptive Statistics, which presents the mean, standard deviation, and 
number of scores for each treatment. Next, we skip to the table showing Tests of Within-Subjects 
Effects. The top line of the factor1 box (Sphericity Assumed) shows the between-treatments sum 
of squares, degrees of freedom, and mean square that form the numerator of the F-ratio. The F-ratio. The F
same line reports the value of the F-ratio and the level of significance (the F-ratio and the level of significance (the F p value or alpha level). 
Similarly, the top line of the Error (factor 1) box shows the sum of squares, the degrees of free-
dom, and the mean square for the error term (the denominator of the F-ratio). The final box in the F-ratio). The final box in the F
output (not shown in Figure 13.6) is labeled Tests of Between-Subjects Effects and the bottom 
line (Error) reports the between-subjects sum of squares and degrees of freedom (ignore the Mean 
Square and F-ratio, which are not part of the repeated-measures ANOVA). F-ratio, which are not part of the repeated-measures ANOVA). F

Following are detailed instructions for using SPSS to perform the Two-Factor, Independent-
Measures Analysis of Variance (ANOVA) presented in this chapter.

Data Entry

1. The scores are entered into the SPSS data editor in a stacked format, which means that all the 
scores from all the different treatment conditions are entered in a single column (VAR00001).

2. In a second column (VAR00002) enter a code number to identify the level of factor A for 
each score. If factor A defines the rows of the data matrix, enter a 1 beside each score from 
the first row, enter a 2 beside each score from the second row, and so on.

3. In a third column (VAR00003) enter a code number to identify the level of factor B for 
each score. If factor B defines the columns of the data matrix, enter a 1 beside each 
score from the first column, enter a 2 beside each score from the second column, and 
so on.

SPSS ®
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Descriptive Statistics

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source

factor 1

Type III Sum
of Squares df Mean

Square F Sig.

Mean

VAR00001

VAR00002

VAR00003

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

84.000

84.000

84.000

84.000

2

1.228

1.424

1.000

42.000

68.380

58.991

84.000

22.000

22.000

22.000

22.000

10

6.142

7.120

5.000

2.200

3.582

3.090

4.400

19.091

19.091

19.091

19.091

.000

.004

.002

.007

Error (factor 1) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

5.0000

9.0000

10.0000

2.19089

2.60768

2.44949

6

6

6

Std. Deviation NStd. Deviation N

F Sig.

F I G U R E  1 3 .6
Portions of the SPSS output for the repeated-measures ANOVA for the study in Example 13.1.

Thus, each row of the SPSS data editor will have one score and two code numbers, with the 
score in the first column, the code for factor A in the second column, and the code for factor B
in the third column.

Data Analysis

1. Click Analyze on the tool bar, select General Linear Model, and click on Univariant.
2. Highlight the column label for the set of scores (VAR0001) in the left box and click the Highlight the column label for the set of scores (VAR0001) in the left box and click the Highlight the column label for the set of scores (V

arrow to move it into the Dependent Variable box.
3. One by one, highlight the column labels for the two factor codes and click the arrow to 

move them into the Fixed Factors box.
4. If you want descriptive statistics for each treatment, click on the Options box, select  

Descriptives, and click Continue.
5. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the paper versus computer screen study in 
Example 13.6 and part of the program output is shown in Figure 13.7. The output begins with 
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Descriptive Statistics

Dependent Variable: VAR00001

VAR00003VAR00002 Mean

1.00

2.00

Total

1.00

2.00

Total

1.00

2.00

Total

1.00

2.00

Total

9.0000

5.0000

7.0000

8.0000

9.0000

8.5000

8.5000

7.0000

7.7500

1.58114

1.73205

2.62467

1.87083

1.73205

1.77951

1.71594

2.66667

2.31414

5

5

10

5

5

10

10

10

20

Std. Deviation N

Tests of Between-Subjects Effects

Dependent Variable: VAR00001

Source

Corrected Model

Intercept

VAR00002

VAR00003

VAR00002 * VAR00003

Error

Total

Corrected Total

Type III Sum
of Squares df Mean

Square F Sig.

53.750
a

1201.250

11.250

11.250

31.250

48.000

1303.000

101.750

3

1

1

1

1

16

20

19

17.917

1201.250

11.250

11.250

31.250

3.000

5.972

400.417

3.750

3.750

10.417

.006

.000

.071

.071

.005

F I G U R E  1 3 .7
Portions of the SPSS 
output for the two-
factor ANOVA for the 
study in Example 14.2.

a table listing the factors (not shown in Figure 13.7), followed by a table showing descriptive 
statistics including the mean and standard deviation for each cell or treatment condition. The 
results of the ANOVA are shown in the table labeled Tests of Between-Subjects Effects. The 
top row (Corrected Model) presents the between-treatments SS and SS and SS df values. The second row df values. The second row df
(Intercept) is not relevant for our purposes. The next three rows present the two main effects 
and the interaction (the SS, df, and  df, and  df MS values, as well as the MS values, as well as the MS F-ratio and the level of signifi-
cance), with each factor identified by its column number from the SPSS data editor. The next 
row (Error) describes the error term (denominator of the F-ratio), and the final row (Corrected 
Total) describes the total variability for the entire set of scores. (Ignore the row labeled Total.)

FO CUS  O N  PRO B LE M  SO LVIN G

1. Before you begin a repeated-measures ANOVA, complete all the preliminary calculations 
needed for the ANOVA formulas. This requires that you find the total for each treatment 
(Ts), the total for each person (Ts), the total for each person (T Ps), the grand total (G), the SS for each treatment condi-SS for each treatment condi-SS
tion, and SX2X2X  for the entire set of N scores. As a partial check on these calculations, be N scores. As a partial check on these calculations, be N
sure that the T values add up to T values add up to T G and that the P values have a sum of G.
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2. To help remember the structure of repeated-measures ANOVA, keep in mind that a 
repeated-measures experiment eliminates the contribution of individual differences. 
There are no individual differences contributing to the numerator of the F-ratio 
(MSbetween treatments) because the same individuals are used for all treatments. Therefore, 
you must also eliminate individual differences in the denominator. This is accom-
plished by partitioning within-treatments variability into two components: between-
subjects variability and error variability. It is the MS value for error variability that is 
used in the denominator of the F-ratio.

3. Before you begin a two-factor ANOVA, take time to organize and summarize the data. 
It is best if you summarize the data in a matrix with rows corresponding to the levels of 
one factor and columns corresponding to the levels of the other factor. In each cell of the 
matrix, show the number of scores (n), the total and mean for the cell, and the SS within SS within SS
the cell. Also compute the row totals and column totals that are needed to calculate main 
effects.

4. For a two-factor ANOVA, there are three separate F-ratios. These three F-ratios use the 
same error term in the denominator (MSwithin). On the other hand, these F-ratios have 
different numerators and may have different df values associated with each of these df values associated with each of these df
numerators. 

D E M O N S TR ATIO N  13.1

REPEATREPEATREPEA ED-MEASURES ANOVA

The following data were obtained from a research study examining the effect of sleep depri-
vation on motor-skills performance. A sample of five participants was tested on a motor-skills 
task after 24 hours of sleep deprivation, tested again after 36 hours, and tested once more 
after 48 hours. The dependent variable is the number of errors made on the motor-skills task. 
Do these data indicate that the number of hours of sleep deprivation has a significant effect 
on motor skills performance?

Participant 24 Hours 36 Hours 48 Hours P totalsP totalsP

A 0 0 6 6 N 5 15
B 1 3 5 9 G 5 45
C 0 1 5 6 ΣX2X2X 5 245
D 4 5 9 18
E 0 1 5 6

T 5 5 T 5 10 T 5 30
SS 5 12 SS 5 16 SS 5 12

State the hypotheses, and specify alpha. The null hypothesis states that for the general 
population there are no differences among the three deprivation conditions. Any differences 
that exist among the samples are simply the result of chance or error. In symbols,

H0H0H : m1 5 m2 5 m3

The alternative hypothesis states that there are differences among the conditions.

H1: At least one of the treatment means is different.

We will use a 5 .05.

The repeated-measures analysis. Rather than compute the df values and look for a critidf values and look for a critidf -
cal value for F at this time, we proceed directly to the ANOVA.F at this time, we proceed directly to the ANOVA.F

STEP 1

STEP 2
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The first stage of the analysis is identical to the independent-measures ANOVA presented in 
Chapter 13.

SStotalSStotalSS 5 SX2X2X 2
G2

N

5 245 2
452

15
5 110

SSwithin 5 SSSinside each treatment 5 12 1 16 1 12 5 40

SSbetweenSSbetweenSS 5 S
T 2

n
2

G 2

N
5

52

5
1

102

5
1

302

5
2

452

15
5 70

The corresponding degrees of freedom are

dftotaldftotaldf 5 N 2 1 5 14

dfwithindfwithindf 5 Sdf 5 4 1 4 1 4 5 12

dfbetweendfbetweendf 5 k 2 1 5 2

The second stage of the repeated-measures analysis measures and removes the individual dif-The second stage of the repeated-measures analysis measures and removes the individual dif-The second stage of the repeated-measures analysis measures and removes the individual dif
ferences from the denominator of the F-ratio.

SS
between subjects

SS
between subjects

SS 5 S
P2

k
2

G2

N

5
62

3
1

92

3
1

62

3
1

182

3
1

62

3
2

452

15

5 36

SSerror 5 SSwithin 5 SSbetween subjectsSSbetween subjectsSS

5 40 2 36

5 4

The corresponding df values aredf values aredf

dfbetween subjectsdfbetween subjectsdf 5 n 2 1 5 4

dferrordferrordf 5 dfwithindfwithindf 2 dfbetween subjectsdfbetween subjectsdf

5 12 2 4

5 8

The mean square values that form the F-ratio are as follows:

MSbetweenMSbetweenMS 5
SSbetweenSSbetweenSS

dfbetweendfbetweendf
5

70

2
5 35

MSerror 5
SSerror

dferrordferrordf
5

4

8
5 0.50

Finally, the F-ratio is

F 5
MS

between
MS

between
MS

MS
error

5
35

0.50
5 70.00

STASTAST GE 1

STASTAST GE 2
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 Demonstration 13.2 413

Make a decision and state a conclusion. With With W df 5 2, 8 and a 5 .05, the critical value is 
F 5 4.46. Our obtained F-ratio (F 5 70.00) is well into the critical region, so our decision 
is to reject the null hypothesis and conclude that there are significant differences among the 
three levels of sleep deprivation.

D E M O N S TR ATIO N  13. 2

TWO-FACTOR ANOVA

The following data are representative of the results obtained in a research study examining 
the relationship between eating behavior and body weight (Schachter, 1968). The two factors 
in this study were:

1. The participant’s weight (normal or obese)

2. The participant’s state of hunger (full stomach or empty stomach)

All participants were led to believe that they were taking part in a taste test for several 
types of crackers, and they were allowed to eat as many crackers as they wanted. The depen-
dent variable was the number of crackers eaten by each participant. There were two specific 
predictions for this study. First, it was predicted that normal participants’ eating behavior 
would be determined by their state of hunger. That is, people with empty stomachs would eat 
more and people with full stomachs would eat less. Second, it was predicted that eating be-
havior for obese participants would not be related to their state of hunger. Specifically, it was 
predicted that obese participants would eat the same amount whether their stomachs were full 
or empty. Note that the researchers are predicting an interaction: The effect of hunger will be 
different for the normal participants and the obese participants. The data are as follows:

Factor A: 
Weight

Factor B: Hunger

Empty stomach Full stomach

Normal

n = 20 n = 20

TnormalTnormalT = 740
M = 22 M = 15
T = 440 T = 300 G = 1440

SS = 1540 SS = 1270 N = 80

Obese

n = 20 n = 20

TobeseTobeseT = 700

ΣX2X2X = 31,836
M = 17 M = 18
T = 340 T = 360

SS = 1320 SS = 1266

TemptyTemptyT =780 TfullTfullT = 660

State the hypotheses, and select alpha. For a two-factor study, there are three separate 
hypotheses: the two main effects and the interaction.

For factor A, the null hypothesis states that there is no difference in the amount eaten for 
normal participants versus obese participants. In symbols,

H0H0H : mnormal 5 mobese

For factor B, the null hypothesis states that there is no difference in the amount eaten for 
full-stomach versus empty-stomach conditions. In symbols,

H0H0H : mfull 5 mempty

For the A 3 B interaction, the null hypothesis can be stated two different ways. First, the differ- interaction, the null hypothesis can be stated two different ways. First, the differ- interaction, the null hypothesis can be stated two different ways. First, the differ
ence in eating between the full-stomach and empty-stomach conditions will be the same for normal 
and obese participants. Second, the difference in eating between the normal and obese participants 
will be the same for the full-stomach and empty-stomach conditions. In more general terms,

H0H0H : The effect of factor A does not depend on the levels of factor B
(and B does not depend on A).

We will use a 5 .05 for all tests.

STEP 3

STEP 1
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The two-factor analysis. Rather than compute the df values and look up critical values for df values and look up critical values for df
F at this time, we will proceed directly to the ANOVA.F at this time, we will proceed directly to the ANOVA.F

The first stage of the analysis is identical to the independent-measures ANOVA presented in 
Chapter 13, where each cell in the data matrix is considered a separate treatment condition.

SStStS otal 5 SX2X2X 2
G2

N

5 31,836 2
14402

80
5 5916

SSwithin treatments 5 SSSinside each treatment 5 1540 1 1270 1 1320 1 1266 5 5396

SSbetween treatmentsSSbetween treatmentsSS 5 S
T2T2T
n

2
G2

N

5
4402

20
1

3002

20
1

3402

20
1

3602

20
2

14402

80

5 520

The corresponding degrees of freedom are

dftotaldftotaldf 5 N 2 1 5 79

dfwithin treatmentsdfwithin treatmentsdf 5 Sdf 5 19 1 19 1 19 1 19 5 76

dfbetween treatmentsdfbetween treatmentsdf 5 number of treatments 2 1 5 3

The second stage of the analysis partitions the between-treatments variability into three com-
ponents: the main effect for factor A, the main effect for factor B, and the A 3 B interaction.

For factor A (normal/obese),

SSASAS 5 S
T 2

ROTROT WSWSW

nROWSWSW
2

G2

N

5
7402

40
1

7002

40
2

14402

80

5 20
For factor B (full/empty),

SSBSBS 5 S
T 2

CTCT OLS

NCNCN OLS
2

G2

N

5
7802

40
1

6602

40
2

14402

80

5 180

For the A × B interaction,

SSASSASS ×B = SSbetween treatmentsSSbetween treatmentsSS – SSASSASS – SSBSSBSS

= 520 – 20 – 180 

= 320

The corresponding degrees of freedom are

dfAdfAdf 5 number of rows 2 1 5 1

dfBdfBdf 5 number of columns 2 1 5 1

dfAdfAdf 3B 5 dfbetween treatmentsdfbetween treatmentsdf 2 dfAdfAdf 2 dfBdfBdf

5 3 2 1 2 1 5 1

STEP 2

STAGE 1

STAGE 2
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The MS values needed for the MS values needed for the MS F-ratios are

MSMSM ASAS 5
SSASAS

dfdfd AfAf
5

20

1
5 20

MSMSM BSBS 5
SSBSBS

dfdfd BfBf
5

180

1
5 180

MSMSM ASAS 3B 5
SSASAS 3B

dfdfd AfAf 3B
5

320

1
5 320

MSMSM within treatments 5
SSwithin treatments

dfdfd wfwf ithin treatments
5

5396

76
5 71

Finally, the F-ratios are

FAFAF 5
MSMSM ASAS

MSMSM within treatments
5

20

71
5 0.28

FBFBF 5
MSMSM BSBS

MSMSM within treatments
5

180

71
5 2.54

FAFAF 3B 5
MSMSM ASAS 3B

MSMSM within treatments
5

320

71
5 4.51

Make a decision and state a conclusion. All three F-ratios have df 5 1, 76. With 
a 5 .05, the critical F value is 3.98 for all three tests.F value is 3.98 for all three tests.F

For these data, factor A (weight) has no significant effect; F(1, 76) 5 0.28. Statistically, 
there is no difference in the number of crackers eaten by normal versus obese participants.

Similarly, factor B (fullness) has no significant effect; F(1, 76) 5 2.54. Statistically, the 
number of crackers eaten by full participants is no different from the number eaten by hungry 
participants. (Note: This conclusion concerns the combined group of normal and obese par-
ticipants. The interaction concerns these two groups separately.)

These data produce a significant interaction; F(1, 76) 5 4.51, p , .05. This means that 
the effect of fullness does depend on weight. A closer look at the original data shows that 
the degree of fullness did affect the normal participants, but it had no effect on the obese 
participants.

STEP 3

PRO B LE M S

3. A researcher conducts a repeated-measures experi-
ment using a sample of n 5 15 subjects to evaluate the 
differences among three treatment conditions. If the 
results are examined with an ANOVA, what are the df
values for the F-ratio?

4. The following data were obtained from a repeated-
measures study comparing three treatment conditions. 
Use a repeated-measures ANOVA with a 5.05 to 
determine whether there are significant mean differ-
ences among the three treatments.

1. What is the relationship between the F-ratio for a 
repeated-measures ANOVA and the F-ratio for an 
independent-measures ANOVA?  Specifically, de-
scribe the role of individual differences in each.

2. A researcher conducts an experiment comparing four 
treatment conditions with n 5 12 scores in each 
condition.
a. If the researcher uses an independent-measures 

design, how many individuals are needed for the 
study and what are the df values for the df values for the df F-ratio?

b. If the researcher uses a repeated-measures design, 
how many individuals are needed for the study and 
what are the df values for the df values for the df F-ratio?
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Treatments

Person I II III
Person 
Totals

A 0 2 4 P = 6

B 0 3 6 P = 9 N = 15

C 3 7 8 P = 18 G = 60

D 0 7 5 P = 12 ΣX2X2X = 350

E 2 6 7 P = 15

M = 1 M = 5 M = 6

T = 5 T = 25 T = 30

SS = 8 SS = 22 SS = 10

5. The following data represent the results of a repeat-
ed-measures study comparing different viewing 
distances for a 42-inch, high-definition television. 
Four viewing distances were evaluated: 9 feet, 12 
feet, 15 feet, and 18 feet. Each participant was free 
to move back and forth among the four distances 
while watching a 30-minute video on the televi-
sion. The only restriction was that each person had 
to spend at least two minutes watching from each 
of the four distances. At the end of the video, each 
participant rated all of the viewing distances on 
a scale from 1 (very bad, definitely need to move 
closer or farther away) to 7 (excellent, perfect 
viewing distance). 
a. Use a repeated-measures ANOVA with a 5.05 to 

determine whether there are significant differences 
among the four viewing distances.

b. Compute h2 to measure the size of the treatment 
effect.

Viewing Distance

Person 9 Feet 12 Feet 15 Feet 18 Feet
Person 
Totals

A 3 4 7 6 P 5 20 n 5 5
B 0 3 6 3 P 5 12 k 5 4
C 2 1 5 4 P 5 12 N 5 20
D 0 1 4 3 P 5 8 G 5 60

E 0 1 3 4 P 5 8 ΣX2X2X 5 262

T 5 5 T 5 10 T 5 25 T 5 20
SS 5 8 SS 5 8 SS 5 10 SS 5 6

6. One of the advantages of a repeated-measures design 
is that it removes individual differences from the error 
variance and increases the likelihood of rejecting the 
null hypothesis. The following data were obtained 
from a research study comparing three treatment  
conditions.

I II III

6 8 10 G = 48

5 5 5 ΣX2X2X = 294
1 2 3
0 1 2

T 5 12 T 5 16 T 5 20
SS 5 26 SS 5 30 SS 5 38

a. Assume that the data are from an independent-
measures study using three separate samples, each 
with n 5 4 participants, and use an independent- 
measures ANOVA with a 5 .05 to test for signifi-
cant differences among the three treatments.

b. Now assume that the data are from a repeated-mea-
sures study using one sample of n 5 4 participants and 
use a repeated-measures ANOVA with a 5 .05 to test 
for significant differences among the three treatments.

7. The following summary table presents the results from 
a repeated-measures ANOVA comparing three treat-
ment conditions with a sample of n 5 8 participants. 
Fill in the missing values in the table. (Hint: Start with 
the df values.)df values.)df

Source SS df MS

Between treatments _____ _____ _____ F 5 6.50
Within treatments 70 _____
Between subjects _____ _____
Error 28 _____ _____
Total _____ _____

8. The following summary table presents the results 
from a repeated-measures ANOVA comparing four 
treatment conditions, each with a sample of n 5 20 
participants. Fill in the missing values in the table. 
(Hint: Start with the df values.) df values.) df

Source  SS  df  MS

Between treatments 33 _____ _____ F 5_____

Within treatments _____ _____
Between subjects _____ _____
Error _____ _____ 3
Total 263 _____

9. A researcher uses a repeated-measures ANOVA to 
evaluate the results from a research study and reports 
an F-ratio with df 5 3, 24.
a. How many treatment conditions were compared in 

the study?
b. How many individuals participated in the study?

10. A published report of a repeated-measures research study 
includes the following description of the statistical 
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analysis: “The results show significant differences among 
the treatment conditions, F(2, 26) F(2, 26) F 5 4.87, p , .05.”
a. How many treatment conditions were compared in 

the study?
b. How many individuals participated in the study?

11. The following data are from a repeated-measures 
study comparing three treatment conditions.
a. Use a repeated-measures ANOVA with a 5.05 to 

determine whether there are significant differences 
among the treatments and compute h2 to measure 
the size of the treatment effect.

 b. Double the number of scores in each treatment by 
simply repeating the original scores in each treat-
ment a second time. For example, the n 5 8 scores 
in Treatment I become 1, 4, 2, 1, 1, 4, 2, 1. Note 
that this will not change the treatment means but 
it will double SSbetween treatmentsSSbetween treatmentsSS , SSbetween subjectsSSbetween subjectsSS , and 
the SS value for each treatment. For the new data, SS value for each treatment. For the new data, SS
use a repeated-measures ANOVA with a 5.05 to 
determine whether there are significant differences 
among the treatments and compute h2 to measure 
the size of the treatment effect.

c. Describe how doubling the sample size affected the 
value of the F-ratio and the value of h2.

Treatments

Person I II III
Person 
Totals

A 1 4 7 P 5 12
B 4 8 6 P 5 18 N 5 12
C 2 7 9 P 5 18 G 5 60

D 1 5 6 P 5 12 ΣX2X2X 5 378

M 5 2 M 5 6 M 5 7
T 5 8 T 5 24 T 5 28

SS 5 6 SS 5 10 SS 5 6

12. The following data are from a repeated-measures 
study comparing two treatment conditions.
a. Use a repeated-measures ANOVA with a 5.05 to 

determine whether the mean difference between 
treatments is significant.

b. Now use a repeated-measures t test with t test with t a 5.05  to 
evaluate the mean difference between treatments. 
Comparing your answers from a and b, you should 
find that F 5 t2.

Treatment

Participant I II

A 11 13
B 8 7
C 10 13
D 8 8
E 7 13
F 10 12

13. In Problem 6 at the end of Chapter 11 (page 325), 
we presented a study showing that a visible tattoo 
can significantly lower the attractiveness rating of a 
woman shown in a photograph (Resenhoeft, Villa, & 
Wiseman, 2008). In a similar study, a sample of n 5 9 
males looks at a set of 30 photographs of women 
and rates the attractiveness of each woman using a 
10-point scale (10 5 most positive). One photograph 
appears twice in the set, once with a tattoo and once 
with the tattoo removed. For each participant, the 
researcher records the ratings for the two photographs. 
The results are shown in the following table.
a. Use a repeated-measures ANOVA with a 5.05 to 

determine whether the mean difference between 
treatments is significant.

b. Now use a repeated-measures t test with t test with t a 5.05  to 
evaluate the mean difference between treatments. 
Comparing your answers from a and b, you should 
find that F 5 t2.

Participant No Tattoo With Tattoo

A 7 5
B 9 3
C 7 5
D 8 3
E 9 8
F 6 3
G 6 6
H 8 3
I 6 3

14. Define each of the following terms:
a. Factor
b. Level
c. Two-factor study

15. Explain what happens during each of the two stages of 
the two-factor ANOVA.

16. For the data in the following matrix:

No 
Treatment Treatment

Male M = 8 M = 14 Overall M =11
Female M = 4 M = 10 Overall M = 7

overall 
M = 6 

overall 
M = 12

a. Which two means are compared to describe the 
treatment main effect?

b. Which two means are compared to describe the 
gender main effect?

c. Is there an interaction between gender and treat-
ment? Explain your answer.
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Factor B

B1 B2

Factor A

A1

T = 40 T = 10
M = 4 M = 1
SS = 50 SS = 30

A2

T = 50 T = 20
M = 5 M = 2
SS = 60 SS = 40

N = 40
G = 120

ΣX2X2X = 640

a. Use a two-factor ANOVA with a 5 .05 to evaluate 
the main effects and the interaction.

 b. Compute h2 to measure the effect size for each of 
the main effects and the interaction.

22. The following results are from an independent-mea-
sures, two-factor study with n 5 5 participants in each 
treatment condition. Use a two-factor ANOVA with 
a 5 .05 to evaluate the main effects and the interaction. 

Factor B

B1 B2 B3

Factor A

A1

T = 25 T = 40 T = 70

M = 5 M = 8 M = 14

SS = 30 SS = 38 SS = 46

A2

T = 15 T = 20 T = 40

M = 3 M = 4 M = 8

SS = 22 SS = 26 SS = 30

N = 30 
G = 210 

ΣX2X2X = 2062

23. Most sports injuries are immediate and obvious, like 
a broken leg. However, some can be more subtle, like 
the neurological damage that may occur when soccer 
players repeatedly head a soccer ball. To examine 
effects of repeated heading, McAllister et al. (2013) 
examined a group of football and ice hockey players 
and a group of athletes in noncontact sports before and 
shortly after the season. The dependent variable was 
performance on a conceptual thinking task. Following 
are hypothetical data from an independent-measures 
study similar to the one by McAllister et al. The 
researchers measured conceptual thinking for contact 
and noncontact athletes at the beginning of their first 
season and for separate groups of athletes at the end of 
their second season.
a. Use a two-factor ANOVA with a 5 .05 to evaluate 

the main effects and interaction.
b. Calculate the effects size (h2) for the main effects 

and the interaction.

17. The following matrix presents the results from an 
independent-measures, two-factor study with a sample 
of n 5 10 participants in each treatment condition. 
Note that one treatment mean is missing.

Factor B

Factor A

B1 B2

A1 M = 3 M = 7

A2 M = 5

a. What value for the missing mean would result in no 
main effect for factor A?

b. What value for the missing mean would result in no 
main effect for factor B?

c. What value for the missing mean would result in no 
interaction? 

18. The following matrix presents the results of a two-
factor study with n 5 10 scores in each of the six 
treatment conditions. Note that one of the treatment 
means is missing. 

Factor B

B1 B2 B3

Factor A
A1 M = 4 M = 6 M = 14

A2 M = 2 M = 4

a. What value for the missing mean would result in no 
main effect for factor A?

 b. What value for the missing mean would result in no 
interaction?

19. A researcher conducts an independent-measures, two-
factor study with two levels of factor A and two levels 
of factor B, using a sample of n 5 8 participants in 
each treatment condition.
a. What are the df values for the F-ratio evaluating the 

main effect of factor A?
b. What are the df values for the df values for the df F-ratio evaluating the 

main effect of factor B?
c. What are the df values for the df values for the df F-ratio evaluating the 

interaction?

20. A researcher conducts an independent-measures, 
two-factor study with two levels of factor A and three 
levels of factor B, using a sample of n 5 10 partici-
pants in each treatment condition.
a. What are the df values for the F-ratio evaluating the 

main effect of factor A?
b. What are the df values for the df values for the df F-ratio evaluating the 

main effect of factor B?
c. What are the df values for the df values for the df F-ratio evaluating the 

interaction?

21. The following results are from an independent-mea-
sures, two-factor study with n 5 10 participants in 
each treatment condition. 
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c. Briefly describe the outcome of the study. 

Factor B: Time

Before the 
First Season

After the 
Second Season

Factor A: 
Sport

Contact 
Sport

n = 20 n = 20

M = 9 M = 4

T = 180 T = 80

SS = 380 SS = 390

Non-
contact 
Sport

n = 20 n = 20

M = 9 M = 8

T = 180 T = 160

SS = 350 SS = 400

ΣX2X2X = 6360

24. The following table summarizes the results from a 
two-factor study with two levels of factor A and four 
levels of factor B using a separate sample of n 5 5 
participants in each treatment condition. Fill in the 
missing values. (Hint: Start with the df values.)df values.)df

Source SS df MS

Between treatments _____ _____
Factor A 20 _____ _____ F 5 _____
Factor B _____ _____ 12 F 5 _____

A × B Interaction _____ _____ 6 F 5 _____
Within treatments 64 _____ _____
Total _____ _____

25. The following table summarizes the results from a 
two-factor study with two levels of factor A and three 
levels of factor B using a separate sample of n 5 8 
participants in each treatment condition. Fill in the 
missing values. (Hint: Start with the df values.)df values.)df

Source SS df MS

Between treatments 72 _____
Factor A _____ _____ _____ F 5 _____
Factor B _____ _____ _____ F 5 6.0

A × B Interaction _____ _____ 12 F 5 _____
Within treatments 126 _____ _____
Total _____ _____

26. Earlier in this chapter we described a study by 
Bartholow and Anderson (2002) examining how the 
experience of violence in video games influenced ag-
gressive behavior for males and females. Their results 
suggest that increased violence increase aggressive 
behavior for males but has little or no effect for fe-
males. The following data are measures of aggressive 
behavior similar to the results obtained in the study.  

Nonviolent Game Violent Game

Female

3 9

6 4

2 5

2 8

4 4

7 6

Male

9 12

9 16

4 13

8 17

10 13

8 13

a. Use an ANOVA with a 5 .05 to evaluate the data. 
Describe the effect of the violent game compared 
with a nonviolent game on the aggressive behavior 
for males and for females.

b. Calculate the effect size (h2) for each main effect 
and for the interaction.
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14
CHAP TER

Tools You Will Need
The following items are con-
sidered essential background 
material for this chapter. If you 
doubt your knowledge of any of 
these items, you should review 
the appropriate chapter or section 
before proceeding.

 ■ Sum of squares (SS ) (Chapter 4)
 ■ Computational formula
 ■ Definitional formula

 ■ z-scores (Chapter 5)z-scores (Chapter 5)z
 ■ Hypothesis testing (Chapter 8)
 ■ Analysis of variance (ANOVA) 

(Chapter 12)

14-1 Introduction

14-2 The Pearson Correlation

14-3 Using and Interpreting the Pearson Correlation

14-4 Hypothesis Tests with the Pearson Correlation

14-5 Alternatives to the Pearson Correlation

14-6   Introduction to Linear Equations and Regression 

Summary

Focus on Problem Solving

Demonstration 14.1

Problems

Correlation and Regression
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422 CHAPTER 14 | Correlation and Regression

14-1 Introduction

LE A R N I N G O B J E C T IV E

1. Describe the information provided by the sign (1/2) and the numerical value of a 
correlation.

In Chapter 1, the correlational design was introduced as a method for examining the rela-
tionship between two variables by measuring two different variables for each individual 
in one group of participants. The relationship obtained in a correlational study is typically 
described and measured with a statistic known as a correlation. In this chapter, we intro-
duce correlations and examine how correlations are used and interpreted. 

Correlation is a statistical technique that is used to measure and describe the rela-
tionship between two variables.

Usually the two variables in a correlational study are simply observed as they exist 
naturally in the environment—there is no attempt to control or manipulate the variables. 
For example, a researcher could check high school records (with permission) to obtain a 
measure of each student’s academic performance, and then survey each family to obtain 
a measure of income. The resulting data could be used to determine whether there is a 
relationship between high school grades and family income. Notice that the researcher is 
not manipulating any student’s grade or any family’s income, but is simply observing what 
occurs naturally. You also should notice that a correlation requires two scores for each 
individual (one score from each of the two variables). These scores normally are identified 
as X and X and X Y. The pairs of scores can be listed in a table, or they can be presented graphically Y. The pairs of scores can be listed in a table, or they can be presented graphically Y
in a scatter plot (Figure 14.1). In the scatter plot, the values for the X variable are listed X variable are listed X
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 Family income (in $1000)

Person

A
B
C
D
E
F
G
H
I
J
K
L
M
N

31
38
42
44
49
56
58
65
70
90
92

106
135
174

Student’s
Average
Grade

72
86
81
78
85
80
91
89
94
83
90
97
89
95

Family
Income

(in $1000)

90

85

80

75

70

95

100

30 55 70 90 110 130 150 170 190

F I G U R E  1 4 .1
Correlational data showing the relationship between family income (X) and student grades (X) and student grades (X Y) for a sample of Y) for a sample of Y n 5 14 high 
school students. The scores are listed in order from lowest to highest family income and are shown in a scatter plot.
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on the horizontal axis and the Y values are listed on the vertical axis. Each individual is Y values are listed on the vertical axis. Each individual is Y
represented by a single point in the graph so that the horizontal position corresponds to the 
individual’s X value and the vertical position corresponds to the X value and the vertical position corresponds to the X Y value. The value of a Y value. The value of a Y
scatter plot is that it allows you to see any patterns or trends that exist in the data. The data 
points in Figure 14.1, for example, show a clear relationship between family income and 
student grades; as income increases, grades also increase.

■ The Characteristics of a Relationship
A correlation is a numerical value that describes and measures three characteristics of the 
relationship between X and X and X Y. These three characteristics are as follows:Y. These three characteristics are as follows:Y

1. The Direction of the Relationship. The sign of the correlation, positive or nega-
tive, describes the direction of the relationship.

In a positive correlation, the two variables tend to change in the same direction: 
As the value of the X variable increases from one individual to another, the X variable increases from one individual to another, the X Y
variable also tends to increase; when the X variable decreases, the X variable decreases, the X Y variable also Y variable also Y
decreases.

In a negative correlation, the two variables tend to go in opposite directions. As the 
X variable increases, the X variable increases, the X Y variable decreases. That is, it is an inverse relationship.Y variable decreases. That is, it is an inverse relationship.Y

A recent report examined the relationship between income and weight for both men 
and women (Judge & Cable, 2011). The results of the study are shown in Figure 14.2 
and provide examples of positive and negative relationships. For the men [Figure 
14.2(a)], there is a positive relationship between weight and income, with income 
increasing as weight increases from person to person. For the women [Figure 14.2(b)], 
the relationship is negative, with income decreasing as weight increases. Although 
there is no de�nite explanation for the two relationships, the authors suggest that being 
thin is seen as a sign of success and self-discipline for women. For men, however, a 
degree of extra weight is often viewed as a sign of success. 
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Income and weight
for women

(a) (b)

F I G U R E  1 4 . 2
Examples of posi-
tive and negative 
relationships. 
(a) Income is 
positively related to 
weight for men. 
(b) Income is nega-
tively related to 
weight for women.
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2. The Form of the Relationship. In the preceding salary and weight examples 
(Figure 14.2), the relationships tend to have a linear form; that is, the points in the 
scatter plot tend to cluster around a straight line. We have drawn a line through the 
middle of the data points in each �gure to help show the relationship. The most 
common use of correlation is to measure straight-line relationships. However, other 
forms of relationships do exist and there are special correlations used to measure 
them. (We examine alternatives in Section 14.5.)

3. The Strength or Consistency of the Relationship. Finally, the correlation mea-
sures the consistency of the relationship. For a linear relationship, for example, the 
data points could �t perfectly on a straight line. Every time X increases by one point, X increases by one point, X
the value of Y also changes by a consistent and predictable amount. Figure 14.3(a) Y also changes by a consistent and predictable amount. Figure 14.3(a) Y
shows an example of a perfect linear relationship. However, relationships are usually 
not perfect. Although there may be a tendency for the value of Y to increase whenevY to increase whenevY -
er X increases, the amount that X increases, the amount that X Y changes is not always the same, and occasionally, Y changes is not always the same, and occasionally, Y
Y decreases when Y decreases when Y X increases. In this situation, the data points do not fall perfectly X increases. In this situation, the data points do not fall perfectly X
on a straight line. The degree of relationship is measured by the numerical value of 
the correlation. A perfect correlation always is identi�ed by a correlation of 1.00 and 
indicates a perfectly consistent relationship. For a correlation of 1.00 (or 21.00), 
each change in X is accompanied by a perfectly predictable change in X is accompanied by a perfectly predictable change in X Y. At the other 
extreme, a correlation of 0 indicates no consistency at all. For a correlation of 0, the 
data points are scattered randomly with no clear trend [see Figure 14.3(b)]. Interme-
diate values between 0 and 1 indicate the degree of consistency.

Examples of different values for linear correlations are shown in Figure 14.3. In each 
example we have sketched a line around the data points. This line, called an envelope
because it encloses the data, often helps you to see the overall trend in the data. As a rule 
of thumb, when the envelope is shaped roughly like a football, the correlation is around 
0.7. Envelopes that are fatter than a football indicate correlations closer to 0, and narrower 
shapes indicate correlations closer to 1.00.

You should also note that the sign (1 or 2) and the strength of a correlation are inde-
pendent. For example, a correlation of 1.00 indicates a perfectly consistent relationship 

Y

X

(c)

Y

X

(a)

Y

X

(d)

Y

X

(b)

F I G U R E  1 4 . 3
Examples of different values for 
linear correlations: (a) a perfect 
negative correlation, 21.00, 
(b) no linear trend, 0.00, 
(c) a strong positive relationship, 
approximately 1.90, and 
(d) a relatively weak 
negative correlation, 
approximately 20.40.
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whether it is positive (11.00) or negative (21.00). Similarly, correlations of 10.80 and 
20.80 are equally consistent relationships. Finally, you should notice that a correlation 
can never be larger than 11.00 or smaller than 21.00. If your calculations produce a value 
outside this range, then you should realize immediately that you have made a mistake.

LO1 1. Which of the following is a justified conclusion if a correlation is positive?

a. Increases in X tend to be accompanied by increases in X tend to be accompanied by increases in X Y.Y.Y

b. Increases in X tend to be accompanied by decreases in X tend to be accompanied by decreases in X Y.Y.Y

c. Increases in X are always accompanied by increases in X are always accompanied by increases in X Y.Y.Y

d. Increases in X are always accompanied by decreases in X are always accompanied by decreases in X Y.Y.Y

LO1 2. Which of the following correlations indicates the least consistent relationship 
between X and X and X Y?Y?Y

a. 0.80

b. 0.40

c. 20.10

d. 20.90

1. a 2. c

LE A R N I N G C H E C K

A N S W E R S

14-2 The Pearson Correlation

LE A R N I N G O B J E C T IV E S

 2. Calculate the sum of products of deviations (SP) for a set of scores using the de�-
nitional and the computational formulas.

 3. Calculate the Pearson correlation for a set of scores and explain what it measures.

 4. Explain how the value of the Pearson correlation is affected when a constant is 
added to each of the X scores and/or the X scores and/or the X Y scores, and when the Y scores, and when the Y X and/or X and/or X Y scores Y scores Y
are all multiplied by a constant.

By far the most common correlation is the Pearson correlation (or the Pearson product–
moment correlation), which measures the degree of linear relationship; that is, how well 
the data points fit a straight line.

The Pearson correlation measures the degree and the direction of the linear rela-
tionship between two variables.

The Pearson correlation for a sample is identified by the letter r. The corresponding corre-
lation for the entire population is identified by the Greek letter rho (r), which is the Greek 
equivalent of the letter r. Conceptually, this correlation is computed by

r 5
degree to which X and Y vary together

degree to which X and Y vary separately

5
covariability of X and Y

variability of X and Y separately
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When there is a perfect linear relationship, every change in the X variable is accomX variable is accomX -
panied by a corresponding change in the Y variable. In Figure 14.3(a), for example, every Y variable. In Figure 14.3(a), for example, every Y
time the value of X increases, there is a perfectly predictable decrease in the value of X increases, there is a perfectly predictable decrease in the value of X Y. The Y. The Y
result is a perfect linear relationship, with X and X and X Y always varying together. In this case, Y always varying together. In this case, Y
the covariability (X and X and X Y together) is identical to the variability of Y together) is identical to the variability of Y X and X and X Y separately, Y separately, Y
and the formula produces a correlation with a magnitude of 1.00 or 21.00. At the other 
extreme, when there is no linear relationship, a change in the X variable does not correX variable does not correX -
spond to any predictable change in the Y variable. In this case, there is no covariability, and Y variable. In this case, there is no covariability, and Y
the resulting correlation is zero.

■ The Sum of Products of Deviations
The calculation of the Pearson correlation requires one new concept: the sum of products
of deviations, or SP. This new value is similar to SS (the sum of squared deviations), which SS (the sum of squared deviations), which SS
is used to measure variability for a single variable. Now, we use SP to measure the amount 
of covariability between two variables. The value for SP can be calculated with either a 
definitional formula or a computational formula.

The definitional formula for the sum of products is

SP 5 S(X 2 MXMXM )(Y 2 MY)Y)Y (14.1)

where MXMXM  is the mean for the X is the mean for the X X scores and X scores and X MY is the mean for the Y is the mean for the Y Y scores.
The definitional formula instructs you to perform the following sequence of operations:

1. Find the X deviation and the X deviation and the X Y deviation for each individual.Y deviation for each individual.Y

2. Find the product of the deviations for each individual.

3. Add the products.

Notice that this process literally defines the value being calculated; that is, the formula 
actually computes the sum of the products of the deviations.

The computational formula for the sum of products of deviations is

SPSPS 5 oXY 2
oXoXoX Y

n
(14.2)

Because the computational formula uses the original scores (X and X and X Y values), it usually Y values), it usually Y
results in easier calculations than those required with the definitional formula, especially 
if MXMXM  or X or X MY is not a whole number. However, both formulas will always produce the same Y is not a whole number. However, both formulas will always produce the same Y

value for SP.
You may have noted that the formulas for SP are similar to the formulas you have 

learned for SS (sum of squares). Specifically, the two sets of formulas have exactly the SS (sum of squares). Specifically, the two sets of formulas have exactly the SS
same structure but the SS formulas use squared values (SS formulas use squared values (SS X times X times X X) and the X) and the X SP formulas use 
products (X times X times X Y).Y).Y

Definitional Formulas Computational Formulas

SS 5 S(X(X( 2 MXMXM )2 SS 5 SX2X2X 2
(SX)X)X 2

n

SPSPS 5 S(X(X( 2 MXMXM )(Y 2 MY)Y)Y SPSPS 5 SXY 2
(SX)X)X (SY)Y)Y

n

The following example demonstrates the calculation of SP with both formulas.

Caution: The n in this 
formula refers to the 
number of pairs of 
scores.
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The same set of n 5 4 pairs of scores are used to calculate SP, first using the definitional 
formula and then using the computational formula.

For the definitional formula, you need deviation scores for each of the X values and each X values and each X
of the Y values. Note that the mean for the Y values. Note that the mean for the Y Xs is Xs is X MXMXM 5 2.5 and the mean for the Ys is Ys is Y MY 5 5. 
The deviations and the products of deviations are shown in the following table:

Scores Deviations Products

X Y X 2 MXMXM Y 2 MY (X(X( 2 MXMXM )(X)(X Y 2 MY)Y)Y

1 3 21.5 22 13
2 6 20.5 11 20.5
4 4 11.5 21 21.5
3 7 10.5 12 11

12 5 SP

For these scores, the sum of the products of the deviations is SP 5 12.
For the computational formula, you need the X value, the X value, the X Y value, and the Y value, and the Y XY product XY product XY

for each individual. Then you find the sum of the Xs, the sum of the Ys, and the sum of the Ys, and the sum of the Y
XY products. These values are as follows:XY products. These values are as follows:XY

X Y XY

1 3 3
2 6 12
4 4 16
3 7 21

10 20 52 Totals

Substituting the totals in the formula gives

SPSPS 5 oXY 2
oXoXoX Y

n

5 52 2
10s20d

4
5 52 2 50

5 2

Both formulas produce the same result, SP 5 2. ■

The following example is an opportunity to test your understanding of the calculation 
of SP (the sum of products of deviations).

Calculate the sum of products of deviations (SP) for the following set of scores. Use the 
definitional formula and then the computational formula. You should obtain SP 5 5 with 
both formulas.

X Y

0 1
3 3
2 3
5 2
0 1

E X A M P L E  1 4 . 1

Caution: The signs  
(1 and 2) are critical in 
determining the sum of 
products, SP.

E X A M P L E  1 4 . 2

■
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■ Calculation of the Pearson Correlation
As noted earlier, the Pearson correlation consists of a ratio comparing the covariability 
of X and X and X Y (the numerator) with the variability of Y (the numerator) with the variability of Y X and X and X Y separately (the denominator). Y separately (the denominator). Y
In the formula for the Pearson r, we use SP to measure the covariability of X and X and X Y. The Y. The Y
variability of X is measured by computing X is measured by computing X SS for the SS for the SS X scores and the variability of X scores and the variability of X Y is Y is Y
measured by SS for the SS for the SS Y scores. With these definitions, the formula for the Pearson corY scores. With these definitions, the formula for the Pearson corY -
relation becomes

r 5
SPSPS

ÏSÏSÏ SXSXS SXSX SYÏ
(14.3)

Note that you multiply SS for multiply SS for multiply SS X by X by X SS for SS for SS Y in the denominator of the Pearson formula.Y in the denominator of the Pearson formula.Y
The following example demonstrates the use of this formula with a simple set of scores.

The Pearson correlation is computed for the set of n 5 5 pairs of scores shown in the 
margin. 

Before starting any calculations, it is useful to put the data in a scatter plot and make 
a preliminary estimate of the correlation. These data have been graphed in Figure 14.4. 
Looking at the scatter plot, it appears that there is a very good (but not perfect) positive 
correlation. You should expect an approximate value of r 5 1.8 or 1.9. To find the Pearson 
correlation, we need SP, SS for SS for SS X, and SS for SS for SS Y. The calculations for each of these values, Y. The calculations for each of these values, Y
using the definitional formulas, are presented in Table 14.1. (Note that the mean for the X
values is MXMXM 5 6 and the mean for the Y scores is Y scores is Y MY 5 4.)

E X A M P L E  1 4 . 3

 X Y

0 2
10 6
4 2
8 4
8 6

TA B L E  1 4 .1
Calculation of SSXSSXSS , SSY, 
and SP for a sample of 
n 5 5 pairs of scores.

Scores Deviations Squared Deviations Products

X Y X – MX MX M Y – MY (X (X ( – MX MX M )X)X
2 (Y – MY)Y)Y

2 (X (X ( – MX MX M )(Y X)(Y X – MY)Y)Y

0 2 – 6 –2 36 4 +12

10 6 +4 +2 16 4 +8

4 2 –2 – 2 4 4 +4

8 4 +2 0 4 0   0
8 6 +2 +2 4 4 +4

SSXSSXSS = 64 SSY = 16 SP = +28

6

0 1 2 3 4 5 6 7 8 9 10
X

Y

4

2

F I G U R E  1 4 . 4
Scatter plot for the data from 
Example 15.3.
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Using the values from Table 14.1, the Pearson correlation is

r 5
SPSPS

ÏsSSXSXS dsSSYdYdYÏ
5

28

Ïs64ds16dÏ
5

28

32
5 10.875

Note that the correlation accurately describes the pattern shown in Figure 14.4. The positive 
sign is consistent with the fact that the Y values increase as Y values increase as Y X increases from left to right in X increases from left to right in X
the graph. Also, if a line were drawn through the data points, from the bottom left corner 
where the two axes meet to the top right data point (Xwhere the two axes meet to the top right data point (Xwhere the two axes meet to the top right data point ( 5 10 and Y 5 6), the data points 
would be very close to the line, indicating a very good correlation (near 1.00). ■

■ Correlation and the Pattern of Data Points 
As we noted earlier, the value for the correlation in Example 14.3 is perfectly consistent with 
the pattern formed by the data points in Figure 14.4. The positive sign for the correlation indi-
cates that the points are clustered around a line that slopes up to the right. Second, the high 
value for the correlation (near 1.00) indicates that the points are very tightly clustered close 
to the line. Thus, the value of the correlation describes the relationship that exists in the data.

Because the Pearson correlation describes the pattern formed by the data points, any 
factor that does not change the pattern also does not change the correlation. For example, if 
5 points were added to each of the X values in Figure 14.4, then each data point would move X values in Figure 14.4, then each data point would move X
to the right. However, because all of the data points shift to the right, the overall pattern is 
not changed—it is simply moved to a new location. Similarly, if 5 points were subtracted 
from each X value, the pattern would shift to the left. In either case, the overall pattern stays X value, the pattern would shift to the left. In either case, the overall pattern stays X
the same and the correlation is not changed. In the same way, adding a constant to (or sub-
tracting a constant from) each Y value simply shifts the pattern up (or down) but does not Y value simply shifts the pattern up (or down) but does not Y
change the pattern and, therefore, does not change the correlation. Similarly, multiplying 
each X and/or X and/or X Y value by a positive constant also does not change the pattern formed by the Y value by a positive constant also does not change the pattern formed by the Y
data points and does not change the correlation. For example, if each of the X values in FigX values in FigX -
ure 14.4 were multiplied by 2, the same scatter plot could be used to display either the origi-
nal scores or the new scores. The current figure shows the original scores, but if the values 
on the X-axis (0, 1, 2, 3, and so on) were doubled (0, 2, 4, 6, and so on), then the same figure X-axis (0, 1, 2, 3, and so on) were doubled (0, 2, 4, 6, and so on), then the same figure X
would show the pattern formed by the new scores. Multiplying either the X or the X or the X Y values Y values Y
by a negative number, however, does not change the numerical value of the correlation but 
it does change the sign. For example, if each X value in Figure 14.4 were multiplied by X value in Figure 14.4 were multiplied by X 21, 
then the current data points would be moved to the left-hand side of the Y-axis, forming a Y-axis, forming a Y
mirror image of the current pattern. Instead of the positive correlation in the current figure, 
the new pattern would produce a negative correlation with exactly the same numerical value. 

In summary, adding a constant to (or subtracting a constant from) each X and/or X and/or X Y
value does not change the pattern of data points and does not change the correlation. Also, 
multiplying (or dividing) each X or each X or each X Y value by a positive constant does not change Y value by a positive constant does not change Y
the pattern and does not change the value of the correlation. Multiplying by a negative 
constant, however, produces a mirror image of the pattern and, therefore, changes the sign 
of the correlation.

■ The Pearson Correlation and z-Scores
The Pearson correlation measures the relationship between an individual’s location in the 
X distribution and his or her location in the X distribution and his or her location in the X Y distribution. For example, a positive correlaY distribution. For example, a positive correlaY -
tion means that individuals who score high on X also tend to score high on X also tend to score high on X Y. Similarly, a Y. Similarly, a Y
negative correlation indicates that individuals with high X scores tend to have low X scores tend to have low X Y scores.Y scores.Y

Recall from Chapter 5 that z-scores identify the exact location of each individual score 
within a distribution. With this in mind, each X value can be transformed into a X value can be transformed into a X z-score, zXzXz , 
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using the mean and standard deviation for the set of Xs. Similarly, each Xs. Similarly, each X Y score can be transY score can be transY -
formed into zY. If the X and X and X Y values are viewed as a sample, the transformation is completed Y values are viewed as a sample, the transformation is completed Y
using the sample formula for z (Equation 5.3, page 124). If the X and X and X Y values form a comY values form a comY -
plete population, the z-scores are computed using Equation 5.1 (page 122). After the transfor-
mation, the formula for the Pearson correlation can be expressed entirely in terms of z-scores.

For a sample, r 5
ozXzXz zXzX Y

sn 2 1d
(14.4)

For a population, ρ 5
oz

X
z

X
z z

X
z

X Y

N
(14.5)

Note that the population value is identified with a Greek letter rho.

LO2 1. What is the value of SP for a set of SP for a set of SP n 5 5 pairs of X and X and X Y values with Y values with Y SX 5 10, 
SY 5 20, and SXY 5 60? 

a. 220

b. 228

c. 20

d. 60

LO3 2. A set of n 5 5 pairs of X and X and X Y scores has Y scores has Y SSXSSXSS 5 18, SSY 5 8, SX 5 5, SY 5 15, 
and SXY 5 18. What is the Pearson correlation for these scores? 

a. 18
12 5 1.50

b. 18
144 5 0.125

c. 3
12 5 0.25

d. 3
144 5 0.21

LO4 3. A set of n 5 15 pairs of X and X and X Y values has a Pearson correlation of Y values has a Pearson correlation of Y r 5 0.40. 
If 2 points were added to each of the X values, then what is the correlation for X values, then what is the correlation for X
the resulting data?

a. 0.40

b. 20.40

c. 0.60

d. 20.60

1. c 2. c 3. a

LE A R N I N G C H E C K

A N S W E R S

14-3 Using and Interpreting the Pearson Correlation

LE A R N I N G O B J E C T IV E S

 5. Explain why a cause-and-effect explanation is not justi�ed by a correlation 
between two variables.

 6. Explain how a correlation can be in�uenced by a restricted range of scores or by 
outliers.

 7. De�ne the coef�cient of determination and explain what it measures.De�ne the coef�cient of determination and explain what it measures.De�ne the coef
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■ Where and Why Correlations Are Used
Although correlations have a number of different applications, a few specific examples are 
presented next to give an indication of the value of this statistical measure.

1. Prediction. If two variables are known to be related in some systematic way, it is 
possible to use one of the variables to make accurate predictions about the other. 
For example, when you applied for admission to college, you were required to 
submit a great deal of personal information, including your SAT scores. College 
of�cials want this information so they can predict your chances of success in col-
lege. It has been demonstrated over several years that SAT scores and college grade 
point averages are correlated. Students who do well on the SAT tend to do well in 
college; students who have dif�culty with the SAT tend to have dif�culty in college. 
Based on this relationship, college admissions of�cers can make a prediction about 
the potential success of each applicant. You should note that this prediction is not 
perfectly accurate. Not everyone who does poorly on the SAT will have trouble in 
college. That is why you also submit letters of recommendation, high school grades, 
and other information with your application. The process of using relationships to 
make predictions is called regression and is discussed at the end of this chapter.

2. Validity. Suppose a psychologist develops a new test for measuring intelligence. 
How could you show that this test truly measures what it claims; that is, how 
could you demonstrate the validity of the test? One common technique for dem-
onstrating validity is to use a correlation. If the test actually measures intelligence, 
then the scores on the test should be related to other measures of intelligence—for 
example, standardized IQ tests, performance on learning tasks, problem-solving 
ability, and so on. The psychologist could measure the correlation between the 
new test and each of these other measures of intelligence to demonstrate that the 
new test is valid.

3. Reliability. In addition to evaluating the validity of a measurement procedure, 
correlations are used to determine reliability. A measurement procedure is consid-
ered reliable to the extent that it produces stable, consistent measurements. That 
is, a reliable measurement procedure will produce the same (or nearly the same) 
scores when the same individuals are measured twice under the same conditions. 
For example, if your IQ were measured as 113 last week, you would expect to 
obtain nearly the same score if your IQ were measured again this week. One way 
to evaluate reliability is to use correlations to determine the relationship between 
two sets of measurements. When reliability is high, the correlation between two 
measurements should be strong and positive. 

4. Theory Veri�cation. Many psychological theories make speci�c predictions 
about the relationship between two variables. For example, a developmental theory 
may predict a relationship between the parents’ IQs and the child’s IQ, or a social 
psychologist may have a theory predicting a relationship between early father/
daughter relationships and the daughter’s future success in romantic relationships. 
In each case, the prediction of the theory could be tested by determining the cor-
relation between the two variables.

■ Interpreting Correlations
When you encounter correlations, there are four additional considerations that you should 
bear in mind:

1. Correlation simply describes a relationship between two variables. It does not 
explain why the two variables are related. Speci�cally, a correlation should not 
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and cannot be interpreted as proof of a cause-and-effect relationship between 
the two variables.

2. The value of a correlation can be affected greatly by the range of scores repre-
sented in the data.

3. One or two extreme data points, often called outliers, can have a dramatic effect on 
the value of a correlation.

4. When judging how “good” a relationship is, it is tempting to focus on the 
numerical value of the correlation. For example, a correlation of 10.50 is 
halfway between 0 and 1.00 and therefore appears to represent a moderate 
degree of relationship. However, a correlation should not be interpreted as 
a proportion. Although a correlation of 1.00 does mean that there is a 100% 
perfectly predictable relationship between X and X and X Y, a correlation of 0.50 does Y, a correlation of 0.50 does Y
not mean that you can make predictions with 50% accuracy. To describe how 
accurately one variable predicts the other, you must square the correlation. 
Thus, a correlation of r 5 0.50 means that one variable partially predicts the 
other, but the predictable portion is only r2 5 0.502 5 0.25 (or 25%) of the 
total variability.

We now discuss each of these four points in detail.

■ Correlation and Causation
One of the most common errors in interpreting correlations is to assume that a cor-
relation necessarily implies a cause-and-effect relationship between the two variables. 
(Even Pearson blundered by asserting causation from correlational data [Blum, 1978].) 
We are constantly bombarded with reports of relationships: Cigarette smoking is related 
to heart disease; alcohol consumption is related to birth defects; carrot consumption is 
related to good eyesight. Do these relationships mean that cigarettes cause heart disease 
or carrots cause good eyesight? The answer is no. Although there may be a causal rela-
tionship, the simple existence of a correlation does not prove it. Earlier, for example, 
we discussed a study showing a relationship between high school grades and family 
income. However, this result does not mean that having a higher family income causes
students to get better grades. For example, if mom gets an unexpected bonus at work, 
it is unlikely that her child’s grades will also show a sudden increase. To establish a 
cause-and-effect relationship, it is necessary to conduct a true experiment (see page 21) 
in which one variable is manipulated by a researcher and other variables are rigorously 
controlled. The fact that a correlation does not establish causation is demonstrated in 
the following example.

Suppose we select a variety of different cities and towns throughout the United States and 
measure the number of churches (Xmeasure the number of churches (Xmeasure the number of churches (  variable) and the number of serious crimes (X variable) and the number of serious crimes (X Y variable) Y variable) Y
for each. A scatter plot showing hypothetical data for this study is presented in Figure 14.5. 
Notice that this scatter plot shows a strong, positive correlation between churches and crime. 
You also should note that these are realistic data. It is reasonable that the small towns would 
have less crime and fewer churches and that the large cities would have large values for 
both variables. Does this relationship mean that churches cause crime? Does it mean that 
crime causes churches? It should be clear that both answers are no. Although a strong cor-
relation exists between churches and crime, the real cause of the relationship is the size of 
the population.

E X A M P L E  1 4 . 4
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F I G U R E  1 4 . 5
Hypothetical data showing the 
logical relationship between 
the number of churches and 
the number of serious crimes 
for a sample of U.S. cities.

■

■ Correlation and Restricted Range
Whenever a correlation is computed from scores that do not represent the full range of pos-
sible values, you should be cautious in interpreting the correlation. Suppose, for example, 
you are interested in the relationship between IQ and creativity. If you select a sample of 
your fellow college students, your data probably will represent only a limited range of IQ 
scores (most likely from 110 to 130). The correlation within this restricted range could 
be completely different from the correlation that would be obtained from a full range of 
IQ scores. For example, Figure 14.6 shows a strong positive relationship between X and X and X Y
when the entire range of scores is considered. However, this relationship is obscured when 
the data are limited to a restricted range.

X  vX  vX alues

X vX vX alues restricted
to a limited range

Y 
 v

Y 
 v

Y
a

lu
e

s

F I G U R E  1 4 .6
In this example, the full range of X and X and X
Y values shows a strong, positive correY values shows a strong, positive correY -
lation, but the restricted range of scores 
produces a correlation near zero.
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To be safe, you should not generalize any correlation beyond the range of data repre-
sented in the sample. For a correlation to provide an accurate description for the general 
population, there should be a wide range of X and X and X Y values in the data.Y values in the data.Y

■ Outliers
An outlier is an individual with X and/or X and/or X Y values that are substantially different (larger or Y values that are substantially different (larger or Y
smaller) from the values obtained for the other individuals in the data set. The data point of a 
single outlier can have a dramatic influence on the value obtained for the correlation. This effect 
is illustrated in Figure 14.7. Figure 14.7(a) shows a set of n 5 5 data points for which the corre-
lation between the X and X and X Y variables is nearly zero (actually Y variables is nearly zero (actually Y r 5 20.08). In Figure 14.7(b), one 
extreme data point (14, 12) has been added to the original data set. When this outlier is included 
in the analysis, a strong, positive correlation emerges (now r 5 10.85). Note that the single 
outlier drastically alters the value for the correlation and thereby can affect one’s interpretation 
of the relationship between variables X and X and X Y. Without the outlier, one would conclude there Y. Without the outlier, one would conclude there Y
is no relationship between the two variables. With the extreme data point, r 5 10.85 implies 
a strong relationship with Y increasing consistently as Y increasing consistently as Y X increases. The problem of outliers is X increases. The problem of outliers is X
a good reason for looking at a scatter plot instead of simply basing your interpretation on the 
numerical value of the correlation. If you only “go by the numbers,” you might overlook the 
fact that one extreme data point inflated the size of the correlation.

■ Correlation and the Strength of the Relationship
A correlation measures the degree of relationship between two variables on a scale from 0 
to 1.00. Although this number provides a measure of the degree of relationship, the squared 
correlation provides a better measure of the strength of the relationship.
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A demonstration of how one extreme data point (an outlier) can influence the value of a correlation.
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One of the common uses of correlation is for prediction. For example, college admis-
sions officers do not just guess which applicants are likely to do well; they use other vari-
ables such as SAT scores and high school grades to predict which students are most likely 
to be successful. These predictions are based on correlations. By using correlations, the 
admissions officers expect to make more accurate predictions than would be obtained 
by chance. In general, the squared correlation (r2r2r ) measures the gain in accuracy that is 
obtained from using the correlation for prediction. The squared correlation measures the 
proportion of variability in the data that is explained by the relationship between X and X and X Y. Y. Y
It is sometimes called the coefficient of determination.

The value r2 is called the coef�cient of determination because it measures the 
proportion of variability in one variable that can be determined from the relation-
ship with the other variable. A correlation of r 5 0.80 (or 20.80), for example, 
means that r2 5 0.64 (or 64%) of the variability in the Y scores can be predicted Y scores can be predicted Y
from the relationship with X.

In earlier chapters (see pages 250, 284, and 311) we introduced r2 as a method for mea-
suring effect size for research studies where mean differences were used to compare treat-
ments. Specifically, we measured how much of the variance in the scores was accounted 
for by the differences between treatments. In experimental terminology, r2r2r  measures how 
much of the variance in the dependent variable is accounted for by the independent vari-
able. Now we are doing the same thing, except that there is no independent or dependent 
variable. Instead, we simply have two variables, X and X and X Y, and we use r2r2r  to measure how 
much of the variance in one variable can be determined from its relationship with the other 
variable. The following example demonstrates this concept.

Figure 14.8 shows three sets of data representing different degrees of linear relationship. 
The first set of data [Figure 14.8(a)] shows the relationship between IQ and shoe size. In 
this case, the correlation is r 5 0 (and r2r2r 5 0), and you have no ability to predict a person’s 
IQ based on his or her shoe size. Knowing a person’s shoe size provides no information 
(0%) about the person’s IQ. In this case, shoe size provides no help explaining why differ-
ent people have different IQs.

E X A M P L E  1 4 . 5
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Three sets of data showing three different degrees of linear relationship.
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Now consider the data in Figure 14.8(b). These data show a moderate, positive correla-
tion, r 5 10.60, between IQ scores and college grade point averages (GPA). Students with 
high IQs tend to have higher grades than students with low IQs. From this relationship, it is 
possible to predict a student’s GPA based on his or her IQ. However, you should realize that 
the prediction is not perfect. Although students with high IQs tend to have high GPAs, this tend to have high GPAs, this tend
is not always true. Thus, knowing a student’s IQ provides some information about the stu-
dent’s grades, or knowing a student’s grades provides some information about the student’s 
IQ. In this case, IQ scores help explain the fact that different students have different GPAs. 
Specifically, you can say that part of the differences in GPA are accounted for by IQ. With a part of the differences in GPA are accounted for by IQ. With a part
correlation of r 5 10.60, we obtain r2r2r 5 0.36, which means that 36% of the variance in GPA 
can be explained by IQ.

Finally, consider the data in Figure 14.8(c). This time we show a perfect linear relation-
ship (r 5 11.00) between monthly salary and yearly salary for a group of college em-
ployees. With r 5 1.00 and r2r2r 5 1.00, there is 100% predictability. If you know a person’s 
monthly salary, you can predict the person’s annual salary with perfect accuracy. If two 
people have different annual salaries, the difference can be completely explained (100%) 
by the difference in their monthly salaries. ■

Just as r2 was used to evaluate effect size for mean differences in Chapters 9, 10, 
and 11, r2 can now be used to evaluate the size or strength of the correlation. The same 
standards that were introduced in Table 9.3 (page 252) apply to both uses of the r2 mea-
sure. Specifically, an r2 value of 0.01 indicates a small effect or a small correlation, an 
r2 value of 0.09 indicates a medium correlation, and r2 of 0.25 or larger indicates a large 
correlation.

More information about the coefficient of determination (r2r2r ) is presented in Section 
14.5. For now, you should realize that whenever two variables are consistently related, it is 
possible to use one variable to predict values for the second variable. 

LO5 1. A researcher obtains a strong positive correlation between aggressive behav-
ior for six-year-old children and the amount of violence they watch on tele-
vision. Based on this correlation, which of the following conclusions is 
justified?

a. Decreasing the amount of violence that the children see on TV will reduce 
their aggressive behavior.

b. Increasing the amount of violence that the children see on TV will increase 
their aggressive behavior.

c. Children who watch more TV violence tend to exhibit more aggressive 
behavior.

d. All of the above

LO6 2. A set of n 5 5 pairs of X and X and X Y scores produces a Pearson correlation of Y scores produces a Pearson correlation of Y
r 5 20.10. The X values vary from 0 to 5 and the X values vary from 0 to 5 and the X Y values vary from 2 to 6. If Y values vary from 2 to 6. If Y
one new individual with X 5 12 and Y 5 14 is added to the sample, then what 
is the most likely value for the new correlation?

a. 20.60

b. 20.20

c. 0.20

d. 0.60

LE A R N I N G C H E C K
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LO7 3. A set of n 5 10 pairs of X and X and X Y values produces a Pearson correlation of Y values produces a Pearson correlation of Y
r 5 20.40. How much of the variability in the Y scores can be predicted from Y scores can be predicted from Y
the relationship with X?

a. 16%

b. 40%

c. 0.16%

d. 0.40%

1. c 2. d 3. a A N S W E R S

14-4 Hypothesis Tests with the Pearson Correlation

LE A R N I N G O B J E C T IV E

 8. Conduct a hypothesis test evaluating the signi�cance of a correlation.

The Pearson correlation is generally computed for sample data. As with most sample statis-
tics, however, a sample correlation is often used to answer questions about the correspond-
ing population correlation. For example, a psychologist would like to know whether there is 
a relationship between IQ and creativity. This is a general question concerning a population. 
To answer the question, a sample would be selected, and the sample data would be used to 
compute the correlation value. You should recognize this process as an example of inferen-
tial statistics: using samples to draw inferences about populations. In the past, we have been 
concerned primarily with using sample means as the basis for answering questions about 
population means. In this section, we examine the procedures for using a sample correlation 
as the basis for testing hypotheses about the corresponding population correlation.

■ The Hypotheses
The basic question for this hypothesis test is whether a correlation exists in the population. 
The null hypothesis is “No. There is no correlation in the population” or “The population 
correlation is zero.” The alternative hypothesis is “Yes. There is a real, nonzero correlation 
in the population.” Because the population correlation is traditionally represented by r (the 
Greek letter rho), these hypotheses would be stated in symbols as

H0H0H : r 5 0 (There is no population correlation.)

H1: r ? 0 (There is a real correlation.)

When there is a specific prediction about the direction of the correlation, it is possible 
to do a directional, or one-tailed test. For example, if a researcher is predicting a positive 
relationship, the hypotheses would be

H0H0H : r # 0 (The population correlation is not positive.)

H1: r . 0 (The population correlation is positive.)

The correlation from the sample data is used to evaluate the hypotheses. For the regular, 
nondirectional test, a sample correlation near zero provides support for H0H0H  and a sample 
value far from zero tends to refute H0H0H . For a directional test, a positive value for the sample 
correlation would tend to refute a null hypothesis stating that the population correlation is 
not positive.
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Scatter plot of a population of X and X and X
Y values with a near-zero correlation. Y values with a near-zero correlation. Y
However, a small sample of n = 3 
data points from this population shows 
a relatively strong, positive correlation. 
Data points in the sample are circled.

Although sample correlations are used to test hypotheses about population correla-
tions, you should keep in mind that samples are not expected to be identical to the popu-
lations from which they come; there will be some discrepancy (sampling error) between 
a sample statistic and the corresponding population parameter. Specifically, you should 
always expect some error between a sample correlation and the population correlation 
it represents. One implication of this fact is that even when there is no correlation in the 
population (r 5 0), you are still likely to obtain a nonzero value for the sample correlation. 
This is particularly true for small samples. Figure 14.9 illustrates how a small sample from 
a population with a near-zero correlation could result in a correlation that deviates from 
zero. The colored dots in the figure represent the entire population and the three circled 
dots represent a random sample. Note that the three sample points show a relatively good, 
positive correlation even through there is no linear trend (r 5 0) for the population.

When you obtain a nonzero correlation for a sample, the purpose of the hypothesis test 
is to decide between the following two interpretations:

1. There is no correlation in the population (r 5 0) and the sample value is the result 
of sampling error. Remember, a sample is not expected to be identical to the popu-
lation. There always is some error between a sample statistic and the correspond-
ing population parameter. This is the situation speci�ed by H0H0H .

2. The nonzero sample correlation accurately represents a real, nonzero correlation in 
the population. This is the alternative stated in H1.

The correlation from the sample will help to determine which of these two interpreta-
tions is more likely. A sample correlation near zero supports the conclusion that the popula-
tion correlation is also zero. A sample correlation that is substantially different from zero 
supports the conclusion that there is a real, nonzero correlation in the population.

■ The Hypothesis Test
The hypothesis test evaluating the significance of a correlation can be conducted using 
either a t statistic or an t statistic or an t F-ratio. The F-ratio is discussed later (pages 460–462) and we focus 
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on the t statistic here. The t statistic here. The t t statistic for a correlation has the same general structure as t statistic for a correlation has the same general structure as t t
statistics introduced in Chapters 9, 10, and 11.

t 5
sample statistic 2 population parameter

standard error

In this case, the sample statistic is the sample correlation (r) and the corresponding paramr) and the corresponding paramr -
eter is the population correlation (r). The null hypothesis specifies that the population cor-
relation is r 5 0. The final part of the equation is the standard error, which is determined by

standard error fofof r r 5 sr 5Î1 2 r2r2rÎ n 2 2Î (14.6)

Thus, the complete t statistic ist statistic ist

t 5
r 2 r

Î(1 2 r2r2r )Î (n 2 2)Î (14.7)

Degrees of Freedom for the t Statistict Statistict The t statistic has degrees of freedom defined by 
df 5 n 2 2. An intuitive explanation for this value is that a sample with only n 5 2 data points 
has no degrees of freedom. Specifically, if there are only two points, they will fit perfectly 
on a straight line, and the sample produces a perfect correlation of r 5 11.00 or r 5 21.00. 
Because the first two points always produce a perfect correlation, the sample correlation is free 
to vary only when the data set contains more than two points. Thus, df 5 n 2 2.

The following examples demonstrate the hypothesis test.

A researcher is using a regular, two-tailed test with a 5 .05 to determine whether a non-
zero correlation exists in the population. A sample of n 5 30 individuals is obtained and 
produces a correlation of r 5 0.35. The null hypothesis states that there is no correlation 
in the population:

H0H0H : r 5 0

For this example, df 5 28 and the critical values are t 5 62.048. With r2r2r 5 0.352 5 0.1225, 
the data produce

t 5
0.35 2 0

Ï(1 2 0.1225)/28Ï
5

0.35

0.177
5 1.97

The t value is not in the critical region so we fail to reject the null hypothesis. The sample t value is not in the critical region so we fail to reject the null hypothesis. The sample t
correlation is not large enough to reject the null hypothesis. ■

Once again we begin with a sample of n 5 30 and a correlation of r 5 0.35. This time we use a 
directional, one-tailed test to determine whether there is a positive correlation in the population. 

H0H0H : r # 0 (There is not a positive correlation.)

H1: r . 0 (There is a positive correlation.)

The sample correlation is positive, as predicted, so we simply need to determine whether it 
is large enough to be significant. For a one-tailed test with df 5 28 and a 5 .05, the critical 
value is t 5 1.701. In the previous example, we found that this sample produces t 5 1.97, 
which is beyond the critical boundary. For the one-tailed test, we reject the null hypothesis 
and conclude that there is a significant positive correlation in the population. ■

Instead of computing a t statistic for the hypothesis test, you can simply compare the t statistic for the hypothesis test, you can simply compare the t
sample correlation with the list of critical values in Table B.6 in Appendix B. To use the 
table, you need to know the sample size (n) and the alpha level. In Examples 14.6 and 14.7, 

E X A M P L E  1 4 . 6

E X A M P L E  1 4 . 7
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we used a sample of n 5 30, a correlation of r 5 0.35, and an alpha level of .05. In the 
table, you locate df 5 n 2 2 5 28 in the left-hand column and the value .05 for either one 
tail or two tails across the top of the table. For df 5 28 and a 5 .05 for a two-tailed test, the 
table shows a critical value of 0.361. Because our sample correlation is not greater than this 
critical value, we fail to reject the null hypothesis (as in Example 14.6). For a one-tailed 
test, the table lists a critical value of 0.306. This time, our sample correlation is greater 
than the critical value so we reject the null hypothesis and conclude that the correlation is 
significantly greater than zero (as in Example 14.7). 

As with most hypothesis tests, if other factors are held constant, the likelihood of finding a 
significant correlation increases as the sample size increases. For example, a sample correla-
tion of r 5 0.50 produces a nonsignificant t(8) 5 1.63 for a sample of n 5 10, but the same 
correlation produces a significant t(18) 5 2.45 if the sample size is increased to n 5 20. 

The following example is an opportunity to test your understanding of the hypothesis 
test for the significance of a correlation.

A researcher obtains a correlation of r 5 20.39 for a sample of n 5 25 individuals. For a 
two-tailed test with a 5 .05, does this sample provide sufficient evidence to conclude that 
there is a significant, nonzero correlation in the population? Calculate the t statistic and then t statistic and then t
check your conclusion using the critical value in Table B6. You should obtain t(23) 5 2.03. 
With a critical value of t 5 2.069, the correlation is not significant. From Table B6 the critical 
value is 0.396. Again, the correlation is not significant. ■

E X A M P L E  1 4 . 8

IN THE LITERATURE

Reporting Correlations
There is not a standard APA format for reporting correlations. However, it is useful for the 
report to include information such as the sample size, the calculated value for the correla-
tion, whether it is a statistically signi�cant relationship, the probability level, and the type 
of test used (one- or two-tailed). For example, a correlation might be reported as follows:

A correlation for the data revealed a signi�cant relationship between amount of 
education and annual income, r 5 1.65, n 5 30, p , .01, two tails.

Sometimes a study might look at several variables, and correlations between all possi-
ble variable pairings are computed. Suppose, for example, that a study measured people’s 
annual income, amount of education, age, and intelligence. With four variables, there are 
six possible pairings leading to six different correlations. The results from multiple cor-
relations are most easily reported in a table called a correlation matrix, using footnotes to 
indicate which correlations are signi�cant. For example, the report might state:

The analysis examined the relationships among income, amount of education, age, 
and intelligence for n 5 30 participants. The correlations between pairs of vari-
ables are reported in Table 1. Signi�cant correlations are noted in the table.

Education Age IQ

Income +.65* +.41** +.27
Education +.11 +.38**
Age –.02

n 5 30
*p*p* , .01, two tails
**p**p** , .05, two tails

TA B L E  1
Correlation matrix for 
income, amount of educa-
tion, age, and intelligence.

■
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LO8 1. A researcher selects a sample of n 5 25 high school students and measures the 
grade point average and the amount of time spent on Facebook for each stu-
dent. The researcher plans to use a hypothesis test to determine whether there 
is a significant relationship between the two variables. Which of the following 
is the correct null hypothesis for the test?

a. r 5 0

b. r ? 0

c. r 5 1.00

d. r ? 1.00

LO8 2. The Pearson correlation is calculated for a sample of n 5 25 individuals. What 
value of df should be used to test the significance of the correlation?df should be used to test the significance of the correlation?df

a. 23

b. 24

c. 25

d. Cannot be determined without additional information

1. a 2. a

LE A R N I N G C H E C K

A N S W E R S

14-5 Alternatives to the Pearson Correlation

LE A R N I N G O B J E C T IV E S

 9. Explain how ranks are assigned to a set of scores, especially tied scores.

 10. Compute the Spearman correlation for a set of data and explain what it measures.

 11. Describe the circumstances in which the point-biserial correlation is used and 
explain what it measures.

 12. Describe the circumstances in which the phi-coef�cient is used and explain what Describe the circumstances in which the phi-coef�cient is used and explain what Describe the circumstances in which the phi-coef
it measures.

The Pearson correlation measures the degree of linear relationship between two variables 
when the data (X and X and X Y values) consist of numerical scores from an interval or ratio scale of Y values) consist of numerical scores from an interval or ratio scale of Y
measurement. However, other correlations have been developed for nonlinear relationships 
and for other types of data. In this section we examine three additional correlations: the 
Spearman correlation, the point-biserial correlation, and the phi-coefficient. As you will 
see, all three can be viewed as special applications of the Pearson correlation.

■ The Spearman Correlation
When the Pearson correlation formula is used with data from an ordinal scale (ranks), the 
result is called the Spearman correlation. The Spearman correlation is used in two situations.

First, the Spearman correlation is used to measure the relationship between X and X and X Y
when both variables are measured on ordinal scales. Recall from Chapter 1 that an ordinal 
scale typically involves ranking individuals rather than obtaining numerical scores. Rank-
order data are fairly common because they are often easier to obtain than interval or ratio 
scale data. For example, a teacher may feel confident about rank-ordering students’ leader-
ship abilities but would find it difficult to measure leadership on some other scale.

In addition to measuring relationships for ordinal data, the Spearman correlation can be 
used as a valuable alternative to the Pearson correlation, even when the original raw scores 
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are on an interval or a ratio scale. As we have noted, the Pearson correlation measures the 
degree of linear relationship between two variables—that is, how well the data points fit on 
a straight line. However, a researcher often expects the data to show a consistently one-direc-
tional relationship but not necessarily a linear relationship. For example, Figure 14.10 shows 
the typical relationship between practice and performance. For nearly any skill, increasing 
amounts of practice tend to be associated with improvements in performance (the more you 
practice, the better you get). However, it is not a straight-line relationship. When you are first 
learning a new skill, practice produces large improvements in performance. After you have 
been performing a skill for several years, however, additional practice produces only minor 
changes in performance. Although there is a consistent relationship between the amount of 
practice and the quality of performance, it clearly is not linear. If the Pearson correlation 
were computed for these data, it would not produce a correlation of 1.00 because the data 
do not fit perfectly on a straight line. In a situation like this, the Spearman correlation can 
be used to measure the degree to which a relationship is consistently one directional, inde-
pendent of its form. Incidentally, when there is a consistently one-directional relationship 
between two variables, the relationship is said to be monotonic. Thus, the Spearman correla-
tion measures the degree of monotonic relationship between two variables.

The reason that the Spearman correlation measures consistency, rather than form, 
comes from a simple observation: When two variables are consistently related, their ranks 
are linearly related. For example, a perfectly consistent positive relationship means that 
every time the X variable increases, the X variable increases, the X Y variable also increases. Thus, the smallest value Y variable also increases. Thus, the smallest value Y
of X is paired with the smallest value of X is paired with the smallest value of X Y, the second-smallest value of Y, the second-smallest value of Y X is paired with X is paired with X
the second-smallest value of Y, and so on. Every time the rank for Y, and so on. Every time the rank for Y X goes up by 1 point, the X goes up by 1 point, the X
rank for Y also goes up by 1 point. As a result, the ranks fit perfectly on a straight line. This Y also goes up by 1 point. As a result, the ranks fit perfectly on a straight line. This Y
phenomenon is demonstrated in the following example.

Table 14.2 presents X and X and X Y scores for a sample of Y scores for a sample of Y n 5 4 people. Note that the data show a 
perfectly consistent relationship. Each increase in X is accompanied by an increase in X is accompanied by an increase in X Y. How-
ever the relationship is not linear, as can be seen in the graph of the data in Figure 14.11(a).

The word monotonic  
describes a sequence 
that is consistently in-
creasing (or decreasing). 
Like the word monoto-
nous, it means constant 
and unchanging.

E X A M P L E  1 4 . 9

Amount of practice (X(X( )
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F I G U R E  1 4 .1 0
The relationship between practice and 
performance. Although this relationship is 
not linear, there is a consistent positive 
relationship: an increase in performance 
tends to accompany an increase in practice.

TA B L E  1 4 . 2
Scores and ranks for 
Example 14.9.

Person X Y X-RankX-RankX Y-RankY-RankY

A 2 2 1 1
B 3 8 2 2
C 4 9 3 3
D 10 10 4 4
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F I G U R E  1 4 .1 1
Scatter plots showing (a) the scores and (b) the ranks for the data in Example 14.9. Notice that there is a consistent, 
positive relationship between the X and X and X Y scores, although it is not a linear relationship. Also notice that the scatter plot Y scores, although it is not a linear relationship. Also notice that the scatter plot Y
for the ranks shows a perfect linear relationship.

Next, we convert the scores to ranks. The lowest X is assigned a rank of 1, the next X is assigned a rank of 1, the next X
lowest a rank of 2, and so on. The Y scores are then ranked in the same way. The ranks are Y scores are then ranked in the same way. The ranks are Y
listed in Table 14.2 and shown in Figure 14.11(b). Note that the perfect consistency for the 
scores produces a perfect linear relationship for the ranks. ■

The preceding example demonstrates that a consistent relationship among scores pro-
duces a linear relationship when the scores are converted to ranks. Thus, if you want to 
measure the consistency of a relationship for a set of scores, you can simply convert the 
scores to ranks and then use the Pearson correlation formula to measure the linear relation-
ship for the ranked data. The degree of linear relationship for the ranks provides a measure 
of the degree of consistency for the original scores.

To summarize, the Spearman correlation measures the relationship between two vari-
ables when both are measured on ordinal scales (ranks). There are two general situations in 
which the Spearman correlation is used:

1. Spearman is used when the original data are ordinal; that is, when the X and X and X Y valY valY -
ues are ranks. In this case, you simply apply the Pearson correlation formula to the 
set of ranks.

2. The Spearman correlation is used when a researcher wants to measure the degree to 
which the relationship between X and X and X Y is consistently one directional, independent Y is consistently one directional, independent Y
of the speci�c form of the relationship. In this case, the original scores are �rst con-
verted to ranks; then the Pearson correlation formula is used with the ranks. Because 
the Pearson formula measures the degree to which the ranks �t on a straight line, it 
also measures the degree of consistency in the relationship for the original scores. 

In either case, the Spearman correlation is identified by the symbol rSrSr  to differentiate it S to differentiate it S

from the Pearson correlation. The complete process of computing the Spearman correla-
tion, including ranking scores, is demonstrated in Example 14.10.
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The following data show a nearly perfect monotonic relationship between X and X and X Y. When Y. When Y
X increases, X increases, X Y tends to decrease, and there is only one reversal in this general trend. To Y tends to decrease, and there is only one reversal in this general trend. To Y
compute the Spearman correlation, we first rank the X and X and X Y values, and we then compute Y values, and we then compute Y
the Pearson correlation for the ranks.

E X A M P L E  1 4 . 1 0

To compute the correlation, we need SS for SS for SS X, SS for SS for SS Y, and Y, and Y SP. Remember that all these 
values are computed with the ranks, not the original scores. The X ranks are simply the inX ranks are simply the inX -
tegers 1, 2, 3, 4, and 5. These values have SX 5 15 and SX2X2X 5 55. The SS for the SS for the SS X ranks isX ranks isX

SSXSXS 5 oX2X2X 2
soXdXdX 2

n
5 55 2

s15d2

5
5 10

Note that the ranks for Y are identical to the ranks for Y are identical to the ranks for Y X; that is, they are the integers 1, 2, 
3, 4, and 5. Therefore, the SS for SS for SS Y is identical to the Y is identical to the Y SS for SS for SS X:

SSY 5 10

To compute the SP value, we need SX, SY, and Y, and Y SXY for the ranks. The XY for the ranks. The XY XY values are XY values are XY
listed in the table with the ranks, and we already have found that both the Xs and the Ys Ys Y
have a sum of 15. Using these values, we obtain

SPSPS 5 oXY 2
soXdXdX soYdYdY

n
5 36 2

s15ds15d
5

5 29

Finally, the Spearman correlation simply uses the Pearson formula for the ranks.

rSrSr 5
SPSPS

ÏsSSXSXS dsSSYdYdYÏ
5

2 9

Ï10s10dÏ
5 20.9

The Spearman correlation indicates that the data show a consistent (nearly perfect) nega-
tive trend. ■

■ Ranking Tied Scores
When you are converting scores into ranks for the Spearman correlation, you may encoun-
ter two (or more) identical scores. Whenever two scores have exactly the same value, their 
ranks should also be the same. This is accomplished by the following procedure:

1. List the scores in order from smallest to largest. Include tied values in the list.

2. Assign a rank (�rst, second, etc.) to each position in the ordered list.

3. When two (or more) scores are tied, compute the mean of their ranked positions, 
and assign this mean value as the �nal rank for each score.

The process of finding ranks for tied scores is demonstrated here. These scores have 
been listed in order from smallest to largest.

Original Data Ranks

X Y X Y XY

3 12 1 5 5

4 10 2 3 6
10 11 3 4 12
11 9 4 2 8
12 2 5 1 5

36 = ∑XY

We have listed the X 
values in order so that 
the trend is easier to 
recognize.
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Note that this example has seven scores and uses all seven ranks. For X 5 12, the largest 
score, the appropriate rank is 7. It cannot be given a rank of 6 because that rank has been 
used for the tied scores.

■ Special Formula for the Spearman Correlation
When the X values and X values and X Y values are ranks, the calculations necessary for Y values are ranks, the calculations necessary for Y SS and SS and SS SP can be SP can be SP
greatly simplified. First, you should note that the X ranks and the X ranks and the X Y ranks are simply integers: Y ranks are simply integers: Y
1, 2, 3, 4, . . . , n. To compute the mean for these integers, you can locate the midpoint of 
the series by M 5 (n 1 1)/2. Similarly, the SS for this series of integers can be computed bySS for this series of integers can be computed bySS

SS 5
nsn2 2 1d

12
sTry it out.d

Also, because the X ranks and the X ranks and the X Y ranks are the same values, the Y ranks are the same values, the Y SS for SS for SS X is identical to X is identical to X
the SS for SS for SS Y.Y.Y

Because calculations with ranks can be simplified and because the Spearman correla-
tion uses ranked data, these simplifications can be incorporated into the final calculations 
for the Spearman correlation. Instead of using the Pearson formula after ranking the data, 
you can put the ranks directly into a simplified formula,

rSrSr 5 1 2
6oD2

nsn2 2 1d
(14.8)

where D is the difference between the X rank and the X rank and the X Y rank for each individual. This speY rank for each individual. This speY -
cial formula produces the same result that would be obtained from the Pearson formula. 
However, note that this special formula should be used only after the scores have been con-
verted to ranks and when there are no ties among the ranks. If there are relatively few tied 
ranks, the formula still may be used, but it loses accuracy as the number of ties increases. 
The application of this formula is demonstrated in the following example.

To demonstrate the special formula for the Spearman correlation, we use the same data that 
were presented in Example 14.10. The ranks for these data are shown again here:

Caution: In this formula, 
you compute the value 
of the fraction and then 
subtract from 1. The 1 is 
not part of the fraction.

E X A M P L E  1 4 . 1 1

Scores Rank Position Final Rank

3 1 1.5 Mean of 1 and 2

3 2 1.5
5 3 3
6 4 5 Mean of 4, 5, and 6
6 5 5
6 6 5

12 7 7

Ranks Difference
X Y D D2

1 5 4 16

2 3 1 1

3 4 1 1

4 2 –2 4

5 1 –4 16

38 = ∑D2
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Using the special formula for the Spearman correlation, we obtain

r
S

r
S

r 5 1 2
6oD2

nsn2 2 1d

5 1 2
6s38d

5s25 2 1d

5 1 2
228

120

= 1 – 1.90

= – 0.90

This is exactly the same answer that we obtained in Example 14.10, using the Pearson 
formula on the ranks. ■

The following example is an opportunity to test your understanding of the Spearman 
correlation.

Compute the Spearman correlation for the following set of scores:

X Y

2 7
12 38
9 6

10 19

You should obtain rSrSr 5 0.80. ■

■ The Point-Biserial Correlation and Measuring Effect Size with r2

In Chapters 9, 10, and 11 we introduced r2r2r  as a measure of effect size that often accompa-
nies a hypothesis test using the t statistic. The t statistic. The t r2r2r  used to measure effect size and the r used to r used to r
measure a correlation are directly related, and we now have an opportunity to demonstrate 
the relationship. Specifically, we compare the independent-measures t test (Chapter 10) and t test (Chapter 10) and t
a special version of the Pearson correlation known as the point-biserial correlation.

The point-biserial correlation is used to measure the relationship between two variables 
in situations in which one variable consists of regular, numerical scores, but the second 
variable has only two values. A variable with only two values is called a dichotomous vari-
able or a binomial variable. Following are some examples of dichotomous variables.

1. College graduate versus not a college graduate

2.  First-born child versus later-born child

3.  Success versus failure on a particular task

4.  Older than 30 years old versus younger than 30 years old

To compute the point-biserial correlation, the dichotomous variable is first converted to 
numerical values by assigning a value of zero (0) to one category and a value of one (1) to the 
other category. Then the regular Pearson correlation formula is used with the converted data.

To demonstrate the point-biserial correlation and its association with the r2r2r  measure of 
effect size, we use the data from Example 10.2 (page 277). The original example compared 
cheating behavior in a dimly lit room compared to a well-lit room. The results showed that 

E X A M P L E  1 4 . 1 2

It is customary to use 
the numerical values 0 
and 1, but any two dif-
ferent numbers would 
work equally well and 
would not affect the 
value of the correlation.
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participants in the dimly lit room claimed to have solved significantly more puzzles than 
the participants in the well-lit room. The data from the independent-measures study are 
presented on the left side of Table 14.3. Notice that the data consist of two separate samples 
and the independent-measures t was used to determine whether there was a significant t was used to determine whether there was a significant t
mean difference between the two populations represented by the samples.

On the right-hand side of Table 14.3 we have reorganized the data into a form that is 
suitable for a point-biserial correlation. Specifically, we used each participant’s puzzle-
solving score as the X value and we have created a new variable, X value and we have created a new variable, X Y, to represent the group Y, to represent the group Y
or condition for each individual. In this case, we have used Y 5 0 for individuals in the 
well-lit room and Y 5 1 for participants in the dimly lit room.

When the data in Table 14.3 were originally presented in Chapter 10, we conducted an 
independent-measures t hypothesis test and obtained t hypothesis test and obtained t t 5 22.67 with df 5 14. We mea-
sured the size of the treatment effect by calculating r2r2r , the percentage of variance accounted 
for, and obtained r2r2r 5 0.337.

Calculating the point-biserial correlation for these data also produces a value for r. Spe-
cifically, the X scores produce X scores produce X SS 5 190; the Y values produce Y values produce Y SS 5 4.00, and the sum of 
the products of the X and X and X Y deviations produces Y deviations produces Y SP 5 16. The point-biserial correlation is

r 5
SPSPS

ÏSÏSÏ SXSXS SSYÏ

5
16

Ïs190ds4dÏ

5
16

27.57
5 0.5803

TA B L E  1 4 . 3 The same data are organized in two different formats. On the left-hand side, the data appear as two 
separate samples appropriate for an independent-measures t hypothesis test. On the right-hand side, t hypothesis test. On the right-hand side, t
the same data are shown as a single sample, with two scores for each individual: the number of puz-
zles solved and a dichotomous score () that identifies the group in which the participant is located 
(Well-lit 5 0 and Dimly lit 5 1). The data on the right are appropriate for a point-biserial correlation.

Number of Solved Puzzles

Data for the Point-Biserial Correlation. 
Two Scores X and X and X Y for Y for Y Each of the 

n 5 16 Participants

Well-Lit Room Dimly Lit Room Participant
Puzzles 

Solved X Group Y

11 6 7 9 A 11 0
9 7 13 11 B 9 0
4 12 14 15 C 4 0
5 10 16 11 D 5 0

n = 8 n = 8 E 6 0

M = 8 M = 12 F 7 0

SS = 60 SS = 66 G 12 0
H 10 0
I 7 1
J 13 1
K 14 1
L 16 1
M 9 1
N 11 1
O 15 1
P 11 1
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Notice that squaring the value of the point-biserial correlation produces r2r2r 5 (0.5803)2 5
0.337, which is the same as the value of r2r2r  we obtained measuring effect size.

In some respects, the point-biserial correlation and the independent-measures hypoth-
esis test are evaluating the same thing. Specifically, both are examining the relationship 
between room lighting and cheating behavior.

1. The correlation is measuring the strength of the relationship between the two 
variables. A large correlation (near 1.00 or 21.00) would indicate that there is a 
consistent, predictable relationship between cheating and the amount of light in the 
room. In particular, the value of r2r2r  measures how much of the variability in cheat-
ing can be predicted by knowing whether the participants were tested in a will-lit 
or a dimly lit room.

2. The t test evaluates the t test evaluates the t signi�cance of the relationship. The hypothesis test deter-
mines whether the mean difference in grades between the two groups is greater 
than can be reasonably explained by chance alone.

As we noted in Chapter 10 (pages 284–287), the outcome of the hypothesis test and the 
value of r2r2r  are often reported together. The t value measures statistical significance and t value measures statistical significance and t r2r2r
measures the effect size. Also, as we noted in Chapter 10, the values for t and t and t r2r2r  are directly 
related. In fact, either can be calculated from the other by the equations

r2r2r 5
t2

t2t2t 1 dfdfd
and t2 5

r2r2r

s1 2 r2r2r dydfdfd

where df is the degrees of freedom for the df is the degrees of freedom for the df t statistic.t statistic.t
However, you should note that r2r2r  is determined entirely by the size of the correlation, 

whereas t is influenced by the size of the correlation and the size of the sample. For example, t is influenced by the size of the correlation and the size of the sample. For example, t
a correlation of r 5 0.30 produces r2r2r 5 0.09 (9%) no matter how large the sample may be. 
On the other hand, a point-biserial correlation of r 5 0.30 for a total sample of 10 people 
(n 5 5 in each group) produces a nonsignificant value of t 5 0.791. If the sample is increased 
to 50 people (n 5 25 in each group), the same correlation produces a significant t value of t value of t
t 5 4.75. Although t and t and t r are related, they are measuring different things.r are related, they are measuring different things.r

■ The Phi-Coefficient
When both variables (X and X and X Y) measured for each individual are dichotomous, the correlaY) measured for each individual are dichotomous, the correlaY -
tion between the two variables is called the phi-coefficient. To compute phi (F), you follow 
a two-step procedure:

1. Convert each of the dichotomous variables to numerical values by assigning a 0 to 
one category and a 1 to the other category for each of the variables.

2. Use the regular Pearson formula with the converted scores.

This process is demonstrated in the following example.

A researcher is interested in examining the relationship between birth-order position and 
personality. A random sample of n 5 8 individuals is obtained, and each individual is clas-
sified in terms of birth-order position as first-born or only child versus later-born. Then 
each individual’s personality is classified as either introvert or extrovert.

The original measurements are then converted to numerical values by the following 
assignments:

Birth Order Personality

1st or only child 5 0 Introvert 5 0
Later-born child 5 1 Extrovert 5 1

E X A M P L E  1 4 . 1 3
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The original data and the converted scores are as follows:

LO9 1. If the following scores are converted to ranks (1 5 smallest), then what rank 
is assigned to the score X 5 7? Scores: 4, 5, 5, 6, 6, 6, 7, 9, 10

a. 4

b. 5

c. 6

d. 7

LO10 2. What is the Spearman correlation for the following set of ranked data?

a. 0.8

b. 20.8

c. 0.375

d. 20.375

LO11 3. Which of the following correlations can be computed for data that are also 
suitable for an independent-measures t test?t test?t

a. Pearson

b. Spearman

c. Point-biserial

d. Phi-coef�cient

LE A R N I N G C H E C K

X Y

1 4
2 5
3 2
4 3
5 1

Original Data Converted Scores

Birth Order X Personality Y Birth Order X Personality Y

1st Introvert 0 0

3rd Extrovert 1 1

Only Extrovert 0 1

2nd Extrovert 1 1

4th Extrovert 1 1

2nd Introvert 1 0

Only Introvert 0 0

3rd Extrovert 1 1

The Pearson correlation formula is then used with the converted data to compute the phi-
coefficient.

Because the assignment of numerical values is arbitrary (either category could be des-
ignated 0 or 1), the sign of the resulting correlation is meaningless. As with most correla-
tions, the strength of the relationship is best described by the value of r2r2r , the coefficient of 
determination, which measures how much of the variability in one variable is predicted or 
determined by the association with the second variable.

We also should note that although the phi-coefficient can be used to assess the relation-
ship between two dichotomous variables, the more common statistical procedure is a chi-
square statistic, which is examined in Chapter 15. ■
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LO12 4. A researcher would like to measure the relationship between gender (male/
female) and voter registration (yes/no). Which of the following correlations 
would be appropriate?

a. Pearson

b. Spearman

c. Point-biserial

d. Phi-coef�cientPhi-coef�cientPhi-coef

1. d 2. b 3. c 4. dA N S W E R S

14-6 Introduction to Linear Equations and Regression

LE A R N I N G O B J E C T IV E S

 13. De�ne the equation that describes a linear relationship between two variables.

 14. Compute the regression equation (slope and Y-intercept) for a set of Y-intercept) for a set of Y X and X and X Y
scores.

 15. Compute the standard error of estimate for a regression equation and explain what 
it measures.

 16. Conduct an analysis of regression to evaluate the signi�cance of a regression 
equation.

Earlier in this chapter, we introduced the Pearson correlation as a technique for describing 
and measuring the linear relationship between two variables. Figure 14.12 presents hypo-
thetical data showing the relationship between SAT scores and college grade point average 
(GPA). Note that the figure shows a good, but not perfect, positive relationship. Also note 
that we have drawn a line through the middle of the data points. This line serves several 
purposes:

1. The line makes the relationship between SAT and GPA easier to see.

2. The line identi�es the center, or central tendency, of the relationship, just as the 
mean describes central tendency for a set of scores. Thus, the line provides a 
simpli�ed description of the relationship. For example, if the data points were 
removed, the straight line would still give a general picture of the relationship 
between SAT and GPA.

3. Finally, the line can be used for prediction. The line establishes a precise, one-to-
one relationship between each X value (SAT score) and a corresponding X value (SAT score) and a corresponding X Y value Y value Y
(GPA). For example, an SAT score of 620 corresponds to a GPA of 3.25 (see 
Figure 14.12). Thus, the college admissions of�cers could use the straight-line 
relationship to predict that a student entering college with an SAT score of 620 
should achieve a college GPA of approximately 3.25.

Our goal in this section is to develop a procedure that identifies and defines the 
straight line that provides the best fit for any specific set of data. This straight line does 
not have to be drawn on a graph; it can be presented in a simple equation. Thus, our 
goal is to find the equation for the line that best describes the relationship for a set of X
and Y data.Y data.Y
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The relationship between SAT 
scores and college GPA with a 
line drawn through the middle of 
the data points. The line defines 
a precise one-to-one relationship 
between each X value (SAT X value (SAT X
score) and a corresponding 
Y value (GPA).Y value (GPA).Y

■ Linear Equations
In general, a linear relationship between two variables X and X and X Y can be expressed by the Y can be expressed by the Y
equation

Y 5 bX 1 a (14.9)

where a and b are fixed constants.
For example, a local gym charges a membership fee of $35 and a monthly fee of $15 

for unlimited use of the facility. With this information, the total cost for the gym can be 
computed using a linear equation that describes the relationship between the total cost (Y) Y) Y
and the number of months (X):X):X

Y 5 15X 1 35

In the general linear equation, the value of b is called the slope. The slope determines 
how much the Y variable changes when Y variable changes when Y X is increased by one point. For the gym memberX is increased by one point. For the gym memberX -
ship example, the slope is b 5 $15 and indicates that your total cost increases by $15 each 
month. The value of a in the general equation is called the Y-intercept because it determines intercept because it determines intercept
the value of Y when Y when Y X 5 0. (On a graph, the a value identifies the point where the line 
intercepts the Y-axis.) For the gym example, Y-axis.) For the gym example, Y a 5 $35.

Figure 14.13 shows the general relationship between the total cost and number of 
months for the gym example. Notice that the relationship results in a straight line. To 
obtain this graph, we picked any two values of X and then used the equation to compute the X and then used the equation to compute the X
corresponding values for Y. For example, Y. For example, Y

when X 5 3: when X 5 8:

Y 5 bX 1 a Y 5 bX 1 a
5 $15(3) 1 $35 5 $15(8) 1 $35
5 $45 1 $35 5 $120 1 $35
5 $80 5 $155

Note that a positive 
slope means that Y 
increases when X is 
increased, and a nega-
tive slope indicates that 
Y decreases when X is 
increased.
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Next, these two points are plotted on the graph: one point at X 5 3 and Y 5 80, the other 
point at X 5 8 and Y 5 155. Because two points completely determine a straight line, we 
simply drew the line so that it passed through these two points.

■ Regression
Because a straight line can be extremely useful for describing a relationship between two 
variables, a statistical technique has been developed that provides a standardized method 
for determining the best-fitting straight line for any set of data. The statistical procedure is 
regression, and the resulting straight line is called the regression line.

The statistical technique for �nding the best-�tting straight line for a set of data is 
called regression, and the resulting straight line is called the regression line.

The goal for regression is to find the best-fitting straight line for a set of data. To accom-
plish this goal, however, it is first necessary to define precisely what is meant by “best fit.” 
For any particular set of data, it is possible to draw lots of different straight lines that all 
appear to pass through the center of the data points. Each of these lines can be defined 
by a linear equation of the form Y 5 bX 1 a where b and a are constants that determine 
the slope and Y-intercept of the line, respectively. Each individual line has its own unique Y-intercept of the line, respectively. Each individual line has its own unique Y

When drawing a graph 
of a linear equation, it 
is wise to compute and 
plot at least three points 
to be certain you have 
not made a mistake.
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The relationship between total 
cost and number of months of 
gym membership. The gym 
charges a $35 membership fee and 
$15 per month. The relationship 
is described by a linear equation 
Y = 15X + 35 where Y is the 
total cost and X is the number X is the number X
of months.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 14-6 | Introduction to Linear Equations and Regression 453

values for b and a. The problem is to find the specific line that provides the best fit to the 
actual data points.

The Least-Squares Solution To determine how well a line fits the data points, the 
first step is to define mathematically the distance between the line and each data point. For 
every X value in the data, the linear equation determines a X value in the data, the linear equation determines a X Y value on the line. This value Y value on the line. This value Y
is the predicted Y and is called Y and is called Y Y

⁄
 (“Y hat”). The distance between this predicted value and Y hat”). The distance between this predicted value and Y

the actual Y value in the data is determined byY value in the data is determined byY

distance 5 Y 2 Y
⁄

Note that we simply are measuring the vertical distance between the actual data point (Y) Y) Y
and the predicted point on the line. This distance measures the error between the predicted 
value of Y on the line and the actual value in the data (Figure 14.14).Y on the line and the actual value in the data (Figure 14.14).Y

Because some of these distances will be positive and some will be negative, the next 
step is to square each distance to obtain a uniformly positive measure of error. Finally, to 
determine the total error between the line and the data, we add the squared errors for all 
of the data points. The result is a measure of overall squared error between the line and 
the data:

total squared error 5 S(Y 2 Y
⁄
)2

Now we can define the best-fitting line as the one that has the smallest total squared 
error. For obvious reasons, the resulting line is commonly called the least-squared-error
solution. In symbols, we are looking for a linear equation of the form

Y
⁄

5 bX 1 a

For each value of X in the data, this equation determines the point on the line (X in the data, this equation determines the point on the line (X Y
⁄
) that gives 

the best prediction of Ythe best prediction of Ythe best prediction of . The problem is to find the specific values for  Y. The problem is to find the specific values for  Y a and b that make 
this the best-fitting line.

X vX vX alues

X, Y
data point

Y 
v

Y 
v

Y
a

lu
e

s

Y = Y = Y bX + bX + bX aˆ

Distance = Y – Y – Y Ŷ

F I G U R E  1 4 .1 4 
The distance between the actual 
data point (Y ) and the predicted 
point on the line (Ŷ ) is defined as 
Y –Y –Y  Ŷ . The goal of regression is to 
find the equation for the line that 
minimizes these distances.
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The calculations that are needed to find this equation require calculus and some 
sophisticated algebra, so we will not present the details of the solution. The results, how-
ever, are relatively straightforward, and the solutions for b and a are as follows:

b 5
SPSPS

SSXSXS
(14.10)

where SP is the sum of products and SSXSSXSS  is the sum of squares for the X is the sum of squares for the X X scores.X scores.X
A commonly used alternative formula for the slope is based on the standard deviations 

for X and X and X Y. The alternative formula is

b 5 r
sY

sX
(14.11)

where sY is the standard deviation for the Y is the standard deviation for the Y Y scores, Y scores, Y sX is the standard deviation for the X is the standard deviation for the X X
scores, and r is the Pearson correlation for r is the Pearson correlation for r X and X and X Y. After the value of Y. After the value of Y b is computed, the 
value of the constant a in the equation is determined by

a 5 MY 2 bMX bMX bM (14.12)

Note that these formulas determine the linear equation that provides the best prediction of 
Y values. This equation is called the Y values. This equation is called the Y regression equation for Y.regression equation for Y.regression equation for

The regression equation for Y is the linear equationY is the linear equationY

Y
⁄

5 bX 1 a (14.13)

where the constant b is determined by Equation 14.10 or 14.11, and the constant a
is determined by Equation 14.12. This equation results in the least squared error 
between the data points and the line.

The scores in the following table are used to demonstrate the calculation and use of the 
regression equation for predicting Y. Y. Y

X Y X 2 MXMXM Y 2 MY (X(X( 2 MXMXM )X)X
2 (Y 2 MY)Y)Y

2 (X(X( 2 MXMXM ) (X) (X Y 2 MY)Y)Y

5 10 1 3 1 9 3
1 4 23 23 9 9 9
4 5 0 22 0 4 0
7 11 3 4 9 16 12
6 15 2 8 4 64 16
4 6 0 21 0 1 0
3 5 21 22 1 4 2
2 0 22 27 4 49 14

SSXSSXSS 5 28 SSY 5 156 SP 5 56

For these data, SX 5 32, so MXMXM 5 4. Also, SY 5 56, so MY 5 7. These values have been 
used to compute the deviation scores for each X and X and X Y value. The final three columns show Y value. The final three columns show Y
the squared deviations for X and for X and for X Y and the products of the deviation scores. Y and the products of the deviation scores. Y

Our goal is to find the values for b and a in the regression equation. Using Equations 14.10 
and 14.12, the solutions for b and a are

b 5
SPSPS

SS
X

S
X

S
5

56

28
5 2

a 5 MY 2 bMX bMX bM 5 7 2 2(4) 5 21

E X A M P L E  1 4 . 1 4
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The resulting equation is

Y
⁄

5 2X 2X 2 2 1

The original data and the regression line are shown in Figure 14.15. ■

The regression line shown in Figure 14.15 demonstrates some simple and very predict-
able facts about regression. First, the regression line passes through the point defined by 
the mean for X and the mean for X and the mean for X Y. That is, the point identified by the coordinates Y. That is, the point identified by the coordinates Y MXMXM , MY

will always be on the line. We have included the two means in Figure 14.15 to show that 
the point they define is on the regression line. Second, the sign of the correlation (1 or 2) 
is the same as the sign of the slope of the regression line. Specifically, if the correlation is 
positive, then the slope is also positive and the regression line slopes up to the right. On the 
other hand, if the correlation is negative, the slope is negative and the line slopes down to 
the right. A correlation of zero means that the slope is also zero and the regression equation 
produces a horizontal line that passes through the data at a level equal to the mean for the Y
values. Note that the regression line in Figure 14.15 has a positive slope. One consequence 
of this fact is that that all of the points on the line that are above the mean for X are also X are also X
above the mean for Y. Similarly, all of the points below the mean for Y. Similarly, all of the points below the mean for Y X are also below the X are also below the X
mean for Y. Thus, every individual with a positive deviation for Y. Thus, every individual with a positive deviation for Y X is predicted to have a X is predicted to have a X
positive deviation for Y, and everyone with a negative deviation for Y, and everyone with a negative deviation for Y X is predicted to have X is predicted to have X
a negative deviation for Y.Y.Y

Using the Regression Equation for Prediction As we noted at the beginning of 
this section, one common use of regression equations is for prediction. For any given 
value of X, we can use the equation to compute a predicted value for Y. For the regression Y. For the regression Y

X

Y

1 2 3 4 5 6 7 8

12

13

14

15

11

10

9

8

7

6

5

4

3

2

0

1

M  = 4x

M  = 7
Y

Y = Y = Y X – ˆ 12

F I G U R E  1 4 .1 5
The X and X and X Y data points Y data points Y
and the regression line for 
the n = 8 pairs of scores in 
Example 14.14.
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equation from Example 14.14, an individual with a score of X 5 6 would be predicted to 
have a Y score ofY score ofY

Y
⁄

5 2X 2X 2 2 1 5 12 2 1 5 11 

Although regression equations can be used for prediction, a few cautions should be 
considered whenever you are interpreting the predicted values:

1. The predicted value is not perfect (unless r 5 11.00 or 21.00). If you examine 
Figure 14.15, it should be clear that the data points do not �t perfectly on the line. 
In general, there will be some error between the predicted Y values (on the line) Y values (on the line) Y
and the actual data. Although the amount of error will vary from point to point, on 
average the errors will be directly related to the magnitude of the correlation. With 
a correlation near 1.00 (or 21.00), the data points will generally be clustered close 
to the line and the error will be small. As the correlation gets nearer to zero, the 
points will move away from the line and the magnitude of the error will increase.

2. The regression equation should not be used to make predictions for X values that X values that X
fall outside the range of values covered by the original data. For Example 14.14, 
the X values ranged from X values ranged from X X 5 0 to X 5 7, and the regression equation was calcu-
lated as the best-�tting line within this range. Because you have no information 
about the X/X/X Y relationship outside this range, the equation should not be used to Y relationship outside this range, the equation should not be used to Y
predict Y for any Y for any Y X value lower than 0 or greater than 7.X value lower than 0 or greater than 7.X

The following example is an opportunity to test your understanding of the calculations 
needed to find a linear regression equation.

For the following data, find the regression equation for predicting Y from Y from Y X.

X Y

1 4
3 9
5 8

You should obtain Y
⁄

5 X 1 4. ■

Standardized Form of the Regression Equation So far we have presented the 
regression equation in terms of the original X and X and X Y scores. Occasionally, however, reY scores. Occasionally, however, reY -
searchers standardize the scores by transforming the X and X and X Y values into Y values into Y z-scores before 
finding the regression equation. The resulting equation is often called the standardized 
form of the regression equation and is greatly simplified compared to the raw-score ver-
sion. The simplification comes from the fact that z-scores have standardized characteris-
tics. Specifically, the mean for a set of z-scores is always zero and the standard deviation 
is always 1. As a result, the standardized form of the regression equation becomes

z⁄Y = (beta)zXzXz (14.14)

First notice that we are now using the z-score for each X value (X value (X zXzXz ) to predict the X) to predict the X z-score 
for the corresponding Y value (Y value (Y zY). Also, note that the slope constant that was identified as Y). Also, note that the slope constant that was identified as Y b
in the raw-score formula is now identified as beta. Because both sets of z-scores have a mean 
of zero, the constant a disappears from the regression equation. Finally, when one variable, 
X, is being used to predict a second variable, Y, the value of beta is equal to the Pearson Y, the value of beta is equal to the Pearson Y
correlation for X and X and X Y. Thus, the standardized form of the regression equation can also be Y. Thus, the standardized form of the regression equation can also be Y
written as

z⁄Y = rzXrzXrz (14.15)

E X A M P L E  1 4 . 1 5
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Because the process of transforming all of the original scores into z-scores can be 
tedious, researchers usually compute the raw-score version of the regression equation 
(Equation 14.13) instead of the standardized form. However, most computer programs 
report the value of beta as part of the output from linear regression, and you should 
understand what this value represents.

■ The Standard Error of Estimate 
It is possible to determine a regression equation for any set of data by simply using the formulas 
already presented. The linear equation you obtain is then used to generate predicted Y values for Y values for Y
any known value of X. However, it should be clear that the accuracy of this prediction depends 
on how well the points on the line correspond to the actual data points—that is, the amount 
of error between the predicted values, Y

⁄
, and the actual scores, Y values. Figure 14.16 shows Y values. Figure 14.16 shows Y

two different sets of data that have exactly the same regression equation. In one case, there is a 
perfect correlation (r 5 11) between X and X and X Y, so the linear equation fits the data perfectly. For Y, so the linear equation fits the data perfectly. For Y
the second set of data, the predicted Y values on the line only approximate the real data points.Y values on the line only approximate the real data points.Y

A regression equation by itself allows you to make predictions, but it does not provide 
any information about the accuracy of the predictions. To measure the precision of the 
regression, it is customary to compute a standard error of estimate.

The standard error of estimate gives a measure of the standard distance between 
the predicted Y values on the regression line and the actual Y values on the regression line and the actual Y Y values in the data.Y values in the data.Y

Conceptually, the standard error of estimate is very much like a standard deviation: 
both provide a measure of standard distance. Also, you will see that the calculation of 
the standard error of estimate is very similar to the calculation of standard deviation.
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(a) A scatter plot showing data points that perfectly fit the regression line defined by Ŷ = X + 4. Note that the 
correlation is r = +1.00. (b) A scatter plot for another set of data with a regression equation of Ŷ = X + 4. Notice 
that there is error between the actual data points and the predicted Y values on the regression line.Y values on the regression line.Y
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To calculate the standard error of estimate, we first find a sum of squared deviations 
(SS). Each deviation measures the distance between the actual Y value (from the data) and Y value (from the data) and Y
the predicted Y value (from the regression line). This sum of squares is commonly called Y value (from the regression line). This sum of squares is commonly called Y
SSresidualSSresidualSS  because it is based on the remaining distance between the actual Y scores and the Y scores and the Y
predicted values.

SSresidualSSresidualSS 5 S(Y 2 Y
⁄
)2 (14.16)

The obtained SS value is then divided by its degrees of freedom to obtain a measure of SS value is then divided by its degrees of freedom to obtain a measure of SS
variance. This procedure for computing variance should be very familiar (Chapter 4, page 93).

Variance =
SS

dfdfd

The degrees of freedom for the standard error of estimate are df 5 n 2 2. The reason for 
having n 2 2 degrees of freedom, rather than the customary n 2 1, is that we now are mea-
suring deviations from a line rather than deviations from a mean. To find the equation for the 
regression line, you must know the means for both the X and the X and the X Y scores. Specifying these Y scores. Specifying these Y
two means places two restrictions on the variability of the data, with the result that the scores 
have only n 2 2 degrees of freedom. (Note: the df 5 n 2 2 for SSresidualSSresidualSS  is the same df 5 n 2
2 that we encountered when testing the significance of the Pearson correlation on page 438.)

The final step in the calculation of the standard error of estimate is to take the square 
root of the variance to obtain a measure of standard distance. The final equation is

Standard error of estimate = ÎSSrSrS esidualÎ dfdfdÎ 5ÎS(Y 2 Y
⁄
)2Î n 2 2Î (14.17)

The following example demonstrates the calculation of this standard error.

The same data that were used in Example 14.14 are used here to demonstrate the calcula-
tion of the standard error of estimate. These data have the regression equation

Y
⁄

5 2X 2X 2 2 1

Using this regression equation, we have computed the predicted Y value, the residual, Y value, the residual, Y
and the squared residual for each individual.

Recall that variance 
measures the average 
squared distance.

E X A M P L E  1 4 . 1 6

Data
Predicted 
Y valueY valueY Residual

Squared 
Residual

X Y Y
⁄
= 2X 2 1 Y 2 Y

⁄
(Y 2 Y

⁄
)2

5 10 9 1 1
1 4 1 3 9
4 5 7 –2 4
7 11 13 –2 4
6 15 11 4 16
4 6 7 –1 1
3 5 5 0 0
2 0 3 –3 9

0 SSresidualSSresidualSS 5 44

First note that the sum of the residuals is equal to zero. In other words, the sum of the 
distances above the line is equal to the sum of the distances below the line. This is true 
for any set of data and provides a way to check the accuracy of your calculations. The 
squared residuals are listed in the final column. For these data, the sum of the squared 
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residuals is SSresidual 5 44. With n 5 8, the data have df 5 n 2 2 5 6, so the standard error 
of estimate is

standard error of estimate = ÎSSrSrS esidualÎ dfdfdÎ 5Î44Î 6Î 5 2.708

Remember: The standard error of estimate provides a measure of how accurately the re-
gression equation predicts the Y values. In this case, the standard distance between the actual Y values. In this case, the standard distance between the actual Y
data points and the regression line is measured by the standard error of estimate 5 2.708. ■

Relationship between the Standard Error and the Correlation It should be clear 
from Example 14.16 that the standard error of estimate is directly related to the magnitude 
of the correlation between X and X and X Y. If the correlation is near 1.00 (or Y. If the correlation is near 1.00 (or Y 21.00), the data 
points are clustered close to the line, and the standard error of estimate is small. As the 
correlation gets nearer to zero, the data points become more widely scattered, the line pro-
vides less accurate predictions, and the standard error of estimate grows larger. 

Earlier (page 434), we observed that squaring the correlation provides a measure of the 
accuracy of prediction. The squared correlation, r2r2r , is called the coefficient of determina-
tion because it determines what proportion of the variability in Y is predicted by the relaY is predicted by the relaY -
tionship with X. Because r2r2r  measures the predicted portion of the variability in the Y scores, Y scores, Y
we can use the expression (1 2 r2r2r ) to measure the unpredicted portion. Thus,

Predicted variability 5 SSregressionSSregressionSS 5 r2r2r SSY (14.18)

Unpredicted variability 5 SSresidualSSresidualSS 5 (1 2 r2r2r )SSY (14.19)

For example, if r 5 0.80, then r2r2r 5 0.64 (or 64%) of the variability for the Y scores is Y scores is Y
predicted by the relationship with X, and the remaining 36% (1 2 r2r2r ) is the unpredicted 
portion. Note that when r 5 1.00, the prediction is perfect and there are no residuals. As 
the correlation approaches zero, the data points move farther off the line and the residuals 
grow larger. Using Equation 14.19 to compute SSresidualSSresidualSS , the standard error of estimate can 
be computed as

Standard error of estimate = ÎSSrSrS esidualÎ dfdfdÎ 5Îs1 2 r2r2r dSSYÎ n 2 2Î (14.20)

Because it is usually much easier to compute the Pearson correlation than to compute the 
individual (Y 2 Y

⁄
)2 values, Equation 14.19 is usually the easiest way to compute SSresidualSSresidualSS , 

and Equation 14.20 is usually the easiest way to compute the standard error of estimate for 
a regression equation. The following example demonstrates this new formula.

We use the same data used in Examples 14.14 and 14.16, which produced SSXSSXSS 5 28, 
SSY 5 156, and SP 5 56. For these data, the Pearson correlation is

r =
56

Ï28s156dÏ
5

56

66.09
5 0.847

With SSY 5 156 and a correlation of r 5 0.847, the predicted variability from the regres-
sion equation is

SSregressionSSregressionSS 5 r2r2r SSY 5 (0.8472)(156) 5 0.718(156) 5 112.01

Similarly, the unpredicted variability is

SSresidualSSresidualSS 5 (1 2 r2r2r )SSY 5 (1 2 0.8472)(156) 5 0.282(156) 5 43.99

E X A M P L E  1 4 . 1 7
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Notice that the new formula for SSresidual SSresidual SS produces the same value, within rounding er-
ror, that we obtained by adding the squared residuals in Example 14.16. Also note that this 
new formula is generally much easier to use because it requires only the correlation value 
(r) and the SS for SS for SS Y. The primary point of this example, however, is that Y. The primary point of this example, however, is that Y SSresidualSSresidualSS  and the 
standard error of estimate are closely related to the value of the correlation. As correlations 
get larger (near 11.00 or 21.00), the data points move closer to the regression line, and the 
standard error of estimate gets smaller. ■

Because it is possible to have the same regression line for sets of data that have differ-
ent correlations, it is also important to examine r2r2r  and the standard error of estimate. The 
regression equation simply describes the best-fitting line and is used for making predic-
tions. However, r2r2r  and the standard error of estimate indicate how accurate these predic-
tions will be.

■ Analysis of Regression: The Significance  
of the Regression Equation
As we noted earlier in this chapter, a sample correlation is expected to be representa-
tive of its population correlation. For example, if the population correlation is zero, the 
sample correlation is expected to be near zero. Note that we do not expect the sample 
correlation to be exactly equal to zero. This is the general concept of sampling error
that was introduced in Chapter 1 (page 6). The principle of sampling error is that there 
is typically some discrepancy or error between the value obtained for a sample statis-
tic and the corresponding population parameter. Thus, when there is no relationship 
whatsoever in the population, a correlation of rwhatsoever in the population, a correlation of rwhatsoever in the population, a correlation of 5 0, you are still likely to obtain a 
nonzero value for the sample correlation. In this situation, however, the sample cor-
relation is meaningless and a hypothesis test usually demonstrates that the correlation 
is not significant.

Whenever you obtain a nonzero value for a sample correlation, you will also obtain 
real, numerical values for the regression equation. However, if there is no real rela-
tionship in the population, both the sample correlation and the regression equation are 
meaningless—they are simply the result of sampling error and should not be viewed 
as an indication of any relationship between X and X and X Y. In the same way that we tested 
the significance of a Pearson correlation, we can test the significance of the regression 
equation. In fact, when a single variable X is being used to predict a single variable X is being used to predict a single variable X
Y, the two tests are equivalent. In each case, the purpose of the test is to determine 
whether the sample correlation represents a real relationship or is simply the result of 
sampling error. For both tests, the null hypothesis states that there is no relationship 
between the two variables in the population. For a correlation, 

H0H0H : the population correlation is r 5 0

For the regression equation,

H0H0H : the slope of the regression equation (b or beta) is zero

For regression, an equivalent version of H0H0H  states that the regression equation does not 
predict a significant portion of the variability in the Y scores.Y scores.Y

The process of testing the significance of a regression equation is called analysis of regres-
sion and is very similar to the analysis of variance (ANOVA) presented in Chapter 12. As 
with ANOVA, the regression analysis uses an F-ratio to determine whether the variance preF-ratio to determine whether the variance preF -
dicted by the regression equation is significantly greater than would be expected if there were 
no relationship between X and X and X Y. The Y. The Y F-ratio is a ratio of two variances, or mean square (F-ratio is a ratio of two variances, or mean square (F MS) 
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values, and each variance is obtained by dividing an SS value by its corresponding degrees of SS value by its corresponding degrees of SS
freedom. The numerator of the F-ratio is F-ratio is F MSregressionMSregressionMS , which is the variance in the Y scores that Y scores that Y
is predicted by the regression equation. This variance measures the systematic changes in Y
that occur when the value of X increases or decreases. The denominator is X increases or decreases. The denominator is X MSresidualMSresidualMS , which 
is the unpredicted variance in the Y scores. This variance measures the changes in Y scores. This variance measures the changes in Y Y that are Y that are Y
independent of changes in X. The two MS value are defined asMS value are defined asMS

MSMSM rSrS egression 5
SSrSrS egression

dfdfd rfrf egression
with dfdfd 5 1 and MSMSM rSrS esiduals 5

SSrSrS esidual

dfdfd rfrf esidual
with dfdfd 5 n 2 2

The F-ratio is

F 5
MSMSM rSrS egression

MSMSM rSrS esidual
with dfdfd 5 1, n 2 2 (14.21)

The complete analysis of SS and degrees of freedom is diagrammed in Figure 14.17. SS and degrees of freedom is diagrammed in Figure 14.17. SS
The analysis of regression procedure is demonstrated in the following example, using the 
same data that we used in Examples 14.14, 14.16, and 14.17.

The data consist of n 5 8 pairs of scores with a correlation of r 5 0.847 and SSY 5 156. The 
null hypothesis either states that there is no relationship between X and X and X Y in the population Y in the population Y
or that the regression equation has b 5 0 and does not account for a significant portion of 
the variance for the Y scores.Y scores.Y

The F-ratio for the analysis of regression has df 5 1, n 2 2. For these data, df 5 1, 6.  
With a 5 .05, the critical value is 5.99. 

As noted in the previous section, the SS for the SS for the SS Y scores can be separated into two comY scores can be separated into two comY -
ponents: the predicted portion corresponding to r2r2r  and the unpredicted, or residual, portion 
corresponding to (1 2 r2r2r ). With r 5 0.847, we obtain r2r2r 5 0.718 and

predicted variability 5 SSregressionSSregressionSS 5 0.718(156) 5 112.01

unpredicted variability 5 SSresidualSSresidualSS 5 (1 2 0.718)(156) 5 0.282(156) 5 43.99

Using these SS values and the corresponding SS values and the corresponding SS df values, we calculate a variance or df values, we calculate a variance or df MS for MS for MS
each component. For these data the MS values are:MS values are:MS

MSMSM rSrS egression 5
SSrSrS egression

dfdfd rfrf egression
5

112.01

1
5 112.01

MSMSM rSrS esidual 5
SSrSrS esidual

dfdfd rfrf esidual
5

43.99

6
5 7.33

E X A M P L E  1 4 . 1 8

SSregression

r2r2r SSY

SSresidual

(1 2 r2r2r )SSY

SSY

dfregressiondfregressiondf 5 1 dfresidualdfresidualdf 5 n 2 2

dfYdfYdf 5 n 2 1F I G U R E  1 4 .1 7 
The partitioning of SS and SS and SS df for df for df
analysis of regression. The vari-
ability for the original Y scores Y scores Y
(both SS and SS and SS dfdf ) is partitioned 
into two components: (1) the 
variability that is predicted by 
the regression equation and 
(2) the residual variability.
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Finally, the F-ratio for evaluating the significance of the regression equation is

F 5
MSMSM

regression

MSMSM
residual

5
112.01

7.33
5 15.28

The F-ratio is in the critical region, so we reject the null hypothesis and conclude that 
the regression equation does account for a significant portion of the variance for the Y
scores. The complete analysis of regression is summarized in Table 14.4, which is a com-
mon format for computer printouts of regression analysis. ■

Significance of Regression and Significance of the Correlation As noted ear-
lier, in a situation with a single X variable and a single X variable and a single X Y variable, testing the significance Y variable, testing the significance Y
of the regression equation is equivalent to testing the significance of the Pearson correla-
tion. Therefore, whenever the correlation between two variables is significant, you can 
conclude that the regression equation is also significant. Similarly, if a correlation is not 
significant, the regression equation is also not significant. For the data in Example 14.18, 
we concluded that the regression equation is significant. 

To demonstrate the equivalence of the two tests, we will show that the t statistic used to t statistic used to t
test the significance of a correlation (Equation 14.7, page 439) is equivalent to the F-ratio 
used to test the significance of the regression equation (Equation 14.21). We begin with the 
t statistict statistict

t 5
r 2 r

Î(1 2 r2)Î (n 2 2)Î
First, note that the population correlation, r, is always zero, as specified by the null 
hypothesis, so we can simply remove it from the equation. Next, we square the t statistic t statistic t
to produce the corresponding F-ratio.

t2 5 F 5
r2

(1 2 r2)

(n 2 2)

Finally, multiply the numerator and the denominator by SSY to produceY to produceY

t2 5 F 5
r2(SSY)Y)Y

(1 2 r2)(SSY)Y)Y

(n 2 2)

You should recognize the numerator as SSregressionSSregressionSS , which is equivalent to MSregressionMSregressionMS  because 
dfregressiondfregressiondf 5 1. Also, the denominator is identical to MSresidualMSresidualMS . Thus, the squared t statistic 
used to test the significance of a correlation is identical to the F-ratio used to test the sig-
nificance of a regression equation.

TA B L E  1 4 . 4
A summary table show-
ing the results of the 
analysis of regression in 
Example 14.18. 

Source SS df MS F

Regression 112.01 1 112.01 15.28
Residual 43.99 6 7.33
Total 156 7
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LO13 1. In the general linear equation Y 5 bX 1 a, what is measured by the value of a?

a. The point at which the line crosses the X-axisX-axisX

b. The point at which the line crosses the Y-axisY-axisY

c. The amount that X changes each time X changes each time X Y increases by 1 pointY increases by 1 pointY

d. The amount that Y changes each time Y changes each time Y X increases by 1 pointX increases by 1 pointX

 LO14 2. A set of n 5 25 pairs of X and X and X Y values has Y values has Y MX MX M 5 4, SSXSSXSS 5 10, MYMYM 5 6, SSY 5 40, 
and SP 5 20. What is the regression equation for predicting Y from Y from Y X?

a. Y 5 2X 2X 2 2 2 

b. Y 5 2X 2X 2 2 8 

c. Y 5 0.5X 1 4

d. Y 5 0.5X 1 1

 LO15 3. What is measured by the standard error of estimate for a regression equation?

a. The standard distance between a predicted Y value and the mean for the Y value and the mean for the Y Y
scores

b. The standard distance between a predicted Y value and the center of the Y value and the center of the Y
regression line

c. The standard distance between a predicted Y value and the actual Y value and the actual Y Y valueY valueY

d. The standard distance between an actual Y value and the center of the Y value and the center of the Y
regression line

LO16 4. A researcher computes the regression equation for predicting Y for a sample Y for a sample Y
of n 5 25 pairs of X and X and X Y values. If the significance of the equation is Y values. If the significance of the equation is Y
evaluated with an analysis of regression, then what are the df values for the df values for the df
F-ratio?

a. 1, 24

b. 1, 23

c. 2, 23

d. 2, 22

1. b 2. a 3. c 4. b

LE A R N I N G C H E C K

A N S W E R S

Summary 463

1. A correlation measures the relationship between two 
variables, X and X and X Y. The relationship is described by Y. The relationship is described by Y
three characteristics:
a. Direction. A relationship can be either positive or 

negative. A positive relationship means that X and X and X
Y vary in the same direction. A negative relation-Y vary in the same direction. A negative relation-Y
ship means that X and X and X Y vary in opposite directions. Y vary in opposite directions. Y
The sign of the correlation (1 or 2) specifies the 
direction.

b. Form. The most common form for a relationship is 
a straight line. However, special correlations exist 
for measuring other forms. The form is specified 

by the type of correlation used. For example, the 
Pearson correlation measures linear form.

c. Strength or consistency. The numerical value of the 
correlation measures the strength or consistency of 
the relationship. A correlation of 1.00 indicates a 
perfectly consistent relationship and 0.00 indicates 
no relationship at all. For the Pearson correlation, 
r 5 1.00 (or 21.00) means that the data points fit 
perfectly on a straight line.

2. The most commonly used correlation is the Pearson 
correlation, which measures the degree of linear 

S U M M A R Y
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relationship. The Pearson correlation is identified by 
the letter r and is computed byr and is computed byr

r 5
SPSPS

ÏSÏSÏ SXSXS SXSX SYÏ
In this formula, SP is the sum of products of devia-
tions and can be calculated with either a definitional 
formula or a computational formula:

definitional formula: SP 5 S(X 2 MXMXM )(Y 2 MY)Y)Y

computational fofof rmula: SPSPS 5 SXY 2
SXSXSX Y

n

3. A correlation between two variables should not be 
interpreted as implying a causal relationship. Simply 
because X and X and X Y are related does not mean that Y are related does not mean that Y X
causes Y or that Y or that Y Y causes Y causes Y X.

4. To evaluate the strength of a relationship, you square the 
value of the correlation. The resulting value, r2r2r , is called 
the coefficient of determination because it measures the 
portion of the variability in one variable that can be de-
termined using the relationship with the second variable.

5. The Spearman correlation (rSrSr ) measures the consis-
tency of direction in the relationship between X and X and X
Y—that is, the degree to which the relationship is one-Y—that is, the degree to which the relationship is one-Y
directional, or monotonic. The Spearman correlation is 
computed by a two-stage process:
a. Rank the X scores and the X scores and the X Y scores separately.Y scores separately.Y
b. Compute the Pearson correlation using the ranks.

6. The point-biserial correlation is used to measure 
the strength of the relationship when one of the two 
variables is dichotomous. The dichotomous variable 
is coded using values of 0 and 1, and the regular Pear-
son formula is applied. Squaring the point-biserial 
correlation produces the same r2 value that is obtained 
to measure effect size for the independent-measures 
t test. When both variables, t test. When both variables, t X and X and X Y, are dichotoY, are dichotoY -
mous, the phi-coefficient can be used to measure the 
strength of the relationship. Both variables are coded 
0 and 1, and the Pearson formula is used to compute 
the correlation.

7. When there is a general linear relationship between 
two variables, X and X and X Y, it is possible to construct a Y, it is possible to construct a Y
linear equation that allows you to predict the Y value Y value Y
corresponding to any known value of X:

predicted Y value Y value Y 5 Y
⁄
5 bX 1 a

The technique for determining this equation is called 
regression. By using a least-squares method to mini-
mize the error between the predicted Y values and the Y values and the Y
actual Y values, the best-fitting line is achieved when Y values, the best-fitting line is achieved when Y
the linear equation has

b 5
SPSPS

SSXSXS
5 r

sY

sX
and a 5 MY 2 bMXMXM

8. The linear equation generated by regression (called 
the regression equation) can be used to compute a 
predicted Y value for any value of Y value for any value of Y X. However, the 
prediction is not perfect, so for each Y value, there is Y value, there is Y
a predicted portion and an unpredicted, or residual, 
portion. Overall, the predicted portion of the Y score Y score Y
variability is measured by r2r2r , and the residual portion 
is measured by 1 2 r2r2r .

Predicted variability 5 SSregressionSSregressionSS 5 r2r2r SSY

Unpredicted variability 5 SSresidualSSresidualSS 5 (1 2r2r2r )SSY

9. The residual variability can be used to compute the 
standard error of estimate, which provides a measure 
of the standard distance (or error) between the pre-
dicted Y values on the line and the actual data points. Y values on the line and the actual data points. Y
The standard error of estimate is computed by

standard error of estimate = ÎSS
residualÎ n 2 2Î 5 ÏMÏMÏ SMSM

residualÏ

10. It is also possible to compute an F-ratio to evaluate the 
significance of the regression equation. The process is 
called analysis of regression and determines whether 
the equation predicts a significant portion of the vari-
ance for the Y scores. First a variance, or Y scores. First a variance, or Y MS, value is 
computed for the predicted variability and the residual 
variability,

MSregressionMSregressionMS 5
SS

regression

dfdfd
r

f
r

f
egression

MSMSM
residual

5
SS

residual

dfdfd
r

f
r

f
esidual

where dfregressiondfregressiondf 5 1 and df residual 5 n 2 2. Next, an 
F-ratio is computed to evaluate the significance of the 
regression equation.

F =
MSMSM

regression

MSMSM
residual

with df = 1, n − 2

correlation (422)

positive correlation (423)

negative correlation (423)

perfect correlation (424)

Pearson correlation (425)

linear relationship (425)

sum of products (SP) (426)

outliers (432)

restricted range (433)

KE Y TER M S
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General instructions for using SPSS are presented in Appendix D. Following are detailed 
instructions for using SPSS to perform the Pearson, Spearman, point-biserial, and partial 
correlations. Note: We will focus on the Pearson correlation and then describe how slight 
modifications to this procedure can be made to compute the Spearman, point-biserial, and 
partial correlations. Separate instructions for the phi-coefficient are presented at the end of 
this section.

Data Entry

1. The data are entered into two columns in the data editor, one for the X values (VAR00001) X values (VAR00001) X
and one for the Y values (VAR00002), with the two scores for each individual in the same Y values (VAR00002), with the two scores for each individual in the same Y
row.

Data Analysis

1. Click Analyze on the tool bar, select Correlate, and click on Bivariate.
2. One by one, move the labels for the two data columns into the Variables box. (Highlight 

each label and click the arrow to move it into the box.)
3. The Pearson box should be checked but, at this point, you can switch to the Spearman cor-

relation by clicking the appropriate box.
4. Click OK.

SPSS Output

We used SPSS to compute the correlation for the data in Example 14.3 and the output is shown 
in Figure 14.18. The program produces a correlation matrix showing all the possible correlations, 
including the correlation of X with X with X X and the correlation of X and the correlation of X Y with Y with Y Y (both are perfect correlaY (both are perfect correlaY -
tions). You want the correlation of X and X and X Y, which is contained in the upper-right corner (or the Y, which is contained in the upper-right corner (or the Y
lower left). The output includes the significance level (plower left). The output includes the significance level (plower left). The output includes the significance level (  value or alpha level) for the correlation.

To compute the Spearman correlation, enter either the X and X and X Y ranks or the Y ranks or the Y X and X and X Y scores Y scores Y
into the first two columns. Then follow the same Data Analysis instructions that were presented 
for the Pearson correlation. At Step 3 in the instructions, click on the Spearman box before the 
final OK. (Note: If you enter X and X and X Y scores into the data editor, SPSS converts the scores to Y scores into the data editor, SPSS converts the scores to Y
ranks before computing the Spearman correlation.)

To compute the point-biserial correlation, enter the scores (X values) in the first column X values) in the first column X
and enter the numerical values (usually 0 and 1) for the dichotomous variable in the second 
column. Then, follow the same Data Analysis instructions that were presented for the Pearson 
correlation.

The phi-coefficient can also be computed by entering the complete string of 0s and 1s into 
two columns of the SPSS data editor, then following the same Data Analysis instructions that 
were presented for the Pearson correlation. However, this can be tedious, especially with a large 
set of scores. The following is an alternative procedure for computing the phi-coefficient with 
large data sets.

SPSS ®

coefficient of determination (435)

correlation matrix (440)

Spearman correlation (441)

monotonic relationship (442)

point-biserial correlation (446)

dichotomous variable or a binomial 
variable (446)

phi-coefficient (448)

linear equation (451)

slope (451)

Y-intercept (451)Y-intercept (451)Y

regression (452)

regression line (452)

least-squared-error solution (453)

regression equation for Y (454)

standardized form of the regression 
equation (456)

standard error of estimate (457)

predicted variability (SSregressionSSregressionSS ) (459)

unpredicted variability (SSresidualSSresidualSS ) (459)

analysis of regression (460)
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Correlations

VAR00001VAR00001V

VAR00001VAR00001V 1 .875

.052

5 55 5

1

5 55 5

.875

.052

Pearson Correlation

Sig. (2-tailed)

N

VAR00002VAR00002V Pearson Correlation

Sig. (2-tailed)

N

VAR00002VAR00002V

F I G U R E  1 4 .1 8
The SPSS output for the 
correlation in Example 14.3.

Data Entry

1. Enter the values 0, 0, 1, 1 (in order) into the first column of the SPSS data editor.
2. Enter the values 0, 1, 0, 1 (in order) into the second column.
3. Count the number of individuals in the sample who are classified with X 5 0 and Y 5

0. Enter this frequency in the top box in the third column of the data editor. Then, count 
how many have X 5 0 and Y 5 1 and enter the frequency in the second box of the third 
column. Continue with the number who have X 5 1 and Y 5 0, and finally the number 
who have X 5 1 and Y 5 1. You should end up with 4 values in column three.

4. Click Data on the Tool Bar at the top of the SPSS Data Editor page and select Weight 
Cases at the bottom of the list.

5. Click the circle labeled weight cases by, and then highlight the label for the column 
containing your frequencies (VAR00003) on the left and move it into the Frequency 
Variable box by clicking on the arrow.

6. Click OK.
7. Click Analyze on the tool bar, select Correlate, and click on Bivariate.
8. One by one move the labels for the two data columns containing the 0s and 1s (probably 

VAR00001 and VAR00002) into the Variables box. (Highlight each label and click the 
arrow to move it into the box.)

9. Verify that the Pearson box is checked.
10. Click OK.

SPSS Output

The program produces the same correlation matrix that was described for the Pearson correla-
tion. Again, you want the correlation between X and X and X Y, which is in the upper right corner (or Y, which is in the upper right corner (or Y
lower left). Remember, with the phi-coefficient the sign of the correlation is meaningless.

Following are detailed instructions for using SPSS to perform the Linear Regression pre-
sented in this chapter.

Data Entry

Enter the X values in one column and the X values in one column and the X Y values in a second column of the SPSS data editor. Y values in a second column of the SPSS data editor. Y
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Data Analysis

1. Click Analyze on the tool bar, select Regression, and click on Linear.
2. In the left-hand box, highlight the column label for the Y values, then click the arrow to Y values, then click the arrow to Y

move the column label into the Dependent Variable box.
3. Highlight the column label for the X values and click the arrow to move it into theX values and click the arrow to move it into theX

Independent Variable(s) box. 
4. Click OK.

SPSS Output

We used SPSS to perform regression for the data in Examples 14.14 and 14.18, and the output 
is shown in Figure 14.19. The Model Summary table presents the values for R, R2, and the 
standard error of estimate. (Note: R is simply the Pearson correlation between X and X and X Y.) The 
ANOVA table presents the analysis of regression evaluating the significance of the regression 
equation, including the F-ratio and the level of significance (the p value or alpha level for the 
test). The Coefficients table summarizes both the unstandardized and the standardized coef-table summarizes both the unstandardized and the standardized coef-table summarizes both the unstandardized and the standardized coef
ficients for the regression equation. The table shows the values for the constant (a) and the 
coefficient (b). The standardized coefficient is the beta values. Again, beta is simply the Pearson 
correlation between X and X and X Y. Finally, the table uses a t statistic to evaluate the significance of t statistic to evaluate the significance of t

Model Summary

Model

1

R

.847a .718 .671 2.70801

R Square
Adjusted R

Square
Std. Error of

the Estimate

Coefficientsa

Model

1 (Constant)

VAR00001

-1.000

2.000

2.260

.512

–.442

3.908

.674

.008.847

Unstandardized Coefficients

B Std. Error Beta t Sig.

Standardized
Coefficients

ANOVAb

Model

1 Regression

Residual

Total

112.000

44.000

156.000

1

6

7

112.000 15.273 .008a

7.333

Sum of
Squares df F Sig.Mean Square

F I G U R E  1 4 .1 9
Portions of the SPSS output from the analysis of regression for the data in Examples 14.14, 14.16, and 14.18.
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the predictor variable. This is identical to the significance of the regression equation and you 
should find that t is equal to the square root of the t is equal to the square root of the t F-ratio from the analysis of regression.

FO CUS  O N  PRO B LE M  SO LVIN G

1. A correlation always has a value from 11.00 to 21.00. If you obtain a correlation outside 
this range, then you have made a computational error.

2. When interpreting a correlation, do not confuse the sign (1 or 2) with its numerical 
value. The sign and the numerical value must be considered separately. Remember that 
the sign indicates the direction of the relationship between X and X and X Y. On the other hand, the Y. On the other hand, the Y
numerical value reflects the strength of the relationship or how well the points approxi-
mate a linear (straight-line) relationship. Therefore, a correlation of 20.90 is as strong as 
a correlation of 10.90. The signs tell us that the first correlation is an inverse relationship.

3. Before you begin to calculate a correlation, sketch a scatter plot of the data and make an 
estimate of the correlation. (Is it positive or negative? Is it near 1 or near 0?) After com-
puting the correlation, compare your final answer with your original estimate.

4. The definitional formula for the sum of products (SP) should be used only when you have 
a small set (n) of scores and the means for X and X and X Y are both whole numbers. Otherwise, Y are both whole numbers. Otherwise, Y
the computational formula produces quicker, easier, and more accurate results.

5. For computing a correlation, n is the number of individuals (and therefore the number of 
pairs of X and X and X Y values).Y values).Y

6. A basic understanding of the Pearson correlation, including the calculation of SP and SS
values, is critical for understanding and computing regression equations.

7. You can calculate SSresidualSSresidualSS  directly by finding the residual (the difference between the 
actual Y and the predicted Y and the predicted Y Y for each individual), squaring the residuals, and adding the Y for each individual), squaring the residuals, and adding the Y
squared values. However, it usually is much easier to compute r2r2r  and then find SSresidualSSresidualSS 5
(1 2r2r2r )SSY.

8. The F-ratio for analysis of regression is usually calculated using the actual SSregressionSSregressionSS  and 
SSresidualSSresidualSS . However, you can simply use r2r2r  in place of SSregressionSSregressionSS  and you can use 1 2 r2r2r  in 
place of SSresidualSSresidualSS . Note: You must still use the correct df value for the numerator and the df value for the numerator and the df
denominator.

D E M O N S TR ATIO N  14.1

CORRELATATA ION AND REGRESSION 

Calculate the Pearson correlation for the following data:

Person X Y

A 0 4 MXMXM = 4 with SSXSSXSS = 40
MY = 6 with SSY = 54

SP = 40

B 2 1
C 8 10
D 6 9
E 4 6

Sketch a scatter plot. We have constructed a scatter plot for the data (Figure 14.20) and 
placed an envelope around the data points. Note that the envelope is narrow and elongated. 
This indicates that the correlation is large—perhaps 0.80 to 0.90. Also, the correlation is posi-
tive because increases in X are generally accompanied by increases in X are generally accompanied by increases in X Y.

STEP 1
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X

Y

0 1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

0

F I G U R E  1 4 . 2 0
The scatter plot for the data of Demonstration 
14.1. An envelope is drawn around the points 
to estimate the magnitude of the correlation. 
A line is drawn through the middle of the 
envelope.

Compute the Pearson correlation. For these data, the Pearson correlation is

r 5
SPSPS

ÏSÏSÏ SXSXS SXSX SYÏ
5

40

Ï4Ï4Ï 0s54dÏ
5

40

Ï2160Ï
5

40

46.48
5 0.861

In Step 1, our preliminary estimate for the correlation was between 10.80 and 10.90. The 
calculated correlation is consistent with this estimate.

Compute the values for the regression equation. The general form of the regression 
equation is

Ŷ =Y =Y bX + a where b =
SPSPS

SS
X

S
X

S
  and  a = MY – bMXbMXbM

For these data, b =
40

40
= 1.00 and a = 6 − 1(4) = +2.00

Thus, the regression equation is Y
⁄

5 (1)X 1 2.00 or simply, Y
⁄

5 X 1 2.

Evaluate the significance of the correlation and the regression equation. The null hy-
pothesis states that, for the population, there is no linear relationship between X and X and X Y, and that Y, and that Y
the values obtained for the sample correlation and the regression equation are simply the result of 
sampling error. In terms of the correlation, H0H0H  says that the population correlation is zero (r 5 0). 
In terms of the regression equation, H0H0H  says that the equation does not predict a significant portion 
of the variance, or that the beta value is zero. The test can be conducted using either the t statistic t statistic t
for a correlation or the F-ratio for analysis of regression. Using the F-ratio for analysis of regression. Using the F F-ratio, we obtainF-ratio, we obtainF

SSregressionSSregressionSS 5 r2r2r (SSY) Y) Y 5 (0.861)2(54) 5 40.03 with df 5 1

SSresidualSSresidualSS 5 (1 2 r2r2r )(SSY) Y) Y 5 (1 2 0.8612)(54) 5 13.97 with df 5 n 5 2 5 3

F =
MSMSM rSrS egression

MSMSM rSrS esidual
5

40.03/1

13.97/3
5 8.60

With df 5 1, 3 and a 5 .05, the critical value is 10.13. Fail to reject the null hypothesis. The 
correlation and the regression equation are both not significant.

STEP 2

STEP 3

STEP 4
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PRO B LE M S

5. For the following scores,

X Y

4 0
1 5
1 0
4 5

a. Sketch a scatter plot and estimate the Pearson 
correlation.

b. Compute the Pearson correlation.

6. For the following scores,

X Y

3 6
5 5
6 0
6 2
5 2

a. Sketch a scatter plot and estimate the value of the 
Pearson correlation.

b. Compute the Pearson correlation.   

7. With a small sample, a single point can have a large 
effect on the magnitude of the correlation. To create 
the following data, we started with the scores from 
Problem 8 and changed the first X value from X value from X X 5 3 to 
X 5 8. 

X Y

8 6
5 5
6 0
6 2
5 2

a. Sketch a scatter plot and estimate the value of the 
Pearson correlation.

b. Compute the Pearson correlation. 

8. For the following set of scores,

X Y

4 5
6 5
3 2
9 4
6 5
2 3

1. Calculate SP (the sum of products of deviations) for 
the following scores. Note: Both means are whole 
numbers, so the definitional formula works well.

X Y

4 5
0 2
1 1
3 4

2. Calculate SP (the sum of products of deviations) for 
the following scores. Note: Both means are decimal 
values, so the computational formula works well.

X Y

0 4
1 1
0 5
4 1
2 1
1 3

3. For the following scores,

X Y

2 7
5 4
4 7
7 5
2 6
4 7

a. Sketch a scatter plot showing the six data points.
b. Just looking at the scatter plot, estimate the value 

of the Pearson correlation.
c. Compute the Pearson correlation.

4. For the following scores,

X Y

0 4
2 9
1 6
1 9

a. Sketch a scatter plot and estimate the Pearson cor-
relation.

b. Compute the Pearson correlation.
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a. Compute the Pearson correlation.  
b. Add 2 points to each X value and compute the cor-X value and compute the cor-X

relation for the modified scores. How does adding 
a constant to every score affect the value of the 
correlation?

c. Multiply each of the original X values by 2 and X values by 2 and X
compute the correlation for the modified scores. 
How does multiplying each score by a constant  
affect the value of the correlation?

9. At the beginning of this chapter we discussed a study 
by Judge and Cable (2010) demonstrating a posi-
tive relationship between weight and income for 
a group of men. The following are data similar to 
those obtained in the study. To simplify the weight 
variable, the men are classified into five categories 
that measure actual weight relative to height, from 
1 5 thinnest to 5 5 heaviest. Income is recorded as 
thousands earned annually.
a. Calculate the Pearson correlation for these data.
b. Is the correlation statistically significant? Use a 

two-tailed test with a 5 .05.

Weight (XWeight (XWeight ( )X)X Income (Y)Y)Y

4 151
5   88
3   52
2   73
1   49
3   92
1   56
5 143

10. For a two-tailed test with a 5 .05, use Table B.6 to 
determine how large a Pearson correlation is necessary 
to be statistically significant for each of the following 
samples. 
a. A sample of n 5 6
b. A sample of n 5 12
c. A sample of n 5 24

11. It appears that there is a significant relationship 
between cognitive ability and social status, at least for 
birds. Boogert, Reader, and Laland (2006) measured 
social status and individual learning ability for a group 
of starlings. The following data represent results 
similar to those obtained in the study. Because social 
status is an ordinal variable consisting of five ordered 
categories, the Spearman correlation is appropriate for 
these data. Convert the social status categories and the 
learning scores to ranks, and compute the Spearman 
correlation.

Subject
Social 
Status

Learning 
Score

A 1 3
B 3 10
C 2 7
D 3 11
E 5 19
F 4 17
G 5 17
H 2 4
I 4 12
J 2 3

12. Problem 9 presented data showing a positive relation-
ship between weight and income for a sample of profes-
sional men. However, weight was coded in five catego-
ries that could be viewed as an ordinal scale rather than 
an interval or ratio scale. If so, a Spearman correlation 
is more appropriate than a Pearson correlation. Convert 
the weights and the incomes into ranks and compute the 
Spearman correlation for the scores in Problem 9.

13. Problem 13 in Chapter 10 presented data demonstrat-
ing that handling money can reduce the perception 
of pain. In the study, one group counted money and 
another group counted blank pieces of paper. After the 
counting task, each participant dipped a hand into very 
hot water and rated how uncomfortable it was. 
a. Convert the data from this problem into a form 

suitable for the point-biserial correlation (use 1 
for the money and 0 for the plain paper), and then 
compute the correlation.

b. Square the value of the point-biserial correlation to 
obtain r2r2r .

c. The t test in Chapter 10 produced t test in Chapter 10 produced t t 5 3.57 with 
df 5 16. Use the equation on page 448 to com-
pute the value of r2 directly from the t statistic t statistic t
and its df. Within rounding error, the value of df. Within rounding error, the value of df r2

from the equation should be equal to the value 
obtained from the point-biserial correlation.

14. Sketch a graph showing the line for the equation 
Y 5 2X 2X 2 2 1. On the same graph, show the line for 
Y 5 2X 1 8.

15. A set of n 5 18 pairs of scores (X and X and X Y values) has Y values) has Y
SSXSSXSS 5 20, SSY 5 80, and SP 5 10. If the mean for the 
X values is X values is X MXMXM 5 8 and the mean for the Y values is Y values is Y
MY 5 10:
a. Calculate the Pearson correlation for the scores.
b. Find the regression equation for predicting Y from Y from Y

the X values.X values.X
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a. Find the regression equation for predicting Y from Y from Y
X.

b. Calculate the predicted Y value for each Y value for each Y X.

22. The regression equation is computed for a set of n 5 18 
pairs of X and X and X Y values with a correlation of Y values with a correlation of Y r 5 10.50 
and SSY 5 48.
a. Find the standard error of estimate for the regres-

sion equation.
b. How big would the standard error be if the sample 

size were n 5 66?

23. Solve the following problems.
a. One set of 10 pairs of scores, X and X and X Y values, proY values, proY -

duces a correlation of r 5 0.60. If SSY 5 200, find 
the standard error of estimate for the regression line.

b. A second set of 10 pairs of X and X and X Y values produces Y values produces Y
of correlation of r 5 0.40. If SSY 5 200, find the 
standard error of estimate for the regression line.

24. Does the regression equation from Problem 20 ac-
count for a significant portion of the variance in the Y
scores? Use a 5 .05 to evaluate the F-ratio.

25. Solve the following problems.
a. A researcher computes the linear regression equa-

tion for a sample of n 5 20 pairs of scores, X and X and X
Y values. If an analysis of regression is used to test Y values. If an analysis of regression is used to test Y
the significance of the equation, what are the df
values for the F-ratio?

b. A researcher evaluating the significance of a 
regression equation obtains an F-ratio with df 5 1, 
23. How many pairs of scores, X and X and X Y values, are Y values, are Y
in the sample?

16. A set of n 5 15 pairs of scores (X and X and X Y values) pro-Y values) pro-Y
duces a regression equation of Y

⁄
 15 pairs of scores (

⁄
 15 pairs of scores (

5 2X 2X 2 1 6. Find the 
predicted Y value for each of the following Y value for each of the following Y X scores: X scores: X
0, 2, 3, and 24.

17. Briefly explain what is measured by the standard error 
of estimate.

18. In general, how is the magnitude of the standard error 
of estimate related to the value of the correlation?

19. For the following set of data, find the linear regression 
equation for predicting Y from Y from Y X: 

X Y

2 1
7 10
5 8
3 0
3 4
4 13

20. For the following data:
a. Find the regression equation for predicting Y

from X.
b. Calculate the Pearson correlation for these data. 

Use r2r2r  and SSY to compute Y to compute Y SSresidualSSresidualSS  and the standard 
error of estimate for the equation.

X Y

3 3
6 9
5 8
4 3
7 10
5 9

21. For the following scores: 

X Y

3 8
5 8
2 6
2 3
4 6
1 4
4 7
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15
CHAP TER

Tools You Will Need
The following items are con-
sidered essential background 
material for this chapter. If you 
doubt your knowledge of any of 
these items, you should review 
the appropriate chapter or section 
before proceeding.

 ■ Proportions (math review, 
Appendix A)

 ■ Frequency distributions 
(Chapter 2)

15-1 Introduction to Chi-Square: The Test for Goodness of Fit

15-2 An Example of the Chi-Square Test for Goodness of Fit

15-3 The Chi-Square Test for Independence

15-4 Effect Size and Assumptions for the Chi-Square Tests 

15-5 The Relationship between Chi-Square and Other Statistical 
Procedures

Summary

Focus on Problem Solving

Demonstrations 15.1 and 15.2

Problems

The Chi-Square Statistic: 
Tests for Goodness of Fit 
and Independence
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15-1 Introduction to Chi-Square: The Test for Goodness of Fit

LE A R N I N G O B J E C T IV E S

1. Describe parametric and nonparametric hypothesis tests.

2. Describe the data (observed frequencies) for a chi-square test for goodness of �t.

3. Describe the hypotheses for a chi-square test for goodness of �t, explain how the 
expected frequencies are obtained, and �nd the expected frequencies for a speci�c 
research example.

■ Parametric and Nonparametric Statistical Tests
All the statistical tests we have examined thus far are designed to test hypotheses about 
specific population parameters. For example, we used t tests to assess hypotheses about t tests to assess hypotheses about t
a population mean (m) or mean difference (m1 2 m2). In addition, these tests typically 
make assumptions about other population parameters. Recall that, for analysis of variance 
(ANOVA), the population distributions are assumed to be normal and homogeneity of vari-
ance is required. Because these tests all concern parameters and require assumptions about 
parameters, they are called parametric tests.

Another general characteristic of parametric tests is that they require a numerical score 
for each individual in the sample. The scores then are added, squared, averaged, and other-
wise manipulated using basic arithmetic. In terms of measurement scales, parametric tests 
require data from an interval or a ratio scale (see Chapter 1).

Often, researchers are confronted with experimental situations that do not conform to the 
requirements of parametric tests. In these situations, it may not be appropriate to use a para-
metric test. Remember that when the assumptions of a test are violated, the test may lead to an 
erroneous interpretation of the data. Fortunately, there are several hypothesis-testing techniques 
that provide alternatives to parametric tests. These alternatives are called nonparametric tests.

In this chapter, we introduce two commonly used examples of nonparametric tests. 
Both tests are based on a statistic known as chi-square and both tests use sample data to 
evaluate hypotheses about the proportions or relationships that exist within populations. 
Note that the two chi-square tests, like most nonparametric tests, do not state hypoth-
eses in terms of a specific parameter and they make few (if any) assumptions about the 
population distribution. For the latter reason, nonparametric tests sometimes are called 
distribution-free tests.

One of the most obvious differences between parametric and nonparametric tests is 
the type of data they use. All of the parametric tests that we have examined so far require 
numerical scores. For nonparametric tests, on the other hand, the participants are usually just 
classified into categories such as Democrat and Republican, or High, Medium, and Low IQ. 
Note that these classifications involve measurement on nominal or ordinal scales, and they 
do not produce numerical values that can be used to calculate means and variances. Instead, 
the data for many nonparametric tests are simply frequencies—for example, the number of 
Democrats and the number of Republicans in a sample of n 5 100 registered voters.

■ The Chi-Square Test for Goodness of Fit
Parameters such as the mean and the standard deviation are the most common way to 
describe a population, but there are situations in which a researcher has questions about the 
proportions or relative frequencies for a distribution. For example:

How does the number of lawyers under the age of 50 compare with the number 50 
or older in the profession?
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Of the two leading brands of cola, which is preferred by most Americans?

In the past 10 years, has there been a signi�cant change in the proportion of 
10-year-old children who have their own cell phone?

Note that each of the preceding examples asks a question about proportions in the popu-
lation. In particular, we are not measuring a numerical score for each individual. Instead, 
the individuals are simply classified into categories and we want to know what proportion 
of the population is in each category. The chi-square test for goodness of fit is specifically chi-square test for goodness of fit is specifically chi-square test for goodness of fit
designed to answer this type of question. In general terms, this chi-square test uses the pro-
portions obtained for sample data to test hypotheses about the corresponding proportions 
in the population.

The chi-square test for goodness of �t uses sample data to test hypotheses about the chi-square test for goodness of �t uses sample data to test hypotheses about the chi-square test for goodness of �t
proportions for a population distribution. The test determines how well the obtained 
sample proportions �t the population proportions speci�ed by the null hypothesis.

Recall from Chapter 2 that a frequency distribution is defined as a tabulation of the num-
ber of individuals located in each category of the scale of measurement. In a frequency distri-
bution graph, the categories that make up the scale of measurement are listed on the X-axis. X-axis. X
In a frequency distribution table, the categories are listed in the first column. With chi-square 
tests, however, it is customary to present the scale of measurement as a series of boxes, with 
each box corresponding to a separate category on the scale. The frequency corresponding to 
each category is simply presented as a number written inside the box. Figure 15.1 shows how 
a distribution of exam grades for a set of n 5 40 students can be presented as a graph, a table, 
or a series of boxes. The scale of measurement for this example consists of five categories of 
grades (A, B, C, D, and F).

■ The Null Hypothesis for the Goodness-of-Fit Test
For the chi-square test of goodness of fit, the null hypothesis specifies the proportion (or 
percentage) of the population in each category. For example, a hypothesis might state that 
50% of all college students graduating in 2016 are men and 50% are women. The simplest 

The name of the test 
comes from the Greek 
letter x (chi, pronounced 
“kye”), which is used to 
identify the test statistic.

A B C D F

5

A B C D F
f

Grade

X f

A
B
C
D
F

5
11
16
6
25

10

0

15

20

11 16 6 26 2

F I G U R E  1 5.1
Distribution of exam grades for a sample of n = 40 individuals. The same frequency distribution is shown as a bar 
graph, as a table, and with the frequencies written in a series of boxes.
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way of presenting this hypothesis is to put the hypothesized proportions in the series of 
boxes representing the scale of measurement:

Men Women

H0H0H : 50% 50%

Although it is conceivable that a researcher could choose any proportions for the null 
hypothesis, there usually is some well-defined rationale for stating a null hypothesis. Gen-
erally H0H0H  falls into one of the following categories.

1. No Preference, Equal Proportions. The null hypothesis often states that the 
population is divided equally among the categories or that there is no preference 
among the different categories. For example, a hypothesis stating that there is no 
preference among the three leading brands of soft drinks would specify a popula-
tion distribution as follows:

Brand X Brand Y Brand Z (Preferences in the population 
are equally divided among the 
three soft drinks.)H0H0H :

1

3

1

3

1

3

The no-preference hypothesis is used in situations in which a researcher wants to 
determine whether there are any preferences among the categories, or whether the 
proportions differ from one category to another.

Because the null hypothesis for the goodness-of-�t test speci�es an exact 
distribution for the population, the alternative hypothesis (H1) simply states that the 
population distribution has a different shape from that speci�ed in H0H0H . If the null 
hypothesis states that the population is equally divided among three categories, the 
alternative hypothesis says that the population is not divided equally.

2. No Difference from a Known Population. The null hypothesis can state that 
the proportions for one population are not different from the proportions than are 
known to exist for another population. For example, suppose it is known that 28% 
of the licensed drivers in the state are younger than 30 years old and 72% are 30 or 
older. A researcher might wonder whether this same proportion holds for the distri-
bution of speeding tickets. The null hypothesis would state that tickets are handed 
out equally across the population of drivers, so there is no difference between the 
age distribution for drivers and the age distribution for speeding tickets. Speci�-
cally, the null hypothesis would be

Tickets Given 
to Drivers 

Younger than 30

Tickets Given 
to Drivers 

30 or Older

(Proportions for the popula-
tion of tickets are not different 
from proportions for drivers.)

H0H0H : 28% 72%

The no-difference hypothesis is used when a speci�c population distribution is 
already known. For example, you may have a known distribution from an earlier 
time, and the question is whether there has been any change in the proportions. Or, 
you may have a known distribution for one population (drivers) and the question is 
whether a second population (speeding tickets) has the same proportions.

Again, the alternative hypothesis (H1) simply states that the population propor-
tions are not equal to the values speci�ed by the null hypothesis. For this example, 
H1 would state that the number of speeding tickets is disproportionately high for 
one age group and disproportionately low for the other.
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■ The Data for The Goodness-of-Fit Test
The data for a chi-square test are remarkably simple. There is no need to calculate a sample 
mean or SS; you just select a sample of n individuals and count how many are in each 
category. The resulting values are called observed frequencies. The symbol for observed 
frequency is fofof . For example, the following data represent observed frequencies for a sam-
ple of 40 college students. The students were classified into three categories based on the 
number of times they reported exercising each week.

No Exercise Once a Week
More than 

Once a Week

15 19 6 n 5 40

Notice that each individual in the sample is classified into one and only one of the cat-
egories. Thus, the frequencies in this example represent three completely separate groups of 
students: 15 who do not exercise regularly, 19 who average once a week, and 6 who exercise 
more than once a week. Also note that the observed frequencies add up to the total sample 
size: o fofof 5 n. Finally, you should realize that we are not assigning individuals to categories. 
Instead, we are simply measuring individuals to determine the category in which they belong.

The observed frequency is the number of individuals from the sample who are classi-
�ed in a particular category. Each individual is counted in one and only one category.

■ Expected Frequencies
The general goal of the chi-square test for goodness of fit is to compare the data (the 
observed frequencies) with the null hypothesis. The problem is to determine how well the 
data fit the distribution specified in H0H0H —hence the name goodness of fit.

The first step in the chi-square test is to construct a hypothetical sample that represents 
how the sample distribution would look if it were in perfect agreement with the propor-
tions stated in the null hypothesis. Suppose, for example, the null hypothesis states that the 
population is distributed in three categories with the following proportions:

Category A Category B Category C (The population is distributed across 
the three categories with 25% in 
Category A, 50% in Category B, and 
25% in Category C.)

H0H0H : 25% 50% 25%

If this hypothesis is correct, how would you expect a random sample of n 5 40 individu-
als to be distributed among the three categories? It should be clear that your best strategy 
is to predict that 25% of the sample would be in Category A, 50% would be in Category B, 
and 25% would be in Category C. To find the exact frequency expected for each category, 
multiply the sample size (n) by the proportion (or percentage) from the null hypothesis. For 
this example, you would expect:

25% of 40 5 0.25(40) 5 10 individuals in Category A

50% of 40 5 0.50(40) 5 20 individuals in Category B

25% of 40 5 0.25(40) 5 10 individuals in Category C

The frequency values predicted from the null hypothesis are called expected frequencies. 
The symbol for expected frequency is fefef , and the expected frequency for each category is 
computed by

expected frequency 5 fefef 5 pn (15.1)

where p is the proportion stated in the null hypothesis and n is the sample size.
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Note that the no-preference null hypothesis will always produce equal expected fre-
quencies (fquencies (fquencies ( efef  values) for all categories because the proportions (p values) for all categories because the proportions (p values) for all categories because the proportions ( ) are the same for all cat-
egories. On the other hand, the no-difference null hypothesis typically will not produce 
equal values for the expected frequencies because the hypothesized proportions typically 
vary from one category to another. You also should note that the expected frequencies are 
calculated, hypothetical values, and the numbers that you obtain may be decimals or frac-
tions. The observed frequencies, on the other hand, always represent real individuals and 
always are whole numbers.

■ The Chi-Square Statistic
The general purpose of any hypothesis test is to determine whether the sample data support 
or refute a hypothesis about the population. In the chi-square test for goodness of fit, the 
sample is expressed as a set of observed frequencies (fsample is expressed as a set of observed frequencies (fsample is expressed as a set of observed frequencies ( ofof  values), and the null hypothesis is 
used to generate a set of expected frequencies (fused to generate a set of expected frequencies (fused to generate a set of expected frequencies ( efef  values). The chi-square statistic simply 
measures how well the data (fmeasures how well the data (fmeasures how well the data ( ofof ) fit the hypothesis (f) fit the hypothesis (f) fit the hypothesis ( efef ). The symbol for the chi-square statis-
tic is x2. The formula for the chi-square statistic is

chi{square 5 x2 5 S
s fofof 2 fefef d2

fefef
(15.2)

As the formula indicates, the value of chi-square is computed by the following steps:

1. Find the difference between fofof  (the data) and fefef  (the hypothesis) for each category.

2. Square the difference. This ensures that all values are positive.

3. Next, divide the squared difference by fefef .

4. Finally, sum the values from all the categories.

The first two steps determine the numerator of the chi-square statistic and should be 
easy to understand. Specifically, the numerator measures how much difference there is 
between the data (the fofof values) and the hypothesis (represented by the fefef  values). The final 
step is also reasonable: we add the values to obtain the total discrepancy between the data 
and the hypothesis. Thus, a large value for chi-square indicates that the data do not fit the 
hypothesis, and leads us to reject the null hypothesis.

However, the third step, which determines the denominator of the chi-square statistic, is 
not so obvious. Why must we divide by fefef  before we add the category values? The answer 
to this question is that the obtained discrepancy between fofof  and fefef  is viewed as relatively
large or relatively small depending on the size of the expected frequency. This point is 
demonstrated in the following analogy.

Suppose you were going to throw a party and you expected 1,000 people to show up. expected 1,000 people to show up. expected
However, at the party you counted the number of guests and observed that 1,040 actually observed that 1,040 actually observed
showed up. Forty more guests than expected are no major problem when all along you 
were planning for 1,000. There will still probably by enough beer and potato chips for 
everyone. On the other hand, suppose you had a party and you expected 10 people to attend 
but instead 50 actually showed up. Forty more guests in this case spell big trouble. How 
“significant” the discrepancy is depends in part on what you were originally expecting. 

The expected frequency for each category is the frequency value that is predicted 
from the proportions in the null hypothesis and the sample size (n). The expected 
frequencies de�ne an ideal, hypothetical sample distribution that would be 
obtained if the sample proportions were in perfect agreement with the proportions 
speci�ed in the null hypothesis.
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With very large expected frequencies, allowances are made for more error between fofof  and 
fefef . This is accomplished in the chi-square formula by dividing the squared discrepancy for 
each category, (feach category, (feach category, ( ofof 2 fefef )2, by its expected frequency.

LO1 1. Which of the following is a characteristic of nonparametric tests?

a. They require a numerical score for each individual.

b. They require assumptions about the population distribution(s).

c. They evaluate hypotheses about population means or variances.

d. None of the above is a characteristic of a nonparametric test.

LO2 2. Which of the following accurately describes the observed frequencies for a chi-
square test for goodness of fit?

a. They are always positive whole numbers.

b. They are always positive but can include fractions or decimals.

c. They can be positive or negative but are always whole numbers.

d. They can be positive or negative and can include fractions or decimals.

LO3 3. A researcher uses a sample of n 5 60 participants to test whether people have 
any preferences among three kinds of apples. Each person tastes all three types 
and then picks a favorite. What are the expected frequencies for the chi-square 
test for goodness of fit?

a. 1
3, 13, 13

b. 10, 10, 10

c. 20, 20, 20

d. 60, 60, 60

1. d 2. a 3. c

LE A R N I N G C H E C K

A N S W E R S

15-2 An Example of the Chi-Square Test for Goodness of Fit

LE ARN IN G O BJ EC TIV E S

 4. De�ne the degrees of freedom for the chi-square test for goodness of �t and locate 
the critical value for a speci�c alpha level in the chi-square distribution.

 5. Conduct a chi-square test for goodness of �t and report the results as they would 
appear in the scienti�c literature.

■ The Chi-Square Distribution and Degrees of Freedom
It should be clear from the chi-square formula that the numerical value of chi-square is 
a measure of the discrepancy between the observed frequencies (data) and the expected 
frequencies (H0H0H ). As usual, the sample data are not expected to provide a perfectly accurate 
representation of the population. In this case, the proportions or observed frequencies in 
the sample are not expected to be exactly equal to the proportions in the population. Thus, 
if there are small discrepancies between the fofof  and fefef  values, we obtain a small value for 
chi-square and we conclude that there is a good fit between the data and the hypothesis (fail 
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to reject H0H0H ). However, when there are large discrepancies between fofof  and fefef , we obtain a 
large value for chi-square and conclude that the data do not fit the hypothesis (reject H0H0H ). 
To decide whether a particular chi-square value is “large” or “small,” we must refer to a 
chi-square distribution. This distribution is the set of chi-square values for all the pos-
sible random samples when H0H0H  is true. Much like other distributions we have examined 
(t distribution, t distribution, t F distribution), the chi-square distribution is a theoretical distribution with F distribution), the chi-square distribution is a theoretical distribution with F
well-defined characteristics. Some of these characteristics are easy to infer from the chi-
square formula.

1. The formula for chi-square involves adding squared values, so you can never 
obtain a negative value. Thus, all chi-square values are zero or larger.

2. When H0H0H  is true, you expect the data (f is true, you expect the data (f is true, you expect the data ( ofof  values) to be close to the hypothesis  
(f(f( efef  values). Thus, we expect chi-square values to be small when H0H0H  is true.

These two factors suggest that the typical chi-square distribution will be positively skewed 
(Figure 15.2). Note that small values, near zero, are expected when H0H0H  is true and large 
values (in the right-hand tail) are very unlikely. Thus, unusually large values of chi-square 
form the critical region for the hypothesis test.

Although the typical chi-square distribution is positively skewed, there is one other factor 
that plays a role in the exact shape of the chi-square distribution—the number of categories. 
Recall that the chi-square formula requires that you add values from every category. The more 
categories you have, the more likely it is that you will obtain a large sum for the chi-square 
value. On average, chi-square will be larger when you are adding values from 10 categories 
than when you are adding values from only three categories. As a result, there is a whole 
family of chi-square distributions, with the exact shape of each distribution determined by the 
number of categories used in the study. Technically, each specific chi-square distribution is 
identified by degrees of freedom (dfdf ) rather than the number of categories. For the goodness-
of-fit test, the degrees of freedom are determined byof-fit test, the degrees of freedom are determined byof

df 5 C 2 1 (15.3)

where C is the number of categories. A brief discussion of this C is the number of categories. A brief discussion of this C df formula is presented in df formula is presented in df
Box 15.1. Figure 15.3 shows the general relationship between df and the shape of the chi-df and the shape of the chi-df
square distribution. Note that the chi-square values tend to get larger (shift to the right) as 
the number of categories and the degrees of freedom increase.

Caution: The df for a 
chi-square test is not 
related to sample size 
(n), as it is in most 
other tests.

x20

Critical
region

F I G U R E  1 5. 2
Chi-square distributions 
are positively skewed. The 
critical region is placed 
in the extreme tail, which re-
flects large chi-square values.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 15-2 | An Example of the Chi-Square Test for Goodness of Fit 481

x20

df 5 1

df 5 5

df 5 9

F I G U R E  1 5. 3
The shape of the chi-square 
distribution for different 
values of df. As the number df. As the number df
of categories increases, 
the peak (mode) of the 
distribution has a larger 
chi-square value.

Degrees of freedom for the chi-square test literally 
measure the number of free choices that exist when 
you are determining the null hypothesis or the ex-
pected frequencies. For example, when you are clas-
sifying individuals into three categories, you have 
exactly two free choices in stating the null hypothesis. 
You may select any two proportions for the first two 
categories, but then the third proportion is determined. 
If you hypothesize 25% in the first category and 50% 
in the second category, then the third category must be 
25% to account for 100% of the population.

Category A Category B Category C

25% 50% ?

In general, you are free to select proportions for 
all but one of the categories, but then the final pro-
portion is determined by the fact that the entire set 
must total 100%. Thus, you have C 2 1 free choices, 
where C is the number of categories: Degrees of freeC is the number of categories: Degrees of freeC -
dom, df, equal C 2 1.

all but one of the categories, but then the final pro
portion is determined by the fact that the entire set 
must total 100%. Thus, you have 
where 
dom, 

BOX 15.1 A Closer Look at Degrees of Freedom

The following example is an opportunity to test your understanding of the expected 
frequencies and the df value for the chi-square test for goodness of fit.df value for the chi-square test for goodness of fit.df

A researcher has developed three different designs for a computer keyboard. A sample of 
n 5 60 participants is obtained, and each individual tests all three keyboards and identifies 
his or her favorite. The frequency distribution of preferences is as follows:

Design A Design B Design C

23 12 25     n 5 60

Assume that the null hypothesis states that there are no preferences among the three designs. 
Find the expected frequencies for the chi-square test and determine the df value for the chi-df value for the chi-df
square statistic. You should find that fefef 5 20 for all three designs and df 5 2. ■

E X A M P L E  1 5 . 1
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■ Locating the Critical Region for a Chi-Square Test
Recall that a large value for the chi-square statistic indicates a big discrepancy between the 
data and the hypothesis, and suggests that we reject H0H0H . To determine whether a particular 
chi-square value is significantly large, you must consult the table entitled The Chi-Square 
Distribution (Appendix B). A portion of the chi-square table is shown in Table 15.1. The first 
column lists df values for the chi-square test, and the top row of the table lists proportions df values for the chi-square test, and the top row of the table lists proportions df
(alpha levels) in the extreme right-hand tail of the distribution. The numbers in the body of 
the table are the critical values of chi-square. The table shows, for example, that when the 
null hypothesis is true and df 5 3, only 5% (.05) of the chi-square values are greater than 
7.81, and only 1% (.01) are greater than 11.34. Thus, with df 5 3, any chi-square value 
greater than 7.81 has a probability of p , .05, and any value greater than 11.34 has a prob-
ability of p , .01.

■ A Complete Chi-Square Test for Goodness of Fit
We use the same step-by-step process for testing hypotheses with chi-square as we used 
for other hypothesis tests. In general, the steps consist of stating the hypotheses, locat-
ing the critical region, computing the test statistic, and making a decision about H0H0H . The 
following example demonstrates the complete process of hypothesis testing with the 
goodness-of-fit test.

Humans tend to associate some colors, especially red and yellow, with increased hun-
ger (Singh, 2006). Many fast food restaurants use this relationship when designing 
the signs and décor of their restaurants. To examine this phenomenon, a psychologist 
presents participants with a series of words describing moods/emotions (calm, happy, 
hungry, sleepy, anxious, and so on) and asks each person to choose the color that they 
associate with each. Each participant is given four color choices: red, yellow, green, and 
blue. The following data indicate how many people identified each color as associated 
with hunger. 

Red Yellow Green Blue

19 16 10 5

The question for the hypothesis test is whether there are any preferences among the four 
color choices. Are any of the colors associated with hunger more (or less) often than would 
be expected simply by chance?

E X A M P L E  1 5 . 2

TA B L E  1 5.1 
A portion of the table of 
critical values for the chi-
square distribution.

df

Proportion in Critical Region

0.10 0.05 0.025 0.01 0.005

1 2.71 3.84 5.02 6.63 7.88

2 4.61 5.99 7.38 9.21 10.60

3 6.25 7.81 9.35 11.34 12.84

4 7.78 9.49 11.14 13.28 14.86

5 9.24 11.07 12.83 15.09 16.75

6 10.64 12.59 14.45 16.81 18.55

7 12.02 14.07 16.01 18.48 20.28

8 13.36 15.51 17.53 20.09 21.96

9 14.68 16.92 19.02 21.67 23.59
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State the hypotheses and select an alpha level. The hypotheses can be stated as 
follows:

H0H0H : In the general population, no speci�c color is associated with hunger more 
than any other. Thus, the four colors are selected equally often, and the population 
distribution has the following proportions:

Red Yellow Green Blue

25% 25% 25% 25%

H1: In the general population, one or more of the colors more likely to be associ-
ated with hunger than the others.

We will use a 5 .05.

Locate the critical region. For this example, the value for degrees of freedom is

df 5 C 2 1 5 4 2 1 5 3

For df 5 3 and a 5 .05, the table of critical values for chi-square indicates that the critical 
x2 has a value of 7.81. The critical region is sketched in Figure 15.4.

Calculate the chi-square statistic. The calculation of chi-square is actually a two-
stage process. First, you must compute the expected frequencies from H0H0H  and then calculate 
the value of the chi-square statistic. For this example, the null hypothesis speci�es that 
one-quarter of the population ( p 5 25%) will be in each of the four categories. According 
to this hypothesis, we should expect one-quarter of the sample to be in each category. With 
a sample of n 5 50 individuals, the expected frequency for each category is

fefef 5 pn 5
1

4
(50) 5 12.5

The observed frequencies and the expected frequencies are presented in Table 15.2.

S T E P  1

S T E P  2

S T E P  3

Expected frequencies are 
computed and may be 
decimal values. Observed 
frequencies are always 
whole numbers.

7.810

df 5 3
a 5 .05

F I G U R E  1 5. 4
For Example 15.2, the 
critical region begins at 
a chi-square value of 7.81.

TA B L E  1 5. 2
The observed frequencies 
and the expected frequen-
cies for the chi-square test 
in Example 15.2.

Observed Frequencies

Red Yellow Green Blue

19 16 10 5

Expected Frequencies

Red Yellow Green Blue

12.5 12.5 12.5 12.5
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Using these values, the chi-square statistic may now be calculated.

x2 5
s fofof 2 fefef d2

fefef

5
s19 2 12.5d2

12.5
1

s16 2 12.5d2

12.5
1

s10 2 12.5d2

12.5
1

s5 2 12.5d2

12.5

5
42.25

12.5
1

12.25

12.5
1

6.25

12.5
1

56.25

12.5

5 3.38 1 0.98 1 0.50 1 4.50

5 9.36

State a decision and a conclusion. The obtained chi-square value is in the critical 
region. Therefore, H0H0H  is rejected, and the researcher may conclude that the four colors are 
not equally likely to be associated with hunger. Instead, there are signi�cant differences 
among the four colors, with some selected more often and others less often than would be 
expected by chance. Looking at the data, it is clear that red and yellow are associated with 
hunger more than expected but green and blue are associated less than expected. ■

S T E P  4

IN THE LITERATURE

Reporting the Results for Chi-Square
APA style speci�es the format for reporting the chi-square statistic in scienti�c jour-
nals. For the results of Example 15.2, the report might state:

The data showed that some of the four colors were signi�cantly more likely to be 
associated with hunger than the others, x2(3, n 5 50) 5 9.36, p , .05.

Note that the form of the report is similar to that of other statistical tests we have 
examined. Degrees of freedom are indicated in parentheses following the chi-square 
symbol. Also contained in the parentheses is the sample size (n). This additional infor-
mation is important because the degrees of freedom value is based on the number of 
categories (C), not sample size. Next, the calculated value of chi-square is presented, fol-
lowed by the probability that a Type I error has been committed. Because we obtained an 
extreme, very unlikely value for the chi-square statistic, the probability is reported as less 
than the alpha level. Additionally, the report may provide the observed frequencies (f the alpha level. Additionally, the report may provide the observed frequencies (f the alpha level. Additionally, the report may provide the observed frequencies ( ofof ) 
for each category. This information may be presented in a simple sentence or in a table. ■

■ Goodness of Fit and the Single-Sample t Test
We began this chapter with a general discussion of the difference between parametric tests 
and nonparametric tests. In this context, the chi-square test for goodness of fit is an exam-
ple of a nonparametric test; that is, it makes no assumptions about the parameters of the 
population distribution, and it does not require data from an interval or ratio scale. In con-
trast, the single-sample t test introduced in Chapter 9 is an example of a parametric test: It t test introduced in Chapter 9 is an example of a parametric test: It t
assumes a normal population, it tests hypotheses about the population mean (a parameter), 
and it requires numerical scores that can be added, squared, divided, and so on.

Although the chi-square test and the single-sample t are clearly distinct, they are also t are clearly distinct, they are also t
very similar. In particular, both tests are intended to use the data from a single sample to 
test hypotheses about a single population.

The primary factor that determines whether you should use the chi-square test or the 
t test is the type of measurement that is obtained for each participant. If the sample data t test is the type of measurement that is obtained for each participant. If the sample data t
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consist of numerical scores (from an interval or ratio scale), it is appropriate to compute 
a sample mean and use a t test to evaluate a hypothesis about the population mean. For t test to evaluate a hypothesis about the population mean. For t
example, a researcher could measure the IQ for each individual in a sample of registered 
voters. A t test could then be used to evaluate a hypothesis about the mean IQ for the entire t test could then be used to evaluate a hypothesis about the mean IQ for the entire t
population of registered voters. On the other hand, if the individuals in the sample are 
classified into non-numerical categories (on a nominal or ordinal scale), you would use 
a chi-square test to evaluate a hypothesis about the population proportions. For example, 
a researcher could classify people according to gender by simply counting the number of 
males and females in a sample of registered voters. A chi-square test would then be appro-
priate to evaluate a hypothesis about the population proportions.

LO4 1. A researcher is conducting a chi-square test for goodness of fit to evaluate A researcher is conducting a chi-square test for goodness of fit to evaluate A researcher is conducting a chi-square test for goodness of f
preferences among three different designs for a new automobile. With a sample 
of n 5 30 the researcher obtains a chi-square statistic of x2 5 4.81. What is the 
appropriate statistical decision for this outcome?

a. Reject the null hypothesis with a 5 .05, but not with a 5 .01.

b. Reject the null hypothesis with either a 5 .05 or a 5 .01.

c. Fail to reject the null hypothesis with either a 5 .05 or a 5 .01.

d. There is not enough information to determine the appropriate decision.

LO4 2. Which of the following is the correct equation to compute df for the chi-square df for the chi-square df
test for goodness of fit?

a. n 2 1

b. n 2 2

c. n 2 C (C (C where C is the number of categories)

d. None of the above

LO5 3. A researcher uses a sample of 20 college sophomores to determine whether 
they have any preference between two cell phones. Each student uses each 
phone for one day and then selects a favorite. If 14 students select the first 
phone and only 6 choose the second, then what is the value for x2?

a. 0.80

b. 1.60

c. 3.20

d. 11.0

1. c 2. d 3. c

LE A R N I N G C H E C K

A N S W E R S

15-3 The Chi-Square Test for Independence

LE A R N I N G O B J E C T IV E S

 6. De�ne the degrees of freedom for the chi-square test for independence and locate 
the critical value for a speci�c alpha level in the chi-square distribution.

 7. Describe the hypotheses for a chi-square test for independence and explain how the 
expected frequencies are obtained.

 8. Conduct a chi-square test for independence and report the results as they would 
appear in the scienti�c literature.
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The chi-square statistic may also be used to test whether there is a relationship between two 
variables. In this situation, each individual in the sample is measured or classified on two 
separate variables. For example, a group of students could be classified in terms of personal-
ity (introvert, extrovert) and in terms of color preference (red, yellow, green, or blue). Usu-
ally, the data from this classification are presented in the form of a matrix, where the rows 
correspond to the categories of one variable and the columns correspond to the categories of 
the second variable. Table 15.3 presents hypothetical data for a sample of n 5 200 students 
who have been classified by personality and color preference. The number in each box, or 
cell, of the matrix indicates the frequency, or number of individuals in that particular group. 
In Table 15.3, for example, there are 10 students who were classified as introverted and who 
selected red as their preferred color. To obtain these data, the researcher first selects a ran-
dom sample of n 5 200 students. Each student is then given a personality test and is asked 
to select a preferred color from among the four choices. Note that the classification is based 
on the measurements for each student; the researcher does not assign students to categories. 
Also, note that the data consist of frequencies, not scores, from a sample. The goal is to use 
the frequencies from the sample to test a hypothesis about the population frequency distribu-
tion. Specifically, are these data sufficient to conclude that there is a significant relationship 
between personality and color preference in the population of students?

You should realize that the color preference study shown in Table 15.3 is an example 
of nonexperimental research (Chapter 1, page 21). The researcher did not manipulate any 
variable and the participants were not randomly assigned to groups or treatment conditions. 
However, similar data are often obtained from true experiments. The following example is 
a demonstration of frequency data from an experimental study.

Guéguen, Jacob, and Lamy (2010) demonstrated that romantic background music increas-
es the likelihood that a woman will give her phone number to a man she has just met. The 
participants in the study were female undergraduate students, 18 to 20 years old, who 
were recruited to take part in research on product evaluation. Each woman was taken to a 
waiting room with background music playing. For some of the women, the music was a 
popular love song and for the others, the music was a neutral song. After three minutes the 
participant was moved to another room in which a 20-year-old man was already waiting. 
The men were part of the study and were selected because they previously had been rated 
as average in attractiveness. The participant and the confederate were instructed to eat two 
cookies, one organic and one without organic ingredients, and then talk about the differ-
ences between the two for a few minutes. After five minutes, the experimenter returned to 
end the study and asked the pair to wait alone for a few minutes. During this time, the man 
used a scripted line to ask the woman for her phone number. Data similar to the results 
obtained in the study are shown in Table 15.4. Note that the researchers manipulated the 
type of background music (independent variable) and recorded the number of yes and no 
responses (dependent variable) for each type of music. As with the color preference data, 
the researchers would like to use the frequencies from the sample to test a hypothesis about 
the corresponding frequency distribution in the population. In this case, the researchers 
would like to know whether the sample data provide enough evidence to conclude that 
there is a significant relationship between the type of music and a woman’s response to a 
request for her phone number. ■

E X A M P L E  1 5 . 3

Red Yellow Green Blue

Introvert 10 3 15 22 50

Extrovert 90 17 25 18 150

100 20 40 40 n 5 200

TA B L E  1 5. 3
Color preferences accord-
ing to personality types.
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Gave Phone Number?

Yes No

Type of Music
Romantic 27 23 50

Neutral 15 35 50

42 58

The procedure for using sample frequencies to evaluate hypotheses concerning relation-
ships between variables involves another test using the chi-square statistic. In this situation, 
however, the test is called the chi-square test for independence.

TA B L E  1 5. 4
A frequency distribu-
tion table showing the 
number of participants 
who answered either yes 
or no when asked for 
their phone numbers. One 
group listened to romantic 
music while in a wait-
ing room and the second 
group listened to neutral 
music. 

The chi-square test for independence uses the frequency data from a sample to 
evaluate the relationship between two variables in the population. Each individual 
in the sample is classi�ed on both of the two variables, creating a two-dimensional 
frequency distribution matrix. The frequency distribution for the sample is then used 
to test hypotheses about the corresponding frequency distribution in the population.

Two variables are independent when there is no consistent, predictable relationship 
between them. In this case, the frequency distribution for one variable is not related 
to (or dependent on) the categories of the second variable. As a result, when two 
variables are independent, the frequency distribution for one variable will have the 
same shape (same proportions) for all categories of the second variable.

■ The Null Hypothesis for the Test for Independence
The null hypothesis for the chi-square test for independence states that the two variables 
being measured are independent; that is, for each individual, the value obtained for one 
variable is not related to (or influenced by) the value for the second variable. This general 
hypothesis can be expressed in two different conceptual forms, each viewing the data and 
the test from slightly different perspectives. The study in Example 15.3 examining back-
ground music and the likelihood of giving a phone number is used to present both versions 
of the null hypothesis.

H0 Version 1 For this version of H0H0H , the data are viewed as a single sample with each 
individual measured on two variables. The goal of the chi-square test is to evaluate the 
relationship between the two variables. For the example we are considering, the goal is to 
determine whether there is a consistent, predictable relationship between the type of music 
and whether a woman gives her phone number. That is, if I know the type of background 
music, will it help me to predict whether she will give her number? The null hypothesis 
states that there is no relationship. The alternative hypothesis, H1, states that there is a 
relationship between the two variables.

H0H0H : For the general population of students, there is no relationship between the type 
of background music and whether a woman will give her phone number.

This version of H0H0H  demonstrates the similarity between the chi-square test for indepen-
dence and a correlation. In each case, the data consist of two measurements (X and X and X Y) for Y) for Y
each individual, and the goal is to evaluate the relationship between the two variables. The 
correlation, however, requires numerical scores for X and X and X Y. The chi-square test, on the Y. The chi-square test, on the Y
other hand, simply uses frequencies for individuals classified into categories.
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H0 Version 2 For this version of H0H0H , the data are viewed as two (or more) separate 
samples representing two (or more) populations or treatment conditions. The goal of the 
chi-square test is to determine whether there are significant differences between the popu-
lations. For the example we are considering, the data in Table 15.4 would be viewed as 
a sample of n 5 50 women who hear romantic music (top row) and a separate sample of 
n 5 50 women who hear neutral music (bottom row). The chi-square test will determine 
whether the proportion of women giving phone numbers with romantic music is signifi-
cantly different from the proportion with neutral music. From this perspective, the null 
hypothesis is stated as follows:

H0H0H : In the population of female undergraduates, the proportions of yes and no 
responses with romantic music are not different from the proportions with neutral 
music. The two distributions have the same shape (same proportions).

This version of H0H0H  demonstrates the similarity between the chi-square test and an 
independent-measures t test (or ANOVA). In each case, the data consist of two (or more) t test (or ANOVA). In each case, the data consist of two (or more) t
separate samples that are being used to test for differences between two (or more) popula-
tions. The t test (or ANOVA) requires numerical scores to compute means and mean dift test (or ANOVA) requires numerical scores to compute means and mean dift - test (or ANOVA) requires numerical scores to compute means and mean dif- test (or ANOVA) requires numerical scores to compute means and mean dif
ferences. However, the chi-square test simply uses frequencies for individuals classified 
into categories. The null hypothesis for the chi-square test states that the populations have 
the same proportions (same shape). The alternative hypothesis, H1, simply states that the 
populations have different proportions. For the example we are considering, H1 states that 
the proportions of yes and no responses with romantic music are different from the propor-
tions with neutral music.

Equivalence of H0 Version 1 and H0 Version 2 Although we have presented two 
different statements of the null hypothesis, these two versions are equivalent. The first 
version of H0H0H  states that the likelihood that a woman will give her phone number to a man 
she has just met is not related to the type of background music. If this hypothesis is correct, 
then the distribution of yes and no responses should not depend on the type of music. In 
other words, the distribution of yes and no responses should have the same proportions for 
romantic and neutral music, which is the second version of H0H0H .

For example, if we found that 60% of the women said no with neutral music, then H0H0H
would predict that we also should find that 60% say no with romantic music. In this case, 
knowing the type of background music does not help you predict whether she will say yes 
or no. Note that finding the same proportions indicates no relationship.

On the other hand, if the proportions were different, it would suggest that there is a rela-
tionship. For example, if 60% of the women say no with neutral music but only 30% say 
no with romantic music, then there is a clear, predictable relationship between the type of 
music and the woman’s response. (If I know the type of music, I can predict the woman’s 
response.) Thus, finding different proportions means that there is a relationship between 
the two variables.

Thus, stating that there is no relationship between two variables (version 1 of H0H0H ) is 
equivalent to stating that the distributions have equal proportions (version 2 of H0H0H ).

■ Observed and Expected Frequencies
The chi-square test for independence uses the same basic logic that was used for the good-
ness-of-fit test. First, a sample is selected, and each individual is classified or categorized. 
Because the test for independence considers two variables, every individual is classified on 
both variables, and the resulting frequency distribution is presented as a two-dimensional 
matrix (see Table 15.4). As before, the frequencies in the sample distribution are called 
observed frequencies and are identified by the symbol fofof .
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The next step is to find the expected frequencies, or fefef  values, for this chi-square test. As 
before, the expected frequencies define an ideal hypothetical distribution that is in perfect 
agreement with the null hypothesis. Once the expected frequencies are obtained, we com-
pute a chi-square statistic to determine how well the data (observed frequencies) fit the null 
hypothesis (expected frequencies).

Although you can use either version of the null hypothesis to find the expected fre-
quencies, the logic of the process is much easier when you use H0H0H  stated in terms of equal 
proportions. For the example we are considering, the null hypothesis states

H0H0H : The frequency distribution of yes and no responses has the same shape (same 
proportions) for both categories of background music.

To find the expected frequencies, we first determine the overall distribution of yes and no 
responses and then apply this distribution to both categories of music. Table 15.5 shows 
an empty matrix corresponding to the data from Table 15.4. Notice that the empty matrix 
includes all of the row totals and column totals from the original sample data. The row totals 
and column totals are essential for computing the expected frequencies.

The column totals for the matrix describe the overall distribution of yes/no 
responses. For these data, 42 women said yes. Because the total sample consists of 100 
women, the proportion saying yes is 42 out of 100, or 42%. Similarly, 58 out of 100, 
or 58%, said no. 

The row totals in the matrix define the two types of music. For example, the matrix 
in Table 15.5 shows a total of 50 women who heard romantic music (the top row) and a 
sample of 50 women who heard neutral music (the bottom row). According to the null 
hypothesis, both groups should have the same proportions of yes and no responses. To find 
the expected frequencies, we simply apply the overall distribution of yes and no responses 
to each group. Beginning with the sample of 50 women in the top row, we obtain expected 
frequencies of

42% say yes: fefef 5 42% of 50 5 0.42(50) 5 21

58% say no: fefef 5 58% of 50 5 0.58(50) 5 29

Using exactly the same proportions for the sample of n 5 50 women who heard neutral 
music in the bottom row, we obtain expected frequencies of

42% say yes: fefef 5 42% of 50 5 0.42(50) 5 21

58% say no: fefef 5 58% of 50 5 0.58(50) 5 29

The complete set of expected frequencies is shown in Table 15.6. Notice that the row totals 
and the column totals for the expected frequencies are the same as those for the original 
data (the observed frequencies) in Table 15.4.

A Simple Formula for Determining Expected Frequencies Although expected 
frequencies are derived directly from the null hypothesis and the sample characteristics, 

TA B L E  1 5. 5
An empty frequency 
distribution matrix show-
ing only the row totals 
and column totals. (These 
numbers describe the basic 
characteristics of the sam-
ple from Table 15.4.) 

Gave Phone Number?

Yes No

Type of Music
Romantic 50

Neutral 50

42 58
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TA B L E  1 5.6
Expected frequencies 
corresponding to the data 
in Table 15.4. (This is the 
distribution predicted by 
the null hypothesis.) 

Gave Phone Number?

Yes No

Type of Music
Romantic 21 29 50

Neutral 21 29 50

42 58

it is not necessary to go through extensive calculations to find fefef  values. In fact, there is a 
simple formula that determines fefef  for any cell in the frequency distribution matrix:

fefef 5
fcfcf frfrf

n
(15.4)

where fcfcf  is the frequency total for the column (column total), frfrf  is the frequency total for the r is the frequency total for the r

row (row total), and n is the number of individuals in the entire sample. To demonstrate this 
formula, we compute the expected frequency for romantic music and no phone number in 
Table 15.6. First, note that this cell is located in the top row and second column in the table. 
The column total is fcfcf 5 58, the row total is frfrf 5 50, and the sample size is n 5 100. Using 
these values in Formula 15.4, we obtain

fefef 5
58(50)

100
5

2900

100
5 29

This is identical to the expected frequency we obtained using percentages from the overall 
distribution.

■ The Chi-Square Statistic and Degrees of Freedom
The chi-square test of independence uses exactly the same chi-square formula as the test 
for goodness of fit:

x2 5 S
s fofof 2 fefef d2

fefef

For the observed frequencies in Table 15.4 and the expected frequencies in Table 15.6, we 
obtain

x2 5
(27 2 21)2

21
1

(23 2 29)2

29
1

(15 2 21)2

21
1

(35 2 29)2

29

5  1.714  1  1.241  1  1.714  1 1.241

5  5.91

As before, the formula measures the discrepancy between the data (fAs before, the formula measures the discrepancy between the data (fAs before, the formula measures the discrepancy between the data ( ofof  values) and the 
hypothesis (fhypothesis (fhypothesis ( efef  values). A large discrepancy produces a large value for chi-square and indi-
cates that H0H0H  should be rejected. To determine whether a particular chi-square statistic 
is significantly large, you must first determine degrees of freedom (df ) for the statistic 
and then consult the chi-square distribution in the appendix. For the chi-square test of 
independence, degrees of freedom are based on the number of cells for which you can 
freely choose expected frequencies. Recall that the fefef  values are partially determined by the 
sample size (n) and by the row totals and column totals from the original data. These vari-
ous totals restrict your freedom in selecting expected frequencies. This point is illustrated 
in Table 15.7. After one of the fefef  values has been determined, all the other fefef  values in the 
table are also determined. In general, the row totals and the column totals restrict the final 
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Gave Phone Number?

Yes No

Type of Music
Romantic 21 ? 50

Neutral ? ? 50

42 58

TA B L E  1 5.7
Degrees of freedom and 
expected frequencies. 
(After one value has been 
determined, all the remain-
ing expected frequencies 
are determined by the row 
totals and the column to-
tals. This example has only 
one free choice, so df 5 1.) choices in each row and column. As a result, we may freely choose all but one fefef  in each 

row and all but one fefef  in each column. If R is the number of rows and C is the number of C is the number of C
columns, and you remove the last column and the bottom row from the matrix, you are 
left with a smaller matrix that has C 2 1 columns and R 2 1 rows. The number of cells 
in the smaller matrix determines the df value. Thus, the total number of df value. Thus, the total number of df fefef  values that you 
can freely choose is (R 2 1)(C 2 1), and the degrees of freedom for the chi-square test of 
independence are given by the formula

df 5 (R 2 1)(C 2 1) (15.5)

Also note that once you calculate the expected frequencies to fill the smaller matrix, the 
rest of the fefef  values can be found by subtraction.

The following example is an opportunity to test your understanding of the expected 
frequencies and the df value for the chi-square test for independence.df value for the chi-square test for independence.df

A researcher would like to know which factors are most important to people who are buy-
ing a new car. Each individual in a sample of n 5 200 customers is asked to identify the 
most important factor in the decision process: Performance, Reliability, or Style. The re-
searcher would like to know whether there is a difference between the factors identified 
by younger adults (age 35 or younger) compared to those identified by older adults (age 
greater than 35). The data are as follows:

Observed Frequencies of Most Important 
Factor According to Age

Performance Reliability Style Totals

Younger 21 33 26 80

Older 19 67 34 120

Totals 40 100 60

Compute the expected frequencies and determine the value for df for the chi-square test. df for the chi-square test. df
You should find expected frequencies of 16, 40, and 24 for the younger adults; 24, 60, and 
36 for the older adults; and df 5 2. ■

■ A Summary of the Chi-Square Test for Independence
At this point we have presented essentially all of the elements of a chi-square test for 
independence. Using the romantic music study in Example 15.3 (page 486), the test is 
summarized as follows.

State the hypotheses and select an alpha level. For this example, the null hypothesis 
states that there is no relationship between the type of background music and the likelihood 
that a woman will give her phone number to a man she has just met; the two variables are inde-
pendent. The alternative hypothesis states that there is a relationship between the two variables 
or that the likelihood of giving a phone number depends on the type of background music.

E X A M P L E  1 5 . 4

S T E P  1
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Locate the critical region. The chi-square test has degrees of freedom given by

df 5 (R 2 1)(C 2 1)  5 1(1)  5  1

With df 5 1 and a 5 .05, the critical value is x2 5 3.84.

Compute the test statistic. Earlier, we computed x2 5 5.91 for the data from Exam-
ple 15.3 using the observed frequencies in Table 15.4 and the expected frequencies in 
Table 15.6.

Make a decision. The chi-square value that we obtained is beyond the critical bound-
ary, so we reject H0H0H  and conclude that there is a statistically signi�cant relationship between 
the likelihood that a woman will give her phone number to a man she has just met and the 
type of background music. Looking at the data, it is clear that the proportion of women who 
give their numbers after listening to romantic music is higher than the proportion of women 
who have been listening to neutral music.

S T E P  2

S T E P  3

S T E P  4

LO6 1. If a chi-square test for independence has df 5 3, then how many cells are in the 
matrix of observed frequencies?

a. 4 

b. 5

c. 6

d. 8

LO7 2. Which of the following can be evaluated with a chi-square test for 
independence?

a. The relationship between two variables

b.  Differences between two or more population frequency distributions

c. Either the relationship between two variables or the differences between 

distributions

d. Neither the relationship between two variables nor the differences between 

distributions

LO8 3. A researcher classifies a group of people into three age groups and measures 
whether each person used Facebook during the previous week (yes/no). The 
researcher uses a chi-square test for independence to determine if there is a 
significant relationship between the two variables. If the researcher obtains 
x2 5 6.75, then what is the correct decision for the test?

a. Reject H0H0H for a 5 .05 but not for a 5 .01.

b. Reject H0H0H for a 5 .01 but not for a 5 .05.

c. Reject H0H0H for either a 5 .05 or a 5 .01.

d. Fail to reject H0H0H for a 5 .05 and a 5 .01.

1. d 2. c 3. a

LE A R N I N G C H E C K

A N S W E R S
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15-4 Effect Size and Assumptions for the Chi-Square Tests

LE A R N I N G O B J E C T IV E S

 9. Compute Cohen’s w to measure effect size for both chi-square tests.

 10. Compute the phi-coef�cient or Cramér’s Compute the phi-coef�cient or Cramér’s Compute the phi-coef V to measure effect size for the chi-V to measure effect size for the chi-V
square test for independence.

 11. Identify the basic assumptions and restrictions for chi-square tests.

■ Cohen’s w
Hypothesis tests, like the chi-square test for goodness of fit or for independence, evalu-
ate the statistical significance of the results from a research study. Specifically, the 
intent of the test is to determine whether it is likely that the patterns or relationships 
observed in the sample data could have occurred without any corresponding patterns 
or relationships in the population. Tests of significance are influenced not only by the 
size or strength of the treatment effects but also by the size of the samples. As a result, 
even a small effect can be statistically significant if it is observed in a very large sample. 
Because a significant effect does not necessarily mean a large effect, it is generally rec-
ommended that the outcome of a hypothesis test be accompanied by a measure of the 
effect size. This general recommendation also applies to the chi-square tests presented 
in this chapter. 

Jacob Cohen (1992) introduced a statistic called w that provides a measure of effect 
size for either of the chi-square tests. The formula for Cohen’s w is very similar to the chi-
square formula but uses proportions instead of frequencies. 

w 5ÎSÎSÎ (Po 2 Pe)
2

Pe
Î (15.6)

In the formula, the Po values are the observed proportions in the data and are obtained by 
dividing each observed frequency by the total number of participants.

observed proportion 5 Po 5
fofof

n

Similarly, the Pe values are the expected proportions that are specified in the null hypoth-
esis. The formula instructs you to: 

1. Compute the difference between the observed proportion and the expected propor-Compute the difference between the observed proportion and the expected propor-Compute the dif
tion for each cell (category).

2. For each cell, square the difference and divide by the expected proportion.

3. Add the values from Step 2 and take the square root of the sum.

The following example demonstrates this process.

A researcher would like to determine whether students have any preferences among four 
pizza shops in town. A sample of n 5 40 students is obtained and fresh pizza is ordered 
from each of the four shops. Each student tastes all four pizzas and then selects a favorite. 
The observed frequencies are as follows:

Shop A Shop B  Shop C Shop D

6 12 8 146 12 8 146 12 8 146 12 8 14  40

E X A M P L E  1 5 . 5
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The null hypothesis states that there are no preferences among the four shops so the ex-
pected proportion is p 5 0.25 for each. The observed proportions are 6

40 5 0.15 for Shop A, 
12
405 0.30 for Shop B,  8

405 0.20 for Shop C, and 14
40 5 0.35 for Shop D. The calculations for 

w are summarized in the table below.

PoPoP PePeP (PoPoP – PePeP ) (PoPoP – PePeP )2 (PoPoP – PePeP )2yPePeP

Shop A 0.15 0.25 20.10 0.01 0.04
Shop B 0.30 0.25 0.05 0.0025 0.01
Shop C 0.25 0.25 20.05 0.0025 0.01
Shop D 0.35 0.25 0.10 0.01 0.04

0.10

S
(p

o
2 p

e
)2

p
e

= 0.10 and w = Ï0.10Ï = 0.316

Cohen (1992) also suggested guidelines for interpreting the magnitude of w, with values 
near 0.10 indicating a small effect, 0.30 a medium effect, and 0.50 a large effect. By these 
standards, the value obtained in Example 15.5 is a medium effect.

The Role of Sample Size You may have noticed that the formula for computing w
does not contain any reference to the sample size. Instead, w is calculated using only the 
sample proportions and the proportions from the null hypothesis. As a result, the size of 
the sample has no influence on the magnitude of w. This is one of the basic characteristics 
of all measures of effect size. Specifically, the number of scores in the sample has little or 
no influence on effect size. On the other hand, sample size does have a large impact on the 
outcome of a hypothesis test.  For example, the data in Example 15.5 produce x2 5 4.00. 
With df 5 3, the critical value for a 5 0.5 is 7.81 and we conclude that there are no sig-
nificant preferences among the four pizza shops. However, if the number of individuals in 
each category is doubled, so that the observed frequencies become 12, 24, 16, and 28, then 
the new x2 5 8.00. Now the statistic is in the critical region so we reject H0H0H  and conclude 
that there are significant preferences. Thus, increasing the size of the sample increases the 
likelihood of rejecting the null hypothesis. You should realize, however, that the propor-
tions for the new sample are exactly the same as the proportions for the original sample, 
so the value of w does not change. For both sample sizes, w 5 0.316.

Chi-Square and w Although the chi-square statistic and effect size as measured by w
are intended for different purposes and are affected by different factors, they are algebra-
ically related. In particular, the portion of the formula for w that is under the square root 
can be obtained by dividing the formula for chi-square by n. Dividing by the sample size 
converts each of frequencies (observed and expected) into a proportion, which produces 
the formula for w. As a result, you can determine the value of w directly from the chi-
square value by the following equation:

w 5Îx2Î nÎ (15.7)

For the data in Example 15.5, we obtained  x2 5 4.00 and w 5 0.316. Substituting in the 
formula produces 

w 5Îx2Î nÎ 5Î4.00Î 40Î 5 Ï0Ï0Ï .10Ï 5 0.316

■

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



SECTION 15-4 | Effect Size and Assumptions for the Chi-Square Tests 495

Although Cohen’s w statistic also can be used to measure effect size for the chi-square test 
for independence, two other measures have been developed specifically for this hypothesis 
test. These two measures, known as the phi-coefficient and Cramér’s V, make allowances V, make allowances V
for the size of the data matrix and are considered to be superior to w, especially with very 
large data matrices. 

■ The Phi-Coefficient and Cramér’s V
In Chapter 14 (page 448), we introduced the phi-coefficient as a measure of correlation for phi-coefficient as a measure of correlation for phi-coefficient
data consisting of two dichotomous variables (both variables have exactly two values). This 
same situation exists when the data for a chi-square test for independence form a 2 3 2 
matrix (again, each variable has exactly two values). In this case, it is possible to compute 
the correlation phi (f) in addition to the chi-square hypothesis test for the same set of data. 
Because phi is a correlation, it measures the strength of the relationship, rather than the 
significance, and thus provides a measure of effect size. The value for the phi-coefficient 
can be computed directly from chi-square by the following formula:

f 5Îx2Î nÎ (15.8)

Note that Cohen’s w and f (Equations 15.7 and 15.8) are the same for a 2 3 2 data  matrix.
The value of the phi-coefficient is determined entirely by the proportions in the 2 3 2 

data matrix and is completely independent of the absolute size of the frequencies. The chi-
square value, however, is influenced by the proportions and by the size of the frequencies. 
This distinction is demonstrated in the following example.

The following data show a frequency distribution evaluating the relationship between self-
assigned gender of male and female and preference between two candidates for student 
president.

Candidate

A B

Male 5 10

Female 10 5

Note that the data show that males prefer Candidate B by a 2-to-1 margin and females 
prefer Candidate A by 2 to 1. Also note that the sample includes a total of 15 males and 
15 females. We will not perform all the arithmetic here, but these data produce chi-square 
equal to 3.33 (which is not significant) and a phi-coefficient of 0.333.

Next we keep exactly the same proportions in the data, but double all of the frequen-
cies. The resulting data are as follows:

Candidate

A B

Male 10 20

Female 20 10

Once again, males prefer Candidate B by 2 to 1 and females prefer Candidate A by 2 to 1. 
However, the sample now contains 30 males and 30 females. For these new data, the value 
of chi-square is 6.66, twice as big as it was before (and now significant with a 5 .05), but 
the value of the phi-coefficient is still 0.333.

Note that the value of 
x2 is already a squared 
value. Do not square it 
again.  

E X A M P L E  1 5 . 6
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Because the proportions are the same for the two samples, the value of the phi-coefficient 
is unchanged. However, the larger sample provides more convincing evidence than the small-
er sample, so the larger sample is more likely to produce a significant result. ■

The interpretation of f follows the same standards used to evaluate a correlation 
(Table 9.3, page 252, shows the standards for squared correlations): a correlation of 0.10 is a 
small effect, 0.30 is a medium effect, and 0.50 is a large effect. Occasionally, the value of f is 
squared (f2) and is reported as a percentage of variance accounted for, exactly the same as r2r2r .

When the chi-square test involves a matrix larger than 2 × 2, a modification of the phi-
coefficient, known as Cramér’s V, can be used to measure effect size.Cramér’s V, can be used to measure effect size.Cramér’s V

V 5Î x2Însdfdfd *dÎ (15.9)

Note that the formula for Cramér’s V (15.9) is identical to the formula for the phi-V (15.9) is identical to the formula for the phi-V
coefficient (15.8) except for the addition of df * in the denominator. The df * value is not
the same as the degrees of freedom for the chi-square test, but it is related. Recall that 
the chi-square test for independence has df 5 (R 2 1)(C 2 1), where R is the number of 
rows in the table and C is the number of columns. For Cramér’s C is the number of columns. For Cramér’s C V, the value of V, the value of V df * is the 
smaller of either (R 2 1) or (C 2 1).

Cohen (1988) has also suggested standards for interpreting Cramér’s V that are shown V that are shown V
in Table 15.8. Note that when df * 5 1, as in a 2 3 2 matrix, the criteria for interpret-
ing V are exactly the same as the criteria for interpreting a regular correlation or a phi-V are exactly the same as the criteria for interpreting a regular correlation or a phi-V
coefficient.

In a research report, the measure of effect size appears immediately after the results 
of the hypothesis test. For the romantic music study in Example 15.3, for example, we 
obtained x2 5 5.91 for a sample of n 5 100 participants. Because the data form a 2 3 2 
matrix, the phi-coefficient is the appropriate measure of effect size and the data produce

f 5Îx2Î nÎ 5Î5.91Î 100Î 5 0.243

For these data, the results from the hypothesis test and the measure of effect size would be 
reported as follows:

The results showed a signi�cant relationship between the type of background 
music and a woman’s willingness to give her phone number, x2(1, n 5 100) 5
5.91, p , .05, f 5 0.243. Speci�cally, women who listened to romantic music 
were much more likely to give their phone numbers to men they had just met.

■ Assumptions and Restrictions for Chi-Square Tests 
To use a chi-square test for goodness of fit or a test of independence, several conditions 
must be satisfied. For any statistical test, violation of assumptions and restrictions casts 

TA B L E  1 5. 8
Standards for interpreting 
Cramér’s V as proposed V as proposed V
by Cohen (1988).

Small 
Effect

Medium 
Effect

Large 
Effect

For df* = 1 0.10 0.30 0.50

For df* = 2 0.07 0.21 0.35

For df* = 3 0.06 0.17 0.29
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doubt on the results. For example, the probability of committing a Type I error may be dis-
torted when assumptions of statistical tests are not satisfied. Some important assumptions 
and restrictions for using chi-square tests are the following:

1. Independence of Observations. This is not to be confused with the concept of not to be confused with the concept of not
independence between variables, as seen in the chi-square test for independence 
(Section 15.3). One consequence of independent observations is that each observed 
frequency is generated by a different individual. A chi-square test would be inap-
propriate if a person could produce responses that can be classi�ed in more than 
one category or contribute more than one frequency count to a single category. 
(See page 216 for more information on independence.)

2. Size of Expected Frequencies. A chi-square test should not be performed when 
the expected frequency of any cell is less than 5. The chi-square statistic can be 
distorted when fefef  is very small. Consider the chi-square computations for a single 
cell. Suppose that the cell has values of fefef 5 1 and fofof 5 5. Note that there is a 
4-point difference between the observed and expected frequencies. However, the 
total contribution of this cell to the total chi-square value is

cell 5
s fofof 2 fefef d2

fefef
5

s5 2 1d2

1
5

42

1
5 16

Now consider another instance, in which fefef 5 10 and fofof 5 14. The difference 
between the observed and the expected frequencies is still 4, but the contribution of 
this cell to the total chi-square value differs from that of the �rst case:

cell 5
s fofof 2 fefef d2

fefef
5

s14 2 10d2

10
5

42

10
5 1.6

It should be clear that a small fefef  value can have a great in�uence on the chi-square 
value. This problem becomes serious when fefef  values are less than 5. When fefef  is 
very small, what would otherwise be a minor discrepancy between fofof  and fefef  results 
in large chi-square values. The test is too sensitive when fefef  values are extremely 
small. One way to avoid small expected frequencies is to use large samples.

LO9 1. Which of the following is an appropriate measure of effect size for the chi-
square test for goodness of fit?

a. Cohen’s w

b. The phi-coef�cient

c. Cramér’s V

d. Either the phi-coef�cient or Cramér’s V

LO10 2. A researcher obtains x2 5 4.0 for a test for independence using observed fre-
quencies in a 2 3 3 matrix. If the sample contained a total of n 5 100 people, 
then what is the value of Cramér’s V?V?V

a. 0.04

b. 0.16

c. 0.20

d. 0.40

LE A R N I N G C H E C K
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LO11 3. Under what circumstances should the chi-square statistic not be used?

a. When the expected frequency is greater than 5 for any cell

b. When the expected frequency is less than 5 for any cell

c. When the expected frequency equals the observed frequency for any cell

d. None of the above  

1. a 2. c 3. bA N S W E R S
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15-5 The Relationship between Chi-Square 
and Other Statistical Procedures

LE A R N I N G O B J E C T IV E S

 12. Explain the similarities and the differences between the chi-square test for inde-Explain the similarities and the differences between the chi-square test for inde-Explain the similarities and the dif
pendence and the Pearson correlation.

 13. Explain the similarities and the differences between the chi-square test for inde-Explain the similarities and the differences between the chi-square test for inde-Explain the similarities and the dif
pendence and the independent-measures t test or ANOVA.t test or ANOVA.t

■ Chi-Square and the Pearson Correlation
The chi-square test for independence and the Pearson correlation are both statistical techniques 
intended to evaluate the relationship between two variables. The type of data obtained in a 
research study determines which of these two statistical procedures is appropriate. Suppose, 
for example, that a researcher is interested in the relationship between self-esteem and aca-
demic performance for 10-year-old children. If the researcher obtained numerical scores for 
both variables, the resulting data would be similar to the values shown in Table 15.9(a) and the 
researcher could use a Pearson correlation to evaluate the relationship. On the other hand, if 

TA B L E  1 5.9
Two possible data struc-
tures for research studies 
examining the relationship 
between self-esteem and 
academic performance. 
In part (a) there are 
numerical scores for both 
variables and the data are 
suitable for a correlation. 
In part (b) both vari-
ables are classified into 
categories and the data are 
frequencies suitable for a 
chi-square test.

Participant

Self-
Esteem  

X

Academic  
Performance  

Y

A 13 73
B 19 88
C 10 71
D 22 96
E 20 90
F 15 82
· · ·
· · ·
· · ·

Level of Self-Esteem

High Medium Low

Academic 
Performance

High 17 32 11 6017 32 11 6017 32 11 6017 32 11 60

Low 13 43 34 9013 43 34 9013 43 34 9013 43 34 90

30 75 45 n 5 150

(a)

(b)
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variables are classified into non-numerical categories as in Table 15.9(b), then the data consist 
of frequencies and the relationship could be evaluated with a chi-square test for independence.

■ Chi-Square and the Independent-Measures t and ANOVA
Once again, consider a researcher investigating the relationship between self-esteem and 
academic performance for 10-year-old children. This time, suppose the researcher measured 
academic performance by simply classifying individuals into two categories, high and low, 
and then obtained a numerical score for each individual’s self-esteem. The resulting data 
would be similar to the scores in Table 15.10(a), and an independent-measures t test would t test would t
be used to evaluate the mean difference between the two groups of scores. Alternatively, the 
researcher could measure self-esteem by classifying individuals into three categories: high, 
medium, and low. If a numerical score is then obtained for each individual’s academic per-
formance, the resulting data would look like the scores in Table 15.10(b), and an ANOVA 
would be used to evaluate the mean differences among the three groups.

The point of these examples is that the chi-square test for independence, the Pearson cor-
relation, and tests for mean differences can all be used to evaluate the relationship between 
two variables. One main distinction among the different statistical procedures is the form 
of the data. However, another distinction is the fundamental purpose of these different sta-
tistics. The chi-square test and the tests for mean differences (t and ANOVA) evaluate the t and ANOVA) evaluate the t
significance of the relationship; that is, they determine whether the relationship observed in 
the sample provides enough evidence to conclude that there is a corresponding relationship 
in the population. You can also evaluate the significance of a Pearson correlation; however, 
the main purpose of a correlation is to measure the strength of the relationship. In particu-
lar, squaring the correlation, r2r2r , provides a measure of effect size, describing the proportion 
of variance in one variable that is accounted for by its relationship with the other variable.

TA B L E  1 5.1 0
Data appropriate for an 
independent-measures t
test or an ANOVA. In part 
(a), self-esteem scores are 
obtained for two groups of 
students differing in level 
of academic performance. 
In part (b), academic 
performance scores are 
obtained for three groups 
of students differing in 
level of self-esteem.

(a) Self-esteem scores for  
two groups of students.

Academic Performance

High Low

17 13
21 15
16 14
24 20
18 17
15 14
19 12
20 19
18 16

(b) Academic performance scores for 
three groups of students.

Self-esteem

High Medium Low

94 83 80
90 76 72
85 70 81
84 81 71
89 78 77
96 88 70
91 83 78
85 80 72
88 82 75

 LO12 1. Because a chi-square test for independence can be used to evaluate the rela-
tionship between two variables, it can be described as being similar to what 
other statistical procedure?

a. An independent-measures t test

b. A repeated-measures t test

c. A single-sample t test

d. A Pearson correlation

LE A R N I N G C H E C K
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LO13 2. Because a chi-square test for independence can be used to evaluate differ-
ences between separate populations, it can be described as being similar to 
what other statistical procedure? 

a. An independent-measures t testt testt

b. A repeated-measures t testt testt

c. A single-sample t test t test t

d. A Pearson correlation

1. d 2. aA N S W E R S
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1. Chi-square tests are nonparametric techniques that 
test hypotheses about the form of the entire frequency 
distribution. Two types of chi-square tests are the test 
for goodness of fit and the test for independence. The 
data for these tests consist of the frequency or number 
of individuals who are located in each category.

2. The test for goodness of fit compares the frequency 
distribution for a sample to the population distribu-
tion that is predicted by H0H0H . The test determines how 
well the observed frequencies (sample data) fit the 
expected frequencies (data predicted by H0H0H ).

3. The expected frequencies for the goodness-of-fit test 
are determined by

expected frequency 5 fefef 5 pn

where p is the hypothesized proportion (according to H0H0H ) 
of observations falling into a category and n is the size of 
the sample.

4. The chi-square statistic is computed by

chi-square 5 x2 5 S
s fofof 2 fefef d2

fefef

where fofof  is the observed frequency for a particular 
category and fefef  is the expected frequency for that 
category. Large values for x2 indicate that there is a 
large discrepancy between the observed (flarge discrepancy between the observed (flarge discrepancy between the observed ( ofof ) and the 
expected (fexpected (fexpected ( efef ) frequencies and may warrant rejection of 
the null hypothesis.

5. Degrees of freedom for the test for goodness of fit are

df 5 C 2 1

where C is the number of categories in the variable. C is the number of categories in the variable. C
Degrees of freedom measure the number of categories 

for which fefef  values can be freely chosen. As can be 
seen from the formula, all but the last fefef  value to be 
determined are free to vary.

6. The chi-square distribution is positively skewed and 
begins at the value of zero. Its exact shape is deter-
mined by degrees of freedom.

7. The chi-square test for independence is used to assess 
the relationship between two variables. The null hypoth-
esis states that the two variables in question are indepen-
dent of each other. That is, the frequency distribution 
for one variable does not depend on the categories of 
the second variable. On the other hand, if a relationship 
does exist, then the form of the distribution for one vari-
able depends on the categories of the other variable.

8. For the test for independence, the expected frequen-
cies for H0H0H  can be directly calculated from the mar-
ginal frequency totals,

fefef 5
fcfcf frfrf

n

where fcfcf  is the total column frequency and frfrf  is the r is the r

total row frequency for the cell in question.

9. Degrees of freedom for the test for independence are 
computed by

df 5 (R 2 1)(C 2 1)

where R is the number of row categories and C is the C is the C
number of column categories.

10. For the test of independence, a large chi-square value 
means there is a large discrepancy between the fofof  and 
fefef  values. Rejecting H0H0H  in this test provides support for 
a relationship between the two variables.

S U M M A R Y
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11. Both chi-square tests (for goodness of fit and inde-
pendence) are based on the assumption that each 
observation is independent of the others. That is, each 
observed frequency reflects a different individual, and 
no individual can produce a response that would be 
classified in more than one category or more than one 
frequency in a single category.

12. The chi-square statistic is distorted when fefef  values 
are small. Chi-square tests, therefore, should not be 
performed when the expected frequency of any cell is 
less than 5.

13. Cohen’s w is a measure of effect size that can be used 
for both chi-square tests. 

w 5ÎoÎoÎ (Po 2 Pe)
2

pe
Î

The effect size for a chi-square test for independence 
is measured by computing a phi-coefficient for data 
that form a 2 3 2 matrix or computing Cramér’s V for V for V
a matrix that is larger than 2 3 2.

phi 5Îx2Î nÎ Cramér’s V = Î x2Însdf*dÎ
where df * is the smaller of (R 2 1) and (C 2 1). Both 
phi and Cramér’s V are evaluated using the criteria in V are evaluated using the criteria in V
Table 15.8.

parametric test (474)

nonparametric test (474)

chi-square test for goodness 
of fit (475)

observed frequency (477)

expected frequency (478)

chi-square statistic (478)

chi-square distribution (480)

chi-square test for independence (487)

independent (487)

Cohen’s w (493)

phi-coefficient (495)

Cramér’s V (496)

KE Y TER M S

General instructions for using SPSS are presented in Appendix D. Following are detailed 
instructions for using SPSS to perform The Chi-Square Tests for Goodness of Fit and for 
Independence that are presented in this chapter.

The Chi-Square Test for Goodness of Fit

Data Entry

1. Enter the set of observed frequencies in the first column of the SPSS data editor. If there 
are four categories, for example, enter the four observed frequencies.

2. In the second column, enter the numbers 1, 2, 3, and so on, so there is a number beside 
each of the observed frequencies in the first column.

Data Analysis

1. Click Data on the tool bar at the top of the page and select weight cases on the tool bar at the top of the page and select weight cases on the tool bar at the top of the page and select at the bottom of 
the list.

2. Click the weight cases by circle, then highlight the label for the column containing the 
observed frequencies (VAR00001) on the left and move it into the Frequency Variable
box by clicking on the arrow.

3. Click OK.
4. Click Analyze on the tool bar, select Nonparametric Tests, and click on Chi-Square.
5. Highlight the label for the column containing the digits 1, 2, and 3, and move it into the 

Test Variables box by clicking on the arrow.
6. To specify the expected frequencies, you can either use the To specify the expected frequencies, you can either use the T all categories equal option, 

which automatically computes expected frequencies, or you can enter your own values. To 

SPSS ®
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enter your own expected frequencies, click on the values option, and one by one enter the 
expected frequencies into the small box and click Add to add each new value to the bottom 
of the list.

7. Click OK.

SPSS Output

The program produces a table showing the complete set of observed and expected frequencies. 
A second table provides the value for the chi-square statistic, the degrees of freedom, and the 
level of significance (the p value or alpha level for the test).

The Chi-Square Test for Independence

Data Entry

1. Enter the complete set of observed frequencies in one column of the SPSS data editor 
(VAR00001).

2. In a second column, enter a number (1, 2, 3, etc.) that identifies the row corresponding to 
each observed frequency. For example, enter a 1 beside each observed frequency that came 
from the first row.

3. In a third column, enter a number (1, 2, 3, etc.) that identifies the column corresponding to 
each observed frequency. Each value from the first column gets a 1, and so on.

Data Analysis

1. Click Data on the tool bar at the top of the page and select weight cases at the bottom of 
the list.

2. Click the weight cases by circle, then highlight the label for the column containing the 
observed frequencies (VAR00001) on the left and move it into the Frequency Variable
box by clicking on the arrow.

3. Click OK.
4. Click Analyze on the tool bar at the top of the page, select Descriptive Statistics, and 

click on Crosstabs.
5. Highlight the label for the column containing the rows (VAR00002) and move it into the 

Rows box by clicking on the arrow.
6. Highlight the label for the column containing the columns (VAR00003) and move it into 

the Columns box by clicking on the arrow.
7. Click on Statistics, select Chi-Square, and click Continue.
8. Click OK.

SPSS Output

We used SPSS to conduct the chi-square test for independence for the data in Example 15.3, ex-
amining the relationship between background music and the likelihood that a woman will give her 
phone number to a man she has just met.  The output is shown in Figure 15.5. The first table in the 
output simply lists the variables and is not shown in the figure. The Crosstabulation table simply 
shows the matrix of observed frequencies. The final table, labeled Chi-Square Tests, reports the re-
sults. Focus on the top row, the Pearson Chi-Square, which reports the calculated chi-square value, 
the degrees of freedom, and the level of significance (the p value or the alpha level for the test).

FO CUS  O N  PRO B LE M  SO LVIN G

1. The expected frequencies that you calculate must satisfy the constraints of the sample. For 
the goodness-of-fit test, SfSfS efef 5 SfSfS ofof 5 n. For the test of independence, the row totals and 
column totals for the expected frequencies should be identical to the corresponding totals 
for the observed frequencies.
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VAR00002 * VAR00002 * V VAR00003 CrVAR00003 CrV osstabulation

Chi-Square TestsTestsT

VAR00002VAR00002V 1.00

2.00

Total

Count

a. 0 cells (0.0%) haa. 0 cells (0.0%) haa. ve expected count less than 5.The minimum expected count is 21.00.
b. Computb. Computb. ed only for a 2x2 table

27

15

42

23

35

58

50

50

100

VAR00003VAR00003V

1.00 2.00 Total

Pearson Chi-Square

Continuity Correctionb

Linear-bLinear-bLinear y-Linear
Association

N of Valid CasesValid CasesV

Likelihood Ratio

Fisher’s Exact TestTestT

5.911a

4.967

5.978

5.852

100

1 .015

1

1

1

.026

.014

.016

.025 .013

ValueValueV df Asymp. Sigp. Sigp. .
(2-sided)

Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

F I G U R E  1 5. 5 
The SPSS output for the chi-square test for independence in Example 15.3.

2. It is entirely possible to have fractional (decimal) values for expected frequencies.  
Observed frequencies, however, are always whole numbers.

3. Whenever df 5 1, the difference between observed and expected frequencies (f 1, the difference between observed and expected frequencies (f 1, the difference between observed and expected frequencies ( ofof 5 fefef ) 
will be identical (the same value) for all cells. This makes the calculation of chi-
square easier.

4. Although you are advised to compute expected frequencies for all categories (or cells), 
you should realize that it is not essential to calculate all fefef  values separately. Remember 
that df for chi-square identifies the number of df for chi-square identifies the number of df fefef  values that are free to vary. Once you 
have calculated that number of fefef  values, the remaining fefef  values are determined. You can 
get these remaining values by subtracting the calculated fefef  values from their correspond-
ing row or column totals.

5. Remember that, unlike previous statistical tests, the degrees of freedom (df) for a chi-df) for a chi-df
square test are not determined by the sample size (not determined by the sample size (not n). Be careful!
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D E M O N S TR ATIO N  15.1

TEST FOR INDEPENDENCE

A manufacturer of watches would like to examine preferences for digital versus analog 
watches. A sample of n 5 200 people is selected, and these individuals are classified by age 
and preference. The manufacturer would like to know whether there is a relationship between 
age and watch preference. The observed frequencies (fage and watch preference. The observed frequencies (fage and watch preference. The observed frequencies ( ofof ) are as follows:

Digital Analog Undecided Totals

Younger than 30 90 40 10 140

30 or Older 10 40 10 60

Column totals 100 80 20 n 5 200

State the hypotheses, and select an alpha level. The null hypothesis states that there is 
no relationship between the two variables.

H0H0H : Preference is independent of age. That is, the frequency distribution of prefer-
ence has the same form for people younger than 30 as for people 30 or older.

The alternative hypothesis states that there is a relationship between the two variables.

H1: Preference is related to age. That is, the type of watch preferred depends on a 
person’s age.

We will set alpha to a 5 .05.

Locate the critical region. Degrees of freedom for the chi-square test for independence are 
determined by

df 5 (C 2 1)(R 2 1)

For these data,

df 5 (3 2 1)(2 2 1) 5 2(1) 5 2

For df 5 2 with a 5 .05, the critical chi-square value is 5.99. Thus, our obtained chi-square 
must exceed 5.99 to be in the critical region and to reject H0H0H .

Compute the test statistic. Computing chi-square requires two calculations: finding the 
expected frequencies and calculating the chi-square statistic.

Expected frequencies, fe. For the test for independence, the expected frequencies can be 
found using the column totals (ffound using the column totals (ffound using the column totals ( cfcf ), the row totals (f), the row totals (f), the row totals ( rfrf ), and the following formula:

fefef 5
fcfcf frfrf

n

For people younger than 30, we obtain the following expected frequencies:

f
e

f
e

f 5
100s140d

200
5

14,000

200
5 70 fofof r digital

f
e

f
e

f 5
80s140d

200
5

11,200

200
5 56 fofof r analog

f
e

f
e

f 5
20s140d

200
5

2800

200
5 14 fofof r undecided

SSSTTTEP 1EP 1EP 1

STEP 2

STEP 3
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For individuals 30 or older, the expected frequencies are as follows:

fefef 5
100s60d

200
5

6000

200
5 30 fofof r digital

fefef 5
80s60d

200
5

4800

200
5 24 fofof r analog

fefef 5
20s60d

200
5

1200

200
5 6 fofof r undecided

The following table summarizes the expected frequencies:

Digital Analog Undecided

Younger than 30 70 56 14

30 or Older 30 24 6

The chi-square statistic. The chi-square statistic is computed from the formula

x2 5 S
s f

o
f
o

f 2 f
e

f
e

f d2

f
e

f
e

f

The following table summarizes the calculations:

Cell fofof fefef (fofof – fefef ) (fofof – fefef )2 (fofof – fefef )2/fefef

Younger than 30—Digital 90 70 20 400 5.71
Younger than 30—Analog 40 56 216 256 4.57
Younger than 30—Undecided 10 14 24 16 1.14
30 or Older—Digital 10 30 220 400 13.33
30 or Older—Analog 40 24 16 256 10.67
30 or Older—Undecided 10 6 4 16 2.67

Finally, we can add the last column to get the chi-square value:

x2 5 5.71 14.57 1 1.14 1 13.33 1 10.67 1 2.67

5 38.09

Make a decision about H0, and state the conclusion. The chi-square value is in the criti-
cal region. Therefore, we can reject the null hypothesis. There is a relationship between watch 
preference and age, x2(2, n 5 200) 5 38.09, p , .05.

D E M O N S TR ATIO N  15. 2

EFFECT SIZE WITH CRAMÉR’S V

Because the data matrix is larger than 2 3 2, we will compute Cramér’s V to measure effect 
size.

Cramér’s V = Î x2Însdfdfd *dÎ 5Î 38.09Î200s1dÎ 5 Ï0Ï0Ï .19Ï 5 0.436

STEP 4
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PRO B LE M S

distribution for this sample significantly different 
from the distribution for the population of licensed 
drivers? Use a 5 .05.

5. A psychologist examining art appreciation selected an 
abstract painting that had no obvious top or bottom. 
Hangers were placed on the painting so that it could 
be hung with any one of the four sides at the top. The 
painting was shown to a sample of n 5 50 partici-
pants, and each was asked to hang the painting in the 
orientation that looked correct. The following data 
indicate how many people chose each of the four sides 
to be placed at the top. Are any of the orientations 
selected more (or less) often than would be expected 
simply by chance? Test with a 5 .05.

Top up 
(correct)

Bottom 
up

Left 
side up

Right 
side up

18 17 7 818 17 7 818 17 7 818 17 7 8

6. A professor in the psychology department would like
to determine whether there has been a significant 
change in grading practices over the years. It is known 
that the overall grade distribution for the department in 
1985 had 14% As, 26% Bs, 31% Cs, 19% Ds, and 10% 
Fs. A sample of n 5 200 psychology students from last 
semester produced the following grade distribution:

A B C D F

32 61 64 31 1232 61 64 31 1232 61 64 31 1232 61 64 31 1232 61 64 31 12

Do the data indicate a significant change in the grade 
distribution? Test at the .05 level of significance.

7. Automobile insurance is much more expensive for 
teenage drivers than for older drivers. To justify this 
cost difference, insurance companies claim that the 
younger drivers are much more likely to be involved 
in costly accidents. To test this claim, a researcher 
obtains information about registered drivers from the 
department of motor vehicles and selects a sample of 
n 5 300 accident reports from the police department. 
The motor vehicle department reports the percentage 
of registered drivers in each age category as follows: 
16% are younger than age 20; 28% are 20 to 29 years 
old; and 56% are age 30 or older. The number of ac-
cident reports for each age group is as follows:

Under Age 
20

Age 
20–29

Age 30 or 
Older

68 92 14068 92 14068 92 140

a. Do the data indicate that the distribution of accidents
for the three age groups is significantly different 
from the distribution of drivers? Test with a 5 .05.

1. Parametric tests (such as t or ANOVA) differ from t or ANOVA) differ from t
nonparametric tests (such as chi-square) primarily in 
terms of the assumptions they require and the data 
they use. Explain these differences.

2. The student population at the state college consists of 
60% females and 40% males.
a. The college theater department recently staged a 

production of a modern musical. A researcher re-
corded the gender of each student entering the the-
ater and found a total of 37 females and 18 males. 
Is the gender distribution for theatergoers signifi-
cantly different from the distribution for the general 
college? Test at the .05 level of significance.

b. The same researcher also recorded the gender of 
each student watching a men’s basketball game in 
the college gym and found a total of 58 females 
and 82 males. Is the gender distribution for basket-
ball fans significantly different from the distribu-
tion for the general college? Test at the .05 level of 
significance.

3. A developmental psychologist would like to deter-
mine whether infants display any color preferences. A 
stimulus consisting of four color patches (red, green, 
blue, and yellow) is projected onto the ceiling above a 
crib. Infants are placed in the crib, one at a time, and 
the psychologist records how much time each infant 
spends looking at each of the four colors. The color 
that receives the most attention during a 100-second 
test period is identified as the preferred color for that 
infant. The preferred colors for a sample of 80 infants 
are shown in the following table:

Red Green Blue Yellow

25 18 23 1425 18 23 1425 18 23 1425 18 23 14

a. Do the data indicate any significant preferences 
among the four colors? Test at the .05 level of 
significance.

b. Write a sentence demonstrating how the outcome 
of the hypothesis test would appear in a research 
report.

4. Data from the Department of Motor Vehicles indicate 
that 80% of all licensed drivers are older than age 25.
a. In a sample of n 5 50 people who recently received 

speeding tickets, 33 were older than 25 years and 
the other 17 were age 25 or younger. Is the age 
distribution for this sample significantly different 
from the distribution for the population of licensed 
drivers? Use a 5 .05.

b. In a sample of n 5 50 people who recently re-
ceived parking tickets, 36 were older than 25 years 
and the other 14 were age 25 or younger. Is the age 
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aged 50 to 69 over a 10-year period. At the beginning 
of the study the women were asked several questions, 
including how often they felt happy. After 10 years, 
roughly 4% of the women had died. The following 
table shows a frequency distribution similar to the 
results obtained in the study.  

Lived  Died

Happy Most of the 
Time

382 18 400

Unhappy Most of 
the Time

194  6 200

576 24

a. Do the data indicate a significant relationship 
between living longer and being happy most of the 
time? Test with a 5 .05.

b. Compute the phi-coefficient to measure the size of 
the treatment effect.

12. Many businesses use some type of customer loyalty 
program to encourage repeat customers. A common 
example is the buy-ten-get-one-free punch card. Drèze 
and Nunes (2006) examined a simple variation of this 
program that appears to give customers a head start 
on completing their cards. One group of customers at 
a car wash was given a buy-eight-get-one-free card 
and a second group was given a buy-ten-get-one-free 
card that had already been punched twice. Although 
both groups needed eight punches to earn a free wash, 
the group with the two free punches appeared to be 
closer to reaching their goal. A few months later, the 
researchers recorded the number of customers who had 
completed their cards and earned their free car wash. 
The following data are similar to the results obtained in 
the study. Do the data indicate a significant difference 
between the two card programs? Test with a 5 .05.

Completed Not Completed

Buy-Eight-Get-
One-Free

10 40 50

Buy-Ten (with 
2 Free Punches)

19 31 50

29 71

13. In a classic study, Loftus and Palmer (1974) investi-
gated the relationship between memory for eyewit-
nesses and the questions they are asked. In the study, 
participants watched a film of an automobile accident 
and then were questioned about the accident. One 
group was asked how fast the cars were going when 
they “smashed into” each other. A second group was 
asked about the speed when the cars “hit” each other, 
and a third group was not asked any question about 
the speed of the cars. A week later, the participants 
returned to answer additional questions about the 

b. Compute Cohen’s w to measure the size of the effect
c. Write a sentence demonstrating how the outcome 

of the hypothesis test and the measure of effect size 
would appear in a research report.

8. A communications company has developed three 
new designs for a cell phone. To evaluate consumer 
response, a sample of 120 college students is selected 
and each student is given all three phones to use for 
one week. At the end of the week, the students must 
identify which of the three designs they prefer. The 
distribution of preference is as follows:

Design 1 Design 2 Design 3

54 38 28

a. Do the results indicate any significant preferences 
among the three designs?

b. Compute Cohen’s w to measure the size of the effect.

9. In Problem 8, a researcher asked college students to 
evaluate three new cell phone designs. However, the 
researcher suspects that college students may have 
criteria that are different from those used by older 
adults. To test this hypothesis, the researcher repeats 
the study using a sample of n 5 60 older adults in ad-
dition to a sample of n 5 60 students. The distribution 
of preference is as follows:

Design 1 Design 2 Design 3

Student 27 20 13 60

Older Adult 21 34 5 60

48 54 18

Do the data indicate that the distribution of preferenc-
es for older adults is significantly different from the 
distribution for college students? Test with a 5 .05.

10. Earlier in the chapter, we introduced the chi-square 
test of independence with a study examining the 
relationship between personality and color preference. 
The following table shows the frequency distribution 
for a group of n 5 200 students who were classified in 
terms of personality (introvert, extrovert) and in terms 
of color preference (red, yellow, green, or blue). Do 
the data indicate a significant relationship between the 
two variables? Test with a 5 .05.

Red Yellow Green Blue

Introvert 10 3 15 22 50

Extrovert 90 17 25 18 150

100 20 40 40 n 5 200

11. Liu et al. (2015) recently reported the results of a 
study examining whether happy people live longer. 
The study followed a large sample of British women, 
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children classifies participants by gender and by low, 
average, or high IQ. Following are hypothetical data 
representing the research results. Do the data indicate 
a significant difference between the frequency distri-
butions for males and females? Test at the .05 level of 
significance and describe the difference.

IQ

Low Average High

Boys 18 42 20 80

Girls 12 54 14 80

n = 160

16. Gender differences in dream content are well document-
ed (see Winget & Kramer, 1979). Suppose a researcher 
studies aggression content in the dreams of men and 
women. Each participant reports his or her most recent 
dream. Then each dream is judged by a panel of experts 
to have low, medium, or high aggression content. The 
observed frequencies are shown in the following matrix:

Aggression Content

Low Medium High

Gender

Female 18 4 2

Male 4 17 15

Is there a relationship between gender and the aggres-
sion content of dreams? Test with a 5 .01.

17. Many parents allow their underage children to drink 
alcohol in limited situations when an adult is present 
to supervise. The idea is that teens will learn responsi-
ble drinking habits if they first experience alcohol in a 
controlled environment. Other parents take a strict no-
drinking approach with the idea that they are sending 
a clear message about what is right and what is wrong. 
Recent research, however, suggests that the more per-
missive approach may actually result in more negative 
consequences (McMorris et al., 2011). The research-
ers surveyed a sample of 150 students each year from 
ages 14 to 17. The students were asked about their 
alcohol use and about alcohol-related problems such 
as binge drinking, fights, and blackouts. The following 
table shows data similar to the results from the study. 

Experience with Alcohol-
Related Problems

No Yes

Not Allowed to Drink 71 9 80

Allowed to Drink 89 31 120

160 40 n = 200

accident, including whether they recalled seeing any 
broken glass. Although there was no broken glass in 
the film, several students claimed to remember seeing 
it. The following table shows the frequency distribu-
tion of responses for each group.

Response to the Question 
Did You See Any Broken Glass?

Yes No

Verb Used to 
Ask About the 
Speed

Smashed 
into

16 34

Hit 7 43

Control 
(Not Asked)

6 44

a. Does the proportion of participants who claim to 
remember broken glass differ significantly from 
group to group? Test with a 5 .05.

b. Compute Cramér’s V to measure the size of the V to measure the size of the V
treatment effect.

c. Describe how the phrasing of the question influ-
enced the participants’ memories.

d. Write a sentence demonstrating how the outcome 
of the hypothesis test and the measure of effect size 
would be reported in a journal article.

14. In a study investigating freshman weight gain, the 
researchers also looked at gender differences in 
weight (Kasparek, Corwin, Valois, Sargent, & Mor-
ris, 2008). Using self-reported heights and weights, 
they computed the Body Mass Index (BMI) for each 
student. Based on the BMI scores, the students were 
classified as either desirable weight or overweight. 
When the students were further classified by gender, 
the researchers found results similar to the frequencies 
in the following table:

Desirable 
Weight Overweight

Males 74 46

Females 62 18

a. Do the data indicate that the proportion of over-
weight men is significantly different from the pro-
portion of overweight women? Test with a 5 .05.

b. Compute the phi-coefficient to measure the 
strength of the relationship.

c. Write a sentence demonstrating how the outcome 
of the hypothesis test and the measure of effect size 
would be reported in a journal article.

15. Research results suggest that IQ scores for boys 
are more variable than IQ scores for girls (Arden & 
Plomin, 2006). A typical study looking at 10-year-old 
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obtains an IQ score for each student and classifies the 
students into high, medium, and low IQ groups. Do 
the following data indicate a significant relationship 
between IQ and volunteering? Test at the .05 level of 
significance.

IQ

High Medium Low

Volunteer 43 73 34 150

Not Volunteer 7 27 16 50

50 100 50

20. Research has demonstrated strong gender differences 
in teenagers’ approaches to dealing with mental health 
issues (Chandra & Minkovitz, 2006). In a typical 
study, eighth-grade students are asked to report their 
willingness to use mental health services in the event 
they were experiencing emotional or other mental 
health problems. Typical data for a sample of n 5 150 
students are shown in the following table. 

Willingness to Use Mental Health 
Services

Probably 
No Maybe

Probably 
Yes

Males 17 32 11 60

Females 13 43 34 90

30 75 45 n = 150

a. Do the data show a significant relationship between 
gender and willingness to seek mental health as-
sistance? Test with a 5 .05.

b. Compute Cramér’s V to measure the size of the V to measure the size of the V
treatment effect.

a. Do the data show a significant relationship between 
the parents’ rules about alcohol and subsequent 
alcohol-related problems? Test with a 5 .05.

b. Compute Cramér’s V to measure the strength of the V to measure the strength of the V
relationship.

18. A recent study indicates that people tend to select vid-
eo game avatars with characteristics similar to those 
of their creators (Bélisle & Onur, 2010). Participants 
who had created avatars for a virtual community game 
completed a questionnaire about their personalities. 
An independent group of viewers examined the ava-
tars and recorded their impressions of the avatars. One 
personality characteristic considered was introverted/
extroverted. The following table shows frequency 
distribution of personalities for participants and the 
avatars they created.

Participant Personality

Introverted Extroverted

Introverted 
Avatar

22 23 45

Extroverted 
Avatar

16 39 55

38 62

a. Is there a significant relationship between the per-
sonalities of the participants and the personalities 
of their avatars? Test with a 5 .05.

b. Compute the phi-coefficient to measure the size of 
the effect.

19. Research indicates that people who volunteer to 
participate in research studies tend to have higher 
intelligence than nonvolunteers. To test this phenome-
non, a researcher obtains a sample of 200 high-school 
students. The students are given a description of a 
psychological research study and asked whether they 
would volunteer to participate. The researcher also 
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Basic Mathematics Review A

Preview

This appendix reviews some of the basic math skills that are necessary for the statisti-
cal calculations presented in this book. Many students already will know some or all of 
this material. Others will need to do extensive work and review. To help you assess your 
own skills, we include a skills assessment exam here. You should allow approximately 
30 minutes to complete the test. When you finish, grade your test using the answer key on 
pages 530–531.

Notice that the test is divided into �ve sections. If you miss more than three questions 
in any section of the test, you probably need help in that area. Turn to the section of this 
appendix that corresponds to your problem area. In each section, you will �nd a general 
review, examples, and additional practice problems. After reviewing the appropriate sec-
tion and doing the practice problems, turn to the end of the appendix. You will �nd another 
version of the skills assessment exam. If you still miss more than three questions in any 
section of the exam, continue studying. Get assistance from an instructor or a tutor if neces-
sary. At the end of this appendix is a list of recommended books for individuals who need 
a more extensive review than can be provided here. We stress that mastering this material 
now will make the rest of the course much easier.

PREVIEW

A.1 Symbols and Notation

A.2 Proportions: Fractions, Decimals, and Percentages

A.3 Negative Numbers

A.4 Basic Algebra: Solving Equations

A.5 Exponents and Square Roots
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6. 22 3 (26) 5 ?

7. 23 3 5 5 ?

8. 22 3 (24) 3 (23) 5 ?

9. 12 4 (23) 5 ?

10. 218 4 (26) 5 ?

11. 216 4 8 5 ?

12. 2100 4 (24) 5 ?

■ Section 4
(corresponding to Section A.4 of this appendix)
For each equation, find the value of X.

1. X 1 6 5 13

2. X 2 14 5 15

3. 5 5 X 2 4

4. 3X 5 12

5. 72 5 3X

6. X/5 X/5 X 5 3

7. 10 5 X/8X/8X

8. 3X 1 5 5 24

9. 24 5 2X 2X 2 1 2

10. (X 1 3)/2 5 14

11. (X 2 5)/3 5 2

12. 17 5 4X 4X 4 2 11

■ Section 5
(corresponding to Section A.5 of this appendix)

1. 43 5 ?

2. Ï25 2 9Ï 5 ?

3. If X 5 2 and Y 5 3, then XY 3 5 ?

4. If X 5 2 and Y 5 3, then (X 1 Y)Y)Y 2 5 ?

5. If a 5 3 and b 5 2, then a2 1 b2 5 ?

6. (23)3 5 ?

7. (24)4 5 ?

8. Ï4Ï4ÏÏ 3 4 5 ?

9. 36/Ï9Ï 5 ?

10. (9 1 2)2 5 ?

11. 52 1 23 5 ?

12. If a 5 3 and b 5 21, then a2b3 5 ?

The answers to the skills assessment exam are at the 
end of the appendix (pages 5302531).

■ Section 1
(corresponding to Section A.1 of this appendix)

1. 3 1 2 3 7 5 ?

2. (3 1 2) 3 7 5 ?

3. 3 1 22 2 1 5 ?

4. (3 1 2)2 2 1 5 ?

5. 12/4 1 2 5 ?

6. 12/(4 1 2) 5 ?

7. 12/(4 1 2)2 5 ?

8. 2 3 (8 2 22) 5 ?

9. 2 3 (8 2 2)2 5 ?

10. 3 3 2 1 8 2 1 3 6 5 ?

11. 3 3 (2 1 8) 2 1 3 6 5 ?

12. 3 3 2 1 (8 2 1) 3 6 5 ?

■ Section 2
(corresponding to Section A.2 of this appendix)

1. The fraction 34 corresponds to a percentage of 
________.

2. Express 30% as a fraction.

3. Convert 12
40 to a decimal.

4. 2
13 1 8

13 5 ?

5. 1.375 1 0.25 5 ?

6. 2
5 3 1

4 5 ?

7. 1
8 1 2

3 5 ?

8. 3.5 3 0.4 5 ?

9. 1
5 4 3

4 5 ?

10. 3.75/0.5 5 ?

11. In a group of 80 students, 20% are psychology ma-
jors. How many psychology majors are in this group?

12. A company reports that two-fifths of its employees 
are women. If there are 90 employees, how many are 
women?

■ Section 3
(corresponding to Section A.3 of this appendix)

1. 3 1 (22) 1 (21) 1 4 5 ?

2. 6 2 (22) 5 ?

3. 22 2 (24) 5 ?

4. 6 1 (21) 2 3 2 (22) 2 (25) 5 ?

5. 4 3 (23) 5 ?

Skills Assessment Preview Exam
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A.1 Symbols and Notation

Table A.1 presents the basic mathematical symbols that you should know, along with 
examples of their use. Statistical symbols and notation are introduced and explained 
throughout this book as they are needed. Notation for exponents and square roots is cov-
ered separately at the end of this appendix.

Parentheses are a useful notation because they specify and control the order of computa-
tions. Everything inside the parentheses is calculated �rst. For example,

(5 1 3) 3 2 5 8 3 2 5 16

Changing the placement of the parentheses also changes the order of calculations. For 
example,

5 1 (3 3 2) 5 5 1 6 5 11

■ Order of Operations
Often a formula or a mathematical expression will involve several different arithmetic 
operations, such as adding, multiplying, squaring, and so on. When you encounter these 
situations, you must perform the different operations in the correct sequence. Following 
is a list of mathematical operations, showing the order in which they are to be performed.

1. Any calculation contained within parentheses is done �rst.

2. Squaring (or raising to other exponents) is done second.

3. Multiplying and/or dividing is done third. A series of multiplication and/or division 
operations should be done in order from left to right.

4. Adding and/or subtracting is done fourth.

The following examples demonstrate how this sequence of operations is applied in dif-The following examples demonstrate how this sequence of operations is applied in dif-The following examples demonstrate how this sequence of operations is applied in dif
ferent situations.

To evaluate the expression

(3 1 1)2 2 4 3 7/2

�rst, perform the calculation within parentheses:

(4)2 2 4 3 7/2

Next, square the value as indicated:

16 2 4 3 7/2

TA B L E  A .1 Symbol Meaning Example

1 Addition 5 1 7 5 12
2 Subtraction 8 2 3 5 5

3, ( ) Multiplication 3 3 9 5 27, 3(9) 5 27
4, / Division 15 4 3 5 5, 15/3 5 5, 15

3 5 5
. Greater than 20 . 10
, Less than 7 , 11
Þ Not equal to 5 Þ 6
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Then perform the multiplication and division:

16 2 14

Finally, do the subtraction:

16 2 14 5 2

A sequence of operations involving multiplication and division should be performed in 
order from left to right. For example, to compute 12/2 3 3, you divide 12 by 2 and then 
multiply the result by 3:

12/2 3 3 5 6 3 3 5 18

Notice that violating the left-to-right sequence can change the result. For this example, 
if you multiply before dividing, you will obtain

12/2 3 3 5 12/6 5 2 (This is wrong.)

A sequence of operations involving only addition and subtraction can be performed in 
any order. For example, to compute 3 1 8 2 5, you can add 3 and 8 and then subtract 5:

(3 1 8) 2 5 5 11 2 5 5 6

or you can subtract 5 from 8 and then add the result to 3:

3 1 (8 2 5) 5 3 1 3 5 6

A mathematical expression or formula is simply a concise way to write a set of instruc-
tions. When you evaluate an expression by performing the calculation, you simply follow 
the instructions. For example, assume you are given these instructions:

1. First, add 3 and 8.

2. Next, square the result.

3. Next, multiply the resulting value by 6.

4. Finally, subtract 50 from the value you have obtained.

You can write these instructions as a mathematical expression.

1. The �rst step involves addition. Because addition is normally done last, use  
parentheses to give this operation priority in the sequence of calculations:

(3 1 8)

2. The instruction to square a value is noted by using the exponent 2 beside the value 
to be squared:

(3 1 8)2

3. Because squaring has priority over multiplication, you can simply introduce the 
multiplication into the expression:

6 3 (3 1 8)2

4. Addition and subtraction are done last, so simply write in the requested  
subtraction:

6 3 (3 1 8)2 2 50
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To calculate the value of the expression, you work through the sequence of operations 
in the proper order:

6 3 (3 1 8)2 2 50 5 6 3 (11)2 2 50

5 6 3 (121) 2 50

5 726 2 50

5 676

As a �nal note, you should realize that the operation of squaring (or raising to any 
exponent) applies only to the value that immediately precedes the exponent. For example,

2 3 32 5 2 3 9 5 18 (Only the 3 is squared.)

If the instructions require multiplying values and then squaring the product, you must 
use parentheses to give the multiplication priority over squaring. For example, to multiply 
2 times 3 and then square the product, you would write

(2 3 3)2 5 (6)2 5 36

A.2 Proportions: Fractions, Decimals, and Percentages

A proportion is a part of a whole and can be expressed as a fraction, a decimal, or a 
percentage. For example, in a class of 40 students, only 3 failed the final exam.

The proportion of the class that failed can be expressed as a fraction

fraction 5
3

40

or as a decimal value

decimal 5 0.075

or as a percentage

percentage 5 7.5%

1. Evaluate each of the following expressions:

a. 4 3 8/22

b. 4 3 (8/2)2

c. 100 2 3 3 12/(6 2 4)2

d. (4 1 6) 3 (3 2 1)2

e. (8 2 2)/(9 2 8)2

f. 6 1 (4 2 1)2 2 3 3 42

g. 4 3 (8 2 3) 1 8 2 3

1. a. 8 b. 64 c. 91 d. 40 e. 6 f. 233 g. 25

LE A R N I N G C H E C K

A N S W E R S
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In a fraction, such as 3
4, the bottom value (the denominator) indicates the number of 

equal pieces into which the whole is split. Here the “pie” is split into 4 equal pieces:

If the denominator has a larger value—say, 8—then each piece of the whole pie is 
smaller:

A larger denominator indicates a smaller fraction of the whole.
The value on top of the fraction (the numerator) indicates how many pieces of the whole 

are being considered. Thus, the fraction 3
4 indicates that the whole is split evenly into 4 

pieces and that 3 of them are being used:

A fraction is simply a concise way of stating a proportion: “Three out of four” is equiva-
lent to 34. To convert the fraction to a decimal, you divide the numerator by the denominator:

3

4
5 3 4 4 5 0.75

To convert the decimal to a percentage, simply multiply by 100, and place a percent sign 
(%) after the answer:

0.75 3 100 5 75%

The U.S. money system is a convenient way of illustrating the relationship between 
fractions and decimals. “One quarter,” for example, is one-fourth _

The U.S. money system is a convenient way of illustrating the relationship between 
_

The U.S. money system is a convenient way of illustrating the relationship between 
1
4+

The U.S. money system is a convenient way of illustrating the relationship between 
+

The U.S. money system is a convenient way of illustrating the relationship between 
 of a dollar, and its 

decimal equivalent is 0.25. Other familiar equivalencies are as follows:

Dime Quarter 50 Cents 75 Cents

Fraction 1
10

1
10

1
2

3
4

Decimal 0.10 0.25 0.50 0.75
Percentage 10% 25% 50% 75%

■ Fractions
1. Finding Equivalent Fractions The same proportional value can be expressed by 

many equivalent fractions. For example,

1

2
5

2

4
5

10

20
5

50

100

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



APPENDIX A | Basic Mathematics Review 517

To create equivalent fractions, you can multiply the numerator and denominator by the 
same value. As long as both the numerator and the denominator of the fraction are multi-
plied by the same value, the new fraction will be equivalent to the original. For example,

3

10
5

9

30

because both the numerator and the denominator of the original fraction have been multi-
plied by 3. Dividing the numerator and denominator of a fraction by the same value will 
also result in an equivalent fraction. By using division, you can reduce a fraction to a 
simpler form. For example,

40

100
5

2

5

because both the numerator and the denominator of the original fraction have been divided 
by 20.

You can use these rules to �nd speci�c equivalent fractions. For example, �nd the 
fraction that has a denominator of 100 and is equivalent to 34. That is,

3

4
5

?

100

Notice that the denominator of the original fraction must be multiplied by 25 to pro-
duce the denominator of the desired fraction. For the two fractions to be equal, both the 
numerator and the denominator must be multiplied by the same number. Therefore, we also 
multiply the top of the original fraction by 25 and obtain

3 3 25

4 3 25
5

75

100

2. Multiplying Fractions To multiply two fractions, you �rst multiply the  
numerators and then multiply the denominators. For example,

3

4
3

5

7
5

3 3 5

4 3 7
5

15

28

3. Dividing Fractions To divide one fraction by another, you invert the second  
fraction and then multiply. For example,

1

2
4

1

4
5

1

2
3

4

1
5

1 3 4

2 3 1
5

4

2
5

2

1
5 2

4. Adding and Subtracting Fractions Fractions must have the same denominator 
before you can add or subtract them. If the two fractions already have a common 
denominator, you simply add (or subtract as the case may be) only the values in  
the numerators. For example,

2

5
1

1

5
5

3

5
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Suppose you divided a pie into �ve equal pieces (�fths). If you �rst ate two-�fths 
of the pie and then another one-�fth, the total amount eaten would be three-�fths of 
the pie:

1 51 5

If the two fractions do not have the same denominator, you must �rst �nd equivalent 
fractions with a common denominator before you can add or subtract. The product of the 
two denominators will always work as a common denominator for equivalent fractions 
(although it may not be the lowest common denominator). For example,

2

3
1

1

10
5 ?

Because these two fractions have different denominators, it is necessary to convert each 
into an equivalent fraction and �nd a common denominator. We will use 3 3 10 5 30 as 
the common denominator. Thus, the equivalent fraction of each is

2

3
5

20

30
and

1

10
5

3

30

Now the two fractions can be added:

20

30
1

3

30
5

23

30

5. Comparing the Size of Fractions When comparing the size of two fractions with 
the same denominator, the larger fraction will have the larger numerator. For example,

5

8
.

3

8

The denominators are the same, so the whole is partitioned into pieces of the same size. 
Five of these pieces are more than three of them:

.

When two fractions have different denominators, you must �rst convert them to fractions 
with a common denominator to determine which is larger. Consider the following fractions:

3

8
and

7

16

If the numerator and denominator of 38 are multiplied by 2, the resulting equivalent frac-
tion will have a denominator of 16:

3

8
5

3 3 2

8 3 2
5

6

16

Now a comparison can be made between the two fractions:
6

16
,

7

16

Therefore,
3

8
,

7

16
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■ Decimals
1. Converting Decimals to Fractions Like a fraction, a decimal represents part of 

the whole. The �rst decimal place to the right of the decimal point indicates how 
many tenths are used. For example,

0.1 5
1

10
0.7 5

7

10

The next decimal place represents 1
100, the next 1

1000, the next 1
10,000, and so on. To change 

a decimal to a fraction, just use the number without the decimal point for the numerator. 
Use the denominator that the last (on the right) decimal place represents. For example,

0.32 5
32

100
0.5333 5

5333

10,000
0.05 5

5

100
0.001 5

1

1000

2. Adding and Subtracting Decimals To add and subtract decimals, the only rule 
is that you must keep the decimal points in a straight vertical line. For example,

0.27
11.326

1.596

3.595
20.67

2.925

3. Multiplying Decimals To multiply two decimal values, you �rst multiply the two 
numbers, ignoring the decimal points. Then you position the decimal point in the 
answer so that the number of digits to the right of the decimal point is equal to the 
total number of decimal places in the two numbers being multiplied. For example,

1.73
30.251

173
865

346

0.43423 (five decimal places)

(two decimal places) 
(three decimal places)

0.25
30.005

125
00

00

0.00125 (five decimal places)

(two decimal places) 
(three decimal places)

4. Dividing Decimals The simplest procedure for dividing decimals is based on the 
fact that dividing two numbers is identical to expressing them as a fraction:

0.25 4 1.6 is identical to 
0.25

1.6

You now can multiply both the numerator and the denominator of the fraction by 10, 
100, 1000, or whatever number is necessary to remove the decimal places. Remember that 
multiplying both the numerator and the denominator of a fraction by the same value will 
create an equivalent fraction. Therefore,

0.25

1.6
5

0.25 3 100

1.6 3 100
5

25

160
5

5

32

The result is a division problem without any decimal places in the two numbers.
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■ Percentages
1. Converting a Percentage to a Fraction or a Decimal To convert a percentage 

to a fraction, remove the percent sign, place the number in the numerator, and use 
100 for the denominator. For example,

52% 5
52

100
5% 5

5

100
To convert a percentage to a decimal, remove the percent sign and divide by 100, or 

simply move the decimal point two places to the left. For example,

83% 5 83.   5 0.83 

14.5% 5 14.5 5 0.145

5% 5 5.   5 0.05

2. Performing Arithmetic Operations with Percentages There are situations in 
which it is best to express percent values as decimals in order to perform certain arith-
metic operations. For example, what is 45% of 60? This question may be stated as

45% 3 60 5 ?

The 45% should be converted to decimal form to �nd the solution to this question. 
Therefore,

0.45 3 60 5 27

1. Convert 3
25 to a decimal.

2. Convert 38 to a percentage.

3. Next to each set of fractions, write “True” if they are equivalent and “False” if they 
are not:

a. 3
8 5 9

24 b. 7
9 5 17

19    

c. 2
7 5 4

14

4. Compute the following:

a. 1
6 3 7

10 b. 7
8 2 1

2 c. 9
10 4 2

3 d. 7
22 1 2

3

5. Identify the larger fraction of each pair:

a. 7
10, 21

100 b. 3
4, 7

12 c. 22
3 , 19

3

6. Convert the following decimals into fractions:

a. 0.012 b. 0.77 c. 0.005

7. 2.59 3 0.015 5 ?

8. 1.8 4 0.02 5 ?

9. What is 28% of 45?

1. 0.12 2. 37.5% 3. a. True b. False c. True

4. a. 7
60 b. 3

8 c. 27
20 d. 65

66 5. a. 7
10 b. 3

4 c. 22
3

6. a. 12
1000 5

3
250  b. 77

100  c. 5
1000 5 1

200  7. 0.03885  8. 90  9. 12.6

A N S W E R S

LE A R N I N G C H E C K
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A.3 Negative Numbers

Negative numbers are used to represent values less than zero. Negative numbers may occur 
when you are measuring the difference between two scores. For example, a researcher may 
want to evaluate the effectiveness of a propaganda film by measuring people’s attitudes 
with a test both before and after viewing the film:

Before After Amount of Change

Person A 23 27 14
Person B 18 15 23
Person C 21 16 25

Notice that the negative sign provides information about the direction of the difference: 
a plus sign indicates an increase in value, and a minus sign indicates a decrease.

Because negative numbers are frequently encountered, you should be comfortable 
working with these values. This section reviews basic arithmetic operations using negative 
numbers. You should also note that any number without a sign (1 or 2) is assumed to be 
positive.

1. Adding Negative Numbers When adding numbers that include negative values, 
simply interpret the negative sign as subtraction. For example,

3 1 (22) 1 5 5 3 2 2 1 5 5 6

When adding a long string of numbers, it often is easier to add all the positive values to 
obtain the positive sum and then to add all of the negative values to obtain the negative sum. 
Finally, you subtract the negative sum from the positive sum. For example,

21 1 3 1 (24) 1 3 1 (26) 1 (22)

positive sum 5 6 negative sum 5 13

Answer: 6 2 13 5 27

2. Subtracting Negative Numbers To subtract a negative number, change it to a 
positive number, and add. For example,

4 2 (23) 5 4 1 3 5 7

This rule is easier to understand if you think of positive numbers as �nancial gains and 
negative numbers as �nancial losses. In this context, taking away a debt is equivalent to 
a �nancial gain. In mathematical terms, taking away a negative number is equivalent to 
adding a positive number. For example, suppose you are meeting a friend for lunch. You 
have $7, but you owe your friend $3. Thus, you really have only $4 to spend for lunch. But 
your friend forgives (takes away) the $3 debt. The result is that you now have $7 to spend. 
Expressed as an equation,

$4 minus a $3 debt 5 $7

4 2 (23) 5 4 1 3 5 7
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3. Multiplying and Dividing Negative Numbers When the two numbers being 
multiplied (or divided) have the same sign, the result is a positive number. When 
the two numbers have different signs, the result is negative. For example,

3 3 (22) 5 26

24 3 (22) 5 18

The �rst example is easy to explain by thinking of multiplication as repeated 
addition. In this case,

3 3 (22) 5 (22) 1 (22) 1 (22) 5 26

You add three negative 2s, which results in a total of negative 6. In the second 
example, we are multiplying by a negative number. This amounts to repeated subtraction. 
That is, 

24 3 (22) 5 2(22) 2 (22) 2 (22) 2 (22)

5 2 1 2 1 2 1 2 5 8

By using the same rule for both multiplication and division, we ensure that these two 
operations are compatible. For example,

26 4 3 5 22

which is compatible with

3 3 (22) 5 26

Also,

8 4 (24) 5 22

which is compatible with

24 3 (22) 5 18

1. Complete the following calculations:

a. 3 1 (28) 1 5 1 7 1 (21) 1 (23)

b. 5 2 (29) 1 2 2 (23) 2 (21)

c. 3 2 7 2 (221) 1 (25) 2 (29)

d. 4 2 (26) 2 3 1 11 2 14

e. 9 1 8 2 2 2 1 2 (26)

f. 9 3 (23)

g. 27 3 (24)

h. 26 3 (22) 3 (23)

i. 212 4 (23)

j. 18 4 (26)

1. a. 3 b. 20 c. 21 d. 4 e. 20

f. 227 g. 28 h. 236 i. 4 j. 23

A N S W E R S

LE A R N I N G C H E C K
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A.4 Basic Algebra: Solving Equations

An equation is a mathematical statement that indicates two quantities are identical. For 
example,

12 5 8 1 4

Often an equation will contain an unknown (or variable) quantity that is identi�ed with 
a letter or symbol, rather than a number. For example,

12 5 8 1 X

In this event, your task is to �nd the value of X that makes the equation “true,” or balX that makes the equation “true,” or balX -
anced. For this example, an X value of 4 will make a true equation. Finding the value of X value of 4 will make a true equation. Finding the value of X X
is usually called solving the equation.

To solve an equation, there are two points to keep in mind 

1. Your goal is to have the unknown value (X) isolated on one side of the equation. X) isolated on one side of the equation. X
This means that you need to remove all of the other numbers and symbols that 
appear on the same side of the equation as the X.

2. The equation remains balanced, provided you treat both sides exactly the same. For 
example, you could add 10 points to both sides, and the solution (the X value) for X value) for X
the equation would be unchanged.

■ Finding the Solution for an Equation
We will consider four basic types of equations and the operations needed to solve them.

1. When X Has a Value Added to ItX Has a Value Added to ItX An example of this type of equation is

X 1 3 5 7

Your goal is to isolate X on one side of the equation. Thus, you must remove the X on one side of the equation. Thus, you must remove the X 13 on 
the left-hand side. The solution is obtained by subtracting 3 from both sides of the equation:

X 1 3 2 3 5 7 2 3

X 5 4

The solution is X 5 4. You should always check your solution by returning to the origi-
nal equation and replacing X with the value you obtained for the solution. For this example,X with the value you obtained for the solution. For this example,X

X 1 3 5 7

4 1 3 5 7

7 5 7

2. When X Has a Value Subtracted from ItX Has a Value Subtracted from ItX An example of this type of equation is

X 2 8 5 12

In this example, you must remove the 28 from the left-hand side. Thus, the 
solution is obtained by adding 8 to both sides of the equation:

X 2 8 1 8 5 12 1 8

X 5 20

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



524 APPENDIX A | Basic Mathematics Review

Check the solution:

X 2 8 5 12

20 2 8 5 12

12 5 12

3. When X Is Multiplied by a ValueX Is Multiplied by a ValueX An example of this type of equation is

4X4X4 5 24

In this instance, it is necessary to remove the 4 that is multiplied by X. This may be 
accomplished by dividing both sides of the equation by 4:

4X4X4

4
5

24

4
X 5 6

Check the solution:

4X4X4 5 24

4(6) 5 24

24 5 24

4. When X Is Divided by a ValueX Is Divided by a ValueX An example of this type of equation is
X

3
5 9

Now the X is divided by 3, so the solution is obtained by multiplying by 3. Multiplying X is divided by 3, so the solution is obtained by multiplying by 3. Multiplying X
both sides yields

31X

32 5 9(3)

X 5 27

For the check,
X

3
5 9

27

3
5 9

9 5 9

■ Solutions for More Complex Equations
More complex equations can be solved by using a combination of the preceding simple 
operations. Remember that at each stage you are trying to isolate X on one side of the X on one side of the X
equation. For example,

3X 1 7 5 22

3X 1 7 2 7 5 22 2 7 (Remove 17 by subtracting 7 from both sides.)

3X 5 15

3X

3
5

15

3
(Remove 3 by dividing both sides by 3.)

X 5 5

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



APPENDIX A | Basic Mathematics Review 525

To check this solution, return to the original equation, and substitute 5 in place of X:

3X 1 7 5 22

3(5) 1 7 5 22

15 1 7 5 22

22 5 22

Following is another type of complex equation frequently encountered in statistics:

X 1 3

4
5 2

First, remove the 4 by multiplying both sides by 4:

41X 1 3

4 2 5 2(4)

X 1 3 5 8

Now remove the 13 by subtracting 3 from both sides:

X 1 3 2 3 5 8 2 3

X 5 5

To check this solution, return to the original equation, and substitute 5 in place of X:

X 1 3

4
5 2

5 1 3

4
5 2

8

4
5 2

2 5 2

1. Solve for X, and check the solutions:

a. 3X 5 18 b. X 1 7 5 9 c. X 2 4 5 18 d. 5X 2 8 5 12

e.
X

9
5 5 f.

X 1 1

6
5 4 g. X 1 2 5 25 h.

X

5
5 25

i.
2X2X2

3
5 12     j.

X

3
1 1 5 3

1. a. X 5 6 b. X 5 2 c. X 5 22 d. X 5 4 e. X 5 45

f.   X 5 23 g. X 5 27 h. X 5 225 i. X 5 18 j. X 5 6

A N S W E R S

LE A R N I N G C H E C K
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A.5 Exponents and Square Roots

■ Exponential Notation
A simplified notation is used whenever a number is being multiplied by itself. The notation 
consists of placing a value, called an exponent, on the right-hand side of and raised above 
another number, called a base. For example,

73dexponent
c
base

The exponent indicates how many times the base is used as a factor in multiplication. 
Following are some examples:

73 5 7(7)(7) (Read “7 cubed” or “7 raised to the third power”)
52 5 5(5) (Read “5 squared”)
25 5 2(2)(2)(2)(2) (Read “2 raised to the �fth power”)

There are a few basic rules about exponents that you will need to know for this course. 
They are outlined here.

1. Numbers Raised to One or Zero Any number raised to the �rst power equals 
itself. For example,

61 5 6

Any number (except zero) raised to the zero power equals 1. For example,

90 5 1

2. Exponents for Multiple Terms The exponent applies only to the base that is just 
in front of it. For example,

XY2 5 XYY

a2b3 5 aabbb

3. Negative Bases Raised to an Exponent If a negative number is raised to a 
power, then the result will be positive for exponents that are even and negative  
for exponents that are odd. For example,

(24)3 5 24(24)(24)

5 16(24)

5 264

and

(23)4 5 23(23)(23)(23)

5 9(23)(23)

5 9(9)

5 81
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Note: The parentheses are used to ensure that the exponent applies to the entire nega-
tive number, including the sign. Without the parentheses there is some ambiguity as to 
how the exponent should be applied. For example, the expression 232 could have two 
interpretations:

232 5 (23)(23) 5 9 oror 232 5 2(3)(3) 5 29

4. Exponents and Parentheses If an exponent is present outside of parentheses, 
then the computations within the parentheses are done �rst, and the exponential 
computation is done last:

(3 1 5)2 5 82 5 64

Notice that the meaning of the expression is changed when each term in the parentheses 
is raised to the exponent individually:

32 1 52 5 9 1 25 5 34

Therefore,

X2 1 Y2 ? (X 1 Y)2

5. Fractions Raised to a Power If the numerator and denominator of a fraction 
are each raised to the same exponent, then the entire fraction can be raised to that 
exponent. That is,

a2

b2 5 1a

b2
2

For example,

32

42 5 13

42
2

9

16
5

3

413

42
9

16
5

9

16

■ Square Roots
The square root of a value equals a number that when multiplied by itself yields the origi-
nal value. For example, the square root of 16 equals 4 because 4 times 4 equals 16. The 
symbol for the square root is called a radical, ÏÏÏ . The square root is taken for the number 
under the radical. For example,

Ï16Ï 5 4

Finding the square root is the inverse of raising a number to the second power (squaring). 
Thus,

ÏaÏaÏ 2Ï 2 5 a

For example,

Ï32Ï 2 5 Ï9Ï 5 3
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Also,

(ÏbÏbÏÏ )2 5 b

For example,

(Ï64Ï )2 5 82 5 64

Computations under the same radical are performed before the square root is taken. For 
example,

Ï9 1 16Ï 5 Ï25Ï 5 5

Note that with addition (or subtraction), separate radicals yield a different result:

Ï9Ï 1 Ï16Ï 5 3 1 4 5 7

Therefore,

ÏXÏXÏÏ 1 ÏYÏ Þ ÏXÏXÏ 1 YÏ

ÏXÏXÏÏ 2 ÏYÏ Þ ÏXÏXÏ 2 YÏ

If the numerator and denominator of a fraction each have a radical, then the entire 
fraction can be placed under a single radical:

Ï16Ï
Ï4Ï4ÏÏ

5 Î16Î 4Î
4

2
5 Ï4Ï4ÏÏ

2 5 2

Therefore,
ÏXÏXÏÏ
ÏYÏ

5 ÎXÎYÎ
Also, if the square root of one number is multiplied by the square root of another num-

ber, then the same result would be obtained by taking the square root of the product of both 
numbers. For example,

Ï9Ï 3 Ï16Ï 5 Ï9 3 16Ï

3 3 4 5 Ï144Ï

12 5 12

Therefore,

ÏaÏaÏÏ 3 ÏbÏbÏÏ 5 ÏaÏaÏ bÏ
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Problems for Appendix A  Basic Mathematics Review

1. Perform the following computations:

a. (26)3

b. (3 1 7)2

c. a3b2 when a 5 2 and b 5 25

d. a4b3 when a 5 2 and b 5 3

e. (XY)XY)XY 2 when X 5 3 and Y 5 5

f. X2 1 Y2Y2Y  when X 5 3 and Y 5 5

g. (X 1 Y)Y)Y 2 when X 5 3 and Y 5 5

h. Ï5 1 4Ï
i. (Ï9Ï )2

j.
Ï16Ï
Ï4Ï4ÏÏ

1. a. 2216 b. 100 c. 200 d. 432 e. 225
 f. 34 g. 64 h. 3 i. 9   j. 2

LE A R N I N G C H E C K

A N S W E R S

1. 50/(10 2 8) 5 ?

2. (2 1 3)2 5 ?

3. 20/10 3 3 5 ?

4. 12 2 4 3 2 1 6/3 5 ?

5. 24/(12 2 4) 1 2 3 (6 1 3) 5 ?

6. Convert 7
20 to a decimal.

7. Express 9
25 as a percentage.

8. Convert 0.91 to a fraction.

9. Express 0.0031 as a fraction.

10. Next to each set of fractions, write “True” if they are 
equivalent and “False” if they are not:

a.
4

1000
5

2

100

b.
5

6
5

52

62

c.
1

8
5

7

56
11. Perform the following calculations:

a.
4

5
3

2

3
5 ? b.

7

9
4

2

3
5 ?

c.
3

8
1

1

5
5 ? d.

5

18
2

1

6
5 ?

12. 2.51 3 0.017 5 ?

13. 3.88 3 0.0002 5 ?

14. 3.17 1 17.0132 5 ?

15. 5.55 1 10.7 1 0.711 1 3.33 1 0.031 5 ?

16. 2.04 4 0.2 5 ?

17. 0.36 4 0.4 5 ?

18. 5 1 3 2 6 2 4 1 3 5 ?

19. 9 2 (21) 2 17 1 3 2 (24) 1 5 5 ?

20. 5 1 3 2 (28) 2 (21) 1 (23) 2 4 1 10 5 ?

21. 8 3 (23) 5 ?

22. 222 4 (22) 5 ?

23. 22(24) 2 (23) 5 ?

24. 84 4 (24) 5 ?

Solve the equations in problems 25232 for X.

25. X 2 7 5 22 26. 9 5 X 1 3

27.
X

4
5 11 28. 23 5

X

3

29.
X 1 3

5
5 2 30.

X 1 1

3
5 28

31. 6X 2 1 5 11 32. 2X2X2 1 3 5 211

33. (25)2 5 ? 34. (25)3 5 ?

35. If a 5 4 and b 5 3, then a2 1 b4 5 ?

36. If a 5 21 and b 5 4, then (a 1 b)2 5 ?

37. If a 5 21 and b 5 5, then ab2 5 ?

38.
18

Ï4Ï4ÏÏ
5 ? 39. Î20Î 5Î 5 ?
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Skills Assessment Final Exam

■ Section 1

1. 4 1 8/4 5 ? 2. (4 1 8)/4 5 ?

3. 4 3 32 5 ? 4. (4 3 3)2 5 ?

5. 10/5 3 2 5 ? 6. 10/(5 3 2) 5 ?

7. 40 2 10 3 4/2 5 ? 8. (5 2 1)2/2 5 ?

9. 3 3 6 2 32 5 ? 10. 2 3 (6 2 3)2 5 ?

11. 4 3 3 2 1 1 8 3 2 5 ?

12. 4 3 (3 2 1 1 8) 3 2 5 ?

■ Section 2

1. Express 14
80 as a decimal.

2. Convert 6
25 to a percentage.

3. Convert 18% to a fraction.

4. 3
5 3 2

3 5 ? 5. 5
24 1 5

6 5 ?

6. 7
12 4 5

6 5 ? 7. 5
9 2 1

3 5 ?

8. 6.11 3 0.22 5 ?

9. 0.18 4 0.9 5 ?

10. 8.742 1 0.76 5 ?

11. In a statistics class of 72 students, three-eighths of the 
students received a B on the first test. How many Bs 
were earned?

12. What is 15% of 64?

■ Section 3

1. 3 2 1 2 3 1 5 2 2 1 6 5 ?

2. 28 2 (26) 5 ?

3. 2 2 (27) 2 3 1 (211) 2 20 5 ?

4. 28 2 3 2 (21) 2 2 2 1 5 ?

5. 8(22) 5 ? 6. 27(27) 5 ?

7. 23(22)(25) 5 ?  8. 23(5)(23) 5 ?

9. 224 4 (24) 5 ? 10. 36 4 (26) 5 ?

11. 256/7 5 ? 12. 27/(21) 5 ?

■ Section 4
Solve for X.

1. X 1 5 5 12 2. X 2 11 5 3

3. 10 5 X 1 4 4. 4X4X4 5 20

5.
X

2
5 15 6. 18 5 9X

7.
X

5
5 35 8. 2X2X2 1 8 5 4

9.
X 1 1

3
5 6 10. 4X4X4 1 3 5 213

11.
X 1 3

3
5 27 12. 23 5 2X 2X 2 2 5

■ Section 5

1. 53 5 ? 2. (24)3 5 ?

3. (22)5 5 ? 4. (22)6 5 ?

5. If a 5 4 and b 5 2, then ab2 5 ?

6. If a 5 4 and b 5 2, then (a 1 b)3 5 ?

7. If a 5 4 and b 5 2, then a2 1 b2 5 ?

8. (11 1 4)2 5 ?

9. Ï7Ï7Ï 2Ï 5 ?

10. If a 5 36 and b 5 64, then ÏaÏaÏ 1 bÏ 5 ?

11.
25

Ï25Ï
5 ? 5 ?

12. If a 5 21 and b 5 2, then a3b4 5 ?

Answer Key  Skills Assessment Exams

PREVIEW EXAM

■ Section 1

1. 17 2. 35 3. 6

4. 24 5. 5 6. 2

7.
1

3
8. 8 9. 72

10. 8 11. 24 12. 48

FINAL EXAM

■ Section 1

1. 6 2. 3 3. 36

4. 144 5. 4 6. 1

7. 20 8. 8 9. 9

10. 18 11. 27 12. 80
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FINAL EXAM

■ Section 2

1. 0.175 2. 24% 3.
18

100
, or 

9

50

4.
6

15
, or 

2

5
5.

25

24
6.

42

60
, or 

7

10

7.
2

9
8. 1.3442  9. 0.2

10. 9.502 11. 27 12. 9.6

■ Section 3

1. 8 2. 22 3. 225

4. 213 5. 216 6. 49

7. 230 8. 45 9. 6

10. 26 11. 28 12. 7

■ Section 4

1. X 5 7  2. X 5 14  3. X 5 6

4. X 5 5  5. X 5 30  6. X 5 2

7. X 5 175 8. X 5 22 9. X 5 17

10. X 5 24 11. X 5 224 12. X 5 14

■ Section 5

1. 125 2. 264 3. 232

4. 64 5. 16 6. 216

7. 20 8. 225 9. 7

10. 10 11. 5 12. 216

PREVIEW EXAM

■ Section 2

1. 75% 2.
30

100
, or 

3

10
3. 0.3

4.
10

13
  5. 1.625  6.

2

20
, or 

1

10

7.
19

24
  8. 1.4  9.

4

15
10. 7.5 11. 16 12. 36

■ Section 3

1. 4 2. 8 3. 2

4. 9 5. 212 6. 12

7. 215 8. 224 9. 24

10. 3 11. 22 12. 25

■ Section 4

1. X 5 7 2. X 5 29 3. X 5 9

4. X 5 4 5. X 5 24 6. X 5 15

7. X 5 80 8. X 5 23 9. X 5 11

10. X 5 25 11. X 5 11 12. X 5 7

■ Section 5

1. 64 2. 4 3. 54

4. 25 5. 13 6. 227

7. 256 8. 8 9. 12

10. 121 11. 33 12. 29

Solutions to Selected Problems for Appendix A  
Basic Mathematics Review

1. 25 3. 6

5. 21 6. 0.35

7. 36% 9.
31

10,000
10. b. False

11. a.
8

15
b.

21

18
c.

23

40
12. 0.04267 14. 20.1832

17. 0.9 19. 5

21. 224 22. 11

25. X 5 5 28. X 5 29

30. X 5 225 31. X 5 2

34. 2125 36. 9

37. 225 39. 2

Suggested Review Books
There are many basic mathematics books available if 
you need a more extensive review than this appendix can 
provide. Several are probably available in your library. 
The following books are but a few of the many that you 
may find helpful:
Karr, R., Massey, M., & Gustafson, R. D. (2013).

Beginning algebra: A guided approach (10th ed.). 
Belmont, CA: Brooks/Cole.

Lial, M. L., Salzman, S. A., & Hestwood, D. L. (2010). 
Basic college mathematics (8th ed.). Reading MA: 
Addison-Wesley.

McKeague, C. P. (2013). Basic mathematics: A text/
workbook (8th ed.). Belmont, CA: Brooks/Cole.workbook (8th ed.). Belmont, CA: Brooks/Cole.workbook
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Statistical Tables B

1z0

B

TailTailT TailTailT

Body

2z 0

B

Body

C

z0

D

C

0.00 .5000 .5000 .0000
0.01 .5040 .4960 .0040
0.02 .5080 .4920 .0080
0.03 .5120 .4880 .0120
0.04 .5160 .4840 .0160

0.05 .5199 .4801 .0199
0.06 .5239 .4761 .0239
0.07 .5279 .4721 .0279
0.08 .5319 .4681 .0319
0.09 .5359 .4641 .0359

0.10 .5398 .4602 .0398
0.11 .5438 .4562 .0438
0.12 .5478 .4522 .0478
0.13 .5517 .4483 .0517
0.14 .5557 .4443 .0557

0.15 .5596 .4404 .0596
0.16 .5636 .4364 .0636
0.17 .5675 .4325 .0675
0.18 .5714 .4286 .0714
0.19 .5753 .4247 .0753

0.20 .5793 .4207 .0793
0.21 .5832 .4168 .0832
0.22 .5871 .4129 .0871
0.23 .5910 .4090 .0910
0.24 .5948 .4052 .0948

0.25 .5987 .4013 .0987
0.26 .6026 .3974 .1026
0.27 .6064 .3936 .1064
0.28 .6103 .3897 .1103
0.29 .6141 .3859 .1141

0.30 .6179 .3821 .1179
0.31 .6217 .3783 .1217
0.32 .6255 .3745 .1255
0.33 .6293 .3707 .1293
0.34 .6331 .3669 .1331

0.35 .6368 .3632 .1368
0.36 .6406 .3594 .1406
0.37 .6443 .3557 .1443
0.38 .6480 .3520 .1480
0.39 .6517 .3483 .1517

0.40 .6554 .3446 .1554
0.41 .6591 .3409 .1591
0.42 .6628 .3372 .1628
0.43 .6664 .3336 .1664
0.44 .6700 .3300 .1700

0.45 .6736 .3264 .1736
0.46 .6772 .3228 .1772
0.47 .6808 .3192 .1808
0.48 .6844 .3156 .1844
0.49 .6879 .3121 .1879

(A) (B) (C) (D) (A) (B) (C) (D)
Proportion Proportion Proportion Proportion Proportion Proportion

z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z

TA B L E  B .1  The Unit Normal Table*

*Column A lists z-score values. A vertical line drawn through a normal distribution at a z-score location divides the dis-
tribution into two sections.
Column B identifies the proportion in the larger section, called the body. 
Column C identifies the proportion in the smaller section, called the tail. 
Column D identifies the proportion between the mean and the z-score.
Note:  Because the normal distribution is symmetrical, the proportions for negative z-scores are the same as those for 
positive z-scores.
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0.50 .6915 .3085 .1915
0.51 .6950 .3050 .1950
0.52 .6985 .3015 .1985
0.53 .7019 .2981 .2019
0.54 .7054 .2946 .2054

0.55 .7088 .2912 .2088
0.56 .7123 .2877 .2123
0.57 .7157 .2843 .2157
0.58 .7190 .2810 .2190
0.59 .7224 .2776 .2224

0.60 .7257 .2743 .2257
0.61 .7291 .2709 .2291
0.62 .7324 .2676 .2324
0.63 .7357 .2643 .2357
0.64 .7389 .2611 .2389

0.65 .7422 .2578 .2422
0.66 .7454 .2546 .2454
0.67 .7486 .2514 .2486
0.68 .7517 .2483 .2517
0.69 .7549 .2451 .2549

0.70 .7580 .2420 .2580
0.71 .7611 .2389 .2611
0.72 .7642 .2358 .2642
0.73 .7673 .2327 .2673
0.74 .7704 .2296 .2704

0.75 .7734 .2266 .2734
0.76 .7764 .2236 .2764
0.77 .7794 .2206 .2794
0.78 .7823 .2177 .2823
0.79 .7852 .2148 .2852

0.80 .7881 .2119 .2881
0.81 .7910 .2090 .2910
0.82 .7939 .2061 .2939
0.83 .7967 .2033 .2967
0.84 .7995 .2005 .2995

0.85 .8023 .1977 .3023
0.86 .8051 .1949 .3051
0.87 .8078 .1922 .3078
0.88 .8106 .1894 .3106
0.89 .8133 .1867 .3133

0.90 .8159 .1841 .3159
0.91 .8186 .1814 .3186
0.92 .8212 .1788 .3212
0.93 .8238 .1762 .3238
0.94 .8264 .1736 .3264

0.95 .8289 .1711 .3289
0.96 .8315 .1685 .3315
0.97 .8340 .1660 .3340
0.98 .8365 .1635 .3365
0.99 .8389 .1611 .3389

1.00 .8413 .1587 .3413
1.01 .8438 .1562 .3438
1.02 .8461 .1539 .3461
1.03 .8485 .1515 .3485
1.04 .8508 .1492 .3508

1.05 .8531 .1469 .3531
1.06 .8554 .1446 .3554
1.07 .8577 .1423 .3577
1.08 .8599 .1401 .3599
1.09 .8621 .1379 .3621

1.10 .8643 .1357 .3643
1.11 .8665 .1335 .3665
1.12 .8686 .1314 .3686
1.13 .8708 .1292 .3708
1.14 .8729 .1271 .3729

1.15 .8749 .1251 .3749
1.16 .8770 .1230 .3770
1.17 .8790 .1210 .3790
1.18 .8810 .1190 .3810
1.19 .8830 .1170 .3830

1.20 .8849 .1151 .3849
1.21 .8869 .1131 .3869
1.22 .8888 .1112 .3888
1.23 .8907 .1093 .3907
1.24 .8925 .1075 .3925

1.25 .8944 .1056 .3944
1.26 .8962 .1038 .3962
1.27 .8980 .1020 .3980
1.28 .8997 .1003 .3997
1.29 .9015 .0985 .4015

1.30 .9032 .0968 .4032
1.31 .9049 .0951 .4049
1.32 .9066 .0934 .4066
1.33 .9082 .0918 .4082
1.34 .9099 .0901 .4099

1.35 .9115 .0885 .4115
1.36 .9131 .0869 .4131
1.37 .9147 .0853 .4147
1.38 .9162 .0838 .4162
1.39 .9177 .0823 .4177

1.40 .9192 .0808 .4192
1.41 .9207 .0793 .4207
1.42 .9222 .0778 .4222
1.43 .9236 .0764 .4236
1.44 .9251 .0749 .4251

1.45 .9265 .0735 .4265
1.46 .9279 .0721 .4279
1.47 .9292 .0708 .4292
1.48 .9306 .0694 .4306
1.49 .9319 .0681 .4319

(A) (B) (C) (D) (A) (B) (C) (D)
Proportion Proportion Proportion Proportion Proportion Proportion

z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z

TA B L E  B .1  The Unit Normal Table* (continued)
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1.50 .9332 .0668 .4332
1.51 .9345 .0655 .4345
1.52 .9357 .0643 .4357
1.53 .9370 .0630 .4370
1.54 .9382 .0618 .4382

1.55 .9394 .0606 .4394
1.56 .9406 .0594 .4406
1.57 .9418 .0582 .4418
1.58 .9429 .0571 .4429
1.59 .9441 .0559 .4441

1.60 .9452 .0548 .4452
1.61 .9463 .0537 .4463
1.62 .9474 .0526 .4474
1.63 .9484 .0516 .4484
1.64 .9495 .0505 .4495

1.65 .9505 .0495 .4505
1.66 .9515 .0485 .4515
1.67 .9525 .0475 .4525
1.68 .9535 .0465 .4535
1.69 .9545 .0455 .4545

1.70 .9554 .0446 .4554
1.71 .9564 .0436 .4564
1.72 .9573 .0427 .4573
1.73 .9582 .0418 .4582
1.74 .9591 .0409 .4591

1.75 .9599 .0401 .4599
1.76 .9608 .0392 .4608
1.77 .9616 .0384 .4616
1.78 .9625 .0375 .4625
1.79 .9633 .0367 .4633

1.80 .9641 .0359 .4641
1.81 .9649 .0351 .4649
1.82 .9656 .0344 .4656
1.83 .9664 .0336 .4664
1.84 .9671 .0329 .4671

1.85 .9678 .0322 .4678
1.86 .9686 .0314 .4686
1.87 .9693 .0307 .4693
1.88 .9699 .0301 .4699
1.89 .9706 .0294 .4706

1.90 .9713 .0287 .4713
1.91 .9719 .0281 .4719
1.92 .9726 .0274 .4726
1.93 .9732 .0268 .4732
1.94 .9738 .0262 .4738

1.95 .9744 .0256 .4744
1.96 .9750 .0250 .4750
1.97 .9756 .0244 .4756
1.98 .9761 .0239 .4761
1.99 .9767 .0233 .4767

2.00 .9772 .0228 .4772
2.01 .9778 .0222 .4778
2.02 .9783 .0217 .4783
2.03 .9788 .0212 .4788
2.04 .9793 .0207 .4793

2.05 .9798 .0202 .4798
2.06 .9803 .0197 .4803
2.07 .9808 .0192 .4808
2.08 .9812 .0188 .4812
2.09 .9817 .0183 .4817

2.10 .9821 .0179 .4821
2.11 .9826 .0174 .4826
2.12 .9830 .0170 .4830
2.13 .9834 .0166 .4834
2.14 .9838 .0162 .4838

2.15 .9842 .0158 .4842
2.16 .9846 .0154 .4846
2.17 .9850 .0150 .4850
2.18 .9854 .0146 .4854
2.19 .9857 .0143 .4857

2.20 .9861 .0139 .4861
2.21 .9864 .0136 .4864
2.22 .9868 .0132 .4868
2.23 .9871 .0129 .4871
2.24 .9875 .0125 .4875

2.25 .9878 .0122 .4878
2.26 .9881 .0119 .4881
2.27 .9884 .0116 .4884
2.28 .9887 .0113 .4887
2.29 .9890 .0110 .4890

2.30 .9893 .0107 .4893
2.31 .9896 .0104 .4896
2.32 .9898 .0102 .4898
2.33 .9901 .0099 .4901
2.34 .9904 .0096 .4904

2.35 .9906 .0094 .4906
2.36 .9909 .0091 .4909
2.37 .9911 .0089 .4911
2.38 .9913 .0087 .4913
2.39 .9916 .0084 .4916

2.40 .9918 .0082 .4918
2.41 .9920 .0080 .4920
2.42 .9922 .0078 .4922
2.43 .9925 .0075 .4925
2.44 .9927 .0073 .4927

2.45 .9929 .0071 .4929
2.46 .9931 .0069 .4931
2.47 .9932 .0068 .4932
2.48 .9934 .0066 .4934
2.49 .9936 .0064 .4936

(A) (B) (C) (D) (A) (B) (C) (D)
Proportion Proportion Proportion Proportion Proportion Proportion

z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z

TA B L E  B .1  The Unit Normal Table* (continued)
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2.50 .9938 .0062 .4938
2.51 .9940 .0060 .4940
2.52 .9941 .0059 .4941
2.53 .9943 .0057 .4943
2.54 .9945 .0055 .4945

2.55 .9946 .0054 .4946
2.56 .9948 .0052 .4948
2.57 .9949 .0051 .4949
2.58 .9951 .0049 .4951
2.59 .9952 .0048 .4952

2.60 .9953 .0047 .4953
2.61 .9955 .0045 .4955
2.62 .9956 .0044 .4956
2.63 .9957 .0043 .4957
2.64 .9959 .0041 .4959

2.65 .9960 .0040 .4960
2.66 .9961 .0039 .4961
2.67 .9962 .0038 .4962
2.68 .9963 .0037 .4963
2.69 .9964 .0036 .4964

2.70 .9965 .0035 .4965
2.71 .9966 .0034 .4966
2.72 .9967 .0033 .4967
2.73 .9968 .0032 .4968
2.74 .9969 .0031 .4969

2.75 .9970 .0030 .4970
2.76 .9971 .0029 .4971
2.77 .9972 .0028 .4972
2.78 .9973 .0027 .4973
2.79 .9974 .0026 .4974

2.80 .9974 .0026 .4974
2.81 .9975 .0025 .4975
2.82 .9976 .0024 .4976
2.83 .9977 .0023 .4977
2.84 .9977 .0023 .4977

2.85 .9978 .0022 .4978
2.86 .9979 .0021 .4979
2.87 .9979 .0021 .4979
2.88 .9980 .0020 .4980
2.89 .9981 .0019 .4981

2.90 .9981 .0019 .4981
2.91 .9982 .0018 .4982
2.92 .9982 .0018 .4982
2.93 .9983 .0017 .4983
2.94 .9984 .0016 .4984

2.95 .9984 .0016 .4984
2.96 .9985 .0015 .4985
2.97 .9985 .0015 .4985
2.98 .9986 .0014 .4986
2.99 .9986 .0014 .4986

3.00 .9987 .0013 .4987
3.01 .9987 .0013 .4987
3.02 .9987 .0013 .4987
3.03 .9988 .0012 .4988
3.04 .9988 .0012 .4988

3.05 .9989 .0011 .4989
3.06 .9989 .0011 .4989
3.07 .9989 .0011 .4989
3.08 .9990 .0010 .4990
3.09 .9990 .0010 .4990

3.10 .9990 .0010 .4990
3.11 .9991 .0009 .4991
3.12 .9991 .0009 .4991
3.13 .9991 .0009 .4991
3.14 .9992 .0008 .4992

3.15 .9992 .0008 .4992
3.16 .9992 .0008 .4992
3.17 .9992 .0008 .4992
3.18 .9993 .0007 .4993
3.19 .9993 .0007 .4993

3.20 .9993 .0007 .4993
3.21 .9993 .0007 .4993
3.22 .9994 .0006 .4994
3.23 .9994 .0006 .4994
3.24 .9994 .0006 .4994

3.30 .9995 .0005 .4995
3.40 .9997 .0003 .4997
3.50 .9998 .0002 .4998
3.60 .9998 .0002 .4998
3.70 .9999 .0001 .4999

3.80 .99993 .00007 .49993
3.90 .99995 .00005 .49995
4.00 .99997 .00003 .49997

(A) (B) (C) (D) (A) (B) (C) (D)
Proportion Proportion Proportion Proportion Proportion Proportion

z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z

TA B L E  B .1  The Unit Normal Table* (continued)
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TA B L E  B . 2  The t Distributiont Distributiont

Table entries are values of t corresponding to proportions in one tail or in two tails combined.t corresponding to proportions in one tail or in two tails combined.t

One tail
(either right or left)

Two tails
combined

Proportion in One Tail
0.25 0.10 0.05 0.025 0.01 0.005

Proportion in Two Tails Combined
df 0.50 0.20 0.10 0.05 0.02 0.01

1 1.000 3.078 6.314 12.706 31.821 63.657
2 0.816 1.886 2.920 4.303 6.965 9.925
3 0.765 1.638 2.353 3.182 4.541 5.841
4 0.741 1.533 2.132 2.776 3.747 4.604
5 0.727 1.476 2.015 2.571 3.365 4.032
6 0.718 1.440 1.943 2.447 3.143 3.707
7 0.711 1.415 1.895 2.365 2.998 3.499
8 0.706 1.397 1.860 2.306 2.896 3.355
9 0.703 1.383 1.833 2.262 2.821 3.250

10 0.700 1.372 1.812 2.228 2.764 3.169
11 0.697 1.363 1.796 2.201 2.718 3.106
12 0.695 1.356 1.782 2.179 2.681 3.055
13 0.694 1.350 1.771 2.160 2.650 3.012
14 0.692 1.345 1.761 2.145 2.624 2.977
15 0.691 1.341 1.753 2.131 2.602 2.947
16 0.690 1.337 1.746 2.120 2.583 2.921
17 0.689 1.333 1.740 2.110 2.567 2.898
18 0.688 1.330 1.734 2.101 2.552 2.878
19 0.688 1.328 1.729 2.093 2.539 2.861
20 0.687 1.325 1.725 2.086 2.528 2.845
21 0.686 1.323 1.721 2.080 2.518 2.831
22 0.686 1.321 1.717 2.074 2.508 2.819
23 0.685 1.319 1.714 2.069 2.500 2.807
24 0.685 1.318 1.711 2.064 2.492 2.797
25 0.684 1.316 1.708 2.060 2.485 2.787
26 0.684 1.315 1.706 2.056 2.479 2.779
27 0.684 1.314 1.703 2.052 2.473 2.771
28 0.683 1.313 1.701 2.048 2.467 2.763
29 0.683 1.311 1.699 2.045 2.462 2.756
30 0.683 1.310 1.697 2.042 2.457 2.750
40 0.681 1.303 1.684 2.021 2.423 2.704
60 0.679 1.296 1.671 2.000 2.390 2.660

120 0.677 1.289 1.658 1.980 2.358 2.617
` 0.674 1.282 1.645 1.960 2.326 2.576

Table III of Fisher, R. A., & Yates, F. (1974). Statistical Tables for Biological, Agricultural and Medical Research (6th ed.). London: Longman Group 
Ltd., 1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with per-
mission of Pearson Education Limited.
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TA B L E  B . 3  Critical Values for the F-Max Statistic*

*The critical values for a = .05 are in lightface type, and for a = .01, they are in boldface type.

k 5 Number of Samples
n 2 1 2 3 4 5 6 7 8 9 10 11 12

4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.4 44.6 48.0 51.4
23.2 37. 49. 59. 69. 79. 89. 97. 106. 113. 120.

5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
14.9 22. 28. 33. 38. 42. 46. 50. 54. 57. 60.

6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7
11.1 15.5 19.1 22. 25. 27. 30. 32. 34. 36. 37.

7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
8.89 12.1 14.5 16.5 18.4 20. 22. 23. 24. 26. 27.

8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21.

9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7
6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
  5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9

12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48
4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6

15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0

20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9

30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
2.63 3.0 3.3 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36
  1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7

Table 31 of Pearson, E., and Hartley, H.O. (1958). Biometrika Tables for Statisticians (2nd ed.). New York: Cambridge University Press. 
Adapted and reprinted with permission of the Biometrika trustees.
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Degrees of Degrees of Freedom: Numerator
Freedom:

Denominator 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248
  4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6082 6106 6142 6169 6208

2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44
98.49 99.00 99.17 99.25 99.30 99.33 99.34 99.36 99.38 99.40 99.41 99.42 99.43 99.44 99.45

3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74 8.71 8.69 8.66
34.12 30.92 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05 26.92 26.83 26.69

  4  7.71  6.94  6.59  6.39  6.26  6.16  6.09  6.04  6.00  5.96  5.93  5.91  5.87  5.84  5.80
21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37 14.24 14.15 14.02

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56
16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.27 10.15 10.05 9.96 9.89 9.77 9.68 9.55

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.87
13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.60 7.52 7.39

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57 3.52 3.49 3.44
  12.25  9.55  8.45  7.85  7.46  7.19  7.00  6.84  6.71  6.62  6.54  6.47  6.35  6.27  6.15

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28 3.23 3.20 3.15
11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 5.82 5.74 5.67 5.56 5.48 5.36

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 2.98 2.93
10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26 5.18 5.11 5.00 4.92 4.80

10  4.96  4.10  3.71  3.48  3.33  3.22  3.14  3.07  3.02  2.97  2.94  2.91  2.86  2.82  2.77
10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85 4.78 4.71 4.60 4.52 4.41

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79 2.74 2.70 2.65
9.65 7.20 6.22 5.67 5.32 5.07 4.88 4.74 4.63 4.54 4.46 4.40 4.29 4.21 4.10

12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69 2.64 2.60 2.54
9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.39 4.30 4.22 4.16 4.05 3.98 3.86

13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60 2.55 2.51 2.46
9.07 6.70 5.74 5.20 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.85 3.78 3.67

14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53 2.48 2.44 2.39
8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.70 3.62 3.51

15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.33
8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.56 3.48 3.36

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28
8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.61 3.55 3.45 3.37 3.25

TA B L E  B . 4  T h e  F  D i s t r i b u t i o n*

*Table entries in lightface type are critical values for the .05 level of significance. Boldface type values are for 
the .01 level of significance.

Critical
F
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17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38 2.33 2.29 2.23
8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.45 3.35 3.27 3.16

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.19
8.28 6.01 5.09 4.58 4.25 4.01 3.85 3.71 3.60 3.51 3.44 3.37 3.27 3.19 3.07

19  4.38  3.52  3.13  2.90  2.74  2.63  2.55  2.48  2.43  2.38  2.34  2.31  2.26  2.21  2.15
8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.19 3.12 3.00

20  4.35  3.49  3.10  2.87  2.71  2.60  2.52  2.45  2.40  2.35  2.31  2.28  2.23  2.18  2.12
8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.45 3.37 3.30 3.23 3.13 3.05 2.94

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.20 2.15 2.09
8.02 5.78 4.87 4.37 4.04 3.81 3.65 3.51 3.40 3.31 3.24 3.17 3.07 2.99 2.88

22 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 2.26 2.23 2.18 2.13 2.07
7.94  5.72  4.82  4.31  3.99  3.76  3.59  3.45  3.35  3.26  3.18  3.12  3.02  2.94  2.83

23 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20 2.14 2.10 2.04
7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07 2.97 2.89 2.78

24 4.26 3.40 3.01 2.78 2.62 2.51 2.43 2.36 2.30 2.26 2.22 2.18 2.13 2.09 2.02
7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.25 3.17 3.09 3.03 2.93 2.85 2.74

25  4.24  3.38  2.99  2.76  2.60  2.49  2.41  2.34  2.28  2.24  2.20  2.16  2.11  2.06  2.00
7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.21 3.13 3.05 2.99 2.89 2.81 2.70

26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.10 2.05 1.99
7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.17 3.09 3.02 2.96 2.86 2.77 2.66

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13 2.08 2.03 1.97
7.68 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.14 3.06 2.98 2.93 2.83 2.74 2.63

28 4.20 3.34 2.95 2.71 2.56 2.44 2.36 2.29 2.24 2.19 2.15 2.12 2.06 2.02 1.96
7.64  5.45  4.57  4.07  3.76  3.53  3.36  3.23  3.11  3.03  2.95  2.90  2.80  2.71  2.60

29 4.18 3.33 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.05 2.00 1.94
7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.08 3.00 2.92 2.87 2.77 2.68 2.57

30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 2.12 2.09 2.04 1.99 1.93
7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.06 2.98 2.90 2.84 2.74 2.66 2.55

32  4.15  3.30  2.90   2.67  2.51  2.40  2.32  2.25  2.19  2.14  2.10  2.07  2.02  1.97  1.91
7.50 5.34 4.46 3.97 3.66 3.42 3.25 3.12 3.01 2.94 2.86 2.80 2.70 2.62 2.51

34 4.13 3.28 2.88 2.65 2.49 2.38 2.30 2.23 2.17 2.12 2.08 2.05 2.00 1.95 1.89
7.44 5.29 4.42 3.93 3.61 3.38 3.21 3.08 2.97 2.89 2.82 2.76 2.66 2.58 2.47

36 4.11 3.26 2.86 2.63 2.48 2.36 2.28 2.21 2.15 2.10 2.06 2.03 1.98 1.93 1.87
7.39 5.25 4.38 3.89 3.58 3.35 3.18 3.04 2.94 2.86 2.78 2.72 2.62 2.54 2.43

38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02 1.96 1.92 1.85
   7.35  5.21  4.34  3.86  3.54  3.32  3.15  3.02  2.91  2.82  2.75  2.69  2.59  2.51  2.40

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.07 2.04 2.00 1.95 1.90 1.84
7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 2.73 2.66 2.56 2.49 2.37

TA B L E  B . 4  T h e  F  D i s t r i b u t i o n* (continued)

Degrees of Degrees of Freedom: Numerator
Freedom:

Denominator 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20
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42  4.07  3.22  2.83  2.59  2.44  2.32  2.24  2.17  2.11  2.06  2.02  1.99  1.94  1.89  1.82
7.27 5.15 4.29 3.80 3.49 3.26 3.10 2.96 2.86 2.77 2.70 2.64 2.54 2.46 2.35

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98 1.92 1.88 1.81
7.24 5.12 4.26 3.78 3.46 3.24 3.07 2.94 2.84 2.75 2.68 2.62 2.52 2.44 2.32

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 2.00 1.97 1.91 1.87 1.80
7.21  5.10  4.24  3.76  3.44  3.22  3.05  2.92  2.82  2.73  2.66  2.60  2.50  2.42  2.30

48 4.04 3.19 2.80 2.56 2.41 2.30 2.21 2.14 2.08 2.03 1.99 1.96 1.90 1.86 1.79
7.19  5.08  4.22  3.74  3.42  3.20  3.04  2.90  2.80  2.71  2.64  2.58  2.48  2.40  2.28

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.98 1.95 1.90 1.85 1.78
7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70 2.62 2.56 2.46 2.39 2.26

55 4.02 3.17 2.78 2.54 2.38 2.27 2.18 2.11 2.05 2.00 1.97 1.93 1.88 1.83 1.76
7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66 2.59 2.53 2.43 2.35 2.23

60  4.00  3.15  2.76  2.52  2.37  2.25  2.17  2.10  2.04  1.99  1.95  1.92  1.86  1.81  1.75
7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.40 2.32 2.20

65 3.99 3.14 2.75 2.51 2.36 2.24 2.15 2.08 2.02 1.98 1.94 1.90 1.85 1.80 1.73
7.04 4.95 4.10 3.62 3.31 3.09 2.93 2.79 2.70 2.61 2.54 2.47 2.37 2.30 2.18

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.93 1.89 1.84 1.79 1.72
7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 2.51 2.45 2.35 2.28 2.15

80 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 1.91 1.88 1.82 1.77 1.70
6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 2.48 2.41 2.32 2.24 2.11

100 3.94 3.09 2.70 2.46 2.30 2.19 2.10 2.03 1.97 1.92 1.88 1.85 1.79 1.75 1.68
6.90 4.82 3.98 3.51 3.20 2.99 2.82 2.69 2.59 2.51 2.43 2.36 2.26 2.19 2.06

125  3.92  3.07  2.68  2.44  2.29  2.17  2.08  2.01  1.95  1.90  1.86  1.83  1.77  1.72  1.65
6.84 4.78 3.94 3.47 3.17 2.95 2.79 2.65 2.56 2.47 2.40 2.33 2.23 2.15 2.03

150 3.91 3.06 2.67 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.85 1.82 1.76 1.71 1.64
6.81 4.75 3.91 3.44 3.14 2.92 2.76 2.62 2.53 2.44 2.37 2.30 2.20 2.12 2.00

200 3.89 3.04 2.65 2.41 2.26 2.14 2.05 1.98 1.92 1.87 1.83 1.80 1.74 1.69 1.62
6.76 4.71 3.88 3.41 3.11 2.90 2.73 2.60 2.50 2.41 2.34 2.28 2.17 2.09 1.97

400 3.86 3.02 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.78 1.72 1.67 1.60
6.70 4.66 3.83 3.36 3.06 2.85 2.69 2.55 2.46 2.37 2.29 2.23 2.12 2.04 1.92

1000 3.85 3.00 2.61 2.38 2.22 2.10 2.02 1.95 1.89 1.84 1.80 1.76 1.70 1.65 1.58
6.66  4.62  3.80  3.34  3.04  2.82  2.66  2.53  2.43  2.34  2.26  2.20  2.09  2.01  1.89

` 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.79 1.75 1.69 1.64 1.57
6.64 4.60 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.24 2.18 2.07 1.99 1.87

Table A14 of Snedecor, G. W., and Cochran, W. G. (1980). Statistical Methods (7th ed.). Ames, Iowa: Iowa State University Press. 
Copyright © 1980 by the Iowa State University Press, 2121 South State Avenue, Ames, Iowa 50010. Reprinted with permission of 
the Iowa State University Press.

TA B L E  B . 4  T h e  F  D i s t r i b u t i o n* (continued)

Degrees of Degrees of Freedom: Numerator
Freedom:

Denominator 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20
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TA B L E  B . 5  The Studentized Range Statistic (q)*q)*q

*The critical values for q corresponding to a 5 .05 (lightface type) and a 5 .01 (boldface type).

k 5 Number of Treatments

df fordf fordf
Error Term 2 3 4 5 6 7 8 9 10 11 12

5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32
5.70  6.98  7.80  8.42  8.91  9.32  9.67  9.97 10.24 10.48 10.70

6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79
   5.24  6.33  7.03  7.56  7.97  8.32  8.61  8.87  9.10  9.30  9.48

7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43
4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71

8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18
4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03 8.18

9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98
4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65 7.78

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83
4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.49

11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71
4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25

12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61
   4.32  5.05  5.50  5.84  6.10  6.32  6.51  6.67  6.81  6.94  7.06

13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53
4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90

14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46
4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77

  15  3.01  3.67  4.08  4.37  4.59  4.78  4.94  5.08  5.20  5.31  5.40
4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66

16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35
4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56

17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31
4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48

18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27
   4.07  4.70  5.09  5.38  5.60  5.79  5.94  6.08  6.20  6.31  6.41

19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23
4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34

20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20
4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.28

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10
3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11

30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00
3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93

40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90
3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69 5.76

60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81
3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60

120 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71
3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37 5.44

` 2.77 3.31 3.63 3.86 4.03 4.17 4.28 4.39 4.47 4.55 4.62
3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29

Table 29 of Pearson, E., and Hartley, H. O. (1966). Biometrika Tables for Statisticians (3rd ed.). New York: Cambridge University Press. 
Adapted and reprinted with permission of the Biometrika trustees.
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TA B L E  B .6  Critical Values for the Pearson Correlation*

*To be significant, the sample correlation, r, must be greater than or equal to the critical value in the table.

Level of Significance for
One-Tailed Test

.05 .025 .01 .005

Level of Significance for
Two-Tailed Test

df 5 n 2 2 .10 .05 .02 .01

1 .988 .997 .9995 .9999
   2 .900 .950 .980  .990

3 .805 .878 .934 .959
4 .729 .811 .882 .917

   5 .669 .754 .833  .874

   6 .622 .707 .789  .834
7 .582 .666 .750 .798
8 .549 .632 .716 .765
9 .521 .602 .685 .735

  10 .497 .576 .658  .708

11 .476 .553 .634 .684
12 .458 .532 .612 .661
13 .441 .514 .592 .641

  14 .426 .497 .574  .623
15 .412 .482 .558 .606

16 .400 .468 .542 .590
17 .389 .456 .528 .575

  18 .378 .444 .516  .561
19 .369 .433 .503 .549

  20 .360 .423 .492  .537

21 .352 .413 .482 .526
22 .344 .404 .472 .515
23 .337 .396 .462 .505
24 .330 .388 .453 .496
25 .323 .381 .445 .487

26 .317 .374 .437 .479
27 .311 .367 .430 .471
28 .306 .361 .423 .463
29 .301 .355 .416 .456
30 .296 .349 .409 .449

  35 .275 .325 .381  .418
40 .257 .304 .358 .393
45 .243 .288 .338 .372
50 .231 .273 .322 .354
60 .211 .250 .295 .325

70 .195 .232 .274 .302
80 .183 .217 .256 .283
90 .173 .205 .242 .267

100 .164 .195 .230 .254

Table VI of Fisher, R. A., and Yates, F. (1974). Statistical Tables for 
Biological, Agricultural and Medical Research (6th ed.). London: Longman 
Group Ltd. (previously published by Oliver and Boyd Ltd., Edinburgh). 
Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with 
permission of Pearson Education Limited.
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TA B L E  B .7  The Chi-Square Distribution*

*The table entries are critical values of x2.

Proportion in Critical Region

df 0.10 0.05 0.025 0.01 0.005

1 2.71 3.84 5.02 6.63 7.88
2 4.61 5.99 7.38 9.21 10.60
3 6.25 7.81 9.35 11.34 12.84
4 7.78 9.49 11.14 13.28 14.86
5 9.24 11.07 12.83 15.09 16.75
6 10.64 12.59 14.45 16.81 18.55
7 12.02 14.07 16.01 18.48 20.28
8  13.36  15.51  17.53  20.09  21.96
9 14.68 16.92 19.02 21.67 23.59

10 15.99 18.31 20.48 23.21 25.19

11 17.28 19.68 21.92 24.72 26.76
12 18.55 21.03 23.34 26.22 28.30
13 19.81 22.36 24.74 27.69 29.82
14 21.06 23.68 26.12 29.14 31.32
15 22.31 25.00 27.49 30.58 32.80
16  23.54  26.30  28.85  32.00  34.27
17 24.77 27.59 30.19 33.41 35.72
18  25.99  28.87  31.53  34.81  37.16
19 27.20 30.14 32.85 36.19 38.58
20 28.41 31.41 34.17 37.57 40.00

21 29.62 32.67 35.48 38.93 41.40
22   30.81  33.92  36.78  40.29  42.80
23 32.01 35.17 38.08 41.64 44.18
24 33.20 36.42 39.36 42.98 45.56
25 34.38 37.65 40.65 44.31 46.93
26 35.56 38.89 41.92 45.64 48.29
27 36.74 40.11 43.19 46.96 49.64
28 37.92 41.34 44.46 48.28 50.99
29 39.09 42.56 45.72 49.59 52.34
30 40.26 43.77 46.98 50.89 53.67

40 51.81 55.76 59.34 63.69 66.77
50 63.17 67.50 71.42 76.15 79.49
60 74.40 79.08 83.30 88.38 91.95
70 85.53 90.53 95.02 100.42 104.22
80 96.58 101.88 106.63 112.33 116.32
90 107.56 113.14 118.14 124.12 128.30

100 118.50 124.34 129.56 135.81 140.17

Table 8 of Pearson, E., and Hartley, H. O. (1966). Biometrika Tables for Statisticians
(3rd ed.). New York: Cambridge University Press. Adapted and reprinted with permission 
of the Biometrika trustees.

Critical
x2

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



APPENDIX

545

CSolutions for Odd-Numbered 
Problems in the Text

CHAPTER 1 Introduction to Statistics

1. a. The population is the entire set of high school students 
in the United States.

b. The sample is the group of 100 students who were 
measured in the study.

c. The average number is a statistic.

3. Descriptive statistics are used to simplify and summa-
rize data. Inferential statistics use sample data to make 
general conclusions about populations.

5. Honesty is an internal attribute or characteristic that 
cannot be observed or measured directly. Honesty 
could be operationally defined by identifying and 
observing external behaviors associated with being 
honest, such as the physiological responses to ques-
tions measured by a polygraph (“lie detector”). Or, 
participants could be given a questionnaire asking how 
they behave or feel in situations for which honesty 
might have an influence.

7. a. An ordinal scale provides information about the 
direction of difference (greater or less) between two 
measurements. 

b. An interval scale provides information about the mag-
nitude of the difference between two measurements.

c. A ratio scale provides information about the ratio of 
two measurements, which allow comparisons such as 
“twice as much.”

9. The goal of an experiment is to demonstrate the exis-
tence of a cause-and-effect relationship between two 
variables. To accomplish the goal, an experiment must 
manipulate an independent variable and control other, control other, control
extraneous variables.

11. This is not an experiment because no independent 
variable is manipulated. They are comparing two 
preexisting groups of individuals based on their level 
of experiencing video game violence.

13. The independent variable is the type of word being 
shouted. The dependent variable is pain tolerance.

15. a. The independent variable is whether the tattoo is pres-
ent or is removed.

b. Tattoo versus no tattoo is measured on a nominal 
scale.

c.  The dependent variable is the rating of attractiveness.
d. Attractiveness is measured on a ratio scale.

17. a. The independent variable is whether or not the signs 
were posted and the dependent variable is how much 
the stairs were used.

b. Posted versus not posted is measured on a nominal 
scale.

19. a. SX2X2X 5 31
b. (SX)X)X 2 5 (11)2 5 121
c. S(X 1 1) 5 16
d. S(X 1 1)2 5 58

21. a. SX 5 0
b. SY 5 14
c. S(X 1 Y) Y) Y 5 14
d. SXY 5 4

23. a. SX2 X2 X 5 55
b. (SX)X)X 2 5 (15)2 5 225
c. S(X 2 3) 5 0
d. S(X 2 3)2 5 10
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CHAPTER 2  Frequency Distributions

1.

3. a. n 5 12
b. SX 5 35
c. SX2X2X 5 125

5. a. 10 points wide and around 8 intervals
b. 2 points wide and around 8 or 9 intervals 
c. 5 points wide and around 9 intervals

7. 

9. A bar graph leaves a space between adjacent bars and 
is used with data from nominal or ordinal scales. In a 
histogram, adjacent bars touch at the real limits. His-
tograms are used to display data from interval or ratio 
scales.

11.

f

7 8

4

3

2

1

9 11109 1109 165

13. a.

b. The distribution is roughly symmetrical with a pile 
of high scores centered around 13 and a pile of low 
scores centered at 8 or 9.

15. a. Histogram or polygon (ratio scale)
b. Bar graph (ordinal scale)
c. Bar graph (nominal scale)
d. Bar graph (nominal scale)

17. a. n 5 17
b. SX 5 55
c. SX2X2X 5 197

19. a. Bar graphs are appropriate for data from an ordinal 
scale.

b.

f f

40

30

20f f20f f

10

S M L

f f

40

30

20

10

All for $1.00 Regular price

S M L

c. Yes. When the three sizes were all $1, people order 
many more of the larger sizes.

X f

10 5
 9 5
  8 3
  7 1
  6 3
  5 2
  4 1

X f

60–64 2
55–59 4
50–54 4
45–49 3 The distribution is fairly even

across the age groups.40–44 1
35–39 3
30–34 5
25–29 5
20–24 4
15–19 1

X f

14 2
13 4
12 3
11 0
10 1
  9 3
  8 4
  7 1
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21.   The scores for children from the high number-talk 
parents are noticeably higher.

X flowflowf fhighfhighf

5 1 5
4 2 6
3 4 3
2 5 1
1 3 0

6

4

3

2

1

0 30 320 31 40 31 40 30 320 31 40 320 3 5 6

f

X

High

Low

CHAPTER 3  Central Tendency

1. The sample mean is 108
9 5 12. 

3. SX 5 7(13) 5 91

5. a. The combined sample has n 5 8 with SX 5 72.  
The mean for the combined sample is 72

8 5 9. 
b. The combined sample has n 5 9 with SX 5 90.  

The mean for the combined sample is 90
9 5 10. 

c. The combined sample has n 5 9 with SX 5 72.  
The mean for the combined sample is 72

9 5 8. 

7. For these scores, n 5 SfSfS 5 10 and SX 5 42. The 
mean is 42

10 5 4.20. 

9. a. The new mean is 40 1 5 5 45.
b. The new mean is 3(40) 5 120.

11. The original sample has n 5 8 and SX 5 56. The new 
sample has n 5 8 and SX 5 56 2 16 5 40. The new 
mean is M 5 40

8 5 5. 

13. The original population has N 5 10 and SX 5 120. The 
new population has N 5 9 and SX 5 120 2 21 5 99. 
The new mean is M 5 99

9 5 11. 

15. The original population has N 5 7 and SX 5 63. The 
new population has N 5 6 and SX 5 60. Because SX
decreased from 63 to 60, the score that was removed 
must be X 5 3.

17. With an even number of scores (n 5 12), the median 
is the average of the two middle scores in the list. The 
median is X 5 3.5 (the average of 3 and 4).

19. The mean is 67
10 5 6.7, the median is 6.5, and the mode 

is 6. 

21. a. The mean is 120
16 5 7.5, the median is 8, and the mode 

is 9. 
b. The distribution is negatively skewed.

23. When the distribution is very skewed or has a few 
extreme scores, the mean may be displaced away from 
the center and the median may provide a better measure. 
When there are undetermined scores or an open-ended 
measurement category, the mean cannot be calculated 
and the median is preferred. The median is more appro-
priate for scores from an ordinal scale because ordinal 
data are not compatible with the concept of distance.

CHAPTER 4  Variability

1. A measure of variability describes the degree to which 
the scores in a distribution are spread out or clustered 
together. Variability also measures the size of the 
distances between scores.

3. Variance is the mean of the squared deviations. Stan-
dard deviation is the square root of the variance and 
provides a measure of the standard distance from 
the mean.
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5. A standard deviation of zero indicates there is no 
variability. In this case, all of the scores in the sample 
have exactly the same value.

7. The scores in Set A have SS 5 14. The definitional 
formula works well. The scores in Set B have SS 5 5. 
The computational formula is better when the mean is 
not a whole number.

9. SS 5 80, variance is 16, and the standard deviation is 4.

11. SS 5 28, variance is 4, and the standard deviation is 2.

13. Without some correction, the sample variance under-
estimates the variance for the population. Changing 
the formula for sample variance (using n 2 1 instead 
of N) is the necessary correction. N) is the necessary correction. N

15. SS 5 14, s2 5 2, and s 5 Ï2Ï 5 1.41

17. a. The mean is m 5 53 and the standard deviation is still 
s 5 10.

b. The new mean is m 5 100 and the new standard 
deviation is s 5 20.

19. After subtracting 70 points, the mean is M 5 3, SS 5 64 
and the standard deviation is s 5 4. Change back to the 
original scores by adding 70 points and the mean is 73 
and s is still 4.

21. a. The range is 7 or 8 points and with SS 5 36 the stan-
dard deviation is s 5 Ï6Ï 5 2.45.

b. After adding 2 points, the range is still 7 or 8 and the 
standard deviation is still s 5 2.45.

23. a. The mean is M 5 3 and with SS 5 48, s 5 4.
b. After changing X 5 9 to X 5 3, the new mean is M 5

1.5 and, with SS 5 3, s 5 1.
c. The mean is displaced in the direction of the extreme 

score and the extreme score increases the standard 
deviation.

25. a. With s 5 20, X 5 70 is not an extreme score. It is 
located above the mean by a distance of only one 
standard deviation.

b. With s 5 5, X 5 70 is an extreme score. It is located 
above the mean by a distance that is four times greater 
than the standard deviation.

CHAPTER 5 z-Scores: Location of Scores and Standardized 
Distributions

1. The sign of the z-score tells whether the location is 
above (1) or below (2) the mean, and the magnitude 
tells the distance from the mean in terms of the num-
ber of standard deviations.

3. a. Below the mean by 24 points
b. Above the mean by 9 points
c. Above the mean by 12 points
d. Below the mean by 18 points

5.

7.

9. a. X 5 93
b. X 5 96
c. X 5 99
d. X 5 105

11. a. z 5 10.33 X 5 38
b. z 5 11.00 X 5 26
c. z 5 20.75 X 5 42
d. z 5 20.60 X 5 45

13. Standard deviation 5 16

15. s 5 6

17. s 5 12

19. M 5 27 and s 5 6. The distance between the two scores 
is 9 points, which is equal to 1.5 standard deviations.

21. a. X 5 70 corresponds to z 5 21.50, and X 5 60  
corresponds to z 5 21.00 (better grade).

b. X 5 58 corresponds to z 5 1.50 and X 5 85 
corresponds to z 5 1.50. The two scores have the same 
relative position and should receive the same grade.

c. X 5 32 corresponds to z 5 2.00, and X 5 26  
corresponds to z 5 3.00 (better grade). 

23. a. X 5 48 (z 5 20.20)
b. X 5 36 (z 5 21.40)
c. X 5 56 (z 5 0.60)
d. X 5 74 (z 5 2.40)

25. a. M 5 5 and s 5 4
b. and c. Original X z-Score Transformed X

8 0.75 115
4 20.25 95

  10  1.25 125
0 21.25 75
3 20.50 90

X z X z X z

83 0.33 75 20.56 91 1.22

67 21.44 85 0.56 68 21.33

X z X z X z  

69 1.29 72 1.71 63 0.43

54 20.86 49 21.57 52 21.14
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CHAPTER 6 Probability

1. The two requirements for a random sample are: 
(1) each individual has an equal chance of being 
selected, and (2) if more than one individual is 
selected, the probabilities must stay constant for all 
selections.

3. a. p 5 1
3 5 0.33 

b. p 5 2
3 5 0.67

c. p 5 2
3 5 0.67

5. a. Body to the left, p 5 0.9772
b. Body to the left, p 5 0.7734
c. Body to the right, p 5 0.9192
d. Body to the right, p 5 0.7486

7. a. p 5 0.4641
b. p 5 0.2088
c. p 5 0.3643
d. p 5 0.3023

9. a. p 5 0.3830
b. p 5 0.6046
c. p 5 0.8904

11. a. z 5 1.04
b. z 5 20.25
c. z 5 20.67
d. z 5 0.25

13. a. Tail to the right, p 5 0.4207
b. Tail to the right, p 5 0.0918
c. Tail to the left, p 5 0.3707
d. Tail to the left, p 5 0.0918

15. a. p(z . 0.20) 5 0.4207
b. p(z , 20.65) 5 0.2578
c. p(20.75 , z , 0.75) 5 0.5468

17. a. z 5 2.67, p 5 0.0038
b. p(1.33 , z , 2.67) 5  0.0880
c. p(20.67 , z , 0.60) 5 0.4743

19. a. p(z . 1.62) 5 0.0526
b. p(z . 20.60) 5 0.7257

21. a. p(z . 0.60) 5 0.2743
b. p(0.20 , z , 1.80) 5 0.3848

CHAPTER 7 Probability and Samples: The Distribution 
of Sample Means

1. a. The distribution of sample means consists of the 
sample means for all the possible random samples of a 
specific size (n) from a specific population.

b. The central limit theorem specifies the basic char-
acteristics of the distribution of sample means for 
any size samples from any population. Specifically, 
the shape will approach a normal distribution as the 
sample size increases, the mean is equal to the popula-
tion mean, and the standard deviation (standard error) 
equals the population standard deviation divided by 
the square root of the sample size. 

c. The expected value of M is the mean of the distribu-M is the mean of the distribu-M
tion of sample means (m).

d. The standard error of M is the standard deviation of M is the standard deviation of M
the distribution of sample means (sM 5 s/ÏnÏnÏÏ ).

3. The distribution will be normal because n . 30, with 
an expected value of m 5 90 and a standard error of 

32

Ï64Ï
5 4 points.

5. a. Standard error 5 18

Ï4Ï4ÏÏ
5 9 points

b. Standard error 5 18

Ï9Ï
5 6 points

c. Standard error 5 18

Ï36Ï
5 3 points

7. a. s 5 8 points and z 5 20.75
b. sM 5 4 points and z 5 21.50
c. sM 5 2 points and z 5 23.00

9. a. With a standard error of 12, M 5 91 corresponds to 
z 5 0.50.

b. With a standard error of 8, M 5 91 corresponds to  
z 5 0.75.

c. With a standard error of 6, M 5 91 corresponds to  
z 5 1.00.

d. With a standard error of 4, M 5 91 corresponds to  
z 5 1.50.

11. a. sM 5 5, z 5 0.60, and p 5 0.2743
b. sM 5 2.5, z 5 1.20, and p 5 0.1151
c. sM 5 2, z 5 1.50, and p 5 0.0668

13. a. sM 5 4, z 5 0.50 and p 5 0.3085
b. Cannot answer because the distribution of sample 

means is not normal with n 5 4.
c. sM 5 1, z 5 2.00, and p 5 0.0228
d. With n 5 64, the distribution of sample means is 

normal. sM 5 1, z 5 2.00, and p 5 0.0228
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15. a. Cannot answer because the distribution of sample 
means is not normal.

b. sM 5 2, z 5 1.75 and p 5 0.0401
c. sM 5 2, p(20.75 , z , 1.75) 5 0.7333

17. a. 10

Ï4Ï4ÏÏ
5 5 points

b. 10

Ï25Ï
5 2 points

19. a. n . 4
b. n . 25
c. n . 100

21. a. With a standard error of 6, M 5 64 corresponds to  
z 5 0.67, which is not extreme.

b. With a standard error of 4, M 5 64 corresponds to  
z 5 1.00, which is not extreme.

c. With a standard error of 3, M 5 66 corresponds to  
z 5 2.00, which is extreme.

d. With a standard error of 2, M 5 66 corresponds to  
z 5 3.00, which is extreme.

23. a. With a standard error of 2, M 5 59 corresponds to  
z 5 23.00, which is extreme.

b. With a standard error of 5, M 5 59 corresponds to  
z 5 21.20, which is not extreme.

CHAPTER 8 Introduction to Hypothesis Testing

1. The four steps are: (1) State the hypotheses and select 
an alpha level, (2) Locate the critical region, (3) Com-
pute the test statistic, and (4) Make a decision.

3. A Type I error is rejecting a true null hypothesis 
(deciding that there is a treatment effect when there is 
not). This can result in a false report of a treatment ef-
fect that actually does not exist. A Type II error is fail-
ing to reject a false null hypothesis (failing to detect a 
real treatment effect). A researcher can simply accept 
that there is no effect or can try to repeat the study.

5. a. A larger difference will produce a larger value in the 
numerator, which will produce a larger z-score.

b. A larger standard deviation will produce larger stan-
dard error in the denominator, which will produce a 
smaller z-score.

c. A larger sample will produce a smaller standard error 
in the denominator, which will produce a larger  
z-score.

7. H0H0H : m 5 14 (there has been no change). H1: m ? 14 
(the mean has changed). The critical region consists 
of z-scores beyond 61.96. For these data, the standard 
error is 0.6 and z 5 2 1.5

0.6 5 22.50. Reject the null hy-
pothesis. There has been a significant change in study 
hours. 

9. a. H0H0H : m 5 71. With s 5 12, the sample mean corre-
sponds to z 5 5

2 5 2.50. This is sufficient to reject the 
null hypothesis. Conclude that the online course has a 
significant effect.

b. H0H0H : m 5 71. With s 5 18, the sample mean corre-
sponds to z 5 5

3 5 1.67. This is not sufficient to reject 
the null hypothesis. Conclude that the online course 
does not have a significant effect.

c. There is a 5-point difference between the sample 
mean and the hypothesis. In part a, the standard error 
is 2 points and the 5-point difference is significant. 

However, in part b, the standard error is 3 points and 
the 5-point difference is not significantly more than 
is expected by chance. In general, a larger standard 
deviation produces a larger standard error, which 
reduces the likelihood of rejecting the null hypothesis.

11. a. With s 5 8, the standard error is 2, and z 5 4
2 5 2.00. 

Reject H0H0H .
b. With s 5 12, the standard error is 3, and z 5 4

3 5 1.33. 
Fail to reject H0H0H .

c. Larger variability reduces the likelihood of rejecting 
H0H0H .

13. a. With a 6-point treatment effect, for the z-score to be 
greater than 1.96, the standard error must be smaller 
than 3.06. The sample size must be greater than 10.68; 
a sample of n 5 11 or larger is needed.

b. With a 3-point treatment effect, for the z-score to be 
greater than 1.96, the standard error must be smaller 
than 1.53. The sample size must be greater than 42.72; 
a sample of n 5 43 or larger is needed.

15. a. The null hypothesis states that the new course has no 
effect on SAT scores, m 5 500. The critical region 
consists of z-scores greater than z 5 12.33. For these 
data, the standard error is 22.37 and z 5 62

22.37 5 2.77. 
Reject H0H0H . There is a significant change in SAT scores.

b. Cohen’s d 5 62
100 5 0.62

c. The new course had a significant effect on SAT 
scores, z 5 2.77, p , .01, one-tailed, d 5 0.62.

17. a. H0H0H : m 5 7.52 (the temperature has no effect on 
ratings). The standard error is 0.12 and z 5 21.92, 
which is beyond the critical boundary of 21.65. 
Reject the null hypothesis and conclude that high 
temperature significantly lowers restaurant ratings.

b. Cohen’s d 5 0.23
0.6 5 0.383

c. The higher temperatures significantly reduced restau-
rant ratings, z 5 21.92, p , .05, one tail, d 5 0.383.
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19. a. With no treatment effect the distribution of sample 
means is centered at m 5 240 with a standard error 
of 10 points, and the critical boundary of z 5 21.96 
corresponds to a sample mean of M 5 220.4. With a 
30-point treatment effect, the distribution of sample 
means is centered at m 5 210. In this distribution a 
mean of M 5 220.4 corresponds to z 5 1.04. The 
power for the test is the probability of obtaining a  
z-score less than 1.04, which is p 5 0.8508.

b. With a sample of n 5 25, the standard error is 6 points. 
In this case, the critical boundary of z 5 21.96 cor-

responds to a sample mean of M 5 228.24. With a 
30-point treatment effect, the distribution of sample 
means is centered at m 5 210. In this distribution a 
mean of M 5 228.24 corresponds to z 5 3.04. The 
power for the test is the probability of obtaining a 
z-score less than 3.04, which is p 5 0.9988.

21. a. The z-score increases (farther from zero).
b. Cohen’s d is not influenced by sample size.d is not influenced by sample size.d
c. Power increases.

CHAPTER 9 Introduction to the t Statistic

1. A z-score is used when the population standard devia-
tion (or variance) is known. The t statistic is used 
when the population variance or standard deviation is 
unknown. The t statistic uses the sample variance or 
standard deviation in place of the unknown population 
values. 

3. a. The sample variance is 144 and the estimated standard 
error is 4.

b. The sample variance is 36 and the estimated standard 
error is 1.5.

c. The sample variance is 25 and the estimated standard 
error is 1. 

5. a. M 5 7 and s 5 Ï24Ï 5 4.90
b. sM 5 2

7. a. t 5 63.182
b. t 5 62.145
c. t 5 62.069

9. a. 4.5 points
b. The sample variance is 27 and the estimated standard 

error is sM 5 1.5.
c. For these data, t 5 3.00. With df 5 11 the critical 

value is t 5 62.201. Reject H0H0H  and conclude that 
there is a significant effect.

11. The null hypothesis says that there is no preference 
between the two photographs and the babies should 
average 10 seconds looking at each. H0H0H : mattractive 5 10. 
With df 5 8, the critical boundaries are 62.306. For 
these data, the variance is 9, the estimated standard er-
ror is 1 and t 5 3.00. Reject the null hypothesis. There 
is a significant preference for the more attractive face.

13. a. With n 5 4, sM 5 3 and t 5 4.5
3 5 1.50. This is not 

greater than the critical value of 3.182, so there is no 
significant effect.

b. With n 5 16, sM 5 1.50 and t 5 4.5
1.50 5 3.00. This 

value is greater than the critical value of 2.131, so we 

reject the null hypothesis and conclude that there is a 
significant treatment effect.

c. As the sample size increases, the likelihood of reject-
ing the null hypothesis also increases.

15. The estimated standard error is 2.1 and t 5 4.9
2.1 5 2.33. 

For a one-tailed test, the critical value is 2.947. Fail to 
reject the null hypothesis; answering questions did not 
significantly improve exam scores.

17. a. With s2 5 32 the estimated standard error is 2 and 
t 5 5

2 5 2.50. With df 5 7, the critical boundaries are 
62.365. Reject the null hypothesis. r2r2r 5 6.25

13.25 5 0.472. 
Cohen’s d 5 5

5.66 5 0.883.
b. With s2 5 72 the estimated standard error is 3 and  

t 5 5
3 5 1.67. With df 5 7, the critical boundaries are 

62.365. Fail to reject the null hypothesis. r2r2r 5 2.79
9.79 5

0.285. Cohen’s d 5 5
8.49 5 0.589.

c. Increasing the variance reduces the likelihood of reject-
ing the null hypothesis and reduces Cohen’s d and d and d r2r2r .

19. a. The estimated standard error is 1.9, and t 5 24.5
1.9 5

22.37. For a two-tailed test, the critical value is 2.306. 
Reject the null hypothesis, scores for students with e-
books are significantly different.

b. For 90% confidence, use t 5 61.860. The interval is 
77.2 6 (1.860)1.9 and extends from 73.666 to 80.734.

c. The results show that exam scores were significantly dif-The results show that exam scores were significantly dif-The results show that exam scores were significantly dif
ferent for students using e-books than for other students, 
t(8) 5 2.37, p , .05, 90%CI[73.666, 80.734]. 

21. a. H0H0H : m # 4 (not greater than neutral). The estimated 
standard error is 0.26 and t 5 2.04. With a critical 
value of 1.753, reject H0H0H  and conclude that the males 
with a great sense of humor were rated significantly 
higher than neutral.

b. H0H0H : m $ 4 (not lower than neutral). The estimated 
standard error is 0.295 and t 5 22.37. With a criti-
cal value of 21.753, reject H0H0H  and conclude that the 
males with no sense of humor were rated significantly 
lower than neutral.
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There are several possible solutions to the matchstick 
puzzle in Problem 14 but all involve destroying two of 
the existing squares. One square is destroyed by remov-
ing two matchsticks from one of the corners and a second 

square is destroyed by removing one matchstick. The 
three removed matchsticks are then used to build a new 
square using a line that already exists in the �gure as the 
fourth side. One solution is shown in the following �gure. 

23. a. The estimated standard error is 0.20 and t 5 2.2
0.2 5

11.00. The t value is well beyond the critical value of t value is well beyond the critical value of t
2.492. Reject the null hypothesis.

b. Cohen’s d 5 2.2
1 5 2.20 and r2r2r 5 121

145 5 0.8345 

c. For 95% confidence, use t 5 62.064. The interval is 
12.2 6 (2.064)0.2 and extends from 11.787 to 12.613.

CHAPTER 10 The t Test for Two Independent Samples

Original pattern with 5 squares (arrows note matchsticks to remove)

New pattern with 4 squares (arrows note new locations for matchsticks)

1. An independent-measures study uses a separate 
sample for each of the treatments or populations being 
compared. 

3. a. The first sample has s2 5 9 and the second has s2 5 6. 
The pooled variance is 60

8 5 7.5 (halfway between).

b. The first sample has s2 5 9 and the second has s2 5 2. 
The pooled variance is 60

16 5 3.75 (closer to the vari-
ance for the larger sample).

5. a. The pooled variance is 1152
16 5 72.

b. The estimated standard error is 4.00. 
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c. A mean difference of 8 would produce t 5 8
4 5 2.00. 

With df 5 16 the critical values are 62.120. Fail to 
reject H0H0H .

7. The null hypothesis says that there is no mean differ-
ence between the two populations of students. The 
pooled variance is 20, the estimated standard error 
is 2, and t 5 8

2 5 4.00. With df 5 18, the critical 
boundaries are 62.878. Reject the null hypothesis 
and conclude that there is a significant difference in 
the high school performance of students who watched 
Sesame Street as children and those who did not.

9. The pooled variance is 22.5, the estimated standard er-
ror is 1.50, and t 5 3.2

1.50 5 2.13. Because df 5 32 is not 
listed, use df 5 30 and obtain critical values of 62.042. 
Reject the null hypothesis and conclude that the gap 
between study sessions does influence memory.

11. The exercise group has a mean of M 5 23 with  
SS 5 104, and the control group had M 5 20 with 
SS 5 160. The pooled variance is 8.8, the estimated 
standard error is 1.05, and t 5 2.86. With df 5 30, the 
critical value is 2.042. Reject the null hypothesis and 
conclude that the exercise program has a significant 
effect on stride length. 

13. a. The null hypothesis states that counting money versus 
counting paper does not affect the perception of pain. 
For the money group the mean is M 5 7.56 with SS 5
42.22. For the paper group, M 5 11.33 with SS 5 38. 
The pooled variance is 5.01, the standard error is 1.06, 
and t(16) 5 3.57. With df 5 16 the critical values are 
62.921. Reject the null hypothesis and conclude that 
there is a significant difference in the amount of pain 
experienced after counting money versus counting 
paper. 

b. d 5 3.77
2.24 5 1.68

15. a. The two samples combined have a total of 20 participants.
b. With df 5 18 and a 5 .05, the critical region consists 

of t values beyond t values beyond t 62.101. The t statistic is in the  t statistic is in the  t
critical region. Reject H0H0H  and conclude that there is a 
significant difference.

c. r2r2r 5 4.62
22.62 5 0.204 or 20.4%

17. The homogeneity of variance assumption specifies 
that the variances are equal for the two populations 
from which the samples are obtained. If this assump-
tion is violated, the t statistic can cause misleading t statistic can cause misleading t
conclusions for a hypothesis test.

19. a. The pooled variance is 15 and the estimated standard 
error is 2.

b. The pooled variance is 60 and the estimated standard 
error is 4.

c. Larger variability produces a larger standard error.

21. a. The estimated standard error for the sample mean dif-
ference is 6 points.

b. The estimated standard error for the sample mean dif-
ference is 3 points.

c. Larger samples produce a smaller standard error.

23. a. The pooled variance is 56, the estimated standard er-
ror is 4, and t 5 7

4 5 1.75. With df 5 12, the critical 
value is 62.179. Fail to reject the null hypothesis. 
Cohen’s d 5 7

Ï56Ï
5 0.936.

b. With n 5 15, the pooled variance is 56, the estimated 
Ï

 15, the pooled variance is 56, the estimated 
Ï5

 15, the pooled variance is 56, the estimated 
5

standard error is 2.73, and t 5 7
2.73 5 2.56. With df

5 28, the critical value is 62.048. Reject the null 
hypothesis. Cohen’s d 5 7

Ï56Ï
5 0.936.

c. Increasing the sample size increases the likelihood of 
rejecting the null hypothesis but has no effect on the 
value of Cohen’s d.

CHAPTER 11 The t Test for Two Related Samples

1. a. Independent-measures: The researcher is comparing 
two separate groups.

b. Repeated-measures: There are two scores (humorous 
and not humorous) for each individual.

c. Repeated-measures: There are two scores (before and 
after) for each individual.

3. a. An independent-measures design would require two 
separate samples, each with 15 participants, for a total 
of 30 participants.

b. A repeated-measures design would use the same 
sample of n 5 15 participants in both treatment 
conditions.

5. a. The standard deviation is 8 points and measures the 
average distance between an individual score and the 
sample mean.

b. The estimated standard error is 2 points and measures 
the average distance between a sample mean and the 
population mean.

7. a. The difference scores are 21, 22, 0, 21, 22, 23, 
21, 25, and 23. MDMDM 5 22.

b. SS 5 18, sample variance is 2.25, and the estimated 
standard error is 0.5.

c. With df 5 8 and a 5 .05, the critical values are  
t 5 62.306. For these data, t 5 24.00. Reject H0H0H . 
There is a significant treatment effect.
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9. a. The null hypothesis states that the ratings for masculine-
themed ads are not different from ratings for neutral 
ads. For these data the variance is 6.25, the estimated 
standard error is 0.50 and t 5 2.64. With df 5 24, the 
critical value is 2.064. Reject the null hypothesis.

b. r2r2r 5 2.642/(2.642 1 24) 5 0.225.
c. Participants rated the masculine-themed ads signifi-

cantly less appealing than the neutral ads, t(24) 5
2.64, p , .05, r2r2r 5 0.225.

11. a. The null hypothesis states that texting has no effect 
on lateness for class. The sample variance is 196, 
the estimated standard error is 3.5, and t 5 6.00. 
With df 5 15, the critical boundaries are 62.947. 
Reject the null hypothesis and conclude that there is 
a significant effect.

b. For 95% confidence, the t values are 62.131 and the 
interval boundaries are 21 6 2.131(3.5). The interval 
extends from 13.541 to 28.459. 

13. The null hypothesis states that there is no difference in 
the perceived intelligence between attractive and unat-
tractive photos. For these data, the estimated standard 
error is 0.4 and t 5 2.7

0.4 5 6.75. With df 5 24, the criti-
cal value is 2.064. Reject the null hypothesis.

15. The null hypothesis states that the T-shirt color has no 
effect on tips. For these data, MDMDM 5 32, the estimated 
standard error is 7, and t(10) 5 4.57. With df 5 10 
and a 5 .01, the critical values are t 5 63.169. Reject 
the null hypothesis; the T-shirt color does have a 
significant effect.

17. a. The estimated standard error is 2 points and t(15) 5 2.00. 
With a critical boundary of 62.131, fail to reject the 
null hypothesis.

b. With MDMDM 5 10, t(15) 5 5.00. With a critical boundary 
of 62.131, reject the null hypothesis.

c. The larger the mean difference, the greater the likeli-
hood of finding a significant difference.

19. One problem with individual differences is that the 
participants in one group may be noticeably differ-
ent (smarter, older, etc.) than those in another group, 
and these differences may explain why the groups 
have different means. This problem is eliminated 
with a repeated-measures design because the same 
individuals are in both groups. The second problem is 
that individual differences can increase variance. In a 
repeated-measures design, the individual differences 
are subtracted out of the variance. 

21. a. Because the scores are the same as in Problem 20, the 
results are also the same. The 2-point mean difference 
has an estimated standard error of 1.08 and t 5 1.85. 
With df 5 16 there is no significant difference.

 b. For the repeated-measures study, the mean difference 
is 22 points, SS 5 140, the sample variance is 17.5, 
the estimated standard error is 1.39, and t 5 1.44. 
With df 5 8 there is no significant difference.

23. a. An independent-measures design would require two 
separate samples, each with 10 participants, for a total 
of 20 participants.

b. A repeated-measures design would use the same 
sample of n 5 10 participants in both treatment  
conditions.

c. A matched-subjects design would require two sepa-
rate samples, each with 10 participants, for a total of 
20 participants.

CHAPTER 12 Introduction to Analysis of Variance

1. With three or more treatment conditions, you need 
three or more t tests to evaluate all the mean differ-t tests to evaluate all the mean differ-t
ences. Each test involves a risk of a Type I error. The 
more tests you do, the more risk there is of a Type I 
error. The ANOVA performs all of the tests simulta-
neously with a single, fixed alpha level.

3. Both the F-ratio and the t statistic are comparing the t statistic are comparing the t
actual mean differences between sample means  
(numerator) with the differences that would be ex-
pected if there is no treatment effect (the denominator 
if H0H0H  is true). If the numerator is sufficiently bigger 
than the denominator, we conclude that there is a 
significant difference between treatments.

5. dftotaldftotaldf 5 23; dfbetweendfbetweendf 5 2; dfwithindfwithindf 5 21

7. a. k 5 4 treatment conditions
b. The study used a total of N 5 28 participants

9.

11.

13.

Source SS df MS

Between treatments 18 3 6 F 5 3.00
Within treatments 40 20 2
Total 58 23

Source SS df MS                 

Between treatments 48 2 24 F 5 6.00
Within treatments 204 51 4
Total 252 53

Source SS df MS

Between treatments 96 2 48 F(2, 15) 5 9.01
Within treatments 80 15 5.33
Total 176 17
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With df 5 2, 15, the critical value for a 5 .05 is 3.68. 
Reject the null hypothesis.

15. a. The three sample variances are 6.00, 4.00, and 14.00.
b. SSwithin 5 168, dfwithindfwithindf 5 21, and MSwithin 5 8. The 

average of the three sample variances is also equal 
to 8.

17. a. As the differences between sample means increase, 
MSbetweenMSbetweenMS  also increases, and the F-ratio increases. 

b. Increases in sample variability cause MSwithin to  
increase and, thereby, decrease the F-ratio.

19. a. The sample variances are 12, 13, and 8.
b.

With a 5 .05, the critical value is F 5 3.68. Reject 
the null hypothesis and conclude that there are signifi-
cant differences among the three treatments. 

21. a.

With df 5 2, 12 the critical value is F 5 3.88. Fail to 
reject the null hypothesis.
b. h2 5 70

190 5 0.368.

23. If the F-ratio has df 5 1, 34, then the experiment 
compared only two treatments, and you could use a 
t statistic to evaluate the data. The t statistic to evaluate the data. The t t statistic would t statistic would t
have df 5 34.

Source SS df MS                 

Between treatments 84 2 42 F(2, 15) 5 3.82
Within treatments 165 15 11
Total 249 17

Source SS df MS

Between 
treatments  

70 2 35 F(2, 12) 5 3.50

Within 
treatments

120 12 10

Total 190 14

CHAPTER 13 Repeated-Measures and Two-Factor Analysis 
of Variance

1. The F-ratio for an independent-measures design con-
tains individual differences in both the numerator and 
the denominator. That is, there are individual differ-
ences between treatments and within treatments. For 
the repeated-measures design, there are no individual 
differences between treatments because the same indi-
viduals are in all of the treatments. Thus, there are no 
individual differences in the numerator of the F-ratio. 
To balance the repeated-measures F-ratio it is neces-
sary to measure and subtract the individual differences 
from the denominator. The variability within treat-
ments is the appropriate error term for an independent-
measures analysis. For repeated measures, however, 
you must subtract out variability due to individual 
differences from the variability within treatments to 
obtain a measure of error.

3. The repeated-measures F-ratio will have df 5 2, 28.

5. a.

With df 5 3, 12, the critical value is 3.49. Reject 
H0H0H . There are significant differences among the four 
distances.
b. For these data, h2 5 50

58 5 0.862.

7.

9. a. 4 treatments
b. 9 participants

11. a.

With df 5 2, 6, the critical value is 5.14. Reject the 
null hypothesis h2 5 56/66 5 0.848.

Source SS df MS

Between 
treatments

50 3 16.67 F(3, 12) 5 24.88

Within 
treatments

32 16

Between 
subjects

24 4

Error 8 12 0.67
Total 82  19

Source SS df MS

Between 
treatments

26 2 13 F(2, 14) 5 6.50

Within 
treatments

70 21

  Between 
subjects

42 7

Error 28 14 2
Total 96 23

Source SS df MS 

Between 
treatments

56 2 28 F(2, 6) 5 16.77

Within 
treatments

22 9

Between 
subjects

12 3

Error 10 6 1.67
Total 78 11
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b.

h2 5 112
132 5 0.848

c. Doubling the sample size greatly increased the F-ratio 
but had little or no effect on h2.

13. a.

The F-ratio has df 5 1, 8 and the critical value is 5.32. 
Reject H0H0H . There is a significant difference between 
the two tattoo conditions.
b.  For the t test, the mean difference is t test, the mean difference is t MDMDM 5 3, SS for SS for SS

the difference scores is 32, the variance is 4, and the 
standard error is 0.667. t 5 3

0.667 5 4.50. With df 5 8, 
the critical value is 2.306. Reject H0H0H . There is a sig-
nificant difference between the two tattoo conditions. 
Note that F 5 t2.

15. During the first stage of the two-factor ANOVA 
the total variance is separated into two components, 
between treatments and within treatments. During 
the second stage of the two-factor ANOVA the mean 
differences between treatments are analyzed into 
differences from each of the two main effects and dif-
ferences from the interaction.

17. a. M 5 5
b. M 5 1
c. M 5 9

19. a. df 5 1, 28
b. df 5 1, 28
c. df 5 1, 28

21. a.

All F-ratios have df 5 1, 36 and the critical value is  
F 5 4.11. The main effect for factor B is significant, 
but factor A and the interaction are not.
b. For factor A, h2 5 10

190 5 0.053; for factor B, h2 5
90

270 5 0.333; and for the interaction, h2 5 0.

23. a.

The critical value for all three F-ratios is 3.98 (using 
df 5 1, 70). Both main effects and the interaction are 
significant.
b. For the contact factor, eta squared is 80

1600 5 0.050. For 
the time factor, eta squared is 180

1700 5 0.106. For the 
interaction, eta squared is 80

1600 5 0.050. 
c. For the noncontact athletes, there is little or no dif-

ference between the beginning of the first season and 
the end of the second season, but the contact athletes 
show noticeably lower scores after the second season. 

25.

Source SS df MS

Between treatments 112 2 56 F(2, 14) 5 39.16
Within treatments 44 21

Between subjects 24 7
Error 20 14 1.43

Total 156 23

Source SS df MS

Between treatments 40.5 1 40.5 F(1, 8) 5 20.25
Within treatments 38 16

Between subjects 22 8
Error 16 8 2

Total 78.5 17

Source SS df MS

Between treatments 100 3
A 10 1 10 F(1, 36) 5 2
B 90 1 90 F(1, 36) 5 18.00
A 3 B 0 1 0 F(1, 36) 5 0

Within treatments 180 36 5
Total 280 39

Source SS df MS

Between treatments    340 3
A 80 1 80 F(1, 76) 5 4.00
B 180 1 180 F(1, 76) 5 9.00
A 3 B 80 1 80 F(1, 76) 5 4.00

Within treatments 1520 76 20
Total 1860 79

Source SS df MS

Between treatments 72 5
A 12 1 12 F(1, 42) 5 4.00
B 36 2 18 F(2, 42) 5 6.00
A 3 B 24 2 12 F(2, 42) 5 4.00

Within treatments 126 42 3
Total 198 47

CHAPTER 14 Correlation and Regression

1. SP 5 9

3. a. The scatter plot shows points scattered around a line 
sloping down to the right.

b. The correlation is moderate and negative, around 
20.4 to 20.6.

c. For these scores, SSXSSXSS 5 18, SSY 5 8, and SP 5 27. 
The correlation is r 5 2 7

12 5 20.583.

5. a. The scatter plot shows four points forming a square. 
There is no linear trend so the correlation is near zero.
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CHAPTER 15 The Chi-Square Statistic: Tests for Goodness 
of Fit and Independence

b. SSXSSXSS 5 9, SSY 5 25, and SP 5 0. The correlation is r 5
0
15 5 0.

7. a. The scatter plot shows points scattered around a line 
sloping up to the right. The correlation should be 0.4 
to 0.6.

b. SSXSSXSS 5 6, SSY 5 24, and SP 5 5. The correlation is r 5
5
12 5 0.42.

9. a.  For the men’s weights, SS 5 18 and for their in-
comes, SS 5 11,076. SP 5 330. The correlation is  
r 5 0.739.

b. With n 5 8, df 5 6 and the critical value is 0.707. The 
correlation is significant.

11. rS 5 10.960

13. a. Using the pain ratings as the X variable and coding X variable and coding X
money as 1 and plain paper as 0 for the Y variable Y variable Y
produces SSXSSXSS 5 144.44, SSY 5 4.5, and SP 5 217. 
The point-biserial correlation is r 5 20.667. 

b. r2r2r 5 0.445
c. The formula produces r2r2r 5 0.443. 

15. a. r 5 0.25
b. Y

⁄
5 0.5X 1 6

17. The standard error of estimate is a measure of the 
average distance between the predicted Y points from Y points from Y
the regression equation and the actual Y points in the Y points in the Y
data.

19. SSXSSXSS 5 16, SSY 5 134, SP 5 32. With MXMXM 5 4 and  
MY 5 6, the regression equation is Y

⁄
5 2X 2X 2 2 2. 

21. a. SSXSSXSS 5 12, SP 5 12, Y
⁄

5 X 1 3

b.

23. a. SSresidualSSresidualSS 5 128 and the standard error of estimate is 4. 
b. SSresidualSSresidualSS 5 168 and the standard error of estimate is 

4.58.

25. a df 5 1, 18
b. n 5 25 pairs of scores

X Y
⁄

3 6
5 8
2 5
2 5
4 7
1 4
4 7

1. Nonparametric tests make few if any assumptions 
about the populations from which the data are ob-
tained. For example, the populations do not need to 
form normal distributions, nor is it required that differ-
ent populations in the same study have equal variances 
(homogeneity of variance assumption). Parametric 
tests require data measured on an interval or ratio 
scale. For nonparametric tests, any scale of measure-
ment is acceptable.

3. a. The null hypothesis states that there is no preference 
among the four colors; p 5 1

4 for all categories. The 
expected frequencies are fefef 5 20 for all categories, 
and chi-square 5 3.70. With df 5 3, the critical value 
is 7.81. Fail to reject H0H0H  and conclude that there are no 
significant preferences.

b. The results indicate that there are no significant pref-
erences among the four colors, x2(3, N 5 80) 5 3.70, 
p . .05.

5. The null hypothesis states that there is no preference 
for any specific orientation. With df 5 3, the chi-
square critical value is 7.81. The expected frequencies 
are 12.5 for all four categories and chi-square 5 8.08. 
Reject the null hypothesis and conclude that one or 
more of the orientations is preferred over the others.

7. a. H0H0H  states that the distribution of automobile accidents 
is the same as the distribution of registered drivers: 
16% under age 20, 28% ages 20 to 29, and 56% age 
30 or older. With df 5 2, the critical value is 5.99. The 
expected frequencies for these three categories are 
48, 84, and 168. Chi-square 5 13.76. Reject H0H0H  and 
conclude that the distribution of automobile accidents 
is not identical to the distribution of registered drivers. 

b. Cohen’s w 5 0.215
c. The chi-square test shows that the age distribution for 

people in automobile accidents is significantly differ-
ent from the age distribution of licensed drivers, x2(2, 
n 5 300) 5 13.76, p , .05, w 5 0.215.

9. The null hypothesis states that the distribution of 
preferences is the same for both groups (same propor-
tions). With df 5 2, the critical value is 5.99. The 
expected frequencies are:

Design 1 Design 2 Design 3

Students 24 27 9

Older Adults 24 27 9

Chi-square 5 7.94. Reject H0H0H .
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11. The null hypothesis states that there is no relationship 
between happiness and living longer. With df 5 1, the 
critical value is 3.84. The expected frequencies are: 

Lived Died

Happy Most of the Time 384 16 400

Unhappy Most of the Time 192 8 200

576 24
a. Chi-square 5 0.78. Fail to reject H0H0H .
b. The phi-coefficient 5 0.036 

13. a. The null hypothesis states that the proportion who 
falsely recall seeing broken glass should be the same 
for all three groups. The expected frequency of saying 
yes is 9.67 for all groups, and the expected frequency 
for saying no is 40.33 for all groups. With df 5 2, the 
critical value is 5.99. For these data, chi-square 5
7.78. Reject the null hypothesis and conclude that the 
likelihood of recalling broken glass depends on the 
question that the participants were asked.

b. Cramér’s V 5 0.228.
c. Participants who were asked about the speed with 

which the cars “smashed into” each other were more 
than two times more likely to falsely recall seeing 
broken glass.

d. The results of the chi-square test indicate that the 
phrasing of the question had a significant effect on the 
participants’ recall of the accident, x2(2, N 5 150) 5
7.78, p , .05, V 5 0.228.

15. The null hypothesis states that IQ and gender are inde-
pendent. The distribution of IQ scores for boys should 
be the same as the distribution for girls. With df 5 2 
and a 5 .05, the critical value is 5.99. The expected 
frequencies are 15 low IQ, 48 medium, and 17 high 

for both boys and girls. For these data, chi-square is 
3.76. Fail to reject the null hypothesis. These data do 
not provide evidence for a significant relationship 
between IQ and gender.

17. a. The null hypothesis states that there is no relationship 
between parents’ rules for alcohol use and the devel-
opment of alcohol-related problems in the general 
population. With df 5 1 and a 5 .05, the critical 
value for chi-square is 3.84. The expected frequencies 
are: 

Experience with Alcohol-
Related Problems

No Yes

Not Allowed to 
Drink

64 16 80

Allowed to 
Drink

96 24 120

160 40 n 5 200

Chi-square 5 6.381. Reject the null hypothesis.
b. Cramér’s V 5 0.179

19. a. The null hypothesis states that there is no relationship 
between IQ and volunteering. With df 5 2 and a 5 .05, 
the critical value is 5.99. The expected frequencies are:

IQ

High Medium Low

Volunteer 37.5 75 37.5

Not Volunteer 12.5 25 12.5

The chi-square statistic is 4.75. Fail to reject H0H0H  with  
a 5 .05 and df 5 2.
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The Statistical Package for the Social Sciences, commonly known as SPSS, is a 
computer program that performs statistical calculations and is widely available on col-
lege campuses. Detailed instructions for using SPSS for speci�c statistical calcula-
tions (such as computing sample variance or performing an independent-measures
t test) are presented at the end of the appropriate chapter in the text. Look for the SPSS logo t test) are presented at the end of the appropriate chapter in the text. Look for the SPSS logo t
in the Resources section at the end of each chapter. In this appendix, we provide a general 
overview of the SPSS program. 

SPSS consists of two basic components: A data editor and a set of statistical com-
mands. The data editor is a huge matrix of numbered rows and columns. To begin any 
analysis, you must type your data into the data editor. Typically, the scores are entered 
into columns of the editor. Before scores are entered, each of the columns is labeled 
“var.” After scores are entered, the �rst column becomes VAR00001, the second 
column becomes VAR00002, and so on. To enter data into the editor, the Data View 
tab must be set at the bottom left of the screen. If you want to name a column (instead 
of using VAR00001), click on the Variable View tab at the bottom of the data edi-
tor. You will get a description of each variable in the editor, including a box for the 
name. You may type in a new name using up to 8 lowercase characters (no spaces, no 
hyphens). Click the Data View tab to go back to the data editor.

The statistical commands are listed in menus that are made available by clicking 
on Analyze in the tool bar at the top of the screen. When you select a statistical com-
mand, SPSS typically asks you to identify exactly where the scores are located and 
exactly what other options you want to use. This is accomplished by identifying the 
column(s) in the data editor that contain the needed information. Typically, you are pre-
sented with a display that looks like the �gure at the bottom of this page. On the left is a box 
that lists all of the columns in the data editor that contain information. In this example, we 
have typed values into columns 1, 2, 3, and 4. On the right is an empty box that is waiting 
for you to identify the correct column. For example, suppose that you wanted to do a statis-
tical calculation using the scores in column 3. You should highlight VAR00003 by clicking 
on it in the left-hand box, then click the arrow to move the column label into the right-hand 
box. (If you make a mistake, you can highlight the variable in the right-hand box, which 
will reverse the arrow so that you can move the variable back to the left-hand box.)

General Instructions  
for Using SPSS D

VAR00001VAR00001V
VAR00002VAR00002V
VAR00003VAR00003V
VAR00004VAR00004V

Variable(s)
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■ SPSS Data Formats
The SPSS program uses two basic formats for entering scores into the data matrix. Each is 
described and demonstrated as follows:

1. The �rst format is used when the data consist of several scores (more than one) for 
each individual. This includes data from a repeated-measures study, in which each 
person is measured in all of the different treatment conditions, and data from a cor-
relational study where there are two scores, X and X and X Y, for each individual. Table D1 
illustrates this kind of data and shows how the scores would appear in the SPSS 
data matrix. Note that the scores in the data matrix have exactly the same structure 
as the scores in the original data. Speci�cally, each row of the data matrix contains 
the scores for an individual participant, and each column contains the scores for 
one treatment condition. 

2. The second format is used for data from an independent-measures study using a 
separate group of participants for each treatment condition. This kind of data is 
entered into the data matrix in a stacked format. Instead of having the scores from stacked format. Instead of having the scores from stacked
different treatments in different columns, all of the scores from all of the treatment 
conditions are entered into a single column so that the scores from one treatment 
condition are literally stacked on top of the scores from another treatment condi-
tion. A code number is then entered into a second column beside each score to tell 
the computer which treatment condition corresponds to each score. For example, 
you could enter a value of 1 beside each score from treatment #1, enter a 2 beside 
each score from treatment #2, and so on. Table D2 illustrates this kind of data and 
shows how the scores would be entered into the SPSS data matrix.

TA B L E  D 1
Data for a repeated-measures or correlational study with several scores for each indi-
vidual. The left half of the table (a) shows the original data, with three scores for each 
person; and the right half (b) shows the scores as they would be entered into the SPSS 
data matrix. Note: SPSS automatically adds the two decimal points for each score. For 
example, you type in 10 and it appears as 10.00 in the matrix.

(b) Data as entered into the SPSS data matrix

VAR0001 VAR0002 VAR0003 var

1 10.00 14.00 19.00

2 9.00 11.00 15.00

3 12.00 15.00 22.00

4 7.00 10.00 18.00

5 13.00 18.00 20.00

(a) Original data

Treatments

Person I II III

A 10 14 19
B 9 11 15
C 12 15 22
D 7 10 18
E 13 18 20
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TA B L E  D 2
Data for an independent-measures study with a different group of participants in each 
treatment condition. The left half of the table shows the original data, with three separate 
groups, each with five participants, and the right half shows the scores as they would be 
entered into the SPSS data matrix. Note that the data matrix lists all 15 scores in the same 
column, then uses code numbers in a second column to indicate the treatment condition 
corresponding to each score.

(a) Original data

Treatments

I II III

10 14 19
9 11 15

12 15 22
7 10 18

13 18 20

(b) Data as entered into the SPSS data matrix

VAR0001 VAR0002 var

1 10.00 1.00
2 9.00 1.00
3 12.00 1.00
4 7.00 1.00
5 13.00 1.00
6 14.00 2.00
7 11.00 2.00
8 15.00 2.00
9 10.00 2.00

10 18.00 2.00
11 19.00 3.00
12 15.00 3.00
13 22.00 3.00
14 18.00 3.00
15 20.00 3.00
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Statistics Organizer: Finding the Right 
Statistics for Your Data

Overview: Three Basic Data Structures

After students have completed a statistics course, they occasionally are confronted with 
situations in which they have to apply the statistics they have learned. For example, in 
the context of a research methods course, or while working as a research assistant, stu-
dents are presented with the results from a study and asked to do the appropriate statisti-
cal analysis. The problem is that many of these students have no idea where to begin. 
Although they have learned the individual statistics, they cannot match the statistical 
procedures to a specific set of data. The Statistics Organizer attempts to help you find the 
right statistics by providing an organized overview for most of the statistical procedures 
presented in this book.

We assume that you know (or can anticipate) what your data look like. Therefore, we 
begin by presenting some basic categories of data so you can �nd the one that matches 
your own data. For each data category, we then present the potential statistical proce-
dures and identify the factors that determine which are appropriate for you based on the 
speci�c characteristics of your data. Most research data can be classi�ed in one of three 
basic categories.

Category 1: A single group of participants with one score per participant.

Category 2: A single group of participants with two variables measured for each 
participant.

Category 3: Two (or more) groups of scores with each score a measurement of the 
same variable.

In this section we present examples of each structure. Once you match your own data to 
one of the examples, you can proceed to the section of the chapter in which we describe the 
statistical procedures that apply to that example.

■ Scales of Measurement
Before we begin discussion of the three categories of data, there is one other factor that 
differentiates data within each category and helps to determine which statistics are appro-
priate. In Chapter 1 we introduced four scales of measurement and noted that different 
measurement scales allow different kinds of mathematical manipulation, which result in 
different statistics. For most statistical applications, however, ratio and interval scales are 
equivalent so we group them together for the following review.
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Ratio scales and interval scales produce numerical scores that are compatible with 
the full range of mathematical manipulation. Examples include measurements of 
height in inches, weight in pounds, the number of errors on a task, and IQ scores.

Ordinal scales consist of ranks or ordered categories. Examples include classifying 
cups of coffee as small, medium, and large or ranking job applicants as first, second, 
and third.

Nominal scales consist of named categories. Examples include academic major or 
occupation.

Within each category of data, we present examples representing these three measurement 
scales and discuss the statistics that apply to each.

■ Category 1: A Single Group of Participants with One 
Score per Participant
This type of data often exists in research studies that are conducted simply to describe indi-
vidual variables as they exist naturally. For example, a recent news report stated that half of 
American teenagers, ages 12 through 17, send 50 or more text messages a day. To get this 
number, the researchers had to measure the number of text messages for each individual 
in a large sample of teenagers. The resulting data consist of one score per participant for a 
single group.

It is also possible that the data are a portion of the results from a larger study examin-
ing several variables. For example a college administrator may conduct a survey to obtain 
information describing the eating, sleeping, and study habits of the college’s students. 
Although several variables are being measured, the intent is to look at them one at a time. 
For example, the administrator will look at the number of hours each week that each stu-
dent spends studying. These data consist of one score for each individual in a single group. 
The administrator will then shift attention to the number of hours per day that each student 
spends sleeping. Again, the data consist of one score for each person in a single group. The 
identifying feature for this type of research (and this type of data) is that there is no attempt 
to examine relationships between different variables. Instead, the goal is to describe indi-
vidual variables, one at a time.

Table 1 presents three examples of data in this category. Note that the three data sets 
differ in terms of the scale of measurement used to obtain the scores. The �rst set (a) shows 
numerical scores measured on an interval or ratio scale. The second set (b) consists of 
ordinal, or rank-ordered categories, and the third set shows nominal measurements. The 
statistics used for data in this category are discussed in Section I.

(a) Number of Text Messages 
Sent in Past 24 Hours

(b) Rank in Class for High 
School Graduation

(c) Got a Flu Shot Last 
Season

X X X

6 23rd No
13 18th No
28 5th Yes
11 38th No
9 17th Yes

31 42nd No
18 32nd No

TA B L E  1
Three examples of data 
with one score per par-
ticipant for one group of 
participants.
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(a) SAT Score (XSAT Score (XSAT Score ( ) and College X) and College X
Freshman GPA (Y)Y)Y

(b) Ranks for the Scores in 
Set (a)

X Y X Y

620 3.90 7 8
540 3.12 3 2
590 3.45 6 5
480 2.75 1 1
510 3.20 2 3
660 3.85 8 7
570 3.50 5 6
560 3.24 4 4

(c) Age (XAge (XAge ( ) and Wrist Watch X) and Wrist Watch X
Preference (Y)Y)Y

(d) Gender (XGender (XGender ( ) and Academic X) and Academic X
Major (Y)Y)Y

X Y X Y

27 Digital M Sciences
43 Analogue M Humanities
19 Digital F Arts
34 Digital M Professions
37 Digital F Professions
49 Analogue F Humanities
22 Digital F Arts
65 Analogue M Sciences
46 Digital F Humanities

TA B L E  2
Examples of data with 
two scores for each par-
ticipant for one group of 
participants.

■ Category 2: A Single Group of Participants with Two Variables 
Measured for Each Participant
These research studies are specifically intended to examine relationships between vari-
ables. Note that different variables are being measured, so each participant has two or more 
scores, each representing a different variable. Typically, there is no attempt to manipulate 
or control the variables; they are simply observed and recorded as they exist naturally.

Although several variables may be measured, researchers usually select pairs of vari-
ables to evaluate speci�c relationships. Therefore, we present examples showing pairs of 
variables and focus on statistics that evaluate relationships between two variables. Table 2 
presents four examples of data in this category. Once again, the four data sets differ in terms 
of the scales of measurement that are used. The �rst set of data (a) shows numerical scores 
for each set of measurements. For the second set (b) we have ranked the scores from the 
�rst set and show the resulting ranks. The third data set (c) shows numerical scores for one 
variable and nominal scores for the second variable. In the fourth set (d), both scores are 
measured on a nominal scale of measurement. The appropriate statistical analyses for these 
data are discussed in Section II.

■ Category 3: Two or More Groups of Scores with Each Score 
a Measurement of the Same Variable
A second method for examining relationships between variables is to use the categories of 
one variable to define different groups and then measure a second variable to obtain a set 
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of scores within each group. The first variable, defining the groups, usually falls into one 
of the following general categories:

a. Participant Characteristic: for example, gender or age.

b. Time: for example, before versus after treatment.

c. Treatment Conditions: for example, with caffeine versus without caffeine.

If the scores in one group are consistently different from the scores in another group, 
then the data indicate a relationship between variables. For example, if the performance 
scores for a group of older adults are consistently higher than the scores for a group of 
younger adults, then there is a relationship between performance and age.

Another factor that differentiates data sets in this category is the distinction between inde-
pendent-measures and repeated-measures designs. Independent-measures designs were intro-
duced in Chapters 10 and 12, and repeated-measures designs were presented in Chapters 11 and 
13. You should recall that an independent-measures design, also known as a between-subjects 
design, requires a separate group of participants for each group of scores. For example, a study 
comparing scores for right-handed people with scores for left-handed people would require 
two groups of participants. On the other hand, a repeated-measures design, also known as a 
within-subjects design, obtains several groups of scores from the same group of participants. A 
common example of a repeated-measures design is a before/after study in which one group of 
individuals is measured before a treatment and then measured again after the treatment.

Examples of data sets in this category are presented in Table 3. The table includes a 
sampling of independent-measures and repeated-measures designs as well as examples 
representing measurements from several different scales of measurement. The appropriate 
statistical analyses for data in this category are discussed in Section III.

(a) Attractiveness Ratings for a 
Woman in a Photograph Shown 
on a Red or a White Background

(b) Performance Scores Before and 
After 24 Hours of Sleep Deprivation

White Red Participant Before After

5 7 A 9 7
4 5 B 7 6
4 4 C 7 5
3 5 D 8 8
4 6 E 5 4
3 4 F 9 8
4 5 G 8 5

(c) Success or Failure on a 
Task for Participants Working 

Alone or in a Group

(d) Amount of Time Spent on Facebook (Small, 
Medium, Large) for Students from Each 

High School Class

Alone Group Freshman Sophomore Junior Senior

Fail Succeed Med Small Med Large
Succeed Succeed Small Large Large Med
Succeed Succeed Small Med Large Med
Succeed Succeed Med Med Large Large
Fail Fail Small Med Med Large
Fail Succeed Large Large Med Large
Succeed Succeed Med Large Small Med
Fail Succeed Small Med Large Large

TA B L E  3
Examples of data 
comparing two or more 
groups of scores with 
all scores measuring the 
same variable.
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Section I: Statistical Procedures for Data from a Single Group 
of Participants with One Score per Participant

One feature of this data category is that the researcher typically does not want to examine 
a relationship between variables but rather simply intends to describe individual variables 
as they exist naturally. Therefore, the most commonly used statistical procedures for these 
data are descriptive statistics that are used to summarize and describe the group of scores.

■ Scores from Ratio or Interval Scales: Numerical Scores
When the data consist of numerical values from interval or ratio scales, there are several 
options for descriptive and inferential statistics. We consider the most likely statistics and 
mention some alternatives.

Descriptive Statistics The most often used descriptive statistics for numerical scores 
are the mean (Chapter 3) and the standard deviation (Chapter 4).  If there are a few extreme 
scores or the distribution is strongly skewed, the median (Chapter 3) may be better than 
the mean as a measure of central tendency.

Inferential Statistics If there is a basis for a null hypothesis concerning the mean of 
the population from which the scores were obtained, a single-sample t test (Chapter 9)t test (Chapter 9)t
can be used to evaluate the hypothesis. Some potential sources for a null hypothesis are 
as follows:

1. If the scores are from a measurement scale with a well-de�ned neutral point, then 
the t test can be used to determine whether the sample mean is signi�cantly differt test can be used to determine whether the sample mean is signi�cantly differt -
ent from (higher than or lower than) the neutral point. On a 7-point rating scale, for 
example, a score of X 5 4 is often identi�ed as neutral. The null hypothesis would 
state that the population mean is equal to (greater than or less than) m 5 4.

2. If the mean is known for a comparison population, then the t test can be used to t test can be used to t
determine whether the sample mean is signi�cantly different from (higher than 
or lower than) the known value. For example, it may be known that the average 
score on a standardized reading achievement test for children �nishing �rst grade 
is m 5 20. If a researcher uses a sample of second-grade children to determine 
whether there is a signi�cant difference between the two grade levels, then the 
null hypothesis would state that the mean for the population of second-grade 
children is also equal to 20. The known mean could also be from an earlier time, 
for example 10 years ago. The hypothesis test would then determine whether a 
sample from today’s population indicates a signi�cant change in the mean during 
the past 10 years.

The single-sample t test evaluates the statistical significance of the results. A significant t test evaluates the statistical significance of the results. A significant t
result means that the data are very unlikely (presult means that the data are very unlikely (presult means that the data are very unlikely ( , a) to have been produced by random, 
chance factors. However, the test does not measure the size or strength of the effect. There-
fore, a t test should be accompanied by a measure of effect size such as Cohen’s t test should be accompanied by a measure of effect size such as Cohen’s t d or the d or the d
percentage of variance accounted for, r2r2r .

■ Scores from Ordinal Scales: Ranks or Ordered Categories
Descriptive Statistics Occasionally, the original scores are measurements on an ordi-
nal scale. It is also possible that the original numerical scores have been transformed into 
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ranks or ordinal categories (for example, small, medium, and large). In either case, the 
median is appropriate for describing central tendency for ordinal measurements and propor-
tions can be used to describe the distribution of individuals across categories. For example, 
a researcher might report that 60% of the students were in the high self-esteem category, 
30% in the moderate self-esteem category, and only 10% in the low self-esteem category.

Inferential Statistics If there is a basis for a null hypothesis specifying the proportions 
in each ordinal category for the population from which the scores were obtained, then a 
chi-square test for goodness of fit (Chapter 15) can be used to evaluate the hypothesis. 
For example, it may be reasonable to hypothesize that the categories occur equally often 
(equal proportions) in the population and the test would determine whether the sample 
proportions are significantly different. 

■ Scores from a Nominal Scale
For these data, the scores simply indicate the nominal category for each individual. For 
example, individuals could be classified as older or younger than 30 years or grouped into 
different occupational categories.

Descriptive Statistics The only descriptive statistics available for these data are the 
mode (Chapter 3) for describing central tendency or using proportions (or percentages) to 
describe the distribution across categories.

Inferential Statistics If there is a basis for a null hypothesis specifying the propor-
tions in each category for the population from which the scores were obtained, then a 
chi-square test for goodness of fit (Chapter 15) can be used to evaluate the hypothesis. 
For example, it may be reasonable to hypothesize that the categories occur equally often 
(equal proportions) in the population. If proportions are known for a comparison popula-
tion or for a previous time, the null hypothesis could specify that the proportions are the 
same for the population from which the scores were obtained. For example, if it is known 
that 35% of the adults in the United States get a flu shot each season, then a researcher 
could select a sample of college students and count how many got a shot and how many 
did not [see the data in Table 1(c)]. The null hypothesis for the chi-square test would 
state that the distribution for college students is not different from the distribution for the 
general population. 

Figure 1 summarizes the statistical procedures used for data in category 1.

Section II: Statistical Procedures for Data from a Single  
Group of Participants with Two Variables Measured 
for Each Participant

The goal of the statistical analysis for data in this category is to describe and evaluate the 
relationships between variables, typically focusing on two variables at a time. With only 
two variables, the appropriate statistics are correlations and regression (Chapter 14), and 
the chi-square test for independence (Chapter 15). 

■ Two Numerical Variables from Interval or Ratio Scales
The Pearson correlation measures the degree and direction of linear relationship between 
the two variables (see Example 14.3 on page 428). Linear regression determines the 
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equation for the straight line that gives the best fit to the data points. For each X value in X value in X
the data, the equation produces a predicted Y value on the line so that the squared dis-
tances between the actual Y values and the predicted Y values and the predicted Y Y values are minimized.Y values are minimized.Y

Descriptive Statistics The Pearson correlation serves as its own descriptive statistic. 
Specifically, the sign and magnitude of the correlation describe the linear relationship 
between the two variables. The squared correlation is often used to describe the strength 
of the relationship. The linear regression equation provides a mathematical description of 
the relationship between X values and X values and X Y. The slope constant describes the amount that Y. The slope constant describes the amount that Y Y
changes each time the X value is increased by 1 point. The constant (X value is increased by 1 point. The constant (X Y intercept) value Y intercept) value Y
describes the value of Y when Y when Y X is equal to zero.X is equal to zero.X

Inferential Statistics The statistical significance of the Pearson correlation is evalu-
ated with a t statistic or by comparing the sample correlation with critical values listed in 
Table B6 in Appendix B. A significant correlation means that it is very unlikely (pTable B6 in Appendix B. A significant correlation means that it is very unlikely (pTable B6 in Appendix B. A significant correlation means that it is very unlikely ( , a) 
that the sample correlation would occur without a corresponding relationship in the popu-
lation. Analysis of regression is a hypothesis-testing procedure that evaluates the signifi-
cance of the regression equation. Statistical significance means that the equation predicts 
more of the variance in the Y scores than would be reasonable to expect if there were not Y scores than would be reasonable to expect if there were not Y
a real underlying relationship between X and X and X Y.Y.Y

Chi-square test for
goodness of fit (Chapter 15).
Use the sample frequencies
to test a hypothesis about
the proportions in the
population.

Chi-square test for
goodness of fit (Chapter 15).
Use the sample frequencies
to test a hypothesis about
the proportions in the
population.

Chi-square test for
goodness of fit (Chapter 15).
Use the sample frequencies
to test a hypothesis about
the proportions in the
population.

Numerical scores from
interval or ratio scales

Nominal Scores
(Named categories)

Ordinal scores
(Ranks or ordered

categories)

Mean (Chapter 3) and
standard deviation
(Chapter 4)

Proportions or percentages
to describe the distribution
across categories

Median (Chapter 3)

Proportions or percentages
to describe the distribution
across categories

Mode (Chapter 3)

Proportions or percentages
to describe the distribution
across categories

Single-sample t test
(Chapter 9). Use the sample
mean to test a hypothesis
about the population mean.

DESCRIPTIVE
STATISTICS

INFERENTIAL
STATISTICS

F I G U R E  1
Statistics for Category 1 data. A single group of participants with one score per participant. The goal is to describe the 
variable as it exists naturally.
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■ Two Ordinal Variables (Ranks or Ordered Categories)
The Spearman correlation is used when both variables are measured on ordinal scales (ranks). 
If one or both variables consist of numerical scores from an interval or ratio scale, then the 
numerical values can be transformed to ranks and the Spearman correlation can be computed.

Descriptive Statistics The Spearman correlation describes the degree and direction 
of monotonic relationship; that is the degree to which the relationship is consistently one 
directional.

Inferential Statistics A test for significance of the Spearman correlation is not pre-
sented in this book but can be found in more advanced texts such as Gravetter and Wallnau 
(2017). A significant correlation means that it is very unlikely (p(2017). A significant correlation means that it is very unlikely (p(2017). A significant correlation means that it is very unlikely ( , a) that the sample 
correlation would occur without a corresponding relationship in the population.

■ One Numerical Variable and One Dichotomous Variable  
(A Variable with Exactly Two Values)
The point-biserial correlation measures the relationship between a numerical variable and a 
dichotomous variable. The two categories of the dichotomous variable are coded as numer-
ical values, typically 0 and 1, to calculate the correlation.

Descriptive Statistics Because the point-biserial correlation uses arbitrary numerical 
codes, the direction of relationship is meaningless. However, the size of the correlation, or 
the squared correlation, describes the degree of relationship.

Inferential Statistics The data for a point-biserial correlation can be regrouped into a 
format suitable for an independent-measures t hypothesis test, or the t hypothesis test, or the t t value can be comt value can be comt -
puted directly from the point-biserial correlation (see the example on pages 446–448). The 
t value from the hypothesis test determines the significance of the relationship.t value from the hypothesis test determines the significance of the relationship.t

■ Two Dichotomous Variables
The phi-coefficient is used when both variables are dichotomous. For each variable, the 
two categories are numerically coded, typically as 0 and 1, to calculate the correlation.

Descriptive Statistics Because the phi-coefficient uses arbitrary numerical codes, 
the direction of relationship is meaningless. However, the size of the correlation, or the 
squared correlation, describes the degree of relationship.

Inferential Statistics The data from a phi-coefficient can be regrouped into a format 
suitable for a 2 3 2 chi-square test for independence, or the chi-square value can be com-
puted directly from the phi-coefficient (see Chapter 15, page 495). The chi-square value 
determines the significance of the relationship.

■ Two Variables from Any Measurement Scales
The chi-square test for independence (Chapter 15) provides an alternative to correla-
tions for evaluating the relationship between two variables. For the chi-square test, 
each of the two variables can be measured on any scale, provided that the number of 
categories is reasonably small. For numerical scores covering a wide range of value, 
the scores can be grouped into a smaller number of ordinal intervals. For example, IQ 
scores ranging from 93 to 137 could be grouped into three categories described as high, 
medium, and low IQ.
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For the chi-square test, the two variables are used to create a matrix showing the fre-
quency distribution for the data. The categories for one variable de�ne the rows of the 
matrix and the categories of the second variable de�ne the columns. Each cell of the matrix 
contains the frequency or number of individuals whose scores correspond to the row and 
column of the cell. For example, the gender and academic major scores in Table 2(d) could 
be reorganized in a matrix as follows:

Arts Humanities Sciences Professions

Female

Male

The value in each cell is the number of students with the gender and major identified by the 
cell’s row and column. The null hypothesis for the chi-square test would state that there is 
no relationship between gender and academic major.

Descriptive Statistics The chi-square test is an inferential procedure that does not in-
clude the calculation of descriptive statistics. However, it is customary to describe the data 
by listing or showing the complete matrix of observed frequencies. Occasionally researchers 
describe the results by pointing out cells that have exceptionally large discrepancies. For ex-
ample, in Chapter 15 (Example 15.3, page 486) we described a study investigating the effect 
of background music on the likelihood that a woman will give her phone number to a man 
she has just met. Female participants spent time in a waiting room with either romantic or 
neutral background music before beginning the study. At the end of the study, each partici-
pant was left alone in a room with a male confederate who used a scripted line to ask for her 
phone number. The description of the results focused on the “Yes” responses. Specifically, 
women who had heard romantic music were almost twice as likely to give their numbers. 

Inferential Statistics The chi-square test evaluates the significance of the relationship 
between the two variables. A significant result means that the distribution of frequencies 
in the data is very unlikely to occur (pin the data is very unlikely to occur (pin the data is very unlikely to occur ( , a) if there is no underlying relationship between 
variables in the population. As with most hypothesis tests, a significant result does not 
provide information about the size or strength of the relationship. Therefore, either a phi-
coefficient or Cramér’s V is used to measure effect size.V is used to measure effect size.V

Figure 2 summarizes the statistical procedures used for data in Category 2.

Section III: Statistical Procedures for Data Consisting of Two  
(or More) Groups of Scores with Each Score a Measurement 
of the Same Variable

Data in this category includes single-factor and two-factor designs. In a single-factor study, 
the values of one variable are used to define different groups and a second variable (the 
dependent variable) is measured to obtain a set of scores in each group. For a two-factor 
design, two variables are used to construct a matrix with the values of one variable defin-
ing the rows and the values of the second variable defining the columns. A third variable 
(the dependent variable) is measured to obtain a set of scores in each cell of the matrix. To 
simplify discussion, we focus on single-factor designs now and address two-factor designs 
in a separate subsection at the end of this section.

The goal for a single-factor research design is to demonstrate a relationship between 
the two variables by showing consistent differences between groups. The scores in each 
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F I G U R E  2
Statistics for Category 2 data. One group of participants with two (or more) variables measured for each participant. 
The goal is to describe and evaluate the relationship between variables.

Both variables measured
on interval or ratio scales
(numerical scores)

Descriptive Statistics

Both variables measured
on ordinal scales (ranks or
ordered categories)

A t test or the values int test or the values int
Table B-6 determine
significance of the
Pearson correlation

Analysis of regression
(Chapter 14) determines
the significance of the
regression equation

No test in this book;
consult an advanced
statistics text

The data can be
grouped to be suitable
for an independent-
measures t test (seet test (seet
Table 14.3)

The data can be
evaluated with a
2 x 2 chi-square test
for independence

The Pearson correlation
(Chapter 14) describes
the degree and direction
of linear relationship

The regression equation
(Chapter 14) identifies the
slope and y-intercept
for the best-fitting line

The Spearman correlation
(Chapter 14) describes
the degree and direction
of monotonic relationship

The point-biserial
correlation (Chapter 14)
describes the strength
of the relationship

The phi-coefficient (ChaThe phi-coefficient (ChaThe phi-coef pter 14)
describes the strength of the
relationship

Numerical scores for one variable
and two values for the second
(a dichotomous variable coded
as 0 and 1)

Two values for both variables
(two dichotomous variables,
each coded as 0 and 1)

Any measurement scales but
a small number of categories
for each variable

The chi-square test for
independence (Chapter 15)
evaluates the relationship
between variables

Regroup the data as a
frequency distribution matrix;
the frequencies or proportions
describe the data

Inferential Statistics

group can be numerical values measured on interval or ratio scales, ordinal values (ranks), 
or simply categories on a nominal scale. The different measurement scales permit different 
types of mathematics and result in different statistical analyses.

■ Scores from Interval or Ratio Scales: Numerical Scores
Descriptive Statistics When the scores in each group are numerical values, the stan-
dard procedure is to compute the mean (Chapter 3) and the standard deviation (Chapter 4) 
as descriptive statistics to summarize and describe each group. For a repeated-measures 
study comparing exactly two groups, it also is common to compute the difference between 
the two scores for each participant and then report the mean and the standard deviation for 
the difference scores.

Inferential Statistics Analysis of variance (ANOVA) and t tests are used to evaluate t tests are used to evaluate t
the statistical significance of the mean differences between the groups of scores. With 
only two groups, the two tests are equivalent and either may be used. With more than 
two groups, mean differences are evaluated with an ANOVA. For independent-measures 
designs (between-subjects designs), the independent-measures t (Chapter 10) and indet (Chapter 10) and indet -
pendent-measures ANOVA (Chapter 12) are appropriate. For repeated-measures designs, 
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the repeated-measures t (Chapter 11) and repeated-measures ANOVA (Chapter 13) are t (Chapter 11) and repeated-measures ANOVA (Chapter 13) are t
used. For all tests, a significant result indicates that the sample mean differences in the 
data are very unlikely (pdata are very unlikely (pdata are very unlikely ( , a) to occur if there are not corresponding mean differences 
in the population. For an ANOVA comparing more than two means, a significant F-ratio 
indicates that post tests such as Scheffé or Tukey (Chapter 12) are necessary to determine 
exactly which sample means are significantly different. Significant results from a t test t test t
should be accompanied by a measure of effect size such as Cohen’s d or d or d r2. For ANOVA, 
effect size is measured by computing the percentage of variance accounted for, h2.

■ Scores from Nominal or Ordinal Scales
Descriptive Statistics Nominal or ordinal data are usually described by the distribu-
tion of individuals across categories. For example, the scores in one group may be clus-
tered in one category or set of categories and the scores in another group may be clustered 
in different categories.

Inferential Statistics With a relatively small number of nominal categories, the data can 
be displayed as a frequency-distribution matrix with the groups defining the rows and the 
nominal categories defining the columns. The number in each cell is the frequency, or number 
of individuals in the group, identified by the cell’s row, with scores corresponding to the cell’s 
column. For example, the data in Table 3(c) show success or failure on a task for participants 
who are working alone or working in a group. These data could be regrouped as follows:

Success Failure

Work Alone

Work in a Group

Ordinal data are treated in exactly the same way. For example, a researcher could group 
high school students by class (freshman, sophomore, junior, senior) and measure the 
amount of time each student spends on Facebook by classifying students into three ordi-
nal categories (small, medium, large). An example of the resulting data is shown in Table 
3(d). However, the same data could be regrouped into a frequency-distribution matrix 
as follows:

Amount of Time Spent on Facebook

Small Medium Large

Freshman

Sophomore

Junior

Senior

In each case, a chi-square test for independence (Chapter 15) can be used to evaluate dif-In each case, a chi-square test for independence (Chapter 15) can be used to evaluate dif-In each case, a chi-square test for independence (Chapter 15) can be used to evaluate dif
ferences between groups. A significant result indicates that the sample distributions would 
be very unlikely (pbe very unlikely (pbe very unlikely ( , a) to occur if the corresponding population distributions all have the 
same proportions (same shape).

■ Two-Factor Designs with Scores from Interval or Ratio Scales
Research designs with two independent (or quasi-independent) variables are known as 
two-factor designs. These designs can be presented as a matrix with the levels of one factor 
defining the rows and the levels of the second factor defining the columns. A third variable 
(the dependent variable) is measured to obtain a group of scores in each cell of the matrix 
(see Example 13.6 on page 398).
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Descriptive Statistics When the scores in each group are numerical values, the stan-
dard procedure is to compute the mean (Chapter 3) and the standard deviation (Chapter 4) 
as descriptive statistics to summarize and describe each group.

Inferential Statistics A two-factor ANOVA is used to evaluate the significance of the 
mean differences between cells. The ANOVA separates the mean differences into three 
categories and conducts three separate hypothesis tests:

1. The main effect for factor A evaluates the overall mean differences for the �rst fac-
tor; that is, the mean differences between rows in the data matrix.

2. The main effect for factor B evaluates the overall mean differences for the second 
factor; that is, the mean differences between columns in the data matrix.

3. The interaction between factors evaluates the mean differences between cells that 
are not accounted for by the main effects.

For each test, a significant result indicates that the sample mean differences in the data 
are very unlikely (pare very unlikely (pare very unlikely ( , a) to occur if there are not corresponding mean differences in the 
population. For each of the three tests, effect size is measured by computing the percentage 
of variance accounted for, h2.

Figure 3 summarizes the statistical procedures used for data in Category 3.

F I G U R E  3
Statistics for Category 3 data. Two or more groups of scores, which are all measurements of the same variable. 
The goal is to describe and evaluate the differences between groups of scores.

Descriptive Statistics

Data from interval
or ratio scales
(numerical scores)

No test in this book;
consult an advanced
statistics text.

Median (Chapter 3)
or the proportion
in each category.

Two or more
groups

Two or more
groups

Repeated-measures ANOVAOVAOV
(Chapter 13) evaluates the
mean diffemean diffemean dif rences

Independent-measures ANOVAANOVAANO
(Chapter 12) evaluates the
mean differences

Means (Chapter 3) and
standard deviations
(Chapter 4)

Means (Chapter 3) and
standard deviations
(Chapter 4)

Independent-
measures

Independent-
measures

Repeated-
measures

Two or more
groups

Means (Chapter 3) and
standard deviations
(Chapter 4)

Independent-measures t testt testt
(Chapter 10) evaluates the
mean diffemean diffemean dif rence

Repeated-measures t testt testt
(Chapter 11) evaluates the
mean diffemean diffemean dif rence

Means (Chapter 3) and
standard deviations
(Chapter 4)

Independent-
measures

Repeated-
measures

Two groups

Independent-
or repeated-
measures

Chi-square test for
independence (Chapter 15)
evaluates the group
differences

Proportion in each
category

Ordinal data
(ranks or ordered
categories)

Ordinal or nominal
data with few
categories

Inferential Statistics
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Independent-measures t test (t test (t Continued)
SPSS, 292–293
structure of research study (figure), 269
t statistic, 271, 275, 276t statistic, 271, 275, 276t
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multiplying/dividing by a constant, 66
population, 60
sample, 60
SPSS, 83
weighted, 62–63
z-score distribution, 129

Mean square (MS)
repeated-measures ANOVA, 380–381
single-factor ANOVA, 344
two-factor ANOVA, 401–402

Mean squared deviation, 92. See also
Variance

Measurement scales. See Scales of 
measurement

Measures of central tendency. See Central 
tendency

Measures of variability. See Variability
Median, 67–71

continuous variable, 69–70
defined, 68
extreme values, 77
goal, 67
graph, 80–81
how to find, 68–69
middle, 70–71
open-ended distribution, 78
ordinal scale, 78–79
skewed distribution, 77
undetermined values, 77–78
when to use, 76–79

Minor mode, 72
Mode, 71–73

defined, 72
describing shape, 79
discrete variable, 79
major, 73
minor, 73
nominal scale, 79
when to use, 79

Modified histogram, 44

Monotonic relationship, 442
MS. See Mean square (MS)
MSbetweenMSbetweenMS . See Between-treatments mean 

square (MSbetweenMSbetweenMS )
MSerror, 380
MSregressionMSregressionMS , 461
MSresidualMSresidualMS , 461, 462
MSwithin. See Within-treatments mean square 

(MSwithin)
Multimodal distribution, 72

n, 26
N, 26
Negative correlation, 423
Negative numbers, 521–522
Negatively skewed distribution, 49, 75
No-difference hypothesis, 476
Nominal scale, 13–14, 79, 564
Nondirectional (two-tailed) test, 257. See 

also Two-tailed test
Nonequivalent groups study, 23
Nonexperimental method, 23–25
Nonparametric tests, 474, 484
Normal distribution, 48, 149–156

left side of distribution equal to right 
side, 150

shape (equation), 150
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post hoc tests, 383. See also Post hoc 

tests
power, 385
preliminary calculations, 410
sample size, 385
SPSS, 408, 409
summary/review, 406
summary table, 381
t test, compared, 385–387t test, compared, 385–387t
treatment effect, 385
two-stage process, 377–380
variance, 385

Repeated-measures design, 566
ANOVA. See Repeated-measures 

ANOVA
t test. t test. t See Repeated-measures t testt testt

Repeated-measures t test, 301–328, 386t test, 301–328, 386t
advantage, 302, 317
alternative hypothesis, 305
assumptions, 310
confidence interval, 312–313
counterbalancing, 319
defined, 302
demonstration/illustration, 323–324
descriptive statistics, 313–314
difference scores, 304, 323
directional hypotheses/one-tailed test, 

309–310
disadvantage, 318
effect size, 311–312
estimated d, 311, 312, 324
estimated standard error, 306
hypothesis testing, 307–310

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



586 SUBJECT INDEX

Repeated-measures t test (t test (t Continued)
independent-measures t test, compared, t test, compared, t

317–318
individual differences, 317
in the literature, 313
null hypothesis, 305
number of subjects, 317
order effects, 318–319
percentage of variance explained (r2r2r ), 

311, 312, 324
sample size, 314
sample variance, 314
SPSS, 321–322
study changes over time, 317
t statistic, 306t statistic, 306t
time-related factors, 318–319
variability/treatment effect, 314–315
when used, 322–323

Reporting in scientific papers. See In the 
literature

Research studies. See also In the literature
ADHD/Ritalin, 325
adversity/mental health, 299
alcohol consumption/U.S. vs. Canadian 

students, 32
anxiety level, 265
attractiveness/alcohol consumption, 

65, 196
attractiveness/intelligence, 326
attractiveness/newborn’s reaction, 264
attractiveness/tattoos, 32, 325, 417
blows to head/cognitive performance, 297
blows to head/neurological damage, 418
calorie content of menu items/fast-food 

restaurants, 296
cheating/creative people, 296
childhood participation/adolescent self-

esteem, 234
customer loyalty programs, 507
dishonest behavior/lighting, 297
distributed practice, 296
eating behavior/body weight, 413
eReader before bed/alertness in the 

morning, 245
eyewitness testimony/language used to 

ask question, 299, 507
Facebook use/academic performance, 18
Flynn effect, 236
gender/dream content, 508
gender/energy drinks, 236
gender/intelligence scores, 117, 508
gender/teenage mental health issues, 509
gender/weight, 508
humor/interpersonal attractions, 235
humor/perception by others, 265–266
masculine-themed words/job 

advertisements, 54, 326
memory/studying material on multiple 

occasions, 296
methods of instruction/memorization vs. 

finding solution on your own, 297

milk/overweight or obese, 32
money/perception of pain, 297
motivational signs/physical activity, 33
moving as child/ well-being as adult, 265
music-based physical training/elderly 

people, 296
newborns/looking at attractive faces, 264
number talk/mathematical 

development, 55
preschool child care/development of 

young children, 266
price/quality of product, 325
red/hunger, 482
red/tips to waitresses, 33, 200, 325
romantic music/woman giving phone 

number to man, 486
Sesame Street/scholastic performance, 296Sesame Street/scholastic performance, 296Sesame Street
sleep/academic performance, 308
social status/cognitive ability, 471
socioeconomic status/prosocial behavior, 

298
spacing effects, 296
spotlight effect, 264
studying/average time spent per week, 234
studying/comparing three different 

strategies, 338, 376
studying/paper vs. computer screen, 32, 

234, 265, 398
studying/simply reread vs. answering 

questions, 55, 265
swearing/perception of pain, 32, 327
Tai Chi/arthritis pain, 326
tattoos/attractiveness, 32, 325, 417
underage drinking/parenting style, 508
video game avatars/creators, 509
video game violence/behavior, 20, 32, 

388, 419
weather conditions/restaurant reviews, 236
weight/income, 423, 471
yellow/hunger, 482

Residual variance, 376. See also Error variance
Restricted range, 433–434
Rho (ρ), 425. See also Correlation
Roughly symmetrical distribution, 49, 74

s, 101. See also Sample standard deviation
s2, 101. See also Sample variance
Sample, 4
Sample mean, 60, 190. See also Distribution 

of sample means
Sample size

Cohen’s w, 494
confidence interval, 255
distribution of sample means, 172
independent-measures t test, 288–289t test, 288–289t
law of large numbers, 177
pooled variance, 274–275
power, 229–230
repeated-measures ANOVA, 385
repeated-measures t test, 314t test, 314t
single-sample t test, 247–248t test, 247–248t

standard error, 177, 178, 188, 194
tests of significance, 493

Sample standard deviation, 101, 116, 239
Sample variance

defined, 101
equation, 100, 239
independent-measures t test, 288–290t test, 288–290t
repeated-measures t test, 314t test, 314t
single-factor ANOVA, 339
single-sample t test, 247t test, 247t
use n 2 1 in denominator, 262

Sampling distribution, 171
Sampling error, 6, 7, 170, 186
Sampling without replacement, 147, 216
Scales of measurement, 13–16, 563–564

interval scale, 14–15, 564
nominal scale, 13–14, 564
ordinal scale, 14, 564
ratio scale, 14–15, 564
statistics, and, 15–16

Scheffé test, 355–356
Scientific hypothesis, 201
Score, 5
SE, 188
SEM, 188
Sigma (σ), 98
Sigma squared (σ2), 98
Significance level, 166
Significant, 214
Simple random sample, 146
Single-factor ANOVA, 329–369. See also

ANOVA
alternative hypothesis, 332
ANOVA summary table, 348
assumptions, 352
between-treatments variance, 335–336
degrees of freedom, 342–344
demonstration/illustration, 365–366
distribution of F-ratios, 346
effect size, 349, 366
F distribution table, 346–347F distribution table, 346–347F
F-ratio, 334, 336–337, 339, 345, 364
formulas, 339, 362
hypothesis test, 348
in the literature, 349–350
mean square (MS), 344
nine calculations, 339, 340
notation, 338–339
null hypothesis, 332
percentage of variance explained (η2), 

349, 366
post hoc tests. See Post hoc tests
SPSS, 363–364
sum of squares (SS), 340–342
t test, compared, 360t test, compared, 360t
test statistic, 333
tips/pointers, 364–365
type I error, 332–333
unequal sample sizes, 350–352
within-treatments variance, 335, 336

Single group - one score per participant
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description of data structure, 564
nominal scale, 568
ordinal scales, 567–568
overview (figure), 569
ratio or interval scales, 567

Single group - two variables per participant
description of data structure, 565
interval or ratio scales, 568–569
one numerical variable/one dichotomous 

variable, 570
overview (figure), 572
two dichotomous variables, 570
two ordinal variables, 570
two variables from any measurement 

scales, 570–571
Single-sample t test, 237–266t test, 237–266t

assumptions, 247
chi-square test for goodness of fit, 

484–485
confidence interval, 253–255
demonstration (hypothesis test with t

statistic), 262–263
directional hypotheses/one-tailed test, 

257–259
effect size, 248–255
estimated d, 249–250, 263
hypothesis testing, 244–248
in the literature, 255–256
null hypothesis, 245
percentage of variance explained (r2r2r ), 

250–253, 263
sample size, 247–248
sample variance, 247
SPSS, 261
t statistic, 244–245, 260, 271, 276t statistic, 244–245, 260, 271, 276t

Skewed distribution, 49, 75, 77
Slope, 451, 455
Solutions to problems in text, 545–558
SP. See Sum of products (SP)
Spacing effects, 296
Spearman correlation, 441–446

how computed?, 444
ranking tied scores, 444–445
special formula, 445–446
SPSS, 465
uses, 441–442, 443

Spotlight effect, 264
SPSS

chi-square test for goodness of fit, 
501–502

chi-square test for independence, 501, 502
correlation, 465–468
data editor, 559
data formats, 560–561
frequency distribution bar graph, 51–52
frequency distribution histogram, 51–52
frequency distribution table, 51
general instructions, 559–561
hypothesis testing, 232
independent-measures t test, 292–293t test, 292–293t
mean, 83

Pearson correlation, 465–468
phi-coefficient, 465
point-biserial correlation, 465
probability, 166
range, 114, 115
repeated-measures ANOVA, 408, 409
repeated-measures t test, 321–322t test, 321–322t
Single-factor ANOVA, 363–364
single-sample t test, 261t test, 261t
standard deviation, 114, 115
standard error, 194
statistical commands, 559
two-factor ANOVA, 408–410
variance, 114, 115
z-score, 139

Square root, 527–528
Squared distance, 92
SS. See Sum of squares (SS)
SSbetween subjectsSSbetween subjectsSS . See Between-subject sum of 

squares (SSbetween subjectsSSbetween subjectsSS )
SSbetween treatmentsSSbetween treatmentsSS . See Between-treatments sum 

of squares (SSbetween treatmentsSSbetween treatmentsSS )
SSerror, 379
SSregressionSSregressionSS , 459, 462
SSresidualSSresidualSS , 458, 459
SStotal. See Total sum of squares (SStotal)
SSwithin treatments. See Within-treatments sum of 

squares (SSwithin treatments)
Standard deviation

adding/subtracting a constant, 217
analogy, 110
calculation (flowchart), 93
concrete and meaningful, 110
defined, 93
descriptive statistics, 109–110
distribution of sample means, 183
entire distribution, 109
estimated population, 102
frequency distribution graph, 107
in the literature, 108–109
location of individual scores, 109–110
population, 97, 98
sample, 101, 116, 239
standard error, 177–178, 187, 239
z-score distribution, 129

Standard error
defined, 177
distribution of sample means, 176–177
estimated. See Estimated standard error
formulas, 178
hypothesis testing, 217
importance, 177
in the literature, 188–189
sample size, 177, 178, 188, 194
sampling error, 186
single (main) rule, 185
SPSS, 194
standard deviation, 177–178, 187, 239
symbol, 177
variance, 178, 239

Standard error of estimate, 457–460

Standardized distribution, 131
Standardized form of regression equation, 

456–457
Standardized scores, 134
Statistic, 5
Statistical notation, 25–28
Statistical Package for the Social Services, 

30. See also SPSS
Statistical power, 226–231

alpha level, 230
calculating power, 227–228
defined, 226
effect size, 228
one-tailed versus two-tailed test, 230
repeated-measures ANOVA, 385
sample size, 229–230

Statistical tables
chi-square distribution, 544
F distribution, 539–541F distribution, 539–541F
F-max statistic, 538
Pearson correlation, critical values, 543
studentized range statistic (q), 542
t distribution, 542t distribution, 542t
unit normal table, 533–536

Statistically significant, 214
Statistics

computer program. See SPSS
defined, 3
descriptive. See Descriptive statistics
finding right statistical test. See Statistics 

organizer
inferential. See Inferential statistics
purposes, 3
research, and, 7–9
scales of measurement, 15–16
tables. See Statistical tables

Statistics organizer, 563–574
data category 1. See Single group - one 

score per participant
data category 2. See Single group - two 

variables per participant
data category 3. See Two or more 

groups-each score measuring same 
variable

overview, 563–566
scales of measurement, 563–564

Strength of relationship, 499. See also
Correlation

Student exercises
answers to problems in text, 545–558
math. See Mathematics review

Studentized range statistic (q), 542
Sum of products (SP), 426, 468
Sum of squares (SS)

computational formula, 97, 100
defined, 96
definitional formula, 96, 100
demonstration (how computed), 115
single-factor ANOVA, 340–342
sum of products (SP), 426, 468

Summation notation, 26
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Summation sign (Σ), 26
Symmetrical distribution, 49, 74

t distribution, 240–243, 542t distribution, 240–243, 542t
t statistict statistict

correlation, 439
defined, 240
independent-measures t test, 271, 275, t test, 271, 275, t

276
repeated-measures t test, 306t test, 306t
single-sample t test, 244–245, 260, 271, t test, 244–245, 260, 271, t

276
z-score formula, compared, 240

t testt testt
between-subjects design. See

Independent-measures t testt testt
one sample. See Single-sample t testt testt
repeated-measures, 386
within-subjects design. See Repeated-

measures t testt testt
Tail of the distribution, 49, 152, 153
“Tends to be positively skewed,” 49
Test for goodness of fit. See Chi-square test 

for goodness of fit
Test for independence. See Chi-square test 

for independence
Test statistic

ANOVA, 333. See also F-ratio
defined, 207
t statistic, 262. t statistic, 262. t See also t statistict statistict
z-score, 207–208, 238, 240, 262

Testing hypotheses. See Hypothesis testing
Tests of significance, 493
Testwise alpha level, 333
Theory verification, 431
Total degrees of freedom (dftotaldftotaldf )

single-factor ANOVA, 343
two-factor ANOVA, 399

Total sum of squares (SStotal)
repeated-measures ANOVA, 377
single-factor ANOVA, 340–341
two-factor ANOVA, 399

Transformations of scale, 107–108
Treatment effect, 163–164

repeated-measures ANOVA, 385
single-factor ANOVA, 336
tests of significance, 493

Tukey’s HSD test, 354, 355
Two-factor ANOVA, 388–405. See also

ANOVA
A-effect (factor A), 396, 400
assumptions, 405
B-effect (factor B), 396, 401
between-treatments variability, 399–400
demonstration/illustration, 413–415
effect size, 403
F-ratio, 397, 402, 407
formulas, 407
Hartley’s F-max test, 405
independence of main effects and 

interactions, 394–395

interpreting the results, 404
interactions, 391–394
in the literature, 404
main effects, 389–391
matrix, 388, 389
MS values, 401–402MS values, 401–402MS
overview (figure), 397
percentage of variance explained (η2), 

403
pointers/tips, 411
purpose, 407
SPSS, 408–410
summary table, 402
three distinct hypothesis tests, 396
total variability, 399
within-treatments variability, 399
A X B interaction, 396, 401

Two or more groups - each score measuring 
same variable, 571–574

description of data structure, 565–566
interval or ratio scales, 572–573
nominal or ordinal scales, 573
overview (figure), 574
two-factor designs with scores from 

interval/ratio scales, 573–574
Two-tailed test, 218, 220–221, 230, 257
Type I error, 209–210

hypothesis testing, 209–210
post hoc tests, 353–354
single-factor ANOVA, 332–333
testwise/experimentwise alpha level, 

332–333
Type II error, 210–211

Unbiased statistic, 104–106
Unit normal table

body, tail, 152, 153
column B, 152
column C, 152, 153
column D, 152
demonstration (finding probability from 

unit normal table), 166–167
distribution of sample means, 182, 183
finding probability for specific X value, X value, X

157, 160, 165
finding probability for specific z-score, 

154–155
finding probability located between two 

scores (X values), 158–159X values), 158–159X
finding score (X value) corresponding to X value) corresponding to X

specific proportion, 160–162
finding z-score location corresponding to 

specific proportion, 156–157
four-column format, 152
normal distributions only, 157, 166
positive/negative z-score, 153
statistical table, 533–536
two-step procedure, 157, 160, 165

Unpredicted variability, 459
Upper real limit, 12
Use/misuse of graphs, 45

Validity, 431
Variability, 87–117

bias, 99
defined, 88
degrees of freedom, 102–103
high/low, 111
inferential process, 111
predictability, consistency, diversity, 89
purposes, 89
range, 89–90
sample vs. population, 99
SPSS, 114, 115
standard deviation. See Standard 

deviation
transformations of scale, 107–108
variance. See Variance

Variable
binomial, 446
continuous, 11–13
dependent, 22
dichotomous, 446
discrete, 11–13
environmental, 22
independent, 22, 372, 487
participant, 21
quasi-independent, 25, 331, 372

Variance
analogy, 111
calculation (flowchart), 93
defined, 92
equation (in words), 96
error, 111
estimated population, 102
high, 111–112
inferential statistics, 111–112
law of large numbers, 273
population, 97, 98
repeated-measures ANOVA, 385
sample. See Sample variance
standard error, 178, 239
standard error of estimate, 458
unbiased statistic, 104–106

Weighted mean, 62–63
Within-subjects design, 302, 566. See also

Repeated-measures design
Within-treatments degrees of freedom 

(dfwithiindfwithiindf )
repeated-measures ANOVA, 378
single-factor ANOVA, 343
two-factor ANOVA, 399

Within-treatments mean square (MSwithin)
single-factor ANOVA, 343
two-factor ANOVA, 401, 402

Within-treatments sum of squares 
(SSwithin treatments)

repeated-measures ANOVA, 378
single-factor ANOVA, 341
two-factor ANOVA, 399

Within-treatments variance, 335, 336
Wrong Shui, 2
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X, 26
X-axis, 43X-axis, 43X

Y, 26
Y-axis, 43Y-axis, 43Y
Y-intercept, 451Y-intercept, 451Y

z-score, 119–142
checking accuracy of z-score value, 123
comparisons, 131–132
defined, 121
demonstration (convert z-scores to X

values), 140
demonstration (transform X values to X values to X

z-scores), 140
distribution of sample means, 182–184

drawing a picture, 126–127
extreme scores, 136
formula (population), 122–123
formula (sample), 124
hypothesis testing, 207–208, 238, 240
inferential statistics, 135–137
interpreting a z-score value, 122
locations in a distribution, 121–125
new distribution with predetermined 

mean/standard deviation, 133–135
Pearson correlation, 429–430
purposes, 121
raw score, 123–124
regression equation, 456
relationship between z-score, mean and 

standard deviation, 125–128

sign/numerical value, 121, 122
SPSS, 139
standardizing a distribution, 

128–131
test statistic, 207–208, 238, 240, 262
unit normal table. See Unit 

normal table
whether sample noticeably different, 

135–137
z-score boundaries, 137
z-score distribution, 128–131, 138
z-score formula

population, 122–123
sample, 124

z-score transformation, 128–131
Zero-effect hypothesis, 201
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