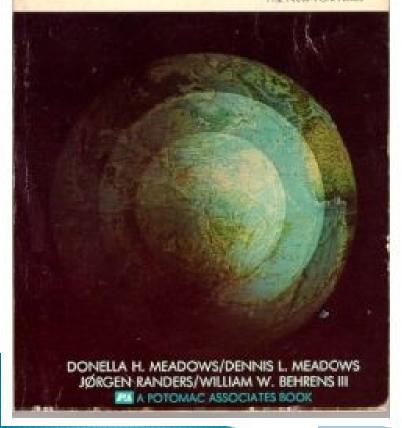
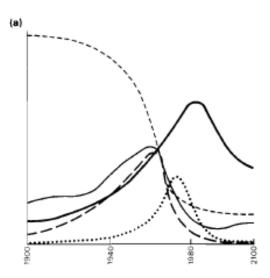
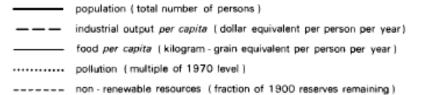

Flourishing within Limits to Growth: Revising Economic Systems by Using Nature as a Model

Brian D. Fath


Professor, Biology Dept, Towson University, USA Senior Research Scholar, IIASA, Austria




The headline-making report on the imminent global disaster being humanity—and what we can do about it before time runs out. "One of the most important documents of our age!"

—Anthony Lewis,

The New York Times

Limits to Growth

Natural principles of chemistry, mechanics and biology are not merely limits. They're invitations to work along with them."

Jane Jacobs, 2000, p. 12

The Nature of Economies

Club of Siena SE Jørgensen, BD Fath, SN Nielsen, FM Pulselli, DA Fiscus, S Bastianoni

FLOURISHING WITHIN LIMITS TO GROWTH

Following nature's way

Sven Erik Jørgensen, Brian D. Fath, Søren Nors Nielsen, Federico M. Pulselli, Daniel A. Fiscus and Simone Bastianoni

clubofsiena.eco-soft.dk

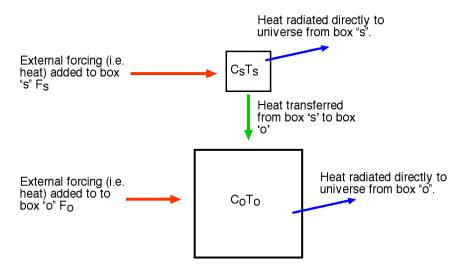
9 properties of ecosystems

Material constraints

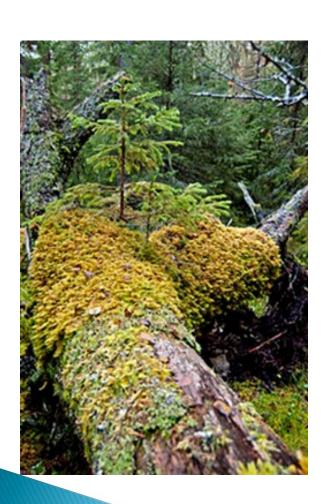
- 1) Ecosystems conserve matter and energy -1^{st} law
- All processes are dissipative 2^{nd} law
- 3) All life uses largely the same biochemical constitution sses

Ontological properties

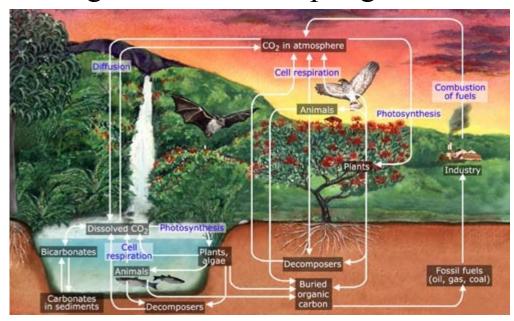
- An ecosystem uses surplus energy equilibrium (physically description) and thermodynamic equilibrium (physically description) and the energy en
- An ecosystem composition of the modifying its environment (biological)


Phenc

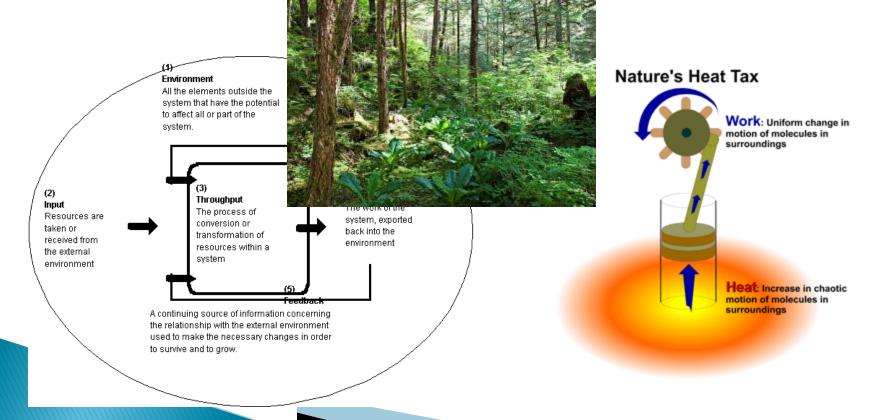
- 6) Ec and function
- 7) Ecos ork together in networks that improve the resource flow utilization
- 8) Ecosystems are emergent hierarchically
- 9) Ecosystems have an enormous amount of genetic, biochemical, and process information


1. Ecosystems conserve matter and energy

This principle allows one to write balance equations, such as: accumulation = input - output.


General Two Box Energy Balance Model.

1.1. There are no trash cans in nature


Material is reused again and again through functional couplings

2. All ecosystem processes are dissipative and irreversible (useful way to express the 2nd Law in ecology). Evolution is a step-wise development that is based on previous

configurations for survival in a changeable and very dynamic

world.

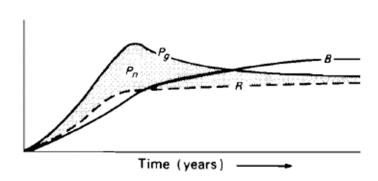
3. All life uses largely the same biochemical constituents and processes

Many biochemical compounds can be found in all living organisms. They have therefore almost the same elemental composition derived from about 25 elements.

The Periodic Table of the Elements

7	2 He																	1 H
þ	Helium 4.003																	Hydrogen 1,00794
1 *	10	9	8	7	6	5											4	3
	Ne	F	O	N	C	В											Be	Li
1	Neon 20.1797	Fluorine 18.9984032	0xygen 15,9994	Nitrogen 14.00674	Carbon 12.0107	Boron 10.811											Beryllium 9.012182	Lithium 6.941
ŀ	18	17	16	15	14	13											12	11
۱.	Ar	CI	S	P	Si	Al											Mg	Na
t	Argon 39,948	66ferrie 35,4527	Sulfur 32,066	Prospinous 30,973761	Silicon 28.0855	Aluminum 26,981538											Magnesium 24,3050	Sodium 22,989770
1 .	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19
I	Kr	Br	Se	As	Ge	Ga	Zn	Cu	Ni	Co	Fe	Mn	Cr	V	Ti	Sc	Ca	K
∡ ا	Krypton 83.80	Bromine 79,904	Selenium 78,96	Arsenic 74,92160	Germanium 72.61	Gallium 69.723	Zine 65.39	Copper 63.546	Nickel 58.6934	Cobalt 58.933200	1ron 55.845	Manganese 54,938049	Chromium 51,9961	Vanadium 50.9415	Titanium 47.867	Scandium 44.955910	Calcium 40.078	Potassium 39,0983
t	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37
l	Xe	I	Te	Sb	Sn	In	Cd	Ag	Pd	Rh	Ru	Tc	Mo	Nb	Zr	Y	Sr	Rb
ال	Xenon 131.29	lodine 126,90447	Tellurium 127.60	Antimony 121.760	Tin 118.710	Indium 114.818	Cadmaum 112.411	Silver 107.8682	Palladium 106.42	Rhodium 102.90550	Ruthenium 101.07	Technetium (98)	Molyhdensin 95,94	Niobium 92.90638	Zirconium 91.224	Yttrium 88.90585	Strontium 87.62	Rubidium 85.4678
1	86	85	84	83	82	81	80	79	78	77	76	75	74	73	72	57	56	55
l '	Rn	At	Po	Bi	Pb	TI	Hg	Au	Pt	Ir	Os	Re	W	Ta	Hf	La	Ba	Cs
la	Radon (222)	Astatine (210)	Polonium	Bismuth	Lead 207.2	Thallium 204.3833	Mercury 200.59	Gold	Platinum	Iridium	Osmium	Rhenium	Tungsten	Tantalum	Hafnium	Lanthanum	Barium	Cesium
1	(222)	(210)	(209)	208.98038	114	113	112	196.96655	195.078	192.217	190.23	186.207	183.84	180.9479	178.49	138.9055	137.327	132.90545 87
lt					111	115	112	111	110	Mt	Hs	Bh	Sg	Db	Rf	Ac	Ra	Fr
ľ										Meitnerium	Hassium	Bohrium	Seaborgium	Dubnium	Rutherfordium	Actinium	Radium	Francium
							(277)	(272)	(269)	(266)	(265)	(262)	(263)	(262)	(261)	(227)	(226)	(223)

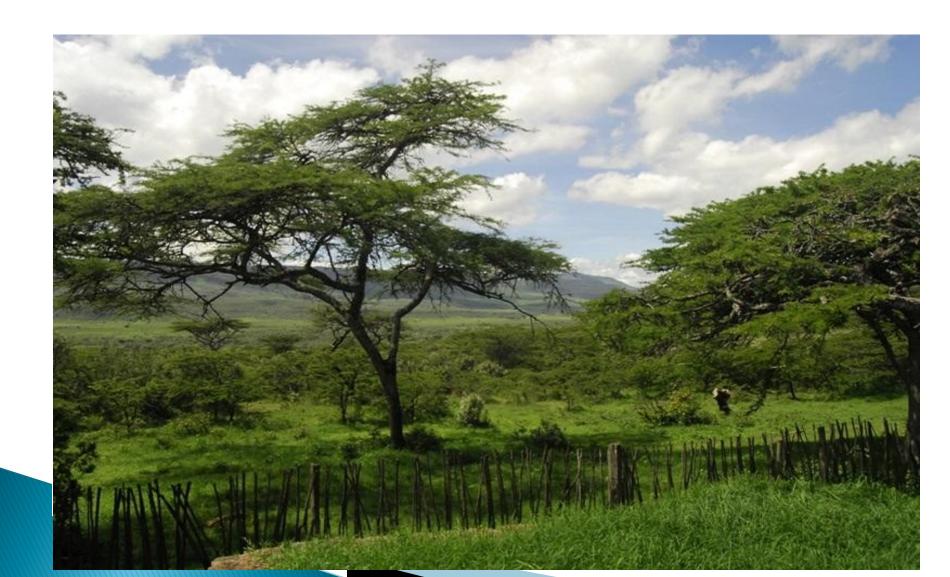
Yellow Boxes = Top 5 Elements
present in the human body
Green Boxes = Second 5 Top
Elements present in the human
body

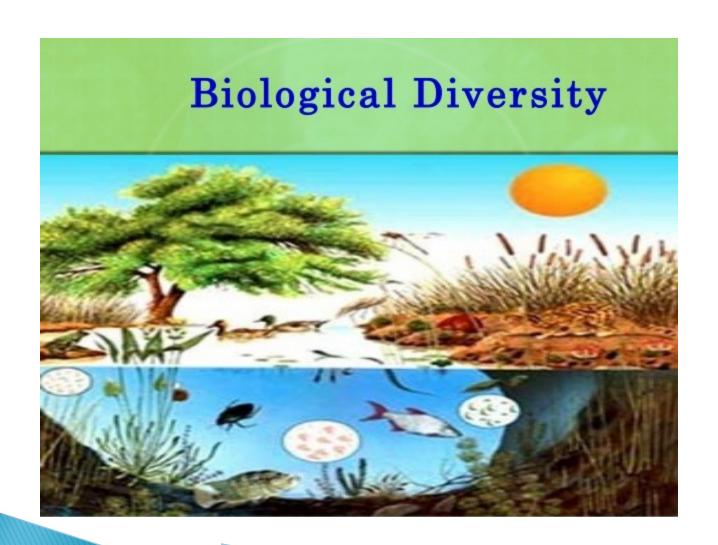

Blue Boxes = Trace elements that are required by the human body

Violet Boxes = **Elements that are deleterious** to the human body.


58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

4. An ecosystem uses surplus energy to move further from thermodynamic equilibrium (physically driven biological aspect).


Another way of expressing that ecosystems can grow – progressive, directional change

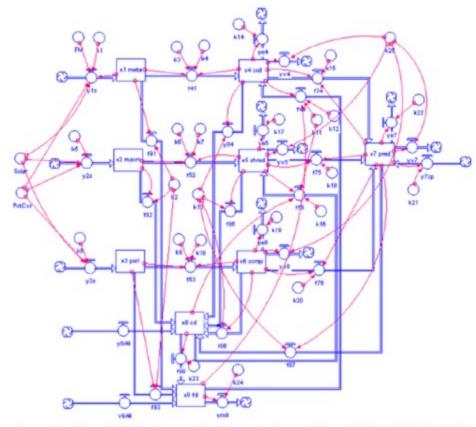
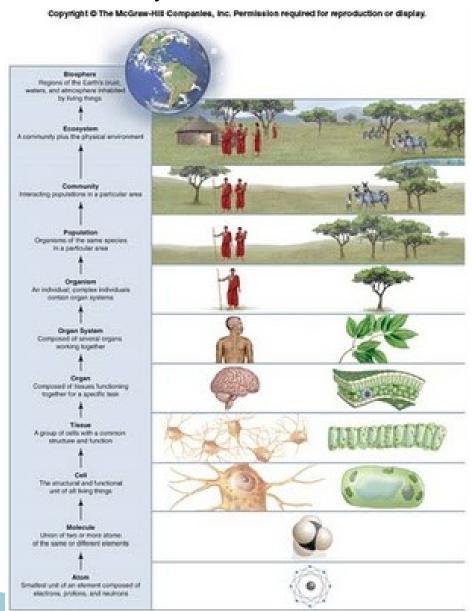

Fig. 25.17 Changes in gross (P_g) and net (P_n) production, respiration (R) and biomass (B) through succession.

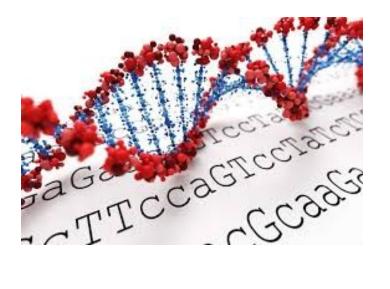
5. An ecosystem co-evolves by adapting to and modifying its environment (biologically driven biological aspect).

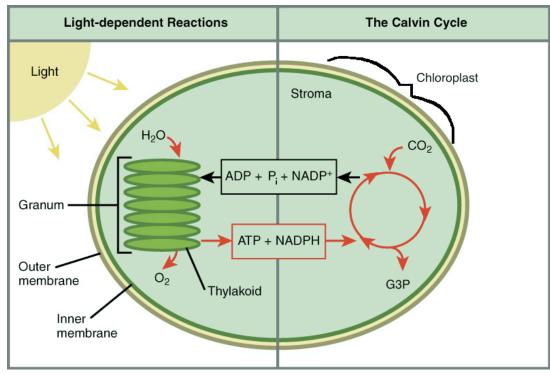
6. Ecosystems have diversity of structure and function.

7. Ecosystems work together in networks that improve the resource flow utilization

Connectivity is a basic property that, through transactions and relations, binds ecosystem parts together as an interacting system.

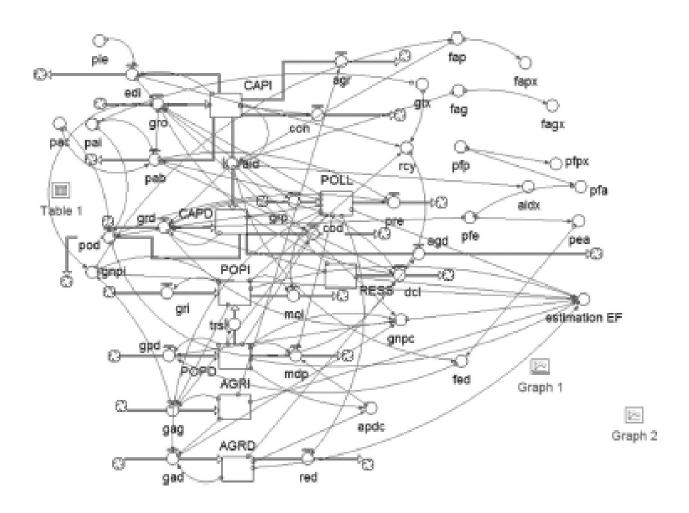




Fig. 1 - Trophic model of Olentangy Wetland in STELLA (recreated from Spieles and Mitsch, 2003).

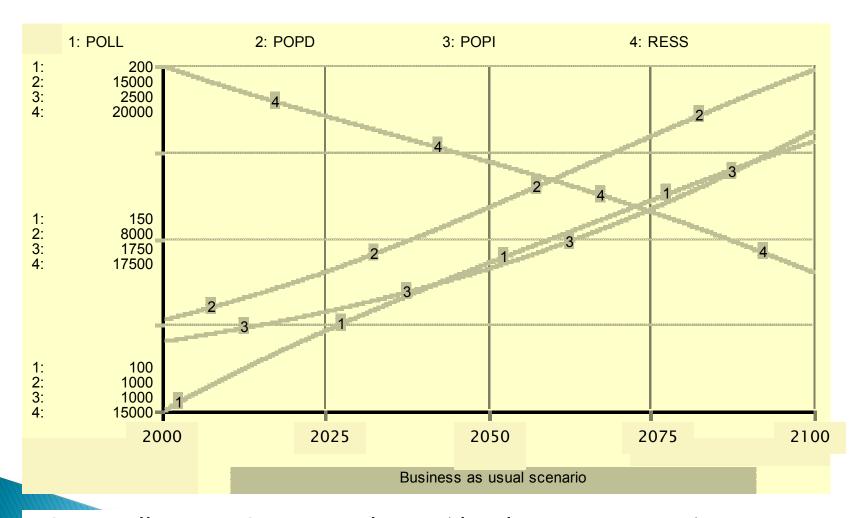

8. Ecosystems are emergent hierarchically

Ecosphere Ecosystems Communities **Populations Organisms** Organ systems Organs Tissue Cells Molecules Atoms

9. Ecosystems have an enormous amount of genetic, biochemical, and process information


Similarities between human and natural systems

- Have to respect that mass and energy are conserved
- Have only irreversible processes, where work energy is lost as heat energy that cannot do further work
- Are open and need an input of work energy for maintenance
- Are organized hierarchically
- Have high diversity
- Have components working in interactive networks
- Have high information level


Differences between natural and human systems

- Ecosystems recycle most resources; human systems recycle very modestly compared to the overall potential
- Ecosystems store surplus work energy in biomass and increased organizational complexity. Human societies do the same to a certain extent, but the *primary energy source fossil fuels are non-renewable and create pollution problems*
- Ecosystems use growth and development to continue flourishing, while human societies rely largely on growing through increased input of natural resources, underutilizing networks and information
- Economic rewards are given for either building or exploiting gradients, without differentiation

Global Model

Business as usual scenario

POLL=pollution; POPD=population (developing countries); POPI=population (industrial countries); RESS=resources

How can we curb population growth?

and increase in GNP per capita

It is also important to raise the education level,

particularly for women

How can we curb pollution?

- Invest in pollution abatement through the introduction of a fair accounting framework, such as a Pigovian tax, based on internalizing the externalities.
- The "invoice" to the polluter should include the costs of all the consequences of pollution, including the reduction of ecosystem services

How can we slow down natural resource use?

- Creating an economy that minimizes the level of unwanted wastes by coupling flows through by-product synergies
- An accounting framework that internalizes externalities
- Investment in education, innovation, and research
- Production decreases when resources are unavailable

Summary: 6-point action plan

- 1) All industrialized countries with a GNP/capita > \$20,000/yr pay 0.8% of GNP increasing by 0.04% per year
- 2) 10% of this support is used for family planning
- 3) 40% of the support is used to improve education in the developing countries; remaining 50% is negotiated between the donor and the receiving country
- 4) 2.5% of the production value is allocated to pollution control
- 5) An 8% Pigovian tax encourages resource efficiency
- 6) Investment, ≥10% of GNP, is made in education, innovation, and research in the industrialized countries

Results of using the 6-point plan

State variable	unit	Initial value (2000)	2054	2100
production capacity of industrial countries	rel.	340	539	814
production capacity of developing countries	rel.	110	158	659
population of industrial countries	10 ⁹	1300	1590	1900
population of developing countries	10 ⁹	4700	6768	3860
Total Pop	10 ⁹	6000	8358	5760
Agricultural output of industrial countries	rel.	100	121	186
Agricultural output of developing countries	rel.	100	172	252
Pollution emissions	rel.	100	122	104
Resource availability	rel.	20	19.4	18.8
GNP/cap (industrial countries)	\$1K/cap	29.5	32.4	44.4
GNP/cap (developing countries)	\$1K/cap	2.7	3.2	19.5

8 recommendations

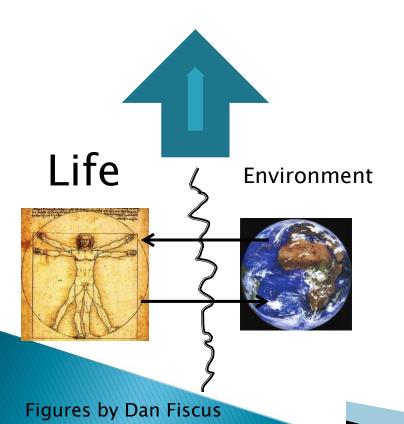
- Use the three R's (reduce, reuse, and recycle) much more extensively.
- 2) Use solar radiation, directly or indirectly, as sole energy source.
- Focus on flourishing rather than growing by changing from quantitative growth that requires natural resources to qualitative development which uses network organization and information to remain vigorous and dynamic
- 4) Changing the objective toward building and maintaining greater work energy capital rather than exploitation of the gradients for short-term economic return. Economic profit should reflect how much work energy is built not how much is extracted.

8 recommendations

- 5) Improving integration on and between all hierarchical levels.
- 6) Appreciating diversity and understanding that it gives society a wider array of resistance and buffers to changes.
- 7) Promoting and valuing opportunities to increase information by investing in education, research, and innovation.
- 8) Maintain and replenish ecosystem services.

These improvements can be made within the current economic framework through altered pricing and incentives

Is it possible? Is it enough?


More systemic/radical alternative...

A bottom up re-visioning is vital: A new holistic paradigm for life

- Contrary to the dominant mainstream view, the basis of all current biology and life science education, it now is becoming clear that *life is not only (or even primarily) an organismal property.*
- In the view actively emerging, life is not centered on or emanating from organisms, nor is it primarily a localized, objectified or material phenomenon.
- Life is inherently relational, distributed, and non-localized

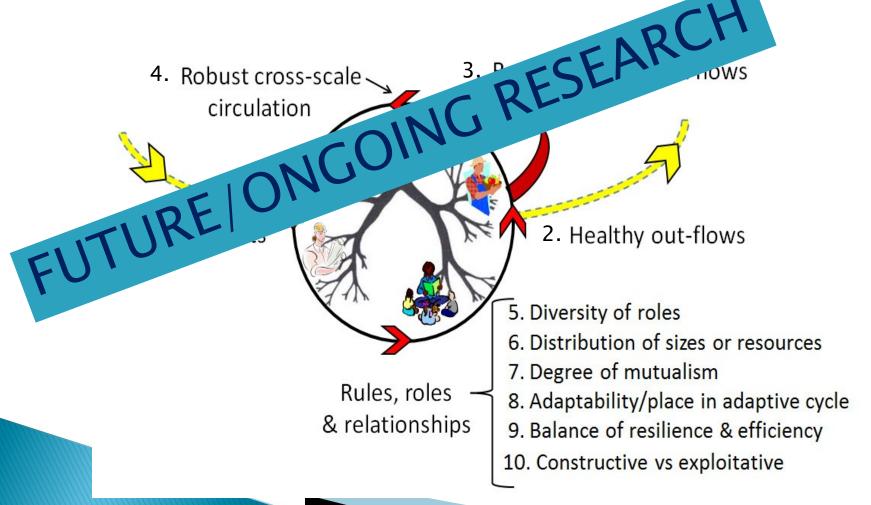
Mental models and outcomes Real impacts of choice of system boundaries

Tragedy of the Commons Humans win, environment degrades

- Inherent in this paradigm, life is separated from environment in mind and action – severs the unity of life and life support systems
- Once fragmented, it is possible and likely that the value of environment is seen and treated as less than the value of life
- Environment is consumed and degraded as manifest in many symptoms of ecological crisis, and the influence of the citizens' mental fragmentation and devaluation of environment travels upward to larger scales and produces the global crisis

Recursive nature of nature

Bounty of the Commons Humans win, environment improves


- Life and environment are best understood and modeled as unified as a single "life—environment" system.
- 2) A hyperset equation explicitly and formally *prohibits* fragmentation of life from environment

life-environment =

{environment{ecosystems{organisms{environment}}}}

Regenerative economy

Input, Output, and System Dynamics

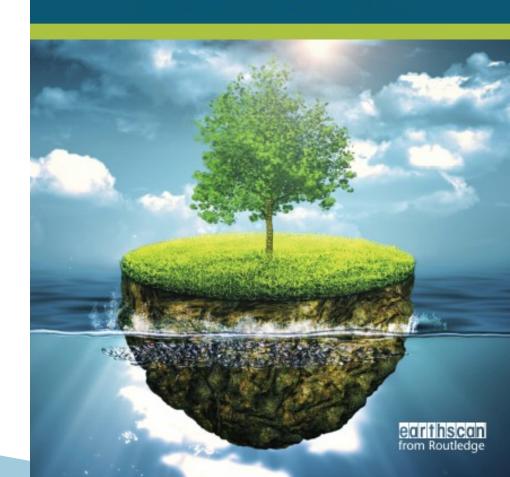
Conclusion

The business-as-usual approach of chasing perpetual economic growth is failing. It is not sustainable on our finite planet and it is not solving the problems of unemployment, poverty, and inequality in contrast to what economists and politicians claim.

However, actions such as:

- increased investment in education and knowledge creation,
- accounting the contributions of ecosystem services,
- a transition from non-renewable to renewable energy sources,
- · focus on development and quality over growth and quantity, and
- building community networks within sustainable places, can guide human society closer to ecological balance by learning and adopting *how nature flourishes* within the imposed biophysical and thermodynamic constraints.

Read all the details here!


clubofsiena.eco-soft.dk

Thank you for your attention!

FLOURISHING WITHIN LIMITS TO GROWTH

Following nature's way

Sven Erik Jørgensen, Brian D. Fath, Søren Nors Nielsen, Federico M. Pulselli, Daniel A. Fiscus and Simone Bastianoni

