9 Regression models for categorical
dependent variables

Researchers in the social sciences often deal with categorical dependent, variables, whose
values may be dichotomous {e.g., rented apartment, ves or no}, nominal (party iden-
tification: CDU, SPD, or Green Party), or ordinal (no concerns, some concerns, strong
concerns). In this chapter, we will present a number of procedures used to model vari-
ables such as these by describing a procedure for dealing with dichotomons dependent
variables: logistic regression.

Logistic regression is, for the most part, similar to linear regression, so we will
explain it as an analogy to the previous chapter. If you have no previous experience
or knowledge of linear regression, we would advise you to first read chapter 8 up to
page 186.

As in linear regression, in logistic regression the dependent variables are predicted
by a linear combination of independent variables:

bo +b1®1 + bawo; - F by 1T,

Here zq; is the value of the first independent variable for interviewee £, Tg; iS
the respective value of the second independent variable, and so on. The coefficients
b1,ba,...,bx_1 represent the weights assigned to the variables.

Notice, however, that we did not say that the dependent variable y; is equal to that
linear combination. In contrast to linear regression, in logistic regression you must con-
sider a particular transformation of the dependent variable. Why suck a transformation
is required and why linear regression is inappropriate are explained in section 9.1, while
the transformation itself is explained in section 9.2.1.

Section 9.2.2 explains the method by which the logistic regression coefficients are de-
termined. As this explanation is slightly more difficult and is not required to understand
logistic regression, you can skip it for now.

Calculating a logistic regression with Stata is explained in section 9.3. Then we dis-
cuss methods of verifying the basic assumptions of the model in section 9.4. The proce-
dure for verifying the joint significance of the coefficients is discussed in section 9.5, while
section 9.6 demonstrates a few possibilities for refining the modeling of correlations.
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For an overview of further procedures, in particular procedures for categoricel vari-
ables with more than two values, see section 9.7,

As with linear regression (chapter 8}, you will need to do some additional reading
if you want to understand the techniques we describe fully. We suggest that you read
Hosmer and Lemeshow (2000) and Long (1997).

9.1 The linear probability model

Why is linear regression not suitable for categorical dependent variables? Imagine that
you are employed by an international ship safety regulatory agency and are assigned to
take a closer look at the sinking of the Titanic. You are supposed to find out whether
the seafaring principle of “women and children first” was put into practice or whether
there is any truth in the assumption made by the film Titanic, in which the first-class
gentlemen took the places in the lifeboats at the expense of the third-class women and
children.

For this investigation, we have provided you with data on the sinking of the Titanic.!
Open the file by typing?

. use titanic2, clear

and before you continue to read, make yourself familiar with the contents of the dataset
by using the commands

. describe
. tabl _all

You will discover that the file contains details on the age (age?2), gender (sex), and
passenger class (class) of the Titanic’s passengers, as well as whether or not they
survived the catastrophe (survived).

In order to clarify the disadvantages of using linear regression with categorical de-
pendent vartables, we will go through such a model. First, we will investigate whether
children really were rescued more often than adults were. What would a scatterplot look
like where the ¥ variable represents the variable for survival and X variable represents
age? You may want to sketch this scatterpiot yourself.

Note that the points can only be entered on two horizontal lines: either at the value
0 (did not survive) or at 1 (survived). If children were actually rescued more often than
adults, the number of points on the O-line should increase in relation to those on the
i-line the further to the right you go. To check whether your chart is correct, type

iThe data provided are real. The dataset and its exact description can be found at
htip://amstat.org/publications/jse/archive.kitm. Tor teaching purposes, we have changed the origi-
nal dataset in that we have divided adults and children into further fictional age groups, as the original
set. differentiates merely between adults and children. Among the files you installed in section 0.2 is the
do-file we used to change the dataset, (crtitanic2.de), as well as the original dataset (titanic.dta).
2Please make sure that your working directory is c:\data\kk; see page 9.
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. graph twoway scatter survived age2

This diagram is not particularly informative, as the plot symbols are often directly
merked on top of each other, hiding the number of data points.

With the help of the scatter option jitter (), you can produce a more informative
diagram. jitter() adds a small random number o each data point, thus showing
points that were previously hidden under other points. Within the brackets is a number
between 1 and 30 that controls the size of the random number; you should generally
use small numbers if possible.

. graph twoway scatter survived age2, jitter(2}
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On examining the chart, you might get the impression that there is a negative cor-
relation between ages and survival of the Titanic disaster. This impression is confirmed
when you draw the regression line on the chart (also see section 8.1.2):

. regress survived age
. predict yhat
. graph twoway (scatter survived ageZ, jitter(2)) (lime yhat age2, sort)
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The chart reveals one central problem of linear regression for dichotomous dependent
variables: the regression line in the illustration shows predicted values of under 0 from
around the age of 60 onwards. What does this mean with regards to the content?
Remicd yoursell of how the predicted values of dichotomous dependent variables are
generally interpreted. Until now, we have understood the predicted values to be the
estimated average extent of the dependent variables for the respective combination of
independent variables. In this sense, you might say, for example, that the survival of
a 3-year-old averages around 0.7. This is a less-than-convincing interpretation if you

considers that passengers can only survive or not survive; they cannot survive just a
little bit.

However, the predicted value of the dichotomous dependent variable can also be
interpreted in a different way. You need to understand what the arithmetic mean of
a dichotomous variable with the values of 0 and 1 signifies. The mean of the variable
survived, for example, is .3230. This reflects the share of passengers survived.® So, we
see that the share of survivors in the dataset amounts to around 32 percent, or in other
words, the probability that you will find a survivor in the dataset is 0.32. In general,
the predicted values of the linear regression are estimates of the conditional mean of
the dependent variable. Thus you can use the probability interpretation for every value
of the independent variable: the predicted value of around 0.7 for a S-year-old means
a probability of survival of 0.7. On the basis of this alternative interpretation, the
linear regression model for dichotomous dependent variables is often called the linear
probability model or LPM (Aldrich and Nelson 1984).

How can you interpret the negative predicted values for passengers over 60 with the
help of the probability interpretation? In fact, you cannot, as according the mathe-
matical definition of probabilities, they should be between 0 and 1. Given sufficient
small or large values of the X variable, a model that uses a straight line to represent
probabilities will, however, inevitably produce values of over 1 or under 0. This is the
first problem that affects OLS regression of dichotomous variables,®

The second problem affects the homoskedastic assumption of linear regression that
we introduced in section 8.3.2. According to this assumption, the variance of errors for
all values of Y should be constant. We suggested that the scatterplot of the residuals
against the predicted values indicated a possible violation of this assumption. You can
achieve a graph such as this for our linear probability model by typing

. predict r, resid
- graph twoway scatter r yhat, yline(-.8 .4} ylab(-.6 .4 1.4) xline(.5)

3You can cenfirm this for yourself by typing tab survived.
#In practice, this is a problem of little importance when predicted values of over 1 or under 0 do not

appear for real values of the independerd variables. However, using a model that would prevent such
impossible probabilities from the start seems sensible.
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In this graph, you can observe that only two possible residuals can appear for every
predicted value. Less apparent is that hoth of these residuals result directly from the
predicted values. If a survivor (survived = 1) has a predicted value of 0.6 due to her
age, she wili have a residual of 1—0.6 = 0.4, If you predict a value of 0.6 for an individual
who did not survive (survived = 0), you will receive a value of 0 — 0.6 = —0.6.

Thus the residuals are either 1 —; or —;. The variance of the residuals is ;> (1 — i)
and is therefore larger as the predicted values approach 0.5. The residuals of the linear
probability model are therefore by definition heteroskedastic, so that the standard errors
of the coefficients will be wrong.

In conclusion, although a linear regression with a dichotomous dependent variable
is possible, it leads to two problems. First, not all predicted values can be interpreted,
and second, this model does not allow for correct statistical inference. To avoid these
problems, you need a model that only produces probabilities between 0 and 1 and also
relies on assumptions which are maintained by the model. Both are fulfilled by logistic
regression, the basic principles of which we will introduce now.

9.2 Basic concepts

9.2.1 Qdds, log odds, and odds ratios

In the previous section, we found that the linear OLS regression of dichotomous de-
pendent variables can produce unwanted predicted values. This is clearly because we
attempted to represent values between 0 and 1 with a straight line. The values calculated
with a linear regression® are basically not subject to any restrictions. This means that,
theoretically, values between —oco and +00 may emerge. Therefore, regression models
that are based on a linear combination should only use dependent variables whose range
of values are equally infinite. As the range of values for probabilities lies between 0 and
1, they are unsuitable as dependent variables. An alternative is the logarithmic chance,
which we will explain using the Titanic data from the previous section.

5We showed you a linear combination like this on page 245,
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We previously received indications that children had a higher chance of survival than
adults did. Now we want to investigate whether women were more likely to survive than
men. You can obtain an initial indication of the chance of survival for women and men
through a two-way table between sex and survived:

. tabulate sex survived, row

Key

fraqusncy
row percentage

Burvived

Gender ne yas Total
women 128 344 47¢
26.81 73.19 100.00

man 1,364 367 1,731
78.80 21.20 100.00

Total 1,480 7il 2,201
67.70 32.30 100.00

In section 7.2.1, we interpreted tables like this using row or column percentages. By
using the available row percentages, we determine that the overall share of survivors was
around 32 percent, whereas that of the women was about 50 percentage points higher
than that of the men (73% compared to 21%). Alternatively, you can do a similar

comparison by dividing the number of survivors by the number of dead. For the women
this would be 344:126.

. display 344/128
2.7301587

You will get the same number® if you divide the proportional values {in this case,
the row percentages)

. display .7312/.2881
2.7288515

You can interpret these ratios as follows: for women, the probability of surviving is
almost 3 times as high as the probability of dying. In other words, the probability of
dying is around one-third (1:2.73 = 0.366) the probability of surviving. In practice, we
would say that the odds of surviving are generally around 2.73 to 1, while the odds of
dying lie at around 1 to 2.73.

8The deviations are due to roundoff error.
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In general, this relationship can be written as

Probability g, viving

0dGSqurvivine = —
VYRR T Probability gying

or slightly shorter by using symbols instead of text:

PY = 1)
- Py =1)

odds = (9.2)

The probabilities of survival P(Y = 1) and dying P(Y = 0) can be found, re-
spectively, in the numerator and the denominafor. Since the only two alternatives
are surviving or dying, their probabilities sum to one, so we replace P(Y = 0) with
1-P(Y =1).

You can also calculate the chance of survival for men: their odds of survival are
considerably lower than those of the women: 367/1364 = .269. This means that for
men the probability that they will survive stands at 0.269:1; in other words, men are
3.72 times more likely $0 be among the victims.

Of course, you can compare the odds of survival for men and women using a measured
value. For instance, you can compare the chance of survival for men with that of women
by dividing the odds for men by the odds for women:

., display .269/2.73
. 0985348

This relationship is called the “odds ratio”.

In this case, we would say that the odds of survival for & man are 0.099 times, oz ten
times lower, than those of a woman. Apparently, the principle of “women and children
first” appears to have been adhered to. Whether this appearance actually holds is
something that we will investigate in more detail on page 278.

However, first we should consider the suitability of using odds for our statistical
model. In the previous section, we looked at the probabilities of surviving the Titanic
catastrophe by passenger age. We found that predicting these probabilities with & linear
combination could result in values outside the definition range of probabilities. What
would happen if we were to draw upon odds instead of probabilities?

(Continued on next page)
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Table 9.1: Probabilities, odds, and logits

P(Y =1) odds= F2ZU Infodds)

1Py =I)

0.01  1/99 = 01 —4.60
0.03 3/97 = 03 —3.48
0.05 5/95 = 05 —2.94
0.20 20/80 = 25 —1.39
0.30  30/70 = 43 —0.85
0.40 40/60 = 67 041
0.50 50/50=  1.00 0
0.60 60/40 = 1.50 0.41
070 70/30 = 2.33 0.85
0.80 80/20=  4.00 1.39
0.95 95/5=  19.00 2.94
0.97 97/3= 3233 3.48
099 99/1=  99.00 4.60

In the first column of table 9.1, we list a number of selected probability values. You
will see that at first the values increase slowly, then rapidly, and finally slowly again.
The values are between 0 and 1. If we presume that the values represent the chance
of survival for passengers on the Titanic of different ages, the first row would contain
the group of the oldest passengers with the lowest chance of survival, and the bottom
row would contain the group of the youngest passengers with the highest chance of
survival. Using {9.2), you can calculate the odds that an individual within each of
these groups survived the Titanic catastrophe. Furthermore, imagine that each of these
groups contains one hundred people. As the first group has a probability of 0.01, one
person out of one hundred should have survived: in other terms, a ratio of one to ninety-
nine (1:99). If you calculate 1/99, you get the value 0.010101. You can perform this
calculation for each row in the table. The values of the odds lie between 0 and 4o
odds of 0 occur if there are no survivors within a specific group, while odds +o0o oecur

when nearly everyoue in a large group survives. If the number of survivors is equal to
the number of victims, we get odds of 1.

Odds are therefore slightly better suited than probabilities for use as dependent
variables in a regression model; no matter how high the absolute value is when predict-
ing with a linear combination, it will not be outside the definition range of the odds.
However, a linear combination also aliows for negative values, but negative odds do not
exist. You can avoid this problem by using the (natural) logarithm of the odds. These
values, called logits, are displayed in the last column of the table.

Now look at the values of the logits more closely: while the odds have 4 minimum
boundary, the logarithimic values have no lower or upper boundaries. The logarithm of
I'is 0. The logarithm of numbers under 1 results in lower figures that stretch to —oo
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as you approach 0. The logarithin of numbers over 1 stretches towards +o0. Note also
the symmetry of the values. At a probability of 0.5 the odds lie at 1:1 or 50:50. The
logarithmic value lies at 0. If you look at the probabilities above and below 0.5, you
will see that at equal intervals of probabilities of the odds’ logarithm, only the algebraic
sign changes.

The logit is not restricted and has a symmetric origin. It can therefore be represented
by a linear combination of variables and hence is better suited for use as a dependent
variable. Unfortunately, the logit is not always easy to interpret. Your employers are
unlikely to understand you if you tell them that the logarithmic chance of survival of a
male Titanic passenger is —1.31, while that of a female passenger is +1.00. However, by
simply transforming {9.2), you can convert the values of the logits back into probabilities

(9.3)

where L is logit and e is Fuler’s constant (e ~ 2.718). A functional graph of this
transformation can be drawn as follows:

. graph twoway function y=exp(x)/{l+exp(x)}, range(-10 10)

In this graph, we see another interesting characteristic of logits: while the range of
values of the logits has no upper or lower boundaries, the values of the probabilities
calculated from the logits remain between 0 and 1. For logits between around —2.5 and
2.5, the probabilities increase relatively rapidly; however, the nearer you approach the
boundary values of the probabilities, the less the probabilities change. In other words,
the probabilities asymptotically approach the values 0 and 1, but they never go over the
bowundaries. From this we can deduce that on the basis of a linear combination, predicted
logits can always be converted into probabilities within the permitted boundaries of 0
and 1.

In the introduction we said that a logistic regression uses a linear combination of
variables to predict the outcome, but we did not specify what the dependent variable
was. However, now we are in a position fo do so:

L; = by +biwy; +bomos + - +bx_1ZK-14 (9.4)

This is called the logistic regression model, or logit model. The formal interpretation
of the b coefficients of this model is identical to that of the linear regression (OLS}: when
a. X variable increases by one unit, the predicted values (the logarithmic odds) increase
by b units.

Before we use logistic regression, let’s examine the procedure for determining the
b coefficients of (9.4). In the case of the linear regression, we used the OLS procedure
for estimation. For the logistic regression, we instead use the process of maximum
likelihood. The logic of this process is somewhat more complex than that of OLS, even
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shough the basic principle is similar: you look for the b coefficients that are optimal in a
certain respect. We will explain this process in detail in the following section. However,
you do not need to work through the example to understand the section that follows it!

9.2.2 Excursion: The maximum likelihood principle

In discussing linear regression, we explained the OLS process used to determine the b
coefficients. In principle, you could calculate the logarithmic odds for each combination
of the independent variables and use these in an OLS regression model. Nevertheless,
for reasons we will not explain here, a procedure such as this is not as efficient as the
process of estimation applied in logistic regression: the maximum likelihood principle.”
Using this technique, you can determine the b coefficients so that the proportionate
values you observed become maximally probable. What does this mean? Before we can
answer this question, we need to make a little detour:

On page 248, we informed you that 32.3 percent of the Titanic passengers survived.
Suppose that you had determined this figure from a sample of the passengers. In this
case, you could ask yourself how likely such a percentage may be, when the true number
of the survivors amounts to, say, 60 percent, of the passengers? To answer this question,
imagine that you have selected a single passenger from the population. If 60 percent of
the passengers survived, the probability that this passenger will be a survivor is 0.6 and
the probability that he or she will be a victim is 0.4. Now select a second person from
the population. Whether this person is a survivor or a victim, the probabilities remain
the same (sampling with replacement).

In figure 9.1, we have conducted all possible samples with three observations. We
obtained 2% = 2% = 8 samples with a size of n = 3. Ia the first sample, we only
observed survivors (S). The probability that a sample randomly selects 3 survivors is
0.6 % 0.6 x 0.6 = 0.6% = 0.216. In the second, third, and fifth samples, we observed two
survivors and one victim (V). Each of these samples has probability 0.6 x 0.6 x 0.4 =
0.6% x 0.41 = 0.144. In total, the probability of such a sample is 0.144 x 3 = (.432.

The probabilities of samples 4, 6, and 7 are each 0.6 % 0.4 x 0.4 = 0.6 x 0.42 = 0.096.
In total, the probabifity of these samples is therefore 0.096 x 3 = 0.288. Finally, there
is sample 8, where the probability lies at 0.4 x 0.4 x 0.4 = 0.4* = 0.064. If, based on
the samples given in the mapping, we ask how likely it is that one cut of three survives,
the answer is that it is as likely as samples 4, 6, and 7 together, i.e., 0.288.

7 Andref, Hagenaars, and Kiihnel {1997, 40-45) introduction to the maximum likelihood principle
served as a model for the foliowing section.
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Figure 9.1: Sample of a dichotomous characteristic with the size of 3

Cenerally, the probability of observing f successes in a sample of size n is

Plhlm,n) = (’;) (1 — ) (9.5)

where 7 defines the probability of a positive outcome in the population. The term (2)
stands for n!/h!(n — R)1. Tt enables us to calculate the number of potential samples
in which the dichotomous characteristic appears n times. In Stata, the probability of
samples 4, 6, and 7 in our mapping carn be calculated with this command:

. display comb(3,1) * .671 % 472
.288

In practice, we are usually not interested in this figure; instead our attention is on
7, the characteristic’s share in the population. Although 7 is unknown, we can cousider
what value of 7 would make the given sample most probable. For this, we can use
various values for 7 in the (9.5) and then select the value that results in the highest
probability. Formally, this means that we are searching for the value of 7 for which the
likelihood

L(wlh,n) = (z)wh(i gy (9.6)

is maximized. We can forgo a calculation of (2), as this terms remains constant for all

values of 7. Note that the likelihood is calculated with the same formula as in (9.5). If
(9.5) is evaluated for all possible values of h, the probabilities sum to one, but this is not
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the case for the values of £ and all possible values of w. Therefore, we must differentiate
between likelihood and probability.

You can do this for sample 2 from figure 9.1 {2 survivors and 1 victim) by creating
an artificial dataset with 100 observations:

clear
. set obs 100
obs was 0, now 100
Now generate the variable pi by rendering a series of possible values for

. genmerate pi = _n/100C

As h and n are known from the sample, you can calculate the likelihood for the
various values of 7

. generate L = pi™2 * {1 - pi)~{3-2)

With the help of & graph, you can then analyze which 7 results in a maximal likeli-
hood:

. graph twoway line L pi, sort

The maximum of the likelihood lies at around 7 = 0.66. This is the maximuwm
likelihood estimate of the share of survivors from the population, given the sample
contains two survivors and one victim.

How can you estimate the b coefficients of our regression model with the maximum
likelihood principle from the {9.4)7 The answer is simple. Instead of directly inserting
the values for 7, you can calculate 7 with the help of our regression model. Now insert
(9.4) in (9.3)

ebotbimas b w1

T=PY =1)= (9.7)

1 4 ebotbhimri Abr_12x_1;
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and again in {9.6):

L0 f, ) = PO = 1) x {1 - Py = ST

n--h

ebU+b1$1i+“'+er~1$K—1,z’ h ebothiztit e tbr 1o r -1
= ® — .
1+ ebo+[’11ﬁ1-§,+‘“+b}(71$K—1,1' 1 1+ ebo+b1-’t1i+---+b1<_1-'BK—1.i (9 8)

After doing this, you can attempt to maximize this function by trying out different
values of b,. However, as is the case with OLS$ regression, it is better to reproduce
the first derivative from by, and to set the resulting standard equation as zero. The
mathematical process is made easier when the log likelihood; i.e., In £ is used. You will
not find an analytical solution with this model, unlike linear OLS regression. For this
reason, iterative algorithms are used to maximize the log likelihood.

We have introduced the maximum lkelihood principle for logistic regression with
a dichotomous dependent variable. In principle, we can apply it to many different
models by adapting (9.6) to reflect the distributional assumptions we wish to make.
The resulting likelihood function is then maximized using a mathematical algorithm.
Qtata has a command called m1 to do this, which is described in detail in Gould, Pitblado,
and Sribney {2003).

0.3 Logistic regression with Stata

Let’s briefly set aside our Titanic example in favor of an alternative. Say that you
assumed that when the age and household income of a surveyed individual increases,
the probability of living in an apartment or house they own also increases. In addition,
you expect that the share of individuals who own their own residence® to be higher in
West Germany than it is in Fast Germany.

Now let’s load our dataset datal.dta.
. use datal, clear

To check your assumption, you can calculate a logistic regression model of residence
ownership against the independent variables of age, household income, and an East-
West variable.

Stata has two commands for fitting logistic regression models, logit and logistic.
The commands differ in-how they report the estimated coeflicients. logit reports the
actual bs in {9.4), while logistic reports the odds ratios discussed previously. Because
we have emphasized using a linear combination of variables to explain the dependent
variable, we will focus on logit and show you how to obfain odds ratios after esti-
mation. Some researchers, particularly biostatisticians and others in the medical field,

8In the following, we will refer to living in an apartment or house that the individual owns as
residence ownership. In this respect, children may also be considered to “own” housing. For household
income, we will use the word “income”.
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focus almost exclusively on odds ratios and therefore typically use logistic instead.
Regardless of how the coeflicients are reported, both commands fit the same underlying
statistical model.

Note that at least one category of the dependent variable must be 0, as logit takes
a value of 0 to represent failure and any other value as representing success. Normally
you use a dependent variable with the values 0 and 1, where the category assigned the
value of 1 means success. For our example, the variable owmer should be generated with
the values of 1 for house owner and 0 for tenant as follows:®

. generate owner = renttype == 1 if remnttype <

We generate the East—West variable analogously as we did previously for our linear
regression model (page 193):

. generate east = state>»=11 & state<=16 if state <

It would also be sensible to generate an age variable for our regression model from
the year-of-birth variable availabie in our dataset.

. penerate age = 1997-ybirth

Furthermore, we recommend that you center the two metrically independent vari-
ables age and hhinc, e.g., deduct the mean of the variable from each value. The mean
of centered variables is zero, making it easier to interpret regression models at vari-
ous points (Aiken and West 1991). You can center age and hhinc with the following
commands: "

summarize age if hhinc < . & owner < . & east <

generate cage = age - r{mean) if hhinc < . & owner < . & east <
summarize hhinc if age < . & owner < . & east <

generate chhine = hhine - r(mean} if age < . & owner < . & sast < .

Now we are ready to fit the logistic regression model:

®For details on this command, see page 78, The command label list determines the assignment
of the values to labels (section 5.3).
10The Stata commands used here are explained in chapter 4,
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. logit owner cage chhinc east

Iteration O: log likelihood = -2091.5129
Iteraticn 1: log likelihcod = -1930.1366
Iteration 2: log likelihood = -1927.6015
Iteration 3: log likelihocod = -1927.5979

Logistic regression Number of obs = 3200
LR chi2(3) 327.83
Prob > chi2 0.000C
Leg likelihood = -1927.5979 Pseudo R2 0.0784

Coef . 5td. Err. Prlz] [95% Conf. Interval]

.0189758 .0021862 . 0.000 -0146909 .0232608
. 0006504 .0000418 . 0.000 .0005684 .0007324
-.058301% .0864511 . 0.500 -.2277431 .1111382
—-.6023514 .0462412 . 0.000 -.6929826 -.5117202

The results table is very similar to the one from linear regression. At the bottom
of the output is the coefficient block, which contains the coefficients for the dependent
variables and the constants along with their standard errors, significance tests, and
confidence intervals. At the top left is the iterations block with some results thaf
are related to the maximum likelihood calculation, and at the top right we see block

describing the model fit. In the following sections, we will discuss each of these biocks
along the lines of our explanation of linear regression.

9.3.1 The coefficients block

The b coefficients can be found in the first column of the coefficient block.!* The b
coefficients formally indicate how the predicted values change when the corresponding
independent variables increase by one unit, just like in linear regression, although here
the predicted values are the logarithmic odds of success, not the mean of the dependent
variable. For example, you would interpret the regression coefficient of cage as follows:
the logarithmic odds of residence ownership rises on average by 0.0189758 if age increases
by one year. You would interpret the regression coefficient of chhinc the same way.
Form the regression coefficient of east, we can say that with every one-unit increase
of the variable east, the logarithmic chance of residence ownership falls on average by
0.0583019. As east can only increase hy one unit once, we might instead say that Fast
Germans have, on average, a .06 smaller logarithmic chance of residence ownership
than West Germans. The regression constants provides the predicted value for those
individuals surveyed for whom all the other independent variables show the value 0.
Due to centering, this means that the logarithmic chance of residence ownership for
West German individuals with a mean age and mean income lies at —0.6023514.

T the second column, you will find the standard errors of the regression coefficients, which will
help you calculate significance tests, as well as confidence interval limits. You can interpret these
figures corresponds the same way you did the fipures in the linear regression (section 8.5). Note that in
logistic regression, you usually evaluate the significance of the coeflicients using a likelihood-ratio test
(section 9.5).
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Because changes in the logarithm of the odds of a positive outcome are not very
easy to interpret, we will discuss their interpretation in more detail.

Sign interpretation

As a first step, consider just the signs and relative sizes of the coefficients. A positive
sign for the regression coefficient means that the probability or chance of residence
ownership increases with the respective independent variable, whereas a negative sign
means that it decreases. In our example, the probability of house ownership increases

with age and with income. The probability of home ownership is lower in the East than
it is in the West.

interpretation with odds ratios

Using the model equation, we want to calculate the predicted logarithmic chance of
a West German with mean income and mean age. For the centered income variable
{chhinc), the individuals surveyed whose income matched the mean have the value 0.
This also is true for the centered age variable (cage), where individuals with the mean
age have the value 0. Finally, West Germans surveyed are assigned 0 for the variable
cast. Thus the predicted logit for a West German of mean age and mean income is
simply equal to the constant term.

By calculating the exponentia! of the regression function, you can convert the loga-
- rithmic odds to odds:*2

. display exp{_b[_cons])
.BAT5E22687

Similarly, you can calculate the probability for those who are exactly one year older
than the average:

- display exp{_b{ cons] + _blcagel*1)
556801155

An older person’s probability of owning their residence is therefore slightly larger than
that of those with average age. We can use the odds ratio (page 251) to compare the
outcomes of the two ages. In Ghis case, it amounts to:

- display exp(_bl_cons] + _blcagel)/exp(_bl_cons])
1,0191567

This means that if the age increases by one year, a person is 1.02 times as likely
to own her residence. Increasing age by two years increases the likelihood of owning a
residence by 1.02 x 1.02 =~ 1.04. Notice that odds ratios work in a multiplicative faghiomn.

2We covered working with the saved coefficients in detail In section §.1.
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You can reduce the complexity of calculating odds ratios if you consider that, in
order to determine the odds ratios, you must first calculate the odds for a particular
value of X and then for the value X + 1. After that, you divide both results by each
other, which can be presented as follows:

eb0+bl(X+1) eb0+b1Xeb1

. - o _ bl
odds ratio = P e 55 S (9.9}

You can therefore obtain the odds ratio simply by computing the exponential of the
corresponding b coefficient.

Many logistic regression users prefer the interpretation of results in the form of the
odds ratios. For this reason, Stata also has the command logistic that directly reports
the odds ratios. If you have already fit your model using logit, typing in logistic
will redisplay the output in terms of odds ratios.

Probability interpretation

The third possibility for interpreting the coefficient is provided by (9.3), which we used
to show you how to convert logits into probabilities. For example, to compute the
probability of residence ownership for West Germans with mean ages and incomes, you
could type

. display exp(_bl consl)/ (1L + exp(_bl_consl))
.35380E691

This means that around 35 percent of house owners in the individuals surveyed are
estimated to have the mean age and income.

The predict command enables you to senerate a new variable that contains the
predicted prebability for every observation in the sample. You just enter the predict
command along with the name of the variable you want to contain the predicted prob-
abilities,

. predict Phat

Here the name Phat indicates that this variable deals with predicted probabilities. You
can also calculate the predicted logits with the xb option of the predict command.

One difficulty in interpreting probabilities is that they do not increase at the same
rate for each unit increase in an independent variable. For example, consider the fol-
lowing three probabilities where we have increased the age by 10 years at & time:

. display exp(_b[_cons] + _blcagel*10}/{1 + exp(_bl[_cons] + _blcagel=*10))
. 39829047
. display exp{_b[_cons] + _blcagel#20)/(1 + exp(_bl_cons] + _blcage]*20))
44452061
. display exp{_bl_consl + _blcagel*30)/(1 + exp{( bl_cons] + _b[cage]*30))
L49173152
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Comparing West Germans with the mean age with those 10 years older, the prob-
ability of residence ownership increases by around 0.3983 — 0.3538 — 0.0445. If age
increases by 10 more years, the probability increases by 0.4445 — 0.3983 = 0.0462 and
then by 0.4917 — 0.4445 = 0.0472. We see that an increase in age of 10 years at a time
does not lead to a constant change in the predicted probability.

One solution would be to show the probabilities in a conditional-effects plot. Similar
to the graphs shown in section 8.4.2, this plot graphs the predicted values for various
characteristics of the independent variables. Thus you could, for example, generate a,

variable with income-dependent predicted probabilities of West Germans with the mean
13
age:

- generate Phat2 = exp(_bl[_cons]l+_blchhinc]*chhine)/
> (1+exp(_b[_consl+_blchhinc]#chhing))

and display this in a graph:

. graph twoway line PhatZ hbinc, sort

T
15000

5000 . 10000
- Househald income 1997 (manthly)-

The graph shows that the increase in probabilities is not constant over all income

values. Depending on income, the probability of home ownership will rise either rapidly
or slowly.

9.3.2 The iteration block

In the upper-left part of the logit output (see page 259) are a number of rows beginning
with the word iferation. This sort of output is typical for models whose coefficients
are determined by maximum likelihood. As we mentioned in our discussion of this
procedure, when you use the maximum likelihood principle, there is typically no closed-
form mathematical equation that can be solved o obtain the b coefficients. Instead, an
iterative procedure must be used that tries a sequence of different coefficient values. As

13 At the mean age, the value of the centered age variable is 0, so you can omit age from the equation.
The variable east is zero for West Germans, 0 you can omit it from the calculations as well.
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the algorithm gets closer to the solution, the value of the likelihood function changes
by less and less.

The first and last figures of the iteration block are in some respects similar to the
figures given in the ANOVA block of the linear regression (see section 8.1.2), which
contained figures for TSS, RSS, and MSS. TSS was the sum of the squared residuals from
predicting all the values of the dependents variables through arithmetic means. RSS was
the sum of the squared residuals from the regression model, and MsS was the difference
between TSS and RSS. MS8 thus represents how many fewer errors we make when using
the regression model instead of the mean for predicting the dependent variable.

In the logistic regression model, the residuals used to determine the regression coet-
ficients cannot be interpreted in the same way as with linear regression. Two values of
the likelihood function are of particular interest, namely the first and the last. The first
likelihood shows how probable it is that all b coefficients of the logistic regression apart
from the constant term equal 0 (£g).'* The last likelthood represents the maximized
value. The larger the difference between the first and last values of the log likelihood,
the stronger is the advantage of the model with independent variables compared to the
mull model. In this sense, you can consider TSS analogous to Lo, RSS to L, and MSS
to Lo — L.

Other than the first and last log likelihoods, the rest of the figures in the iteration
block are of little interest, with one exception. Under certain circumstances, the max-
imum likelihood process delivers a solution for the b coefficients that is not optimal.
This may occur if the domain where you are searching for the coefficients is not concave
or “fat”. This is a somewhat technical issue, and we do not wish to delve any further.
However, note especially that a large number of iferations may indicate a difficizlt func-
tion to maximize, though it is difficult to say how many iterations are too marny. You
should generally expect more iterations the larger the number of independent variables
in your model.

In general, the logistic regression model’s likelihood function is “well-behaved”,
meaning that it is relatively easy to maximize. However, if you co have problems
obtaining convergence, you may want to remove a few independent variables from your
specification and try again.

0.3.3 The model fit block

R2 was used to assess the fit of a linear regression model. The reason R? is so commonly
used is that it has, on one hand, clear boundaries of 0 and 1, and on the other, a clear
interpretation of the share of explained variance. There is no comparable generally
accepted measured value for logistic regression. Instead, many different statistics have
been suggested, some of which we will introduce here.

4 This is true for Stata’s logit and logistic commands. However, other maximum likelihood
commands use alternative starting values, and in those cases the iteration-zero log likelihood is not the
value obtained when all the slope parameters are set to zero.
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One such measure of fit is reported in the model fit block of logit: the pseudo-
R? (p*). Nevertheless, it is already a mistake to speak of the pseudo-R?. There are
various definitions for pseudo-R? (Veall and Zimmermann 1994 and Long and Freese
2003). Therefore, you should always indicate which pseudo-R? you are referring to.
The one reported by Stata is the one suggested by McFadden (1973), which is why we
refer to it as pip.

McFadden’s pip is defined in a way that is clearly analogous to the R? in linear.
(Recall that R? = MSS/TSS = 1— RSS/TSS). pip is defined as

mfy—L InL
2 o E 4 e
Pumr = I Lo =1l- T (9.10)

where Ly is the likelihood from the model with just a constant term and Lg is the
likelihood of the full model. As is the case in R?, pf lies within the boundaries of
0 and 1; however, interpreting the content is disproportionately more difficult. “The
higher, the better” is pretty much the only thing that you can say of pip. In our
example {page 259}, the value of pf at around (.08 is what most people would agree
is rather small.

Besides McFadden’s Pseudo-R?, the likelihood-ratio x? value (x2) is another indi-
cator of the quality of the overall model. It, too, is based on the difference between the
likelihood functions for the full and constant-only models. However, unlike pip, this
difference is not standardized to lie between 0 and 1. It is defined as

XQL‘ = f2(111£0 — hl,CK) (911)

x% follows a x* distribution, and as with the ' value in linear regression, you can
use X% to investigate the hypothesis that the independent variables do not have any
explanatory power or, equivalently, that all the coefficients other than the constant are
all zero. The probability of this hypothesis being true is reported in the line that reads
“Prob > chi2”. In the case under consideration, it is practically 0. Therefore, we can
assume that at least one of the two b coefficients in the population is not 0. As is the
case of the linear regression F test, rejection of this null hypothesis is not sufficient for
us to be satisfied with the results.

As with linear regression, you should not judge a model’s suitability purely by the
measured values within the model fit block, especially in logistic regression, as there
is no single generally accepted measured value for doing so. For this reason, we will
discuss some alternative measures that are not reported in the output.

Classification tables

The {it of the linear regression model was primarily assessed on the basis of the residuals
(y—%). In logistic regression, one way to assess fit is with a classification table, in which
every observation is assigned one of the two outcomes of the dependent variable. The
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positive outcome is normally assigned when the model predicts a probability of aver 0.5,
whereas an observation is assigned a negative outcome if a probability of under 0.5 is
predicted. For example, you could do this manually assuming you have already created
the variable Phat containing the predicted probabilities by typing

- generate ownerhat = Phat >= .5 if Phat < .

The classified values generated in this way are typically presented in a classification
table. This is a simple cross-classified table containing the classified values and the
original values:

. tabulate cwnerhat owner, cell column

Key

frequency
column percentage
cell percentage

ownerhat 0 Total

0 1,858 829 2,687
90.77 71.90 83.97
58.086 25.91 83.97

189 324 513
9.23 28.10 16.03
5.91 10.12 16.03

2,047 1,153 3,200
100.00 100.00 100.00
63.97 36.03 100.00

The sensitivity and the specificity of the model are commonly used by people in the
medical profession. Sensitivity is the share of observations classified as residence owners
within the observations who actually do own their residences. Specificity is the share of
observations classified as tenants among those who are actual tenants. In the example
above, the sensitivity is 28.10%, and the specificity is 90.77%.

The count R? is commonly used in the social sciences. It deals with the share of
overall correctly predicted observations, which you can determine by adding the overall
shares in the main diagonal of the above-generated table. However, it is easier to use
the estat classification command, which you can use to generate the table in a
different order, as well as derive the sensitivity, specificity, count, &%, and other figures:
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This means that when predicting with a model that includes independent variables, our
error rate drops by 12 percent compared to prediction based solely on the marginal
distribution of the dependent variable. You can receive the adjusted count R?, as well
as other model fit measured values through Scott Long and Jeremy Freese’s ado package
fitstat, available from the SSC archive (see section 12.3.2). T'wo common fit statistics,
the AIC and BIC, are available with the estat ic command.

Pearson chi-squared

A second group of fit statistics is based on the Pearson residuals. For you to understand
these, we must explain the term covariate pattern, which is defined as every possible
combination of a model’s independent variables. In our example, this is every possible
cambination of the vaiues of household income, age, and region. Every covariate pattern
occurs m; times, where j indexes each covariate pattern that occurs. By typing

. predict cpatt, number
. list cpatt

you can view the index number representing the covariate pattern of each observation.

The Pearson residuals are obtained by comparing the number of successes with
covariate pattern j (y;) with the predicted number of successes with that covariate

pad

pattern (mjﬁj, where P; is the predicted probability of success for covariate pattern 7).

The Pearson residual is defined as

_lyg —mils) (9.13)
my Py(1 - P;)

TP =

(Multiplyicg ﬁj by the number of cases with that covariate pattern results in the pre-
dicted number of successes in pattern j.) Notice that unlike residuals in linear regres-
sion, which are in general different for each observation, the Pearson residuals for two
observations differ only if those observations do not have the same covarlate pattern.

Typing

. predict pres, resid

generates a variable containing the Pearson residuals. The sum of the square of this
variable over all covariate patterns produces the Pearson chi-squared statistic. You can
obtain this statistic by typing

. estat gof

Logistic model for owner, goodness-of-fit test
3200
3183

3218.80
0.30866

number of chservations
number of covariate patterns
Pearson chi2{3179)

Prot: > chi2
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This test is for the hypothesis of the conformity of predicted and observed {requencies
across cavariate patterns. A small x? value (high p-value} indicates small differences
between the observed and the estimated frequencies, while a large x? value (low p-value)
suggests that the difference between observed and estimated values cannot be explained
by a random process. Be careful when interpreting the p-value as a true “significance”
level: a p-value under 0.05 may indicate that the model does not represent reality, but
values over 5 percent do not necessarily mean that the model fits the data well. A
p-value of, say, 6 percent is still fairly small, even though you cannot formally reject the
null hypothesis that the difference between observed and estimated values is completely
random at significance levels below 6%.

The %2 test is not very suitable when the number of covariate patterns (here 3,183) is
close to the number of observations in the model {here: 3,200}. Hosmer and Lemeshow
(2000, 140-145) have therefore suggested modifying the test by sorting the data by
the predicted probabilities and dividing them into g approximately equal-sized groups.
They then suggest comparing the frequency of the observed successes in each group
with the frequency estimated by the model. A large p-value indicates a small difference
between the observed and the estimated frequencies.

You can obtain the Hosmer-Lemeshow test by using estat gof together with the
group() option. Enter the number of groups into which you want to divide the data
between the brackets. ¢ = 10 is often used.

. estat gof, group{il)

9.4 Logistic regression diagnostics

9.4.1 Linearity

We now discuss two methods to test the specification of a logistic regressior model.
First, logistic regression assumes a linear relationship between the logarithmic odds
of success and the independent variables. Thus you should test the validity of this
assumption before interpreting the resulis.

Second, you need to deal with influential observations, meaning small observations
that have a strong influence on the results of a statistical procedure. Occasionally these
outliers, as they are also known, turn out to be the result of incorrectly entered data,
but usually they indicate that variables are missing from the model.

We used graphical analyses to discover nonlinear relationships in the linear regression
model, and we used smoothing techniques to make the relationship more visible. You
can also use certain scatterplots for logistic regression, but you should consider two
issues. First, the median trace used in linear regression as a scatterplot smoother does
not work for dichotomous variables because the median can ounly take values of 0 and 1.18

15he value 0.5 can occur if there is an equal number of 0 and 1 values.
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Second, the functional form of the scatterplot does not have to be linear, as linearity is
only assumed with respect to the logits. The functional form between the probabilities
and the independent variable has the shape of an S (see the graph on page 253).

You may use a local mean regression as the scatterplot smoother instead of the
median trace. Here the X variable is divided into bands the same way as for the
median {race, and the arithmetic mean of the dependent variable is calculated for each
band. These means are then plotted against the respective independent variable.

Ideally, the graph should show the local mean regression to have an S-shaped curve
like the illustration on page 9.2.1. However, the graph often only depicts a small section
of the S-shape, so if the band means range only from about 0.2 to 0.8, the mean re-
gression should be almost linear. UU-shaped, reverse I/-shaped, and other noncontinuous
curves represent potential problems.

Stata does not have a specific command for simple local mean regression, but you
can do it easily nonetheless:'®

. generate groupage = autocode(age,i5,16,50)
. egen mowner = mean(owner), by{groupage)
. graph twoway (scatter owner age, jitter(2)) (line mowner age, sort)

oWnErmowner

In this graph, the mean of residence ownership first increases with age and then
remains constant unsil dropping with the oldest individuals surveyed. This is referred to
as a reverse U-shaped correlation, and it certainly does not match the pattern assumed
by logistic regression.

Cleveland’s {1979) locally weighted scatterplot smoother {LOWESS)' is an alterna-
tive that is often better for investigating functional forms. You can use this smoother
with the twoway plottype lowess or the statistical graph command lowess. We will
not discuss the calculation of this smoother but refer you to the excellent explanation
of the logic behind LOWESS in Cleveland (1994). Note, however, that you can adjust

16%ar the function autocede (3, see page 152. For the command egen, see section 5.2.2 on page 87.
17 The process has recently also become to be known as loess. We use the older term as it corresponds
to the name of the Stata plottype.
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the level of smoothing by specifying a value between 0 and 1 in the bwidth{) option,
with higher numbers specifying increased smoothing. Also note that LOWESS is a com-

putationally intensive process, so it ray take some time to display the following graph
0N YOUur screeri

- lovess owner age, jitter(2) bwidth{.5)

Lowess smoother

This graph also displays a reverse U-shaped correlation between residence ownership
and age. The middle-age groups have a higher probability of residence ownership than
the upper- and lower-age groups. The youngest individuals surveyed, who presumably
still live with their parents, are likely to live in their own houses or apartments.

Both graphs show a correlation that contradicts the S-shaped correlation required
by logistic regression. As with linear regression, [7-shaped relationships can he modeled
through the generation of polynomials. Nevertheless, before you do this, check if the
U-shaped relationship is still visible after controlling for household ircome. You can
do this using a technique similar to the local mean regression discussed in the previous
chapter for linear regression.!® In this process, you replace the age variable of your
regression model with a set of dummy variables (see page 278 and section 8.4.1.) for
the grouped version of the age variable on page 269:

. tabulate groupage, gen(aged)
. logit owner aged2-agedl5 chhinc east

Fitting this model yields a total of 14 b coefficients for the age variables. Each b
coefficient indicates how much higher the logarithmic chance of residence ownership is
for the respective age group compared to the youngest surveyed individual. When the
correlation between age and {(the logarithmic chance of) residence ownership is linear,
the age b coeflicients should increase continuously and steadily. This does not appear to

8For the following process, see Hosmer and Lemeshow {2000, 90). Alternatively, scatterplots with
smoothers of the dependent variables can be made against one independent variable controlling for
various combinations of the other independent variables (Schnell 1994, 253). Fox (1997) demonsirates
a process related to the component-plus-residual plat (page 203).
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be the case for the coefficients in front of us. You can easily evaluate this by graphically
depicting the rise of the b coefficients with the following commands:

. matrix b = e(b)’
. svmat b, names(b)

The symbol 7 in the matrix command is a simple quotation mark ard can be found
next to the %" key on English keyboards. In this case, it stands for the transpose of a
matrix, which we will explain later.

Explanation: Stata stores the coefficients of statistical models in a row vector called
e(b). These are nothing more than the stored results to which we have repeatedly
referred . Matrices and vectors are of particular interest, as they contain numerous
saved results. The vector e(b), for example, contains the estimated coefficients of the
regression model. By typing

. matrix list e(b)

you can take a closer look at e(Db).

As with results saved in r{) macros, you can also perform calculations on matrices
saved in e{)-class macros using matrix commands.!® In the commands above, we used

a matrix command to transpose the row vector e(b) into the column vector b; i.e., we
turned rows into columns and columns into rows. This is important, as the coeflicients
are next to each other in row vector e(b). In contrast, in the newly generated column
vector, the coefficients are under one other.

The column vector is therefore nothing more than a list of numbers. The svmat
command writes these numbers as a variable in our dataset; specifying the names option
gives the variable a name. Note that Stata automatically adds the character 1 onte the
name you choose. Stata does this because the command can also save matrices with a
number of columns as variables, whereby every column in the matrix becomes a variable.

After you use the svmat command, your dataset will contain the new variable bi,
which contains the 14 age b coefficients, the b coefficient for household income, and
the b coefficient, for the constants. The first 14 numbers in the variable 1 are the age
coefiicients. In our case, the coefficients for the age dummies will appear first in the
dataset, and so we can graph them by typing

(Continued on next page)

19For an overview of the matrix commands, type help matrix.




Chapter 9. Regression models for categorical dependent variableg

. generate index = _n
. graph twoway line bl index in 1/14, sort

The graph shows a falling logaritiunic chance of residence ownership for the last two
age groups. In this respect, the slight reverse U-shaped correlation remains. Including
a quadratic term for age within a regression model results in a slight (albeit significant)
improvernent in the model fit. We will discuss this further in section 9.5 on page 275
and on page 278.

0.4.2 Influential cases

Influential data points are observations that heavily influence the b coefficients of a
regression model. Said another way, if we were to remove an influential data point
and then refit our model, our coefficient estimates would change by more than a trivial
amount. As explained on page 209, influential observations are observations that exhibif
an unusual combination of values for the X variable (leverage), as well as an urusual
characteristic (given the X values) of the Y variable (discrepancy). Correspondingly,
the measured value of Cook’s D is calculated by multiplying leverage and discrepancy.

This concept is somewhat more problematic in logistic regression than it is in linear
regression, as you can only measure the approximate leverage and discrepancy (Fox
1997, 459). In Stata, you can approximate the leverage values by typing

. logit cwner cage chhinc east
. predict leverage, hat

Note that you must refit the original model with cage and chhinc as independent
variables, since predict always refers to the last model fitted, and we just fit a model
including dummy variables to control for age. After getting the predicted leverage
values, you can obtain the standardized residuals as an approximation to discrepancy
by typing '

. predict spres, rstandard
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In logistic regression, the standardized residuals for observations having the same
covariate pattern are identical. The same also applies for the leverage values. To isolate
those covariate patterns having high leverage and discrepancy values, you can produce
a graph that compares the standardized residuals with the leverage values. Fox (1997,
461} uses a diagram with vertical lines at the mean of the leverage values and at two
and three times the mean. To produce this graph, we first calculate the mean of the
variable leverage. We save the mean, as well as its doubled and tripled values, in the
local macros ‘a’, ‘b, and ‘c’ (see chapter 4) to later use them as vertical lines in the
graph.

. summarize leverage

. local a = r{(mean)

. local b = 2 * r{mean)
. local ¢ = 3 # r{mean)

Next we generate the graph with the standardized residuals against the leverage
values. To generate vertical lines, we use the xline () option. We use the number of
covariate patterns as the plot symbol. These patterns are found in the variable cpatt,
which we generated on page 267:

. scatter spres leverage, xline(fa’ ‘B’ ‘c¢’) yline(-2 0 2} mlabel{cpatt)
> mlabpos(0) ms(i)

21t 137
2245

- standardized Pearson residual ::

Eight covariate patterns in the graph are particularly conspicuous: both patterns
having the lowest standardized residuals, and the six patterns having standardized resid-
uals under —2 and leverage values over twice the average. The following command shows
that invariably the latter consist of observations from West Germany with comparatively
high income but not residence ownership:
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- list cpatt owner age hhinc east if leverage > ‘b’ &

spres < -2

cpatt owner age hhinc east

279, 1889 ¢ 48 6985 0
421. 2245 0 56 5970 0
1127, 1197 0 35 5970 o]
2382. 2211 0 55 5326 o]
2538, 1795 0 46 4877 [
3005. 1383 o] 38 5721 0

The model therefare appears to be unsuitable for explaining cases such as these.

In linear regression, the influence of individual observations on the regression result
is determined by Cook’s D (see section 8.3.1), which involves multiplying the leverage
and discrepancy. An analogous measured value for logistic regression is

2
"P@)
Af = —2 b .
ﬁ (1 _ hj)2 X ) (g 14)
Sem———"  Leverage

Discrepancy
where f; is the value for the leverage. In Stata, you can obtain this value via

. predict db, dbeta

as a variable under the name db. A scatterplot of A against the predicted probabilities
is often used, in which observations with success as the outcome are displayed in a
different color or symbol than those of failure. The separate command is particularly
useful for the latter®?;

. separate db, by{owner)
. graph twoway scatter db0 dbl Phat
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Pricwner) :

¢ db, owner==0C & db, owner—1

20For an explanation of separate, type help separate. The variable Phat was generated on page 261
with predict Phat.
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The curve from the bottom left to the top right consists of all tenants, while the
curve that slopes downward from left to the bottom right consists of all residence owners.
Several covariate patterns for tenants are noteworthy, namely those which have a high
predicted probability of residence ownership. If you enter the number of covariate
patterns into the graph instead of the symbols, you will see that these patterns are the
salme ones our previous analysis detected.

The Pearson residuals allow for a further test statistic for influential observations.
Ags shown in section 9.3.3, the sum of the squared Pearson residuals is a measure of
the deviation of the predicted values from the observed values. The contribution of
each covariate pattern to this measure matches the square of the Pearson residual. If
you divide this contribution by 1 — A;, you get Aﬁ,( i) which indicates the change
in the Pearson chi-squared statistic when the covariate pattern j is removed from the
dataset. The scatterplot of Axf;.( 7) against the predicted probabilities is well snited to
the discovery of covariate patterns that are hard to predict through the model. Here it
would be useful to enter Hosmer and Lemeshow’s raw threshold value of AX%?(;{) of four

into the graph (Hosmer and Lemeshow 2000, 163):

. predict dx2, dx2
. separate dx2, by(owner)
. graph twoway scatter dx20 dx21 Phat, yline(4) mlabel{cpatt cpatt)

40

30

&2, owner == OKIX2, owner =1
10 20
A

]

A
- Priowner) * -

" |o axz owmer==0 & dx2,owner==11""" -’

Once again, a number of covariate patterns stand out, and again they are the usual
suspects: patterns for which residence ownership was incorrectly predicted. If you can
eliminate data errors, you should determine if a variable important to the model was
left out. This could be a subgroup for which the assumed correlation between age,
household income, region, and residence ownership does not hold.

9.5 Likelihood-ratio test

In section 9.3.3, we showed you how to calculate x%. That statistic compares the
likelthood of the fitted model with that of a model in which all the coefficients other
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than the constant are set to 0. A large value of x2 indicates that the full model does
significantly better at explaiving the dependent variable than the constant-only model.

You can apply the same principal to answer the question of whether the addition of
more independent variables achieves a significant increase in the explanatory power of
our model compared to a null model with fewer independent variables. For example,
you can ask whether the fit of a model on residence ownership against household income
increases if we include an age variable. To answer this question, you can carry out a
calculation that is analogous to the test of the overall model by again using —2 times
the difference between the log likelihood of the model without age {In Lyithont) and the
log likelihood of the model with age (In Lyi):

X;Z:‘,(Diﬁ') = *2(111 Lyithouws — In ﬁwith) (9-15)
Like x7., this test statistic also follows a x? distribution, in which the degrees of
freedom is the difference in the number of parameters between the two models.

You can easily calculate X%(Diﬁ) in Stata using the lrtest command. In our example,
we want to investigate the significance of the age effects. First, we calculate the model
with the variable we want to investigate:

. logit owner cage chhinc east

We store this model internally using the command estimates store, and we name
the model full:

. estimates store full
Now we calculate the reduced model.

. logit owner chhinc east

‘Then you can use 1rtest to test the difference between this model and the previously
stored model. You can simply list the name of the stored model (full) and, optionally,
the name of the model against which it should be compared. If you do not specily a
second name, the most recent model is used:

. lrtest full

Likelihood-ratio test LR chi2{1)
(hssumption: . nested in full) Prob > chi2

76.89
0.00600

The probability of receiving a X,%(Diff) value of 76.89 or higher in our sample is very
small when the age coefficient in the population is 0. You can therefore be fairly certain
that the age coefficient is not zero. However, this statistic does not reveal anything about

the degree of influence of age on residence ownership; for that you need to consider the
coefficient on age.

When using the likelihood-ratio test, note that only models that are nested can
be compared with one another. This means that the full model must contain all the
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variables of the reduced model. Furthermore, both models must be calculated using
the same set of observations. The latter may be problematic if, for example, some
observations in your full model must be excluded due to missing values, while they
may be included in the reduced model if you leave out a variable. In such cases, Stata
displays a warning message (“observations differ”).

If vou wish to compare models not fitted to the same sets of observations, an alterna-
tive is to use “information criteria” which are based on the log-likelthood function and
are valid even when comparing nonnested models. Two of the most common information
criteria are the BIC {Bayesian information criterion) and AIC {Akaike’s information crite-
rion), which are obtained through the estat ic command mentioned earlier (page 267).
An excellent introduction to the statistical foundations of these indices is provided by
Raftery (1995).

0.6 Refined models

As with the linear regression model, the logistic regression model can also be expanded
in various ways to investigate complicated causal hypotheses, particularly, in three ways:
specifying nonlinear relationships, comparing subgroups (categorical variables), and in-
vestigating varying correlations between subgroups (interaction effects). Because these
procedures for expanding the model are similar to those for linear regression, we will
use a few examples from our discussion of linear regression.

Nonlinear relationships

During the diagnosis of our regression model, we saw signs of a U-shaped correlation
between age and the logarithmic chance of residence awnership {section 9.4.1). In this
respect, U-shaped correlations are only one form of nonlinear relationships. Logarithmic
or hyperbolic relationships can also occur. Note that the model assumption of logistic
regression is only violated if these relationships appear between the logits and the inde-
pendent variables. With respect to probabilities, logarithmic or hyperbolic relationships
are to & certain extent already taken into account by the S-shaped distribution of the
logit transformation.

There are many ways to account for nonlinear relationships. If you have an assump-
tion as to why older people are less likely to own a residence than middle-aged people,
you should incorporate the variable in question into the regression model. If, for ex-
ample, you suspect that the observed decline is a consequence of older people moving
into nursing homes to receive full-time care, you might want to introduce some type of
variable indicating whether a person is in poor health,

An alternative way of controlling for a nonlinear relationship is to categorize the
independent variable into several groups and use a set of dummy variables instead of
the continuous variable. We discussed a strategy like this on page 270. A more common
strategy is to use transformations or polynomials of the independent variables. The
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rules for linear regression apply here, too: in the case of hyperbolic relationships, the X
variable is squared, and in the case of logarithmic relationships, the logarithm of the X
variable is used. For UU-shaped relationships, we use the squared X variable in addition
to the original X variable.

To model the U-shaped relationship between residence ownership and age, you could
proceed as follows:

. generate cage2 = cage”2
(140 missing values generated)

. logit owner cage cage2 chhinc east, nolog

Logistic regression _ Number of cbs = 3200
LR chi2{4) = 332.12

Prob > chiZ = 0.0000

Log likelihocod = -1925.4516 Pgeudo R2 = 0.0794
owner Coef. Std. Err. z P>|z] [o5% Conf. Intervall

cage .0209879  .0024164 8.69 0.000 .016252 .0257239

cage2 -.0002469  .0001196 -2.06 0.03% -.0004814  -.0000124

chhine .00CE37T8  .0000422 15.1¢  0.000 .000555 -0007208

east -.0675685 .0866436 -0.78 0.435 -.2373849 .1022519

_cons -.5188484 .0608729 -8.6¢ 0.000 -.6381571  -.4005397

It would be best to display the results of this regression model in a conditional-effects
plot. (see section 8.4.2).

Categorical independent variables

Categorical variables are used in logistic regression the same way they are used in linear
regression (section 8.4.1}. This means that a set of dummy variables is generated from
a categorical variable and is then introduced into the model with the omission of a
reference category.

Let’s continue our investigation into the Titanic catastrophe (see section 9.1). You
want to see whether the seafaring principle of women and childrer first was put into
practice or whether, as shown in the film Titanic, the first-class gentlemen took their
places in the lifeboats at the expense of the third-class women and children.

You have previously established that women and children evidently really did have
hetter chances of survival than men did (and adulés, respecsively). To look into this
more closely, load the original dataset:

. usge titanic, clear

This dataset contains dichotomous variables for survival, age (children are coded
zero and adults are coded one), and sex (females are coded as zero and males as one), -
as well as a categorical variable for first-class passengers (1), second-class passengers
(2), third-class passéngers (3}, and crew (4). '
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The film Tifanic assumed that, besides gender and age, passenger class was also a
criterion for a place in the lifeboats. You can verify this assumption using a logistic
regression model of survival against age, sex, and class. To use the independent variable
class in the regression model, first transform it into a set of dummy variables. You
can do this with the following command:2!

. tabulate clasa, gen(class)

This command generates four dummy variables named classl to clasa4, which you
can now use in your regression model. As in linear regression, you must choose one of
the variables as the reference category and omit it from the model. In this case, you
will want to use the first-class passengers as the reference category.

. logit survived age sex class2-class4, nolog

Logistic regression Namber of obs = 2201

Log likelihood = -1105.0308

LR chi2{5)
Prob > chi2

Pseudo RZ2

569.40
0.0000
0.2020

survived

Coef.

Std. Exx.

Pzl

[95% Conf.

Intervall

age
sex
class?2
class3
classd
_cons

-1.0615642
-2.42008
-1.018085
-1.777762
-.8576762
3.10538

. 2440257
.1404101
.19589786
.1715866
.1573389
.2681829

.000
.000
-000
.000
. 000
.000

¢]
0
0
0
o]
o]

-1,539824
-2.695259
-1.402243
-2.114027
-1.166055

2.520852

—.5b832608
-2,144862
—-.6339468
-1.441498
-.5482978

3.689808

According to the signs on the age dummy, it appears that the survival chance for
adults was smaller than that of the children and that the survival chance for the men
was smaller than that of the women. So far, this supports the principle of “women and
children first”. However, it also becomes apparent that the first-class passengers have
the largest chance of survival compared with the rest. The third-class passengers had
the smallest chances of survival; in fact, their chances of survival were even smaller than
those of the crew. In conclusion, you can state that women and children were indeed
favored for rescue, but apparently passenger class also played a role.

To test formally whether the class played a role in determining survival, you need
to test whether the coefficients on the class dummies are jointly significantly different
from zero, and for that you can use the likelihood-ratio test mentioned above. First, we
save the full model you just calculated:

. estimates store full
and then you calculate the model without the class dummies:

. logit survived age sex

21 An alternative would be the command xi; see section 8.4.1,
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A comparison of both models with the likelihood-ratio test shows that it is highly
unlikely that the class variable has no influence whatsocever on the population. Thus
passenger class did have an impact on survival.

. lrtest full

Likelihood-ratio test LR chi2(3) 119.03
(Assumption: . nested in full) Preb > chi2 = 0.0000

interaction effects

The logistic regression model calculated in the previous section shows one more weak-
ness. It assumes that a person’s sex plays the same role for adults and children. How-
ever, with the principle of “women and children first”, children should be preferentially
treated, regardless of their sex. Sex should primarily be used for adults as a criterion
for a place in the lifeboats.

If both boys and girls are treated equally, the coefficient for sex should be smalier
for children than it is for adults; in fact, it should be zero. In other words, the effect
of sex on survival varies with age. Effects of independent variables that vary between
subgroups are called interaction effects.

You can mode! interaction effects in logistic regressions the same way as in linear
regression models. Multiplying the variables involved in the interaction effect generates
interaction ferms. Note that here we do not recenter any variables, because both age
and sex are dichotomous.

. use titanic, clear
. tabulate class, gen(class)
. generate menage = seX * age

After you do this, you can incorporate the interaction terms into the model:

. logit survived sex age menage class2-class4d, nclog

Logistic regression Number of obs = 2201
LR chi2(6) = B77.41

Prob > chi2 = 0.0000

Log likelihood = -1096.0213 Pseudo R2 = 0.2085
survived Coef. Std. Err. z P>zl [95% Conf. Intervall

sex -.7150863 . 406223 -1.76 0,078 -1.511269 .0810961

age . 1086979 .335319 0.33 0.743 -.84721563 L7672111

menage ~1.902104 .4330925 -4.39  0.000 -2.750948 -1.053258
class?2 ~1.033786 .1998153 -5.17  0.000 -1.425417  -,8421551
class3 -1.810499 .1759416  -10.29  0.000 ~2.155338 -1.46566
classd -.8033246 . 1598088 -5.03 0.000 ~1.116544  -,4901051

_cons 2.071621 .352871¢9 5.87 0.000 1.380005 2.763237

Consider first the case in which the interaction term is zero, which happens for
observations on children or females. The coefficient on sex then indicates how much
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lower the logarithmic ckhance of survival is for male children compared to female children.
It shows that male children had a lower chance of survival than female children did.
In this case the coefficient on age indicates that adult women had a greater chance of
surviving than girls,

The interaction effect indicates how much the influence of sex changes when one con-
siders adults instead of children. If male children already had a —.72 smaller logarith-
mic chance of survival than female children, this would yield a —.72 4 (—1.90) = —2.62
smaller log-chance of survival for a male adult compared with a female adult. Therefore,
the survival chance of men was only around one-fourteenth (e=*%2 = 0.07 = 1/14) that
of the women.

0.7 Advanced techniques

Stata allows you to fit mumerous related models in addition to the logistic regression
we have described above. Unfortunately, there is not enough space in this book in
order to show them in detail. However, in this section we will describe the fundamental
ideas behind some of the most important procedures. For further infermation, we will
specifically refer you to the entry in the Stata Reference Manual corresponding to each
command. There you wilt also find references to the literature.

0.7.1 Probit models

In the logistic regression model, we attempted to predict the probability of a success
through a linear combination of one or more independent variables. To ensure that the
predicted probabilities remained between the limits of 0 and 1, the probability of the
stuccess underwent a logit transformation. However, usifig the logit transformation is
not the only way to achieve this. An alternafive is the probit transformation used in
probit models.

To get some idea of this transformation, visualize the density function of the standard
normal digtribution:

(Continued on next page)
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. graph twoway function y = 1/s8qrt{2* pi) * exp(-.5 # x"2), range(-4 4)

You can interpret this graph in the same way as a histogram or a kernel density
estimator (see section 7.3.3); i.e., for this variable, the values around 0 occur most
often, and the larger or smaller they become, the rarer they occur.

Suppose that you randomly selected an observation from the variable X. How large
would the probability be of selecting an observation that had a value of less than —27 As
values under —2 do not occur very often in the X variable, the intuitive answer is, not
very probable. If you want to know the exact answer, you can determine the probability
through distribution-function tables for standard normal distribution or through the
Stata command

. display nermal(-2)
.02275013

The probability of selecting an observation with a value of less than or equal to —2
from a standard normal variate is therefore 0.023. You can repeat the same calculation
for any value of X and then enter the calculated probabilities against the values of
X in a scatterplot. This results in the distribution function for the standard normal
distribution @ depicted in the following graph:
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. twoway (function y = normal(x}, range(-4 4))
> (function y = exp(x)/{l+exp(x)), range(-4 4}J,
> legend(lab(i "Probit-Transformation") lab(2 "Logit-Transfermation"))

2

Logit-Transformation

The function shows a S-shaped curve, similar to the probabilities assigned to the
logits, which we have also included in the graph.

As with the logit transform you used with logistic regression, the normal distribution
function can also be used to transform values from —oo and +co into values between
and . Correspondingly, the inverse of the distribution function for the standard normal
distribution (®~*) converts probabilities between 0 and 1 for a success {(P(Y = 1)) into
values between —o and +oo. The values of this probit transformation are thus also
suitable as dependent variables for a linear model. This yields the probit model:

Q_l{ﬁ(y = 1)} = bO + b1$1i -+ b2$2i + - bK—]ngl,i (916)

You can estimate the b coeflicients of this model through maximum likelihood. You
can interpret the coefficients the same way as in logistic regression, except that now the
value of the inverse distribution function of the standard normal distribution increases
by b units instead of the log-odds ratic increasing by b units for each one-unit change
in the corresponding independent variable. Using the distribution function for the
standard normal distribution, you can then calculate probabilities of success. Usually,
the predicted probahilities of probit models are nearly identical to those of logistic
maodels, and the coefficients are often shout 0.58 times the value of those of the logit
models (Long 1997, 49).

The Stata command used to calculate probit models is probit. For example, you
can refit the previous model {see page 28() using probit instead of logit:
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Probit regression Number of obs = 2201
LR chi2(8) = 573.48

Preb > chi2 = G.000¢

Log likelihood = ~-1097.988 Pseudo R2 = 0.2071
survived Coef.  Std. Err. z P>zl [96% Conf. Intervall

sex -.4554407 .2533275 -1.80 0.072 -.9519534 041072

ape .084439 .2076534 0.41 0.684 -.3226543 4914322

menage -1.102542 .2673721 ~4.12 0.000 -1.626582 -.578b024
class? ~.6327645 .1193993 -5.30 0.000 -.86673829 -.3987462
class3 -1.02884 .0999088  -10.30 0.000 -1.224657  -.833021%
class4 -.5065305 .0P62533 -5.25 0.000 -.6941836 -.3168776

_cons 1.223367  .2160143 5.66  0.000 L7999871 1.646748

See [R] probit for more information on this model.

9.7.2 Multinomial logistic regression

Multinomial logistic regression is used when the dependent variable exhibits more than
two categories that cannot be ranked. An example for this would be party preference

with values for the German parties CDU, SPD, and all other parties.

The main problem with using multinomial logistic regression is in the interpretation
of the coefiicients, so this will be the focus point of this section. Nevertheless, in order to
understand this problem, you must at least intuitively grasp the statistical fundamentals
of the process. These fundamentals will be discussed shortly (Long 1997, cf.).

In multinomial logistic regression, you predict the probability for every value of the
dependent variable. You could initially calculate a binary?? logistic regression for every
value of the dependent variable. In our example, you could calculate three separate
logistic regressions: one with the dependent variable CDU against non-CDU, one with
the dependent variable SPD against non-SFD, and finally one with the dependent variable

for the other parties against the CDU and SPD together:

PY =CDU) bgl)

Wy W D
PY movaDUy 0 U bt e

In

P(Y = SPD)

1
" P(Y = not-SPD)

= 562) + bgz)ﬂilz + 55(22)122' 44 b 156}( 1

P(Y = other)

| =
" P(Y = not-other)

3)+bgg)$lz+bg Lo+ - +b XK -1,

(9.17)

22fn order to differentiate it from multinomial logistic regresmon we call the logistic regression of a

dichotomous dependent variable a binary logistic regression.
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The superscript in parentheses means that the b coefficients differ between the in-

dividual regression equations: bg) #* bf) E2 bgf). To simplify the notation, we refer to

bgl) . bg}l | as bl and refer to the sets of b coefficients from the other two equations

as b2 and b, respectively.

Fvery one of the unconnecied regressions aliows for a calculation of the predicted
probability of every value of the dependent variable. Note that these predicted probabil-
ities do not all add up to 1. However, they should, as one of the three possibilities—SPD,
CDU or Other—must® occur.

For this reason, it would appear sensible to jointly estimate b, b, and b and
to adhere to the rule that the predicted probabilities must add up to 1. However, it
is not possible to estimate all three sets of coefficients. In order to do so, you must
constrain one of the coefficient vectors to be equal to a fixed value, zero being by far
the most common choice. After making such a normalization, the remaining coetlicients
can be estimated using the maximum likelihood principle. Which one of the three sets
of coefficients you constrain to be zero does not matter. By default, Stata’s mlogit
command constrains the coefficient vector corresponding o the most frequent outcome.

Let us show you an example of interpreting coeflicients. Please load datal.dta:

. use datal, clear
(SDEP’87 (Kohler/Kreuter))
Now generate a new variable for party choice with values for the CDU, the SPD, and
the other parties from the original variable for party preferences (np9402). One way of
doing this is

. generate party = np9402
(1965 missing values generated)

. recode party 2 3 =1 i=2 4/8 =3
(party: 1375 changes made}

. label define party 1 "CDU" 2  "SPDH" 3 "Dther"
. label value party party

This creates the variable party with the values 1 for the CDU/CSU, 2 for the SPD, and
3 for the other parties. Respondents without a party preference have a missing value.

The Stata command for multinomial logistic regression is mlogit. The syntax for
the command is the same as for all estimation commands; i.e., the dependent variable
follows the command and is in turn followed by the list of independent variables. With
the baseoutcome() option, you can select the equation for which the b coefficients are
set to 0.

Let’s calculate a multinomial logistic regression for party preference against educa-
tion (in years of education) and year of birth. In this case, the b coefficients of the
equation for the CDU are set ab 0:

23Tn this case, you disregard the possibility of no party preference. If you did not, you would have
to caleulate a further regression model for this alternative. The predicted probabilities for the four
regression should then add up to 1.
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. mlogit party yedu ybirth, base(i) nolog

Multinomial logistic regression Number of obs = 1360
LR chi2(4) = 92.69
Prob > chi2 = 0.0000
Log 1ikelihood = -1379.4301 Pseudo R2 = 0.0325
party Coef. 8td. Err. z P>iz| [95% Conf. Interwval]
SPD

yedu -.00395671 .0256271 -0.16  0.877 -.0539892 . 0480751
ybirth .0126934  .0034126 3.72  0.000 . 0060047 .019382
_cons -24.54483  6,627974 -3.70  0.000 -37.53542  -11.55424

Other
yedu .1305466 .0205313 4,42  0.000 .0726663 .188427
ybirth .0382889  .0046591 T.57  0.000 .0261573 . 0444206
_cons -71.04625  ©.092251 -7.81  0.000 -88.86673 -53.22B78

(party==CDU is the base outcome)

In contrast to binary logistic regression, the coefficient table is split into two parts.
The upper part contains the coefficients of the equation for the SPD, while the lower
part contains the coefficients of the equation for the other parties. The coefficients of
the equation of the CDU were set at 0 and are therefore not displayed.

As a result of setting b{®PY) = 0, you can interpret the coefficients of the other two
equations in relation to the CHU supporters. By this, we mean that coefficients in the
equation for the SPD indicate how much the logarithmic chance of preferring the SPD
and not the CDU changes when the independent variables increase by one unit. The
equation for the other parties indicates changes in the logarithmic chance of preferring
the other parties and not the D,

Interpreting the coefficients for a multinomial logistic regression is not as easy as
for binary logistic regression, as the sign interpretation cannot be used. The negative
sign for length of education in the SPD equation does not necessarily mean that the
probability of a preference for the SPD declines with education. In our regression model,
we can demonstrate this with the coefficient for the variable ybirth from the equation
for the SPD. Writing the probability of preferring the SPD as Psppy and the probability
of preferring the CDU as Pgpy, the b coeflicient for ybirth in the SPD equation can be
written as

(SFD) PsPDiybirth+1 PspD|ybirth

Pepujybirth 11 Popuiybictn

n Fspbiybirth+1 N Penupybir

(9.18)

FPseppybieth  Fopu|ybirth1
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The b coeflicient for year of birth in the equation for the SPD, on the one hand,
depends on the change in probability of SPD preference with the vear of birth. On the
other hand, it also depends on the respective change in probability for choosing the
CDU. In contrast to the binary logit model, in the multinomial logit model, the change
in the probability of ¢DU preference does not completely depend on the change in the
probability of SPD preference. In this respect, the b coefficient can be solely, mainly, or
partly dependent on the probability relationship in the base category.

To avoid misinterpreting the multinomial logistic regression, we recommend that you
use the conditional-effects plot for the predicted probabilities.?* To create this plot, first
generate the predicted probabilities of the model with predict. As there is a predicted
probability for every value of the dependent variable, you will have to provide three
variable names for the predicted probabilities.

. predict PCDY PSFD POther

To iilustrate the effect of the year of birth, we plot these variables against the year
of birth, holding the length of education at a particular value.

If you fix length of education at the highest value (18 years), you can establish
that the probability of preferring the SPD declines with the vear of birth, despite the
regression model indicating a significant, positive coefficient, for the year of birth.25

. graph twoway line PCDU PSPD POther ybirfh if yedu==18, sort

o

2)/Pr{party=3)
5

=1)/Priparty==
2 3 4

Prfparty=

A
_—

Priparty==1)
Priparty==3)

Above we said that conditional effects plot can easily produced “most of the time”.
Probiems occurs when too many variables are included in the model, so fixing the values
of the independent variables may mean that there are too few observations remaining
for a sensible plot. The method of recycled predictions described in [R] mlogit appears
to be good solution to this problem. An even more powerful possibility for producing

*4One alternstive is the method of recyeled predictions which is described in {R] mlogit. A further
alternative is calculating marginal effects with the command nfx compute.

25Tn the legend, Pr(party==1}) stands for the CDU, Pr(party==2) stands for the SPD and
Pr (party==3) stands for the other parties.
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conditional effects plots is the prgen command, which vou can download from the 88¢
archive (see section 12.3.2) and which is more fully described by Long and Freese (2003).

0.7.3 Models for ordinal data

Models for ordinal data are used when the dependent variable has more than two values
that can be ranked. An example would be the question regarding. concerns about
the increase of crime, which respondents could answer with “no concerns”, “moderate
concerns”, or “sirong concerns”. In a dataset, these could be assigned the values of 0, 1,
and 2, or equivalently, 0, 10, and 12. Note that the difference between two consecutive
categories is immaterial—all that matters is that the outcomes can be ordered.

In principle, there are two strategies available for modeling ordinal dependent vari-
ables. The first uses multinomisal logistic regression, whereby certain constraints are im-
posed upon the coefficients (stereotype model). The second strategy generalizes binary
logistic regression for variables with more than two values (proportional odds model).
Anderson (1984) discusses the implementation prerequisites for both models.

The logic behind the stereotype model is simple. In multinomial logistic regression,
every value of the dependent variable has its own set of coefficients. The length of
education in the regression model on page 286 had a negative effect on the chance of
preferring the sPD (and not the CDU), and at the same time have a positive effect on
the chance of preferring another party (and not the ¢DU). If the dependent variable
indicates the presence of ranking, you would normally not expect a directional change
in the effects. For example, consider the variable for concerns about increasing crime
{np9506), which contains the values 1 for no concerns, 2 for moderate concerns and 3
for strong concerns. First, calculate a multinomial logistic regression for this variable
against the length of education. Before you do this, you should, however, mirror the
variable np9b06 so that high values stand for strong concerns and vice versa:

. generate worries = 4 - np9B05
. mlogit worries yedu, base(1)

You will get a coefficient of around —.05 in the equation for moderate concerns and
—.11 in the equation for strong concerns. The direction of the effects does not change
here. This should come as little surprise, since, if education reduces the chance of having
moderate concerns (and not of having no concerns), it should also reduce the chance
of having strong concerns (and not of having no concerns). However, if you calculate
a multinomial logistic regression, this assumption is ignored. Nevertheless, you can
include such assumptions in the model by imposing constraints on the b coefficients.

Using constrainis, you can impose certain structures for the b coefficients before
calculating a model. You could, for example, require that education reduces the chance
of having moderate concerns (and not of having no concerns) to the same extent that
it does for having strong concerns (and not of having moderate concerns). In this case,
the coefficient of education for strong concerns would have to be exactly twice as large
as the coefficient of education for moderate concerns. With the constraint command,
you can set this structure for the mlogit command. With
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. constraint define 1 [3lyedu = 2%[2]yedu

you define constraint number 1, which states that the coefficient of the variable yedu in
the third equation be twice as large as the coefficient of the variable yedu in the second
equation. You impose the constraint by specifying the constraints() option of the
mlogit command. Here you would enter the number of the constraint you wish to use
in the parentheses.

. mleogit worries yedu, base(l) constraints(1)

If you calculate this model, you will discover that it is almost identical to the previous
model. However, it is far more economical, as in principle only one education coefficient
has to be calculated. The other coefficient is derived from the ordinal structure of
the dependent variable and our assumption that education proportionately increases
CONCErns.

Establishing specific constraints that take into account the ordinal structure of the
dependent variable is one way of modeling the ordinal dependent variable. N evertheless,
the constraint is just one example of numerous alternatives. See [R] slogit for more
information about this model.

A different approach is foliowed by the proportional odds model. In the proportional
odds model, the value of the ordinal variabie is understood as the result of categorizing
an underlying metric variable. In owr example, you could assume that answers in the
worries variable only provide a rough indication of the attitudes towards the increase
in crime. The attitudes of people probably vary between having infinitely numerous
concerns and no concerns whatsoever, so they might take any value in between; that is,
attitude is actually a continuous variable F. Instead of observing E, however, all you
see are the answers reported on the survey—no concerns, moderate concerns, or strong
concerns. Since you have three outcomes in the model, there must also exist two points
1 and #o that partition the range of ¥ into the three reported answers. That is, if
E < ki, then the person reported no concerns, if k1 < E > fa, the person reported
moderate concerns, and if £ > «2 the person reported strong concerns.

Remember the predicted values (f) of the binary logistic regressior. These values
can take on any values from —oo to +oo. In this respect, you could interpret these
predicted values as the unknown metric attitude E. ¥ you knew the valge of ®1 and
2 by assuming a specific distribution for the difference between F and L, you could
determine the probability that each person reported each of the three levels of concern.
The proportional odds model estimates the &'s in the linear combination of independent
variables as well as the cut points needed to partition the range of F into discrete
categories.

An example may clarify this. The command for the proportional odds model in
Stata is ologit. The syntax of the command is the same as all other model commands:
the dependent variable follows the command and is in turn followed by the list of
independent variables. We will calculate the same model as above:
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- ologit worries yedu

The predicted value of this model for respondents with ten years of education is

S19 = —0.068 x 10 = —0.68. The value for &1 and sy are provided underneath the
coefficient block. The probability that respondents with a predicted value of —.68 are
classified as individuals with moderate concerns matches the probability of —.68 + Uy <
—1.196, or, in other words, the probability that «; < —1.128. If you assume that the
error term follows the logistic distribution, the probability is 1 /(1471138 = .76,

For more information on ordered logistic regression in Stata, see [R] ologit.

9.8 Summary

logit y x1 x2 calculates a logistic regression of the dependent varizble 4 on the inde-
pendent variables z1 and z2.

logit y x1 x2, or calculates a logistic regression of the dependent variable 4 on the
independent variables z1 and z2. The odds ratio is listed in the results tabie,

logistic y x1 x2is identical to logit ¥ %1 %2, or,

predict Phat saves the predicted probabilities of the last regression model in a new
variable called Phat. The name of the new variable is defined by the user.

Predict statvar, slafistic saves the values of a selected statistic in the new variable
statvar., The name of the new variable is defined by the user.

estat gof calculates the Pearson y? test.
estat classification calculates the classification table.

The following statistics are available in connection with lo
option of predict:

gistic regression as an
xb caleulates predicted logits.

deviance calculates deviance residuals.

regiduals calculates Pearson residuals.

rstandard calculates standardized Pearson residnals.

dx2 calculates the Hosmer-Lemeshow goodness-of-fit statistic.

dbeta calculates the Pregibon Delta Beta goodness-of-fit statistic.

number numbers the covariate patterns.




