
Discourse Network Analyzer Manual

Philip Leifeld, Johannes Gruber and Felix Rolf Bossner

Last update: DNA 2.0 beta 20 with rDNA 2.0.4 on February 5, 2018.

Contents

1 Introduction 1

2 DNA algorithms 3
Philip Leifeld

2.1 Congruence . 3

2.2 Conflict . 4

2.3 Subtract . 4

2.4 Ignore . 4

2.5 Normalization . 4

2.6 Affiliation networks . 5

2.7 Normalization for affiliation networks . 5

3 Installation of DNA and rDNA 6
Johannes Gruber

3.1 Windows . 7

3.2 macOS . 10

3.3 Linux . 12

3.4 Installing the programs themselves . 15

4 Using DNA: Preparation of your DNA Workspace 18
Felix Rolf Bossner and Johannes Gruber

4.1 Creating a new DNA database . 18

4.1.1 Creating a local DNA file . 20

4.1.2 Creating and using a remote database (MySQL) 22

4.2 User Management: Multiple Coders and Permissions 23

4.3 Statement Types and Variables . 27

i

4.3.1 Adjusting the variables of interest . 27

4.3.2 Adjusting the statement types . 30

4.4 Final step: Approving your workspace and creating the DNA file 31

5 Using DNA: Importing and Organizing your Raw Data 33
Felix Rolf Bossner

5.1 Opening an existing DNA database . 33

5.2 Importing Documents (Raw Data) . 34

5.2.1 Importing single Documents manually via Copy and Paste 34

5.2.2 Importing multiple Documents semi-automatically from text files 36

5.2.3 Importing Documents from other DNA databases 39

5.3 Organizing documents (Raw Data) . 42

5.3.1 Deleting and navigating through documents 42

5.3.2 Editing the documents’ meta data (author, time etc...) 42

6 Using DNA: Coding the Data 48

7 Using DNA: Exporting the coded Data 49

8 rDNA: Using DNA from R 50
Philip Leifeld

8.1 Getting started with rDNA . 50

8.2 Retrieving networks and attributes . 52

ii

Chapter 1

Introduction

This manual demonstrates how to install, set up and use the open-source standalone software
Discourse Network Analyzer (DNA) and its companion R package rDNA (Leifeld 2018), which
are designed for researchers using the method discourse network analysis.1 By combining
content and dynamic network analysis, this method can reveal the structure and dynamics of
debates, such as political discourses. For the user, the method comprises three basic steps: first,
to annotate statements of actors in unstructured (text) sources; second, to create networks
from the thereby structured data; and finally to analyse and interpret the results by employing
the toolbox of network analysis. The results can take a number of different forms, such as
congruence or conflict networks at the actor or concept level, affiliation networks of actors and
concept stances, and longitudinal versions of these networks (see Section 2 or Leifeld (2016a)
for a comprehensive overview of the method).

In recent years, discourse network analysis has been employed by a growing number of schol-
ars in a wide field of policy sectors, such as pension politics (Leifeld 2013, 2016b), climate
politics (Fisher et al. 2013a,b; Broadbent and Vaughter 2014; Gkiouzepas and Botetzagias
2015; Manfredo et al. 2014; Schneider and K. 2014; Stoddart and Tindall 2015; Wagner and
Payne 2017; Yun et al. 2014), software patents and property rights (Leifeld and Haunss 2012;
Herweg 2013), Internet policy (Breindl 2013), infrastructure projects (Nagel 2016), energy pol-
icy (Brutschin 2013; Haunss et al. 2017; Imbert 2017; Rinscheid 2015; Rinscheid et al. 2015),
shooting rampages (Hurka and Nebel 2013), abortion (Muller 2014a,b, 2015), outdoor sports
(Stoddart et al. 2015), water politics (Brandenberger et al. 2015; Cisneros 2015), deforestation
(Rantala and Di Gregorio 2014), genetically modified organisms (Tosun et al. 2015), higher
education (Nägler 2015), international financial politics (Werner 2015), and online deception
(Wu and Zhou 2015). Many of these studies were already employing DNA and as the academic
interest in discourse network analysis has steadily grown in recent years, the use of both, the
method and the software, will eventually become more widespread.

The benefit of using the Java software DNA is that it is specifically designed to aid the user in
the first two of basic steps of discourse network analysis. It is mainly designed for qualitative
content analysis which in this case means, to annotate the statements, or in other words, to

1This manual is a work in progress and will be continuously updated during the year 2018. See
github.com/leifeld/dna/blob/master/manual/ for the most recent version.

1

https://github.com/leifeld/dna/blob/master/manual/dna-manual.pdf

structure the text data. The program is also able, to create different kinds of network matri-
ces and export them to other programs for further analysis and plotting. DNA is furthermore
designed to help the user to develop a comprehensive workflow, from importing raw text, over
managing multiple users as well as different types of documents, supporting the coding process
with a regular expression highlighter to basic analysis options during export. Furthermore,
while the software is primarily designed for discourse network analysis, it is also very flexible
as the statement types can be adjusted (see Section 4.3) to accommodate different content
analysis tasks, such as framing analysis. While there are numerous alternative software pack-
ages for qualitative content analysis, there are very few which were specifically developed with
discourse network analysis in mind and therefore lack the functionality necessary for exporting
network data.

The companion R package to DNA—rDNA—additionally helps with the remaining basic step
mentioned above: analysis of the coded statements. rDNA integrates the results from coding
performed in DNA with the statistical computing environment R to perform more in-depth
analysis of the coded material. While data can be exported to other software such as Ucinet,
visone, NetMiner, Gephi and others, R is the preferred choice, as it enables reproducible
research, is free and open source and has a huge community of users and developers who are
engaged in all kinds of data analysis tasks. Consequently, R has several fantastic packages
developed specifically for network analysis—such as statnet (Handcock et al. 2008a), igraph
(Csardi and Nepusz 2006a), sna (Butts 2016), network (Butts 2008a), tidygraph (Pedersen
2017b) and ggraph (Pedersen 2017a)—and a lot more that can aid content and network
analysis even though they were written with other tasks in mind. Most of these packages
work seamlessly with data processed by rDNA and therefore add a myriad of possibilities to
the native functions of our own R package.

The outline of this manual is as follows. Section 2 is a concise and fairly technical description
of the types of networks DNA can export. Section 3 explains how to install DNA and rDNA which
both rely on a correctly set up Java runtime environment. While installing the programs
themselves would probably not be worth its own section, installing Java on some operating
systems can be surprisingly tough—at least without our explanations. Then four sections
follow, which describe the usage of DNA in detail: Section 4 describes how to set up a project
in DNA, including the creation of a database, adding and managing users and how to set up or
edit statement types and variables. Section 5 explains how you can import and organise your
raw data (i. e. documents). Section 6 and Section 7 will explain—once they are completed—
how material is coded in DNA and how coded data can be exported to other programs for
further analysis. Section 8 is an introductory tutorial on using the rDNA package to perform
additional analysis and plotting tasks using the infrastructure provided by R.

Both DNA and rDNA can be downloaded from GitHub(See Section 3). Questions and bug reports
can be posted in the issue tracker on GitHub.

2

https://github.com/leifeld/dna
https://github.com/leifeld/dna

Chapter 2

DNA algorithms
Philip Leifeld

This section summarizes the main algorithms implemented in DNA in a technical way.

X is a three-dimensional array representing statement counts. xijk is a specific count value in
this array, with the first index i denoting an instance of the first variable (e. g. , organization
i), the second index j denoting an instance of the second variable (e. g. , concept j), and the
third index k denoting a level on the qualifier variable (e. g. , agreement = 1). For example,
xijk = 5 could mean that organization i mentions concept j with intensity k five times.

Where the qualifier variable is binary, false values are represented as 0 and true values as 1
on the k index, i. e. , Kbinary = {0; 1}. Where the qualifier variable is integer, the respective
integer value is used as the level. This implies that k can take positive or negative values or
0, i.e, K integer ⊆ Z. Note that all k levels of the scale are included in K, not just those values
that are empirically observed.

Indices with a prime denote a second instance of an element, e. g. , i′ may denote another
organization. Y denotes the output matrix to be obtained by applying a transformation to
X. The following transformations are possible:

2.1 Congruence

In a congruence network, the edge weight between nodes i and i′ represents the number of
times they co-support or co-reject second-variable nodes (if a binary qualifier is used) or the
cumulative similarity between i and i′ over their assessments of second-variable nodes (in the
case of an integer qualifier variable).

In the integer case:

ycongruenceii′ = Φii′

 n∑
j=1

∑
k

∑
k′

xijkxi′jk′

(
1− |k − k′|
|K| − 1

) (2.1)

where Φii′(·) denotes a normalization function (to be specified below).

3

In the binary case, i. e. , |K| = 2, this reduces to

ycongruence binary
ii′ = Φii′

 n∑
j=1

∑
k

xijkxi′jk + (1− xijk)(1− xi′jk)

 . (2.2)

2.2 Conflict

Binary case:

yconflict binaryii′ = Φii′

 n∑
j=1

∑
k

(1− xijk)xi′jk + xijk(1− xi′jk)

 . (2.3)

More generally, in the integer case:

yconflictii′ = Φii′

 n∑
j=1

∑
k

∑
k′

xijkxi′jk′

(
|k − k′|
|K| − 1

) (2.4)

2.3 Subtract

ysubtractii′ = ycongruenceii′ − yconflictii′ (2.5)

2.4 Ignore

yignoreii′ = Φii′

 n∑
j=1

((∑
k

xijk

)(∑
k

xi′jk

)) (2.6)

2.5 Normalization

In the simplest case, normalization can be switched off, in which case Φno
ii′ (ω) = ω.

Alternatively, edge weights can be divided by the average activity of nodes i and i′:

Φavg
ii′ (ω) =

ω

1
2

(∑n
j=1

∑
k xijk +

∑n
j=1

∑
k xi′jk

) . (2.7)

With Jaccard normalization, we don’t just count i’s and i′’s activity and sum them up inde-
pendently, but we add up both their independent activities and their joint activity, i. e. , both
matches and non-matches:

ΦJaccard
ii′ (ω) =

ω∑n
j=1

∑
k xijk[xi′jk = 0] +

∑n
j=1

∑
k xi′jk[xijk = 0] +

∑n
j=1

∑
k xijkxi′jk

.

(2.8)

4

With cosine normalization, we take the product in the denominator:

Φcosine
ii′ (ω) =

ω√
(
∑n

j=1

∑
k xijk)2

√
(
∑n

j=1

∑
k xi′jk)2

. (2.9)

2.6 Affiliation networks

Ignoring the qualifier variable:

yaffiliation ignore
ij = Φij

(∑
k

xijk

)
(2.10)

Subtracting negative from positive ties (integer case):

yaffiliation subtract binary
ij = Φij

(∑
k

k · xijk

)
(2.11)

Subtracting negative from positive ties (binary case):

yaffiliation subtract binary
ij = Φij

(∑
k

(k · xijk − (1− k) · xijk)

)
(2.12)

Note that the binary case is not merely a special case of the weighted affiliation network in
this case.

2.7 Normalization for affiliation networks

With activity normalization, ties from active nodes receive lower weights:

Φactivity
ij (ω) =

ω∑n
j=1

∑
k xijk

(2.13)

With prominence normalization, ties to prominent nodes receive lower weights:

Φprominence
ij (ω) =

ω∑m
i=1

∑
k xijk

(2.14)

5

Chapter 3

Installation of DNA and rDNA
Johannes Gruber

This section explains how DNA and rDNA can be installed on common desktop operating systems.
As DNA is written in Java, both DNA and rDNA rely on Java to work on your computer properly.
This section turned out to be longer than we initially expected as we noticed that installing
Java on different operating systems can be a bit challenging—luckily for you though we figured
it out anyway and provide you with all the steps. Installing and configuring a valid Java
Runtime Environment on your machine will thus be the first and only complicated step of the
installation. However, following the simple steps below, one should not run into problems while
setting up Java. The advantage of the Java programming language for academic software is
that it both runs on different operating systems without altering the source code—once the
Runtime Environment is set up—and that it is—for the most part—open source. Besides
setting up the Java Runtime Environment, the installation of DNA and rDNA is identical on
different operating systems. If you feel confident that Java is already correctly set up on your
computer, you can therefore skip to Section 3.4 if you like. Otherwise please continue to the
section for the operating system you wish to install DNA and rDNA on: Windows, macOS or
Linux.

For more experienced users, here is a short version of the steps described below:

1. (On Mac: install Apple’s legacy version of Java—even though we will never use it.)

2. Install Java Runtime Environment (JRE) (Version 8) on your computer.

3. (On Windows and Mac: set up the “JAVA_HOME” to the installation path of your
JRE.)

4. Download the newest executable JAR from github.com/leifeld/dna/releases.

5. (On Linux: make the JAR file executable.)
(On Mac: allow excetuting apps from an unidentified developer.)

6. You can now run the standalone DNA or continue to install rDNA as well.

6

https://support.apple.com/downloads/DL1572/en_US/javaforosx.dmg
https://github.com/leifeld/dna/releases

Figure 3.1: Downloading JRE from Oracle

7. Download and install R (and RStudio).

8. In R: install the necessary R packages rJava and devtools.

9. In R: install rDNA via

devtools::install_github("leifeld/dna/rDNA",
args = "--no-multiarch")

3.1 Windows

To install the necessary Java Runtime Environment on your Windows computer, simply go to
java.com/en/download/manual.jsp, scroll down to and download “Windows Offline (64-
bit)” (see Figure 3.1; download “Windows Offline” instead if you are using a 32-bit version
of Windows). During the installation, you can accept all the default options, including the
installation path.

Next, you should set “JAVA_HOME” in your environmental variables to tell your Windows
PC where your Java installation lives. This step is optional, but can prevent many issues
with Java, people had in the past. To set “JAVA_HOME”, you need to navigate to the menu
“edit the system environment variables” . The easiest way to get there is to hit the
button on your keyboard and enter “environment”. Windows will then search for programs
and settings menus which include this title and should usually display the menu we are looking

7

https://www.java.com/en/download/manual.jsp

Figure 3.2: Edit JAVA_HOME to tell Windows where your Java lives

for on top.1 In this menu you have to find the button “Environment variables...” . Clicking
this button should open the window shown in Figure 3.2.

Under User Variables, click New.2 Enter the variable name “JAVA_HOME” and the path
to your java installation in the field “Variable value” . If you haven’t altered the default
install location, you should find Java in "C:\Program Files\Java\jre1.8.0_151" or if you
chose to install a 32-bit version of Java in "C:\Program Files (x86)\Java\jre1.8.0_151"
(which will cause problems though if you try to use it with a 64-bit version of R).3

Windows should now recognise Java and be able to run Java commands. To test this, we can
open the Command Prompt (press the button on your keyboard and simply enter “cmd”
and then hit “Enter”) and type a Java command, e. g. “java -version”. If the installation
was successful, the output should display information about the Java-version and build as
depicted in Figure 3.3.

After installing Java, you are ready to use DNA and could skip to Section 3.4 if you are not
interested in installing rDNA as well. In order to use rDNA the rest of this section will explain how
to install R and a recommended integrated development environment (IDE) called RStudio,
which makes working with R a lot easier and also looks a lot better than the default interface.

1On older versions of Windows, this might not work. On Windows 7 you can alternatively right-click on
“My Computer” and select “Properties → Advanced”. On Windows 8 “Control Panel → System → Advanced
System Settings”.

2This sets “JAVA_HOME” just for the current user. If you want to make Java available for all users on
the computer you are working on, you can create a System Variable instead.

3Note, that you have to repeat this procedure whenever the installation path of Java changes, for example,
whenever Java is updated.

8

https://en.wikipedia.org/wiki/Integrated_development_environment
https://www.rstudio.com/products/RStudio/

Figure 3.3: Testing Java installation in Windows Command Prompt

Install R on Windows

1. First, you need to download R from cran.r-project.org/bin/windows/base/.

2. On the top of the page click on Download R 3.4.3 for Windows (or a newer version
if available).

3. Install the downloaded file, e. g. “R-3.4.3-win.exe”. Usually, it is fine to leave all default
settings in the installation options.

4. Go to rstudio.com/products/rstudio/download/.

5. At the bottom of the page, under “Installers for Supported Platforms”, click on the link
RStudio 1.1.383 - Windows Vista/7/8/10 (or a newer version if available). Again
the default installation options are fine in most cases and can be accepted unchanged.

6. After installation, you can use R by opening RStudio.

Traditionally, the first test you perform in a new programming language is to write a “Hello,
World!” program. To do this in R, you simply type print(“Hello World!”) in the “Console”
(the window which covers the left half of RStudio). Alternatively, you can make R perform a
simple mathematical operation. If everything is set up correctly, the output should look like
this:

print("Hello World!")

[1] "Hello World!"

You can also use R as a calculator
2 * 3

[1] 6

The chunk of code above marks the first time we are using R commands in this manual. It
might be worth, to explain what this means for users who are not familiar with documents

9

https://cran.r-project.org/bin/windows/base/
https://www.rstudio.com/products/rstudio/download/

which contain R code. Whenever code is shown in this manual it is decorated with a light grey
background. Comments in R code (i. e. text targeted at the user to explain what is happening
in a specific line) are marked with a #, are formatted in italic font and in dark grey. The
output, which is generated by running a command, is marked by two # and formatted in
black. This means that every line which does not start with ## contains R code which you
can copy and paste to the Console in RStudio and run. Alternnativly, you can also copy
the code to an R script and execute it by either clicking on this button on the upper
right of RStudio, near the corner or you can use the shortcut “Ctrl+Enter”. Both ways, the
highlighted code or the line in which the caret is currently flashing are sent to the console and
executed. If this works fine, you should be able to continue to the next section which describes
Installing the programs themselves.

3.2 macOS

On macOS, you have to install two versions of Java in order for rDNA to work properly. The
reasons behind this are too complicated to cover here, but basically, Apple built its own version
of Java, which needs to be on your machine, even though it is outdated. Therefore we need
to first install the legacy Java 6—which we will never use—before installing the correct Java
Runtime Environment version 8.4

First, please download the file support.apple.com/downloads/DL1572/en_US/javaforosx.dmg
and install it, accepting all defaults. After this has finished, we can proceed to get the new
version of the Java Runtime Environment. Go to java.com/en/download/manual.jsp and
scroll down to download “Mac OS X (10.7.3 version and above)” (see Figure 3.4). Again,
install the program accepting all defaults.

After installing Java, you are ready to use DNA and could skip to Section 3.4 if you are not
interested in installing rDNA as well. In order to use rDNA the rest of this section will explain how
to install R and a recommended integrated development environment (IDE) called RStudio,
which makes working with R a lot easier and also looks a lot better than R’s default interface.

Install R on Mac

1. First, you need to download R from cran.r-project.org/bin/macosx/.

2. On the top of the page click on R-3.4.3.pkg (or a newer version if available).

3. Install the downloaded file. Usually, it is fine to leave all default settings in the instal-
lation options.

4. Go to rstudio.com/products/rstudio/download/.

5. At the bottom of the page, under “Installers for Supported Platforms”, click on the link
RStudio 1.1.383 - Mac OS X 10.6+ (64-bit) (or a newer version if available). Again
the default installation options are fine in most cases and can be accepted unchanged.

4If you do not wish to ever use rDNA or any other R package which relies on Java, you might not need both
versions and can just download the newest Java Runtime Environment. However, installing Java version 8
before the legacy Java will cause problems if you’ll ever change your mind.

10

https://support.apple.com/downloads/DL1572/en_US/javaforosx.dmg
https://www.java.com/en/download/manual.jsp
https://en.wikipedia.org/wiki/Integrated_development_environment
https://www.rstudio.com/products/RStudio/
https://cran.r-project.org/bin/macosx/
https://www.rstudio.com/products/rstudio/download/

Figure 3.4: Downloading JRE from Oracle

6. Then you need to install the program “Xcode” from the app store.

7. After installation, you can use R by opening RStudio.

Traditionally, the first test you perform in a new programming language is to write a “Hello,
World!” program. To do this in R, you simply type print(“Hello World!”) in the “Console”
(the window which covers the left half of RStudio). Alternatively, you can make R perform a
simple mathematical operation. If everything is set up correctly, the output should look like
this:

print("Hello World!")

[1] "Hello World!"

You can also use R as a calculator
2 * 3

[1] 6

The chunk of code above marks the first time we are using R commands in this manual. It
might be worth, to explain what this means for users who are not familiar with documents
which contain R code. Whenever code is shown in this manual it is decorated with a light grey

11

background. Comments in R code (i. e. text targeted at the user to explain what is happening
in a specific line) are marked with a #, are formatted in italic font and in dark grey. The
output, which is generated by running a command, is marked by two # and formatted in
black. This means that every line which does not start with either # or ## contains R code
which you can copy and paste to the Console in RStudio and run. Alternatively, you can also
copy the code to an R script and execute it by either clicking on this button on the
upper right of RStudio, near the corner or you can use the shortcut “Ctrl+Enter”. Both ways,
the highlighted code or the line in which the caret is currently flashing are sent to the console
and executed.

Now unfortunatly, working with Java from within R on a Mac is a bit messy. Apple’s own
version of Java, although important to have installed, does not run in combination with R.
That is why we have to tell your system which version of Java to use by default. To do this,
we have to enter a few system commands, which you can either do in the Terminal app or
directly from within R using the system function:

list files in java_home
system("/usr/libexec/java_home -V")
##Matching Java Virtual Machines (3):
1.8.0_60, x86_64: "Java SE 8" /Library/Java/JavaVirtualMachines/jdk1.8.0...
1.6.0_65-b14-468, x86_64: "Java SE 6" /Library/Java/JavaVirtualMachines/...
1.6.0_65-b14-468, i386: "Java SE 6" /Library/Java/JavaVirtualMachines/1....

see default version of Java
system("java -version")
##java version "1.8.0_60"
##Java(TM) SE Runtime Environment (build 1.8.0_60-b27)
##Java HotSpot(TM) 64-Bit Server VM (build 25.60-b23, mixed mode)

If your output looks like the above, you are ready to install rJava. If the first command does
not show 1.8.0_60, x86_64 (or any other version staring with 1.8.), you need to install Java
version 8 again (see above) and possibly reboot your computer. If the second command shows
java version "1.6.0_65", but version 1.8 is listed in the output from the first command, you
can set the default by excecuting the following command:

Set JAVA_HOME
system("export JAVA_HOME=`/usr/libexec/java_home -v 1.8`")

After that, you should be able to continue to the next section which describes Installing the
programs themselves.

3.3 Linux

Since you are using Linux, we assume that you are sufficiently comfortable with using the
command line. Therefore, we only provide the necessary steps for installing Java as commands.

12

First check if Java might already be installed:

$java -version

If not, install it, e. g. via APT:

$sudo apt-get install default-jre

Optional: You can also install the Java development kit at this point, which is sometimes
recommended for working with R and Java.

$sudo apt-get install default-jdk

After installing Java, you are ready to use DNA and could skip to Section 3.4 if you are not
interested in installing rDNA as well. In order to use rDNA the rest of this section will explain how
to install R and a recommended integrated development environment (IDE) called RStudio,
which makes working with R a lot easier and also looks a better than the default GUI.

Install R on Linux

1. Since the version of R on the default repositories tends to be fairly outdated, we add the
repository of the Comprehensive R Archive Network (CRAN) to our sources.list:

$sudo add-apt-repository "deb [arch=amd64,i386] https://cran.rstu
dio.com/bin/linux/ubuntu artful/"

Note, that you need to replace /ubuntu artful/ with your flavour and version
of Linux. Visit CRAN to see which ones are available. cran.rstudio.com is also just
one of several CRAN mirrors, so you could replace it with a different one if you prefer.

2. Next, you need to add R to your keyring. Seen below is how you would accomplish that
in Ubuntu:

$gpg --keyserver keyserver.ubuntu.com --recv-key E084DAB9
$gpg -a --export E084DAB9 | sudo apt-key add -

Or

$sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E2
98A3A825C0D65DFD57CBB651716619E084DAB9

3. Update apt and install R (and r-base-dev if you wish to compile packages from source):

13

https://en.wikipedia.org/wiki/Integrated_development_environment
https://www.rstudio.com/products/RStudio/
https://cran.rstudio.com/bin/linux/
https://cran.r-project.org/mirrors.html

$sudo apt-get update
$sudo apt-get install r-base install r-base-dev

4. Now install RStudio via gdebi (and install gdebi first if you don’t already have it)5:

$sudo apt-get install gdebi-core
$wget https://download1.rstudio.org/rstudio-1.1.419-amd64.deb
$sudo gdebi -n rstudio-1.1.419-amd64.deb
$rm rstudio-1.1.419-amd64.deb

5. (Up until version 1.1.423, RStudio depends on an outdated version of (libgstreamer).
You thus either need to use the new version (which is currently just a preview) or install
the old version of (libgstreamer) using the method explained in this blogpost.)

6. After the installation has finished, you can use R by opening RStudio.

Traditionally, the first test you perform in a new programming language is to write a “Hello,
World!” program. To do this in R, you simply type print(“Hello World!”) in the “Console”
(the window which covers the left half of RStudio). Alternatively, you can make R perform a
simple mathematical operation. If everything is set up correctly, the output should look like
this:

print("Hello World!")

[1] "Hello World!"

You can also use R as a calculator
2 * 3

[1] 6

The chunk of code above marks the first time we are using R commands in this manual. Since
it looks similar to the terminal commands we used above, you probably have no problem
reading it. But just in case, it might be worth to explain what you see there: whenever code is
shown in this manual it is decorated with a light grey background. Comments in R code (i. e.
text targeted at the user to explain what is happening in a specific line) are marked with a
#, are formatted in italic font and in dark grey. The output, which is generated by running a
command, is marked by two # and formatted in black. This means that every line which does
not start with ## contains R code which you can copy and paste to the Console in RStudio
and run. Alternnativly, you can also copy the code to an R script and execute it by either
clicking on this button on the upper right of RStudio, near the corner or you can use
the shortcut “Ctrl+Enter”. Both ways, the highlighted code or the line in which the caret is
currently flashing are sent to the console and executed.

5Alternatively, you can download an installation file from rstudio.com/products/rstudio/download/.

14

https://mikewilliamson.wordpress.com/2016/11/14/installing-r-studio-on-ubuntu-16-10/
https://www.rstudio.com/products/rstudio/download/

Now before we can actually run rDNA, we need to associate Java with R. To do this, you can
either go back to the terminal, or you can invoke a system command directly from within R
using the system function:

$sudo R CMD javareconf

Or:

system("sudo R CMD javareconf")

After this is finished, you are now set to start installing DNA and the rDNA-package themselves.

3.4 Installing the programs themselves

Once Java is set up correctly, you can simply download the latest version of DNA as a JAR file
from github.com/leifeld/dna/releases (see Figure 3.5). JAR or .jar files are technically archive
files which usually contain a computer program written in Java, along with all the pictures
and libraries necessary to run the program. Once the download is finished, you can start
the program by double-clicking on the downloaded file. However, on Linux, it is sometimes
necessary to make the file executable first (e. g. via $chmod +x /path/to/your/dna.jar or
using a GUI-method). On newer version of macOS, a program from an "unidentified developer"
(i. e., if the program has not been registered with apple) needs to be made a security exception
before you can run it. To do so for DNA control-click the program’s icon, then choose “Open”
from the shortcut menu. If clicking on the file does not open the program on a windows
machine, right-click on the .jar file → “Open with” → “Use another app” and then navigate
to the file "C:\Program Files\Java\jre1.8.0_151\bin\javaw.exe".

If you are not interested in using rDNA, you can now skip to the next section.

At this point, I assume that you have installed R and have at least a minimal understanding
of how the program works. If that is not the case, you might want to jump back to where we
explain how to install Install R on Windows, Install R on Mac or Install R on Linux. If you
have already done this, we can go ahead and install rDNA from within R. First, we need to
install the package rJava (Urbanek 2016), which is the most important dependency of rDNA:

install.packages("rJava")

To see if this worked, or to troubleshoot potential problems, we can run a couple of Java
commands from within R:

library("rJava")
1. initialize JVM
.jinit()
2. retrieve the Java-version
.jcall("java/lang/System", "S", "getProperty", "java.version")

15

https://github.com/leifeld/dna/releases
https://askubuntu.com/a/484719/570716

Figure 3.5: Download DNA jar file from GitHub releases page

[1] "1.8.0_151"

3. retrieve JAVA_HOME location
.jcall("java/lang/System", "S", "getProperty", "java.home")

[1] "/usr/lib/jvm/java-8-openjdk-amd64/jre"

4. retrieve Java architecture
.jcall("java/lang/System", "S", "getProperty", "sun.arch.data.model")

[1] "64"

5. retreive architecture of OS (This should have 64 in it if step 4 displays
"64")
.jcall("java/lang/System", "S", "getProperty", "os.arch")

[1] "amd64"

6. retrieve architecture of R as well (This should again have 64 in it if
step 4 and 5 display 64)
R.Version()$arch

[1] "x86_64"

16

Now what you want to make sure, in case something is not working correctly with rJava, is if
the architectures of Java, your operating system and your version of R match (see comments
4., 5., and 6. in above’s code chunk).

Once this is done, you should install the package devtools (Wickham and Chang 2016), which
permits installing R packages from GitHub.

install.packages("devtools")

Since we only need one function from the package devtools at this point, it is not necessary to
invoke the library command to load the whole package. Instead you can write “devtools::”
and then type the function you want to use.6

devtools::install_github("leifeld/dna/rDNA",
args = "--no-multiarch")

After this is done as well, the final step of the installation is to test if rDNA can be loaded into
R correctly and to perform a basic operation with it—opening DNA from within R. In order to
do so, you first need to download DNA, which can also be done in R with the download.file
command (see Section 8 for more information about this code chunk).

download two files necessary to test rDNA
download.file(

"https://github.com/leifeld/dna/raw/master/manual/dna-2.0-beta20.jar",
destfile = "dna-2.0-beta20.jar", mode = "wb") # download DNA jar

load library
library("rDNA")

initialise the file you just downloaded
dna_init("dna-2.0-beta20.jar")

start up DNA from R with the sample file to see if everything worked
dna_gui(infile = dna_sample())

If these commands can be executed correclty, you are ready and set to use both DNA and rDNA.
How you can do so will be described in the rest of this manual.

6The option args = "–no-multiarch" should normally not be necessary, but prevents errors on some oper-
ating systems. Since devtools tries to test both 32-bit and 64-bit version of a package during installation, the
process inevitably fails as only one architecture of Java is available.

17

Chapter 4

Using DNA: Preparation of your DNA
Workspace
Felix Rolf Bossner and Johannes Gruber

After installing the program (see Section 3), you can now create your first DNA database for
your own research project. How you set up a DNA database will mainly depend on the needs
of your personal research design—which should usually be clear before you start analysing
data. Therefore, DNA can be customised during the creation of a new database in accordance
with how you are planning to use the tool.

4.1 Creating a new DNA database

In order to create a new DNA database file, you have to click on the index tab “File” (in the
upper left corner of your DNA program window) and select the option “New DNA database”
(see Figure 4.1). As a result, a new window will open (see Figure 4.2), in which you find a
menu that provides you with a step-by-step guidance for specifying the configuration of your
personal DNA database

Clicking on the first tab in the sidebar of this menu—“Database” (see Figure 4.2)—opens a
menu, which allows you to choose the file name and storage location of your database. For
this first step of your set-up, DNA provides you with two options in respect to the type of
database, in which your data is stored. Which of these options best fits your research project
is dependent on the circumstances of your coding process:

The preset option “Local .dna file” means, that the dataset is stored in a local
file 1 on your PC or device. This file, with the file extension .dna, can be moved
on your machine, sent via email, uploaded and shared via a cloud file hosting
service—such as Dropbox—and can generally be treated in the same way as any
other file PC users are familiar with. A local .dna file will be sufficient in most user
scenarios, for example, if you employ a single coder working on a single computer,

1Technically an SQLite file.

18

Figure 4.1: Starting a new Database

Figure 4.2: Choose if database will be stored locally or remotly

19

if multiple coders work on a single dataset at non-overlapping intervals or when
multiple coders work at the same time on different datasets, which you merge
after the coding process (see Section 5.2.3). For most users, this simpler option
will adequate in order to use DNAİt is not necessary to be familiar with setting
up and managing an SQLite or MySQL database. If you think, the scenarios
described above cover your intended use of DNA, you can now jump to the next
section and start Creating a local DNA file.

However, for more experienced user or research projects in which several coders
want to work on the same database at the same time, a second option was included
into DNA “Remote database on a server” . This stores your data in a MySQL
database which could be stored locally on your machine—which would defy the
purpose though—on a private sever—such as a Network-attached storage (NAS)—
or on an online Cloud server. You should select this option if you employ a single
coder working on multiple devices or multiple coders working on a single dataset
at the same time. The preconditions for using this type of storage are that all
coders have a stable connection to the database during the coding process—e. g.
via the internet—and that you set up an online MySQL database in advance. If
this is how you want to proceed, you can now jump directly to the section which
descibes the necessary steps for Creating and using a remote database (MySQL).

4.1.1 Creating a local DNA file

1. Click on the button “Browse” (see Figure 4.2). Now a pop-up menu—similiar to the
one shown in Figure 4.3—should be open.

2. In this pop-up menu, you can choose the storage location of your database on your local
device from the “Save in” slide down menu. Enter the name of your database in the field
“File Name” and confirm your choices by pressing the “Save” button (see Figure 4.3).
Now the pop-up menu will close.

3. Next, it is important, that you confirm your choices again by pressing the
“Apply” button (see Figure 4.4). If you forget to press this button, you cannot create
the database in the final step, because the program will report “No database selected”
(see Figure 4.14).

If you just employ a single coder and don´t want to change or supplement the preset stan-
dard research variables (“person”, “organization”, “concept”, “agreement”) or types of codeable
statements (“Statement”, “Annotation”), you can now proceed directly to the final step. If you
use this manual as a beginner´s tutorial for working with DNA, however, it would be helpful to
follow the steps outlined in sections 4.2 and 4.3 in order to gain a better understanding of the
DNA’s potential uses and its functions.

20

https://dev.mysql.com/doc/mysql-getting-started/en/

Figure 4.3: Choose location of database window

Figure 4.4: Apply database choice

21

Figure 4.5: Create MySQL database

4.1.2 Creating and using a remote database (MySQL)

Before you can configure DNA for working with a remote MySQL database, it is necessary to
execute at least three basic operations in MySQL (see Figure 4.5).2

1. You have to create a database on your MySQL server (usually by the command
CREATE DATABASE ’DatabaseName’).

2. As you probably don´t want to allow all coders access to all other databases stored on
your MySQL server, you should create distinct user profile(s) for the coding process of
your DNA project. Even if DNA itself allows for managing multiple different coder roles, we
recommend to create separate user profiles for each of the individual coders—especially
if they simultaneously edit the content of your database. It is also advisable to create
passwords for the access to your database, not only for safety reasons, but also because
DNA sometimes has problems with signing in users without a password. Consequently
you would use the CREATE USER ’Username’@’%’ IDENTIFIED BY ’Password’ command.
Note, that in this step you could also restrict the respective users access to your database
to a specific device by replacing ’%’ through a particular server address if this is necessary.

3. Finally, you have to equip the users with the necessary rights to edit your database. In
MySQL simply use GRANT ALL PRIVILEGES ON Databasename.* TO ’Username’@’%’, as
it makes more sense to specify distinct user roles and rights directly in DNA (see 4.2),
where options were tailored to fit discourse network-analytical coding purposes.

Once the MySQL database is set up, you only have to select the option “Remote database
on a server” in the first tab of the sidebar menu “Database” in DNA (see Creating a new

2For a detailed introduction to database management with MySQL see dev.mysql.com/doc/mysql-getting-
started.

22

https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/

Figure 4.6: Connecting to local MySQL database

DNA database) and enter the respective username and password created in the previous step
in the respective fields “User” and “Password” as well as to specify the server address of
the database, with which you want to connect, in the field “mysql://” . If you want to access
the database remotely from another device, you have to indicate the URL or IP-address of
your host server, the port (which is 3306 in default, but can be configured manually) and the
name of your database in the format “Hostserveraddress:Port/Databasename” . If you
use DNA on the device hosting the database you can instead use the configuration shown
in Figure 4.6 (“localhost/Databasename”). By clicking the button “Check” you can now
check if DNA is able to connect to your database. If this is successful, you will receive the
message “Ok. Tables will be created” (see Figure 4.6); if not, DNA will report “Error:
Connection could not be established” . In case of the latter, you should check the validity
of your server address, username and password and—if necessary—repeat the steps outlined
above. It should be noted that—for security reasons—MySQL doesn´t allow remote access
with the “root” superuser-profile in most cases. Similar to the generation of a local .dna file,
it is finally important, that you confirm your choices again by pressing the “Apply” button
(see Figure 4.6). If you forget to press this button, you cannot create the database in the final
step, because the program will report “No database selected” (see Figure 4.14).

4.2 User Management: Multiple Coders and Permissions

This second step of preparing your DNA workspace allows you to generate multiple user
identities with different sets of rights for different coders. Thus, you can specify for each
coder, which parts of the dataset each user can see or edit and thereby pre-structure your
coding and research process. In order to do so, click on second tab “Coder” in the sidebar of
the “Create new database” menu (see Figure 4.7).

In the main window (see Figure 4.7) you can now see a list with all coders and how many of

23

https://dev.mysql.com/doc/refman/5.5/en/connecting.html

Figure 4.7: Adding a second coder to the database

Figure 4.8: Configuring coder permissions

the 12 possible actions they are permitted to perform. Now you can either add a new user
profile by clicking the “Add” button (see Figure 4.7) or select an existing coder and adjust
her/his users rights by clicking on the user and then on the “Edit” button (see Figure 4.10).
Both options will open the pop-up menu shown in (see Figure 4.8).

This pop-up menu allows you to configure an individual profile for each coder in three simple
steps:

1. You can choose the colour for the coder (see Figure 4.8, step 1). It is recommended
to choose different—if possible—divergent colours for each coder, because this permits
you to detect at the first glance, which user coded which statement, as every coded
statement is marked in the individual colour of its respective coder (see middle column
of Figure 4.9).

2. You can enter the preferred name of each coder in the field “Name” . If possible with

24

Figure 4.9: Change coder identity

respect to data protection rules, it is recommended to use the real names of the coders.
This makes it easier for them to select their profile (in the upper left of the main program
window) the first time they start the program (see Figure 4.9).

3. The final step allows you to configure the permissions of each coder individually by
(de)selecting the respective rights via a click (see Figure 4.8, step 3). Each new user has
all of the 12 configurable permissions in the preset mode. Which parts of the dataset
an individual coder should be able to see or edit, should depend on your coding process.
For better orientation a few practical implications of the 12 configurable permissions are
listed in Table 4.1 . Please keep in mind, that every user can see and change to other
user identities either accidentally or because of non-compliance, as s/he has to select
her/his role the first time s/he starts the program and can change her/his role anytime
(see above and Figure 4.9)

Finally you approve your choices by clicking the OK button (see Figure 4.8, step 4). It is
possible to change the settings either in the “new database” menu by selecting the respective
user and clicking the “Edit” button (see Figure 4.9) or changing the coder settings in the
main menu.

Table 4.1: User permissions explained

Permission Practical Implication

add documents The user can add new documents (i. e., raw data) manually (via
copy and paste or retyping) to the database ⇒ user has (also) a
research function.

import documents The user can import new documents from other sources like .txt or
other .dna files to the database or recode the metadata of multiple
documents ⇒ user has (also) a research function.

25

Table 4.1: User permissions explained

Permission Practical Implication

delete documents The user can delete documents from the database or dataset. This
option requires at least the other permission “view others’ docu-
ments” if the user has an organizing or editing function (structuring
database for coding by other users) or the permission “add docu-
ments” and “add statements” if the coder determines own codes and
organizes her/his own set of data.

edit documents The user can edit her/his own documents (i. e., raw data), but
not necessarily the codings in these documents that were made
by other users—which would require the permission “edit others’
statements”—or the documents uploaded by other users—which re-
quires the permission “edit others’ documents”. This option requires
at least the other permission “add documents” or “import docu-
ments” and should be selected if the user determines own codes and
organizes her/his own set of data or acts as a researcher for the other
coders.

view others’ documents The user can view the documents uploaded by other users. This
option is necessary for a collaborative coding process in which only
a part of the users selects and uploads the raw data (i. e., documents)
for all other users. The option should not be selected if each coder
comes up with own codes and organizes her/his own set of data.

edit others’ documents The user can edit the documents uploaded by other users. This op-
tion requires at least the other permission “view others’ documents”
and should be selected if a user organizes or edits the raw data
provided by other users.

add statements The coder actually codes the data by creating and editing state-
ments. If only a part of the users select and upload the raw data
this option requires the additional permission “view others’ docu-
ments”. If the coder suggests own codes and organizes her/his own
set of data this option requires either the additional permission “add
documents” or “import documents”.

view others’ statements The coder can view the statements coded by other users. For ex-
ample the Coder “DNA User” would not see the yellow statement
of the Coder “Admin” in Figure 4.9 if this option was deselected for
her/his user role. This option should be de-selected if you want to
establish a blind coding process.

edit others’ statements The coder can edit or correct the statements coded by other users.
This option requires at least the other permission “view others’ state-
ments” and should only be selected for few users with an organizing,
controlling or editing function.

add coders The user can add new coders (see Section 4.2). This option should
only be selected for few users with an organizing function.

26

Table 4.1: User permissions explained

Permission Practical Implication

edit statement types The user can change or complement the variables of interest (see
Section 4.3). This option should only be selected for very few users
or the researchers themselves because possible adjustment of these
variables is usually only necessary in cases when the research design
and/or research questions change fundamentally.

edit regex settings The user can specify keywords which are highlighted in the text,
along with a text color. For example, in Figure 4.9 the word “col-
ors” is highlighted in the raw data text (middle column), because
it was specified as a keyword in the regex highlighter sidebar in the
bottom left of the DNA window. If a user does not have the right
to edit the regex setting, the buttons “Add” and “Remove” in this
highlighter would be hidden, but the keyword would nevertheless
be visibly highlighted in the text and listed in the regex highlighter
sidebar. Thus, if you specify a distinct set of theory based keywords
in advance in order to render the coding procedure semi-automatic,
you should not enable this option or select it only for few users,
as the respective coder could change the keywords. However, if you
don´t have a theoretically relevant set of keywords in advance or just
specify them as a assistance for your coders, you can allow them to
formulate such keywords by themselves.

4.3 Statement Types and Variables

Clicking on the third tab in the sidebar of the “Create new database” menu—“Statement
Types” (see Figure 4.11)—opens a menu, which allows you to adjust or supplement either
the variables or the types of statements, which your coders derive from the raw data.

4.3.1 Adjusting the variables of interest

The statement type “DNA Statement” represents a text portion of your raw data, where
an actor reveals her/his opinion/belief/etc. about an issue. Thus, the main task of your
coder(s) is to identify such text portions and gain the relevant data about the actor or his
opinion/belief/etc. Your research question or theory should not only dictate what kind of
information should be coded as statements, but also which relevant variables of this information
should be captured by the coder. As you can see in the “Statement Types” menu, DNAs default
configuration allows capturing four variables. Selecting “DNA Statement” and clicking on
the button “Edit” (see Figure 4.11) opens a pop-up window (see Figure 4.12), which reveals the
nature of this four preconfigured variables, along whose lines the coders can collect information:

• the person who makes the statement.

27

Figure 4.10: Edit coder details

Figure 4.11: Edit Statement Types

28

Figure 4.12: Edit Statement Type details

• the organization the speaker is affiliated with.

• the concept (opinion/belief/etc.) which is raised by the actor.

• a dummy variable indicating whether the actor agrees with the concept or not.

Furthermore the pop-up window depicted in Figure 4.12 shows, that each variable is assigned
to a specific data type: While “person”, “organization” and “concept”—according to their nature
as nominal variables—will be coded by a short text, “agreement” as a dichotomous variable
will be coded as a boolean data type , which accordingly only allows for two forms (either
agreement or non-agreement). Neither the data type nor the name of the variables can be
changed directly. However by selecting a variable and clicking on the trash symbol (on the
right side of the “Add Variable” button, Figure 4.12, step 4) you can delete a variable and
subsequently replace it by a new one. Generating a new variable—either to replace one of
the preconfigured variables or because you are interested in an additional or a different set of
variables—is possible in five simple steps:

1. You have to select an existing variable in order to activate the variable menu (see 1,
Figure 4.12).

2. Now you can enter the name of the new variable in the text field at the bottom of the
pop-up window (see 2, Figure 4.12). For example, in Figure 4.12 we are interested in
collecting the age of the person who makes the statement. Please note, that DNA does

29

https://en.wikipedia.org/wiki/Boolean_data_type#Python.2C_Ruby.2C_and_JavaScript

not allow spaces in variable names. Putting a space in the variable name will disable
the “Add Variable” button necessary for step 4.

3. Now you can choose the data type of your variable by clicking on one of the four
options. In our example, we choose the option “integer”, as the age of a person is
neither a nominal nor a dichotomous variable, but an integer number) (see Figure 4.12,
step 3).

4. You have to click on the “Add-Variable” button, which has the form of a green plus
symbol (see 4, Figure 4.12). If this button is disabled, you probably did not select a
existing variable (step 1) or have a space in your variable name (see step 2).

5. Click the “OK” button to confirm your choices (see Figure 4.12, step 5).

Please note, that—for the statement type “DNA Statement”—you should only specify vari-
ables, in which you have an actual research interest in and that accordingly have to be coded
for all statements by all coders. If you are interested in additional and optional information
about some statements, you can specify them as variables of the other preconfigured statement
type—“Annotation” .

4.3.2 Adjusting the statement types

There are very few research scenarios, in which it is necessary to complement the two existing
types of statements with further ones or with an adjustment of type “DNA statement”. One
of them would be, if you study two parallel yet different research questions, which employ the
same dataset and the same coders at the same time. In this case, you could first rename the
statement type “DNA Statement” by selecting it from the statement type menu, clicking the
“Edit” button (see Figure 4.11), entering the new name (in this case: “Statement for Research
Project 1”) in the text field on top of the pop-up window (see Figure 4.12) and pressing
the “OK” button (see 5, Figure 4.12). Subsequently you would open a new pop-up window
by clicking on the “Add” button in the statement type menu (left button in Figure 4.11). Then
name the new statement type (in this case: “Statement for Research Project 2”) in the text
field on top of the pop-up window and choose a color (different from the other type) by
clicking on the colored button next to this text field. Then you also need to specify the
relevant variables synchronous to the procedure depicted in Section 4.3.1. However, please
evaluate carefully, if it is really neccesary for your second research interest that you specify a
second statement type or if it would be possible to either conceptualize it as a variable of the
existing statement type or study it sequentially or with a different set of coders (and therefore
in a different DNA dataset). More than two statement types (besides “Statement” and
“Annotation”) can cause a confusion of the coders and therefore compromise the
validity of the coding procedure.

30

https://en.wikipedia.org/wiki/Integer_(computer_science)

Figure 4.13: Summary of your about to be created DNA database

4.4 Final step: Approving your workspace and creating the
DNA file

Finally, clicking on the “Summary” tab in the sidebar of the “Create new database” menu
provides you with a summary of your choices in respect to the configuration of your coding
process (see Figure 4.13). After controlling each of the three information you can now create
your database by clicking on the “Create database” button. If this button is disabled and
you get the error “No database selected” (see Figure 4.14), you probably forgot to click the
Apply button after specifying your database (see Section 4.1.1, step 3). After creating the
database, the new database will open in the main DNA window (see Figure 4.1) and you can
proceed towards loading up and organizing the raw data.

31

Figure 4.14: No databse selected (e. g. if choice was not applied)

32

Chapter 5

Using DNA: Importing and
Organizing your Raw Data
Felix Rolf Bossner

This section describes how to upload and organize your research project’s raw data—i. e. the
text files (newspaper articles, press releases etc.) containing the uncoded statements—in DNA.
First it will be layed out how you open an existing database—either locally or from a remote
location. Then you will learn how to import new documenst into DNA—either by importing one
document at a time or by selecting mutliple documents for import. Finally, we tell you how
you can organise the documents in your database and how you can change your docuemtns’
metadata.

5.1 Opening an existing DNA database

First of all, you have to choose, in which DNA Database you want to upload and process your
data. To open a DNAdatabase, simply follow the steps depicted in Figure 1: First, click on the
index tab “File” and select the option “Open DNA database” (see Figure 5.1, step 1). As a
result, a pop-up window will appear, which allows you to choose between opening a “Local
.dna file” or a “remote database on a server” . If your database is stored on a remote
server, you should choose the second option and repeat the procedure outlined in Creating
and using a remote database (MySQL). If your dataset is stored in a folder on your local
PC or device, you can proceed with the preset option and click on the button “Browse” (see
Figure 5.1, step 2), which will open a further pop-up window, in which you can find your
database by choosing its storage location from the “Save in” slide down menu (see step 3),
selecting the respective database (see step 4) and clicking on the button “Open” both in the
pop-up and the “Open existing database...” window (see steps 5 and 6).

33

Figure 5.1: Opene DNAdatabase

5.2 Importing Documents (Raw Data)

There are four different—partly semi-automatic—ways to upload your raw data and related
descriptive information (title, date, author, source, section and type of document) into DNA:
Importing single Documents manually via Copy and Paste, Importing multiple Documents
semi-automatically from text files, Importing Documents from other DNA databases and using
rDNA to import data which is already available in R (WIP!). All four will be explained in detail
in this section.

5.2.1 Importing single Documents manually via Copy and Paste

The most basic way to import data to DNA requires you to manually copy and paste the content
and the descriptive information for each of your documents into the text fields of a pop-up
window, which you open by clicking on the index tab “Documents” and selecting the option
“Add new document” (see Figure 5.2). This window has eight text boxes, in which you can
enter information from and about your source data (see Figure 5.2):

• The field “title” is mandatory and may include any kind of information, for instance a
unique ID if you plan to collect additional information about the articles in a separate
database. Duplicate article titles are not allowed.

• The field “date” is also mandatory and preset on the current time and day. You can
change it by either clicking on the year, month, day or time and adjusting the respective

34

Figure 5.2: Open DNA-database

value via the arrows on the right or by manually entering the date in the format “YYYY-
MM-DD hh:mm:ss”. Please make sure you enter the date correctly because otherwise
the algorithms for longitudinal data will not work properly.

• The fields “author” , “source” , “section” and “type” are optional, but this additional
information can help you to efficiently organize your data and ensure the reproducibilty,
transparency and future usage of your research project. You can enter these information
either manually or select an author, source, section or type you specified for a previ-
ously added document from the drop-down menu, which appears when you click on the
downward arrow buttonon the left of the respective field.

• To insert the content of your document, copy your article from a website or any other
text source and paste it in the text field (largest field at the bottom of the pop-
up window). Single line breaks are automatically removed, while double line breaks
(paragraph breaks) are preserved. Some escape sequences and special characters are
automatically removed when text is inserted.

• If you want to add further meta information to your document, which does not fit the
preset categories, you can use the field “notes” .

Finally—after checking your specifications—you can import the document to DNA by clicking
the “Add” button.

35

Figure 5.3: Downloading files from the LexisNexis newspaper archive

5.2.2 Importing multiple Documents semi-automatically from text files

If you want to analyze a greater number of articles, it quickly becomes tedious to manually
copy and paste each document and its meta data. This is why DNA also offers a semi-automatic
way to upload multiple documents and their relevant meta data (author, date, source, type)
at the same time.

Downloading and Preparing your Raw Data. This way of importing raw data to DNA
requires that you save all documents as separate “.txt” files (one file for each article) in a
common folder. Please note, that you have to use the “.txt” format for saving your data,
as DNA can not import “.doc” or “.pdf” files.1 In case you use the newspaper database of
LexisNexis—which is available through many university lbraries—for finding and retrieving
your raw data, please make sure that you download all documents separately (by selecting
the individual document before clicking the download button, see Figure 5.3, step 1-2) and
choose the document format “Text” (under “Format Options” in the Download pop-up menu,
see Figure 5.3, step 3-4) before downloading the data (see Figure 5.3, step 5).2

If you want to use the preset regex configurations (in contrast to adjusting them) for auto-
matically detecting and uploading the meta data of your documents, you should use a file
name in the format “DD.MM.YYYY - Author - Source - TYPE.txt” with blanks
before and after the minuses, where “DD.MM.YYYY” is the date, on which the article
was published. While “Author” and “Source” do not require a special format or length (e. g.
you can use the first and/or last name of the author), the type of the document must always
be indicated by capital letters. For example, the file name of the article spon.de/aeclD, which

1You can, however, save Word-documents as .txt files or use an online converter to transform PDFs into
txt files. Note, that you need to make sure (both cases) that the .txt file is saved with UTF 8 encoding.

2If you use rDNA it will soon also be possible to import LexisNexis data into DNA via using rDNA and a new
Rpackage called LexisNexisTools.

36

http://spon.de/aeclD
https://github.com/JBGruber/LexisNexisTools

Figure 5.4: Import text files

is used as an example here, would have the format “31.03.2014 - Ralf Neukirch - SPON In-
ternational - DIGITALRESOURCE.txt”. Please note, that plain text files are somtimes saved
as “.TXT” instead of “.txt” files. While this is technically the same, it can cause problems
while importing multiple text files. If this is the case, you have to either change the preset
Regex configuration or correct the “.txt” suffix manually in the file name(s). Otherwise the
automatic detection of your documents’ meta data will not work.

Importing your Raw Data into DNA If you prepared your data adequately, you can
retrieve the documents and the relevant additional information in four simple steps (see Fig-
ure 5.4):

1. Click on the index tab “Documents” and select the option “Import text files” (see
Figure 5.4, step 1). As a result, a new window will open, in which you press the button
“Select folder” (see step 2). This will open a further pop-up menu. Here, you have to
select the folder, in which you saved the text files of your raw data, from the “Look
in” slide down menu (see step 3) and click the button “Open” (see step 4).

2. Now all documents, which are stored in the respective folder, should be listed in the main
window of the “Import text files...” pop-up (see Figure 5.5). If this isn’t the case,
please check if your documents are saved in the right file format (.txt). In order to check,
whether DNA is able to automatically identify your documents’ meta data, select one of
the documents and click on the “Refresh” button (see Figure 5.5). If you specified the
file names correctly, you can now see the respective meta data of the selected document

37

Figure 5.5: Import text files

in the fields “Title”, “Author”, “Source”, “Type” and “Date” of the “Preview” Section at
the bottom right of the “Import text files” window (see Figure 5.5).

3. If you want to adjust or amend the meta data manually, just select the document,
uncheck the box “Regex” of the field you want to edit and enter the new or additional
information in the field on the left. Then click again on the “Refresh” button to check,
whether your changes were accepted.

4. Finally, click on the button “Import files” to import all documents of the respective
folder into your DNA database (you do not need to select each document for import).

Adjusting the Regex Configuration for automatic identification of meta data. The
previous steps assumed that you use the preset configuration of DNA to detect and upload the
meta data (Title, Author, Source, Type, Date) of your documents automatically into your
database. However, if you are interested in automatically importing additional information
about your source data (in the fields “Section” or “Notes”) or if your file names depart
from the naming system layed out here (but nevertheless contain all relevant information in
a systematic order), DNA allows you to change, adjust or amend the pattern, through which
the meta data about your documents is derived from the file names. The commands/rules, on
which the “translation” of file names into meta data is based, are formulated in the Regular
expessions (in short: Regex) syntax and can be edited for each kind of information (Title,
Author, Source, Section, Tyoe, Notes, Date) in the field “Pattern” on the bottom left of
the “Import text files...” window (see Figure 5.5). If you want to amend or adjust this
settings it is recommended to use a Regex Cheatsheet (see e. g. cheatography.com or this

38

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
https://www.cheatography.com/davechild/cheat-sheets/regular-expressions/
http://www.txt2re.com/index-perl.php3?s=31.03.2014%20-%20Ralf%20Neukirch%20-%20SPON%20International%20-%20DIGITALRESOURCE.txt&-94&-102&80&77&75&81&-95&79&76&78&82&13&14&5&3
http://www.txt2re.com/index-perl.php3?s=31.03.2014%20-%20Ralf%20Neukirch%20-%20SPON%20International%20-%20DIGITALRESOURCE.txt&-94&-102&80&77&75&81&-95&79&76&78&82&13&14&5&3

Figure 5.6: Import text files

regex “translator”). As further support, Figure 5.6 translates the preset regular expressions of
the DNA “Import text files...” option.

5.2.3 Importing Documents from other DNA databases

You can also import documents from other DNA databases. This function is particularly relevant
in two scenarios: First, if you not only want to use the raw data, but also the coded
statements of an already finished research project, this function allows you to import both.
Secondly, if there is more than one person working on the same project at the same
time and you did not use multiple user roles (see Section 4.2) to enable your coders to work
on the same remote database. In the second scenario, you should use this function to prepare
your datasets or merge the codings, as it is usually difficult to merge the files manually later
on. In the latter scenario, the function helps you to avoid trouble with duplicate statement
IDs and article names, as DNA will take care of e. g. duplicates automatically.

Make sure, that you know which version of DNA (DNA 2.0 or older) was used to create and

39

http://www.txt2re.com/index-perl.php3?s=31.03.2014%20-%20Ralf%20Neukirch%20-%20SPON%20International%20-%20DIGITALRESOURCE.txt&-94&-102&80&77&75&81&-95&79&76&78&82&13&14&5&3
http://www.txt2re.com/index-perl.php3?s=31.03.2014%20-%20Ralf%20Neukirch%20-%20SPON%20International%20-%20DIGITALRESOURCE.txt&-94&-102&80&77&75&81&-95&79&76&78&82&13&14&5&3

Figure 5.7: Import a DNA 2.0-database

edit the database, from which you want to import data, before using the “Import from DNA”
function. If you use this manual as a beginner’s tutorial for working with DNA please download
the file “sample.dna” from the DNA github.com/leifeld/dna/releases. This file contains a small
selection of documents and statements from a larger project about congressional hearings on
climate change, employed in the project described in Fisher et al. (2013a,b).

To import documents (and the included code statements), click on the index tab “Docu-
ments” and select the option “Import from DNA 2.0 file” , if DNA 2.0 was used to create and
edit the database. As the internal structure of .dna files has significantly changed since version
1.31, databases created with an older version of DNA need to be impored using the seperate
method “Import from DNA 1.31 file” (see Figure 5.7, step 1). As a result of either step, a
further pop-up menu will open (see Figure 5.8). In this window, you have to select the folder,
in which you saved the text files of your raw data, from the “Look in” slide down menu
(see step 2) and select the respective .dna file (see step 3). Click the button “Open” (see
step 4) to then open the menu depicted in Figure 5.8.

In this menu, you can select, which documents (and respective which coded statements) from
the original DNA database you want to import in your database by either manually checking
or unchecking the boxes on the left of the document title or by using the function “Keyword
filter” . This function is particularly helpful if you want to only import few documents with
a specific common characteristic (author, topic) from a very large dataset. Clicking on the
button “Keyword filter...” (see left button in Figure 5.8) opens a new pop-up window, in
which you can enter a specific search term. For example, if you downloaded and opened the
“sample.dna” file, you can select all congressional hearings of NGO representatives by entering
the keyword “NGO” in the text field and pressing the button “OK” in the “Keyword filer”

40

https://github.com/leifeld/dna/releases
https://github.com/leifeld/dna/raw/master/manual/sample.dna

Figure 5.8: Import Statements menu

41

pop-up window (see Figure 5.8). Now only the boxes of the three documents, which contain
the hearings of NGO representatives Kateri Callahan, David Hamilton and Nayak Navin,
should be checked, while the other boxes are unchecked. The “Keyword filter..” function is
based on the same regex syntax described in Adjusting the Regex Configuration for automatic
identification of meta data. This means, you can also use more specified regular expressions
(see Figure 5.6 or regex cheatsheet) to select certain articles. For example, if you enter a “ˆN”
in the “Keyword filter” DNA will select all articles starting with a capital N. If you want to
undo your selections, you can also automatically select or unselect all articles by pressing the
button “(Un)select all” in the middle of the “Import statements” window (see Figure 5.8).
Pressing the right button “Import selected” in the same window imports all documents with
a checked box (and the respective coded statements) in your DNA database (see Figure 5.8). If
you use this manual as a beginner’s tutorial for working with DNA, you should try importing
all documents and the respective statements from the file “sample.dna” into your database.

5.3 Organizing documents (Raw Data)

5.3.1 Deleting and navigating through documents

All your imported documents are listed in the upper middle table of the DNA main window.
If you click on an article, its corresponding text (i. e. the speech) will be displayed in the
text area below the document table. By clicking on, for example, the entry “109-1: Callahan,
Kateri-NGO-Y” you open the speech of Kateri Callahan, a representative of the Alliance to
Save Energy. You can adjust the size of the document table (by clicking on the bar above the
text area and moving it vertically with your cursor) or its colums (by clicking on the edge of
the column and moving it horizontally with your cursor). You can also customize the meta
information, which are displayed in the document table: Just right click on any document
and use the appearing context menu to (un-)check the boxes of the information you (don’t)
want to be displayed (see Figure 5.9, step 1). A structured (and customised) overview of
your raw data is essential for detecting missing information and thus efficiently controlling,
organizing and coding your data. For example, if you display the meta information “Type” (by
checking the respective box in the context menu), you can see that the type of all documents
from the sample.dna file is not listed.

The same context menu can be used to delete documents from your database by selecting the
documents you want to delete (pressing and holding the “Ctrl” key for selecting multiple
documents), opening the context menu with a right click and choosing the option “Delete
selected documents” .

5.3.2 Editing the documents’ meta data (author, time etc...)

DNA allows you to edit, delete or complement the descriptive information related to your raw
data (title, date, author, source, section and type of document). Similiar to the procedures
outlined in Section 5.2 there is a manual as well as a semi-automatic way to adjust the meta
data of your documents.

42

https://www.cheatography.com/davechild/cheat-sheets/regular-expressions/
https://github.com/leifeld/dna/raw/master/manual/sample.dna

Figure 5.9: Import Statements menu

Editing the documents’ meta data manually. The most basic way to edit your doc-
uments’ meta data is to select the document, of which you want to edit the information
(by left-clicking on it) and adjusting the values in the “Document properties” submenu on
the middle left of the DNA main window (see Figure 5.9, step 2) by either manually typing
in the relevant information or by selecting an already specified author, a source, a section or
a type from the drop-down menu on the right of the respective meta field. For example,
in Figure 5.9 (step 2) Kateri Callahans speech was selected, and the value “NGO” (for Non-
Governmental Organisation) was manually specified as “Type of document” by entering it in
the field “Type” of the “Document properties” submenu. Do not forget to press the button
“Save” in the submenu (see Figure 5.9, step 2) to confirm your edits.

Please note, that you can manually only edit the meta data of one document at one time.
If you try to select multiple documents for editing, the “Document properties” submenu will
disappear, returning “(No document or permission)”.

Editing the documents’ meta data semi-automatically. However if you want to adjust
the meta data of a greater number of articles, it quickly becomes tedious to manually edit
information about each document. This is why DNA also offers a semi-automatic way to edit,
delete or complement the descriptive information related to your documents. In order to edit
your documents’ meta data semi-automatically, click on the index tab “Documents” and
select the option “Batch-recode meta-data” (see Figure 5.9, step 3). As a result, a pop-up
window similiar to Figure 5.10 will open. In the upper half of this pop-up window you find
nine fields, which can be configured in order to adjust the meta data formultiple documents
at once:

43

Figure 5.10: Meta information recode window

• The field “Target field:” specifies, which kind of meta information (i. e. title, author,
source, section, type, notes) should be adjusted by choosing the respective meta data
category from the slide-down menu (which you open by clicking the arrow on the right
of the target field).

• The field “Source field:” specifies, where the data you want to use for adjusting the tar-
get field is stored. For example, if you simply want to delete or correct (e. g. misspelled)
title-, author-, source-, section-, type- or notes-metadata, you usually choose the same
field as source field as you have chosen as target field, since you want to adjust the data
already stored in this field. However, if you want to add new data to a (maybe empty or
incomplete) target field, you have to choose the part of the meta information as source
field, which contains the information, from which you want to derive the new data. As
the document title should contain all relevant meta information, “Title” is usually used
as source field for the latter case.

• The field “Matching on target regex” allows you to automatically delimit the doc-
uments which you want to adjust, based on the information stored in the document’s
target field. Similiar to all regex implementations in DNA you can either use search terms
or regular expressions to filter the documents. If you, for instance, misspelled the author
“Ralf Neukirch” sometimes as “Ralf Neunkirch”, you can correct all your misspellings
by simply selecting “Author” as “Target field”, entering “Ralf Neunkirch” in the field
“Matching on target regex:” and the correct version (“Ralf Neukirch”) in the field “New
target field”. As “Matching on target regex” automatically deselects all non-matching
cases (here: All documents, who do not have “Ralf Neunkirch” specified as their author),
the meta information (here: “Author”) remains the same for all other documents.

44

• The field “Matching on source regex” similarly allows you to automatically filter the
documents of which you want to alter the meta data, based on the information stored in
the document’s source field. For example, if you realise that Ralf Neukirch does not write
for “SPON International” (as you erroneously specified), but for “THE GUARDIAN”, you
can simply correct all your misspecifications by first selecting “Source” as the “Target
field” and “Author” as the “Source field”, secondly entering “Ralf Neukirch” in the field
“Matching on source regex” and then specifying “THE GUARDIAN” as “New target
field”.

• The field “%target regular expression” allows you to specify/match a part of the
target field, which you want to use as new information in the same field. For example,
if the field “Author” somehow contains the full document titles you can reduce the
information in the field “Author” to just the name of the respective author by entering
the regular expression “(?<=.+?–-).+?(?= -)” (see Figure 5.6 or regex cheatsheet) in the
field “%target regular expression” and entering “%target” in the field “New target field”.
Please note, that if you do not use this function, you should not change the
preset value “.+” in this field—because if you do, your recoding might not obtain
the expected results.

• The field “%target replacement” defines a new value for the information in the target
field—similarly to the fields “New target field” and “%source replacement”. If you use
“%target” as “New target field”, you have to specify the new, additional, corrected or
reduced information in this field.

• The field “%source regular expression” allows you to specify/match a part of the
source field, which you want to use as new information in the target field. For example, if
your source field is “Title” and the titles of your documents have the recommended format
(i. e. “DD.MM.YYYY - Author - Source - TYPE.txt” with blanks before and after the
minuses; see Section 5.2.2) you can automatically specify the meta information for the
field “Author” by (1.) choosing “Author” as the “Target field” and “Title” as the “Source
field”, (2.) entering the regular expression “(?<=.+?–-).+?(?= -)” (see Figure 5.6 or
regex cheatsheet) in the field “%source regular expression” and (3.) entering “%source”
in the field “New target field”. Please note, that if you do not use this function,
you should not change the preset value “.+” in this field—because if you do,
your recoding might not obtain the expected results.

• The field “%source replacement”—similarly to the fields “New target field” and “%tar-
get replacement”—defines a new value for the information in the target field. If you use
“%source” as “New target field”, you have to specify the new, additional, corrected or
reduced information in this field.

• The field “New target field” defines the new, corrected, reduced or additional data,
which is entered in your target field (see examples above). Please note, that this field has
to be set on “%source” (preset value) if you use the functions “source regular expression”
or “source replacement” and has to be set on “%target” if you use the functions “target
regular expression” or “target replacement”. Otherwise, the respective functions will not
work.

45

https://www.cheatography.com/davechild/cheat-sheets/regular-expressions/
https://www.cheatography.com/davechild/cheat-sheets/regular-expressions/

The lower half of the “Recode document meta-data” pop-up window (see Figure 5.10) displays
a table with four columns and a row for each of your documents, which help you to preview,
control and trace back your changes to the meta data:

• The column “ID” contains the individual ID of each of your documents. This column can
be particularly helpful if you specify a recoding procedures for a certain set of documents.
If you know the ID of a few exemplary documents from this set, you can quickly trace
back and understand the consequences of your recoding specifications by scrolling down
to the respective IDs and taking a look at the other columns of these documents.

• The column “Source field” displays the field, from which you get the meta data for
recoding the target field. It is particularly helpful to understand the sequence of infor-
mation in the source field, if you want to specify a “%source regular expression” or use
“Matching on source regex” (for example, if only some source fields contain the relevant
information).

• The column “Old target field” shows the meta data in the target fields prior to your
adjustments. It is particularly helpful if you want to use “%target regular expression” or
use “Matching on target regex” (for example, if you only want to change the value of a
certain set of target fields).

• The column “New target field” displays the consequences of your adjustment. It
is particular helpful to check if your recoding will be successful or if some recoding
outcomes are actually undesired (for example, if the target field already contained the
relevant information, but is recoded nevertheless).

Your recodings are only applied, if you press the button “Recode” (on the lower right of the
“Recode document meta data” window, see Figure 5.10). Once this is applied, it cannot
be undone! So please control the consequences of your recodings by using the table at the
lower half of the window. However, before pressing the “Recode” button, you can revert all
adjustments by pressing the button “Revert changes” and therefore are able to experiment
with the meta data (regex) specifications.

As noted previously, all documents from the file “sample.dna” do not specify any meta data
concerning the type of the respective document. Both Figure 5.10 and Figure 5.11 illustrate
an exemplary semi-automatic procedure for complementing this information based on the
information stored in the document title (here: The organisation, to which the respective
speaker belongs to). Thus in both examples, “Type” is selected as “Target field”, while “Title”
is selected as “Source field”.

The example in Figure 5.10 uses manual search terms to specify the meta information for
the document type. By entering “NGO” in the field “Matching on source regex” the adjustments
are limited to the documents, which contain “NGO” in the document title. By entering “NGO”
in the field “New target field”, the new value for “Type” is specified for the selected documents.
As you can see in the table on the lower half of the “Recode meta-data” window, this very simple
procedure is insofar successful, as only the target fields of documents containing hearings of
NGO-representatives are changed and the target fields of all other documents (including those

46

Figure 5.11: Meta information recode window (regex explained)

with already correct “Type” information) remain unchanged. However, this procedure would
have to be repeated for each kind of organisation from the sample (NGO, GOV, BUS).

The more elegant way of semi-automatically specifying meta information is depicted in Fig-
ure 5.11, which uses the Regex-syntax. Here, by entering ˆ? in the field “Matching on
target regex”, only those documents are selected for amendment, which do not already contain
any information about the document type (therefore excluding those documents with already
correct “Type” information). By specifying (?<=.+?-)[A-Z]+ as “%source regular expression”
(and accordingly “%source” as “New target field”), DNA is instructed to filter any string of
upper-case characters before a minus in the document title and set it as a new value for
“Type”. Thus you can recode the document type for all documents at once, ensuring that
already specified values are not overwritten—as evident from the table in the lower half of the
window.

47

Chapter 6

Using DNA: Coding the Data

Coming soon...

48

Chapter 7

Using DNA: Exporting the coded Data

Coming soon...

49

Chapter 8

rDNA: Using DNA from R
Philip Leifeld

DNA can be connected to the statistical computing environment R (R Core Team 2014) through
the rDNA package (Leifeld 2018). There are two advantages to working with R on DNA data.

The first advantage is replicability. The network export function of DNA has many options.
Remembering what options were used in an analysis can be difficult. If the analysis is executed
in R, commands—rather than mouse clicks—are used to extract networks or attributes from
DNA. These commands are saved in an R script file. This increases replicability because the
script can be re-used many times. For example, after discovering a wrong code somewhere
in the DNA database, it is sufficient to fix this problem in the DNA file and then re-run the R
script instead of manually setting all the options again. This reduces the probability of making
errors and increases replicability.

The second advantage is the immense flexibility of R in terms of statistical modelling. Analysing
DNA data in R permits many forms of data analysis beyond simple visualization of the resulting
networks. Examples include cluster analysis or community detection, scaling and application
of data reduction techniques, centrality analysis, and even statistical modelling of network
data. R is also flexible in terms of combining and matching the data from DNA with other data
sources.

8.1 Getting started with rDNA

The first step is to install R. Installing additional R packages for network analysis and cluster-
ing, such as statnet (Goodreau et al. 2008; Handcock et al. 2008b, 2016), xergm (Leifeld et al.
2017a,b), igraph (Csardi and Nepusz 2006b), and cluster (Maechler et al. 2017), is recom-
mended. Moreover, it is necessary to install the rJava package (Urbanek 2016), on which the
rDNA package depends, and the devtools package (Wickham and Chang 2016), which permits
installing R packages from GitHub (see Section 3.4).

50

install.packages("statnet")
install.packages("xergm")
install.packages("igraph")
install.packages("cluster")
install.packages("rJava")
install.packages("devtools")

After installing these supplementary packages, the rDNA package can be installed from GitHub.
The devtools package contains a function that permits easy installation of R packages from
GitHub and can be used as follows to install rDNA:

library("devtools")
install_github("leifeld/dna/rDNA")

Once installed, the rDNA package must be attached to the workspace:

library("rDNA")

To ensure that the following results can be reproduced exactly, we should set the random seed
in R:

set.seed(12345)

Now we are able to use the package. The first step is to initialize DNA. Out of the box, rDNA
does not know where the DNA .jar file is located. We need to register DNA with rDNA to use
them together. To do that, one needs to save the DNA .jar file to the working directory of
the current R session and then initialize DNA as follows (with dna-2.0-beta20.jar in this
example):

dna_init("dna-2.0-beta20.jar")

After initializing DNA, we can open the DNA graphical user interface from the R command line:

dna_gui()

Alternatively, we can provide the file name of a local DNA database as an argument, and the
database will be opened in DNA. For example, we could open the sample.dna database that is
provided for download on GitHub under Releases:

dna_gui("sample.dna")

For this to work, the database file has to be saved in the working directory of the R session,
or the path needs to be provided along with the file name.

51

https://github.com/leifeld/dna
https://github.com/leifeld/dna

In addition to opening the GUI, we will want to retrieve networks and attributes from DNA.
For this to happen, a connection with a DNA database must first be established using the
dna_connection function:

conn <- dna_connection("sample.dna")

The dna_connection function accepts a file name of the database including full or relative
path (or, alternatively, a connection string to a remote MySQL database) and optionally the
login and password for the database (in case a remote MySQL database is used). Details about
the connection can be printed by calling the resulting object called conn.

After initializing DNA and establishing a connection to a database, we can now retrieve data
from DNA. We will start with a simple example of a two-mode network from the sample
database. To compute the network matrix, the connection that we just established must
be supplied to the dna_network function:

nw <- dna_network(conn)

The resulting matrix can be plotted using visualization functions from the statnet suite of
packages:

library("statnet")
gplot(nw)

It is also easily possible to retrieve the attributes of a variable, for example the colours and
types of organizations, using the dna_attributes function:

at <- dna_attributes(conn)

The result is a data frame with organizations in the rows and one column per organizational
attribute. The next section will provide usage examples of both the dna_network and the
dna_attributes functions.

8.2 Retrieving networks and attributes

This section will explore the dna_network function and facilities for retrieving attributes in
more detail. The dna_network function has a number of arguments, which resemble the export

52

options in the DNA export window. The help page for the dna_network function provides details
on these arguments. It can be opened using the command

help("dna_network")

We will start with a simple example: a one-mode congruence network of organizations in a
policy debate. The sample.dna database is a small excerpt from a larger empirical research
project that tries to map the ideological debates around American climate politics in the U.S.
Congress over time. Details about the dataset from which this excerpt is taken are provided by
Fisher et al. (2013a,b). Here, it suffices to say that the sample.dna file contains speeches from
hearings in the U.S. Congress in which interest groups and legislators make statements about
their views on climate politics. Accordingly, one should expect to find a polarized debate with
environmental groups on one side and industrial interest groups on the other side. To compute
a one-mode congruence network, the following code can be used:

congruence <- dna_network(conn,
networkType = "onemode",
statementType = "DNA Statement",
variable1 = "organization",
variable2 = "concept",
qualifier = "agreement",
qualifierAggregation = "congruence",
duplicates = "document")

The result is an organization × organization matrix, where the cells represent on how many
concepts any two actors (i e., the row organization and the column organization) had the same
issue stance (by values of the qualifier variable agreement).

The arguments of the dna_network function resemble the options in the DNA export window.
Details on the various arguments of the function can be obtained by displaying the help page
(?dna_network). In th code chunk above, statementType = "DNA Statement" indicates which
statement type should be used for the network export. In this case, the statement type DNA
Statement contains the variables organization, concept, and agreement. The argument
qualifierAggregation = "congruence" causes rDNA to count how often the unique elements
of variable1 have an identical value on the qualifier variable (here: agreement) when they
refer to a concept (variable2).

If the algorithm finds duplicate statements within documents—i. e., statements containing the
same organization, concept, and agreement pattern—, only one of them is retained for the
analysis (duplicates = "document").

The resulting matrix can be converted to a network object and plotted as follows:

nw <- network(congruence)
plot(nw,

edge.lwd = congruence^2,
displaylabels = TRUE,

53

label.cex = 0.5,
usearrows = FALSE,
edge.col = "gray"
)

Alliance to Save Energy

Energy and Environmental Analysis, Inc.

Environmental Protection Agency

National Petrochemical & Refiners Association

Senate

Sierra Club

U.S. Public Interest Research Group

Here, we used the edge.lwd argument of the plot.network function to make the line width
proportional to the strength of congruence between actors. We used squared edge weights to
emphasize the difference between low and high edge weights. We also displayed the labels
of the nodes at half the normal size, suppressed arrow heads, and changed the colour of the
edges to grey. More information about the visualization capabilities of the network and sna
packages are provided by Butts (2008b,c, 2015).

The network is not particularly polarized. We can suspect that some of the concepts are not
very contested. If they are supported by all actors, this may mask the extent of polarization
with regard to the other concepts. From our experience with the dataset, we can tell in this
particular case that the concept “There should be legislation to regulate emissions.” is in fact
very consensual. If everybody agrees to this concept, it obfuscates the real structure of the
network. Therefore we should exclude it from the congruence network. To do that, we need
to export and plot the congruence network again and use the excludeValues argument this
time:

congruence <-
dna_network(conn,

networkType = "onemode",
statementType = "DNA Statement",
variable1 = "organization",
variable2 = "concept",
qualifier = "agreement",
qualifierAggregation = "congruence",
duplicates = "document",
excludeValues = list("concept" =

"There should be legislation to regulate emissions."))
nw <- network(congruence)
plot(nw,

edge.lwd = congruence^2,

54

displaylabels = TRUE,
label.cex = 0.5,
usearrows = FALSE,
edge.col = "gray"
)

Alliance to Save Energy

Energy and Environmental Analysis, Inc.

Environmental Protection Agency

National Petrochemical & Refiners Association

Senate

Sierra Club

U.S. Public Interest Research Group

This reveals the structure of the actor congruence network. There are two camps revolving
around environmental groups on the right and industrial interest groups and state actors on
the left, with Energy and Environmental Analysis, Inc. taking a bridging position. The
strongest belief congruence ties can be found within, rather than between, the coalitions.

Next, we should tweak the congruence network further by changing the appearance of the
nodes. We can use the colours for the organization types saved in the database and apply
them to the nodes in the network. We can also make the size of each node proportional to
its activity. The dna_attributes function serves to retrieve these additional data from DNA.
The result is a data frame with the relevant data for each organization in the colour and
frequency columns:

at <- dna_attributes(conn,
statementType = "DNA Statement",
variable = "organization")

at

id value color type alias note
1 16 Alliance to Save Energy #00CC00 NGO
2 7 Energy and Environmental Analysis, Inc. #FF9900 Business
3 14 Environmental Protection Agency #000000 Government
4 25 National Petrochemical & Refiners Association #FF9900 Business
5 11 Senate #000000 Government
6 19 Sierra Club #00CC00 NGO
7 22 U.S. Public Interest Research Group #00CC00 NGO
frequency in dataset in network
1 2 TRUE TRUE
2 3 TRUE TRUE
3 1 TRUE TRUE
4 1 TRUE TRUE

55

5 2 TRUE TRUE
6 4 TRUE TRUE
7 5 TRUE TRUE

To use these data in the congruence network visualization, we can use the plotting facilities
of the plot.network function:

plot(nw,
edge.lwd = congruence^2,
displaylabels = TRUE,
label.cex = 0.5,
usearrows = FALSE,
edge.col = "gray",
vertex.col = at$color,
vertex.cex = at$frequency
)

Alliance to Save Energy
Energy and Environmental Analysis, Inc.

Environmental Protection Agency

National Petrochemical & Refiners Association

Senate

Sierra Club

U.S. Public Interest Research Group

This yields a clear visualization of the actor congruence network, with simultaneous display
of the network structure including its coalitions, the actors’ activity in the debate, and actor
types.

Another way to visualize a discourse network is a two-mode network visualization. To compute
a two-mode network of organizations and concepts, the following code can be used:

affil <- dna_network(conn,
networkType = "twomode",
statementType = "DNA Statement",
variable1 = "organization",
variable2 = "concept",
qualifier = "agreement",
qualifierAggregation = "combine",
duplicates = "document",
verbose = FALSE)

This creates a 7×6 matrix of organizations and their relations to concepts. The argument net
workType = "twomode" is necessary because the rows and columns of the affil matrix should

56

contain different variables. The arguments variable1 = "organization" and variable2 =
"concept" define which variables should be used for the rows and columns, respectively. The
arguments qualifier = "agreement" and qualifierAggregation = "combine" define how
the cells of the matrix should be populated: agreement is a binary variable, and the combine
option causes a cell to have a value of 0 if the organization never refers to the concept, 1 if the
organization refers to the respective concept exclusively in a positive way, 2 if the organization
refers to the concept exclusively in a negative way, and 3 if there are both positive and negative
statements by the organization about the concept. rDNA reports on the R console what each
combination means.

As in the previous example, the resulting network matrix can be converted to a network
object (as defined in the network package). The colours of the edges can be stored as an edge
attribute, and the resulting object can be plotted with different colours representing positive,
negative, and ambivalent mentions.

nw <- network(affil, bipartite = TRUE)
colors <- as.character(t(affil))
colors[colors == "3"] <- "blue"
colors[colors == "2"] <- "red"
colors[colors == "1"] <- "green"
colors <- colors[colors != "0"]
set.edge.attribute(nw, "color", colors)
plot(nw,

edge.col = get.edge.attribute(nw, "color"),
vertex.col = c(rep("white", nrow(affil)),

rep("black", ncol(affil))),
displaylabels = TRUE,
label.cex = 0.5
)

Alliance to Save Energy

Energy and Environmental Analysis, Inc.

Environmental Protection Agency

National Petrochemical & Refiners Association

Senate

Sierra Club

U.S. Public Interest Research Group

CO2 legislation will not hurt the economy.

Cap and trade is the solution.

Climate change is caused by greenhouse gases (CO2).

Climate change is real and anthropogenic.

Emissions legislation should regulate CO2.

There should be legislation to regulate emissions.

In this example, we first converted the two-mode matrix to a bipartite network object, then
created a vector of colours for the edges (excluding zeros), and inserted this vector into the
network object as an edge attribute. It was necessary to work with the transposed affil
matrix (using the t function) because the set.edge.attribute function expects edge at-

57

tributes in a row-wise order while the as.character function returns them in a column-wise
order based on the affil matrix. Finally, we plotted the network object with edge colours
and labels. In the visualization, we used white nodes for organizations and black nodes for
concepts.

We can now see the opinions of all actors on the various concepts. The blue edge indicates
that Energy and Environmental Analysis, Inc. has both positive and negative things to
say about the concept “Emissions legislation should regulate CO2”. This is why this
organization acts as a bridge between the two camps in the congruence network. Further-
more, we can now see more clearly that the concept we omitted in the congruence network,
“There should be legislation to regulate emissions”, is viewed positively by four or-
ganizations, but still receives a negative mention by one actor. The green edges span both
camps, and this caused additional connections between the two groups. The negative tie is
ignored in the construction of the congruence network because conflicts are not counted and
there is no second red tie to that concept.

58

Bibliography

Brandenberger, L. M., Schläpfer, I., Leifeld, P., and Fischer, M. (2015). Overlapping subsys-
tems: Swiss water policy across media and parliament.

Breindl, Y. (2013). Discourse networks on state-mandated access blocking in Germany and
France. info, 15(6):42–62.

Broadbent, J. and Vaughter, P. (2014). Inter-disciplinary analysis of climate change and
society: A network approach. In Manfredo, M. J., Vaske, J. J., Rechkemmer, A., and
Duke, E. A., editors, Understanding Society and Natural Resources, pages 203–228. Springer
Netherlands, Dordrecht.

Brutschin, E. (2013). Dynamics in EU policy-making: Market: The liberalization of the
european gas market.

Butts, C. T. (2008a). network: a package for managing relational data in r. Journal of
Statistical Software, 24(2).

Butts, C. T. (2008b). Social network analysis with sna. Journal of Statistical Software,
24(6):1–51.

Butts, C. T. (2008c). network: A package for managing relational data in R. Journal of
Statistical Software, 24(2):1–36.

Butts, C. T. (2015). network: Classes for Relational Data. The Statnet Project (http:
//statnet.org). R package version 1.13.0.

Butts, C. T. (2016). sna: Tools for Social Network Analysis. R package version 2.4.

Cisneros, P. (2015). Subsystem interconnectedness as part of coalition strategies for policy
change: Mining and water management in ecuador between 1991 and 2010.

Csardi, G. and Nepusz, T. (2006a). The igraph software package for complex network research.
InterJournal, Complex Systems:1695.

Csardi, G. and Nepusz, T. (2006b). The igraph software package for complex network research.
InterJournal, Complex Systems, 1695(5):1–9.

Fisher, D. R., Leifeld, P., and Iwaki, Y. (2013a). Mapping the ideological networks of American
climate politics. Climatic Change, 116(3):523–545.

59

http://statnet.org
http://statnet.org

Fisher, D. R., Waggle, J., and Leifeld, P. (2013b). Where does political polarization come
from? Locating polarization within the U.S. climate change debate. American Behavioral
Scientist, 57(1):70–92.

Gkiouzepas, G. and Botetzagias, I. (2015). Climate change coverage in greek newspapers:
2001–2008. Environmental Communication, 11(4):490–514.

Goodreau, S. M., Handcock, M. S., Hunter, D. R., Butts, C. T., and Morris, M. (2008). A
statnet tutorial. Journal of Statistical Software, 24(9):1–26.

Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., Krivitsky, P. N., Bender-
deMoll, S., and Morris, M. (2016). statnet: Software Tools for the Statistical Analysis of
Network Data. The Statnet Project (http://www.statnet.org). R package version 2016.9.

Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., and Morris, M. (2008a).
statnet: Software tools for the representation, visualization, analysis and simulation of
network data. Journal of Statistical Software, 24(1):1–11.

Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., and Morris, M. (2008b).
statnet: Software tools for the representation, visualization, analysis and simulation of
network data. Journal of Statistical Software, 24(1):1–11.

Haunss, S., Dietz, M., and Nullmeier, F. (2017). Der ausstieg aus der atomenergie: Diskursnet-
zwerkanalyse als beitrag zur erklärung einer radikalen politikwende. Zeitschrift für Diskurs-
forschung, (3):288–315.

Herweg, S. (2013). Politische diskursnetzwerke und der konflikt um das antipiraterie-
abkommen acta.

Hurka, S. and Nebel, K. (2013). Framing and policy change after shooting rampages: A
comparative analysis of discourse networks. Journal of European Public Policy, 20(3):390–
406.

Imbert, I. (2017). An inquiry into the material and ideational dimensions of policymaking: A
case study of fuel poverty in Germany.

Leifeld, P. (2013). Reconceptualizing major policy change in the advocacy coalition framework:
A discourse network analysis of german pension politics. Policy Studies Journal, 41(1):169–
198.

Leifeld, P. (2016a). Discourse Network Analysis: Policy Debates as Dynamic Networks.

Leifeld, P. (2016b). Policy Debates as Dynamic Networks: German Pension Politics and Priva-
tization Discourse, volume 29 of Schriften des Zentrums für Sozialpolitik Bremen. Campus,
Frankfurt, 1. aufl., neue ausg edition.

Leifeld, P. (2018). rDNA. A Package to Control Discourse Network Analyzer from R. Uni-
versity of Glasgow, School of Social and Political Sciences, Glasgow. R package version
2.0.4.

60

http://www.statnet.org

Leifeld, P., Cranmer, S. J., and Desmarais, B. A. (2017a). Temporal Exponential Random
Graph Models with btergm: Estimation and Bootstrap Confidence Intervals. Forthcoming.

Leifeld, P., Cranmer, S. J., and Desmarais, B. A. (2017b). xergm: Extensions of Exponential
Random Graph Models. R package version 1.8.2.

Leifeld, P. and Haunss, S. (2012). Political discourse networks and the conflict over software
patents in europe. European Journal of Political Research, 51(3):382–409.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K. (2017). cluster: Cluster
Analysis Basics and Extensions. R package version 2.0.6.

Manfredo, M. J., Vaske, J. J., Rechkemmer, A., and Duke, E. A., editors (2014). Understanding
Society and Natural Resources. Springer Netherlands, Dordrecht.

Muller, A. (2014a). Het meten van beleidscontroverse en polarisatie met discoursnetwerk-
analyse: De case van het abortusdebat in de belgische kamer. Sociologos. Tijdschrift voor
Sociologie, 35(3):159–184.

Muller, A. (2014b). Het meten van discourscoalities met discoursnetwerkanalyse: Naar een
formele analyse van het politieke vertoog. Res Publica, 56(3):337–364.

Muller, A. (2015). Using discourse network analysis to measure discourse coalitions: Towards
a formal analysis of political discourse. World Political Science, 11(2):17.

Nagel, M. (2016). Polarisierung im politischen Diskurs: Eine Netzwerkanalyse zum Konflikt
um Stuttgart 21. Springer VS, Wiesbaden.

Nägler, R. (2015). With|out a partner. the idea of cooperation in higher education discourses.
SSRN Electronic Journal.

Pedersen, T. L. (2017a). ggraph: An Implementation of Grammar of Graphics for Graphs and
Networks. R package version 1.0.0.

Pedersen, T. L. (2017b). tidygraph: A Tidy API for Graph Manipulation. R package version
1.0.0.

Rantala, S. and Di Gregorio, M. (2014). Multistakeholder environmental governance in action:
REDD+ discourse coalitions in tanzania. Ecology and Society, 19(2).

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

Rinscheid, A. (2015). Crisis, policy discourse, and major policy change: Exploring the role of
subsystem polarization in nuclear energy policymaking. European Policy Analysis, 1(2).

Rinscheid, A., Eberlein, B., and Schneider, V. (2015). Complex policy trajectories in risk
domains: Nuclear power in Canada, Germany and Japan. In International Conference on
Public Policy (ICPP).

61

Schneider, V. and K., J. (2014). Punctuations and displacements in policy discourse: The
climate change issue in Germany 2007-2010. In Silvern, S. and Young, S., editors, Environ-
mental change and sustainability. InTech, Rijeka, Croatia.

Stoddart, M. C., Ramos, H., and Tindall, D. B. (2015). Environmentalists’ mediawork for
jumbo pass and the tobeatic wilderness, Canada: Combining text-centred and activist-
centred approaches to news media and social movements. Social Movement Studies,
14(1):75–91.

Stoddart, M. C. and Tindall, D. B. (2015). Canadian news media and the cultural dynamics
of multilevel climate governance. Environmental Politics, 24(3):401–422.

Tosun, Jale, Schaub, and Simon (2015). To mobilize or not: political attention and the reg-
ulation of GMOs. In Seventh International Conference on Coexistence between Genetically
Modified (GM) and non-GM based Agricultural Supply Chains, Amsterdam.

Urbanek, S. (2016). rJava: Low-Level R to Java Interface. R package version 0.9-8.

Wagner, P. and Payne, D. (2017). Trends, frames and discourse networks: Analysing the
coverage of climate change in irish newspapers. Irish Journal of Sociology, 25(1):5–28.

Werner, C. (2015). The relevance of left and right in EU affairs: A case study of German
parliament debates on the Greek crisis. In Conference "Democracy: A Citizen Perspective".

Wickham, H. and Chang, W. (2016). devtools: Tools to Make Developing R Packages Easier.
R package version 1.12.0.

Wu, J. and Zhou, L. (2015). Dobnet: Exploiting the discourse of deception behaviour to
uncover online deception strategies. Behaviour & Information Technology, 34(9):936–948.

Yun, S.-J., Ku, D., Park, N.-B., and Han, J. (2014). Framing climate change as an economic
opportunity in south korean newspapers. Development and Society, 43(2):219–238.

62

	1 Introduction
	2 DNA algorithms
	2.1 Congruence
	2.2 Conflict
	2.3 Subtract
	2.4 Ignore
	2.5 Normalization
	2.6 Affiliation networks
	2.7 Normalization for affiliation networks

	3 Installation of DNA and rDNA
	3.1 Windows
	3.2 macOS
	3.3 Linux
	3.4 Installing the programs themselves

	4 Using DNA: Preparation of your DNA Workspace
	4.1 Creating a new DNA database
	4.1.1 Creating a local DNA file
	4.1.2 Creating and using a remote database (MySQL)

	4.2 User Management: Multiple Coders and Permissions
	4.3 Statement Types and Variables
	4.3.1 Adjusting the variables of interest
	4.3.2 Adjusting the statement types

	4.4 Final step: Approving your workspace and creating the DNA file

	5 Using DNA: Importing and Organizing your Raw Data
	5.1 Opening an existing DNA database
	5.2 Importing Documents (Raw Data)
	5.2.1 Importing single Documents manually via Copy and Paste
	5.2.2 Importing multiple Documents semi-automatically from text files
	5.2.3 Importing Documents from other DNA databases

	5.3 Organizing documents (Raw Data)
	5.3.1 Deleting and navigating through documents
	5.3.2 Editing the documents' meta data (author, time etc...)

	6 Using DNA: Coding the Data
	7 Using DNA: Exporting the coded Data
	8 rDNA: Using DNA from R
	8.1 Getting started with rDNA
	8.2 Retrieving networks and attributes

