L

8.1 Introduction and Motivation

This chapter provides an introduction to social simulation as a major area of CSS'
research—independent, or almost independent, of the specific type of implemen-
tation. The core questions addressed in this chapter concern computer modeling
and simulation in social science, Why use computer simulation as a methedology
for scientific investigation of social complexity? The answer is—in brief—because
formal theories of social complexity are sometimes more viable via computational
modeling than through closed-form solutions. What unique insights on social com-
plexity are gained through social simulation that are not available through other
methodological approaches, such as statistical, mathematical, or historiographic?
A major one is improved undersianding of social complexity as an emergent phe-
nomenon. What are the main limitations of social simulations? Full descriptions of
social stmulations are not as straightforward as thorough descriptions of other for-
mal and statistical models, which sometimes can have significant consequences for
replicating results. Another limitation is the relative shelf life of computer code as
compared to mathematical models.

The main motivation for social simulation is based on the first two of these ques-
tions. Social simulations are capable of representing sacial systeris and coupled
socio-techno-natural systems in ways that other methodological approaches are not.
Computer code in a well-chosen programming language or simulation system—
such as those discussed in this and the next two chapters—provides a powerful
formalism for theorizing, experimenting, and ultimately understanding social com-
plexity.

8.2  History and First Pioneers

The following is a brief history of milestones and pioneers of social simnlation
research in CS§, with main emphasis on methodological concepts, principles, and
practice—especially the founders’ generation. Similar sections in the next two chap-
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ters focus more specifically on models. Some overlap between these summaries is

unavoidable, since they are not completely disjunct.

1959  Oliver Benson at the University of Oklahoma picneers the methodology of
computer simulation in political science with his Simple Diplomatic Game
Maodel.

1961-1971  Jay Forrester, founder of the System Dynamics Group at MIT, estab-
lishes the methodology of systern dynamics theory and research through
his classic monographs: Industrial Dynamics, Principles of Systems, Ur-
ban Dynamics, and World Dynamics.

1962  Psychologist and information science pioneer Harold Borko [1922-2012]
publishes the edited volume Computer Applications in the Behavioral
Sciences, possibly the first of its kind, including Julian Feldman’s sem-

inal chapter on “Computer Simulation of Cognitive Processes”, Sydney -

and Beatrice Rome's computer simulation of large organizations, R. Clay
Sprowls’s “Business Simulation”, and Benson’s model. -

1963  Political scientist Karl W. Deutsch [1912-1992] publishes The Nerves of
Government: Models of Political Conumunication and Control, pioneering
the information-processing paradigm of CSS, as a precursor to Simon’s
work. The same year Harold Guetzkow and collaborators publish the influ-
ential Simulation in International Relations: Developments for Research
and Teaching, which soon becomes the new frontier.

1968  The Club of Rome, a major promotor of global carrying capacity model-
ing and simulation, is founded by Italian industrialist Aurelio Peccei and
Scottish scientist Alexander King. ‘

1969  Political scientists Hayward Alker and Ron Brunner publish the ﬁrst com-
parative analysis of social simulation models in the journal International
Studies Quarterly.

1970  Computer scientist James E. Doran pubhshes one of the earliest papers
on the application of simulation methodology to archaeology, “Systems
Theory, Computer Simulations and Archaeology”, in the first volume of
the journal Werld Archueology.

1970s  In Europe, social scientist Urs Luterbacher and collaborators at the Grad-

uate Institute of International Studies in Geneva develop SIMPEST, the
first numerical simulation model of political, economic, and strategic in-
teractions based on a dynamical system of integral-differential equations,
implemented in MINUTT. This model of the US-USSR-PRC triad correctly
predicted the fall of the Soviet Union in late 1980s.

1970s  In America, economist and strategist Thomas Schelling establishes foun-
dations for a new methodological chapter in social simulations via cellular
automata, and eventually agent-based modeling, through his study of racial
segregation. John Casti, who later joined the Santa Fe Institute, coded the

first implementation of Schelling’s model while the two were at The Rand

Corporation.
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1972 Springer publishes the first edited volume on CSS in Europe, by Lucien
Kern and collaborators, entiled Simtulation internationaler prozesse, con-
laining Jeffrey Krend’s chapler on a replication of Oliver Benson’s pioneer-
ing model.

1977  CSS pioneer Stuart Bremer [1943-2002] advances the methodology of so-
cial simulation with Simulated Worlds: A Computer Model of National De-
cision Making, published by Princeton University Press.

1980s  Computer scientist Christopher Langton coins the term “artificial life”.

1999  Computaticnal social scientists Nigel Gilbert and Klaus Troiztch publish
the first edition of the influential textbook, Simulation for Social Scientists.

2013 Computational social scientists Bruce Edmonds and Ruth Meyer edit
the 754-page comprehensive handbook, Simulating Social Complexity by
Springer. The same year both Springer and Wiley inaugurate specific series
on Cormputational Social Science.

8.3  Purpose of Simulation: Investigating Social Complexity
Via Virtual Worlds

The core scientific purpose of social simulation modeling and analysis is to investi-

gate social complexity in ways thal go beyond—often way beyond/—what is possi-

ble using other methodologies, such as historical, ethnographic, statistical, or math-
ematical approaches. This is accomplished by building a computer model of the
social system or process under investigation—a virtual world representing relevant
aspects of reality—and using that model to perform many kinds of analyses, as de-
tailed in this and the next two chapters.

Reasons for using virtual worlds that simulate social complexity are numerous,
including but not limited to the following:

Versatility:  Many more complex social systems and processes can be investigated
through simulation than through statistical or mathematical modeling. While
every statistical or mathematical model] can be simulated, the inverse is not
true. Not every simulation model can be represented in mathematical form.!

High dimensionality: A common feature of social complexity, as we have seen
in previous chapters, is having to analyze large numbers of variables, and in-
teractions among them, a property called high-dimensionality. For example,
emergence of collective action is a process involving numerous entities and
variables, including situational parameters, goals, leadership characteristics,
and resources, among numerous others. High-dimensional systems are com-
mon across domains of social complexity.

Non-linearities: Dynamic interactions among social entities are often nonlin-
edr, independent of their dimensionality. Simple, low-dimensional systems are
sometimes amenable to closed-form solutions, but that is generally not the case

I'This is obviously not a blank criticism of statistical and mathematical models, which continue to
play an essential role in CSS, as already shown in previous chapiers,
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for complex systems with high-dimensionality and nonlinear dynamics. Huo-

man perceptions, interaction as a function of physical distance, and palierns of

cooperation and conflict are examples of nonlinear interactions. Social simu-
lations can handle complex nonlinear dynamics, bound only by computational
resources (which keep increasing). .

Coupled systems:  Another distinctive feature of social complexity is coupling
among human, natural, and artificial systems, which virtually always implies
high-dimensionality and nonlinear interactions. Computer simulation models
provide an effective and efficient way of representing coupled socio-natural-
artificial systems, as we will examine. For example, a computer model can be
used to represent coupled dynamics among social institutions, the biophysical
waorld of a society, and critical infrastructure.

Stochasticity: Randomness is ubiquitous and consequential in social systems and
processes, a5 we have already examined. Stochasticity also comes in many
forms, as defined by probability distributions, Examining the effects of diverse
stochastic dynamics—how they generate patterns of social complexity—is an-
other major reason for using simulations. :

Incompleteness:  Social science is incomplete, in the sense that not all parts of
the social universe are known with the same degree of completeness. Social
simulations are also used for testing alternative theories to advance our unde-
standing of real-world social complexity. _

Experimentation: The experimental method is a cornerstone of all science, but
running experiments on complex social systems is not feasible for numerous
reasons, including practical and ethical. Experimentation is rendered feasible
through social simulations, including all classical features of this approaqh:
treatments, control groups, and many different experimental designs. For ex-
ample, computational experiments can be used to explore and test hypotheses
concerning aspects of collective action, group dynamics, and governance un-
der various assumptions of governance and public issues. o

Policy analysis: Computer simulations of social complexity enable forms of pol-
icy analysis that are not available through other methodologies, including anal-
ysis of so~called “wicked problems™—the hallmark of hard chalienges in pol-

icy analysis. For example, economic policies to mitigate inflation can be ana- .

lyzed by modeling various actions such as wage subsidies or price controls,
These are powerful and compelling reasons! Interestingly, most of them are the
same Tor scientists in other domains who use simulations—including astronomy,
biology, and chemistry, among others—"Science in the 21st century is computa-
tional”, as computer scientist Peter Denning once remarked.

8.4  Basic Simulation Terminology

Social simulation research employs a rich technical vocabulary that includes na-

tive CSS terms as well as terminology from computational science, such as object-

oriented modeling and programming, UML, and related formal languages. For now -
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Simulaticn system
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Fig. 8.1 Basic terminology and general methodology of soctal simulation. Social simulation
methodology is an iterative process that begins with a referent system (explananduni) in the real
world. Abstraction, formalization, programming, and appropriate data are used to develop & viable

simulation model (explanans). This general process is independent of the specific kind of simula- -,

tion model

we only need to clarify some initial terms; others will be presented as they are
needed.

We shall use the following terms as synonyms:

social simulation

simulation model

computer model

machine simulation

computational model

simulated system

Hence, by “simulation™, for short, we shall always refer to some kind of computer
model of a social system or process, reserving the term “game” or “gaming” to
human simulations solely based on role-playing.

The ontology of social simulation research includes the following basic terms,
some of which are shared by other formal approaches, such as mathematical models.
Consider Fig. 8.1, starting with the referent system (explanadunt}, in the bottom left
and proceeding clockwise. Later we will nuse these initial building blocks to explain
the methodology of modeling complex social systems as a systematic process.

Definition 8.1 (Referent System) A real-world system or process that is an object
of investigation (explanadum) is called a referent system. Synonyms: target system,
focal system, empirical or historical world,

Referent systems in CSS comprise the full universe of social entities, systems,
and processes: the human mind, cognitive processes, decision-making, individual
and group behavior, and societal, international, and global domains, including the
‘World Wide Web. Some of the most complex referent systems in CSS are arguably

4
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coupled socio-techno-natural systems, although a referent system of any degree of
complexity may focus on a purely human/social system, or pairwise combinations
of socio-technical and socio-natural subsystems.

A referent system is defined or specified by the specific research questions being

investigated; it is not open-ended or all-inclusive, simply because it is located in the-

real-world. “Reality” is infinitely detailed and vast, objectively speaking. Scientific

research always focuses attention on some selected subset of reality—i.e., a given .

referent system defined by research questions.
The following definition uses the term “abstract” as a verb to describe a key
modeling activity.

Definition 8.2 (Abstraction) The process of selecting a glven set of features from
a referent system for modeling purposes is called abstraction. 2

Thus, abstraction produces a simplified conceptual representation of the referent
system, consisting of elemenis such as entities, variables/attributes, associations,
and other patteras that provide specificity to the referent system being investigated.
Sometimes the conceptual model is formalized into an’intermediate mathematical
model to belter understand some properties of interest—as is typical in formal social
theory.? The conceptual model is actually formalized into a simulation model when
it is rendered in code. A simulation model may be written in native code, using one
or more programming languages, or using some pre-existing simulation system.

Definition 8.3 (Simulation System) A computational toolkit or code library for
building simulation models is called a simulation system.

A simulation system is a highly sophisticated computational artifact for building
other advanced computational artifacts (specific models), which can be highly com-
plex and inefficient/ineffective to build in native code. Netlogo, DYNAMO, Stella,
Vensim, Swarm, MASON, Repast, and their predecessors, among many others, are
examples of computational simulation systems. A social simulation model is to a
simulation systeni/toolkit as a car is to a car factory; the former is made using the
latter, You can also build a car on your own (good luck!), rather than buying one
made in a factory—which would be the equivalent of writing a social simulation
model in native code—but its performance and reliability will probably not come
even close to a [actory-made car. An important reason for using one of the latest
existing simulation systems (Vensim, MASON, Repast, among others) is o reach
levels of model performance and reliability that are unattainable by relying exclu-

sively on purely native code. This is, emphatically, not an argument against building -

INale that the term “abstraction™ has a different meaning in the context of computation, where it
means hiding information, as discussed in Chap. 2.

3The full and powerful family of mathematical structures is available for this, including continuous;

discrete, and hybrid formalisms.
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simulation models; somelimes they are the best solution (o a given set of research

questions.

Multi-purpose computational mathematical systems, such as Mathematica and

Matlab, are also used as simulation systems, to build and analyze models.

Some commeon (albeit not universal) facilities of simulation systems include the
following;

Frequently used prlmltlves Code library of commaon primitives or basic build-
ing blocks for building a madel, Examples: mathematical functions, distribu-
tions, simple agents, landscapes, schedulers, common data fields, constructor
methods.

Random number generator: Simulation models require random number gen-

- erators to represent processes, either substantive or procedural, with various
forms of randomness (uniform, Poisson, power-law, among many others).

GUI: A graphic user interface is standard in most simulation systems, especially
those intended for beginners and intermediate programmers, such as Neilogo,
Repast, and Vensim,

Visualization tools: Used to draw histograms, time-series graphs, network dia-
grams, maps, and other visual aids for understanding simulation output.

More specialized facilities are usually added by model developers. These might in-
clude, for example, autocorrelograms and spectral diagrams, difference maps, heat
maps, dynamic networks, Lorenz-curve graphs, and various non-Cartesian coordi-
nate systers (e.g., spherical, cylindrical). All major simulation systems today have
active user communnities and some hold regular conferences or workshops.

Finally, a simulation model is implemented in code (explanans), as highlighted in
Fig. 8.1, in the upper right, diagonally opposite the teferent system (explanandian).

Definition 8.4 (Simulation Model) A model of a referent system that is formalized
by code written in a given computer programming language (native or toolkit) is
called a simulation model.

In the next chapters we will discuss different types of simulation models and
examples of each. To do so in a systematic way, however, it is necessary to develop
a viable classification of simulation models, given how many exist.

Figure 8.1 and the preceding definitions provide a first, high-level pass through
the general methodology of simulation research in CSS. A more in-depth presen-
tation is necessary, but several other distinctions are needed before delving into
methodological details of actual simulation development or model construction,

8.5 Fidelity of Representation and Implications

Saocial simulations differ by the fidelity with which the computational model at-
tempts {o replicate or resemble a given referent system. The following ordinal scale
distinguishes social simulations by increasing level of empirical specificity, which
approximately follows a pure-applied science continuum:
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1. At one end of the basic-applied continuum are highly abstract simulations that
bear only sparse qualitative resemblance to a referent system, without attempt to
replicate any quantitative features at all. Theoretical analysis as basic science is
the main use of these models, not operational policy analysis.

. At the next level toward “the plane of empirical observation™ of the referent
system—as philosopher of science Carl G. Hempel would have said-—are simu-

[\

lation models that show convincing qualitative fit and some guantitative calibra--

tion. These models are still mostly theoretical, but they are capable of providing
some applied insights. Since policies should not ignore basic science, findings
from this class of social simulations may have valuable implications that policy-
makers ignore at their own peril. A good example of this is the classical Schelling
segregation model (examined in Chap. 10}, which is a rather abstract theoretical

model that nonetheless sheds significant light on emergent patterns of social seg--

regation and contributes key insights for policymakers.

3. Next are models with extensive qualitative and significant quantitative fit. This
class of social simulations is of maximal interest for conducting empirically
grounded CSS research. We shall examine several examples of this.

4. Finally, we come to social simulations that “look closest at the plane of observa-
tion” (in the sense of Hempel), such that quantitative and qualitative fit between
simulation output and empirical data is the closest. High-fidelity simulations are
calibrated to a referent system along multiple dimensions, which can be spatiai
(including numerous and detailed geographic features, down to a given scale of
resolution, rendered through GIS and remote sensing data}, temporal {defined
to small time increments, such as decades, years, seasons, months, weeks, days,
hours, minutes, and so on, down to the smallest scale of interest), or organiza-
tiondl (matching detailed network patterns at node, subgraph, and graph levels of
analysis), among the most universal. Relatively fewer of these models are found
in an academic context, but they are abundant in business and governmental or-
g:mizmtions.4
This scale is totally unrelated to the merits or value of a simulation model, which

is a different matter that has to do with scientific quality.” The fidelity scale is merely

a heuristic way to locate a simulation model along a realistic-abstract continunm in

order to understand its value and limitations.

There are numerous implications that follow from a model’s representational fi-
delity. Perhaps the most obvious is that a simulation at one level cannot be expected
to perform well at a different level. Thus, operational, high-fidelity models may have

4part of the reason for this is that operational, high-fidelity models often require sensitive or pro-
prietary information not normally used in academic CS8 research.

SDARPA—the Defense Advanced Research Projects Agency of the US Department of Defense—
uses a scale for classifying projects, ranging from “basic science™ (called “6.1 projects”, named 50
after the section in the relevant law) to more applied and operational research, labeled 6.2, 6.3, 6.4,
ctc., all the way up to fully operational systems deployed in the field for combat or humanitarian
missions. The 6.X nomenclature is helpful and commonly used by other agencies.
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significant policy value, but have little or no theoretical interest. Conversely, theo-
retical models can provide deep scientific insights and understanding, but offer little
by way of actionable results as far as policy contributions are concerned.

A somewhat less obvious implication of the fidelity scale is that CSS researchers
must make an effort to clarify as best as possible the desirable resolution of a model,
given the research questions.

8.6  Types of Social Simulation: From System Dynamics
to Agent-Based Models

Social simulation models constitute several major superclasses, the two largest be-
ing variable-oriented models and object-oriented models, with a third superclass
of hybrid social simulations ai their intersection. In turn, each superclass encom-
passes several significant classes, which can be characterized as follows. (Each class
is examined in the next two chapters,)

Variable-based social simulations use systems of mathematical equations to im-
plement the conceptual model abstracted from the referent system of interest. His-
torically, these were the earliest forms of simulations in CSS. System dynamics
simulations and quening models constitute major classes, both based on variables
and deterministic or stochastic systems of equations for representing dynamic in-
teractions.’ The most distinctive feature of a system dynamics model (or S, for
short) is the representation of the state and dynamics of the referent system in terms
of levels and rates, or “stocks and flows”, respectively, in the form of a system of
difference equations in discrete time. Hence, social systems that are abstracted as
networks of states and rates of change are eminently suitable to this kind of simula-
tion model. An SD system may be completely deterministic or partly stochastic.

A queuing model is more appropriate for rendering a referent system that receives
some stream of inputs and releases the entities after some processing. The iconic
exaniple of this is a commercial bank, where customers arrive and wait in line while
those ahead get served and depart the bank when they are finished. These models
are stochastic, because waiting time and service time are generally stochastic, not
deterministic. Accordingly, probability distributions play a major role in this class
of social simulations,

These two classes of models are called variable-oriented because the modeling
orientation upon which the abstraction is based looks first at the identification of
key variables, such as levels of some stock and waiting time in a queue. Neither of
these two classes of simulation models makes an effort to render the social entities
(actors) explicitly; they are simply implied by state equations.

By contrast, object-oriented simulation models are based on an abstraction strat-
egy that looks first of all at entities in the referent system. Cellular antomata social
simulations (or CA models, for short) consist of cells related to each other by neigh-
boring relations on a landscape, such as in a city grid consisting of blocks, or a

SNote the exact terminology: “system dynamics™, not systems dynamics (both plural) or dynamical
systems (which refer to systems of differential equations).



232 8 Simulations I: Methodology

patchwork of farms in the country. CA models look first at entities—the cells and
their topology—and then at attributes/variables. Agent-based models are somewhat
similar, as detailed in Chap. 10.

8.7 Development Methodology of Social Simulations

All social simulations, whether simple or complex, abstract or empirical, variable-
oriented or object-oriented, are developed by systematic steps that begin with some
core research motivation and end with a viable model. Although the specifics of
each class sometimes matter, in general all social simulations follow a similar de-
velopmental methodology.’ This section provides a second pass (spiral) through the
cycle in Fig. 8.1. '

8.7.1 Motivation: What Are the Research Questions Addresse
by a Given Model? :

The first step in social simulation modeling consists of careful formulation of viable
research questions. Every social simulation is intended to address one or more re-

search questions defined in terms of the referent system. In fact, a referent system .

is in large part defined by research questions; there is a synergistic relationship be-
tween the two. In an abstract SD model of inter-group rivairy the research questions
may concern phase portraits and qualitative dynamical features. The same kind of
model calibrated with historical data would be able to address research questions on
the timing and magnitude of real-world conflicts. Similarly, research questions in
an agent-based model will vary by level of fidelity, ranging from abstract, theoret-
ical questions that may have to do with thresholds, elasticities, gradient fields, and
similar theoretical concepts, to empirically referenced questions that might concern
specific locations, actors, parameter values, or historical epochs.

Since research questions are a major engine for scientific inquiry, they largely
define the level of fidelity and, therefore, also the scope of the referent system to
be investigated. That being said, practical considerations may affect decisions on
exactly how research questions are formulated.

e The relevant social science may be incomplete, so research questions may require
adjustment in order to gain scientific coherence. The same is true for incomplete-
ness in natural science or technology when modeling coupled referent systems.

» Empirical data necessary for initial research questions may be incomplete, poor,
or downright nonexistent. 'This is a common situation in CSS research because
researchers often pose questions that are tractable through computational tools,
but no one has collected data necessary to verily or validate the models, thereby
requiring adjustments to obtain viable research guestions.

The same is generally true of mathematical social science models, and also to some degree of

econometric and other statistical models.
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e Compulational resources may be insufficient for an original set of research
questions. This is ancther common occurrence, especially for overly ambitious
projects that fail to estimate the correct amount or types of computational re-
sources. This too usually requires limiting the scope of research questions asked.

o Other practical considerations, such as deadlines, and available personnel, may
also condition the formulation of research questions.

The non-computaticnal literature in social science may or may not provide ad-
equate guidance in terms of research questions. This is because the computational
approach in general, and the social complexity paradigm in particular, offer dif-
ferent human and social dynamies that are invisible from the perspective of non-
computational literature. For example, vast areas of social science are praclically
defined in terms of a single methodology, such as statistical multivariate models, or
game theory models, or general equilibrium models. By conlrast, social simulation
models address research questions that require any combination of formalisms, That
being said, CSS researchers would do well in seeking to address research questions
thal are recognized as significant by non-computational scientists, as well as other
CSS researchers.

" Failure to begin with clear and viable research questions guarantees that sub-
sequent complications will require backtracking until proper research questions are
posed. This is sometimes inevitable, especially when new territory is being explored.
However, such false starts should be avoided when possible, because they can be
wasteful along multiple dimensions: time, costs, personnel, and missed opportuni-
ties. Scientific discipline and experience are valuable assets in the formulation of
research questions in CSS5, as in all domains.

A remarl on interdisciplinary research in CSS: Rescarch questions addressed
through social simulations are frequently interdisciplinary because of multiple rea-
sons. Social complexity respects no disciplinary boundaries! Coupled systems are
multidisciplinary by definition. Complex social simulations, in particular, require
interdisciplinary research.

8.7.2 Conceptual Design: What Does the Abstraction Look Like?

Given a set of viable research questions, the next step in developing a social sim-
ulation is lo conduct a process of abstraction that will yield a conceptual model of
the referent system. The abstraction itself should be informed and guided by the
research questions.

Ideally, the abstraction for producing a conceplual model of a referent system
should be guided exclusively by research questions and conducted without regard
to consideration of subsequent implementation.

In practice, the abstraction and resulting conceptual model will be influenced by
the known implementation resources. This is the tyranny of a hammer looking only
for nails. If you know or use only method M, then both abstraction and resulting
conceptual model will be shaped (and perhaps completely determined) by M, rather
than by research questions, as it should be.
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This methodological pathology in CSS research is similar to what happens in
non-computational social science when researchers conduct abstractions and pro-
duce conceptual models guided primarily by those methods they know or prefer,
rather than by what the research questions actually require. This methodological er-
ror should be avoided by gaining familiarity with different simulation approaches
and a broad range of human and social phenomena—not easy, but well worth i,

The abstraction and resulting conceptual model should contribute to answering the .

research questions, no matter what tools are required.

There is a history lesson to be learned here. A major source of methodological in-
novation comes from rot having the proper computational tools to answer research
questions. Isaac Newton was led to the invention of infinitesimal calculus because
he wished to answer research questions for which there were no tools. He refused

to adapt the research questions to existing tools or provide only tool-driven answers .

(like everyone else was trying to do). Likewise, John von Newman did the same }Jy
inventing game theory; he wanted to answer research questions having to dq \:Vlth
interdependent choices (strategic entanglement), and the extant theory of deqsmns
established by Bayes for answering questions of choice against nature was insuf-
ficient, Like Newton and others before him, he became a mathematician, invented
game theory as a novel branch of mathematics, and then returned to the social sc.i-
ence of interdependent decision-making and formalized it through game-theoretic,

models. He also invented cellular automata, examined in Chap. 10, which we now -

use for developing a broad class of social simulations. Simulation systems—from

DYNAMO to MASON—were invented with the same science motivation: to enable

us to expand scientific frontiers by answering an increasing number of challenging
questions. .

Different graphic systems have been invented to facilitate specification of a con-
ceptual model. Flowcharts, Forrester diagrams, and UML diagrams are some ex-
amples. These are useful for refining ideas and they are indispensable in interdisci-
plinary projects when specialists from various domains need to develop consensus
and common understanding. They will be examined in the context of each model
class. No doubt, others will be invented as CSS research increases dernand to create
clearer conceptual models.

8.7.3 Implementation: How Is the Abstracted Model Written
in Code?

The third step in developing a social simulation involves implementing the concep-
tual model into code. This is where a major decision is made in terms of imple-
menting the conceptual model using native code or a simulation system such as one
of those mentioned earlier. The choice is based onl multiple considerations, which
should include:

Research question  Again, research questions should inform implementation, not -

just the conceptual model. The character of research questions and the result-
ing conceptual model should first determine whether the simulation model
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should be variable-oriented (attributes are most prominent) or object-oriented
(entities are most prominent) and, second, whether native code or a toolkit
should be used.

Expertise Excellence in some implementation solutions may also bring novel an-
swers to research questions. For example, a CSS team highly skilled in build-
ing SI» models can make significant contributions to a given domain, even if
alternative QO (object-oriented) models are possible. Different formalisms of
the same referent system almost always bring to light different aspects that
advance understanding.

Future use  Consideration should be given to future uses that may be eavisioned.
Such uses include further research, use in teaching, or policy analysis or
problem-solving.

The main result of this third step is an initiel version of a simulation model,
which will likely evolve through subsequent versions. By convention, the initial
version of a simulation model is labeled 0.1 or lower. Relatively small, incremental
changes prompt decimal increases in version numbers, whereas relatively large or
major changes prompt integer increases—a protocol similar to numbering versions
of “the same” software. In general, there are more decimal increases than integer
increases.

A social simulation implemented in code should abide by all the principles dis-
cussed in Chap. 2 concerning best practices, such as commenting, modularity, de-
fensive programing, multiple backups, and similar guidelines. Code that can no
longer be understood even a year after it was written is useless.

In all cases, model code must be committed to some depository. Sourceforce,
Googlecode, the Harvard-MIT Data Center (Dataverse), and OpenABM provide ex-
amples of online, open-source, code depositories. Besides code files, documentation
must also be provided, including all supplementary supporting files. A great deal of
effort goes into producing a high-quality model, as we will discuss later in this chap-
ter. However, simulation code is highly perishable, far more so than mathematical
or statistical models. Unfortunately, it is not uncommon for social simulations—
even famous ones—to be lost within a relatively short span of time following their
creation. Often all that remains is the conceptual model and some mathematical
features.

8.7.4 Verification: Does the Simulation Perform as Intended?

The process of finding out whether a simulation model is working as intended by
the conceptual model is known as verification, a procedure that also involves de-
bugging. This is equivalent to what is traditionally called internal validity in non-
computational secial science formal methodology, An unverified model cannot be
used for analysis. Verification is accomplished through multiple procedures, as de-
tailed below. All of them typically unveil bugs hidden in the initial simulation code.
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8.7.4.1 Code Walk-Through

Reading code line by line, commenting and refactoring il as necessary, is an indis-
pensable procedure to ensure a simulation is working as intended by both model
designers and programmers. Modularization facilitates this procedure, as well as
providing other benefits. Code walk-through (also written as walkthrough) should
be done while also consulting all relevant prior documentation, including concep-

tua! narratives and diagrams, Again, good programming style resulting from best -

practices facilitates the code walk-through procedure.

8.7.4.2 Profiling
Another procedure for verifying code is to © proﬁle” it. Profiling means to count the
frequency with which key code elements are used, such as various methods or aper-

ations in OOP (object-oriented programming) code, or functions in other program-

ming languages. In a sense, profiling is a form of quantitative, automated content
analysis or information extraction procedure conducled on code—a means of nin-
ing code to detect possible errors. The result of profiling is a quantitative summary
of findings, such as a frequency histogram of methods or functions called. Formally,
the result of profiling code is a rank-size distribution, which resembles the idea be-
hind a Type I Zipfian power-law model. Often it is impossible to draw inferences on

the sole basis of profiling results; however, when added to other information from

code wall-through, profiling can be a valuable procedure.

8.7.4.3 Parameter Sweeps

Social sinmlation models typically include large numbers of parameters Such a
large set of space parameters can be used for verification purposes by evaluating the
model as a single parameter changes in values while others are held constant. Thus,
results from a parameter sweep will provide a response surface which can be plotted
and examined for possible anomalies indicative of bugs or other patterns that should
not appear. Parameter sweeps can reveal special properties within a range, such as
singularities, asymptotic behaviors, oscillations, or other quantitative and qualitative
patterns.

8.7.5 Validation: Can We Trust the Results?

The process of finding out whether results from simulation model runs match what is
known from empirical data is known as validation. Essentially, validation involves
pattern matching between simulation output and observed patterns in the referent
system.

There are a variety of ways in which simulation validation is conducted. Among
the most important and common ones are: :
Histograms: Frequency distributions obtained from simulation runs can be

matched with empirical histoprams—for example, income distributions, the

size of spatial distributions, and similar.

8.7 Development Methodolagy of Sacial Simulations 237

Distribution moments:  All distributions are characterized by moments, so
matching moments generated by simulation runs with real data is another
strategy.

Time series: Dynamic social simulations typically produce time-series data from
simulation runs, which can be compared with empirical time series.

Special indices: Specific measures, such as the Gini coefficient, entropy, the
Hurst coefficient, and similar indices can also be used.

Other: Resulls from simulation nuns produce numerous statistics and patterns
that are often characterized by the specific subject matter and can be used
to compare with real-world data.

Sometimes an existing simulation system, such as Netlogo, MASON, or Repast,
will already have some of these facilities for conducting model validation tests.
However, it may be necessary to develop such facililies in the case of frequently
used validation tests that are not provided by Lhe simulation system being used.

Ideally, validating a social simuolation model is facilitated by pre-existing em-
pirical data that can be used lo malch results from simulation runs. This is often
the case when data from simulation runs also exists in reference to actual empirical
data. However, it is not uncommon to discover that simulation results produce data
that has never been measured in the real world. In this case, there 1s no choice but
to attempt to collect additional dala as necessary. An interesting scientific situation
arises when a social simulation produces results that no one has looked for before!

Validating a social simulation model also involves estimating and calibrating pa-
rameter values to their appropriate ranges. This is often done by beginning with ex-
isting empirical parameter values or informed guesses within a justifiable domain.
In the end, validation always involves matching simulated, virtual data, with real,
empirical data.

8.7.6 Virtual Experiments and Scenario Analyses: What New
Information Does the Simulation Generate?

Earlier we discussed how virtual experiments are a major scientific contribution
of social simulation models. Conducting virtual experiments, such as by analyzing
alternative scenarios, is an intrigning and exciting use of computational modeling.

Computational experiments using social simulation models can be based on basic
scientific research, as well as on applied policy analysis. Analyzing virtunal experi-
ments and alternative scenarios is a social simulation tradition that goes back to the
earliest days of computer simulation modeling in the social and behavioral sciences,
For example, the earliest system dynamics global models were used to analyze in-
dustrial development policies and global environmental trends under a varety of
future scenarios. While many of the assumptions used in these initial models during
the 1970s proved to be incorrect, the methodology itself was powerful and continues
to develop to this day,

Conducting virtual experiments through simulation models is also common in
other computational disciplines ranging from biology to asironomy. The reason for
this affinity between CSS and computational biophysics and the earth and space
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sciences is the common problem of being unable to conduct real experiments on the
referent systems of interest. The only way to understand what happens when two
galaxies collide is to conduct computational experiments, much the same as is the
case for conducting virtual experiments in computational biology.

8.8  Assessing the Quality of a Social Simulation

Social simulation methodology has begun to generate proposals for assessing and
promoting quality across diverse and related areas.® For instance, proposals exist
in the area of communicating socia! simulation models, assessing complex projects
that involve large interdisciplinary teams (Sect. 8.9), and comparing models (see

Sect. 8.10). A strong consensus on a universal set of quality standards in social

simulation research has not yet emerged, but such a debate has already begun in the
global CSS community. :

8.8.1 General Principles for Social Modeling Assessment

The criteria of “Truth”, “Beauty”, and “Justice™ have been proposed by Charles
A. Lave and James G. March in the classic Introduction to Models in the Social Sci-

ences (1993). These criteria are widely used for discerning quality in social science :

Jformal models, mainly mathematical in kind. The three terms “Truth”, “Beauty”,
and “Tustice” (or TBI, for short) are labels for quality dimensions referring to fun-
damentally good-—i.e., normatively desirable—features of social science modeling.
Accordingly, the TBJ terms must be interpreted not literally but as labels.

Truth refers to the empirical explanatory content of a model—i.e., its contribution
to improving causal understanding of social phenomena—in the sense of develop-
ing positive theory. For example, truth is normally judged by internal and external
validation procedures, corresponding to axiomatic coherence and empirical verac-
ity, respectively. Truthfulness is the main, classical criterion for evaluating empirical
science, whether a model is statistical, mathematical, or computational, Truth must
be a constituent feature in a social science model; without it, a model has no overall
quality contribution.

Beauty refers to the esthetic quality of a model, to its elegance in terms of
properties such as parsimony, formal style, syntactical structure, and similar fea-
tures. Beauty is about art and form. For example, the mathematical beauty of some
equations falls within this eriterion, including features such as the style of a well-

annotated system of equations where notation is clear, well-defined, and elegant.

8This section focuses on social simulations, so the broader field of CSS (e.g., social data algorithms
or socioinformatics, complexity models, social networks, social GIS, and related oreas of social

computing) lies beyond the scope of this section. Quality research in those other arens is subject to

its own standards, a5 discussed in previous chapter.
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Fig. 8.2 UML class dingram illustrating the hierarchy of scientific models {left), social science
models (center), and social simulations (right), each having increasingly specific standards for
Jjudging quality (moving froim left to right), Sowrce: Cioffi-Revilla (2013)

Unlike truth, beauty is not necessarily a constituent attribute, but is certainly a de-
sirable scientific quality,

Justice refers to the extent to which a model contributes to a better world—to
improvement in the quality of life, the betterment of the human condition, or the
mitigation of unfairness. Justice is a normative criterion, unlike the other two that

are positive and esthetic. For example, a model may improve our understanding of '

human contflict, inequality, refugee flows, or miscommunication, thereby helping
to mitigate or improve social relations and well-being through conflict resolution,
poverty reduction, humanitarian assistance, or improved cross-cultural communica-
tion, respectively. Policy analysis can be improved by social simulation models that
are properly validated.

These Lave-March criteria of truth, beauty, and justice are useful for evaluating
the quality of social simulation models. For example, in the classic Schelling model
of segregation all three criteria are well-recognized. This is a fundamental reason
why Schelling’s model is so highly appreciated.

However, a further challenge exists because social simulations have features that
render truth, beauty, and justice insufficient as criteria for assessing quality. This is
because social simulation models are instantiated or rendered in code (a computer
program in some language), so one can easily imagine a social simulation that would
be of high quality in terms of truth, beauty, and justice, but fail in overall quality
because simulation models pose additional challenges beyond other social science
models (i.e., beyond the features of statistical or mathematical models).

As llustrated in Fig. 8.2, social simulations have properties that are shared with
all models in science generally and social science in particular, based on inheritance
as a specialized class, in addition to having other features of their own. For example,
the specific programming language of an agent-based model (Java, C++, or other),
or that of a system dynamics model, would be a defining feature,

The inheritance relation between social science models and social simulations
readily sugpests several key features that distinguish the latter from the former, as
illustrated in Table 8.1.

Additional criteria for social simulations—i.e., criteria beyond classical stan-
dards for social science models—should allow us to judge quality in terms of “The
Good, The Bad, and The Ugly”.
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Table 8.1 Quafily criteria for evaluating models in domains of science

Modelsin... Truth  Beauty Jusice  Additional eriteria
Science Yes Yes ” No No )
Social science Yes Yes Yes No

Social stmuiatlon ch Yes Yes Ye‘i

Sonrce: Cioffi-Revilla (2013)

Common required practices, such as verification and validation, are well-known
quality control procedures for assessing scientific models in general. However, ver-
ification and validation are insufficient criteria for assessing the quality of social
science models, specifically for social simulations. An important implication is that
current emphasis on model verification and validation is warranted, but verification
and validation are insufficient by themselves for judgmg the quality of a social sim-
wlation model (agent-based or other).

Therefore, a key methodological question concerning quality is: which additional
criteria—i.e., beyond truth, beauty, and justice—could or should be used to assess
the quality of a social simulation model? We shall now dddress this question based

on a set of dimensions for evaluating the guality of a given social simulation model.

8.8.2 Dimensions of Quality in Social Simulation Models

The quality of any complex artifact—whether a social simulation model or the Inter-
national Space Station—is a multifaceted property, not a single dimension. Dimen-
sions of quality can be used for evaluation and can also provide a master checklist of
desirable attributes for building and developing a social simulation model. Arguably,
there are two levels of quality assessment for computational social simulations eor-
responding to the concepts of a model and modeling, respectively. ‘

First, from a model’s perspective, any set of quality dimensions for evaluating
a social simulation must be based on its specific attributes or uniquely constituent
features as a computational artifact in the sense of Simon. Moreover, whether the
overall quality of a given model should be an additive or a multiplicative function of
individual qualitative features is less important than the idea that overall quality de-
pends on a set of dimensions or desirable features beyond the Lave-March criteria,
not on some single preeminent feature (e.g:, simulation environment or program-
ming language).

Second, from a maodeling perspective, quality assessment should cover the
broader modeling or model-building process as such, beyond the social simulation
model that is produced in a narrow sense. This is because a computational model in
final (i.e., committed) instantiated code is the result of a sequence of earlier model-
ing stages that precede the model itself, such as the critical stage of model design

prior to implementation. Quality in design affects quality in the product of imple-

mentation, even when implementation per se is carried out in a proper manner (i.e.,
competently, with effectiveness and efficiency).
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The following Lifecycle Framework for quality assessment combines both
perspectives—the model and its developmental process—by focusing on the classi-
cal methodological stages of social simulation modeling, as we discussed earlier in
this chapter, with only minor modifications:

. Formulation

. Implementation

. Verification

. Validation

. Analysis

Dissemination

Such a framework provides a viable checklist of quality dimensions to consider,

based on the preceding methodological principles for social simulation research.

Note that verification and validation constitute only two contexts for assessing qual-

ity and, as shown below, some of the others involve quite a number of additional

aspects regarding quality evaluation.

1. Formulation. Quality can be assessed starling from the formulation of a re-
search problem that a given social simulation is supposed (o solve. A first set
of quality assessments regards research questions. Is the research question or
class of research questions clearly formulated? Is the focal or referent empirical
system well-defined? Beyond clarity, is the research question original and sig-
nificant? Originality should be supported by complete and reasoned surveys of
prior, extant lilerature to assess scientific progress. Every computational simula-
tion model! is designed to address a research question, so clarity, originality, and
significance are critical. Motivation is a related aspect of problem formulation.
Is the model properly motivated in terms of relevant extant literature? Qr, is the
simulation model the very first of its kind? If so, are there prior statistical or
mathematical models in the same domain? Literature reviews in published social
simulation research should not be incomplete, poorly argued, or totally missing.

. Implementation. Rendering an abstracted model in code invelves numerouns
aspects with quality-related implications, starting with aspects of instantiation
selection. Does the code instantiate relevant social theory? Is the underlying
social theory instantiated using a proper program or programming language?
Code quality brings up other aspects that may be collectively referred to as the
Grimson-Guitag standards: Is the code well-written? Is the style safe/defensive?
Is it properly commented? Can it be understood with clarity one year after it was
written? In addition, what type of implementation strategy is used? Le., is the
model written in native code or using a toolkit? If a toolkit is used, which one,
why, and how good is the application? s the choice of code (native or toolkit)
well-justified, given the research questions? In terms of “nuts and bolts”, quality
questions include such things as: What is the quality of the random number gen-
erator (RNG)? Is it Mersenne Twister, MT19937, or other PRNG? Which types
of data structures are used, given the semantics? Are driven-threshold dynamics
used? If so, how are the firing functions specified? In terms of algorithmic effi-
ciency, what is the implementation difficully of the problem(s) being addressed
by the model? How efficient is the code in terms of implementing the main de-
sign ideas? In terms of computational efficiency, how efficient is the code in

O L b
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terms of using compulational resources? This aspect differs from algorithm effi-
ciency. From the perspective of architectural design, is the code structured in a
proper and elegant manner commensurate with the research question? In terms of
object ontology, does the model instantiate the object-based ontology of the fo-
cal system for the chosen level of abstraction? Note that all these quality-related
questions precede verification and validation.

3. Verification. Which passive and active tests were conducted to verify that the
model is behaving in the way it is intended to behave? Social scientists also call
this internal validity. Verification tests include but are not limited to the follow-
ing: code walk-through, debugging, unit testing, profiling, and other common
procedures used in software development, as we have already seen, and will ex-
amine more closely in the next chapters. What were the results of such verifi-

cation tests? Quality assessment should cover investigation of which verification - -

procedures were used, since results can range widely depending on the extent
of verification methods employed. Unfortunately, most social simulations are re-
ported without much (or any) information regarding verification procedures, as
if it were true that “results speak for themselves"—quite often they do not.

4. Validation. Similarly, validation of a social simulation, what social scientists call
external validation (or establishing a model’s external validity), consists of a suite
of tests, not a single procedure. Such tests are important for assessing quality in
a social simulation. Which tests (histograms, RMSE for assessing goodness of
fit, time series, spatial analysis, network structures, and other forms of real vs.
artificial pattern matching tests) were conducted to validate the model? What
were the results? Validation tests are often the focus of reporting results at the
expense of all other phases in the life cycle of a social simulation model.

5. Analysis. The preceding aspects provide a basis for establishing overall con-
fidence in a given model. What is the level of confidence in the model’s re-
sults, given the combined set of verification and validation tests? If networks
are present and significant in the focal system, does the model exploit theory and
research in social network analysis (Chap. 4)7 Does the model facilitate analy-
sis of complexity as a system of non-linear interactions and emergent properties
(Chap. 6)? Which features of complexity (emergence, phase transitions, power-
laws or other heavy-tailed distributions, criticality, long-range dynamics, near-

decomposability, serial-parallel systems, or other structural features) are relevant

to the particular model? If spatial features are significant, does the simulation
employ appropriate spatial metrics and statistical tools for spatial data? What
is the overall analytical plan in terms of simulation runs and how is it justified?
How does computational 4nalysis advance fundamental or applied understanding
of social systems? In terms of overall effectiveness, does the model render what
is necessary for answering the initial research question(s) or class of research
questions? This differs from efficiency. In terms of the simulation’s computa-
tional facilities, does the model possess the necessary functionality for conduct-
ing extensive computational analysis to answer the research questions or even go

beyond? How powerful is the model in terms of enabling critical or insightful °
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experiments, for example in terms of parameter exploration (evolutionary com-
putation) and record-keeping? What is the quality of the physical infrastructure
that renders the most effective simulation experience?

6. Dissemination. Finally, the quality of a social simulation should be assessed in
terms of its “life-beyond-the-lab™, For instance, in terms of pedagogical value:
Does the model teach well; i.e., does it teach efficiently and effectively? In terms
of communicative clarity and transparency, are useful flowcharts and diagrams of
various kinds (e.g., UML class, sequence, state, and use case diagrams) provided
for understanding the model? Are they drawn with graphic precision and proper
style? In terms of replicability, what is the model’s replication potential or feasi-
bility? How is reproducibility facilitated? Aspects related to a model’s graphics
are also significant for assessing quality, not just “eye candy”. In terms of GUI
functionality, is the user interface of high quality according to its main users? Is
the GUI foundational for answering the research questions? More specifically, in
terms of visualization analytics, is visualization implemented according to high
standards? This does not concern only visual quality, but analytics for drawing

valid inferences as well. From a perspective of “long-term care”, what is the |

quality of the model in terms of curatorial sustainability? How well is the model
supported in terms of being easily available or accessible from a long-term per-
spective? In which venue (Google Code, Sourceforge, OpenABM, Harvard-MIT
Data Center/Dataverse, or documentation archives such as the Social Science
Research Network SSRN) is the madel code and supplementary documentation
made available? Firally, some social simulations are intended as policy analysis
tools. Is the model properly aceredited for use as a policy analysis tool, given the
organizational mission and operational needs of the policy unit? Does the model
add value to the overall quality of policy analysis? Does it provide new action-
able information (new insights, plausible explanations, projections, margins of
error, estimates, Bayesian updates) that may be useful to decision-makers?

The quality of a social simulation is proportional to the number of dimensions
on which it is highly rated. Although these basic dimensions are not independent
among themselves, their total contribution is what matters in terms of a comprehen-
sive quality assessment.

8.9 Methodology of Complex Social Simulations

Some social simulations are called foy models because they represent a very sim-
ple referent system based on research questions that investigate a relatively narrow
range of entities and dynamics. Some of the earliest social simulation models be-
long to this class, and they are still important today because they provide a unique
way of understanding fundamental human and social dynamics. For example, toy
models such as Heatbugs, Segregation, Hawks and Doves, or Boids—as well as
many others provided by Netlogo—have significant pedagogical value for teaching
the fundamentals of social simulation science.
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Other models consist of complex social simulations and are characterized by
numerous interacling entities, typically heterogenous in several respects, governed
by multiple and typically nonlinear dynamics. Complex social simulations are nor-
mally built by interdisciplinary teams with distributed expertise among members.
Typical cases in this group include coupled socio-techno-natural systems that re-
quire integrated application of knowledge across multiple domains. Such models

also typically require years of development work, most often involving multiple

research institutions.

The methodology of complex social simulation models requires special consider-
ation in order to exploit the richness of such models while at the same time manag-
ing multiple chalienges. A viable approach to complex social simulation modeling
is to view model development as a spiraling, multi-stage process that proceeds from
an initial, simple model and moves toward the much more complex final model.
A famous example of this in the history of physical science was none other than
Isaac Newton’s research program on planetary dynamics (what prompted him to in-
vent infinitesimal calculus), which has been studied in detail by the late Hungarian
philosopher of science and mathematics, Imre Lakatos [1922-1974]. As described
by Lakatos, Newton worked through a progressive sequence of models—not a sin-
gle large model—before he arrived at his final, full model of the whole planetary
system, complete with planets, moons, and the sun at its cenfer, The initial simple
model investigated by Newton bore no resemblance to the final model, except asa

minuscule component. His first model consisted of a single perfect sphere rotating

around its axis. Subsequent models in a cleverly chosen sequence of “progressive
problemshifts” added moons, tilting axes of rotation, elliptical orbits, and numerous
other carefully chosen empirical features as Newton approximated his {inal model
of the planetary system. The entire movement from the initial, simple model to

the final, complex model resembled the masterfully orchestrated music of Maurice .

Ravel’s Boléro, which starts with a single, lonely drum and ends with a huge, full
orchestra.

An example of a complex social stimulation, in many ways similar to Newton’s
final model of the planetary system, would be a coupled socio-techno-natural sys-
tem. In order to develop such a simulation as a final model of a referent system
representing some geographic region, the first initial model would represent a sin-
gle territorial entity with minimal dynamics included in the simulation. Once such
an initial model is well understood, additional features would be added. For exam-
ple, the second model in the sequence would have heterogeneous agents, in order
to understand more realistic cultural dynamics. A third model would add some sim-
ple weather dynamics, to further understand biophysical interactions between, say,

precipitation and land cover used by agents. The fourth model could include mul-

tiple societies over a broader region. Subsequent models would add infrastructure
systems and other technological artifacts.

The idea of a sequence of models for developing a complex simulation research '

program should not be misinterpreted as being a strictly linear process. Occasion-

ally, it is necessary to make corrections and return to an earlier model that over-

looked something important, or it may be necessary to develop deeper understanding
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of simpler dynamics. That being said, the methodology of complex social simula-

tions should have a definite forward thrust, moving from simple (initial model) 1o

complex (final madel).

‘ There are several distinctive [eatures of the methodology of complex simula-

tions.

1. It is necessary to identify an initial model that is simple enough to understand in
full detail, while at the same time representing a core element of the envisioned
final model of the referent system. Note that the very first model may not bear
much resemblance to empirical entities, just as in Newton's case a perfect sphere
did not represent any real planet.

. The sequence of models feading up to the final simulation is not arbitrary; it
must be carefully designed in order to provide cumulative insights as work pro-
ceeds toward the final model. The sequence of simulation models should follow
a theoretically meaningful plan, not simply proceed by random accretion and
incremental changes without theoretical justification.

3. Verification is an essential activity throughout the whole development process
from one model to the next. However, validation should proceed in a very ju-
dicious way, lagging behind verification, because if the model is tested through
validation procedures that are premature with respect to the final model, what
happens is that theoretically significant models-might be rejected because they
lack sufficient empirical support. This was the case with Newton's initial models
in the sequence, which is why he was not as concerned with empirical tests early
ot in the research program.

4. Defining a final simulation model for the referent system is essential, because a
progressive sequence of models can go on indefinitely.

Again, a clear focus on core research questions is essential for governing the devel-

opment of complex simulations, just as it is for simpler models.

™I

8.10 Comparing Simulations: How Are Computational Models
Compared?

Comparative research is a well-developed and fruitful endeavor with a rich history

across the social sciences. In fact, the theory and practice of comparative methodol-

ogy is viewed by many as a defining feature of social science. Sysiematic compari-
son of social simulations is insightful and instructive for multiple reasons:

1. Research questions investigated through social simulation are clearly highlighted
when comparing simulation models because research questions define the simu-
lations themselves.

. Analyzing similarities and differences among social simulation models provides
a deeper, more comprehensive way of understanding them.

3. Comparative analysis of two or more social simulations can help identify features

such as overlaps, gaps, or questions in need of fitrther research.

4. Insights from comparative analysis of secial simulations can also be used to clar-

ify and refine fundamental dynamics, such as key properties of emergent pﬁe—
nomena in social complexity.

o]
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Keeping in mind the three main types of models used across the social sciences—
i.e., statistical, mathematical, and computational varieties—it is safe to say that so-

cial scientists have learned a great deal {rom comparing statistical and mathematical
models. For example, social scientists often compare various types of statistical re-
gression models, such as when deciding which type to use given a set of hypotheses
being tested, or when analyzing results from alternative functional specifications.
Another example is provided by comparing pame theoretic models, such as the clas-
sic taxonomy of 2 x 2 games pioneered by the late Russian-American mathematical
social scientist Anatol Rapoport. Comparing social simulation models is a newer
endeavor when compared to statistical and mathematical models.

A first approach to comparing social simulations is based on generic character-
istics such as their referent system, type of implementation, level abstraction, and
basic science versus applied uses. Each of these features provides ample room for
examining similarities and differences among models being compared. Moreover,
depending on the purpose of comparison, these features can be investigated in var-
ious degrees of detail. For instance, comparing social simulations by type of im-
plementation is something that can be done in coarse terms by simply identifying
the programming languages or simnulation systems, or it can be much more detailed,
comparing architectural features and interaction networks captured by each imple-
mentation. Comparison by generic characteristics can also focus on behavioral dy-
namics, distributions and stochastic processes, forms of emergent complexity, and
long-term asymptotic equilibria. :

The more advanced comparison of social simulations should focus on detailed
examination of ontologies (including details provided in technical diagrams), dy-
namic processes (for example, by comparing UML sequence diagrams and state
diagrams, in the case of agent-based models), as well as numerous other software
features. '

Comparing social simulation models is also sometimes referred to as model-to-
model comparison, or M2M f{or short. In the next two chapters we shall examine
several examples.
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9,1 Introduction and Motivation

This chapter examines the superclass of variable-oriented social simulation mod-
els, also called equation-based social simulations. Historically, these were the first
types ol social simulations and they have formal roots in differential equation mod-
els of social dynamics. Today, these social simulation models consist primarily of
system dynamic (SD) models and queneing models. Each class is examined using
the MDIVVA social simulation methodology (Molivate-Design-Implement- Verify-
Validate-Analyze) developed in Chap. 8.

Both of these social simulation models focus on complex social systems over
time, which makes them applicable to theoretical application for basic science as
well as policy analysis. Historically, however, applications to applied operational
and management issues have prevailed. Hence, their use for advanced theoretical
analysis awaits many fruitful applications, especiaily in light of experience acquired
through practical uses in management, industrial, and operational settings.

9.2  History and First Pioneers

Social simulation models examined in this chapter have scientific roots in Isaac

Newton’s theory of dynamical systems and Girolamo Cardano’s theory of events in

probability—a prestigious pedigree. The following summary of major milestones

includes developments in SD and queueing models as well as closely related ad-
vances in dynamic simulation models more broadly.

1909  Mathematician and engineer Agner Krarup Erlang pioneers scientific re-
search on queuing systems by modeling the Copenhagen telephone ex-
change,

1953 Statistician and mathematician David G. Kendall proposes the standard for-
mal notation still in use for queueing systems, published in The Annals of
Mathematical Statistics.

C. Cioffi-Revilla, farroduction to Computational Sacial Science, 249
Texts in Computer Science, DOI 10.1007/978-1-447|-366 | - 1_9,
© Springer-Verlag London 2014
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1958

1959

1960s

1961

1961

1969

1970

1972

1972

1975

1975

1979

Richard Bennett at MIT creates SIMPLE (Simulation of Industrial Man-
agement Problems with Lots of Equations), the first system dynamics com-
puter modeling language.

DYNAMO (DYNAmic MOdels) v. 1.0, an improved version of SIMPLE, is
invented by Phyllis Fox and Alexander Pugh. DYNAMO quickly becomes
the formal lingua franca of management science and operations simulation
models.

SD models become widely adopted in operations research of complex so-
cial systems and management science, remaining prominent today.
Engineering scientist Jay Forrester from MIT’s Sloan Schoal of Manage-
ment publishes his pioneering book, Industrial Dynamics, the first in a se-
ries of SD classics.

Applied mathematician Thomas L. Saaty publishes the queueing theory
classic, Elements of Queuneing Theory with Applications. In the same year
I.D.C. Little publishes his famous law of queueing systems in the journal
Operations Research, and 1.E.C. Kingman publishes his equally famous
law in Mathematical Proceedings of the Cambridge Philosophical Society.
Urban Dynamics is puhlished by Jay Forrester and John Collins (former
mayor of Boston), expanding system dynamics simulation to social com-
plexity and CSS in a proper sense.

Forrester and his group at MIT create the first socio-environmenta! global
models, WORLDI and WORLDZ, published as World Dynamics, of what
eventually became the famous Club of Rome model.

The Limits to Growtl, the classic book that will make SD famous worId—
wide, is published by Donella Meadows under the sponsorship of engineer
Aurelio Peccei’s Club of Rome. 1t is immediately translated into many’ lan-
guages.

Cultural anthropologist Linda . Cordell pioneers the first social snmu]a—
tion of Puebloan {Anasazi) polities in the American Southwest with her
Ph.ID, dissertation on “The Whetherill Mesa Simulation” at the University
of California at Santa Barbara. Cordell received the Lifetime Achievement
Award from the Society for American Archaeology and the A.V. Kidder
Medal from the American Anthropological Association, becoming a mem-
ber of the US National Academy of Sciences in 2005.

Political scientist Dieter Ruloff, disciple of CSS pioneer Daniel Frei from
the University of Ziirich, Switzerland, demonstrates the first application of
S 1o simulating insurgency and political stability. In the following years
he publishes the first SD models of the collapse of Classic Maya polities
and Soviet—Taliban insurgency dynamics in Afghanistan.

Political scientists Nazli Choucri and Robert North publish Nations in Con-
flict, the first discrete-time simulation in international relations, modeling
the onset of World War I .

Political scientists Urs Luterbacher and Pierre Allan from the Graduate In-
stitnie of International Studies in Geneva, Switzerland, create SIMPEST,
the first dynamic simulation model of USA-USSR-PRC strategic triad dy-

namics during the Cold War, correctly predicting the disintegration of the E
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Soviet Union. Their paper was presented at the World Congress of the In-
ternational Political Science Assecciation, Moscow, USSR,

1979 Archaeologists Colin Renfrew and K.L. Cooke co-edit the volume Trans-
Jormations: Mathemarical Approaches to Culrure Change, another early
pioneering collection.

1981  Archaeologist Jeremy Sabloff publishes Simudation in Archaeology, one of
the first edited volumes of its kind. The same year Nazli Choucri publishes
International Energy Futures, the first SD modeling book on the world
energy market from an economic and politics perspective.

1984  The SD scientific journal, System Dynamics Review, is founded.

Mid-1980s  Political scientist Michael Wallace publishes a paper demonstrating
the implementation of Lewis F. Richardson’s theory of arms races in SD
models using DYNAMO,

1985  The Stella version 1.0 software for system dynamics modeling is released
by the isee systems company.

1998 Nazli Choucri and her MIT students publish the first SD model of state
stability in the System Dynamics Review.

2000  American management scientist John D. Sterman publishes Business Dy-
namics: Systems Thinking and Modeling for a Complex World, the first
major, comprehensive textbook in SD.

9.3  System Dynamics Models

This section introduces the superclass of social simulations based on system dy-
namic {SI}) models, used in significant social science applications, and examines
their main features for understanding social complexity. SD models are introduced
within the broader context of dynamical systems, which span an even larger class of
formal models. The emphasis of SD is on discrete-time systems as the main formal-
ism for characterizing social dynamics of various types observed in referent social
systems. Mathematical aspects are important, especially for learning how qualita-
tively different dynamical processes—i.e., different forms of dynamic behavior—
are modeled through different model specifications.

The following terms must be distinguished in the interest of clarity, since they
are easily confused when not used with precision:

Definition 9.1 (System Dynamics Model) A system dynamics (SD) simulation is
a variable-based computational model for analyzing complex systems containing
feedback and feedforward dependencies among variables and rates of change, often
with high-dimensionality,

Formally, an SD model consists of a system of discrete-time difference equations
with forward or backward differencing. SD models can be purely deterministic or
contain stochastic noise as defined by random variables. A complete SD social sim-
ulation model consists of causal diagrams explaining the network of dependencies
and associated code implementation.
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Fig.9.1 Major pioneers of system dynamics models:- Jay Fm.-rester, founder faf SD mndeling'(_up-
per left), Dennis Meadows, director of the Club of Rome Project on lhEE Predicament of Mnn}md,
The Limits to Growth {(upper right); Linda Cordell, pioneer in dynamical system§ models.m ar-
chaeology, elected to the National Academy of Sciences in 2005 .(!ower ]eft};‘ Nazli Choueri, MIT
pioneer SD modeler of energy, conflict, and state stability dynamics (lewer right)

Definition 9.2 (Dynamical System Model}) A dynamical system (DS} is a variable-

based mathematical model composed of a set of differential equations or differential
and integral equations.

Dynamical system models in social science dale to the first pioneering appli-
cations to the study of conflict, demographic, and economic dynamics almost a

hundred years ago—i.e., they were used in mathematical social science much euar--
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lier than computational SI? models. Formally, a DS model consists of a system
of continuous-time equations. DS models can be purely deterministic or contain
stochastic noise defined by random variables. Both SD and DS are formal models
(computational and mathematical, respectively}, and can be purely deterministic or
contain stochastic components. The main différence lies in the discrete and contin-

uous time domains, as well as Lhe presence of forward and backward time delays in
the former.

9.3.1 Motivation: Research Questions

SD models address research questions in numerous domains of CSS, especially

those where the following features are present in a given referent system of interest:

1. Variables and their respective time trajectories are of immediate interest as
stocks, sizes, or quantities of some kind. (State variables are later abstracted as
levels, as detailed in the next stage of the modeling process.)

. Causal relations among variables are responsible for observed changes in terms
of lemporal dependencies; they don’t just oceur for unknown reasons or through
purely random mechanisms. (Change is later abstracted as caused by rates.)

3. Noise can affect resulting trajectories at various points in the causal network.

(Noise is later abstracted as probability distributions.)

4. At the macroscopic system level trajectories of change can include stationar-
ity, escalation, dampening, cycling, oscillations, asymptotic behaviors, and other
temporal qualitative patterns.

5. Emergent properties of social complexity al the systemic level result from inter-
actions at the level of variables at the lowest causal levels.

™~

9.3.2 Design: Abstracting Conceptual and Formal Models

Given some referent system of interest S, a conceptual model Cg, consisting of a set
of state variables and their respective rates of change, is abstracled by a two-stage
process rendered through causal loop diagrams and stock and flow diagrams.

9.3.2.1 Causal Loop Diagrams

The first stage in SD abstraction to produce a conceptual model focuses on elemen-
tary causal relations called loops.

Definition 9.3 (Causal Loop) A causal loop is a feedback relation between a given
variable v and its rate of change.

Causal loops are the basic elements of an SD model. In turn, feedback can be
positive or negative, depending on whether it promotes or impedes a given variable.

Definition 9.4 (Positive Feedback) A positive feedback loop is a causal relation
that increases the value of a variable.
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Positive feedback is viewed as a reinforcement dynamic in SD terminology,
producing an increasing effect: growth, expansion, gains, amplification, increases,
improvements, enlargements, proliferation, or escalation, or other increasing pat-

terns in the time trajectory of a variable, depending on the appropriate semantics of

the referent system.

Definition 9.5 (Negative Feedback) A negative feedback loop is a causal relation
that decreases the value of a variable.

Negative feedback is a said to be a balancing dynamic in SD terminology, pro-
ducing a decreasing effect: fatigue, decline, reduction, loss, diminution, mitigation,
depletion, contraction, restraint, decay, or other decreasing patterns in the time tra-
jectory of a variable, again depending on appropriate semantics of the referent sys-
tem.

Definition 9.6 (Causal Loop Diagram) A causal loop diagram is a graphic abstrac-
tion that describes positive and negative feedback in the behavior of a given variable.

Nonn adoption by members of a community is an example of an emergent so-
cial phenomenon that can be represented by a causal loop diagram. This is useful
for understanding how a new norm may be adopted as a social process from an
SD perspective, as shown in Fig. 9.2. The figure shows two feedback loops operat-
ing simultaneously. The positive feedback loop R, on the right, denotes how social
conformity tends to produce new norm adopters by peer pressure as the number of
new adopters grows. This is a reinforcement dynamic. The more people conform-
ing to the new norm, the greater the pressure to adopt it, which is abstracted as a
positive feedback loop. The feedback loop B, on the left, represents negative rein-
forcement or “balancing” because the community has finite size, so the number of
potential adopters decreases as more community members adopt a new norm. The
higher the proportion of conformity with the new norm the lower the number of the
non-conformists, so the loop on the left represents negative feedback. Related ex-
amples of social norms are fashions, opinions, technological innovations, attimudes,

and behavioral patterns, so the norm adoption process has broad applicability across -

domains of social science.

A similar example is found in the domain of inter-group conflict, based on
Richardson's two-group rivalry model of arms race dynamics, shown in Fig. 9.3.
{Although this is sometimes referred to as a two-nation arms race model, Richard-
son intended it to be a general madel for conflict hetween rival groups of any kind,
nations and non-state actors alike, as reflected by his term “deadly quarrels.”) In this
case the rate of arms acquisition by each group is affected by two opposite dynamics
produced by feedback loops. On one hand, there is an escalation dynamic because
the rate of arms acquisition is driven by a rival’s current {and threatening!} level of
arms; the higher that is, the greater the need to catch up by increasing one’s own
rate. On the other hand, there is a mitigating dynamic driven by the cost of main-
taining what one already has, so the higher the level of one’s own armaments, the
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Fig.9.3 Causal loop diagram for a system dynamics model of inter-group rivalry

greater the economic burden, so the more difficult it is to procure further increases.
Today, organization complexity required to support advanced capabililies must be
added to direct economic cost. Richardson called this restraining force “fatigne.”

A system as a whole is represented by coupled causal loops representing how all
elementary causal loaps are related to one another. Note that in the last two examples
overall system structure is the same, but the signs are not—the balancing signs of
the mitigation dynamic are reversed. In the norm diffusion process in Fig. 9.2, the
two feedback loops are assumed to be coupled, acting simultaneously. As shown in
the diagram, the rate of norm adoption is a function of both the number af potential
norm adopters and the number of norm adopters. Poteatial norm adopters and actual
norm adopters are decreased and increased by the adoption rate, respectively. The
result is that at different times the two coupled dynamics behave differently. During
the early stages of the process, growth in the population of adopters will be greater
than in latter stages when fewer non-conformists remain in the community.

In the rivalry process in Fig. 9.3, the two feedback loops are also assumed to be
coupled, so they operate simultaneously. The rate of arms acquisition is a function of
both the rival’s arms level and the group’s (own) arms level. The escalation dynamic
on the right is a self-reinforcing drive (positive feedback). The mitigation dynamic
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Fig.9.4 SD stock and flow
diagram for representing ( ;
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on the left is a balancing drive (negalive feedback). However, unlike the previous

example, this case assumes nwo different kinds couplings, both acting on the rates of

arms acquisitions: '

1. Feedback couplings: positive and negative feedback processes are coupled, as in
the norm emergence example.

2. Actor couplings: the two rivals are coupled through strategic interaction, in a -
game-theoretic sense, since the outcome for each (arms levels) is determmeci not -

only by what one decides, but also by what the rival decides.

These two coupled dynamics in the rivalry process in this case also behave dlf—
ferently at different times, depending on which dynamic drive prevails.

In sum, causal loop diagrams can contribute to building a conceptual SD model
from a qualitative perspective by abstracting positive and negative feedback loops
corresponding to reinforcing/escalating and dampening/mitigating drives, respec-
tively. However, more is needed to build a sufficiently complete conceptual model
of a referent system that can be computationally implemented in code.

9,3.2.2 Stock and Flow Diagrams
The second stage of abstraction in SD model development is to provide a more
quantitative way of representing system structure and dynamics using stock and flow

diagrams, as shown in Fig. 9.4, In this second kind of SD diagram, variables become -

stocks (rectangles) and rates become flow valves (bow ties). Unlike a feedback loop
diagram, a stock and flow diagram can be directly translated into code.

The top of Fig. 9.4 shows a generic stock and flow diagram with its basic nota-
tion, where the source on the left represents a variable with realization determined
by the flow valve that controls the stock or level on the right. The bottom of the
figure uses the same notation applied to the case of the reinforcement loop or esca~
lation dynamic of a conflict process (right portion of Fig. 9.3), where a group’s rate
of acquisition in military capabilities is determined by the level of its rival. The fully
coupled conflict system is shown in Fig. 9.5.
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Figure 9.5 specifies how rival actors and feedback loeps are mutually dependent
on each other, to formalize the concept of strategic interaction. The figure uses the
same basic stock and flow components as in Fig. 9.4, with the added element of
background hostility acting as a parameter that also affects the rate of change, so
now the dynamic process of each rival is driven by three faclors:

1. The rival’s current arms level (representing positive feedback, escalation force)

. The group’s own arms level (negative feedback, mitigation force) and

- Background hostility acting as a constant background force, which captures the
idea that a group would acquire some minimal military capabilities as insurance,
regardless of a rival’s arms level.

Diagrams such as these—usually involving many more stocks/variables, Qows/
rates, and parameters—are used in SD methodology for representing a conceptual
model of a given referent system. Noise, stochastic shocks, and other elements are
also added as necessary.

The main result of the design stage in system dynamics is a conceptual model
of the referent social system specified by a set of equations. For example, in the

conflict model, the following system of equations in continuous time specifies the
rivalry dynamics:

W N

dX
E:rzY~—bX+g 9.1)
dy
T SeX —BY +h, 9.2)
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where g and & are reaction coefficients, b and g are mitigation coefficients, g and
I are hostility coefficients, and X and Y are levels of armaments. The following
system of equations is in discrete time:

X(t+1D)=a¥(t) —bX()+g (9.3)
Y+ D) =aX() - BY () +h. (9.4)

In this case, the sysiem of equations can be analyzed to obtain closed form so-
lutions, since the system is simple. Solutions to these systems of equations yield
time trajectories containing exponential terms, which can be easily verified. In most
cases this is not possible, which is why simulation is required.

9.3.3 Impllementation: System Dynamics Software

Given a sufficiently complete conceptual model of a referent system, the next stage
in SD methodology consists of implementing the model in code using a simula-
tion system. The key milestone activity in the implementation stage is marked by
the transition from mathematical equations in the conceptual model to code in the
simulation model.

The current, most utilized simulation system for implementing SD models is
called VENSIM, which is the current successor to earlier DYNAMO and STELLA
simulation systemns software. Vensim PLE is an education version that is made avail-
able free of charge. The classic textbook by John D). Sterman, Business Dynamics,
includes a CD (for PC and Macintosh) containing simulation software and models,
including ithink, Powersim, and Vensim software. A major advantage of systems
such as these is their close association with the SD community, specifically the Sys-
tern Dynamics Society. The Vensim website has numerous resources for beginning
and advanced users, including tutorials and other helpful materials.

Figure 9.6 shows a screenshot of the Vensim system while implementing a con-
ceptual stock and flow model of a simple customer base in a company. While
Dynamo was a programing language that required writing code, Vensim can be
used by selecting facilities for defining variables, equations, and other components
by clicking options, using drop-down menus, and other features of the user inter-
face. :
Another option for developing SD social simulation is to implement the concep-
tual model in simulation systems such as Netlogo or Repast. Although these sim-
ulation systems were not originally designed to run SD models, they do have such

facilities in addition to the agent-based models for which they were originally de-

signed. For example, Netlogo has demonstration SD models for exponential growth,
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Fig. 9.6 Screenshot while implementing an SD social simulation using the Vensim system

logistic growth, prey-predator (wolf-sheep) dynamics (based on the classic Lotka-
Volterra model), as well as other effective examples.

9.3.4 Verification

Recall the difference between verification and validation: the former is about ensur-
ing a model is running the way it is supposed to, as guided by the conceptual model
and any other simuiation design specifications; the latter is about ensuring that the
simulation model is a good representation of the referent system.

Once an SD social simulation model has been implemented, the next step in-
volves verification procedures. Systems such as Vensim provide a number of facil-
ities for verifying a model, such as checking that the right units are specified, rates
are using the proper dependencies, and similar steps to ensure that the model is
running the way it was intended by the conceptual model. Since an SD conceptual
model, complete with stock and flow diagrams, uses the iconic metaphor of levels
and flow valves, verifying an SD implementation essentially means checking that all
“the plumbing” is working as it should according to the most minute details in the
blueprints (stock and flow diagrams). Each element must be checked for accurate
implementation, as well as every rate, feature, and connection. Facilities provided
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by whatever simulation system is chosen should be used in the context of the verifi-
cation procedures examined in Chap. &.

9.3.5 Validation

Validating an SD social simulation model that has been verified is accomplished
from two main perspectives. Structure validity refers to internal features of the
model, including all assumptions, relevant variables and their units, and the system
of equations in all its component stocks and flows. The following are recommended
tests of structure validity for SD models:

Empirical tests of validation:  This is aimed at validating the specification of
equations used in the model as well as parameter values being used. For ex-
ample, in the case of the conflict model discussed earlier, this part of the val-
idation process would focus on parameters such as the equation’s coeflicients
being assumed, as well as constants, such as background hostility that affects
armament rates. The equations themselves require validation, since different
specifications will yield different results. The classic rivalry model assumes
additive and symmetrical armament levels, which is an assumption that re-
quires validation through using empirical tests. Tt is also assumed that reaction
coefficients and hostility parameters are constant. These all add up to an over-
all assumption of structural stationarity, in the sense that all equations specified

do not undergo significant change over time—i.e., the standard model assumes. -

that the basic c¢lockwork mechanism does not change as history evolves, which
may or may not be a valid assumption,

Theoretical tests of validation: Model assumptions should also be confirmed by
the exlant theories being used, since even the simplest SD model assumes
theoretical mechanisms that justify its causal structure, This is a broader per-
spective than empirical tests of structural validity, since it is based on funda-
mental causal arpuments that are difficult if not impossibie to quantify. For
example, in the case of the conflict model, the overall structure is grounded
on Richardson’s theory of how rivalry between two groups is explained. The
fundamental theory is based on three factors or dynamics driving the conflict
process: escalation forces driven by positive feedback from a rival’s stock of
wenpons; mitigation forces driven by fatigue and negative feedback from one’s
own stockpile of armaments; and some background constant force generated
by hostility over disagreements and insecurity. Is this theory valid? Are there
other factors as important or even more significant than these? The theory also

assumes perfect symmetry between rivals; both make arms procurement de-

cisions in the same way. Is it possible that the rivals in question decide with

different goals, such as one trying to “catch up™ with the other, so it reacts

to the gap between its own level and the rival’s [i.e., dX/dt ot (X — Y)], not
simply to the rival's level (d X /dt oc ¥ as in Eq. (9. ]))’?

As with any other kind of social simulation model, tests of structural vahdxty for

SD models are complex and require considerable attention. The empirical literature

is of great value in navigating through these procedures. :
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By contrast, behavior validity concerns the actual results of simulation runs, pri-
marily in terms of qualitative and quantitative features such as paiterns of growth,
decay, and oscillation, among others. Many of these procedures involve various
forms of time-series analysis and extensions. Some of these were mentioned during
the general methodological discussion in the previous chapter, including analyzing
trends, comparing periodicities by means of autocorrelation functions, comparing
distribution moments, and computing global statistics such as the diserepancy coef-
ficient between simulated and observed time-series data (Barlas 1996: 207-208).

9.3.6 Analysis

The main goal of simulation research in CSS is to obtain qualitative and quantitative
results to better understand the referent system. The previous forms of qualitative
and quantitative analysis are primarily procedural, for purposes of gaining confi-
dence in the veracity of a medel by conducling verification and validation proce-
dures. Obviously, the main goal of developing an SD social simulation—the rea-
son for going through all the trouble—is to analyze it in substantive ways. Formal
analysis, asking what-if questions, and scenario analysis constitute major forms of
analyzing SD social simulations.

Formal analysis of an SD model yields results, such as time trajectories for all
level variables (stocks), plase portraits in parameter spaces, sensitivity analysis,
comparative statics, and similar sets of results in dynamical systems analysis. For
example, the conflict model results from formal analysis would show the time tra-
jectories of levels of armaments in the evolution of conflict between groups, phase
portraits of trajectories as a function of parameter combinations, and similar qual-
itative and quantitative results. Results from formal analysis can reveal properties
such as orbits, singularities, asymptotes, attractors, gradient fields, periodicities,
chaos, bifurcations, ergodicities {equality between time averages and space aver-
ages), phase transitions, stability properties, and other significant dynamic features
of social complexity that are typically not apparent from the model structure.

Asking what-if questions is another major approach to analyzing SD social sim-

_ulations. For example, in the conflict model we may ask what happens when the

hostility of one group versus its rival is some multiple of the other’s hostility. Or,
what happens when reaction coefficients differ significantly across the two groups?
What-if questions can also extend o analysis of an SD model with alternative spec-
ifications of equations to explore what happens when rates of change are governed
by different dynamics. For example, as was suggested earlier, in the cenflict model
we may wish to have a rival responding to the gap (¥ — X) in armament levels, as
opposed to the original assumption of responding to just level ¥,

A more comprehensive form of analysis used with SD social simulations is sce-
nario analysis, which typically involves a suite of related questions defining a given
scenario, rather than analyzing one question at a time. For example, in the conflict
model we may wish to examine a scenario in which reaction coefficients are rel-
atively small, mitigation coelficients are several times larger than reaction coeffi-
cients, and hostility coefficients are weak. Intuitively, such a scenario should lead





