8 Introduction to linear regression

In the last chapter, we described the distributions of a few different, variables for various
subgroups. For example, we compared the distributions of income and political party
affiliation for men and women using & number of techniques. One of those techniques
was cross-tabulation, which we used to examine the relative frequencies of votes cast
for different groups formed by the values of a second variable—gender, in this case
(page 142). Applying a different technique to the income variable, we compared the
distribution of income for mer and women using statistics such as means, quantiles, and
stendard deviations (page 156). In other words, we. looked at how income depends on
gender. Therefore, income was our dependent variable, and our independent variable
was gender.

The techniques described in chapter 7 provide a reasonably good representation of
your data if you want to compare the distribution of one variable for a few different
subgroups formed by a second variable. However, if you are interested in the relationship
between two variables with many categories, a “scatterplot” may be more useful. A
scatterplot is a graphical representation of the joint distribution of two variables. When
you draw the scatterplot, each observation is plotted m two-dimensional space (in other
words, along two axes). The coordinates of each point are the values of the variables
for that particular observation. The values of the independent variable are graphed on
the z-axis, while the values of the dependent variable are graphed on the y-axis.

Three different examples! of scatterplots can be seen in figure 8.1.

“The data for these examples are taken from the WHO and UNICEF web sites. Detailed information
are provided as notes in the data file (see footnote 8§ on page 97). These data are included as Stata
datasets in the data package provided with this book.

.
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Figure 8.1: Three different scatterplots

Erscatter.do

‘T'he first scatterplot shows data from 188 nations on the life expectancy at age 60 for
females plotted against the life expectancy at age 60 for males. The dots are distributed
from the lower left-hand corner to the upper right-hand corner. This suggests that high

life expectancies for males go along with high life expectancies for females. Clases such
as these are called “positive” relationships.

The second scatterplot depicts the relationship between infant mortality and female
literacy. There we find the data points for 162 nations spreading out from the upper
left-hand corner to the lower right-hand corner. This means that the higher the female

literacy rate in a country is, the lower is the observed infant mortality rate. This is
called a “negative” relationship.

The third scatterplot shows the relationship between the expected lost healthy vears
at birth for males and the governmental health expenditures asg a pereentage of total
health expenditures. In this case, the observations from the 190 different countries
are distributed fairly evenly over the entire diagram. The relationship between health

expenditures and Iost healthy years is therefore not obvious. We can, at best, find a
weak relationship.

All three graphs contain a solid straight line that summarizes the relationship be-
tween the two variables and is cailed a, “regression line”. In the first scatterplot example,
the dots are close to the regression line; there we have a strong correlation, In contrast,
balloonlile clouds of dots, as in the third example, indicate a weak correlation. One way
to measure the strength of the correlation is Pearson’s correlation coefficient 7. A Pear-
son’s correlation coefficient of 0 means that no relationship can be observed between the
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two variables. Both —1 and +1 represent the strongest possible observed relationships,
but —1 indicates a negative relationship and 41 indicates a positive relationship.

Regardless of the strengths of correlation, there is not necessarily a causal relation-
ship between the variables. The life expectancy of women is most likely not caused by the
life expectancy of men. You can instead think of a common cause for both of them. You
could hypothesize on the causal link between literacy and infant mortality, but neither
scatterplots nor regression lines can test such an assumption (King, Keohane, and Verba
1994 and Berk 2004).

Creating scatterplots for different values of r is useful for geitting an idea of the
relationship. You can practice doing so by using a small demonstration we wrote for
Stata.? Type

. do cplot 0.5

and you will see a scatterplot of two variables whose correlation coefficient is r = 0.5.
You can vary the strength of the relationship by changing the number you enter for r
after the do cplot command.

A simple linear regression analysis aims to characterize the relationship between one
dependent variable and one independent variable with a straight line. A straightfor-
ward generalization of this is multiple linear regression analysis, which characterizes the
relationship between one dependent and more than one independent variables. Note
that the term “multivariate regression” is reserved for a technique for more then one
dependent variables.

We begin by outlining the basic principle behind simple linear regression in sec-
tion 8.1 and then discuss the relationship between the estimated parameters and the
true population parameters in section 8.5. We then extend the model to deal with
multiple independent variables in section 8.2. Linear regression analysis requires us to
make several assumptions, and section 8.3 introduces several techniques to check those
agsumptions. Refinements of the basic model are the subject of section 8.4. We then
discuss alternative methods of computing standard errors and other extensions of the
linear regression model in section 8.6.

While we will explain some of the statistical background, our main purpose is to
show you how to perform regression analysis with Stata. You will need to do additicnal
reading to gain a full understanding of regression analysis. Books that work well with
our approach are Hamilton (1992) and Fox {1997}, We also highly recommend that you
read Berk (2004) for a critical discussion of common mistakes.

2Make sure thal, your current working directory is ¢:\data\kk; see page 9.

|
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8.1 Simple linear regression

8.1.1 The basic principle

In this section, we will introduce terms such as “OLS”, “Rss”, “predicted values”, and
el
“regression”. If you are already familiar with these terms, you may skip this section.

The basic principle of all regression models is straightforward. To describe the
relationship between your variables, you are looking for an equation that ailows you to
predict the values of a dependent variable as well as possible with the help of one or
more independent variables. As an example, consider the following situation.

You have a hunch that the size of someone’s dwelling is determined by his or her
net income. You believe that the higher someone’s income is, the larger the home will
be. At the same time, you know that all apartments have a certain minimum size. You
could formalize your suspicion about the relationship between income and home size
with the aid of a simple equation:

§L0p35 =by + bISULopez with bo, by >0 (8].)

The Lopez family’s predicted home size {§rope,) is calculated by assuming that all
homes are at least by square feet and adding to that a fraction b; of the family’s net
household income.* The term by accounts for the fact that income is measured in,
say, dollars, while home size is measured in square feet. The parameters by and by are
assutned to be the same for all households and are called the “regression parameters”
or “regression coeflicients”.

Now you might argue that income is not the only variable that affects home size. For
example, family size or the ages of family members might play a role, as well. You may,
in fact, come up with any number of factors that might affect home size. If you do not
know all the factors, the estimated home size ; you calculate using the above equation
will always deviate from the observed values. This deviation is called the “residual”. In
general, you might represent the relationship between an individual’s actual home size
Y, the predicted size of her home ¥;, and the residual e; in the following way:

Yi = Ui + e (82)
or, using your first hunch,
y; =by + byx; + e _ (83)
N —

Y

#The symbol §; is always used for the predicted values of the dependent variable. So Fiopes is the
predicted value for the Lopez family.
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In (8.3), the value of y for observation i is described as a linear combination of x;
and some noise. The coefficients by and &, are constants and are independent of the
individuals 4; e; represents noise due to factors not accounted for in the equation for
each individual 4.

The goal of your analysis is to find values for by and b;. You can use a aumber of
techniques to find the regression parameters. Here we will limit ourselves to the one
that is the simplest and in the widest use: ordinary least squares (OLS). The point of
this technique is to make the difference between the predicted values and the observed
values as small as possible.

To understand what this means, look at the scatterplot in figure 8.2. Try to find a
straight line that depicts the relationship between the two variables. You will find that
not all points lie on one single line. You might try to draw a straight line among the
points in such a way that the distances between the points and the line are as small as
possible. To find these distances, you might use a ruler.

The gosl was to minimize the differences across all points, so looking at one of the
distances will not provide you with enough information to choose the best line. What
else can you do? You could try adding the distances up for all the points. If you did
this, you would notice that negative and positive distances could cancel each other out.
To find a way around this problem, you might use the squared distances instead.

If you drew several straight lines and measured the distances between the points and
every new line, the straight line with the smallest sum of squared distances would be
the one that reflects the relationship the best. This search for the line with the best ft
Is the idea behind the OLS estimation technique: it attempts to minimize the sum of
squared residuals {€?). The points on the straight line represent the predicted values of
{#:) for all values of X. If your model fits the data well, all points will be close to the
straight line and the sum of the squared residuals will be small. Tf your model does not
fit the data well, the points will be spread out and the sum of the squared residuals will
be large.

(Continued on next page)
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}

Figure 8.2: Exercise for the OLS principle

grregl.do

We have prepared a small demonstration of the OLS solution to the regression prob-
lem in figure 8.2. Typing

= . de grreg2.doe

causes figure 8.2 to be displayed with the regression line.

We can also present the OLS principle a bit more formally. We are looking for those
parameters (by,b1) in (8.3) for which the sum of the squared residuals (the residual
sumn of squares, abbreviated Eﬁgéb Is at a minimum. Those parameters are the y-axis
intercepts and the slopes of the lines we drew. A search for the best ft using a trial-
and-error technique like the one described above would be very time consuming, Using
mathematical techniques to minimize the RSS is an easier way to find our parameters
that more reliably leads to the correct solution. Mathematically, the RSS can be written
as the difference between the observed and predicted values:

RSS =)t = 3 (3 50 (3:49)
i=1

i=1

Substituting %;, we can write the above equation as

RSS = el = (i —bo — brzy)? (8.5)

Now that we have defined the RSS mathemasically, we can use the OLS technique
to minimize it.? This means that we must find values for bo and by for which (8.5) is

4The exact mathematical procedure for this technigue has been presented in a number of different.

ways. For fans of a graphic interpretation, we recommend Cook and Weisberg (1999) or Hamilton
(1992} to start with.
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as small as possible. To do this, we can take the first partial derivagives of (8.5) with
respect to by and &y, set them equal to zero, and solve for by and b;. At this point,
it is not particularly imporfant that you be able to take the derivative yourself. You
should, however, be aware that the entire ‘technique is nothing more than a search for

the Inmlmum of a functlon v th tW

If, on the other hand you wish to review the high school and college math necessary
for taking partial derivatives, you can find a helpful review in Hagle (1996, 38-58).°

Before we continue with the mathematics, we will show you how to compute a
regression with Stata. The next subsection explains how to do this, and you will see
how easy and helpful it is to use statistical packages for these kinds of computations.
But be careful: despite the simplicity of the computational work, you must always think
carefully about what exactly you are doing., During the course of the chapter, we will
look at substantive problems caused by naively applying these regression technique.

8.1.2 Linear regression using Stata

In this subsection, we will explain how to calculate a regression with Stata. In the
previous subsection, we voiced a suspicion that home size is influenced by net household
income. You might now be interested in a specification of this relationship. A good
place to begin wouid be with a linear regression of home size (sqf eet) on net household
income (hhinc). The Stata command you will need to perform your regression is pretty
simple:

5To reconmstruct the transformations used in finding wvalues for by and by for which RSS i
minimum, you can do sc as follows:

ARSS
7 =_2 Zyi -+ Znby + 2Znby Z z;

Il you set this partial derivative equal to zero and solve for bo, you will get

ba =y5—bz

Following the same principle, you can find the first partial derivative with respect to b1:

6;)’5;8 :fQZyimszonﬁ?blZ“’? =0

Now you replace bg with % — b1Z. After a few transformations, you end up with

2z —3)?

You can find a more detailed presentation of this derivation in Hamilton (1992, 33).

By =
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. use datal, clear
(SOEP’97 (Kchler/Kreuter))

. regress sqfeet hhinc

Source 53 df MS Number of obs = 3128
F( 1, 3124) = 694.26

Model 114301950 1 114301950 Prob » F = 0.0000
Residual 514327350 3124 164637.436 R-squared = {.1818
Adj R-squared = 0.1818

Total 628629300 3125 201161.376 Root MSE = 405.76
sqfeet Coef.  Std. Err. t P>t [85% Conf. Iamtervall
hhinc .1786114 00687787 26.35 0.000 . 1853202 . 18190256
_cons 600, 2684 14.91459 40.25 0.000 571.025 §29.5118

As you can see, the command consists of the regress statement and a list of vari-
ables. The first variable is the dependent variable, and the second is the independent
variable. The output contains three different sections: the “table of ANOVA results” in
the upper left-hand corner, the “model fit table” in the upper right-hand corner, and
the “table of coefficients” in the bottom half of the output. We will now explain what
is contained in each of these sections, beginning with the table of coefficients.

The table of coefficients

At the bottom of the table in the column labeled Coef -, you will find the regression
coefficients, that is, the values for by and &, from {8.3)

To the right of the column of regression coefficients are several other statistics used
to measure the accuracy with which those coefficients have been estimated. We discuss
those after we show how to interpret the coefficients and make predictions.

At this point, you may be asking yourself what all the numbers represent. The
value for by is written in the regression-output row labeled _cons. by is 600.2684 in
this example. According to this model, every family has a home that is at least 600 ft2,
regardless of whether the family has any income. The value for by is stored in the
row that begins with hhine and is about 0.1786114. This means that according to the

regression model, the home size will increase by about 0.18 ft? with every additional
dollar of income.

Assuming that the Lopez family has a net monthly income of $1,748 at its disposal,
you can use (8.1) to estimate how big the family’s home might be:

YLopes = 600.2684 + 0.1786114 x 81,748

You can calculate this amount directly within Stata using the display command, much
as you would use a pocket calculator. Type

. display 800.2684 + 0.1786114 % 1748
912.48113
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If yon use the numbers displayed in the table of coefficients, you must deal with two
problems: First, typing numbers by hand often leads to mistakes. In addition, the figures
in the output have been rounded. For computations like the one above, we recommend
using the results saved internally by Stata (see chapter 4). Commands that fit regression
models are considered to be e-class in Stata, so you can look at the saved results with
the command ereturn 1i_s:c. If you do this, you might find yourself searching in vain
for the regression coefficients. This is because all the regression coefficients are stored in
a matrix named e{(b). The easiest way to access the values contained in this matzrix is
to use the construction _blvarname], where varname is replaced by the name of either
an independent variable or the constant {_cons).

The computation for the Lopez family would then look like this:

. display _bl_cons]+_bl[hhinc]*1748
912.48107

This number differs a bit from the number we computed above because the results
saved by Stata arc accurate to about the 16" decimal place. You can see the effect of
raising income by 31 on home size. If you enter $1749 instead of $1748 as the value for
income, you will see that the predicted value for home size increases by b1 = bupine =
0.1786114 ft2.

You might be interested not in an estimated home size for a family with a certain
income, but in the actual home sizes of all families in our data who have that income.
To see the sizes of the homes of all the families with a net household income of $1748,
you could use the following command:

. list sqfeet hhine if hhinc==1748 R A

As you can see here, the predicted home size of 9124t% is not displayed, but rather ’
-various values between 474ft% and 1227t appear instead. The observed values of 3,
_differ from the predicted values ;. Thesg differences are the residuals.

It you want to compute the predicted values for every household in your dataset,
you could use the saved regression coefficients.® To compute the predicted values this
way, you would type”

. generate sqfeethat=_b[_consl+_b[hhinc]*hhinc

This is the same principle that was used in the previous display command, except
that the home size is not only predicted for the Lopez family, but for all families. The
result of this computation is stored in the sqfeethat variable. We use the suffix hat
to indicate that this is a “predicted” variable.?

5¥ou can use the saved regression coefficients anywhere Stata expects an expression; see section 3.1.5.

7 After entering this command, you will get a warning that some missing values have been generated.
Those missing values are for all the families for whom the dataset contains no income information.

8¥You may have noticed that we placed a “hat” (circumflex) on ¥ in the above equations to indicate
3 predicted value {3}, as opposed to a value actually measured for a certain family (y).
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Il the last command seems like too much work, there is an easier and better way to
get the same result: the predict command computes the predicted values after each
regression command and stores them in a variable. If you enter

. predict yhatl

Stata will store the predicted values into the new variable yhat1,? which contains the
same values as the sqfeethat variable. If you wans to convince yourself that this is the
case, type list sqfeethat yhatl. Because it is used after estimation, the predict
command is called a “postestimation” command.

If you have already calculated the predicted values, it is easy to calculate the values

of the residuals. They are just the differences between the ohserved and predicted
values:

- generate residl=sgfeet-sqgfeethat

This difference is nothing more than the distance you measured between each point
and the straight line in the figure on page 182.

You can also compute the residuals by using the predict postestimation command
with the residuals option and specifying a variable name (here, resid2):1d

. predict resid2, resid
Let’s use a graph to look at the results. We mmight want to draw a scatterplot with

sqfeet against hhinc, overlaid by a line plot of the predicted values (yhat1) against
hhinc. .

- graph twoway (scatter s¢feet hhinc, msymbol(oh)) (line sqfeethat hhinc, sort)
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°In each subsection of this chapter, we perform a separate computation of the predicted values,
meaning that we compute variables with predicted values a number of Limes. We use the name yhat
with a running number for each of these variables. This running number has no meaning but is simply
used to denote a new computation.

wPlease resist the temptation to set e as a name for the residuals. The name e may, in principle, be
a valid variable name, but using it might lead to confusion if scientific notation is used for numbers.
See section 5.1.1 for a Hst of variable names you should avoid.
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Standard errors

Thus far, we have treated the coefficients of our regression model as if they have been
determined without any level of uncertainty. However, typically your dataset is only a
random sample from a large population. The coefficients that you obtain from regress

are therefore only estimates of the values that describe the entire population. If you

were able to coliect a second random sample. from.the same population, you would
obtam dﬁerent estlmates “We therefore need a way to describe the variability that we
would obtain if we were to apply our estimator to many different, eamples Said slightly
differently, we need a way to determine the “precision” with which the coeflicients we

obtained from our sample estimate the populatmn Pparameters. Standard errors, which

are really nothmg more than, sa,mple standard dewatlons‘abeo(:lated with estimated |

coetficients, are our solution.

Standard errors allow us to perform statistical inference; that is, they allow us to
tests hypotheses about the underlying population parameters. For example, we might
want to test whether the parameter on a given independent varizble is zero, which
means that the variable has no impact on the dependent variable.

Note that techniques for statistical inference are frequently misused. These tech-
niques are based on a series of assumptions, which tend to be fulfilled only in high-
quality samples. In the context of linear regression, the default statistical inference
teclgggues _asgume a sunple random sample from a large po la’rlon, as WelI as uncorre—
the aseumptlon of-ﬁermally distrlbu’fed errors. You will have to evaluate Whether these
assumptions hold or not. In section 8.3, we present several techniques that can be used
to check those assumptions.

Here we give a few illustrations of the techniques for statistical inference. To begin
with, compute the following regression model to analyze home size:

. regress sgfeet hhinc

On the right side of the table of coefficients, you see for each coefficient its 95%
confidence interval boundaries; for household income, these are 0.165 and 0.192. When
you think of confidence intervals, remember that if we were to draw many random |
samples out of the population and compute for each one the regression coefficient and
the corfespondmg confidence intervals around this coeﬂicwn’c then 95% of all mtervale }
would contain the “true” coeflicient for the popﬂlatlon 1

For a quick check, you can determine whether the value zero is included in the
confidence limits. If so, you can assume that the corresponding independent variable
has no influence on the dependent variable i the population. Often you will see the ¢
value used to determine the significance of a coefficient, Jneaning statistical significance,
_not subs p_‘g@_n"‘,uy,ewmgmﬁ,cance With the help of the ¢ chstrzbutlon, this elgmﬁcance test
ells™ you how likely it is that you would observe a value at least as extreme as the

"1 This does not mean that the true value is between the interval limits with a probability of 0.95.

i
i
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particular coefficient you observed under the ‘assumption that the ‘true’ coeflicient in
the population is zero (null hypothesm) The probability of observing a given ¢ value
with a given sampling size under the null hypothesis is shown in column P > |¢].
small value (e.g., smaller than 0.05) in this column tells you only that it is unhkely
that you will observe a value like the one you. would compute if the true coefﬁcxent in
the population were zero, This means that your test is based on the hypothesis that
household income has 1o influence at all on home size—a statement that you probably
would not dare to make. We therefore recommend that you keep track of the confidence
intervals and the effect size itself.

To compute the 95% confidence interval, you add or subtract roughly 1.96 times the
standard error to the regression coefficient.'? You can obtain the standard error of a
particular explanatory variable k& through dividing the standard error of the residuals
(se;) by the sum of the squared residuals resulting from a regression of k on all other
independent variables.

The table of ANOVA results

ANOVA is short for “analysis of variance”. We use the term “table of ANOVA results”
to describe the upper left-hand section of the Stata regression output, where you will
find the variation in the dependent variable divided into an explained portion and an
unexplained portion. For handy reference, we reproduce here the table of ANOVA results
that you have already seen on page 184:

Source 353 daf MS
Model 114301950 1 114301950
Residual 514327350 3124 164637.438
Total 628629300 3126 2011861.3758

We can learn a bit more about the table of ANOVA results using a fictional example.
Say that you are asked to predict the size of an apartment belonging to a student named
Paul. If you do not know anything about Paul, you might answer that his apartment is
as big as the average student apartment. In this case, your guess would be reasonable
because the average apartment size is the value with which you get the smallest squared
error. In other words, the mean apartment size is the OLS estimate of apartment size.

In table 8.1, we have listed the apartment sizes and household sizes of three students
in a hypothetical city. The average student apartment size in that city is 590 ft%, which
we calculated using data for all the students in the city, not just the ones listed here.

*?The exact value varies with the sample size; however, 1.96 is a good approximation for a sample
size above 30.

13We got the idea of using use a table like this ane from Hair et al. {1995).
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If you use 590 ft? to estimate the size of Paul’s apartment, you end up with a number
that is 1602 too high.'* If you also use the mean to estimate the other students’
apartment sizes, then in one case you make a correct prediction and in the other case
you underestimate the student’s apartment size by 270 2. It vyou take the squares of
these differences and sum them, the result is a total squared deviation of 98,500 5.
This number is usually called the “total sum of squares” (TSS). In general,

TSS = Y (5 - 7)? (5.10)

This corresponds to the expression you find in the numerator of the formula for the
variance (s2). The TSS is therefore sometimes also called the “variation”.

Maybe you should not make your prediction using only the mean. You might wish to
make use of other information you have about the students. After all, it is reasonable
to assume that the size of the apartment increases with the number of people living
there. ¥ all the students you know have bedrooms that are about 160 ft%, you might
think this number holds true for most other students. So the apartment would have
to have at least 160ft> for each of the students living there, but it is likely to be even
larger. An apartment usually has at least one bathroom and a kitchen, and you might
think that they take up about 320 ft?> combined. You might describe this hypothesis
using the equation helow:

y; = 320 + 160z (8.11)

You could use that model to compube an apartment size for each household size. Tf
you did this, you would calculate the difference between the actual apartment size and
the apartment size you predicted with your model; this is the amount displayed in the
last column of the table. To compare these differences with the TSS we calculated above,
you would have to square these deviations and sum them. If you did this, you would
have calculated the “residual sum of squares” (RSS) we introduced in section 8.1.1. For
your hypothesis, the value of RSS is 8,600.

Table 8.1: Apartment and household size

Apt. Size City Difl. HH Size Estim. Residual

Paul 430 590 160 1 480 —30
John 590 590 0 2 640 —a0
Ringo 860 590 +270 3 &00 +60

n table 8. 1, the difference between the observed value and the predicted mean is calculated as
follows: 430 — 590 = —160.
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I you subtract the RSS from the TSS, you get the model sum of squares (Mss),
which indicates how much you have been able to improve your estimation by using your
hypothesis:

TSS = 098,500
—RSS = 8,600
=MSS = 89,900

The squared residuals that you get when you use household size to predict apartment
size are about 89,900 smaller than the ones you got without taking this knowledge into
account. That means that the actual apartment sizes are much closer to your predicted
values when you use household size in making your prediction.

The MSS therefore can be regarded as a baseline to measure the quality of our model.
The higher the MSS, the better are your predictions compared with the prediction based
solely on the mean. The mean can be regarded as the standard against which to judge
the quality of your prediction.

In the ANOVA part of the regression output, you will find information about the
MSS, RSS, and TS8 in the column labeled SS. The first row of numbers (Model) describes
the MSS, the second (Residual) describes the RSS, and the third (Total) describes the
TSS. If you look at the output on page 188, you wili see that our RSS is 514327350, The
sum of the squared residuals taking the mean as the estimate (Ts8) is 628629300, and
the difference between these two quantities (MSS) is 114301950. These and all other
numbers in the table of ANOVA results are relevant for the model fit table.

'The column labeled df contains the number of degrees of freedom.'® The number of
degrees of freedom equals the number of unknowns that can vary freely. For the MsS,
the number of degrees of freedom is just the number of independent variables included
in the model, that is, k—1, where & is the number of regression coefficients (the constant
and ali independent variables). The number of degrees of freedom for the RSS is 1 — k,
where 12 is the number of observations. The number of degrees of freedom for the TSS
is 7 — 1. The last column contains the average sum of squares (MS). You may want to

compute these numbers yourself by dividing the first column by the second colurfin (the
number of degrees of freedom).

The model fit table

Here, once again, is the model fit table from page 184:

Number of cbs = 3128
F( 1, 3124) = 694.26
Prob > F = 0.0000
R-squared = 0.1818
Adj R-squared = (.1816
Root MSE = 405.76

BEor a very well-written explanation of the concept of degrees of freedom, see Howell (1997, 53).
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In the previous section, we showed that the MsS tells you how much the sum of the
squared residuals decreases when you add independent variables to the model. If you
were looking at models with different independent variables, you might want to compare
the explanatory power of those models using the M3s. You could not, however, use the
absoluie value of the M3S to do so. That value depends not only on the quality of the
model, but on how much influence the squared residuals {TS8) had there in the first
place.

To compare models, you must look at how muchk the model reduces the squared
residuals relative to the total amount of squared residuals. You can do this using the
“coefficient of determination”, or R?:

,  MSS RSS T e? _
:ﬁzl——:1g4"_ '2
R =g TSS STy — 77)? (8.12)

R? represents the squared residuals that are explained by the model as a share of the
total squared residuals. When we say that the model explains a portion of the residuals,
we mean that portion of the residuals of the model without independent variables that
disappears when we use a model with independent variables. For this reason, R? is
called the “explained variation” or the “explained variance”. You will find this statistic
in the model fit table of the Stata output, where it is called R-squared.

In our example, 72 = (.1818, meaning that household size (the independent variable
in our model) “explains” 18 percent of the variation in apartment size.

R? is a useful indicator of a model’s explanatory power, but it should not be con-
sidered in isolation. Unfortunately, often people evaluate the quality of a regression
model only by looking at the size of 2, which is not only invalid but very dangerous.
In section 8.3, we will show you why.

One alternative to RB? is the root MSE, which is the square root of the average residual
of the model from the table of ANOVA results:

RSS
root MSE = p— (8.13)
This statistic is easy to interpret, as it has the same units as the dependent variable. In
our example, a root MSE of 405.76 can be interpreted as showing that we are, on average
for our data, about 406 ft* “off the mark” in predicting a respondent’s apartment size
with our model. (This interpretation is not completely correct since it is not a literal
average. After all, \/> €] # 3 e;. But the above interpretation seems justified to us.)

There are two rows of the model fit table that we still haven’t talked about: the rows
labeled “#'(1, 3124)” and “Prob > F”. The values in these rows are included because
we are using a sample to test our regression model and therefore want some measure of
its significance.’® The F' value is calculated using the following equation:

*¢For more about the technical term “significance”, see section 8.5.
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_ MSS/E -1
F= RSS/n—k (8.14)

This F statistic is the ratio of the two values in the third column of the ANOVA table.
It is F’ distributed and forms the basis of a significance test for B2, In other words,
the value of F is used to test the hypothesis that the R? we calculated with our sample
data is significantly different from the population value of zero.\” Said another way, you
want to estimate the probability of observing the reduction in RSS in the model if, in
fact, the independent variables in the model have no explanatory power.'® The value
listed for “Prob > F” gives the probability that the R? we calculated with our sample
data will be observed if the value of B2 in the population is actually equal to zero.

8.2 Multiple regression

Load datal.dta into working Iemory:

. use datal, clear

In the previous section, we introduced linear regression with one independent vari-
able. A multiple regression is an extension of the simple linear regression presented in
that section. Unlike in the simple regression, you can use several independent variables

in a multiple regression. Analogous to (8.3), the model equation of the multiple linear
regression is

Yi =bo + b1 + ooy -+ bg_iwre y; + e (8.15)

The equation for the simple linear regression has been extended with additional X

variables and the attendant regression coefficients. You might want to use a model like
this for two reasons.

In section 8.1.2, vou calculated a simple linear regression of the dwelling size on
household income. You were able to explain 18 percent of the variation in apartment
size with this regression, and the average error in predicting apartment size was 406 ft2.
If you want to maximize the predictive power of our model, there is no reason to be
satisfied with the performance of this simple model. You could improve the predictive
power of our model by including other variables. This would be the primary reason for
using a regression with more than one independent variable.

A second reason is a bit more cotnplicated. In one of the previous gections, we used
household income as an independent variable. Suppose that you also wanted to allow for
the effect of household size. You have, however, reason to assume that household ncome

17 A description of this relationship can be found in Gujaraii (1995, 244-250),
13This F test is often called a test of the null hypothesis—t
zero Gujarati (1995,.247). Incidentally, the confidence
the overall model may nevertheless not be significant.

hat all coefficients but the constant are
intervals might not contain the value zero, but
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is related to the size of the household, as additional family members might contribute
to the overall household income. At the same time, it is reasonable to assume that
households with more members need more space than those with fewer members. Thus
the regression coefficient that we computed for household income may already include
the effect of household size. In cases like this, the regression coefficient on household
income is said to be “biased”. You might try to combat this bias by including additional
variables in the model.

In the next section, we are going to show you how to calculate a multiple linear
regression model in Stata and then interpret the regression coefficients. After that, we
will present some computations that are specific to this kind of regression. Finally, we
will illustrate what is meant by the formal phrase “controlling for” when it is used for
the interpretation of regression coefficients in multiple-regression models {section 8.2.3).

8.2.1 Multiple regression using Stata

The Stata command for computing a multiple regression is simiiar to that for simple
linear regression. You enter additional variables to the list of variables; the order in
which you enter them does not matter. You can apply the general rules for lists of
variables (page 47), but remember that the dependent variable is always the first one
in your list.

The output for the multiple linear regression resembles the one for a simpie linear
regression, except that, for each additional independent variable, you get one more row
for the corresponding coefficient. Finally, you obtain the predicted values using the
predict command as you did above.

For example, say that you want to compute a regression model of dwelling size that
contains not only household size and household income, but a location variable for the
difference between East and West Germany and an ownership variable indicating owned
and rented living space. To do this, you will need to recode some of the variables:'?

. generate owner = renttype == 1 if renttype < .
. generate east = state >=11 & state<=18 if state < .

Now you can compute the regression model:

(Continued on next page)

19Gae chapter § if you have any problems with these commands.
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. regress sqfeet hhinc hhsize sast owner

Bource 35 df M3 Number of obs = 3125
F( 4, 3120) = 442.08

Medel 227333588 4 56833397 Prob > F = 0.0000
Residual 401094538 3120 128555.942 R-squared = 0.3617
Adj R-squared = 0.3609

Total 628428127 3124 201161.372 Reot MSE = 3b8.55
sqfeet Coef. Std. Err. t Prlt] [95% Conf. Intervall
hhinc .11e8247 . 0064601 18,08  0.000 .1041582 .1294912
hhsize 32.76697 £.185336 6.32 0.000 22.59996 42.93399
east -98.99731 14,2274 -7.08 0.000 -127.8933 -72.1013
OWILer 383.6225 13.89444 27.81 0.000 356,3793 410.8657
_cons 524.1375 17.36074 30.19 0.000 490.0979 5568.1771

Note that the number of observations has decreased from 3,126 to 3,125 because of
missing values for the state variable. Observations that have a missing value in any of
the variables are dropped when you fit the model. This is called “casewise deletion” of
missing values. Type search impute to learn abont other ways of dealing with missing
values.

You interpret the coefficients in a multiple regression model in exactly the same way
yvou do in the simple linear regression. The only difference is that the b coefficients
are now calculated controlling for the effect of all the other independent variables. We
will discuss the meaning of that phrase in section 8.2.3. At this point, we will confine
ourselves to once again illustrating the formal interpretation of the coefficients.

The regression coefficients reflect the average change in the size of the dwelling
as the independent variable in question increases by one unit. The coefficient might,
for example, be interpreted as saying that “with each additional dollar of household
income, the size of the dwelling increases by an average of about 0.117 ft*”, Similarly,
the dwelling size increases by an average of about 32.77 ft* for each additional person
in the household.

The variables east and owner are dummy variables, or variables that have only two
categories, denoted by the values 0 and 1.2° In principle, you interpret these variables
the same way that you interpret all the other variables. For example, let’s look at the
owner variable, which has a value of 0 for all reaters acd 1 for all owners: for each unit
by which the owner variable increases, the dwelling increases by an average of about
384 ft. Since a dummy variable can be increased by one unit only once, we could also
say, “Owners live in dwellings that are, on average, about 384 ft” larger than the ones
in which renters live.” In the same way, the dwelhngs in Bast Germany are, on average,
around 100 % smaller than the dwellings in West Germany.

The regression constant indicates how large a dwelling is whose observation has a
value of 0 for all variables included in the model. This value would refer to dwelling

**There are other possibilities for coding binary variables {Aiken and West 1991, 127-130).
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size for western households with no household income and no household members. This
is a fairly uninteresting piece of information, as there is no person with a houschold
size of zero. For this reason, it often makes sense to center continuous independent
variables in a regression model, which means subtracting the mean from each individual
value. For example, people with a value of 0 for a centered income variable would have
the mean income, and the regression constant would therefore be the mean predicted
income value. This procedure allows you to interpret the constant and the coefficients
when Interaction terms are used in the regression model. A method for centering a
variable is described in chapter 4.

8.2.2 Additional computations

Adjusted 2%

In adding the two dummy variables and the household size variable to our regression
model, you have increased R? from 18 to 36 percent. This is an obvious improvement
in the explanatory power of our model, but you need to put this improvement in per-
spective: R? almost always increases if you add variables to the model.2! The effect of
these additional variables on R? is offset by the effect of additional observations. You
can therefore safeguard against misleading increases in R® by making sure that you
have enough observations to test your model. In the exampie above, the ratio between
cbservations and independent variables that was used in the model is quite favorable.
However, if you intend to work with only a small number of observations (e.g., if your
dataset comprises country-level information for European countries) and you use many
independent variables, B2 will guickly become an unreliable measure.22

Perhaps it will be easier to understand why a small number of observations leads to
a higher R? if you imagine a scatterplot with two points. These two points can be easily
connected by a straight line, which is the regression line. Now you have “explained” all
the variance, as there are no distances left between either of the points and the line.
Buf does this mean that the two variables for which you made the scatterplot are really
related to each other? Not necessarily. Imagine, for example, that you plotted the gross
national products of Great Britain and Germany against the lengths of their coasts and
drew a regression line. You would be able to explain the difference between the gross
national products of Germany and Great Britain “perfectly”; at the same time, you
would be forced to leave the scientific community.

Given the effects of the number of observations and the number of independent
variables on R?, you may want a more meaningful measure of your model’s explanatory
power. The adjusted R? (Adj R-squared)} results from a correction that accounts for
the number of model parameters & (everything on the right-hand side of your equation)
and the number of observations (Greene 2003, 35)

21 The only situation in which R? does not increase is when the coefficient of the additional variable
is exactly equal to zero. In practice, this case is almost never observed.
#2You will find a list of problems related to the use of B2 in Kennedy (1997, 26-28).
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9 n
R2=1-

‘;(1 - R%Y (8.16)

where £ is the number of parameters and = is the number of observations. As long as
the number of observations is sufficiently large, the adjusted R? will be close to R2.

Standardized regression coefficients

In our regression model, the coefficient for household size is much larger than the one
for household income. If you look only at the absolute size of the coefficients, you
might be tempted to assume that the household size has a larger infiuence on dwelling
size than does household income. But you will recognize that the coefficients reflect
how much a dependent variable changes if the independent variable is changed by one
unit. In comparing the two coefficients, you are comparing the ckange in dwelling size
if household income increases by one dollar with the change in dwelling size if the size
of the bousehold increases by one person.

To compare the effects of variables measured in different units, you will often use

standardized regression coefficients (b7 ), which are calculated as follows

X,
Sy

L =by (8.17)

where by is the coeflicient of the kth variable, sy is the standard deviation of the
dependent variable, and sx, is the standard deviation of the kth independent variable.

The standardized regression coefficients are often called beta coefficients, which is
why you use the beta option to look at them. If you want to reexamine your coeflicients,
note that Stata displays the resuits of the last model (with no recaleulation) if you type
regress without a list of variables. If you do this, you end up with values for beta in
the rightmost column of the table of coefficients?s:

- regress, beta noheader

sqfeet Coef.  Std. Err. t P>t Beta
hhinc .1168247 .0064601 18.08 0.000 L 2789243
hhsize 32.76657 5.185336 5.32 0.000 .0942143
east -99.,99731 14,2274 -7.03 G.000 -, 1069768
oWner 383.6225 13.89444 27.61 0.000 4113329
_cons 524.1375 17.36074 30.19 0.000

The beta coefficients are interpreted in terms of the effect of standardized units.
For example, as household income increases by one standard deviation, the size of the
dwelling increases by about 0.28 standard deviations. In contrast, a one-standard-
deviation increase in household size leads to an increase in dwelling size of about 0.09

23The nokeader option suppresses the output of the ANOVA table and the model fit table.
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standard deviations. If you look at the beta coefficients, household income has a stronger
effect on dweiling size than does the size of the household.

Understandably, using the standardized regression coefficients to compare the effect
sizes of the different variables in a regression model is quite popular. But people often
overlook some important points in doing so:

e You cannot use standardized regression coefficients for binary variables. Because
the standard deviation of a dichotomous variable is a function of its skewness, the
standardized regression coefficient gets smaller as the skewness of the variable gets
larger.24

If interaction terms are used (see section 8.4.2), calculating b} using (8.17) is in-
valid; if interactions are included in your model, you cannot interpret the beta
coeflicients provided by Stata. If you want to study effect sizes with beta co-
efficients that are appropriate for interactions, you must transform all the vari-
ables that are part of the interaction term in advance, using a z standardization
(Aiken and West 1991, 28-48).

e You should not compare standardized regression coefficients computed with dif-
ferent datasets, as the variances of the variables will likely differ among those
datasets (Berk 2004, 28-31).

8.2.3 What does “under control” mean?

The b coeflicients from any regression model show how much the predicied value of the
dependent variable changes with a one-unit increase in the independent variable. In a
multiple-regression model, this increase is calculated controlling for the effects of all the
other variables. In other words, we see the effect of changing one variable by one unit
while holding all other variables constant. In this section, we will explain this concept
in greater detail. We will do so using a simpler version of the regression model used
sbove. Here only the regression coefficients are of interest to us:

. regress sqfeet hhsize hhinc, noheader

sqfeet Coef. 3td. Err. t [96% Conf. Intervall

hhsize 40.96258  5.809275 7.05 29.6722 52.36297
hhinc .1650224 .0069971 23.58 .1513031 .1787418
_cons 520.5754 18.6216 27.96 484.0635 557.0872

?“To make this point clear, we wrote a small do-file demonstration: anbeta.do. This program
computes 1,000 regressions with a dichotomous independent variable that takes on the values O and 1.
In the first regression, no observation has a value of 1 for the independent variable. In each additicnal
regression, the number of observations where X = 1 increases by one, until the last regression, where
all cases have the value 1 for the independent variable. A figure is drawn with the beta coefficients
from each of those 1,000 regressions.
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Look for a moment at the coefficient for household income, which differs from the
coeflicients we calculated both for the simple model (page 184) and for the muitiple
model (page 194): What is the reason for this change? To find an answer, you need
to compute the coeflicient for household income i a slightly different way: To begin,
compute the residuals of the regression of dwelling size on household size:

- regress sgfeet hhsize, noheader

sqfeet Coef . Std. Err. t P>itl [e5% Conf. Intaervall
hhsize 79.88333 5.946378 13.43 G.000 68.22431 91,54235
_cons 738.6072 17.16877 43.02  0.000 704.9445 772.2699

- predict e_fs, resid
(81 missing values generated)
4 g

When you do this, you create a new variable that stores the residuals: e_fs. Before
continuing, you should give some serious thought to the meaning of those residuals.

We suggest that the residuals reflect the size of the dwelling adjusted for household
size. In other words, the residuals reflect that part of the dwelling size that has nothing
to do with household size. You could also say that they are that part of the information

about dwelling size that cannot already be found in the information about the household
size. '

Now compute the residuals for a regression of household income on household size:

- Tegress hhinc hhsize, noheader

hhinc Coef. Std. Err. t P>it| [95% Conf. Interval]
bhsize 227.0473 14.14031 16.08 0.000 199.3223 25847723
_cong 1335.758 40.74827 32.78 0.000 1255.869 1415 .648 |

. predict e_hh, resid
(129 missing values generated)

These residuals also have a substantive interpretation. If we apply the above logic,
they reflect that part of household income that has nothing to do with household size.
They therefore represent household income adjusted for household size.

Now compute a linear regression of e_fs on e_hh.

. regress e_fs e_hh, noheader

e_fs Coef. Std. Err. t P>rlt] [95% Conf. Intervall
e_hh .1650187 . 006996 23.59 0.000 .1513014 . 178736
_cons -1.354776 7.200201 -0.19 Q.851 -15.47238 12.76283
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Take a close look at the b coefficient for e_hh, which corresponds to the coefficient in the
multiple-regression model you calculated above.?® If you interpreted this coefficient the
same as one from a simple linear regression, you might say that dwelling size, adjusted
for household size, increases about 0.165 ft? with each additional dollar of household in-
come, adjusted for household size. The same interpretation holds true for the coeflicients
in the multiple-regression model. The regression coefficients in the multiple-regression
model therefore reflect the effect of the independent variable in question on the depen-
dent variable, adjusted for the effect of all other independent variables. This is what
“controlling for” means.

8.3 Regression diagnostics

It is 80 easy to compute a multiple regression model using modern statistical software
packages that people tend to forget that there are several assumptions behind a multiple
regression; if they do not hold true, these assumptions can lead to questionable results.

These assumptions are called “Gauss-Markov assumptions”.”%

To illustrate the importance of the underlying assumptions, open the data file
anscombe.dta , and compute the following regression models:*

. use anscombe, clear
. Tegress pat

. regress

. IeEress

. regress

Note the estimated results for each regression model: the estimated coeflicients, the
variance of the residuals (RSS), and the explained variance R?. Evidently you cannot
find any difference between these four models just by looking at the numbers: you got
an R? of 0.67 in all four models. The constant (or intercept) is 3, and the slope of the
regression line is (1.5, I you did not know about the regression assumptions or regression
diagnostics, you would probably stop your analysis at this point, supposing that you
had a good fit for all models.

Now draw a scatterplot for each of these variabie combinations, and then consider
which model convinces you and which one does not; you can do this by typing the
commands scatter yl x1, scatter y2 x2, etc., one after each other. We actually
used granscombi.do to produce the graphs. But we have put them on page 200, so as
not to spoil the surprise.

The scatterplots in figure 8.3 show, without a doubt, that there is good reason to
be eautious in interpreting regression results. Looking at just the R* or coefficients can
be very misleading!

25ifferences are due to rounding errors.

2If you are already familiar with the Causs-Markov assumptions and how to check them, you
might want to get a quick overview of regression diagnostics within Stata by typing help regress
bostestimation.

27The data file was created by Anscombe {1973).
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Now we want to show you how to check the Causs-Markov conditions and correct
any violations of them. Most of the diagnostic techniques we present are graphical, so
you will need to understand the basics of the Stata graph command (see chapter 6). For
an overview of various graphical diagnostic techniques, see Cook and Weisberg (1994).

See Berk (2004, chapter 9) for a discussion on the limitations and potential hazards of
using regression diagnostics.

Figure 8.3: The Anscombe quartet

granscombl.do

8.3.1 Violation of E(¢;) =0

The unobserved influence on the dependent variable for each observation is called the

error. By assumption, the average across observations of these errors is zero. This
assumption may be violated if

L. the relationship between the dependent and independent variables is nonlinear,
2. some outliers have a strong effect on the regression coefficients,

3. some influential factors have been omitted that in fact are correlated with the
included independent variabies,

Violating E{e;) = 0 results in biased regression coeflicients, so it is therefore very
important to verify that this holds. All the problems that showed up in the Anscombe
quartet are due to violations of one or more of these assumptions.

There are special techniques for testing each of the problems named above. You can
see all three possible causes using a residual-versus-fitted plot, which is a scatterplot of
the residuals of a linear regression against the predicted values. For the ia
regression, you build the plot by typing

st computed




Violation of E(e;) =0

. regress y4 x4

. predict yhat

. predict resid, resid
. scatter resid yhat

or by using the rviplot command, which generates one of the specialized statistical
graphs mentioned in section 6.2.

. rviplot

With rviplot, you can use all the graphic options that are available for scatterplots.
Figure 8.4 shows the residual-versus-fited plots for all regressions in the Axnscombe
exampie. Note that in these graphs, the mean of the residuals is always equal to zero.
This is true by definition. In a regression model, the regression coefficients are calculated
g0 that the mean of the sample residuals is equal to zero. To fulfill the assumption that
E(e;) = 0, not only must the overall mean of the residuals be zero, but the mean of the
residuals must be zero locally. This means that the mean of the residuals is zero for
any slice of the z-axis. This is true only for the first and the last regression model.
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Figure 8.4: Residual-versus-fitted plots of the Anscombe quartet

granscomb2.do

Note that in a regression with only one independent variable, violations of the re-
gression assumptions can be seen with a simple scatterplot of the dependent variable
against the independent variable. The advantage of the residual-versus-fitted plot is
that it also applies to multiple regression models.

In practice, a violation of E(e;} = 0 is usually not as obvious as it is in the Anscombe
data. For this reason, we will now introduce some special diagnostic tools for determin-
ing which of the three possibilities might be causing the violation of tiis assumption.
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Lincarity

To understand the following examples, you might want to start with a regression of
home size on household income and household size using the GSOEP data:

. use datal, clear
- regrezs sqfeet hhinc hhsize

One of the most important requirements for a linear regression is that the dependent
variable can indeed be described as a linear function of the independent variables. To
examine the functional form of the relation, you should use nonparametric techniques,
where you try to have as few prior assumptions as possible. A good example is a

scatterplot reflecting only some general underlying assumptions derived from perception
theory.

You can use a scabterplot matrix to look at the relationships between all variables
of a regression model. Scatterplot matrices draw scatterplots between all variables of a
specified variable list. Here is an example:

- graph matrix sqfeet hhinc hhsize

19000 15000

In each plot, the variable to the side of the graph is used as the ¥V variable, and
the variable above or below the graph is used as the X variable. In the very first line

of the figure are scatterplots of home size against all the independent variables of the
regression model.

However, scatterplots often only show the functional form of a relationship for small
sample sizes. If you deal with larger sample sizes, you will need more information to

improve the scatterplot. For this purpose, Stata allows you to overlay scatterplots with
a scatterplot smoother (Fox 2000).

One example of a scatterplot smoother is the “median trace”. To construct a median
trace, you divide the variable plotted on the z-axis of & twoway plot into strips and
calculate the median for each strip. Then the medians are connected with straight
lines. In Stata, you get the median trace as plottype mband of twoway graphs. The
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bands (k) option of this plottype is used to decide the number of strips into which the
z-axis should be divided. The smaller the number of bands, the smoother is the line.

. twoway ({scatter sqfeet hhinc, ms(oh)) (wband sgqfeet hhinc, bands (20) clp(solid))

2000 3000 4000
! |

Home size In sqlt/Median bands

1000

5000 10000 15000
- Househald income 1997 {monthly) .

Eo Home size in sqit. Median bands

The figure shows a linear trend for the majority of the data. The figure also shows
that there are many outliers on both variables: incorme and home size.*® Even if you
can establish a linear relationship between two variables, that relationship may change
when you include other variables in the regression model. That is, the functional form
of a relation between two variables may change under the influence of other variables.

One clue about the relation between one independent veriable {e.g., househoid in-
come) and the dependent variable (home size) if you control for other independent vari-
ables {such as household size) is given by plotting the residuals against the independent
variables.2? But plotting the residuals against one of the independent variables does
not indicate the exact shape of any curvilinearity. For example, a U/-shaped relation
and a logarithmic relation might produce the same plot under certain circumstances
(Berk and Both 1995). *°

The component-plus-residual plots—also known as partial residual plots——are a mod-
ification of the plot just described: they allow the determination of the functional form
of the relation. Within the component-plus-residual plots, instead of using the residual,
the product of the residual and the linear part of the independent variable is plotted
against the other independent variables. What this means is shown in the following
example.

To examine the linearity between home size and household size in a multiple regres-
sion model, you can first compute the regression of home size on household income and
houschold size and save the residuals as e1:

28These might be observations that will heavily influence the regression result. In the next section,
you will find out more about this issue.

29When the sample size becomes large, it is reasonable fo use a scatterplot smoother.

30Yon must distinguish between these two kinds of relations: if thereisa [J-ghaped relation, you must
insert a quadratic term, whereas it might be sufficient to transform the dependent variable if there is
a logarithmic relation (see section 8.4.3).
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. regress sqfeet hhinc hhsize
. predict el, resid

Then you can add the linear part of household size to the saved residuals and plot
the resulting number against household size:

. generate elplus= el + _b[hhsize]*hhsize
- twoway (scatter elplus hhsize) (mband elplus hhsize, bands(20))

You would end up with the same result if you used the wrapper cprplot, which is
implemented in Stata; this wrapper will run the same procedure for any independent
variable of your choice.®  After cprplot, you enter the name of the independent
variable for which you want to create the variable. The straight line in the resulting
graph is equivalent to the regression line. We have also added a median spline, which
is similar to the median trace but uses curves to connect the different medians.

cprplot hhsize, mspline msopts(bands(20))
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You might infer from the grapk that home size decreases for a household size of
seven or more. In this case, however, this is probably an effect of the unstable median
computation within the upper bands of household size since there are few households
with seven or more members.

Potential solutions

In our example, the relations seem to be linear. In the presence of nonlinear relations,
you need to transform the independent variables involved or include additional quadratic
terms in the equation; see section 8.4.3.

31You will also find the augmented camponent-plus-residual plot from Mallows (1986): acprplot.
Also, instead of the median trace used here, you could use the Iocally weighted scatterplot smoother
(LOWESS) (Cleveland 1994, 168). Then you would use the option lowess.
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influential cases

“Influential” cases are observations that heavily influence the results of a regression
model. Mostly, these are observations that have unusual combinations of the regression
variables included in the model {multivariate outiiers). As an example, think of a person
with a huge income living in a very small home.

It may not be possible to detect multivariate outliers in a bivariate scatterplot.
Observations that show up as cutliers in one scatterplot might in fact turn ot to be
normal if you controlled for other variables.

If, for example, the person mentioned had been interviewed in her secondary resi-
dence, the small home size is less surprising. Thus it is often possible to explain multi-
variate outliers. In these cases, the solution far this problem is to include a variable in
the regression model that captures the explanation. In our example, you would have to
include in the regression model a variable that indicates whether this is the primary or
secondary residence.

You can find signs of influential cases using a scatterplot matrix that is built from
the variables included in the regression model. As each data point of one of these
scatterplots lies on the same row or column as that of the other scatterplot, you can
locate conspicuous observations over the entire set of scatterplots (Cleveland 1993, 275).

Our example illustrates this with the help of one observation, which we have highlighted.

.- gen str label = string(persnr) if hhinc == 14925
. graph matrix sqfeet hhsize hhinc, mlab{label) mlabpos(8)

A more formal way to discover influential cases is to use DFBETAs. The computation
of DFBETAs has a simple logic: First, you compute a regression model, and second
compute it again with one observation deleted. Then you compare the two results. If
there is a big difference in the resulting coefficients, the observation that was excluded
in the second computation has a big influence on the coefficients. You then repeat this
technique for each observation to determine its influence on the regression coefficients.
You compute this for each of the k regression coeflicients separately. More formally, the
equation for computing the influence of the ith case on the kth regression coefficient is
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b — by
35(2’)/\"' RSSk

where by, 18 the coeflicient of variable & and by(sy is the corresponding coefficient without
observation i; s.;) is the standard deviation of the residuals without observation .
The ratio in the denominator standardizes the difference so that the influences on the
coeflicients are comparable (Hamilton 1992, 125).

DFBETA,, = (8.18)

In Stata, you compute values for DFBETA,;, using the dfbeta command. You enter
this command after the regression command, with a variable list in which you specify
the coefficients for which you want to view the change. If you do not specify a variable
list, all coefficients are used. The results of the command dfbeta are stored in variables
whose names begin with “DF”.

Typing

. regress sqfeet hhinc hhsize
. dibeta

generates two variables: DFhhince and DFhhsize. Both variables contain, for each ob-
servation, its influence on the regression coefficient. If there are indeed influential cases
in your data file, you can detect this using

- graph beox DF*
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Values of |[DFBETA| > 2/\/n are considered large (Belsley et al. 1980, 28). 32 In our
model, several observations exceed this boundary value. With

. foreach var of varlist DF* {
. list persmr ‘var’ if (abs(‘var’} > 2/sqrt(e(N))) & ‘var® < .
.}

you obtain a list of these observations.®?

320ther authors use 1 as the houndary value for DFBETA {Bollen and Jackman 1990, 267).
33The command foreach is explained in section 3.2.2. The expression abs() is a general Stata
function that refurns the absolute value of the argument included in the parentheses (sec section 3.1.6).
Finally, e(N) is the number of observations included in the last regression model fitted {see chapter 4).
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Another way to detect outliers is to use the added-variable plot {partial regression
plot). To create the added-variable plot of the variable X, you first compute a regression
of ¥ on all indepeadent variables besides Xi. Then you compute a regression of X,
on all remaining independent variables. You then save the residuals of both regressions
and plot them against each other.®*

In Stata, you can also create added-variable plots by using the avplot or avplots
commands. avplot creates the added-variable plot for one explicitly named independent
variable, whereas avplots shows all possible plots in one graph:

. regress sqfeet hhinc hhsize
. avplots
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In these plots, points that are far from the regression line are “muitivariate outliers”.
These kinds of observations have more potential to influence the regression results. In
the figure above, some observations are conspicuous in that household income is higher
than you would assume by looking at the values of the remaining variables. In the plot
for household income, one observation in particular is cause for concern—the one with
the largest house.

You can type
avplot bhinc, mlabel (persnr)

to identify the personal identification number of this observation:

34The logic behind added-variable plots corresponds to the way the b coefficients are interpreted in
a multiple-regression model (see section 8.2.3). A scatterplot of the residuals that were created there
would be an added-variable plot.
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Hamilton (1992, 128-129, 141} recommends using an added-variable plot where the
size of the plot symbol is proportional to DFEETA. To do this, you must create the plot

yourself. In the multiple linear regression we used above, you would create such a plot
for household income as follows:*"

. regress sgfeet hhsize
. predict esqfeet, resid
. regress hhinc hhsize
. predict ehhinc, resid
generate absDF = abs(DFhhine)
- twoway (scatter esqfeet ehhinc [weight = absDF], msymbol(oh))
> (1fit esqfeet ehhinc, clp(solid))
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In Stata graphs, you can control the size of the plot symbol using weights. Here it is
not important which kind of weights (fweights or aweights, for example} you use. In
this example, you need to pay attention to possible negative values of DFBETA. So you
can compitte the absolute values of DFBETA first and use these values for weighting, 3

35¥or this example, we use the variable DFhhine, which we created on page 206, The axes of this
graph are both iabeled as “residuals” auntomaticaily by the command predict. If you want to change
these labels, see section 6.3.4.

36You will ind some general remarks about weights in section 3.3.
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The previous figure shows that the multivariate outlier has an appreciable influence
on thie regression line. Even stronger are two observations more to the left, but they
cancel each other out. Altogether, we seem to find the influential cases mainly in the
upper region of income, regardless of the other variables. Those few observations with
high income have a disproportionately strong influence on the regression result.

So far, the impact of single observations has been examined separately for the differ-
ent coefficients. If you have many independent variables, you will find it more compli-
cated to interpret the numerous DFBETA values. With “Cook’s D7, you have a statistic
available that estimates the effect of one observation on all regression coefficients si-
multaneously (Fox 1991, 84) and hence the influence of one observation on the entire
regression model. You get this statistic by entering predict after the regression com-
mand:

. predict cook, cocksd

The idea behind this statistic is that the influence of one observation on the regres-
sion model is composed of two aspects: the value of the dependent variable and the
combination of independent variables. An influential case has an unusual value on V
and an unusual combination of values on the Xs. Only i both aspects are present will
the coefficients be strongly affected by this observation. The graphs in figure 8.5 make
this clearer. The graphs present scatterplots of the home size against the income of five
Englishmen in 1965, 1967, and 1971.
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Figure 8.5: Scatterplots to picture leverage and discrepancy
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In the first scatterplot, which shows the year 1965, Sgt. Pepper has an extraordi-
narily large home given his income. Sgt. Pepper’s income is, however, anything but
extraordinary: it is equal to the mean net income of the five Englishmen. We draw two
regression lines in this picture. The dotted line is the regression line that results from
a regression without Sgt. Pepper. When Sgt. Pepper is included in the regression, the
regression line is shifted upwards. There is no change in the slope of the line (the &
coefficient, of income).

In the scatterplot for 1967, Sgt. Pepper has an extraordinarily high income. The size
of his home corresponds, however, exactly to the square footage we would expect from
our model. Sgt. Pepper kas therefore an extraordinarily large value of X but, given
this value for X, a quite common ¥ value. The regression lines that result from the
regressions with and without Sgt. Pepper are identical in this case.

In the scatterplot for 1971, Sgt. Pepper has an extraordinarily high income and, for
this income, an extraordinarily small home. Here both aspects mentioned above are
present. Accordingly, the regression line changes.37

The idea that the effect of a certain point is determined by the extreme values of X
and ¥ can be described mathematically as

influence = leverage x discrepancy (8.19)

where the leverage signifies how extraordinary the combination of the X values is (as
in the second scatterplot) and the discrepancy signifies how extraordinary the ¥ value
is {as in the first scatterplot). As leverage and discrepancy are multiplied, the influence
of any given observation is equal to 0 if one or both aspects are missing.

"To compute the influence as shown in {8.19), you need some measures of the leverage
and the discrepancy. First, lock at a regression model with only one independent
variable. In this case, the leverage of a specific observation increases with its distance
from the mean of the independent variable. Therefore, a measure of the leverage would
be the ratio of that distance to the sum of the distances of all observations.?®

When there are several independent variables, the distance between any given ob-
servation and the centroid of the independent variables is used, controlling for the
correlation and variance structure of the independent variables (also see Fox 1997, 271).
In Stata, you obtain the leverage value for every observation by using the predict lev,
leverage command after the corresponding regression. When you type that command,
Stata saves the leverage value of every observation in a variable called lev.

#"Think of the regression line as a seesaw, with the support at the mean of the independent variable.
Points that are far away from the support and from the regression line are the most influential points.
G pecifically,

(s —%)2

1
hy = — (8.20)
T




8.3.1 Violation of E(e;) =0 211

To measure the discrepancy, it seems at first obvicous that you should use the residu-
als of the regression model. But this is not in fact reasonable. Points with a high leverage
pull the regression line in their direction, and therefore that they may have small resié-
uals. If you used residuals as a measure of discrepancy in (8.19), you might compute
small values for the influence of an observation, although the observation changed the
regression results markedly.®

Hence, to determine the discrepancy you need a statistic that is adjusted for the
leverage. The standardized residual €] is such a statistic. You can obtain the values
of the standardized residuals by using the predict varname, rstandard command,
which you can enter after a regression.”

After finding a statistic for both discrepancy and leverage, you can multiply the two
statistics together in accordance with {8.19). Buft you should provide an appropriate
weight for each value to be multiplied. We leave that task to the statisticians, one of
whom—Caook {1977)—suggested the following computation

e
e (8.21)
N —

leverage | discrepancy

where e} is the standardized residual and h, is the leverage of the ith observation.?!
Values of Cook’s D that ave higher than 1 or 4/n are considered large. Schnell (1994,
225) recommends using a graph to determine influential cases. In this graph, the value
of Cook’s D for each observation is plotted against its serial number within the data
file, and the threshold is marked by a horizontal line.

To construct this graph, you must first compute the values for Cook’s D after the
corresponding regression:

. regress sqfeet hhsize hhinc
. predict cooksd, cooksd

Then you save the threshold in a local macro (max) using the number of observations
in the last regression model, which is stored by Stata as an internal result in e (M) (see
chapter 4 and section 11.2.1):

. local max = 4/e(N)

%This can be demonstrated with the fourth graph in the Anscombe quartet (page 200). If you
computed the influence of this outlier with (8.19) and thereby used the residuals as a statistic for
discrepancy, the influence of this outlier would be equal to 0.

Yo can choose any variable name for varname.

A There is a very useful teaching tool you can see by typing the command regpt, which is taken
from an ado-file programmed by the Academic Technology Services of the University of California, Los
Angeles. To learn more about ado-files, see chapter 11; to learn more about ado-fles provided over the
Internet, see chapter 12. '
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Now you build a variable index, which contains the serial observation number, and
use this variable as the x-axis on our graph. Next construct the graph with a logarithmic
Y-axis:

. generate index = n
. graph twoway scatter cocksd index, yline(‘max’} msymbol(p) yscale(log)
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The figure shows a large number of observations that are above the critical value,
especially those with a comparatively high income:

. generate bigcook = cooksd > ‘max’

. tabulate bigcook, summarize(hhinc}

Summary of Household income 1997
(monthly)
bigeook Mean  8td. Dev. Freq.
0 1860 45 2975
1 2723 1931 226
Total 1921 1068 3201

In summary, the analyses you ran in this section show a clear finding: using these di-
agnostic techniques, you found a few observations with high incomes to be conspicuous.
The results of the model are much more strongly affected by these few observations than
by all the other observations with low, medium, or high (but not very high} income. In
particular, the added-variable plot on page 208 shows that these influential observations
are not problematic for the example because they influence the regression model only
in the bivariate case. If you excluded all the observations with a very high income, the
coeflicients would stay pretty much as they are.

Potential solutions

You may wonder what to do when influential observations aze present. If an influ-
ential case can be attributed unguestionably to a measurement error, you should either
correct the error or delete the observation from the file. If influential chservations result
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from extreme values of the dependent variable, it is reasonable to use median regression
(section 8.6.1).

Almost always, however, influential observations result from an incompletely spec-
ified model. Exceptional cases are in this case exceptional ounly because our theory
explains them insufficiently. As in our example, where observations with a high income
influence the regression extraordinarily, you should ask if another factor influences home
size that is typically related to high (or to low) income. With right-skewed distribu-
tions, such as that of income, you may want to change the model to use the logarithm
of household income instead of household income itself. In the current context, this
means that household income is suppased to be in a logarithmic relation to home size:
the higher the household income gets, the smaller is the change in home size with each
additional dollar of household income.

- Omitted variables

Variables are calied “omitted variables” or omitted factors if they influence the depen-
dent variable and are at the same time correlated with one or more of the independent
variables of the regression model. Strictly speaking, nonlinear relations and influential
cases are omitted factors, too. In the first case, you may have overlooked the fact that
an independent variable does not have the same influence on the dependent variable
thronghout the whole range of the dependent variable. In the second case, you may
have neglected to model an explicit error theory or overlooked & mechanism that would
explain the outliers.

To figure out which variables have been omitied, you can begin by graphing the
residuals against all variables that are not included in the model. But this is obviously
only possible for those variables that are included in the data file. Even if these graphs
do not show any- distinctive features, there still may be a problem. This diagnostic tool
is therefore necessary but not sufficient.

Identifying omitted factors is, first of all, a theoretical problem. Thus we warn
against blindly using tools to identify omitted variables.

In trying to include all important influential factors in the model, there is an addi-
tional risk called multicollinearity. We will introduce an extreme case of multicollinear-
ity in section 8.4.1 when we discuss how to include categorical independent variables
in regression models. If there is a perfect linear relation between two variables of the
regression model,*? Stata will exclude one of them when calcnlating the model.

But even if the two variables are not a perfect licear combination of each other,
some problems can arise: The standard errors of the coefficients might increase, and
there might be an unexpected change in the size of the coefficients or their signs. You
should therefore avoid including variables in the regression mode! haphazardly. If your
model fits the data well based on R? but nevertheless has few significant coeflicients,
then multicollinearity may be a problem.

2Hop example, z1 = 2 4 xs.
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Finally, you can use the vif command to detect multicollinearity after regression.
This command gives you what is called a variance inflation factor for each independent
variable. See, for example, Fox (1997, 338} for an interpretation and explanation of this
tool.

8.3.2 Violation of Var(¢;) = o?

The assumption that Var{e;) = o requires that the variance of the errors be the same
for all values of X. This assumption is called homoskedasticity, and its violation is
called heteroskedasticity. Unlike the violation of E(e;) = 0, heteroskedasticity does not
lead to biased coefficients. But when the homoskedasticity assumption is violated, the
coefficients of a regression model are not efficient. With inefficient estimation, there is
an increasing probability that a particular regression coefficient deviates from the true
value for the population. Said another way, heteroskedasticity causes the standard errors
of the coefficients to be incorrect, and that obviously has an impact on any statistical
inference that you perform.

There are many possible reasons for heteroskedasticity. Frequently you find het-
eroskedasticity if the dependent variable of your regression model is not syrmmetric.
To test the symmetry of variables, you will find the graphical techniques described in
section 7.3.3 to be very useful.

Stata has a special technique for checking the symmetry of a distribution, called a
“symmetry plot” (Chambers et al. 1983, 29). To construct a symmetry plot, you first
determine the median. Then you compute the distances between the observations next
in size and the median. In a symmetry plot, you plot these two quantities against each
other. You do the same with the next observation, and so on. If all distances are the
same, the plot symbols will lie on the diagonal. If the distances of the observations
above the median are larger then those below, the distribution is right-skewed. If the
reverse is true, the distribution is left-skewed.

In Stata, the symplot command graphs a symmetry plot of a given variable. Here
we graph the symmetry plot for home size;
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The figure shows an obviously right-skewed distribution of the variable home size.
With this kind of distzibution, there is risk of viclating the homoskedasticity assumption.

The residual-versus-fitted plot {Cleveland 1994, 126) is the standard technique for
examining the homoskedasticity assumption. We want to infroduce one variation of this
plot, whick emphasizes the variance of the residuals. You therefore divide the z-axis
into k& groups with the same number of observations and then draw a box plot of the
studentized residuals for each group.

To do this, you again compute the regression model, the predicted values, and the
studentized residuals:

. regress sgqfeet hhinc hhsize
. predict yhai3d
. predict rstud, rstud

For this example, we chose the number of groups used for the z-axis so that each
box plot contains roughly 100 observations:**

43 The function round () is a general Stata function (see section 3.1.6). The saved resutt o (¥) stores the
number of observations of the last regression model. The xtile command is described in section 7.3.1.
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. local groups = round(e(N)/100,1)
. xtile groups = yhat3, nq(‘groups’)
.- graph box rstud, over(groups)
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In the figure, you can see that there is a slight increase in the variance of the residuals.

Potential solutions

In many cases, you can simply transform the dependent variable to remove hes-
eroskedasticity. The transformation should end in a symmetric variable. For right-
skewed variables, a logarithmic transformation is often sufficient. In addition, the
boxcox command allows you to transform a variable so that it is as symmetric as possi-
ble. You wiil find additional discussion of the Box~Cox transformation in section 8.4.3.

I transforming the dependent variable does not remove heteroskedasticity in the
regression model, you cannot use the standard errors of the coefficients (as they are
given in the regression output) for a significance test. If you are nevertheless interested
in a significance test, you might want to try the robust option in the regression comm-
mand. When you use this option, the standard errors are computed in such a way that
homoskedasticity of the error terms need not be assumed.

8.3.3 Violation of Cov(e;,¢;) =0, i # j

What Cov{e;, e;) = 0, ¢ # j, means is that the errors are not correlated with each other.
The violation of this assumption is called “autocorrelation”, which results in inefficient
estimation of the coefficients.

For example, in the preceding sections you tried to predict home size. Now suppose
that you have surveyed home size by letting the interviewers estimate the size instead
of asking the respondent. In this case, it is reasonable to sssume that some of the
interviewers tend to overestimate the sizes of the dwellings, whereas others tend to
underestimate them. In this case, all the observations from one interviewer should be
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gimilar in over- or underestimating home size. A similar situation occurs if all people in
a household are interviewed. In this case, as well as in the above, there may be factors
within the unobserved influences {¢;) that are the same for all members of a household.
The same might be true for respondents of a particular sampling unit.

This example shows that you can deal with a violation of the independence as-
sumption, even with cross-sectional data. In more recent years, the literature on com-
plex samples (Lee, Forthofer, and Lorimor 1989; Lehtonen and Pakkinen 1995; Skinner,
Holt, and Smith 1989) as well in the multilevel literature (Kreft and de Leeuw 1998),
shows ways to handle the violations of the independence assumption we mentioned in
the examples. We will give a more detailed discussion of this problem later.

Autocorrelation is a key concept, especially in time-series analysis, as successive
observations tend to be more similar than observations separated by a large time span
(serial autocorrelation). The Durbin—-Watson test statistic has been developed for time-
series analysis, and in Stata it is available using the estat dwatson command after
regression. However, you must define the data as a time series beforehand. 4

8.4 Model extensions

In this section, we will introduce three extensions to the linear modet you have seen so
far. These extensions are used for categorical independent variables, interaction terms,
and modeling curvilinear relationships. Interpreting refined models can sometimes be
rather difficult, so we will introduce conditional-effects-plots as a graphical way to dis-
play regression results. '

8.4.1 Categorical independent variables

You need to be cautious when vou include a categorical variable with more than two
categories in the regression model. Take, for example, marital status. The variable
marital has six categories, namely married, separated, unmarried, divorced, widowed,
and grass-widowed (partner is living abroad):

. tabulate marital

Marital
status 1997 Freq. Percent

married 1,860 55.69
separate 83 2.49
unmarried 800 23.95
divorce 270 8.08
widowed 312 9.34
grasswid 15 0.45

Total 3,340 100.00

4 As we do not discuss time-series analysis in this book, we refer here to the online help tsset and
t¢ the manual entry [U] 26.13 Models with time-series data.
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It would not make sense to Include marital status in the same way as all other
independent variables since assuming that going from being married to separated has
the same effect on home size as going from divorced to widowed. However, you would
assurze this implicitly when a categorical variable with several categories is included in

a regression model without any changes. What you need instead are contrasts between
the individual categories.

Let’s say that you want to include a variable that differentiates between mazried

and unmarried respondents. To do 50, you can create a, dichotomous variable with the
tesponse categories 0 for not married and 1 for married.

- Eenerate married = marital == 1 if marital < .

You can interpret the resulting b coefficient for this variable in the same way as any other
dummy variable; accordingly, you could say that married respondents live on
in & space that is b square feet bigger than the one unmarried people live in.

All other contrasts can be build in

average

the same way:

- generate separated = marital == 2 if marital < .

- Benerate ummarried = marital == 3 if marital < ,
- generate divorced = marital == 4 if marital < .

- generate widowed = marital == 5 if marital <

- generate grasswid = marital == § if marital < .

Bach contrast displays the difference between respondents with one particular marital
status and all other respondents. Beware that Stata will eatomatically remove one of
the dummy variables if you include all contrasts in the Tegression model:

. regress sqfeet hhinc hhsize married-grasswid, moheader

sqfeet Coef.  Std. Err. t P>t (95% Conf. Intervai]
hhine .1644524 -0070183 23.43 0.000 -1506894 .1782153
hhsize 39.28901 6.440657 6.10  0.000 26.66065 51.91736
married -42.47589  47.98608 -0.89 0.376 -136.5634 51.61162
separated (dropped)
unmarried -73.36993  43.77556 -1.50 0.1323 -168.9964 22.27553
divorced -107.4403  52.90216 -2.03 0.042 -211,1669 -3.713738
widowed -20.81282 52.2181% ~-0.40  0.890 -123.1983 81.57269
grasswid ~-329.026 120.9142 -2.72 0.007 -586. 1055 -91.9485
_cons 579.1672 48.63018 11.91 0.000 483.8168 674.5176

a spouse, is not divorced, is not unmarried, is
not widowed, and is not grass-widowed, the person must be separated from her spouse. *°

The sixth dummy variahle tells you nothing that cannot be gleaned from the other five,
since there are six Dossibilities. Computationally, it is not even possible to estimate co-
efficients on all six dummies in addition to the constant term because those six dummies
sum to one and hence are perfectly correlated with the constant term,




8.4.1 Categorical independent variables 219

Note that the constant represents the predicted value for respondents with zero on
all covariates, in this case respondents who are separated, since the separated dummy
was not included in the model. The predicted home size of persons with a different
family status differs by the amount of the according b coefficient. Married respondents
have, therefore, on average a home size that is 42.48 2 smaller than those of respon-
dents who are separated. Even smaller are the homes of unmarried respondents—ahout
73.36 ft2 smaller than those of separated respondents. All other coefficients are inter-
preted accordingly.

The coefficients you obtained may be somewhat surprising. It would be more rea-
sonable if married respondents have on average larger home sizes than those who are
separated, other things constant; however, according to the model, the opposite is true.
Upon closer inspection, though, the results are more reasonable. Separated respondents
typically live alone, which means their household size is one. While married couples
have an average home size 42 ft? less than separated people holding all other factors
constant, the hhsize variable’s coefficient of 39.3 implies that a married couple with,
no children has, in fact, a home which is an average of just 3 ft2 less than a separated
person. In addition, our dataset has only a few separated respondents.

Instead of creating contrast variables by hand, you can use the tab varname,
gen{newvar) command, where varname is the name of the categorical variable you
want to use. This command ensures that there will be as many variables—newvar! to
newvarK-—as there are categories in the categorical variable.

. tabulate egp, gen(egp_)

This command creates the variables egp.1 to egp.11. You can include those in your
regression model. Tt is usually a good idea to decide on a contrast that will be left out

and used as a comparison category, but which one you use does not affect the results
substantively.

The xi prefix is another shorteut for creating dummy variables that you can use
with all kinds of model commands. You compute the regression of home size on the
cafegorical variable type of household by typing

. xi: regress sqfeet i.htyp

This command creates eight dummmy variables (this is the number of categories in the
variable hhtype) to be used in the regression model. By default, the smallest category
Is omitted and used as the reference category. The xi prefix is especially helpful if
you intend to model interaction effects with those dummy variables. However, using
multiple xi prefixes for several models takes time, since all dummy variables must be
created over and over for each model.
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8.4.2 Interaction terms

In order to discuss modeling interaction effects, we will return to our analysis of income
inequality between men and women from chapter t. There we tried to “explain” the
gross income by gender and occupational status for all respondents who have some kind
of income. The analysis showed that women earn less on average then men and that
this difference can only in part be explained by the difference in full-time and part-time
occupation between men and women.

Let’s begin by reproducing the model using the do-file anchap1 .do:

. do anchapt.do

Assume that you hypothesize that income depends not only on the respondents’
gender and occupational status, but also on their educational level. A higher educational
level—you believe—leads to higher income. In this case, you should include education
in your regression model. Say that you also assume that the educational advantage
is more significant the older people are. There are three good reasons why this is a
reasonable assumption:

e More highly educated people begin their occupational careers later in life. Starting
salaries for highly educated people are therefore not necessarily—if at all—higher
than their co-workers in the same age group with less education but more occupa-
tional experience. However, with increased occupational tenure, the educational
advantage increases, as well.

o People with less education have a higher risk of becoming unemployed. Periods
of unemployment can lead to difficulties in finding a new job, with an increased
likelihood of having part-time or ininimum—wage Jjobs. This would lead in extreme
cases to a loss in income as age increases for people with less education.

o Education was for a long time the most important variable for determining income.
Nowadays there are professions that do not require professional training or a
college degree. Income inequality between educational groups could therefore be
seen as an exsinguishing phenomena that is only visible for older generations.

All three arguments could lead us to hypothesize that the effect of education on
income increases with age. Such effects that vary with values of a third variable are
called interaction effects, which you can include in a regression model by multiplying
the relevant variables.

Here education and age are relevant variables for the interaction effect. To extend
the regression model, include years of education (yedu). You can create the variable for
age using year of birth {ybirth) and the date of the interview:

. generate age = 1997 - ybirth
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It is advantageous to cenier continuous variables, such as length of education or age,
before they are included in a regression model, for several reasons. This is especially
true in the presence of interaction terms (Aiken and West 1991).

To center a variable, subtract the mean from each value. However, note that you
need to compute the mean only for those respondents that will be included in the
regression model later on. In order to know which respondents these are, you need
to know which respondents have valid values on all variables that will be included in
the regression model. You can use the egen function rowmiss (warlist) to do so. This
function counts the number of missing values for the specified variable list.

. egen miss = rowmiss{income yedu ybirth fulltime)

You generate the miss variable using this egen command. The variable miss takes on
the value zero for all respondents that do not have missing values for any of the specified
variables. This allows you to specify the correct mean, as we discussed above:*®

. summarize yedu if miss ==
. genmerate cyedu = yedu - r(mean) if miss==

summarize age if miss==
. generate cage = age - r(mean) if miss==

To build the interaction term, multiply both variables that are part of the interaction.
. generate yeduage = cyedu * cage

The linear regression model will be extended hy the variables cage and cyedu and
the interaction term yeduage that you just created:

. regress income men fulltime cage cyedu yeduage

Source B3 af M3 Number of obs = 1545
F( 5, 1539) 50.24

Model 359958734 5 71921756.8 Prob > F 0.0000
Residual .2051e+09 1539 1432839.59 R-squared = (.1403
Adj R-squared 0.1375
Total .5651e+09 1544 1661333.49 Root MSE 1197

income Coef . Std. Err. [95% Conf. Intervall

men 444.0768  61.78785 . . 322.8796 566.2741
fulltime 764.3836  90.45379 . . 586.9579 541.8093
cage -.893082  2.158071 . . -5.1268133 3.340009
cyedu 119.3288  12.50207 . . 94.80594 143.8517
yeduage 1.11756 .8829518 . . -.6143558 2.849476
_cons 1007.47 88.078676 . . 838.6304 1176.311

45The expression r(mean) refers to the mean saved by summarize (see chapter 4).
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Without going into details, we want to explain the graphical representation of the
regression model results, in particular, the interpretation of the interaction terms. Even
if most peopie use tables to display the results of a muitiple linear regression, we think
graphs are more reasonable for complex models.*® Graphically displaying the results
is especially useful for models with interaction terms; conditional-effects plots are com-
monly used.

To construct a conditional-effects plot, you draw different regression lines for different
combinations of independent variables. Here you can create a graph that indicates
the correlation between age and income and, according to our hypothesis about the
interaction effect, the correlation for an average length of education, as well as for the
lowest and highest years of education. This means that you need to compute three
different regression lines.

For a simple linear regression, we showed you on page 185 how to compute the
regression line according to the model results:

. predict yhati
Alternatively, you could get the predicted values by typing

. penerate yhat2 = _bl_cons] + _bl[fulltimel+*fulltime + _blmen]*men +
> _blcagel*cage + _blcyedul*cyedu + _blyeduage] *yeduage

Unlike simple linear regression, in a multiple regression the predicted values cannot
be displayed on a straight line in a two-dimensional graph. However, you can obtain
a line if you fix the values of all variables but one. You can, for example, compute
the predicted values for female respondents with part-time employment and an average
education. Since you centered the variable for education, you know that 0 represents
the average length of education. You can therefore compute the desired values by fixing
all variables except age to zero:

. generate yh_yedul = _bl cons] + _blcagel * cage

Notice that most of the terms in the equation disappeared because you replaced the
variables’ values with zeros. The same is true for the interaction effect since multiplying
age with the average value of the centered education variable is zero, as well.

The predicted values for the lowest education group can be computed accordingly.
To do so, you first must summarize the variable cyedu and use the saved result r (min),
which contains the minimum value of the variable used in the last summarize command.
Beware that {ixing the interaction term is more complicated, since it should vary with
age but not with education. You therefore multiply the interaction term with the min-
imum value of education and cyedu. Now you can fix the interaction term accordingly
for the highest educational group:

461n section 12.3.1, we introduce a command that is usually used to transform Stata regression tables
in regression tables usually used for publications.




8.4.3 Regression models using fransformed variables

summarize cyedu
. generate yh_yedumin = _b[_cons] + _blcagel+cage + _blcyedul+r(min) +
> _blyeduagel*cage*r (nin)
. generate yh_yedumax = _b[_cons] + _blcagel+cage + _blcyedul®r(max) +
> _blyeduage]*cage*r{max}

You have thus created three different variables that contain values for three different
educational levels for women who work part-time. Each of these three variables is in
itgelf a function of age. The values for each educational level form a line that can be
displayed graphically. Note that in this command, the star behind yh_edu is used to
include all variables beginning with yh edu in the graph command (see section 3.1.2):

. graph twoway linme yh_yedu* age, sort
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In this graph, the top line represents respondents from the highest educational group,
and the bottom line represents respondents from the lowest educational group.*” The
graph shows that age has a different effect for each educational level. The higher the
educational level, the greater is the increase of income with increasing age. In mod-
els without interaction terms, the lines in a conditional-effects plots would always be
parallel.

8.4.3 Regression models using transformed variables

There are two main reasons to use transformed variables in a regression model:

1. the presence of a nounlinear relationship

2. a violation of the homoskedasticity assumption

Depending on the reason you wani to transform the variables, there are different ways
to proceed. In the presence of a nonlinear relation, you would (normally} transform the

47To improve this legend, refer to section 6.3.4.




224 Chapter 8. Introduction to linear regression

independent variabie, but in the presence of heteroskedasticity, you would transform the
dependent variable. We will begin by explaining how to model nonlinear relationships
and then how fo deal with heteroskedasticity (also see Mosteller and Tukey 1977)

Nonlinear relations

We introduced regression diagnostic techniques for detecting nonlinear relationships in
section 8.3.1. However, in many cases, theoretical considerations already provide enough
reason to model a nonlinear relationship: think, for example, about the correlation
between female literacy rate and birth rate. You would expect a negative correlation
for these two variables, and you would also expect the birth rate not to drop linearly
towards zero. Rather you would expect birth rate to decrease with an increase in literacy
rate to levels of around one or two births per women.

Nonlinear relationships occur quite frequently in cases where income is used as an
independent variable. For many relationships, income changes in the lower range of
income have a greater effect on the dependent variable than income changes in the
upper part of the income distribution. Income triples with a change from $500 to
$1,500, while the increase is only ten percent for a change from $10,000 to $11,000,
although the increase is iz both cases $1,000.

When modeling nonlinear relationships, you first need o know or ab least hypothesize
a functional form of the relationship. Here you need to distinguish among three basic
types of nonlinear relations: logarithmic, hyperholic, and [/-shaped. Stylized versions of
these relationship can be produced with the twoway plottype function {see [G] graph
twoway function):

. twoway (function y = x*3, yaxis{(1) yscale(off axis(1)))

> (function y = 1n(x), yexis(2) yscale(off axis(2)}))

> (function y = (-1)* x + x"2, yaxis(3)} yscala(off axis(3))),

> legend(label(l "Hyperbolic") label(2 "Logarithmic®) label(3 "U-Shaped" )}

Hyperbolic  —=-——- Logarithmic :
........... U-Shaped

In logarithmic relationships, the dependent variable incresses with increasing val-
ues of the independent variable. However, with increasing values of the independent
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variable, the increase in the dependent variable levels off. In hyperbolic relationships,
the relation is reversed, as the dependent variable increases only moderately at the be-
ginning and increases with increasing values of the independent variable. In U-shaped
refationships, the sign of the effect of the independent variable changes. All three basic
types can occur in opposite directions. For logarithmic relationships, this would mean
that the values decrease rapidly at the beginning and slower later on. For hyperbolic re-
lationships, the values drop slowly at the beginning and rapidly later on. For U/-shaped
relationships, the values first decrease and increase later on, or vice versa. In practice,
logarithmic relationships occur quite frequently.

To model logarithmic relations, you first form the log of the independent variable and
replace the original variable in the regression model with this new variable. A strong
logarithmic relationship can be found between the countries’ gross domestic product
and infant mortality rate. The file uno.dta contains these data.*®

. use uno.dta, clear
. graph twoway scatter infmort gdp

You can model this logarithmic relationship by first creating the log of the X variable
. generate loggdp = log(gdp)
and then using this variable instead of the original X variable:

. regress infmort loggdp
. predict yhatl

You can see the logarithmic relationship between the predicted value of the regression
model yhatl and the untransformed independent variable:

- twoway (scatter infmort gdp) (line yhatl gdp, sort)

50 100 150 200
L s L 1

1]
L

) Fitted values/intant mertality rate 1895-2000

10000 15060 20800 25d00
GDF1998.. . .

Fitted values & Infant mortality rate 1995-2000 |- .

“The original example was introduced by Fox (2000), and the values have been updated using
information provided by the United Nations {http://www.un.org/Depts/unsd /social/main. htm).
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You use a similar procedure to model hyperbolic relations, except that now you
square the original variable instead of taking its logarithm. Here the original variable
is also replaced by the newly transformed variable. 2

The situation is different when you are modeling a I7-shaped relationship. Although
you still square the independent variable, the newly generated variable does not replace
the original variable. Instead both variables will be used in the regression model. A
U-shaped relation is one of the examples in Anscombe’s quartet on page 200. Including
the quadratic term will allow you to model this correlation perfectly:

. use anscombe, clear

. generate x2q = x272

. regress y2 x2 x2q

. predict yhat

. twoway (line yhat x2, sort) (scatber y2 x2)
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If you are thinking of using transformations of the independent variables, see Cook
and Weisberg (1999, chapter 16} for some precautions for doing so.

Eliminating heteroskedasticity

In section 8.3.2, we discussed skewed dependent variables as one of the possible causes
of heteroskedasticity. In this case, you would need to transform the dependent variable
in order to remove heteroskedasticity. Note that the interpretation of the regression
model changes when you inciude a transformed variable. Transforming the dependent
variable leads to a nonlinear relationship between the dependent and all independent
variables (Hair et al. 1995, 75).

The aim in transforming a variable is to obtain a fairly symmetric or normal depen-
dent variable. Remember the following rule of thumb: If the distribution is wide, the
inverse of the variable is a useful transformation (1/Y). If the distribution is skewed to

¥ Examples for hyperbelic relations are rare in the social sciences. The salary of a Formula 1 race
driver could possibly show a hyperbolic relation to the mumber of Grand-Prix victories.
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the right {such as home size in our example}, taking the log is reasonable, and you can
take the square root, if the distribution is skewed to the left (Fox 1997, 59-82).

Besides following these rules, you can use the Stata command beskew0 which uses
a BoxCox transformation that will lead to a (nearly) unskewed distribution®.

. use datal,clear
. beskew( besgfeet = sqfeet

The residual-versus-fitted plot {page 200} tells you something about the type of
transformation necessary, If the spread of the residuals increases with increasing values
in the predicted variable, the inverse of ¥ is a better dependent variable. If there is
a decreasing spread of the residuals with increasing values in the predicted variable,
you will want to replace the original dependent variable ¥ with the square root of Y
(Hair et al. 1995, 70).

8.5 More on standard errors

We have mentioned that the standard errors reported by regress require you to make
a host of assumptions in order for them to be valid. Multicollinearity, for example,
typically causes standard errors to be inflated, making coefficients appear insignificant.
Heteroskedasticity also affects standard errors. In this section, we briefly introduce two
alternative methods of obtaining standard errors and confidence intervals.

Bootstrap techniques

Confidence intervals are computed under the assumption that the regression coeflicients
are normally distributed. Based on this assumption, you can multiply the standard
errors with the critical value.5! However, with firite samples the coefficients may not
have a normal distribution. Therefore, we want to introduce a technique you can use to
compute confidence intervals in a different way. The technique is called the “bootstrap”,
suggesting that we have to help ourselves using the information at hand instead of relying
on distribution assumptions.®?

The bootstrap technigue is based on the assumption that all the information you
have about your population is contained within the sample data, meaning you use only
the sample data to assess the population. Let’s step back for a second. Assume that
you could draw as many samples from the population as you wanted, and you compute
confidence intervals for the regression coefficient for each of these samples; abouf 95
percent of all 95% confidence intervals computed in this way would include the true

800\ ake sure that the variable used in beskew® does not include negative values or the value zero.

51The critical value for a 05% confidence interval for models with more than 120 degrees of freedom
is 1.96. Remember thai the degrees of freedom are the number of cases minus number of coefficients
including the constant bg.

52566 Mooney and Duval (1993, 42} for a brief overview over the different hootstrap techniques. A
detailed explanation is given by Fifron and Tibshirani (1993} and a pedagogical introduction by Stine
(1950).
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value of the coefficient. Unfortunately, you cannot replicate the sammple that many
times, but you can use the bootstrap technique. Applying the bootstrap technique, you
draw a large number of samples out of your sample, where each sample has a similar
number of observations as the original sample. In other words, you treat your original
sample as if it were the population, then repeatedly draw samples from it. This may
sound strange, but all that is required is sampling with replacement. Some observations
will probably appear twice or three times in one of the new samples.

Now you compute the statistic (e.g., the mean of a variable, or in this case the
regression coefficient b} for each of the samples that had been drawn out of the origi-
nal sample. The distzibution of all the estimation results will enable you to compute
confidence interval boundaries for the statistic of interest to you. According to the “per-
centile method” the 95 percent confidence interval is formed by the value above which

there are 2.5 percent of all estimation results, and the value below which there are 9.5
percent of all estimation results.

In Stata, the bootstrap prefix command is used to perform the bootstrap.® All you
need to do is prefix your estimation command with the keyword bootstrap:. You can
optionally specify the number of samples to draw. If you want to interpret the confidence
intervals, we suggest drawing at least 1,000 samples. Do not be surprised if this takes
a while on your machine. Finally, note that the entire procedure is based on a random
process, so unless you reset the random-number seed each time, you will get slightly
different results every time you run your do-file again. To obtain the percentile-based
confidence intervals we just discussed, use the estat bootstrap command afterwards.
bootstrap itself reports confidence intervals that assume that the coefficients are nor-
mally distributed, which we have just argued is not always appropriate.

. use datal, clear
(SCEP’97 (Kohler/Kreuter))

set seed 731

- bootstrap: regress sgfeet income hhsize
(running regress on estimation sample)

{output omitted )

. estat bootstrap, percentile

Linear regression Number of obs = 2960
Replications = 50
Observed Bootstrap

sqfeet Coef . Bias Std. Err. [95% Conf. Intervall
income . 06513619 .0014398 0074741 .0629878 .07813561 P
hhsize 83.435215 1.849459 6.4308584 73.36475 96.36674 {P)
_COIS 644.0526 -8.150171 12.503386 593.7859  667.9052 P

® percentile confidence interval

5 Prior to Stata 9, the boctatrap command was used, which follows a different syntax. Type help
bootstrap if you are using an older version of Stata.
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To apply the bootstrap technique, you need to know how your sample is drawn from
the population because this sampling process must be followed during the bootstrap
sammpling. To introduee the bootstrap, we described the most simple case of a simple
random sample. Applying bootstrap techniques to most national survey data is there-
fore more complex than what we have introduced here since you need to replicate the
sampling of, for example, a cluster sample. You can find ways to do so by typing help
bootstrap.

Confidence intervals in cluster samples

Many surveys are not based on simple random sampling but on multistage clustered
samples. One example for a two-stage cluster sample is the selection of hospitals and the
selection of patients within each selected hospital. A multistage cluster sample example
would be the selection of schools, the selection of clagsrooms within each school, and
within each classroom the selection of students (Levy and Lemeshow 1999, 227). The
GSOEP, which is the basis of the dataset datal.dta used here, is also a multistage cluster
sample (Pannenberg et al. 1998). At the first stage, election districts were sampled from
a nationwide register, and afterwards respondents were drawn using what iz called a
random walk.

The decision to use a clustered sample (and not a simple random sample} can be
made for organizational or financial reasons. For example, the absence of a general
population register in many countries reduces many researchers’ abiliy to use simple
random samples. Sampling in several sampling stages, one of them at the level of
small geographical clusters, allows for the selection of respondents without the aid of
register data. However, there is a drawback to using a clustered sample: the standard
errors can be larger then they would be under simple random sampling (Kish 1965).
One reason for this is the relative homogeneity of observations within a cluster. For
example, respondents within the same neighborhood can probably afford similar housing
and belong to a similar income group, therefore giving similar answers regarding income.
Another reason for larger standard errors may be the way data were collected, where
each interviewer might influence the responses (Schnell and Kreuter 2005).

In addition, samples are often stratified; that is, population elements are divided into
exhaustive subgroups and sampling takes place within each of these subgroups. Unlike
clustering, strasification can reduce the standard errors if the stratification variable is
correlated with the outcome of interest. However, you will need to take sampling design
information into account.

Stata provides special commands to estimate the correct standard errors for complex
samples®®. For example, if you want to take the potentially homogenizing effects of
interviewers into account for our example, you can use the following command sequence.

948se [SVY] survey for an overview of Stata’s survey estimation commands.
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svyset, psulintnr)

pweight: <none>
VCE: linearized
Strata 1: <one>
SU 1: intnr
FPC 1: <zero>

» 8Vy: regress sqfeet income hhsize
(running regress on estimation sample}

Survey: Linear regression

Number of strata = 1 Number of obs = 2562
Number of PSUs = 428 Population size = 2779
Design df = 428
F( 2, 427) = 93.27
Prob » F = 0.0000
R-squared = 0.0820

Linearized
aqfeet Coef. Std. Err. t Pritl {95% Conf. Interval]
income .0652464 0079756 6.83  0.000 . 0395701 0709227
hhsize 82.46072  7.144441 11.54  0.000 68.41818 96.50328
_cons 661.5778  22.78619 28.6¢ 0,000 606.7911 €96. 36456

The svyset, psu(intnr} command specifies the name of a variable (here intnr)
that contains identifiers for the primary sampling units (clusters). You can parse this
specification to the regression by putting the gvy prefix in front of the regression com-
mand. The same technique applies to other statistical models as well.

You now obtain results for 2,562 observations, who had been interviewed by 429
interviewers.> In this example, the difference between the correct confidence intervals
and confidence intervals estimated assuming a simple random sample is negligibie.*
Make sure that your data file includes variables that contain sampling design information
so that you have information about the sampling point and about the interviewer)
so that you can check your results for design effects. An excellent resource for the

application of advanced techniques in Stata is the book by Rabe-Hesketh and Everitt
(2004).

8.6 Advanced techniques

In addition to multiple linear regression, there are a number of related models that can
be estimated in Stata. There is not enough room in this book to explain all of them
in detail. However, a few of these models are so common that we want to describe the
general ideas behind them. Each model is explained in detail in the Stata Reference
Manual, where you will also find selected literature on the model.

55The interviewer information is missing for 561 respondents in this data file.
56This looks guite different if you look at the confidence intervals for the mean of the variables
indicating respondents’ concerns, for example np9506 with svy: mean np9506. With SVy: mean np9506
followed by estat effects you get a design effect of 1.45, which means that the corfidence intervals
are about 1.45 times higher than the ones estimsted assuming simple random sampling.
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8.6.1 Maedian regression

A median regression is quite similar to the ordinary least squares regression we talked
about earlier. While the sum of the squared residuals ¥ (7 — ¥:)? is minimized in OLS
regression, the sum of the absolute residuals > ¥ — ;| is minimized when applying
median regression. Squaring residuals in OLS means that farge residuals are more heavily
weighted than small residuals. This property is lost in median regression, so it is less
gensitive to outliers than OLS regression.

Median regression takes its name from its predicied values, which are estimates of the
median of the dependent variable conditional on the values of the independent variables.
In OLS, the predicted values are estimates of the conditional means of the dependent
variable. The predicted values of both regression techniques describe therefore a measure
of a certain property—the central tendency—of the dependent variable.

Stata treats median regression as a special case of a quantile regression. In quantile
regression, the coefficient is estimated so that the sum of the weighted (i.e., multiplied
by a the factor w;) absolute residuals is minimized.

Z(lyz — i X w;) = min (8.22)

Weights can be different for positive and negative residuals. If positive and negative
residuals are weighted the same way, you get a median regression. If positive residuals
are weighted by the factor 1.5 and negative residuals are weighted by the factor 0.5, you
get a “3rd quartile regression”, etc.

In Stata, you compute guantile regressions using the greg command. Just as in any
other Stata model command, the dependent variable follows the command, then you
specify the list of independent variables; the default is a median regression.

For this, use the dataset data2agg.dta, which contains the mean life satisfaction
and the mean income data from the German population from 1984 to 2002.57

. use datalagg, clear

Firgt, take 2 look at & scatterplot with the regression line of the mean life satisfaction
on the mean income:

. twoway (1fit Isat inc) {(sc lsat inc, mlab{wave)), leg(order(l) lab(1l "OLS"}}

Note in this figure that the data for 1984 might influence the regression results more
than any other data point. Now compute a median regression

. greg lsat inc

and compare the predicted values of the median regression with the standard linear fit
of the OLS regression:

57 We used this small dataset to exemplify the effect of median regression. Beware that working with
aggregate dala is prone for ecological fallacy (Freedman 2604).
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. predict medhat
. twoway (1fit lsat ine) {sc lsat inc, mlab{(wave)) {line medhat inc, sort),
> leg(order(i 3) lab(i "DLS") 1ab{(3 "Median"))

Note that the regression line of the median regression is not as steep ag the standard
regression line. The reason is that the median regression is more robust to extreme data
points, such as those from 1984.

8.6.2 Regression models for panel data

Panel data, or cross-sectional time-series data, contain repeated measures of the same
individuals over time. An example of a panel data is the German Socio-Economic
Panel (GSOEP). In the GSOEP, about 12,000 persons have been asked identical questions
every year since 1984, That is, the GSOEP measures the same variables for the same
respondents at different points in time. It should be clear, however, that panel data
does not only arise from such “panel surveys”. The same data structure is also present if
you have collected certain macroeconomic indices in many different countries over time,
or even data about certain features of political parties over time. Really, what defines
panel data is that the same entities are observed at different times. In the remaining
section, we will use the term “individuals” for these entities.

In Stata, all the commands that deal with panel data begin with the letters xt,
and these commands are described in the Longitudinal/Panel Data Reference Manual
({xT]). A list of the xt commands can be found by typing help xt. Among the xt
commands are some of the more complex models in the statistical universe, which we
will not describe here. Instead we will help you understand the thinking behind the
major approaches 0 analyzing panel data, together with examples of how you can use
these approaches in Stata.?®

Before we describe the statistical models, we need to say a word about data man-
agement. All Stata commands for panel analysis require a panel dataset that is in long
format, so the next section describes how to put your data in this format. Then we will
explain fixed-effects models and error-components models.

From wide to long format

Panel data can be stored in wide format or in long format. In wide format, the obser-
vations of the dataset are the individuals observed, and the variables are their charac-
teristics at the respective time points. For example, if we ask four specific individuals,
say John, Paul, George, and Ringo, about their life satisfaction in 1968, 1969, and 1970,
we can store their answers in wide format by making a dataset with four observations,
namely John, Paul, George, and Ringo, and three variables reflecting life satisfaction in
1968, 1969, and 1970, respectively (see table 8.2). However, the same information can

%For more information, see (Baltagi 1995; Hardin and Hilbe 2003; Diggle, Liang, and Zeger 1994;
Wooldridge 2002) and the literature cited in [XT] xtreg.
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also be stored in long format, where the observations are the individuals at a specific
point in time and the variables are the observed characteristics. Hence, in our example,
there would be three observations for John—one for 1968, one for 1969, and one for
1970—three observations for Paul, etc. The information on life satisfaction would be
in one single variable. To keep the information about the timing, we would need a new
variable for the year of observation.

Table 8.2: Ways to store panel data

Wide Format Long Format,

Xeoss  Xiss  Xioro i year

7 8 John 1968
John 1969

John 1970

Paul 1969

Paul 1969

Paul 1970

Gearge 1968

Ringo 1970

Stata’s xt commands generally expect panel data in long format. 1t is however more
common for dataset providers to distribute panel data in wide format.”® You will often
need to reshape your dataset from wide to long.

An example of a panel data in wide format is data2w.dta. Please load this dataset
to follow our example of changing from wide format to long format:

. use datalw, clear

This file contains information on year of birth, gender, life satisfaction, marital sta-
tus, individual labor earnings, and annual work hours of 1,761 respondents {(individuals)
from the German Socio-Economic Panel (GSOEP). The individuals were observed every
year between 1984 and 2002. Therefore, with the exception of the time-invariate vari-
ables gender and year of birth, there are 19 variables for each observed characteristic.
If you look at the file with

59For very large panel studies, such as the German Socio-Economic Panel (GSOEP), the American
Panel Study of Income Dynamics (PSID) or the British Household Panel Study (BHPS), the situation
tends to be even more complicated. These data are often distributed in more than one file. In this
case, you need to first combine these files into one single file. In section 10.4, we show you how to do
this using an example from the GSOEP, resulting in a dataset in wide format.
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. describe

Contains data from data2w.dta

obs: 1,761 GSOEP 1984-2002 randemized
(Kohler/Kreuter)
vars: 80 1 Bep 2004 08:24
size: 284,087 (86.9% of memory free) (_dta has notes)
storage display value

variable name  type format label variable label

hhnr leng %12.0g Fix Household Number

persnr leng %12.0g Person ID (m}

sex byte  %13.0g sex Gender (n)

gebjahr int 8.0g Year of birth (n}

1sat1984 byte  }45.0g sat General Life Satisfaction

marl9g4 byte  %20.0g d1110484 * Marital Status of Individual (n)

houri984 int #12.0g Annual Work Hours of Individual
(n)

inc1984 float %9.0g * Individual Labor Earnings {(n)

lsat198b byte  %#45.0g sat General Life Satisfaction

mari985 byte  %20.0g d1110485 * Marital Status of Individual {(n)

houri9ss int %12.0g Arnual Work Hours of Individual
(n)

inc1986 float %8.0g * Individual Labor Earnings (n)

1sat 1986 byte  %45.0g sat General Life Satisfaction

(output omitted)

you will see that the variable names of the file have a specific structure. The first part
of the variable names, namely lsat, mar, hour, and inc, refers to the content of the
variable, whereas the second part refers to the vear in which the variable has been
observed. Using this type of naming convention makes it easy to reshape data from
wide to long.

Unfortunately, in practice variable names rarely follow this naming scheme. Even
the variables in the GSOEP do not. For your convenience, we have renamed all the
variables in the dataset beforehand, but generally you will need to do this on your own
using the rename and renpfix commands. Renaming all the variables of panel data in
wide format can be quite cumbersome. In the do-file crdata2.do, we have therefore
constructed some loops, which use concepts explained in sections 3.2.2 and 11.2.1. If
you need to rename many variables, you should review these concepts.5®

The command for changing data between wide and fong is reshape. reshape long
changes a dataset from wide to long, and reshape wide does the same in the other
direction. Stata needs to know three pieces of information to reshape data:

1. The variable that identifies the individuals in the data (i.e., the respondents},
2. the characteristics that are under observation, and

3. the times when the characteristics were observed.

80The user-written Stata command soepren makes it easier to rename GSQEP variables. The com-
mand is available on the SSC archive; for information about the S8C archive and installing user-written
commands, see chapter 12,



8.6.2 Regression models for panel data 235

The first picce of information is easy to obtain. In our example data, it is simply
the variable persnr, whick uniquely identifies each individual of the GSOEP. If there is
no such variable, you can simply generate a variable containing the running number of
each observation (see section 5.1.3).

The two latter pieces of information are coded in the variable names. As we have
seen, the first part of the variable names contains the characteristic under observation,
and the second part contains the time of observation. We therefore need to tell Stata
where the first part of the variable names ends and the second part starts. This informa-
tion is passed to Stata by listing the variable name stubs that refer to the characteristic
under observation. Let us show you how this works for our example:

. reshape long inc lsat mar hour, i(persnr) j(wave)

First, note the option i (), which is required. It is used to specify the variable for the
individuals of the dataset. Second, look at what we have specified after reshape long.
Note that we have listed neither variable names nor a warlist. Instead we have specified
the name stubs that refer to the characteristic under observation. The remaining part
of the variable names is then interpreted by Stata as being information about the time
point of the observation., When running the command, Stata strips off the year from
the variables that begin with the specified name stub and stores this information in a
new variable. In our case, the new variable is named wave, as we specified this name in
the option j ). If we had not specified that option, Stata would have used the variable
name ..j.

Now let’s take a look at the new dataset.

. describe

Contains data
obs: 33,459 GSOEP 1984-2002 randomized
(Kohler/Kreuter)
vars: 9
size: 836,475 (91.1% of memory fres)  (_dta has notes)}

storage display value
variable name type format label variable label

persnr long  #12.0g Person ID (n)
wave int %9.0g
hhnr long  #12.0g Fix Household Number
sex byte %13.0g sex Gender (n)
gebjahr int %8.0g Year of birth (n)
1sat byte  %20.0g sat
mar byte  %20.0g d1110402 *
hour int #12.0g
inc float %9.0g *
* indicated variables have notes

Sorted by: persnr wave
Note: dataset has changed since last saved
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. list persnr wave 1sat

persnr  wave lsat

1. 76 1984 8
2. 76 1985 8
3. 76 1986 7
4, 76 1987 8
5. 76 1938 8

{output omitted )

The dataset now has 9 variables instead of 80. Clearly there are still 1,761 individ-
uals in the dataset, but since the observations made on the severals occasions for each
individual are stacked beneath each other, we end up with 33,459 observations. Hence,
the data is in long format, as it must be to use the commands for panel data. And
working with the xt commands is even more convenient if you declare the data to be

panel data. You can do this with the tsset command by specifying the variable that
identifies individuals followed by the variable that indicates time:

. tsset persnr wave

panel variable: persnr, 76 to 1392841
time variable: wave, 1984 to 2002

Finally, note that after reshapin

g the data once, reshaping from long to wide and
vice versa is easy:

. reshape wide
- reshape long

Fixed-effects models

If the data is in long format, you can now run a simple ordinary least squares regres-
sion. For example, if you want to find out, whether aging has an effect on general life
satisfaction, you might want to run the following regression:

- gen age = wave - gebjahr

- replace lsat = .a if lsat < O

{82 real changes made, 82 to migsing)
- regress lsat age

Bource 8s daf M3 Number of obs = 33377
F( 1, 33375) = 3.21

Model 10.2027446 1 10.2027448 Prob > F = 0.0733
Residual 1061686.227 33375 3,18101053 R-squared = 0,0001
Adj R-squared = 0.0001

Total 106176.429 33376 3.18122092 Root MSE = 1.7835
lsat Coef,  Std. Err. t P>t [95% Conf. Interval]

age -.0008269 .00035 -1.79  0.073 -.001313 . 0000592
_cons 7.196336 .0192932 372.95  0.000 7.15752 7.233151
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From this regression model, you learn that with age, life satisfaction tends to de-
crease, but since the coefficient is not significant, you might also say that age does not
affect life satisfaction. However, after having read this chapter, you probably do not
want to trust this regression model, particularly because of omitted variables. Should
you control the relationship for quantities like gender, education, and the historical time
in which the respondents grew up?

Now let’s imagine that you include a dummy variable for each individual of the
GSOEP. As there are 1,761 individuals in the dataset, this would require a regression
model with 1,760 dummy variables, which might be slightly overwhelming to work with.
But for small datasets like those presented in table 8.2, this is not a problem. So let us
deal with this data for now.

. preserve
. use beatles, clear
. describe

Contains data from beatles.dta

cbs: 12
vars: 4 7 Jul 2004 15:36
size: 108 {(89.9% of memory free)

storage display value
variable neme type format label variable label

persnr byte %9.0g name Person

time int #9.0g Year of observation

lzat byte %9.0g Life Satisfaction (fictive)
age byte %9.0g Age in Years

Sorted by:

This dataset contains the age and (artificial) life satisfaction of four Englishmen at
three points in time in long format. The command

. regress lsat age

Source S8 df M3 Number of obs = 12
F( 1, 10) 1.97

Model 13.460177 1 13.460177 Prob > F 0.1904
Residual 65.2064897 10 6.82064897 R-squared 0.1648
Adj B-squared = 0.0813
Total 51.6666667 11 7.42424242 Root MSE 2.6118

lsat Coef . Std. Err. t P>t [95% Conf. Intervall

age . 6902655 .4913643 1.40 0.180 -.4045625 1.785093
_cons -14.32153 13.65618 -1.05 0.319 —44.74941 16.10635

mirrors the regression analysis from above, showing a slight insignificant, positive effect
of age on life satisfaction. Incorporating dummy variables for each individual of the
dataset into this regression is straightforward.
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. tab persnr, gen{(d)

Person Freq. Percent Cum.
John 3 25.00 25.00
Paul 3 26.00 50,00
George 3 25.00 75.00
Ringo 3 25.00 100.00
Total 12 100.00
. regress lsat age d2-d4
Source 58 df M3 Number of obs = 12
F( 4, 7) = 90.95
Medel 80.125 4 20.03125 Prob > F = 0.0000
Residual 1.54166667 7 .220238095 R-squared = 0.9811
Adj R-squared = 0,9703
Total 81.6666687 11 7.42424242 Root MSE = .4693
lsat Coef.  Std. Err. t P>{t| [86%, Conf. Intervall
age -1.628 .165921 -9.79  0.000 ~2.017341  -1.232859
d2 ~-6.916667 -b068969  -13.65  0.000 ~8.115287  -5.718046
d3 -8.541687  .B281666 -13.60  0.000 -10.02704  -7.055289
a4 1.333333 .383178 3.48  0.010 LA2T2613 2.239405
_cons 53.45833 4.81933 11.09  0.000 42.06243 64.85424

Now it appears that age has a strong negative effect on life satisfaction. The sign
of the age effect has reversed, and we will see in a minute why this has happened.
But let us first say something about the individual dummies. The cogfficients of the
individual dummies reflect how strongly the life satisfaction of the four Englishmen
differs. You can see that persons 1 and 4 have a much higher life satisfaction than
persons 2 and 3. You do not know why these people differ in their life satisfaction,
the differences are not surprising since different people perceive life differently. Mayhe
they live in different neighborhoods, have different family backgrounds, grew up under
different circumstances, or just have different habits about answering odd guestions in
population surveys. What is important here is that, since you put individual dummies
into the regression model, you have reliably controlled for any differences between the
persons. In this sense, the coefficient for age cannot be biased because we omitted
stable characteristics of these persons. It is a pure aging effect, which rests solely on
the development of the life satisfaction during the aging process of these four men.

This interpretation of the age coefficient can be illustrated with the following plot.

. predict yhat
. separate 1sat, by(persnr)
separate yhat, by(persar)
- twoway (line yhati-yhat4 age, clstyle(pl pl pl p1))
> (1fit 1sat age, clpattern(dash)) {scatter lsatl-lsatd age),

> legend{order(i 5 6 7 8 9) lab(i "Fixed Effects Pred.")
> lab(s "Standard 0LS Pred"))
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Fixed Effects Pred. Standard OLS Pred
Isat, persnr == John Isat, parsnr = Paul
L] Isat, persnr == Georga kv Isat, persnr == Ringo

The plot is an overlay of a standard scatterplot with different markers for each person
in the dataset (scatter lsatl-lsat4 age), a conditional effects plot of the regression
model with the person dummies (1ine yhatl-yhat4 age) and a simple regression line
for all the data (1fit lsat age). If you look at the markers for each person separately,
youL will find that the life satisfaction decreases as the person gets older. Af the same
time, however, Ringo and John, the two oldest people in the dataset, have a higher
life satisfaction than Paul and George. If we do not control for this, differences among
people contribute to the age effect. The age effect of the simple OLS regression just
shows that the older people have a higher life satisfaction than the younger ones. After
we control for the personal differences, the only variation left is that which is within
each person, and then age effect reflects the change in life satisfaction as each person
gets older.

As the regression model with person dummies restricts itself on the variation within
each person, the model is sometimes called the within estimator, covariance model,
individual dummy-variable model, or fixed-effects model.

While the derivation of the fixed-effects model is straightforward, the technical cal-
culation of the model in huge datasets is not. The problem arises because the number
of independent variables in regression models is restricted to 800 in Intercooled Stata
and to 11,000 in Stata/SE. Therefore, you cannot calculate a fixed-effects model by
incorporating individual dummies in datasets with more than 800 or 11,000 individuals
respectively.

Fortunately, in the linear regression model, you can use an algebraic trick to calculate
the fixed-effects model, anyway. And even more fortunately, Stata has a command that
does this algebraic trick for you: xtreg with the option fs. Here you can use the
command for our small example data

. xtreg lsat age, fe i(persnr)

which reproduces the age coefficient of the model with dummy variables exactly. Note
that you do not need to list the duminy variables in this command. Instead you specify
the name of the variable, which identifies the individuals in the option 1 ().
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The same logic applies if you want to calculate the fixed-effects model for larger
datasets. Therefore, you can use the same command also in our previously constructed

dataset. As you have already used the command tsset above (see page 236), you do
not need to specify the i () option.

. Trestore
. xtreg isat age, fe

Note that the values of the coeflicients for the 1,761 durnmy variables are not shown
in the output and were not calculated. But the coefficient for age in the model is
calculated as if the dummy variables were present. The fixed-effects model controls for
all time-invariant differences between the individuals, so the coefficients of the fixed-
effects models cannot be biased due to omitted time-invariant characteristics. This
feature makes the fixed-effects mode? particularly attractive.

Ore side effect of the features of fixed-effects models is that they cannot be used
to investigate time-invariant causes of the dependent variables. From a technical point
of view, this is because time-invariant characteristics of the individuals are perfectly
collinear with the person dummies. From a substantive point of view, this is because
fixed-effect models are designed to study the causes of changes within a person. A
time-invariant characteristic cannot cause such a change.

8.6.3 Error-components models

Let us begin our description of error-components models with the simple ordinary least
squares regression:

- regress lsat age

This model ignores the panel structure of the data and treats data as cross-sectional.
From a statistical point of view, this mode! violates an underlying assumption of or-
dinary least squares regression, namely the assumption that all observations are inde-
pendent of each other. In panel data, you can generally assume that observations from

the same individual are more similar to each other than observations from different
individuals.

In observing the similarity of the observations from one individual, you might say
that the residuals of the above regression are correlated. That is, an individual with a
high positive residual at the first time of observation should also have a, high positive
residual at the second time point, etc.

Leb us show you that the residuals of the above regression medel are in fact corre-
lated. First, calculate the residuals from the above regression model:

. predict res, resid

and then we change the dataset to the wide formaf. Since vou have generated a new
variable in the long format since last using reshape, you cannot just type reshape
wide; instead, you need to use the full syntax:
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. reshape wide lsat mar hour inc age res, i{persmr) j{wave)

You end up with 19 variables containing the residuals for each individual for every
year. These variables can be used to construct a correlation matrix of the residuals. To
save some space, we will display this correlation matrix only for the residuals from the
eighties:

. corr reslos?
(oba=1741)

resif984 resiSB85 reslB88 1resl18987 reslB88 1residB9

resisgsd 1.0000

resl985% 0.4408  1.0000

res1986 0.3861  0.4670 1.0000

Tesi987 0.3705  0.4200 0.5008 1.0000

Teslo88 0.3310  0.3590 0.4276  0.5241 1.0000

resl9Be ¢.3156¢ 0.3411 0.4164 0.4755 0.b09S 1.0000

Ag you can see, the residuals are in fact highly correlated. Let us now define this
correlation matrix as R .

1

P G4l

R, = ) o (8.23)

Tesr 2841 4 €11, 842

As we said, in computing the simple OLS regression on panel data, yon assume—
among other things—that all correlations of this correlation matrix are 0, or more
formally

1 fort=:
R,, = ore =4 (8.24)

’ 0 otherwise

As we have geen, this agsumption is not fulfilled in our example regression. Hence,
the model is not correctly specified. This is almost always the case for panel data. With
panel data, you should expect correlated errors. In error-components models, you can
therefore hypothesize about the structure of R; ;. Probably the simplest model after
the simpie regression model is the random-effects model:

1 fort=
Ry, = ore=s (8.25)
’ p otherwise

Here the hypothetical structure of Ry, 5 is that observational units are more similar to
each other over time than observations across observational units. The Stata command
for random-effects models is xtreg with the option re.
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. reshape long
. xtreg lsat age, re

Another reasonable assumption for the correlation structure of the residuals might
be that the similarity between observations within each observational unifs is greater
the shorter the elapsed time between the observations. This structure can be imposed

using an AR{1) correlation matrix:®

1 fort=s

R, . -
b plt=st otherwise

2

(8.26)

Different structures for the correlation matrix allow for a nearly infinite number
of model variations. All these variations can be calculated using the xtgee command
with the corr() option for specifying predefined or customized correlation structures.

Typing
. xtgee lsat age, corr(exchangeable)

specifies the random-effects model and produces results similar to those from xtreg,
52
re.

. xtgee lsat age, corr{arl)
which produces a model with an AR(1) correlation matrix. Typing
. xtgee lsat age, corr(independent)

produces the standard OLS regression model described at the beginning of this section.

You can interpret the coefficients of error-components models just like the coeffi-
cients of a simple OLS regression model. But unlike in the simple OLS model, in an
errcr-components model, if the error-structure is correctly specified, the coefficients are
more correct. As the coefficients are based on variations within and between the individ-
uals, you should have no problem investigating the effects of time-invariant independent
variables on the dependent variable. Unlike in the fixed-effects model, the coefficients
can be biased due to omitted time-invariant covariates.

8.7 Summary

The Stata syntax for computing a regression is always the same, no matter what kind
of regression you want. First, you compute the model, save the predicted values and
other results, and then test the model assumption, as well as the quality of your model,
using the saved results.

61 AR is short for autoregression.
52xtgee, corr(exchangeable) and ztreg, re produce slightly different results because of implemen-
tation details that are foo technical to discuss here. In practice, the results are usually quite similar.
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regress depvaer indepvars computes an OLS regression of the dependent variable depuar
on the independent variables indegpvars.

predict newvar [ , optz'on] saves predicted values after regression. You can optionally
specify option to indicate which results will be saved under the name newwvar.

predict yhat is an example of using predict to save the predicted values for each
observation in a variable with the name yhat. You can use any variable name.

predict error, resid saves under the variable name error the residuals (the differ-
ence between observed and predicted) for each observation.

regress y x1 x2 x3 computes a multiple regression of the dependent variabie y on
the independent variables x1, x2 and =3,

regress y xl1 x2 x3, beta computes a multiple regression of the dependent variable
y on the independent variables x1, x2 and x3. Standardized residuals will appear in
the output.

Additional options for predict are
ratudent for studentized residuals.
rgtandard for standardized residuals.

cooksd for Cook’s D) as a measure of the influence each observation has on the entire
maodel.

dfbeta for DFBETA as measure of the influence each observation has on an individual
regression coeflicient.

stdr for the standard error for residuals.

The most important commands in regression diagnostics are

graph twoway (1fit y x) (scatter y x), which draws a scatterplot of y and x with
the regression line.

avplots, which shows added-variable plots.
rvfplot, which delivers a residual-versus-fitted plot.
cprplot, which delivers a component-plus residual plot.

help regress postestimation, which provides more information on regression diag-
nostics,




