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REAL WORLD RESEARCH

Analysis or interpretation?

The traditional, and still widely used, terminology is to refer to the ‘analysis’ of d"
whether quantitative or qualitative. Taken literally, analysis is a ‘breaking
something complex into smaller parts and explaining the whole in terms of i
properties of, and relations between, these parts. Not only is this, necessarily,
reductionist process but it is also seen by many as necessarily reliant on the partic I
form of statistical reasoning where hypotheses are based on probability theory applie
sampling distributions. This approach, discussed in Chapter 16, p. 446, has an import‘
role when dealing with quantitative data from some experimental and other fixe
designs. However, in real world research which generates quantitative data, it is rap u
find that the rather restrictive design assumptions for the approach are met. The majc
research traditions in flexible design research are incompatible with the approach.

Interpretation carries very different conceptual baggage. Whereas the purpose o
analysis is often seen as a search for causes (usually in the positivistic ‘successio
sense discussed in Chapter 2, p. 32), interpretation is considered to be about shedding
light on meaning. This is a well-established view of the task when dealing with
qualitative data, but Byrne (2002) makes a persuasive case for also focusing on ¢
interpretation of quantitative data.

Quantitative and qualitative data — and their
integration in multi-strategy designs

The following two chapters focus on the analysis and interpretation of quantitative and
qualitative data, respectively. Multi-strategy (mixed methods) designs will have sub-
stantial amounts of both types of data for which the techniques and approaches in the
chapters can be used. They can make separate contributions to the findings of the study
but there is also a possibility of their integration to take full advantage of the opportunity -
provided by this type of design. The final section of Chapter 17 (p. 492) discusses some of
the issues involved.

@ chapter:

HAPTER 16

IThe analysis and interpretation

of quantitative data

~

« stresses the advantages of using a software package when analysing quantitative
data and your likely need for help and advice when doing this;

» shows how to create a data set for entry into a computer;

« distinguishes between exploratory and confirmatory data analysis;

» explains statistical significance and discusses its controversial status;

» advocates greater reliance on measures of effect sizes;

« suggests how to explore, display and summarize the data;

» discusses ways of analysing relationships between various types of data and a
range of statistical tests that might be used;

+ does the same thing for analysing differences between data; and

« considers issues specific to the analysis of quasi-experiments, single-case experi-

\ments and non-experimental fixed designs. J

Introduction

You would have to work quite hard in a research project not to generate at least some
data in the form of numbers or which could not be sensibly turned into numbers of
some kind. Hence, techniques for dealing with such quantitative data are an essential
feature of your professional tool-kit. Their analysis covers a wide range of things, from
simple organization of the data to complex statistical analysis. This chapter does not
attempt a comprehensive treatment of all aspects of quantitative data analysis. Its main
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aim is to help you appreciate some of the issues involved so that you have a fee]ing
the questions you need to ask when deciding on an appropriate kind of analysis, ¢

Some assumptions

1. Everyone doing real world research needs to understand how to summarize and disp i
quantitative data. This applies not only to those using fixed and multi-strategy
designs, but also to users of flexible designs where their data are essentially qua]i
tive. Even die-hard qualitative researchers will often collect small amounts of
numerical data or find advantage in turning some qualitative data into number
for summary or display purposes. This does not necessarily call for the use o
statistical tests. Simple techniques may be all you need to interpret your data,

2. For relatively simple statistical tests specialist statistical software is not essential. If you only
have a very small amount of quantitative data, it may be appropriate for you to carry
out analyses by ‘hand’ (or with the help of an electronic calculator). However.
the drudgery and potential for error in such calculation, and the ease with which
the computer can perform such mundane chores for you, suggest strongly that y' ?
make use of the new technology if at all possible. For such tasks, and for simple
statistical tests, spreadsheet software such as Excel may be all that you ne
‘Analyse-it’ (www.analyse-it.com) is a straightforward package which can be
used with Excel to produce most of the commonly used statistics and char
Appendix A gives details. It has been used for several of the figures showing the
results of different statistical analyses in this chapter.

3. If you need to carry out complex statistical tests you will need to use a specialist statistical
computer package. A range of commonly used statistical packages is discussed in
Appendix A (p. 515). SPSS (Statistical Package for the Social Sciences) is the market
leader by some margin but other packages are well worth considering, particularly i
you wish to follow the exploratory data analysis (EDA) approach highlighted in the
chapter. Facility in the use of at least one specialist statistical package is a useful
transferable skill for the real world researcher. .

4. You have some prior acquaintance with the basic concepts and language of statistical analysis.
If not, you are recommended to spend some time with one of the many texts covering
this at an introductory level (e.g. Robson, 1994; Rowntree, 2000).

5. You will seek help and advice in carrying out statistical analyses. The field of statistical
analysis is complex and specialized and it is unreasonable to expect everyone
carrying out real world research to be a statistical specialist. It is, unfortunately,
a field where it is not at all difficult to carry out an analysis which is simply 1
wrong, or inappropriate, for your data or your purposes. And the negative side
of readily available specialist statistical software is that it becomes that much easier
to generate elegantly presented rubbish (remember GIGO - Garbage In, Garbage
Out).

Preferably, such advice should come from an experienced statistician sympathetic
to the particular difficulties involved in applied social research. It should be sought at
the earliest possible stage in the design of your project. Inexperienced non-numerate
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researchers often have a touching faith that research is a linear process in which they first
" ollect the data and then the statistician shows them the analysis to carry out. It is,
however, all too easy to end up with unanalysable data, which, if they had been collected

a somewhat different way, would have been readily analysable. In the absence of

ersonal statistical support, you should be able to use this chapter to get an introduction
o the kind of approach you might take. The references provided should then help with
more detailed coverage.

brganization of the chapter

The chapter first covers the creation of a ‘data set’ as a necessary precursor to data
analysis. Suggestions are then made about how you might carry out various types of data
analysis appropriate for different research designs and tasks.

Creating a data set

The point has already been made several times that you should be thinking about how
your data are to be analysed at the design stage of your project. This is important not only
to ensure that what you collect is analysable but also to simplify as much as possible the
actual process of analysis.

If you are to make use of a computer to help with analysis, then the data must be

entered into the computer in the form required by the software you are using. This may
be done in different ways:

Direct automatic entry. It may be feasible for the data to be generated in such a way
that entry is automatic. For example, you may be using a structured observation
schedule with some data collection device (either a specialized instrument or a lap-
top computer) so that the data as collected can be directly usable by the analysis
software.

. Creation of a computer file which is then ‘imported’ to the analysis software. It may be easier

for your data to be entered into a computer after collection. For example, a survey
might use questionnaires which are ‘optically readable’. Respondents, or the person
carrying out the survey, fill in boxes on the form corresponding to particular answers.
The computer can directly transform this response into data which it can use. Such
data form a computer ‘file’ which is then ‘imported’ into the particular analysis
software being used. This is feasible with most statistical packages although you may
need assistance to ensure that the transfer takes place satisfactorily.

. Direct ‘keying’ of data into analysis software. For much small-scale research, automatic

reading or conversion of the data into a computer file will either not be possible or not
be economically justifiable. There is then the requirement for manual entry of data
into the analysis software. The discussion below assumes that you will be entering the
data in this way.
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BOX 16.1 Student | Faculty | Sex | Entry points | Degree class | Income
1 A F 14 2.1 14,120
Question formats requiring (a) single-transfer coding 2 EN | M 6 2.2 15,900
and (b) double-transfer coding 3 EN | M 5 Fail 11,200
4 ED F 10 2.2 21,640
(a) How many children are there in your school? ; 5 S M 4 5 1 95.000
under 40 40-49 50-59  60-69 70-79 80-89 90100  over100 6 B F 13 2.1 11,180
code 1 2 3 4 5 6 7 8 7 A F 16 2.1 12,600
enter éode U | 8 EN | M 3 9,300
(b) How many children are there in your school? 9 ED M 3 2900
(please circle) ’

10 EN M * 2.2 17,880

under 40 40-49 50-59 60-69 70-79 80-89 90-100  over 100 Key: A = Arts; B = Business; Ed = Education; EN = Engineering; S = Sciences;

M = Male; F = Female; « = missing data

(response has then to be translated into appropriate code)
Note: data are fictitious, but modelled on those in Linsell and Robson, 1987

Figure 16.1: Faculty, entry points, degree classification, and

Whichever approach is used, the same principle applies. Try at the design stage & income two years after graduating of a sample of students.

capture your data in a form which is going to simplify this entry process. Avoic
intermediate systems where the original response has to be further categorized. Th
more times that data are transferred between coding systems, the greater the chance of
error. Single-transfer coding (i.e. where the response is already in the form which has to'l

‘ entered into the computer) is often possible with attitude and other scales, multi
choice tests, inventories, checklists and many questionnaires. In a postal or similai
survey questionnaire, you will have to weigh up whether it is more important to simplify

the task of the respondent or the task of the person transferring the code to the computer

Box 16.1 shows possible alternatives. '

The conventions on coding are essentially common sense. Suggestions were made in

Chapter 10 (p. 266) about how this might be dealt with in relation to questionnaires.
Note that it is helpful to include the coding boxes on the questionnaire itself, conven-
tionally in a column on the right-hand side of each page. ]

The data sets obtained from other types of project will be various. However, it is

almost always possible to have some sensible arrangement of the data into rows and
columns. Typically each row corresponds to a record or case. This might be all of the data
obtained from a particular respondent. A record consists of cells which contain data. The

cells in a column contain the data for a particular variable. Figure 16.1 presents a simple
example derived from a survey-type study. A similar matrix would be obtained from a
simple experiment where, say, the columns represent scores obtained under different
experimental conditions.

complex but later versions are straightforward to use, particularly if you are familiar
with the operation of spreadsheets.

Missing data

- ‘The most acceptable solution to the problem of missing information is not to have any’
(Youngman, 1979, p. 21). While this is obviously a counsel of perfection, it highlights the
problem that there is no really satisfactory way of dealing with missing data. It may well
be that the reason why data are missing is in some way related to the question being
investigated. Those who avoid filling in the evaluation questionnaire, or who are not
present at a session, may well have different views from those who responded. So it is
worth spending considerable time, effort and ingenuity in seeking to ensure a full
response. Software normally has one or more ways of dealing with missing data when
performing analyses and it may be necessary to investigate this further as different
approaches can have substantially different effects on the results obtained.

Technically there is no particular problem in coding data as missing. There simply
needs to be a signal code which is used for missing data, and only for missing data. Don’t
get in the habit of using 0 (zero) to code for missing data as this can cause confusion if the
variable in question could have a zero value or if any analytic procedure treats it as a
value of zero (99 or -1 are frequently used). Software packages should show the value
that you have specified as missing data and deal with it intelligently (e.g. by computing
~averages based only on the data present).

Itis worth noting that a distinction may need to be made between missing data where
there is no response from someone, and a ‘don’t know’ or ‘not applicable’ response,

Entering the data into the computer

The details of the procedure for entering this data set into the computer vary according to
the particular software you are using. With early versions of software, this was quite
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particularly if you have catered for possible responses of this type by including them 3 ta rting d ata a n a ly3is
one of the alternatives. _

Now that you have a data set entered into the computer you are no doubt itching to do
something with it. Data analysis is commonly divided into two broad types: exploratory
and confirmatory. As the terms suggest, exploratory analysis explores the data trying to
find out what they tell you. Confirmatory analysis seeks to establish whether you have
actually got what you expected to find (for example on the basis of theory, such as
predicting the operation of particular mechanisms).

~ With all data sets, and whatever type of research design, there is much to be said for
having an initial exploration of the data. Try to get a feeling for what you have got and
what it is trying to tell you. Play about with it. Draw up tables. Simple graphical displays
help: charts, histograms, graphs, pie-charts, etc. Get summaries in the form of means and
measures of the amount of variability, etc. (Details on what is meant by these terms, and
how to do it, are presented later in the chapter.) Acquiring this working knowledge is
particularly useful when you are going on to use various statistical tests with a software
package. Packages will cheerfully and quickly produce complex nonsense if you ask
them the wrong question or misunderstand how you enter the data. A good common-
sense understanding of the data set will sensitize you against this.

Exploratory approaches of various kinds have been advocated at several points
during this book. They are central to much flexible design research. While these designs
mainly generate qualitative data, strategies such as case study commonly also result in
quantitative data which we need to explore to see what has been found and to help direct
later stages of data collection.

Much fixed design research is exclusively quantitative. The degree of pre-specifi-
cation of design and of pre-thought about possible analyses called for in fixed
design research means that the major task in data analysis is confirmatory, i.e. we
are seeking to establish whether our predictions or hypotheses have been confirmed
by the data. Such confirmatory data analysis (CDA) is the mainstream approach in
statistical analysis.

- However, there is an influential approach to quantitative analysis known as explor-
atory data analysis (EDA) advocated by Tukey (1977) - see also Myatt (2007). Tukey’s
approach and influence come in at two levels. First, he has proposed several ingenious
ways of displaying data diagrammatically. These devices, such as ‘box plots’, are non-
controversial, deserve wider recognition and are discussed below (p. 425). The more
revolutionary aspect of the EDA movement is the centrality it places on an informal,
Pictorial approach to data. EDA is criticized for implying that the pictures are all that you
heed; that the usual formal statistical procedures involving tests, significance levels, etc.
are unnecessary. Tukey (1977) does acknowledge the need for CDA; in his view it
complements EDA and provides a way of formally testing the relatively risky inductions
ade through EDA.

To a large extent, EDA simply regularizes the very common process whereby
Tesearchers make inferences about relationships between variables after data collection
hich their study was not designed to test formally — or which they had not expected
prior to the research — and provides helpful tools for that task. It mirrors the suggestion

Cleaning the data set after entry

Just as one needs to proof-read text for errors, so a computer data set needs to be check
for errors made while ‘keying in’ the data. One of the best ways of doing this is for t
data to be entered twice, independently, by two people. Any discrepancies can then b
resolved. This is time consuming but may well be worthwhile, particularly if substantiz
data analysis is likely.

A valuable tip is to make use of ‘categorical’ variables whenever feasible. So, in th
data set of Figure 16.1 ‘degree class’ has the categories ‘first, ‘upper second’, etc.
advantage is that the software will clearly show where you have entered an invalj
value. 3

While this eliminates several potential mistakes, it is, of course, still possible
enter the wrong class for an individual. The direct equivalent of proof-reading can |
carried out by checking the computer data set carefully against the original
Simple frequency analyses (see below, p. 421) on each of the columns are helpful.
will throw up whether ‘illegal’, or highly unlikely, codes have been entered.
continuous variables box plots can be drawn, and potential ‘outliers’ highlighte
(see p. 425).

Cross-tabulation

This involves counting the codes from one variable that occur for each code in a secor
variable. It can show up more subtle errors. Suppose that the two variables ar
‘withdrew before completing degree’ and ‘class of final degree’. Cross-tabulatio
might throw up one or two students who appeared to have withdrawn befor
completion but were nevertheless awarded a classified degree. These should the
be checked as while this might be legitimate (perhaps they returned), it could well be
miscoding. Cross-tabulation is easy when the variables have only a few values, as |
the case with most categorical variables. However, it becomes very tedious whe
continuous variables such as age or income, which can take on many values, a
involved. In this circumstance, scatter plots (see below, p. 433) provide a useful toc
These are graphs in which corresponding codes from two variables give the horizori.
and vertical scale values of points representing each record. ‘Deviant’ points w
stand out from the general pattern can be followed up to see whether they are genuin
or miscoded.

The ‘cleaned’ data set is an important resource for your subsequent analyses. Ilt is
prudent to keep a couple of copies, with one of the copies being at a separate phystf?at ,
location from the others. You will be likely to modify the set in various ways durm
analysis (e.g. by combining codes); however, you should always retain copies of the
original data set.
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He points out that a major problem arises when ordinal categories are treated as real
aumbers. For example examination grades, A, B, C, D and E may be given points scores,
say that A is 10 points, B is 8 points, etc. As such points scores are essentially arbitrary,
attempts to treat them as real numbers, for example by working out average points
scores, lead to arbitrary results.

Gorard’s advice is to ‘use your common sense but ignore the idea of “levels” of
measurement. If something is a real number then you can add it. If it is not a real number
then it is not really any kind of number at all’ (p. 63).

My advice is to take note of this advice but not to let it inhibit you from carrying out
any of the statistical analyses (particularly the simple ones) covered in the chapter -
providing you understand what you are doing, and it seems likely to shed light on what
the data are trying to tell you. The notion that specific measurement scales are require-
ments for the use of particular statistical procedures, put forward by Stevens (1946),
followed up in influential statistics textbooks (e.g. Siegel, 1959), and still commonly
found, is rejected by many mathematical statisticians (see Binder, 1984; Gaito, 1980).
There is nothing to stop you carrying out any analysis on quantitative data on statistical
grounds. As Lord (1953) trenchantly put it in an early response to Stevens, ‘the numbers
do not know where they came from’ (p. 751). The important thing is the interpretation of
the results of the statistical analysis. It is here that the provenance of the numbers has to
be considered, as well as other matters including the design of the study.

made in Chapter 5 that, while in fixed design research strong pre-specification
essential and you have clear expectations of what the results will show (i.e. the tas
of analysis is primarily confirmatory), this does not preclude additional explora w
Using EDA approaches, with a particular focus on graphical display, has been advocate
by Connolly (2006) as a means of avoiding the ecological fallacy of making infere
about individuals from the group data provided from summary statistics. I

In practice the EDA/CDA distinction isn’t clear cut. As de Leeuw puts it (in Van ¢
Geer, 1993), the view that !

The scientist does all kinds of dirty things to his or her data . . . and at the end
this thoroughly unrespectable phase he or she comes up (miraculously) with
theory, model, or hypothesis. This hypothesis is then tested with the proper
confirmatory statistical methods. [This] is a complete travesty of what actually
goes on in all sciences some of the time and in some sciences all of the time. There
are no two phases that can easily be distinguished (emphasis in original).

The treatment in this chapter is influenced by EDA and seeks to follow its spirit. Howet
there is no attempt to make a rigid demarcation between ‘exploring’ and ‘confirming’ aspe

A note on ‘levels’ of measurement

A classic paper by Stevens (1946) suggested that there were four ‘levels’ of measureme:
(‘nominal’, ‘ordinal’, ‘interval” and ‘ratio’). Nominal refers to a set of categories used f
classification purposes (e.g. marital status): ordinal also refers to a set of categories whe
they can be ordered in some meaningful way (e.g. social class): interval refers to a set:
categories which are not only ordered but also have equal intervals on some measu
ment scale (e.g. calendar time): ratio is the same as interval level, but with a real or tn
zero (e.g. income).

Although very widely referred to in texts dealing with the analysis of quantitatiy
data (e.g. Blaikie, 2003), the value of this typology has been queried by statisticians
Velleman and Wilkinson, 1993). Gorard (2006) considers it unnecessary and confusing
He claims that there is little practical difference between interval and ratio scales ai
points out that the same statistical procedures are traditionally suggested for
Also that

Exploring the data set

frequency distributions and graphical displays

A simple means of exploring many data sets is to recast them in a way which counts the
frequency (i.e. the number of times) that certain things happen and to find ways of
displaying that information. For example, we could look at the number of students
achieving different degree classifications. Some progress can be made by drawing up a
frequency distribution as in Figure 16.2. This table can, alternatively, be presented as a bar
chart (Figure 16.3).

The chart can be shown with either frequencies or percentages on the vertical axis; be
sure to indicate which you have used. The classes of degree are ordered (here shown
from first class ‘downward’ going from left to right). For some other variables (e.g. for
faculties) the ordering is arbitrary. A distinction is sometimes made between histograms
and bar charts. A bar chart is a histogram where the bars are separated from each other,

So-called ‘nominal’ measures are, in fact, not numbers at all but categories of things
that can be counted. The sex of an individual would, in traditional texts, be a
nominal measure. But sex is clearly not a number . . . The only measure involved
here is the frequency of individuals in each category of the variable ‘sex” ~i.e. how
many females and how many males (p. 61).

Degree class | First | Upper second | Lower second | Third | Pass | Fail | Total
Frequency 9 64 37 30 7 3 150

| Percentage 6 42.7 24.7 20 | 47 | 2 | 100

Such frequencies are, of course, ‘real numbers’ and can be added, subtracted, m [t
plied and divided like other numbers. ‘Ordinal’ measures are also categories of things the
can be counted and can be treated in exactly the same way. The only difference is in:
possibility of ordering which can be used when describing and displaying frequenct es

Note: ‘Frequency’ is the number of students with that degree class.
Figure 16.2: Frequency distribution of students across ‘degree class’.



422

REAL WORLD RESEARCH

THE ANALYSIS AND INTERPRETATION OF QUANTITATIVE DATA 42

Bar chart of degree class
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60 ; — science

Pie chart for faculty membership

education
12%

50

40

30

arts

business | ]
25%

17%

20 . : .’

10
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Figure 16.3: Bar chart showing distribution of students across ‘degree class’

engineering
30%

rather than being joined together. The convention has been that histograms are only u:
for continuous variables (i.e. where the bar can take on any numerical value and is 1
for example, limited to whole number values). _

Pie charts provide an alternative way of displaying this kind of information (
Figure 16.4). Bar charts, histograms and pie charts are probably preferable ways
summarizing data to the corresponding tables of frequency distributions. It is clair
they are more quickly and easily understood by a variety of audiences — see Spence:
Lewandowsky (1990) for a review of relevant empirical studies. My personal experier
is that there are individual differences, with some people finding tables easier
understand. Note, however, that with continuous variables (i.e. ones which can t
on any numerical value, not simply whole numbers) both frequency tables and hi
grams may lose considerable detailed information. This is because of the need to
together a range of values for a particular row of the frequency table or bar
histogram. In all cases there will be a trade-off between decreasing the complexity
display and losing information. An alternative EDA approach to displaying the datz
the box plot (see p. 425). 4

Graphs (line charts) are well-known ways of displaying data. Excel and statist
packages provide ways of generating and displaying them although the quality
output many not be high enough for some needs. Specialized graphics package !
Deltagraph, available from www.redrocksw.com/deltagraph) have a range of
displays available. Increasingly, professional standard displays are expected in presel
ing the results of projects, and apart from assisting communication, can help in ge!
over messages about the quality of the work. It is a matter of judgement whether or:
any package to which you have access provides output of a quality adequate t
presentation to a particular audience. .

igure 16.4: Pie chart showing relative numbers of students in different faculties.

Marsh and Elliott (2008) give detailed, helpful and down-to-earth suggestions for
roducing numerical material clearly in a section on ‘Good Table Manners’ (pp. 126-9).
[ufte (2001) provides a fascinating compendium for anyone who needs to take graphical
lisplay seriously.

Immary or descriptive statistics

mmary statistics (also commonly known as ‘descriptive statistics’) are ways of
epresenting some important aspect of a set of data by a single number. The two aspects
10st commonly dealt with in this way are the level of the distribution and its spread
stherwise known as dispersion). Statistics summarizing the level are known as measures
'central tendency. Those summarizing the spread are called measures of variability. The
ness (asymmetricality), and other aspects of the shape of the distribution which are
IS0 sometimes summarized, are considered below in the context of the normal
istribution (see p. 429).

leasures of central tendency

he notion here is to get a single figure which best represents the level of the distribution.

A€ most common such measure to the lay person is the ‘average’, calculated by adding
Il of the scores together and then dividing by the number of scores. In statistical
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BOX 16.2

Measures of ‘central tendency’

The most commonly used are:

are other, rarely used, kinds of mean) - this is the average, obtained by adding all
the scores together and dividing by the number of scores.

(i.e. for 11 scores it is the sixth). It is also referred to as the ‘50th percentile’ (i.e. it
has 50 per cent of the scores below it, and 50 per cent above it).
¢ Mode — the most frequently occurring value.

\ Note: Statistics texts give formulae and further explanation.

parlance, the figure obtained by carrying out this procedure is referred to as the arithme
mean. This is because average, as a term in common use, suffers from being imprecise
some other more-or-less mid-value might also be referred to as average. There ai

however, several other measures of central tendency in use, some appropriate for spec
purposes. Box 16.2 covers some of them.

Measures of variability

The extent to which the data values in a set of scores are tightly clustered or relativ
widely spread out is a second important feature of a distribution for which seve:
indices are in use. Box 16.3 gives details of the most commonly used measures. Seve
of them involve calculating deviations which are simply the difference between
individual score and the mean. Some individual scores are above the mean (po!

deviations) and others below (negative deviations). It is an arithmetical feature of t

mean that the sum of positive deviations is the same as the sum of negative deviatio
Hence the mean deviation is calculated by ignoring the sign of the deviations, so the
non-zero total is obtained. The standard deviation and variance are probably the m
widely used measures of variability, mainly because of their relationship to popu
statistical tests such as the t-test and analysis of variance (discussed later in the chi ‘
- see p. 449 and p. 452). However, Gorard (2006, pp. 17-19 and 63-73) makes a str¢
case for using the mean deviation rather than standard deviation, as it is simpler
compute, has a clear everyday meaning, and does not over-emphasize extreme scol
This is part of Gorard’s campaign in favour of ‘using everyday numbers effectivels
research’.

Statistics packages provide a very wide range of summary statistics, usually
the form of an optional menu of ways of summarizing any column within your d
table.

 Mean (strictly speaking this should be referred to as the arithmetic mean as there

* Median - this is the central value when all the scores are arranged in order of size
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BOX 16.3
" Measures of variability \

- Some commonly used measures are:

.« Range—difference between the highest and the lowest score.
o Midspread or inter-quartile range—difference between the score which has one-
quarter of the scores below it (known as the ‘first quartile’, or ‘25th percentile’)
and that which has three-quarters of the scores below it (known as the ‘third
quartile’, or ‘75th percentile’).
-« Mean deviation — the average of the deviations of individual scores from the mean
~ (ignoring the sign or direction of the deviation).

o Variance—the average of the squared deviations of individual scores from the
~ mean.
» Standard deviation—square root of the variance.
o Standard error —the standard deviation of the mean score.

Note: Statistics texts give formulae and further explanation. J

frther graphical displays for single variables

t is possible to incorporate summary statistics into graphical displays in various ways.

dandard deviation error bars

display showing the mean value as a dot, which has extending above and below it an
error bar’. This represents one standard deviation unit above and below the mean.
ypically, about two-thirds of the observed values will fall between these two limits (see
he discussion of the normal distribution below, p. 429).

This is often a useful way of displaying the relative performance of subgroups, and
nore generally of making comparisons. A similar-looking display is used to show the
confidence intervals for the mean. These are limits within which we can be (probabilisti-
ally) sure that the mean value of the population from which our sample is drawn lies:
5 per cent limits (i.e. limits within which we can be 95 per cent sure) are commonly used,
out others can be obtained. Figure 16.5 shows both error bar charts for one standard
leviation and 95 per cent confidence intervals.

B0X plots and whiskers

figure 16.6 shows the general meaning of the box and its upper and lower ‘whiskers’.
Note that the plot is based on medians and other percentiles, rather than on means and
tandard deviations.
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Figure 16.5: Display of error bar charts.

Outliers

The term outlier is commonly used for a value which is a lot higher, or a lot lower than
main body of the data. Marsh and Elliott (2008, pp. 168-71) suggest as a rule of th
that values which are more than one and a half times the inter-quartile range (Qy -
above the upper quartile, or more than one and a half times the inter-quartile r
below the lower quartile, can be considered outliers. They term points as far outli

Sex

they are more than three times the inter-quartile range above or below.

individual scores 8
above 90th percentile

(¢]

90th percentile —»

75th percentile —»

median

50th percentile

25th percentile —

10th percentile —»

individual scores
below 10th percentile

(e]e]

Figure 16.6: The ‘box and whisker’ plot.

whisker

box

whisker
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Outliers call for special attention. They can arise for a variety of reasons. For example,
n error might be made in entering the data set where separate entries of ‘2’ and ‘7’ get
entered together as “27”. If no objective reason of this kind can be unearthed, then its
reatment is problematic. Many statistical procedures are very sensitive to the presence
¢ outliers. For example, one advantage of the median over the mean as a measure of
entral tendency is its lack of such sensitivity. EDA has been much interested in outliers,
?:; in their own right, and in the study of measures which are robust (i.e. relatively
maffected) in their presence.

fanipulating the data

farsh and Elliott (2008, p. 57) point out that ‘data are produced, not given’. This stance
cts our classical heritage in the sense that the derivation of the word data is ‘things
en’.! The ‘produced not given’ point is important. Many of the data that we collect are
ctually produced during the research itself. They tend not to be things lying around that
ve pick up. We often have a very active hand, not only in what is collected, but in how it
 collected. The actual numbers that we subject to analysis are very much formed by a
rocess of selection and choice - at a very simple level, for example, do we use grams,
lograms, ounces, pounds, tons?

This basic choice will have been made at the time that the data are collected. In the
@mple, this would probably now be metric in most countries, with the specific unit
hosen to avoid very large, or very small, numbers (e.g. 5 grams rather than 0.005 kilo-
rams; 2.3 kilograms rather than 2300 grams). There is still the possibility of manipulating
e data subsequently, so that it is easier to analyse, or so that attention can be focused on
atures of interest, or so that it is easier to compare two or more sets of data. As in so many
pects of research, this process is driven by your research questions. Are there things that
ou can do with your data that can help give clearer answers to these questions?

It perhaps needs saying that this is nothing to do with ‘How to Lie with Statistics’
uff, 1991). ‘Massaging’ the data to give a biased or downright untruthful message
ould have no place in the kind of research covered in this book. The prime safeguard is
ur own honesty and integrity but this should be supported by detailed reporting of
hat you have done. Sufficient detail should be included to enable the sceptical reader to
llow the trail from the collected data, through whatever you do to it, to the interpreta-
n and conclusion.

aling data

€ earlier section on descriptive statistics emphasized two aspects of a set of data: its
vel and its spread. The two simplest ways of scaling data involve these aspects directly.

0, in terms of its derivation the word is plural - one datum; two or more data. However, many
0ple now use data as a singular noun. In a field where the term is used frequently, such as
>earch reports, you may be perceived as ignorant of the ‘correct’ usage if you follow the popular
nd. Not wanting to put you in that position, I propose to play the pedant and stick to the plural
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Adding or subtracting a constant

A straightforward way of focusing attention on a particular aspect of the data is to
subtract a particular constant amount from each of the measurements. The
common tactic is to subtract the arithmetic mean from each score. As discussed al
in connection with measures of variability, scores transformed in this way are referry
as deviations. A similar tactic can be used when the median or some other measure
central tendency has been employed.

frequency (count)

Multiplying by a constant

T score

mean
(median and mode
coincide with the mean)

This is sometimes referred to as scaling or rescaling the variable. It is what you d
changing from weight in imperial measure (pounds, ounces, etc.) to metric (kilog;
grams). This tactic is particularly useful in comparing different sets of data which h
initially been measured on different scales. For example, the prices of goods or s
in the UK and other European countries could be better compared by transforming th
all into the standard ‘euro’. "1

sigure 16.7: The theoretical ‘normal’ distribution.

- For example, the expectation is that:
(ARSI 68 per cent of cases are within one SD of the mean;

95 per cent of cases are within two SDs of the mean; and
' 99.7 per cent are within three SDs of the mean.

There are many other things that you can do. Taking logarithms or taking a power
square, square root, reciprocal) are tactics commonly used when the distributio
scores is asymmetrical or in some other way inappropriate for the type of statis
analysis proposed. Details are given in Marsh and Elliott (2008, Chapter 10). Further details and appropriate tables are in many statistics texts (Robson, 1994,
rovides a simple account). It is possible to test the ‘goodness of fit” of your data to the
tormal distribution by using a version of the chi-square test (see below, p. 431).
Whether or not a distribution of scores can reasonably be represented as normal is
then of value in describing, summarizing and comparing data. However, don’t fall into
he trap of thinking that ‘only “normal” is normal’. Data won’t necessarily fall into this
attern. This is no major disaster; your job is to seek to understand what you have got,
laying about with the scale if this seems to help. Such transformations may bring the
distribution closer to normal but in itself that may not further your understanding.
The normal distribution also has a part to play if one wants to go on to carry out
ormal statistical tests on the data. Many of the more commonly used tests are based on
he assumption that a normal distribution is involved. Often these tests are robust in the
ense that deviations from normality do not appear to have much effect on the outcome
f the test. However, there are ‘distribution free’ tests (commonly called ‘non-parame-
tric’ tests) available (Higgins, 2003; Pett, 1997; Sprent and Smeeton, 2007) which do not
Make assumptions about the shape of the distributions involved.

Standardizing data

One way of manipulating data is very commonly used. It involves combining the |
approaches covered above, i.e. subtracting a measure of level (central tendency)
individual score, and then dividing by an appropriate measure of variability. The’,
and standard deviation (or mean deviation) or median and mid-spread could be 1
Distributions of scores that have been standardized in this way are much ea
compare, and in some circumstances combine, than unstandardized ones.

The normal distribution

The so-called normal (or Gaussian) distribution is a theoretical distribution of s
for which the shape is completely determined once the mean and standard de
(SD) are known. Its shape is shown as Figure 16.7. Many distributions of
obtained in practice are reasonable approximations to the normal distri
To find if this is the case for a particular set of scores, they are first standa
as shown above and then scrutinized to see whether the proportion of cases fa
different distances from the mean are as predicted from tables showing the theore
distribution.

kewness

38 can be seen from Figure 16.7, the normal distribution is symmetrical about its centre
Which is where the mean, median and mode coincide). In practice, a distribution may be
skewed’ as shown in Figure 16.8. ‘Negative’ skew suggests that the majority of extreme



REAL WORLD RESEARCH THE ANALYSIS AND INTERPRETATION OF QUANTITATIVE DATA

431

elationships between variables. Here we will limit ourselves to relations between two

To say that there is a relationship between two variables means that the distribution
of scores or values on one of the variables is in some way linked to the distribution of
salues on the second variable — that, say, higher scores on one variable for that case
(person, perhaps) tend to occur when there are higher scores on the second variable for
that case. An example would be the relationship between smoking and lung cancer;
those who smoke are more likely to develop lung cancer.

positive
skew

frequency

Pross-tabulation

mode score
median
mean

Cross-tabulation is a simple and frequently used way of displaying a relationship
petween two variables. It is an extension of the use of frequency tables as discussed
connection with the analysis of single variables. Take once more the data on student
intake presented in Figure 16.1. Let us say that we are interested in the relationship
between faculty and the relative number of male and female students, i.e. between the
ariables ‘faculty” and ‘sex’. Figure 16.9 shows how these data could be presented in a
‘contingency table’. There are five faculties (five levels of the variable ‘faculty’) and two
sexes (two values of the variable ‘sex’) and hence 10 (five times two) possible combina-
tions of levels of the variables. The boxes in the table, corresponding to each of these
combinations, are referred to as cells. The total for each row and each column is given at
the end or margin of the row or column. These totals are called the row marginals and
column marginals, respectively.

~ The row total presentation shows the way in which females (and males) are
distributed across the faculties labelled as ‘counts’. The column total presentation shows
the relative percentages (or proportions) of males and females in different faculties (e.g.
the proportion of males in the science faculty). The contingency table, viewed in terms of
percentages, helps to highlight any relationships between the two variables. Here the
low percentage of females in the engineering faculty and high proportion in the arts is a
striking, though unsurprising, feature.

negative
skew

frequency

mode score
median
mean

Figure 16.8: Positively and negatively skewed distributions.

observed values are less than the mean; ‘positive’ skew that the majority of extrem
observed values are above the mean. A simple indication of this can be obtained
comparing the mean and median values. If the median is less than the mean, this suggest
that over 50 per cent of the values are below the mean, and hence, to compensate, the right-
hand or upper tail of the distribution must extend further — indicating positive skew.
Statistical packages usually provide a measure of the skewness of a distribution. A no
distribution (being symmetrical) has a value of 0; positive values indicate a distribution
with a long right tail, negative values a distribution with a long left tail. V

Chi-square tests

Chi-square, in a contingency table, is a measure of the degree of association or linkage
between the two variables. The more that there is a tendency for the relative number of
males and females to vary from faculty to faculty, the greater is chi-square. It is based on
the differences or discrepancies between the frequencies in the different cells (the

Male Arts | Engineering | Business | Science | Education | Total

Exploring relationships between two variables N o | 1 b=
Total 22 1 8 6 8 45

Having considered how one might deal with individual variables, let us switch the focus 25 30 17 16 12 100

to one of the main concerns in carrying out quantitative social research — looking for Figure 16.9: ‘Sex’ by ‘“faculty’ cross-tabulation.
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Faculty analysing two-by-two tables producing an appropriately adjusted chi-square. You are
Arts | Engineering | Business | Science | Education ecommended to ignore the corrected value.
Male Count 3 29 9 10 4

Expected Count | 13.8 16.5 9.4 8.8 6.6 Ising chi-square to test for ‘goodness of fit’
Female | Count % 1 8 8 8 Chi-square can also be used to compare frequencies on a single variable to see how
Expected Count | 11.3 13.5 7.7 7.2 5.4 closely they ‘fit’ to those expected or predicted on some theoretical basis. A common
Total o5 30 17 16 12 theoretical expectation is for all frequencies to be the same; or perhaps it may be desired
o test the goodness of fit to the frequencies expected if the data were normally

Chi-square test result distributed. The difference in terms of computation is that these expected frequencies
have to be supplied, rather than being generated automatically from the observed

Pearson chi-square 42.39 ! h
frequencies.

Degrees of freedom (DF) 4
p < 0.05 (exact p is 0.000 to three decimal places)

Note: No cells have an expected value of less than 5 _
Figure 16.10: Results of a chi-square analysis of the ‘sex’ by ‘faculty’ cross-tabulation
Figure 16.9. 4

Scattergrams

A scattergram (also known as a scatter plot) is a graphical representation of the relation-
ship between two variables. It only makes sense when it is possible to order the values for
each of the variables in some non-arbitrary manner. Hence in the data set of Figure 16.1 it
ould be reasonable to draw a scattergram for, say ‘degree class’ against ‘entry points’
but not for “faculty’ against ‘entry points’. This is because any particular ordering of the
faculties along an axis is arbitrary, and the apparent graphical relationship between
the variables will vary with the ordering. Figure 16.11 presents a scattergram
showing the relationship between ‘entry points’ and ‘income’ for a sample of graduates.
tshows the position of each person on the two variables. For example, the far right point
on the scattergram corresponds to someone who gained 26 entry points and has an
mcome of about £18,000.

Scattergrams are a powerful pictorial device, giving a clear picture of the nature and
strength of the relationship between the variables. They have their limitations, however.
Many types of data are not readily amenable to display in this way, particularly when
there are very few values on one or both of the variables. Nevertheless, unless you have
data where the ordering of values is arbitrary, you should always consider the feasibility
of drawing a scattergram for two-variable data. It is possible to produce contingency
tables from the same data, summarizing by taking appropriate intervals along the
ariables when they take on many values.

‘counts’) and those that you would expect if there was no association at all between ¢
two variables (i.e. the ratio of males to females is the same in all faculties). These latter ai
known as the ‘expected’ counts and are shown in Figure 16.10. ;

You will often see assessments of the statistical significance of relationships
contingency tables. This concept, and some of the problems in its use, are discu
later in the chapter on p. 446. It effectively tests the plausibility that a null hypothe:
no relationship is true. If the result you have obtained would be very unlikely if th
hypothesis were true it becomes reasonable to rule out the possibility that purely ran
factors are involved. If its probability is sufficiently small (conventionally taken
in 20, i.e. p = 0.05), the relationship is taken to be due to some non-chance factor. '
chi-square (x*) test is commonly used to assess the statistical significance of
relationships in contingency tables. The probability in this example is less
0.0005. This is clearly very much smaller than the conventional 0.05 and hence statis!
cally significant. ‘Degrees of freedom (df)’, refers to a somewhat esoteric statistic
concept linked to the number of cells in the contingency table, which is used wh
assessing the statistical significance of the value of chi-square.

Statisticians warn against the use of chi-square when one or more expected freque:
cies fall below a particular value, usually taken as 5 in small tables. Fisher’s exact test'
substitute which can be used in circumstances where the expected frequencies are ¢
low for chi-square (see Pett, 1997). !

A chi-square analysis, if statistically significant as in the present case, indicates tha
overall there is a relationship between the two variables (here ‘faculty’ and ‘sex’) whic hi
unlikely to be explained by chance factors. In two-by-two contingency tables (where bot
variables only have two values) statisticians formerly used a somewhat different formuk
incorporating a ‘correction for continuity’ (sometimes referred to as ‘Yates’ correc
for computing chi-square. This is now considered to be inappropriate (Richard
1990). Some statistical packages provide both chi-square and a ‘corrected’ value whe

Lorrelation coefficients

Measures of correlation (i.e. of the co-relationship between two variables) are referred to
as correlation coefficients. They give an indication of both the strength and the direction of
the relationship between the variables. The commonly used coefficients assume that
there is a linear relationship between the two variables. Figure 16.12 demonstrates this in
the idealized form of the ‘perfect’ linear correlation. However, perfection is not of this
Wworld. Certainly, you are very unlikely to get that degree of ‘tightness’ in the relation-
ship, with data concerning humans and their doings. Figure 16.13 illustrates the kind of
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Figure 16.11: Scattergrams of ‘entry points by income’.
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high high

low low
low high low high
perfect positive perfect negative
correlation correlation

igure 16.12: A ‘perfect’ linear correlation.

ricture you are likely to see if there is a strong linear correlation. As you can see, the
nts fall within a cigar-shaped ‘envelope’. The thinner the cigar, the stronger the
ationship. With weaker correlations, the cigar is fatter; an essentially zero correlation
shows no discernible pattern in the scattergram.

~ Commonly used correlation coefficients include Pearson’s correlation coefficient (),
the Spearman rank correlation coefficient (known as Spearman’s rho - p and Kendall’s

rank correlation coefficient (known as Kendall’s tau — 7). As their labels suggest, the
latter two are used with data in the form of ranks, or orderings, of data (what is first,
second, etc.). The data may have been collected in this form, perhaps through partic-
ipants expressing their preferences for different objects or situations, or may have been
collected in other forms and subsequently converted into ranks. They do not assume
normal distribution of the data and hence may be used when that assumption, on which
the Pearson’s coefficient is based, is dubious. They are, however, measures of linear

high

low

low high

Figure 16.13: Example of a high positive correlation.
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correlation (see below). The Spearman coefficient is effectively a Pearson coe high
performed on the ranks and is preferred by some on that ground, but most ana

appear to prefer Kendall’s tau, possibly because it deals with ties more consisteng

Proportion of variance explained (PVE)

While the correlation coefficient is a measure of the relationship between the variable
is difficult to assess the strength of this relationship (real ‘significance’ or importa;
rather than statistical significance) from the correlation coefficient.

The square of the correlation coefficient () is a useful index as it corresponds to
proportion of the variation in values of one of the variables which can be predicted
the variation in the other variable. Broadly speaking, if this is low (say less than 0.3~}
this will depend on circumstances) then it is unlikely to be profitable to exert my
further time and effort in investigating the relationship. High values might sugg
carrying out a subsequent regression analysis (see below).

low

low high

jgure 16.14: Example of a curvilinear relationship.

xmenable to statistical analysis. Even if this transformation does ‘work’ in that sense,
here may be consequent problems of interpretation. To know that there is a strong linear
orrelation between one variable and, say, the square of another variable may be of
escriptive and even predictive value, but defy your attempts at understanding.
However, finding that a reciprocal transformation works such that a non-linear rela-
onship involving ‘time elapsed’ as one variable becomes linear when a ‘rate’ measure
(i.e. reciprocal of time) is used, may well be readily interpretable.

Measuring the statistical significance of a correlation

The statistical significance of correlation coefficients is commonly computed. T
concept and some of the problems in its use are discussed below (p. 446).

It is important to appreciate that the size of correlation coefficient which reache
particular statistical significance (conventionally p = 0.05 being taken as the la
acceptable probability for this type of significance) is very strongly affected by the siz
the sample of data involved. Thus for 20 pairs of scores the value of the Pear:
correlation coefficient is 0.44 (two-tailed test — see below, p. 449); for 50 it is 0.28; for
less than 0.2; and for 500 less than 0.1. This illustrates the point that statistical significal
has little to do with significance as commonly understood. Certainly, with a large sam
such as 500, you can achieve statistical significance when less than 1 per cent of |
variability in one variable is predictable from variation in the other variable; 99 per e
comes from other sources! }

The message is that if the statistical significance of a correlation is to be quoted, ma
sure that both the size of the correlation (and/or of its square as a measure of |
proportion of variance explained) and the size of the sample are also quoted.

ines of best fit

tis possible to draw a line of best fit on a scattergram. This can be estimated by drawing
1 line having roughly equal numbers of points above and below it, and making each
point as near to the line as possible (using the minimum, i.e. perpendicular, distance
rom the line in each case).

There are systematic means of drawing such a line, which should be employed if it is
0 be used in any formal way. One approach which is commonly used is linear regression.
[his involves finding the line for which the squared deviation of individual points from
he line (in the vertical, i.e. the Y dimension) is a minimum. This can be routinely
erformed by many computer packages, including ‘analyse-it’. There are alternative
ways of deriving these lines (see, for example, Marsh and Elliott, 2008, pp. 196-204, who
dvocate ‘resistant lines’). When data are ‘well behaved’ (reasonably normal distribu-
ons with no problematic ‘outliers’), linear regression is probably preferable, if only
because of the ease with which the task can be completed.

The ‘line of best fit’, when obtained by one of the above means, is a powerful and
useful way of summarizing the linear relationship between two variables. All straight
ines can be expressed by a simple algebraic formula, one form of which is

Y=0bX+a

Non-linear relationships between variables

It is perfectly possible to have some form of non-linear relationship between &
variables. One value of the scattergram is in highlighting such non-linearities, in pz
because they are likely to call for discussion and explanation. They should also give
warning against using statistical techniques which assume linearity. Curvilinear rel
ships might be found. The envelope, instead of being cigar shaped, might be bett
represented by a banana or boomerang, as in Figure 16.14. !

This is one situation where the data transformations discussed earlier in the chapté
(p. 427) may be of value, as the appropriate transformation might convert the relati
ship in Figure 16.14 to something closely approaching linearity — and hence

§ Where Y and X are the two variables (conventionally, when there are dependent and
independent variables, Y is the dependent variable and X the independent variable); and
tand b are constants which typify the particular line of best fit. The constant a is known
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Figure 16.15: Fitting a ‘regression line’ for relationship between ‘entry p:
and ‘income’.

as the intercept and is the point where the line cuts the vertical or Y axis; b is known as

slope. This is shown diagrammatically in Figure 16.15.

In addition to providing an elegant way of summarizing the data, the line of be

(or the coefficients a and b, which amount to the same thing) can be used for pred

purposes, for example, to give an estimate of the likely increase in income ove

specified number of years.

There is a difficulty with the data in that the amount of variability of the po
around the regression line is not constant. It appears to increase with higher val
entry points and income. This not uncommon feature goes by the somewhat fea

name of heteroscedasticity and, strictly, violates one of the assumptions on

Pearson’s correlation coefficient is based. Again, this is a situation where poss

transformations of the data might be attempted.

Exploring relationships among three
or more variables

Research designs often involve more than two variables, calling for different approac
to those covered already. Multivariate techniques which are concerned with thfr.?
effects of multiple variables are covered later in the section. We will, however,
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consider approaches which look at the effects of taking into account a third variable on
the relationship between two variables.

fhree-variable contingency tables: the ‘elaboration’ approach

With non-experimental strategies, it is often essential to explore the effects of other
variables when seeking to understand the basis of a two-variable relationship. One set of
e hniques is known as elaboration analysis. It has been widely used in the analysis of data
from surveys and other non-experimental designs. Marsh (1982, pp. 84-97) gives a very
clear account of the underlying logic. It involves the following steps:

. Establish a relationship between two variables.

. Subdivide the data on the basis of the values of a third variable.

3. Review the original two-variable relationship for each of the subgroups.

. Compare the relationship found in each subgroup with the original relationship.

- The third variable is referred to as the test variable (or control) variable. The original
relationship between the two variables, where the third variable is not being held
onstant at a particular value, is called the zero-order relationship. The relationship that is
ound for a particular value of the test variable is known as a partial relationship. See de
Vaus (2002, pp. 297-317) for an account of the statistics involved.

- The pattern of effects of the test variable on the zero-order relationship can help in
nterpreting and understanding what is going on.

The website gives details of the interpretation of various patterns obtained when exploring
elationships among three variables.

This approach to data analysis is simply a somewhat more complex version of the use of
contingency tables, which were covered earlier. It provides a way of testing out and
b0ssibly modifying the conceptual framework you developed when designing the study
see Chapter 4, p-72). Or, in other words, identifying the causal links. In realist terms, this
mounts to specifying which mechanisms are in operation. The real world is complex
nd analysis may well not generate clear-cut patterns. In practice it is likely that multiple
ausation is the norm for many of the phenomena which interest us and that models
vhich allow for multiple independent variables are to be preferred (see below).

Itis possible to extend this type of analysis to four or even more variables (i.e. to two or
nore test variables) but it rapidly becomes unwieldy, particularly when there are several
:ategories on each variable. Unless large amounts of data have been collected, the database
or each subgroup becomes very small. The choice of test variables for elaboration analysis
S obviously of central importance as it is only possible to include very few of them. They
lave to be pre-specified at least to the extent that you have collected the necessary data
Some of the variables on which data have been collected can, of course, be omitted at the
nalysis stage). The message for small-scale studies is to keep the conceptual model simple.
*Stepeatedly emphasized in Chapter 5, if you are carrying out fixed design research with a
iew to understanding and explaining a phenomenon, you don’t do this unless and until
fou have established a clear and simple conceptual framework.
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Using partial correlations

Essentially the same type of logical analysis can be carried out using partial correas
coefficients, rather than proportions in contingency tables. This amounts to exae 3
the correlation between two variables and then seeing how, if at all, it changes Whei
or more other variables are held constant. |
In the three-variable case, the correlation matrix is first calculated, which gives e
of the three possible correlations between the variables. A partial correlation ,T:-‘
then calculated. Interpretation of the relationship between the variables is based
pattern of correlations and the logical potential link between the test variable and th
original variables (e.g. antecedent or intervening). ‘
The partial correlation approach cannot be used when testing for a ‘moders
relationship (i.e. there is an interaction in the sense that the relationship between th
influenced by a third variable) because this depends on comparing the relationshi .
different categories of the test variable and the partial correlation effectively gives ,
single averaged figure. There are also problems in computing the correlation coeffi id
if one of the variables has a small number of categories or values.

Multiple regression

Multiple regression is multiple in the sense that it involves a single dependent va iab
and two or more independent variables (or, in the terminology more commonly us
non-experimental research, a single response variable and more than one explan
variable). It is a flexible, widely used approach which has been made readily accessib!
through computer packages. '
Taking the simplest possible case for multiple regression of one dependent variabl
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R_squared. This is the multiple coefficient of determination, a measure of the proportion of
the variance in the dependent variable which is explained by the independent
variables in the equation. If, for example, R? is 0.14, the proportion of variance
explained is 14 per cent. An ‘adjusted R* may also be produced. This will be smaller
than R? and is adjusted in the sense that it takes into account the number of
_independent variables involved and would normally be preferred to the unadjusted
value.

t-value of coefficients. This presents a test of whether or not the associated beta coefficient
is significantly different from zero. A probability value will usually be given in each
case.

. Standard error of coefficients. This is a measure of the accuracy of the individual
regression coefficients. This information is useful in assessing the likely accuracy of
predictions based on the regression equation.

] Analysis of variance (ANOV A) tables. Discussed later in the chapter, p. 452.

This discussion merely scratches the surface of multiple regression and its possibilities. If
a major concern is in developing a model effectively in deciding on an appropriate
regression equation, then an option known as stepwise regression is worth considering.
This starts with the simplest possible model and then step by step examines the
implications of adding further independent variables to the equation.

If you already have an explicit model which you are testing, hierarchical (or stepwise)

multiple regression is preferable. This involves entering the variables into the analysis in
an order determined by your model.

You are strongly recommended to seek advice when considering using multiple

regression, as not only is it complicated but also it is particularly easy to do something
silly and inappropriate with the packages available. It is worth noting, however, that

multiple regression can be used with a wide variety of types of data. In particular, it can
be used with categorical variables such as ‘gender’ and ‘faculty’ in the example we have
been using. A difficulty here is that the ordering of categories is essentially arbitrary for
such variables, and particularly when there are more than two categories for a variable,

and two independent variables, the regression equation is

y=a+bixy + bx,

Where y is the dependent variable, x; and x; are the two independent variables, a is b
intercept, and b; and b, the regression coefficients for the two independent variab es
The regression coefficient gives you the change in the dependent variable for each unif

change in that independent variable, with the effect of any of the independent variables

controlled (referred to as ‘partialled out’).

While multiple regression can be used in the same way as linear regression, to give

a line of best fit and to provide predictions through substitutions of different values
x1 and x,, its main use is to provide an estimate of the relative importance of the

differ.ent independent variables in producing changes in the dependent variable. To
do this, it is necessary to convert the regression coefficients to allow for the different

scales on which they have been measured. When this is done, they are referred to as
standardized regression coefficients or beta weights. They then tell you how many standard

deviation units the dependent variable will change for a unit change in that indepen-

dent variable.

‘ lT}(;e output from a statistical package will provide various statistics which may
include:

the ordering chosen would affect the result obtained. This can be handled by the use of

so-called ‘dummy variables’. It involves coding particular categories as ‘present’ (say

coded ‘1) or absent (say coded ‘0’). Cramer (2003, Chapters 10-12) gives details.
Alternatively logistic regression may be used for both continuous and categorical data
as long as you have (or can produce) a categorical dependent variable (see Field, 2005,
Chapter 6, for a thorough discussion).

Multivariate exploratory techniques

Strictly speaking, these involve more than one dependent or response variable
and possibly additional explanatory variables (Ryan, 2008). This excludes multiple
regression although it is commonly referred to as a multivariate technique. There is a
wide variety of different exploratory techniques designed specifically to identify
patterns in multivariate data sets of which factor analysis has been the most widely
used.
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Exploratory factor analysis

Factor analysis is an approach to making sense of a large number of correlations betwye
variables. It has similarities with regression analysis but differs in that the variables .
have equal status; no single variable is designated as the dependent or criterion varigbje
Factor analysis starts with a matrix of correlations. P

Matrices of this type, particularly when they contain up to 100 or so variables, are
very difficult to interpret. Factor analysis aids in this process by pointing to clusters g
variables which are highly intercorrelated. The ‘factors’ referred to are hypothetj
constructs developed to account for the intercorrelations between the variables. Facg
analysis seeks to replace a large and unwieldy set of variables with a small and easily
understood number of factors. Suppose that your correlation matrix arises from g
50-item questionnaire on aggression and aggressiveness. You find, say, that there are
strong intercorrelations between 12 items concerning aggression towards family
friends, and similar intercorrelations between nine items concerning aggressivene
towards people in authority, but no other strong clusters. This then provides good
evidence that two factors are important in understanding your results. '

The technique is commonly used in the development of tests and scales (see, for
example, Loewenthal, 2001). It allows you to assess the extent to which different tes|
items are measuring the same concept (strong intercorrelations) or whether their answers
to one set of questions are unrelated to their answers on a second set. Hence we get an
assessment of whether the questions are measuring the same concepts or variables.

Factor analysis is typically used as an exploratory tool. There is an alternative version
referred to as ‘confirmatory factor analysis’ — see below. Exploratory factor analysis
starts with the correlation matrix. For it to be worthwhile to carry out the analysis, th
matrix should show a substantial number of significant correlations (either positive or
negative). 4

The number of respondents should exceed the number of variables. When the

interest is not simply to describe the factors summarizing the relations between

variables, but to try to get a reliable estimate of these underlying factors, then mini

of five times the number of participants to the number of variables have been suggested

There are many versions of factor analysis including canonical, alpha, image and

maximum likelihood factoring, but the most commonly used are principal-components

analysis (strictly speaking a form of regression analysis) and principal-axis factoring
(sometimes simply referred to as ‘factor analysis’). Accounts of the process are found

in specialized texts such as Child (2006), Kline (1993) and Loewenthal (2001). &

SPSS provides most factor analysis options you may need. Bryman and Cramer
(2008) provide details of the procedures to be followed and the kinds of output obtained
when SPSS is used to carry out principal-components and principal-axis analyses. Brief
details of other multivariate techniques which can be used in an explanatory mode are
given below. Further details and examples that help in understanding the situations in

which the techniques can be used are given in the Electronic Statistics Textbook,

available at www.statsoft.com/textbook/stathome.html. Hill and Lewicki (2006) is

the corresponding paper version.

@ The website includes a short discussion of additional multivariate exploratory techniques.
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IModel-testing multivariate techniques

Although factor analysis is usually employed primarily as an exploratory tool, it can be
used to assess the extent to which the solution obtained matches a hypothesized
attern and is therefore useful when we are testing a model or conceptual structure
when it is referred to as confirmatory factor analysis (Brown, 2006). Other multivariate
approaches are specifically targeted at model testing. They include:

Path analysis

Sometimes referred to as causal modelling, the central idea in path analysis is that, if we
can safely make assumptions about the chronological order of variables in our research,
then we can use partialling of variance techniques from multiple regression to test
models about the interrelationship of these variables. Causal models can only be built
from what are effectively correlational techniques if other assumptions as well as the
temporal assumptions about the effect of the variables apply. While this is a tool of
considerable potential, the necessary assumptions are highly restrictive and there are
many problems of interpretation (Olobatuyi, 2006).

Structural equation modelling (SEM)

This is a multivariate data analysis technique which combines elements of both multiple
regression and factor analysis. Its goal is similar to that of factor analysis through
providing a summary of the interrelationships among variables. It is similar to path
analysis in that researchers can test models in the form of hypothesized relationships

between constructs. A model can be tested statistically in a simultaneous analysis of the

entire system of variables to assess its fit to the data. SEM has become increasingly
popular in psychology and the social sciences for the analysis of non-experimental data
and has also been quite intensively used in applied field such as social work research
(e.g. Guo, Perron and Gillespie, 2009).

Issues of interest in real world research are often complex and multidimensional in
nature. However, until relatively recently researchers were dissuaded from working
with complex research questions because the statistical techniques available did not
easily allow for testing of multivariate models. Weston and Gore (2006), in an accessible
brief guide to SEM, cite several applied examples where this approach has been
valuable. For example, Tylka and Subich (2004) hypothesized that eating-disorder
patterns in adult women were a function of personal, socio-cultural and relational
factors. Using SEM they tested a multidimensional model about how these factors
interact in complex ways to explain symptom severity and showed its close fit to the
data. Using a similar approach, Long (1998) successfully tested a model of workplace
stress and coping for employed women, which included constructs such as human
agency, status, coping, work-environment demand and distress, across levels of

- employment prestige.

It is important to stress that, just as with techniques discussed above, such as
correlation, multiple regression and path analysis, causality cannot be determined by
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the results of an SEM analysis — this is a judgement based on the adequacy ofa
underlying theory and research design. Also that, as Weston and Gore (2006) pOint

researchers can easily misuse SEM. Just as researchers are free (although not.
encouraged) to conduct several different multiple regression models until they find
a model to their liking, they can also analyze models in SEM, identify and remove

weaknesses in the model, and then present the revised model as if it were the "
originally hypothesized model. Most users would likely agree that SEM’s trudl
power lies in the fact that researchers must specify complex relationships a priori
and then test whether those relationships are reflected in the sample data"
Optimally, researchers will draw these hypothesized relationships from previoug; .
research or theory and will present the results with integrity. Should the researcher
detect weaknesses in the proposed model, he or she should further explore them

using a modified model in a new sample (p. 733). ,

If you are considering using SEM, Blunch (2008) and Kline (2004) provide accessib
introductions. Much of its popularity can be traced to the development of increasi
accessible and reliable software packages which include LISREL, EQS and AM
Schumacker and Lomax (2004) provide a clear non-technical introduction cove
each of these. However, SEM is complex statistically and calls for a great deal o
judgement on the part of the researcher to avoid the misuse and misinterpretation
the results of analysis. It depends on an evaluation of multiple test statistics and indices
to determine whether the model fits the data adequately and there is considerable
controversy about what constitutes an acceptable fit. Weston and Gore (2006) provid
set of guidelines on how to avoid the pitfalls. h

Analysing differences

So far, this chapter has focused on displaying, describing and summarizing quantitative
data and on analysing relationships among data. We now turn to what has traditionally
been viewed as the major task when analysing quantitative data. Are there differences

between the scores, values or observations obtained under one condition and those
obtained under another condition (or conditions)?

Looking for differences and looking for relationships are really two ways of viewing

the same thing. Asking whether there are differences between the performance of thre

groups taught by different methods is essentially equivalent to asking whether thereisa

relationship between teaching method and performance.

Itis to answer questions of difference that many of the tests of statistical inference have.

been developed. The basic logic behind such tests is not difficult, although its working

out in specific tests can be complex. The test is commonly used to make decisions about -

the state of affairs in some ‘population’ as compared with the actual sample of scores or

observations that we have obtained. For example, suppose we want to find out whether -

the ratio of men to women in a particular sample is such that we can consider it
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epresentative of a specific population where the ratio of men to women is known. If

there is a 50-50 split in the population but there are no women in a randomly selected
sample of 20 people from that population, then common sense might be unwilling to
regard this as a representative sample and perhaps cast doubts upon the randomness of

the procedure used to select the sample. However, even if we decide that the sample was
not drawn from the 50-50 population, we could be wrong. A sample of 20 consisting of 20
women is in fact just as likely to occur as any other specific sample (the analogy often

‘drawn is with tossing coins - it is possible to have a sequence of 20 heads in a row and

that sequence is just as likely as any other specific sequence such as HTTHTTTHHTHH

THTTTTHH). There are, however, many possible ways in which one could end up with,

say, 11 males and 9 females, but in fact only one sequence which gives all 20 females. It is

then possible to come to the decision (based on probabilities) that the sample didn’t come
from the population when it in fact did, an error known as a type one error.

Statistical tests provide ways of assessing this type of error. This is where the term
statistical significance rears its head. In situations like the one discussed, it refers to the
probability of making a type one error (given the symbol alpha — ). The convention

has also been mentioned of setting this at a probability of 0.05 (i.e. 5 per cent or 1 in 20).

However, the fact that many computer programs typically generate exact probability
figures for the chance of making a type one error, rather than saying that it is ‘less than
0.05’, means that there is an increasing tendency for such exact probabilities to be

quoted.
There is also a type two error: that is, the probability of deciding that the sample came

from the population when in fact it did not (given the symbol beta — ). There is an

inverse relationship between the two types of error, in the sense that we can reduce our
chances of making a type one error by setting the significance level at a very low
probability (say 0.001, or 1 in 1000). However, setting the decision line at this point
produces a corresponding increase in the chances of making a type two error.

The power of a statistical test is the probability that the test will reject a false null
hypothesis (that it will not make a type two error). As power increases, the chances of a
type two error decrease. The probability of a type two error is referred to as the false
negative rate (B). Therefore power is equal to (1 — ). Cohen (1962) called attention to the
poor statistical power of much published research — a situation which has not changed
radically over 40 years later (see Cashen and Geiger, 2004).

Conventional statistical tests assume that we are dealing with randomly selected

- samples from known populations. This is rarely the case in experimental research. As

discussed in Chapter 5, true experiments pay careful attention to the random assignment
of a set of participants to different experimental treatments or conditions. However, it is
relatively rare that serious attention is given to the random selection of these participants
to ensure that, probabilistically, they are representative of known populations. Experi-
menters typically work with people they can persuade to take part, effectively a
convenience sample.

This approach is justified by claiming that the interest is in testing for possible
differences between the two conditions rather than in generalizing to the populations
from which the samples are drawn. However, the theoretical basis to many of the
statistics used does assume random selection. The general issue of statistical testing with
non-random samples is discussed later in the chapter (p. 457).
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Statistical significance

For many statistically oriented social scientists, quantitative analysis is virtually Synon-
ymous with significance testing. The whole point and purpose of the exercise is take
be ‘have we got a significant result?” ‘Is p < 0.05?" This refers to statistical significance. (1
grateful to a reviewer, Joe Maxwell, who pointed out the potentially misleadin
treatment of statistical significance in a draft version of an earlier edition of this ¢
The following discussion leans heavily on material which he kindly provided.) ,

The probability that a significance test gives you is not that a result is due to chance (5
is commonly claimed). What a p value actually tells you is something that sounds v,
similar to this statement but is in fact quite different. It tells you how likely it would be that
you would get the difference you did (or one more extreme), by chance alone, if th.
really is no difference between the categories represented by your groups, in the
population from which you drew your sample. This assumption of ‘no difference’ i
referred to as the ‘null hypothesis’. In other words, a statistical significance test ‘tests’
plausibility that the null hypothesis — no difference between the population means - ;
true. If your result would be very unlikely if the null hypothesis were true, this makes
less plausible that the null hypothesis is true.

Thus, the result of a statistical significance test tells you nothing directly about the
actual population to which you want to make inferences; it simply helps you rule out one
possible validity threat to your result, namely, that the result could be due to random
variation in your sample, rather than to real differences in the population. If your p value
is small rather than large, this makes it less likely that your result is due to chanc
variation rather than to a true difference, other things being equal. However, the ‘othe
things being equal’ is very important, because the actual likelihood that your result is
due to chance is not completely expressed by the p value. Statistical significance tests say
nothing about all the other possible validity threats to the result, or how likely these are
relative to the proposed explanation. For example, suppose you pull a coin out of your
pocket, flip it 10 times, and get 10 heads. This is an extremely unlikely occurrence (les

than one chance in a thousand, or p < 0.001) if it is a fair coin (one that has an equal

chance of coming up heads or tails — the null hypothesis). However, my judgement
would be that it’s still more likely that this particular result is due to chance than it is
because the coin is biased. If it came up 50 times, the latter possibility becomes somewhat
more plausible. Both explanations are unlikely, and if no other explanations can be put
forward, then the more improbable it is that your result could have happened by chance

if you have a fair coin. Hence, the more likely it is that the alternative explanation of bias,

however implausible, is true.

Statistical significance testing is both deeply entrenched in practice and highly

controversial. Meehl (1978) goes so far as to conclude that reliance on statistical

significance was one of the ‘worst things that ever happened in the history of psychol-
ogy’ (p. 817). Haig (1996) considers that: ‘It is a major professional embarrassment that -
researchers continue to employ such tests in the face of more than three decades of -
damning criticism’. Perhaps the most swingeing criticism comes from Ziliak and -
McCloskey (2008) in their text The Cult of Statistical Significance who show convincingly, -

with evidence ranging from agronomy to zoology - taking in psychology, medicine and
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economics as major miscreants —how wide the disaster is and how bad it has been for the
progress of science.

One problem, mentioned earlier in the chapter, is that statistical significance is not
related to the size or importance of an effect or relationship, which is in many cases
what we are really interested in. The chance of obtaining a statistically significant result
increases as the sample size increases, because, for example, you then get a more
sensitive test of any difference between the experimental and control groups in an
RCT. But there is always likely to be some difference between the two conditions. Hence
the common injunction to ‘use a larger number of participants’ may buy statistical
significance at the expense of real life triviality. Paradoxically, if one is relying on
statistical significance, there is much to be said for keeping the sample small so that only
robust effects are going to be picked up.

Readers who wish to work out their own position on this controversy might review
the interestingly titled What if There Were No Significance Tests? (Harlow, Mulaik and
Steiger, 1997). See also Hagen (1997) and Gigerenzer, Krauss and Vitouch (2004) to get a
flavour of the debate.

Measuring effect sizes

It would be helpful to use a statistic which is, unlike statistical significance, independent
of sample size. When looking at the difference between the means of two sets of scores,
this can be achieved by dividing the difference in means by the standard deviation in the
population from which they come. So one obtains a difference expressed in standard
deviation units; e.g. the difference in means is 0.6 standard deviations. The effect size is
sometimes referred to as the practical significance of a result and it is not uncommon to
find major discrepancies between this and statistical significance — a large effect size but
lack of statistical significance; or the reverse (Alhija and Levy, 2009).

There are some underlying complexities. The population standard deviation is rarely
known and a standard deviation estimated from the sample of scores available usually has
to be substituted. Details of how this can be done are provided in texts concentrating on
statistical analysis (e.g. Clark-Carter, 1997). There is also the issue of what constitutes a
large enough difference to be taken note of. Cohen (1988) provides guidelines suggesting
that a value of 0.2 is small, 0.5 is medium and 0.8 is large. The use of confidence intervals, as
discussed on p. 425, is another possibility. Confidence intervals are routinely computed by
statistical packages. Effect sizes can be derived from the information about means and
standard deviations. Details are given in Dancey and Reidy (2007).

An alternative approach to measuring the size of an effect produced in a study
involves evaluating the proportion of variance explained (PVE) by means of various
statistics based on measures such as the square of the correlation between two variables.
Rosnow and Rosenthal (1996) have suggested some convenient procedures for the
compilation of both effect sizes and confidence intervals for several statistics.

A third, and more direct, approach to communicating the magnitude of the effect is to
simply report the actual differences between the groups (as discussed below, p. 450).
This is often more meaningful to practitioners and other non-specialists than the two
previous approaches.
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uses of significance testing. With a realist approach, statistical analysis is used to confirm
the existence of mechanisms whose operation we have predicted in the contexts set up in
an experiment or other study. Large effect sizes provide confidence in their existence;
hence they are what you are looking for. Significance levels play a subsidiary role, their
clusion perhaps lacking something in logic but sanctioned by convention.

Practical significance indices provide information about the size of observed differ-
ence or relationship (e.g. effect size). Clinical significance measures provide data
egarding the extent to which the intervention makes a real difference to the quality
of life of the participants or to those with whom they interact.

Power analysis

As discussed above, the power of a statistical test is the probability that it will co
lead to the rejection of a false null hypothesis — the probability that it will result jn ¢
conclusion that the phenomenon exists. A statistical power analysis can be used eith
retrospectively (i.e. after the study has been carried out) or prospectively (i.e. befo,
has been carried out). A prospective analysis is often used to determine a requir
sample size to achieve a target level of statistical power, while a retrospective analys
computes the statistical power of a test given the sample size and effect size. Copg
(1988) provides a very convenient source for formulas and tables to compute pow
range of common analyses. There are several websites which will calculate ¢
statistics for you (e.g. www.danielsoper.com/statcalc/ default.aspx#cl7; see ‘samp
size’ for prospective analyses, and ‘statistical power’ for retrospective analyses).

Although there are no formal standards for power, a value of 0.80 is comm: ]
quoted as acceptable (i.e. at least an 80 per cent chance of rejecting a false null h P
thesis). Setting the bar at this level can cause virtually insurmountable problems i
some research contexts. For example McDonald and Fuller (1998) illustrate
difficulty in studying black bear cub survival in the wild. Although their data repr
sented over 10 years of data collection, they could not generate a sufficiently lary
sample size to adequately test a simple hypothesis with the design and analytic
methods they used. :

A common misconception is that power is a property of a study or experiment. At
statistical result that has a p-value has an associated power. Hence if you are carrying o
several tests there will be a different level of statistical power associated with each or
Statistical power provides important additional information about the importance
non-significant test results that researchers should consider when drawing their cor
clusions. A non-significant result coupled with high statistical power to detect an effe
of interest to the researcher increases confidence that the effect was not missed. O
the other hand, a non-significant result coupled with low statistical power to detect t
effect of interests suggests that another study, or more sampling, is required befo:

ingle-group tests

n most situations we are concerned with comparing the scores or values obtained under
one condition with those obtained under another condition during the current project.
However, you might want to compare what you have obtained with some expectation
arising outside the study to see whether there is a difference.

Chi-square as a test of “goodness of fit’

This test has already been mentioned (p. 433).

One-group t-test

The t-test is a very widely used method to compare two means. In this version, the
comparison is between a mean obtained from the particular sample of scores that you
have obtained under some condition, and a hypothesized population mean. Figure 16.16
summarizes the output of a one-group f-test.

Probability values for the statistical significance of t-test results (and for many other
statistical tests) can either be ‘one-tailed’ or ‘two-tailed’. ‘Two-tailed’ means that you are
simply concerned with establishing the probability of a difference between the two

strong conclusions can be drawn. E:

It is becoming common for funding agencies and boards reviewing research t 4 Mean | SE | SD
request that prospective power analyses are carried out. The argument is that if a study s Entry points 33209 | 1.11 ] 64
inadequately powered, there is no point in carrying it out. & Hypothesized 18.6

_— oy . . . . 14 Mean 20.9

Because significance testing is expected by many audiences, including sponsors and journa

editors, it is advisable to give measures of statistical significance. However, because of the SE 1.1

varioys cr'iticisms, you should not rely sol?ly on them. Pr.oviding ud.ditilonal information on i 506

the direction and size of the effect or relationship found in a study is highly recommended. -

) DF 32

Depending on the type of study this might be based on differences in mean 2-tailed p 0.0477

correlation coefficients and/or regression coefficients (each of these is discussed 1
in the chapter in connection with different analyses). These are simply ways
summarizing aspects of the data, i.e. summary or descriptive statistics (p. 423). Hence
they do not carry with them the positivistic conceptual baggage associated with some

Key: SE = standard error; SD = standard deviation; DF = degrees of freedom
As p < 0.05 the difference in means is statistically significant

Note: The output from ‘analyse-it” also gives 95% CI (confidence interval) values.
Figure 16.16: Results from a one-group t-test.
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means. With ‘one-tailed’ the hypothesis is that the difference will be in a parti
direction (hence referred to as a ‘directional’ hypothesis). ‘Two-tailed’ probabiljt;
should be selected unless there is a strong a priori reason (e.g. from your model or of
theory about what is happening) for expecting the difference to be in a particylap
direction. Details of the means themselves should always be reported.

Two-group tests

Many of the questions we are interested in when carrying out a study producin
quantitative data boil down to whether there are differences between the scores obtain,
under two conditions or by two groups. Do mature students admitted without standare
entry qualifications get poorer degrees than 18-year-old standard entrants? Do patien
suffering from lower back pain get better more quickly when treated by chiropracti
methods than by drugs? And so on.

Two-group t-tests

The t-test is very commonly used to compare the means of two groups. It comes in tw
versions. The paired two-group t-test (sometimes called the dependent samples t-test) shoule
be used when there are pairs of scores. This would be, for example, if the same perso
provided a score in each of the conditions. The unpaired two-group t-test (otherwis
known as the independent samples t-test) is where there is no such basis for puttin;
together pairs of scores. Figure 16.17 gives an example of output from an independen
samples t-test, and Figure 16.18 that from a dependent samples t-test. 4

Gender n Mean | SE SD
Female 12 | 119.3 | 6.20 | 215
Male 7 | 101.0 | 7.79 | 20.6
Mean difference 18.3
SE 10.07
t statistic 1.82
DF 17.0
2-tailed p 0.0864

Key: SE = standard error; SD = standard deviation; DF = degrees of freedom
As p > 0.05 the difference in means is not statistically significant

Notes: (i) The output from ‘analyse-it” also gives 95% Cl (confidence interval)
values. (i) The example shows that it is possible to have unequal numbers in
the two conditions. However, statistically, it is preferable to have equal sample
sizes.

Figure 16.17: Results from an independent samples t-test.
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LScore n Mean | SE SD
First measure 12 | 103 3.96 | 13.7
Second measure 12 | 107 4.09 | 14.2
Difference (first — second) 12 | -4 2.58 8.9
Mean difference -4
SE 2.58
t statistic —-1.55
DF 1
2-tailed p 0.1492

Key: SE = standard error; SD = standard deviation; DF = degrees of freedom
As p > 0.05 the difference in means is not statistically significant

Note: The output from ‘analyse-it” also gives 95% CI (confidence interval) values

Figure 16.18: Results of a dependent samples t-test.

Recall, once again, that it is good practice, when recording the results of such tests, to
include not only the t-value and its statistical significance (the probability value, which
must be lower than 0.05 for conventional statistical significance) but also the means and
standard deviations of the two sets of scores. A minus sign for the value of t is of no
importance and does not affect its significance; it simply indicates that the mean of
whatever has been taken as the first set of scores is less than that for the second group of
scores. The ‘df’ which occurs in this and many other printouts, refers to ‘degrees of
freedom’. It is a statistical concept of some importance but is in many cases, including

 this, simply related to the size of the sample. Packages also provide a test for equality of

variances (the F-test, sometimes called a ‘variance-ratio test). As you might expect, this
tells you if you have a statistically significant difference in the variances (concerned with
the distribution of scores about the mean) of the two groups. If there is no significant

difference, you can use the output for ‘equal variances assumed’ and if there is a

significant difference, use the output for ‘equal variances not assumed.’

Non-parametric equivalents to the f-test

Most statistical packages provide a range of ‘non-parametric’ tests. Parametric tests (of
which the t-test is an example) are ones that have been based in their derivation on
certain assumptions as to the nature of the distributions from which the data come
(usually that they are normal). Non-parametric tests are based on other principles and do
not make this kind of assumption. Proponents of parametric tests argue that they are
more efficient (in the sense that they will detect a significant difference with a smaller
sample size than the corresponding non-parametric test - however, this is not always the
Case, see p. 452); that it is possible to carry out a greater range and variety of tests with
them; and that they are robust (meaning that violations of the assumptions on which they
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are based, e.g. about the normality of the distribution from which the data samples g
drawn, have little or no effect on the results they produce). 3
Advocates of non-parametric tests counter with the arguments that their tests tend'

be easier to use and understand and hence less prone to mindless regurgitation; ¢
because of their ‘distribution-free’ nature (i.e. no assumptions made about the
distribution of the scores), they are usable in a wider variety of contexts. They have
been proposed as preferable when the assumption of random sampling from kng
populations, central to most conventional parametric statistics, cannot be assumeg
The best of such tests are virtually identical efficiency-wise to parametric oneg
situations where the latter can legitimately be used — and obviously preferable in oth
situations. There is now an adequate range of tests to deal with virtually any situatic
(Higgins, 2003; Pett, 1997; Sprent and Smeeton, 2007). 1
A pragmatic approach is suggested, driven mainly by the kind of data you have ¢
deal with. If your data are obviously non-normal, or are in the form of ranks (i.e. firs
second, etc.), then a non-parametric test is needed. Otherwise, the range of tests to w
you have access through computer packages and the expectations in the field in whic
you are working are important considerations. Conventional parametric testing is th
safe option as it is widely used, and with computer packages, you do not need to worr
about the amount of computation required. ;
The Mann—Whitney U test is a non-parametric equivalent of the unpaired two-gro "
t-test. The Wilcoxon signed-rank test is a non-parametric equivalent of the paired tw
group t-test. Computation is straightforward and the output in both cases provides
scores (standardized scores expressed in standard deviation units) and associate
. probabilities. If there are ties in the scores, a corrected z-score is provided. Strlc
the tests should not be used if there is a substantial proportion of ties.
There are other non-parametric tests provided by some packages which are appr
priate for use in the same type of situation as a Mann-Whitney U test. They are no
widely used.

Three (or more)-group tests

It is not uncommon in experiments to have three or more conditions. You may wish,
example, to compare the effects of ‘high’, ‘medium’ and ‘low’ stress levels on perform-

ance in some situation. It would be possible to take these conditions in pairs and carry

out three separate t-tests. However, there are techniques which allow this to be done in
single overall test. It is necessary to separate out the ‘independent samples’ and ‘paired
samples’ designs in the same kind of way as was done with the t-test.

Analysis of variance (single factor independent samples)

This situation requires the simplest version of a very widely used, and extremely versatile
technique known as analysis of variance. Figure 16.19 shows the format of data referred to-
is commonly referred toasa ‘one-Way ANOVA’. Figure 16.20 illustrates the type of outp
generated for this design. The key finding here is that there is an overall difference betweern

means under the different conditions. This is shown by the F-test result and its associated
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Experimental conditions (two or more)

i.e. ‘levels’ of the independent variable (X)

one

two

three four

scores
values
dependent

are the
of the
variable (Y)

Figure 16.19: Format of single-factor independent samples analysis of variance.

| Conditions n Mean | SE | Pooled SE SD
A 5| 15.06 | 0.668 1.069 1.49
B 4 20.55 1.109 1.195 2.22
C 4 16.20 1.046 1.195 2.09
D 5 25.80 1.469 | 1.069 3.28
Source of variation | Sum squares DF | Mean square F statistic p
Conditions 344.98 3 114.99 20.13 | <0.0001
Residual 79.96 14 5.71
Total 424.95 17
Tukey
Contrast Difference | 95% CI
AvB -5.49 | —10.15 to —0.83 | (significant)
AvC -1.14 —5.80 to 3.52
AvD —-10.74 | —15.13 to —6.35 | (significant)
E BvC 4.35 —0.56 to 9.26
B BvD -5.25 —-9.91 to —0.59 | (significant)
CvD —-9.60 | —14.26 to —4.94 | (significant)

Overall, the difference between conditions is statistically significant (p < 0.0001)

Note: The Tukey test is one of several available to test for the difference between pairs of conditions. The printout

shows if a particular comparison between a pair (‘contrast’) is statistically significant (o < 0.05).

Figure 16.20: Results of a single factor independent samples analysis of variance.
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probability, which is smaller than the 0.05 level. This is conventionally reported ae.
difference between groups is statistically significant (F = 20.13, p < 0.0001; withp3 aZd iy
\.N}}en there is a significant overall difference between the groups, various add14
Sta-tlStICS are available helping to pinpoint which of the differences between arti
pairs of means are contributing to this overall difference. In Figure 16.20, the Tukgy;h
been used, but others are available. They are alternative ways of dealing with the g
of assessing significance level when a sequence of similar tests is carried out on a}c)iro
Effectively what ‘statistically significant at the 5 per cent level’ means is that if oata i
.out, say, 20 tests, you would expect one of the 20 (5 per cent) to be significant evgn ilf: |
is no real effect and only random factors are at work. Any significant difference betwy
two Conqitions should only be reported if the overall F-test is significant. 4
AS with f-tests, it is helpful to report not only the results of the statistical test but
Fo give the summary statistics, such as the means, standard deviations and confid .
mte.rvals under the different conditions. This applies when reporting any anal sie«
variance findings and helps you, and the reader, to appreciate what the analysis .

Kruskal-Wallis test

This is a non-parametric equivalent to the above analysis of variance. It is simpler f
compute manually but with computer assistance, there seems little reason to prefer i

Score n Mean SE SD
1 year 12 | 103.0 3.96 13.7
2 years 12 | 107.0 4.09 14.2
3 years 12 | 110.0 3.85 13.3
4 years 12 | 112.0 4.26 14.8
| Source of variation | Sum squares DF | Mean square | F statistic p
Score 552.0 3 184.0 3.03 | 0.0432
Subjects 6624.0 11 602.2 - -
Residual 2006.0 33 60.8
Total 9182.0 47
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Overall, the difference between the scores in different years is statistically significant (p < 0.05).

Figure 16.22: Results of single factor repeated measures analysis of variance.

Friedman test

This is a non-parametric equivalent to the above paired samples analysis of variance.
Again, it is relatively simple to compute manually but with computer assistance, there
seems little reason to prefer it when the data are in a form for which a parametric test is

unless the data are in a form for which a parametric test is unsuitable.

Analysis of variance (single factor repeated measures)

there is a basis for pairing individual scores across the conditions (usually because the
same person produces a score under each condition, i.e. there are ‘repeated measures’).,
The format of this design is given as Figure 16.21 and Figure 16.22 gives an exampleq
In the example the same group of ‘subjects’ are each tested on a task at four—yearl};

intervals. The use of the term ‘subjects’ rather than ‘participants’ is deeply engrained in

the psyche of users of analysis of variance — sorry!

~ Experimental conditions (two or more)
i.e. ‘levels’ of the independent variable (X)

one two three four
participant 1
participant 2
scores are the
values of the —
participant 3 dependent variable (Y)
participant 4

Figure 16.21: Format of single-factor repeated measures analysis of variance.

suitable.

Testing differences when two (or more) independent variables are involved

As discussed in Chapter 5, it is feasible to have two or more independent variables in an
experiment, commonly in what are called factorial designs (p. 105). There is a plethora of
different analyses for the many different designs. The following account simply tries to
introduce some main issues.

Simple two-way independent samples analysis of variance

Figure 16.23 illustrates the form of the data with this design, and Figure 16.24 gives
corresponding output. The analysis permits an assessment of the effect of each
variable separately (the ‘main effect’ of variables A and B) and also of any possible
‘interaction’ (or AB effect) between the two variables. In the case of the example shown
in Figure 16.21 significant effects were found for both A and B variables. When the AB
interaction is significant this means that the effect of one variable differs at different
levels of the second variable. It is then not legitimate to talk about A or B having
an overall effect. In this example the interaction is non-significant so the problem does
not occur.

The pattern of results should be examined carefully. It helps to display any significant
interaction graphically.
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two independent variables (A,B)

A

one

B B
one two

B
three

A
two
B B
one two

three

scores are the
values of the
dependent variable (Y)

Figure 16.23: Format for simple two-variable analysis of variance.

Two-variable (or factor) analysis of variance with repeated measures

A frequently used complication of the above design is to add repeated measures 1
participants may not be simply tested once under a particular combination of le
the two variables but may be given a series of trials. See Field (2005) for

discussion and examples.

A n Mean SE Pooled SE SD
A4 10 175.8 3.90 4.92 12.3
Az 10 203.7 4.75 4.92 15.0
Az 10 197.0 7.07 4.92 224

B n Mean SE Pooled SE SD
B, 15 185.5 5.23 4.02 20.2
B, 15 198.8 4.92 4.02 19.0

Source of variation | Sum squares DF Mean square | F statistic p

A 4242.5 2 2121.2 8.75 0.0014

B 1320.0 1 1320.0 5.45 0.0283
AB 759.3 2 379.6 1.57 0.2294

Residual 5816.4 24 242.4
Total 12138.2 29

Figure 16.24: Results of a two-way independent samples analysis of variance. ‘
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festing differences when two (or more) dependent variables are involved

'he above analyses are all limited to dealing with a single dependent variable. In studies
with more than one, it is possible simply to repeat the analysis for each dependent
sariable in turn. However, there are advantages in carrying out a single, global, analysis.
One version of this is called multivariate analysis of variance (MANOVA). The analysis and
ts interpretation are complex and should not be undertaken without advice. Field (2005)
srovides more detailed coverage.

tatistical testing and non-random samples

he theoretical rationale of many of the statistical tests discussed in this chapter is
ased on an assumption of random sampling. However, in practice, much published
esearch in fields covered in this text does not make use of random sampling
echniques to select participants. How can this discrepancy be dealt with? Possibilities
nclude:

Ise random sampling whenever feasible

n some situations random sampling from known populations, if taken into account at
he design stage, can be achieved without major problems. This is the preferred solution
or those wishing to continue to use conventional parametric statistical tests.

se randomization tests

Nhile non-parametric tests, discussed earlier in the chapter, are presented as being
distribution-free’ (i.e. they are not dependent on assumptions about the type of distribu-
ion of scores, whereas conventional tests typically assume normal distributions) they can
so be derived without assuming random sampling from known population. However,
andom assignment to different conditions (as in true experiments) is assumed. The
probability of particular patterns of results can be computed as an exercise in permutations
and combinations (sometimes referred to as Monte Carlo techniques, where several
housand random repetitions are carried out to establish a very close approximation to
he exact probability of different outcomes). Tests such as Mann-Whitney and Wilcoxon
Implify the task by dealing with ranks rather than scores. They give tables of probabilities
of different rankings, cutting out the need for complex computations.

The rapid increase in readily available computing power has extended the range and
complexity of designs which can be analysed by randomization tests. Sprent and
Smeeton (2007) give full coverage. Joe Maxwell (personal communication, 21 July
2010) clarifies this point:

- If an experimental study uses random assignment to conditions, but not random
- sampling from some population, then the result of a significance test tells you how
likely it would be, if the random assignment were done repeatedly with the same
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significance are used in the absence of random allocation but they do not so much
preclude their use in quasi-experiments or non-experimental fixed designs, as require
the analyst to think very carefully about interpretation.

There are, of course, strong links between some analytical approaches and partic-
ilar research strategies, which have been referred to at various points in the chapter.
Analysis of variance was developed to deal with the analysis of the true experiment.
Correlation matrices and associated techniques such as factor analysis are commonly
ysed in surveys and similar non-experimental settings. However, labelling each test as
appropriate only for a specific strategy would be as unnecessarily restrictive as
nsisting that a particular method of data collection, such as direct observation, should
nly be used in an experiment — when it could well play a part in a case study, or even
n a survey.

It may be helpful, nevertheless, to highlightissues in the analysis of data from two types
of experimental study likely to be of real world interest (quasi-experiments and single-case
experiments) and the analysis of surveys and other non-experimental designs.

sample, that you would get the difference you did (or a larger one) between the
groups, by chance variation in assignment alone, if the intervention really had nq
overall causal effect on the outcome. However, it would not allow you make an:
statistical inferences to a larger population than the actual sample; any sy,
inferences would have to be based on other arguments (such as the similarity
of the sample to the population of interest — not always a reliable indicator). Box
Hunter, and Hunter (1978) are excellent on this issue, which is actually m re
complicated than suggested here. ]

Assume that the discrepancy is not important

This is the current default assumption. As analyses making this assumption conting
be widely published, you are unlikely to suffer if you do likewise. Widely used sta
texts such as Box, Hunter and Hunter (1978) assert that standard tests, such as the t-te
are adequate approximations which free one from the random sampling assumpti
(p. 96). i

However, the evidence on this issue is inconsistent. For example, Kee
McConnaughy and White (2008) re-analysed data from two experiments using bo
non-parametric tests (Kruskal-Wallis and Wilcoxon) and randomization tests
showed that the approximations from classical tests (analyses of variance and ¢
in several cases came to different conclusions about the statistical significa
results. Interestingly, both patterns were found; in some cases the conventional €
gave non-statistically significant results while the non-parametric or randomization t
was statistically significant, sometimes the reverse.

If you don’t use random sampling but still want to assess the generalizabiliy
your results to some population, you can (with some risk) assume that the distrib :
is not effectively different from random. In doing this, it seems prudent not to ass m
normal distribution, and thus to use non-parametric tests. 3

In the context of survey research, Pruchno et al. (2008) show that responde
recruited using convenience sampling can differ on many variables from those recruit
by random means. An unsurprising finding, but worth stressing.

lhe analysis of quasi-experiments

ee possible quasi-experimental designs were recommended for serious consideration
n Chapter 5: the pre-test post-test non-equivalent groups design; the interrupted time-
eries design; and the regression discontinuity design (p. 117). The three designs require
liffering approaches to their analysis.

bre-test post-test non-equivalent groups design

This is a very common design and it is not unusual (though incorrect) for researchers to
ignore the fact that it is not a true experiment and not to acknowledge this in either their
description or analysis. The non-equivalence of the groups means that there are possible
selection effects that may bias the results. Several techniques are available which attempt
0 separate out the treatment effect (i.e. the effect of the independent variable on the
lependent variable) from the effect of selection differences. The most frequently used
ipproaches are:

-simple analysis of variance;

' analysis of variance with blocking or matching of participants;

‘analysis of variance based on ‘gain’ scores (e.g. difference between pre and post
scores); and

analysis of covariance (with either single or multiple covariates).

Quantitative analysis and different fixed design
research strategies

Reichardt (2005) provides details of each of these approaches and of the difficulties
they raise. He concludes that ‘any one of these statistical methods could be biased enough
50 that a useful treatment might look harmful and a harmful treatment could look benign
Or even beneficial’. His recommendation, in line with the general approach taken in this
€xt, is not that we give up and regard the statistical procedures as worthless but that
We give them a relatively minor role — by seeking to eliminate, or at least trying to reduce,

This chapter has not attempted to make one-to-one correspondences betweP:n :
different fixed design research strategies and particular techniques of quantita

analysis. Ways of displaying, summarizing and manipulating data are essentl
common to all strategies. Many of the ways of exploring relationships among
data are applicable to each of them. There are, admittedly, problems when tests €
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the effect of selection and other threats through the design of the study rather than re]y:
on the statistical analysis removing their effects. One interesting approach is to
‘bracket’ the effect of a treatment by using a variety of different but reasonable tec
of analysis (see the evaluation of the Sesame Street TV series by Cook et al., 19753
example; Fisch and Truglio, 2001, include a wide range of related evaluations).

the analysis of single-case experiments

[he simple form of a single-case experiment involves a single independent variable and
a single dependent variable (traditionally the rate of some response, although this is
w0t a necessary feature). It is, effectively, a time-series experiment carried out using a
single ‘case’ (typically a single person; possibly replicated with a small number of other
sersons). Hence it might have been dealt with earlier together with other two-variable
ations. However, there are major differences of ideology about purposes and
srocedures of analysis between single-case experimenters and others that warrant their
parate consideration.

Researchers using single-case designs have traditionally avoided statistical analysis
and relied upon ‘eyeballing’ the data — looking at a comparison, in graphical form, of the
participant’s performance (sometimes called ‘charting’) in the different phases of the
study. They tend to claim that if statistical techniques were needed to tease out any
effects, then the effects were not worth bothering about (see Sidman, 1960 for a clear
exposition of the ideas underlying this methodology). This argument has undeniable
force, though we will see that, as usual, things are more complicated. It arose in part
pecause of the applied focus of many single-case studies (see the Journal of Applied
Behavior Analysis for examples), where the distinction is commonly made between
clinical significance and statistical significance. As discussed previously (p. 449), the latter
refers to the unlikeliness that a result is due to chance factors; clinical significance means
that a treatment has produced a substantial effect such that, for example, a person with
problems can now function adequately in society.

- However, while Skinner and his fellow experimenters working with rats or pigeons
n the laboratory were able to exert sufficient control so that stable baselines could be
obtained from which the performance in subsequent phases could be differentiated, this
has not surprisingly proved more difficult in applied ‘field’ studies with humans. This
once again illustrates the difference between ‘open’ and ‘closed’ systems discussed in
Chapter 2. Some researchers with ‘applied’ interests have questioned the wisdom of
ignoring non-dramatic changes, particularly in exploratory work (e.g. Barlow, Nock and
Hersen, 2008). They argue that we should determine whether changes are reliable and
then subsequently follow them up. It has also been demonstrated that the reliability of
‘eye-balling” as a technique can leave a lot to be desired, with different individuals
reaching different conclusions as to what the data were telling them. Hagopian et al.
(1997) have developed structured criteria which increase reliability.

There is an increasing interest in, and use of, statistical tests of significance in single-
ase studies, although this is still a controversial area (Gorman and Allison, 1996; Kazdin,
1982, Chapter 10). The techniques advocated are themselves the subject of controversy,
largely for the same reason encountered in considering time-series quasi-experimental
designs, namely, the lack of independence of successive data points obtained from the
same individual. Again, the sequence of data points obtained in most real world single-
ase experiments is insufficient to use standard time-series approaches but they provide a
good solution if extensive data are available.

Kazdin (1982, Appendix B) gives details on various possible tests and their application.
Todman and Dugard (2001) argue in favour of the use of randomization (exact) tests which

Interrupted time-series design

The approaches to the analysis of this design which are generally regarded as satisf
tory (e.g. the use of autoregressive integrated moving average models — ARIMA mod
as developed by Box and Jenkins, 1976) require a minimum sequence of about 50y de
points, and preferably over 100 of them. Series of this length tend to be very rare in
scale studies although, if anyone manages to generate this amount of data, the disc
by Glass, Willson and Gottman (2008) provides useful suggestions. ,
For smaller amounts of data, statistical analysis by standard methods is not ad ;
ble. Shadish, Cook and Campbell (2002, pp. 198-203) suggest approaches which can
used to assist in making causal inferences. They point out that even short interrup
time series before and after an intervention can help in eliminating several threa
internal validity, depending on the pattern of results. They recommend adding
features such as control groups, multiple replications, etc. to enhance the interpretab
of short time series. While several different statistical analyses have been used, the; re
little consensus about their worth. Their conclusion is that the best advice is to t
several different statistical approaches. If the results from these converge, and
consistent with visual inspection, confidence in the findings is warranted. Gorme
and Allison (1996) summarize the possible statistical tests that could be used.
Similar data patterns to those found in interrupted time-series designs occur w
single-case designs and hence the forms of analysis suggested for single-case desig;
may be appropriate in some cases (see the section below). 3

Regression discontinuity design

There are strong advocates, not only of the design itself as discussed in Chapter.
p. 117, but also of its analysis using multiple regression techniques to provide unbias
estimates of treatment effects. Trochim is foremost as a proponent (see, for exam
Trochim, 1984, 1990). However, there is a continuing debate about appropriate statist
cal approaches (Reichardt, Trochim and Cappelleri, 1995; Stanley, 1991). As
interrupted time series (and single-case experiments) visual inspection of the patt
of results may well be adequate to provide a convincing demonstration of an effect
lack of it. If you feel that statistical analysis is called for, you are recommended to
advice and/or undertake further reading. The general introduction by Shadish ef af
(2002, Chapter 7) is accessible and balanced, and includes an appendix on the variou
statistical approaches to the analysis of regression discontinuity designs (pp- 243-5).

2See Trochim’s website at www.socialresearchmethods.net/research/rd.htm which gives
access to a full set of his publications on regression discontinuity.
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can provide valid statistical analyses for all designs that incorporate a random proceg
for assigning treatments to subjects or observation periods, including single-case deg
The tests have not been used widely until recently as they require substantial com
tional power. They give examples of the analysis of a wide range of single-case g
using Excel, with references to the use of SPSS and other statistical packages.

If it is important that you carry out a statistical analysis of the results of 4 single- :
study (rather than simply performing a visual analysis), there is much to be saig
introducing randomization at the design stage so that these tests can be used. Edgin:
(1996) provides a clear specification of what is required in design terms. 2

The analysis of surveys

Surveys, and many other non-experimental designs, in their simplest form produce
two-dimensional rows and columns matrix coding data on a range of variables frg :
set of respondents. As ever, your research questions drive the form of analysis whic
you choose. If the study is purely descriptive, the techniques covered in the section o
‘Exploring the Data Set’ (p. 421) may be all that you need. Frequency distribution
graphical displays such as histograms and box plots, summary statistics such as mear
and standard deviations, will go a long way toward providing the answers required
You may need to go on to analyse relationships using contingency tables
correlation coefficients and/or analysing differences through f-tests and othe
statistics. \

With studies seeking to explain or understand what is going on, you should still star
with this exploratory, ‘know your data’, phase. However, when you have some
conceptual model, possibly expressed in terms of mechanisms, which provides the
basis for the research questions, you will need to take the analysis further following a
more confirmatory style. 9

This may involve the testing of some specific two-variable relationships. The ‘elab-
oration’ approach (discussed on p. 439) can help to clarify the meaning of relationshi
between variables. More sophisticated analyses such as multiple linear regression

perform a similar task in more complex situations. And modelling techniques sucl 3

as SEM (p. 443) provide ways of quantifying and testing the conceptual model.

Causation in surveys and other non-experimental designs

Catherine Marsh (1982) accepts that ‘the process of drawing causal inferences from
surveys is problematic and indirect’ (p. 69). Writing from a realist perspective she
provides a very clear account of some ways of going about this difficult task (Chapter 3).

Recall that the traditional positivist view of causation, known as ‘constant conjunction’,
was found in Chapter 2 to be seriously wanting. Following realist precepts, we are
concerned to establish a causal model which specifies the existence of a number of
mechanisms or processes operating in particular contexts.

How can surveys help in doing this? Obviously correlations can be computed but
the injunction that ‘correlation does not imply causation’ should be etched deeply on
the cortex of anyone who has followed a course in statistics. The temptation to get a
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tatistical package to cross-tabulate ‘ALL’ against *‘ALL’ (i.e. asking it to crunch out

1ationships between all the variables and then cherry-picking the significant ones)
‘hould be resisted. Working with a 5 per cent significance level means that we expect on

erage 1in 20 of the results to be significant due to chance factors. While there are ways

dealing with the problem of chance correlations (e.g. by splitting the cases randomly
into two equal subsets, exploring the correlations obtained with the first, then checking
with the second), you still need to make ad hoc arguments to explain your pattern of

~ One approach, simple in principle, involves the elaboration strategy discussed earlier

in the chapter (p. 439). If you have a thought-through proposed causal model involving a

mall number of possible mechanisms it can be tested in this way. Unfortunately, this

process rapidly becomes unwieldy as more variables are included in the model. By going
back and forth between model and data, gradually elaborating the model, it may be
feasible to build up a more complex model. This process need not be totally ‘pure’. While
e unprincipled fishing trip is not a good way of developing a causal model, further
development of the model based in part on hunches and insights that occur during
analysis is well within the spirit of exploratory data analysis. Marsh and Elliott (2008)
summarize the task as follows:

In the absence of an experiment, a statistical effect of one variable on another
cannot just be accepted as causal at face value. If we want to show that it is not
spurious, we have to demonstrate that there are no plausible prior variables
affecting both the variables of interest. If we want to argue that the causal
mechanism is fairly direct, we have to control for similar intervening variables
(p. 252, emphases added).

Marsh and Elliott (2008, especially Chapters 11 and 12) give an excellent account of
the use of elaboration and related techniques to establish causation. It is stressed here as

still being of value in small-scale real world study when data on a restricted set of
variables have been collected, and the model to be tested is necessarily simple.

More generally, the more powerful multivariate techniques accessible via specialist
statistical packages, in particular structural equation modelling (SEM), as discussed on
p. 443, have tended to replace the type of sequential logic required when using
elaboration.

A note on interactions

Formally, an interaction is when the effect of one variable on a second one depends on
the value of a third variable. They were discussed earlier in the chapter in the context of
two variable analyses of variance (p. 456). When such interactions exist — and they are
extremely common in social research — they mean that any generalizations we seek to
make about causal processes are limited. This is a serious obstacle to positivistic
researchers who seek universal laws. However, it is entirely consistent with the realist
view that mechanisms do not operate universally and that the research task is to specify
the contexts in which they work.
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A realist reminder on the analysis and interpretation of experiments

The realist view of experimentation, as discussed in Chapter 5, p. 90, is fundamen
different from the traditional positivist one. The main remaining similarity is

HAPTER 17

active role taken by the experimenter. It is her responsibility to set up and manipu],
situation so that predicted mechanisms are given the chance to operate. This calls f
considerable degree of prior knowledge and experience of the phenomenon or sif
studied, so that a conceptual map or model can be developed with some confidence,
predicts likely mechanisms, the contexts in which they may work, and for whom g
will work. ;
Viewing experiments in this light does not, in general, either preclude or pri
any of the experimental designs covered in Chapter 5, nor any of the analyses cove
this chapter. There may well be situations, as discussed by Pawson and Tilley
pp- 34-54) where the nature of likely causal agents are such that, for example, ra
ized allocation to different conditions changes the nature of the phenomenon of in
Hence control group methodology is inappropriate. Careful attention to such po
distortions is needed at the design stage. i
Assuming the choice of an appropriate design, the question becomes one of de
whether we have good evidence for the operation of the predicted mechanisms. I
cases, this boils down to deciding whether an obtained relationship or diff
(typically of means) provides that evidence. While it will in many cases be fe
to generate statistical significance values, they need to be taken with even more than
usual pinch of salt (see p. 446). This is because their derivation has been within
positivistic conceptualization of experimental design. While it seems intuitively reasc
able that, irrespective of this heritage, a lower probability value for the statis o
significance of a difference gives greater confidence in the reality of that difference,
is difficult to go much further than that. Recall, however, that the advice has be
throughout to place greater reliance on measures of effect sizes based on statistics such
confidence intervals and standardized differences in means (p. 447). Armed with the
and graphical displays, you then have to judge the quality of the evidence.

The analysis and interpretation of
gualitative data

[ This chapter: \

» stresses the need for a systematic analysis of qualitative data;

» emphasizes the central role of the person doing the analysis, and warns about
some deficiencies of the human as analyst;

o discusses the advantages and disadvantages of using specialist computer
software;

¢ explains the Miles and Huberman approach to analysis which concentrates on
reducing the bulk of qualitative data to manageable amounts and on displaying
them to help draw conclusions;

* suggests thematic coding analysis as a generally useful technique when dealing
with qualitative data;

¢ reviews the widely used grounded theory approach;

e summarizes a range of alternative approaches; and

« finally considers issues involved in integrating qualitative and quantitative data

in multi-strategy designs.

Further reading

@ The website gives annotated references to further reading for Chapter 16.

Introduction

Qualitative data have been described as an ‘attractive nuisance’ (Miles, 1979). Their
attractiveness is undeniable. Words, which are by far the most common form of
qualitative data, are a speciality of humans and their organizations. Narratives, accounts
and other collections of words are variously described as ‘rich’, ‘full’ and ‘real’, and



