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Preface

Statistics with Stara 1s intended for students and practicing researchers. to bridge the gap
between statistical textbooks and Stata’s own documentation. In this intermcdiate role, it does
not provide the detailed expostitions of a proper textbook, nor does it come ¢lose to describing
all of Stata’s features. Instead. it demonstrates how to use Stata to accomplish a wide variety
of statistical tasks. Chapter topics follow conceptual themes rather than focusing on particular
Stata commands. which gives Statistics with Stata a difterent structure from the Stata reference
manuals. The chapter on Data Management, for example, covers a variety of procedurcs for
creating, updating, and restructuring data files. Chapters on Summary Statistics and Tables,
ANOVA and Other Comparison Methods. and Fitting Curves, among others. have similarly
broad themes that encompass a number of separate techniques.

The general topics of the first six chapters (through ordinary least squares regression)
roughly parallel an introductory course in applied statistics. but with additional depth to cover
practical issues often encountered by analysts — how to aggregate data, create dummy
variables, draw publication-quality graphs. or translate ANOVA into regression, for instance.
In Chapter 7 (Regression Diagnostics) and beyond, we move into the territory of advanced
courses or original research. Here readers can find basic information and illustrations of how
to obtain and interpret diagnostic statistics and graphs: pcrform robust, quantile. nonlinear,
logit. ordered logit, multinomial logit, or Poisson regression; fit survival-time and event-count
models; construct composite variables through factoranalysis and principal components; divide
obscrvations into empirical types or clusters: and graph or model time-series data. Stata has
worked hard in recent vears to advance its state-of-the-art standing, and this effort is
particularly apparent in the wide range ofregression and model-fitting commands it now offers.

Finally. we conclude with a look at programming in Stata. Many readers will find that Stata
does everything they need already, so they have no need to write original programs. For an
active minority, however. programmability is one of Stata’s principal attractions. and it
certainly underlies Stata’s currcney and rapid advancement. This chapter opens the door for
new userts to explore Stata programming. whether for specialized data management tasks. to
establish a new statistical capability, for Monte Carlo experiments. or for tcaching.

Generally similar versions (“flavors™) of Stata run on Windows, Macintosh, and Unix
computers. Across all platforms, Stata uses the same commands. data files, and output. The
versions differ in some details of screen appearance, menus, and file handling. where Stata
follows the conventions native to each platform — such as ‘directory:filename file
specifications under Windows, in contrast with the ‘directory/filename spccifications under
Unix. Rather than display all three, I employ Windows conventions, but users with other
systems should find that only minor translations are needed.
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Notes on the Fifth Edition

I began using Stata in 1985. the first year of its release. (Stata’s 20th anniversary in 2005 was
marked by a special issue of the Stara Journal. 2005:5(1). filled with historical articles and
interviews including a brief history of Statistics with Stara.) Initially, Stata ran only on MS-
DOS personal computers. but its PC orientation made it distinctly more modern than its main
competitors — most of which had originated before the desktop revolution, in the 80-column
punched-card Fortran environment of mainframes. Unlike mainframe statistical packages that
believed each user was a stack of cards, Stata viewed the user as a conversation. [ts interactive
nature and integration of statistical procedures with data management and graphics supported
the natural flow of analytical thought in ways that other programs did not. graph and
predict soonbecame favorite commands. [wasimpressed enough by how itall fit together
to start writing the original Sratistics wirh Stara. published in 1989 for Stata version 2.

A great deal about Stata has changed since that book, in which I observed that **Stata is not
a do-everything program . . .. The things it does. however, itdoes very well.” The expansion
of Stata’s capabilities has been striking. This is very noticeable in the proliferation, and later
in the steady rationalization. of model fitting procedures. William Gould’s architecture for
Stata, with its programming tools and unified syntax. has aged well and proven able to
incorporate new statistical ideas as these svere developed. The formidable list of modeling
commands that begins Chapter 10. or of functions in Chapter 2, illustrate some of the wavs that
Stata became richer over the years. Suites of new techniques such as those for panel { xt ).
survey ( svy ), time series ( ts ). or survival time ( st ) data open worlds of possibility. as do
programmable commands for nonlinear regression ( nl ) and general linear modeling ( glm ).
or general procedures for maximum-likelihood estimation. Other critical expansions include
the development of a matrix programming capability, and the wealth of new data-management
features. Data management, with good reason, has been promoted from an incidental topic in
the first Sraristics with Stata to the second-longest chapter in this fifth edition.

Stata version 8 marked the most radical upgrade in Stata’s history, led by the new menu
system or GUI (graphical user interface), and completely redesigned graphing capabilities. A
limited menu system. evolved from the student program StataQuest, had been available as an
option since version 4, but Stata § for the first time incorporated an integrated menu interface
offering a full range of alternatives to typed commands. These menus are more easily learned
through exploration than by reading a book. so Statistics with Stata provides only general
suggestions about menus at the beginning ofeach chapter. For the most part. this book employs
commands to show what Stata can do: those commands” menu counterparts should be easy to
discover.

The redesigned graphing capabilities of Stata 8 called for similarly sweeping changes in
Chapter 3, turning it into the longest chapter in this edition. The topic itself is complex, as the
thick Graphics Reference Manual (and other material scattered through the documentation)
attests. Rather than try to condense the syntax-based reference manuals, [ have taken a
completely different. complementary approach based on examples. Chapter 3 thus provides an
organized gallery of 49 diverse graphs. each with instructions for how it was drawn. Further
examples appear throughout the book: even the last graphs in Chapter 14 demonstrate new
variations. To an unexpected degree. Statistics with Stata became a showcase for the new
graphics.
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Less drastic but also noteworthy changes from the previous Staristics with Stara include
new sections on panel data (Chapter 6}, robust standard errors (Chapter 9}, and cluster analysis
(Chapter 12). The Example Commands sections have been revised and expanded in several
chapters as well. Readers coming from the older Statistics with Stara 5 will find more here that
has changed. including new emphasis on Internet resources (Chapter 1). tools for data
management (Chapter 2). table commands (Chapter 4), graphs for ANOVA (Chapter 3), a
sharper look at multicollinearity (Chapter 8), robust and median-based analogues to ANOVA
(Chapter 9), conditional effects plots for multinomial logit (Chapter 10). generalized linear
models (Chapter 11). a new chapter on time series (Chapter 13). and a rewritten chapter on
programming (Chapter 14}. Other new Stata features, or improvements in old commands
(including graph and predict ). are scattered throughout the book. Because Stata now
does so much. far beyvond the scope of an introductory book, Staristics with Stata presents more
procedures telegraphically in the “Example Commands™ sections that begin most chapters. or
in lists of options followed by advice that readers should “type help whatever ” for
details. Stata’s online help and search features have advanced to keep pace with the program,
so this is not idle advice.

Beyond the help files are Stata’s web site, Internet and documentation search capabilities,
user-community listserver, NetCourses, the Stata Journal, and of course Stata’s formidable
printed documentation — presently over 5,000 pages and growing. Sratistics with Stata
provides an accessible gateway to Stata; these other resources can help you go further.
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Stata and Stata Resources

Stata is a full-featured statistical program for Windows, Macintosh, and Unix computers. It
combines ease of use with speed, a library of pre-programmed analytical and data-management
capabilities. and programmability that allows users to invent and add further capabilities as
nceded. Most operations can be accomplished either via the pull-down menu system, or more
directly via typed commands. Menus help newcomers to learn Stata. and help anyonc to apply
an unfamiliar procedure. The consistent, intuitive syntax of Stata commands frees experienced
users to work more efficiently. and also makes it straightforward to develop programs for
complex or repetitious tasks. Menu and command instructions can be mixed as needed during
a Stata session. Extensive help, search, and link features make it easy to look up command
syntax and other information instantly, on the fly.

After introductory information. we'll begin with an example Stata session to give you a
sense of the “flow™ of data analysis. and of how analytical results might be used. Later chapters
explain in more detail. Even without explanations, however, you can see how straightforward
the commands are —use filename toretrieve dataset filename, summarize whenyou
want summary statistics, correlate to getacorrelation matrix, and so forth. Alternatively.
the same results can be obtained by making choices from the Data or Statistics menus.

Stata users have available a variety of resources to help them leam about Stata and solve
problems at any level of difficulty. These resources come not just from Stata Corporation. but
also from an active community of users. Sections of'this chapter introduce some key resources
— Stata’s online help and printed documentation: where to phone. fax. write, or e-mail for
technical help: Stata’s web site (www.stata.com). which provides many services including
updates and answers to frequently asked questions: the Statalist Internet forum; and therefereed
Stata Journal.

A Typographical Note

This book employs several typographical conventions as a visual cue to how words are used:

8  Commands typed by the user appear in a bold Courier font . When the whole
command line is given. it starts with a period. as seen in a Stata Results window or log
(output) file:

list year boats men penalty

B Variable or file names within these commands appear in italics to emphasize the

fact that they are arbitrary and not a fixed part of the command.
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B Names of variables or files also appear in italics within the main text to distinguish them
from ordinary words.

B |tems from Stata's menus are shown in an Arial font , with successive options separated by
a dash. For example, we can open an existing dataset by selecting File — Open . and then
finding and clicking on the name of the particular dataset. Note that some common menu
actions can b¢ accomplished either with text choices from Stata’s top menu bar.

File Edit Prefs Data Graphics Statistics User Window Help
or with the row of icons below these. For example, selecting File — Open is equivalent to
clicking the leftmost icon, an opening file folder: @ . One could also accomplish the
same thing by typing a direct command of the form

use filename

®  Stata output as seen in the Results window isshownina srz.. csur-ier zcno. The small
font allows Stata’s 80-column output to fit within the margins of this book.

Thus, we show the calculation of summary statistics for a variable named penaln as
follows:

summarize penalty

These typographic conventions exist only in this book. and not within the Stata program
itself. Stata can display a variety of onscreen fonts, but it does not use italics in commands.
Once Stata log files have been imported into a word processor, or a results table copied and
pasted. you might want to format them in a Courier font, 10 point or smailer. so that columns
will line up correctly.

In its commands and variable names. Stata 1s case sensitive. Thus, summarize isa
command. but Summarize and SUMMARIZE are not. Penaln and penaity would be two
different variables.

An Example Stata Session

As a preview showing Stata at work. this section retrieves and analyzes a previously-created
dataset named /loforen.dta. Jentoft and Kristofferson (1989) originally published these data in
an article about self-management among fishermen on Norway's arctic Lofoten Islands. There
are 10 observations (years) and 5 variables. including penaln, a count of how many fishermen
were cited each year for violating fisheries regulations.

If we might eventually want a record of our session. the best way to prepare for this is by
opening a “log file™ at the start. Log files contain commands and results tables. but not graphs.
To begin a log file, click the scroll-shaped Begin Log icon, &4 , and specify a name and folder
for the resulting log file. Alternatively. a log file could be started by choosing File — Log -
Begin from the top menu bar. or by typing a direct command such as

log using mondayl

Stata and Stata Resources 3

Multiple ways of doing such things are common in Stata. Each has its own advantages, and
each suits different situations or user tastes.

Log files can be created either in a special Stata format (.smcl), or in ordinary text or ASCII
format (.log). A .smcl (“Stata markup and control language™) file will be nicely formatted for
viewing or printing within Stata. It could also contain hyperlinks that help to understand
commands or error messages. .log (text) files lack such formatting, but are simplerto use if you
plan later toinsert or edit the output in a word processor. Afterselecting which type oflog file
you want, click Save . For this session, we will create a .smel log file named mondavi.smel.

An existing Stata-format dataset named /ofoten.dta will be analyzed here. To open or
retrieve this dataset, we again have several options:

select File — Open — lofoten.dta using the top menu bar;

select ca’:‘ — lofoten.dta ; or
type the command use lofoten.

Under its default Windows configuration. Stata looks for data files in folder C:'data. Ifthe file
we want is in a different folder, we could specify its location in the use command.

use c¢:\books\sws8\chapter0l\lofoten
or change the session’s default folder by issuinga ed (change directory) command:
cd c:\books\sws8\chapter01\

use lofoten

Often, the simplest way to retrieve a file will be to choose File - Open and browse through
folders in the usual way.

To see a brief description of the dataset now in memory, type

describe
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M 0
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Many Stata commands can be abbreviated to their first few letters. For example, we could
shorten describe to just the letter d. Using menus, the same table could be obtained by
choosing Data — Describe data — Describe variables in mem ory - OK.

This dataset has only 10 observations and 5 variables, so we can easily list its contents by
typing the command list (or the letter 1; or Data - Describe data — List data — OK}):
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list
¥YEET coats mern cenalty decade
________________________________________ ‘
- 1529 ZZEBL JL 1870s |
2.l 1972 2017 63354 15z 1%72s |
EI N =Rt 2068 6794 1&2 1%70s
. 1274 -e93 5227 332 19
E. eS| il 4077 3& 12
5. _oEl 15423 1 138Cs |
D 1982 1584 1t 13805 |
2. 1 1983 1842 24 t58ls |
E | 1982 1847 IE! 2982s |
s I 19as 13£2 1z Z930s |

Analysis could begin with a table of means. standard deviations, minimum values, and
maximum values (type summarize or su:orselect Statistics — Summaries, tables, & tests
— Summary statistics — Summary statistics — OK):

summarize

Variable T“os lean gza. Ze Min Max
sar | I 1378 s, 13772 1385
roats | 27 173202 23 1363 2088
ren | 13 4254 .,3 10 3514 6734
pera’_ty | 10 £3 o] o1 Z83
decace | i3 z s ¥ i

To print results from the session so far, bring the Results window to the front by clicking
on this window oron [glj; (Bring Results Window to Front), and then click & (Print).

To copy a table, commands. or other information from the Results window into a word
processor, again make sure that the Results window is in front by clicking on this window or
on m’ Drag the mouse to select the results you want, rightclick the mouse, and then choose
Copy Text from the mouse’s menu. Finally, switch to your word processor and, at the desired
insertion point either right-click and Paste or click a “clipboard” icon on the word processor’s
menu bar.

Stata and Stata Resources 5

use, you can see that they tend to be more complicated to describe than the simple text
commands. From this point on, we will focus primarily on the commands, mentioning menu
alternatives only occasionally. Fully exploring the menus, and working out how to use them
to accomplish the same tasks, will be left to the reader. For similar reasons, the Stata reference
manuals likewise take a command-based approach.

Perhaps the number of penalties declined because fewer people were fishing in the 1980s,
The number of penalties correlates strongly ( » > .8) with the number of boats and fishermen:

correlate boats men penalty

[ozs=_T)

bcats men  penaloy
nzats 1.03C0
men s.2T48 1.0%200
rena.Ty 2.BZz3 g.2312 1.2020

A graph might help clarify these interrelationships. Figure 1.1 plots men and penaltv
against year, produced by the graph twoway connected command. In this examp]é,
we firstask for a twoway (two-variable) connected-line plot of men against year, using the left-
hand y axis, yaxis(1). After the separator | | , we next ask for a connected-line plot of
penalty against year, this time using the right-hand y axis, yaxis(2) . The resulting graph
visuallizes the correspondence between the number of fishermen and the number of penalties
over time.

graph twoway connected men year, yaxis (1)
Il connected penalty year, yaxis (2)

Did the number of penalties for fishing violations change over the two decades covered by

these data? A table containing summary statistics for penaln at each value of decade shows
that there were more penalties in the 1970s:

tabulate decade, sum(penalty)

Zerly 137C

1 -

The same table could be obtained through menus: Statistics - Summaries, tables, & tests
— Tables — One/two-way table of summary statistics, then fill in decade as variable 1, and
penaln as the variable to be summarized. Although menu choices are often straightforward to
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Because the years 1976 to 1980 are missingin these data, Figure 1.1 shows 1975 connected
to 1981. For some purposes, we might hesitate to do this. Instead, we could either find the
missing values or leave the gap unconnected by issuing a slightly more complicated set of
commands.
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To print this graph, click on the Graph window or on m’ (Bring Graph Window to Front),

and then click the Print icon & .
To copy the graph directly into a word processor or other document, bring the Graph
window to the front, rightclick on the graph, and select Copy . Switch to your word processor,

go to the desired insertion point, and issue an appropriate “paste” cpmrnand such as Edit —
Paste, Edit— Paste Special (Metafile), or click a “clipboard” icon (different word processors

will handle this differently).
To save the graph for future use, either right-click and Save, or select File — Save Graph
from the top menu bar. The Save As Type submenu offers several different file formats to

chose from. On a Windows system, the choices include
Stata graph (*.gph) (A “live” graph, containing enough information for Stata to edit.)
As-is graph (*.gph) (A more compact Stata graph format.)
Windows Metafile (*.wmf)
Enhanced Metafile (*.emf)
Portable Network Graphics (*.png)
TIFF (*.tif)
PostScript (*.ps)
Encapsulated PostScript with TIFF preview (*.eps)

Encapsulated PostScript (*.eps)

Regardless of which graphics format we want, 1t might be worthyvhile also to'save a copy of our
graph in “live” .gph format. Live .gph graphs can later be retrieved, combined, recolored, or
reformatted using the graph use or graph combine commands (Chapter 3).

Instead of using menus, graphs can be saved by addinga saving(filename) option
to any graph command. To save a graph with the filename ﬁgure] .gph, add anotht;r
separator | | ,acomma,and saving (figurel) . Chapter3 explams' more aboytthe logic
of graph commands. Thecomplete command now contains the following (typed in the Stata
Command window with as many spaces as you want, but no hard returns):

graph twoway connected men year, yaxis(1l}
11 connected penalty year, yaxis (2)
11 , saving(figurel)

Through all of the preceding analyses, the log file mondayi.smcl has been storing our
results. There are several possible ways to review this file to see what we have done:

File — Log — View — OK
@g} - View snapshot of log file - OK
typing the command view mondayl.smcl

We could print the log file by choosing & (Print) . Log files close automatically at the end
of a Stata session, or earlier if instructed by one of the following:
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File — Log — Close
&% - Close log file - OK
typing the command log close

Once closed, the file monday/ smel could be opened again through File - View during a
subsequent Stata session. To make an output file that can be opened easily by your word
processor, either translate the log file from .smcl (a Stata format) to .log (standard ASCII text
format) by typing

translate mondayl.smcl mondayl.log

or start out by creating the file in .log instcad of .smcl format.

Stata’'s Documentation and Help Files

The complete Stata 9 Documentation Set includes over 6,000 pages in 15 volumes: a slim
Gerring Starred manual (for example, Getting Started with Stata for Windows), the more
extensive User’s Guide, the encyclopedic thrce-volume Base Refereice Manual, and separate
reference manuals on data management, graphics, longitudinal and panel data, matrix
programming (Mata). mulitivariate statistics, programming. survcy data. survival analysis and
epidemiological tables. and time series analysis. Getting Started helps you do just that, with
the basics of installation. window management, data entry, printing, and so on. The User’s
Guide contains an extended discussion of general topics, including resources and
troubleshooting. Of particular note for new users is the User's Guide section on “Commands
everyone should know.” The Base Reference Manual lists all Stata commands alphabetically.
Entries for each command include the full command syntax. descriptions of all available
options, examples, technical notes regarding formulas and rationale, and references for further
reading. Data management. graphics, panel data, etc. are covered in the general references, but
these complicated topics get more detailed treatment and examples in their own specialized
manuals. A Quick Reference and Index volume rounds out the whole collection.

When we are in the midst of a Stata session, it is often simpler to ask for onscreen help
instead of consulting the manuals. Selecting Help from the top menu bar invokes a drop-down
menu of further choices, including help on specific commands, general topics. online updates,
the Stata Journal, or connections to Stata’s web site (www.stata.com), Alternatively. we can
bring the Viewer (g ) to front and use its Search or Contents features to find information.

We can also use the help command. Typing help correlate . for example, causes
help information to appear in a Viewer window. Like the reference manuals. onscreen help
provides command syntax diagrams and complete lists of options. It also includes some
examples, although often less detailed and withourt the technical discussions found in the
manuals. The Viewer help has several advantages over the manuals. however. It can search
tor keywords in the documentation or on Stata’s webssite. Hypertext links take you directly to
related entries. Onscreen help can also include material about recent updates, or the
“unofficial” Stata programs that you have downloaded from Stata’s web site or from other
users.
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Searching for Information

Selecting Help - Search — Search documentation and FAQs provides adirect way to searc.h for
information in Stata's documentation or in the web site’s FAQs (frequently asked questions)
and other pages. The equivalent Stata command is

search keywords
Options available with search allowusto limit our search to the documentation and FAQs,
to net resources including the Stata Journal. or to both. For example.

search median regression
will search the documentation and FAQs for information indexed by both keywords. “median”

and “regression.” To search for these keywords across Stata’s Internet resources in addition
to the documentation and FAQs, type

search median regression, all

Searchresults in the Viewer window contain clickable hyperlinks leading to further information
or original citations.

One specialized usc for the search command is to provide more information on those
occasions when our command does not succeed as planned, but instead results in one of Stata’s
cryptic numerical error messages. For example. typing the one-word command table
produces the error or “return code™ r(100):

table
varlisTt regulzed
r (100} ;
The table command evidently requires alist of variables. Often. however, the meaning of
an error message is less obvious. To learn more about what return code r(100) refers to. type

search rc 100

Keywors search
Feywords: ro LU0
Search (1) oSficial help Ziles, FROS, ZXaML.€5, 2’5, and 5732s
Searcn of official nslp “iles, FAQs, Examples, 508, znd STEs
7] Re-urn code 00

cption raguired;

Certain cormards regulr nother element of tne
_anguage. The message regquired item that was
riszssing freom the commans vou gJave See the corrmand's syntax
diaqra&. For exangle, merge regquires uszing be scecifled; Ternass,
wcu/mea:: tc Tyvpe appsnd. DY, YARKSUM reJuires a by (]l epticn;

see 2] signrank.

(erd

cf search)

Type help search for more about this command.
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Stata Corporation

For orders. licensing. and upgrade information. you can contact Stata Corporation by e-mail at
statat@stata.com
or visit their web site at
http://www stata.com
Stata’sextensive web site contains a wealth of user-support information and links to resources.
Stata Press also has its own web site, containing information about Stata publications including
the datasets used for examples.
http://www stata-press.com
Both web sites are well worth exploring.

The mailing or physical address is
Stata Corporation
4905 Lakeway Drive
College Station, TX 77845 USA

Telephone access includes an easy-to-remember 8§00 number.

telephone: 1-800-STATAPC U.S.
(1-800-782-8272)

1-800-248-8272 Canada
1-979-696-4600 International
fax: 1-979-696-4601

Online updates within major versions are free to licensed Stata users. These provide a fast
and simple way to obtain the latest enhancements, bug fixes, etc. for your current version. To
find out whether updates exist for your Stata, and initiate the simple online update process
itself, type the command

update query

Technical support can be obtained by sending e-mail messages with vour Stata serial
number in the subject line to

tech_supportfa stata.com

Before calling or writing for technical help, though, you might want to look at
www .stata.com to see whether your question is a FAQ. The site also provides product,
ordering, and help information; international notes; and assorted news and announcements.
Much attention is given to user support, including the following:

FAQS — Frequently asked questions and their answers. If you are puzzled by something and
can’t find the answer in the manuals. check here next — it might be a FAQ. Example questions
range from basic — “How can [ convert other packages’ files to Stata format data files?” —to

more technical queries such as “How do I impose the restriction that rho is zero using the
heckman command with full ml?”

UPDATES — Frequent minor updates or bug fixes, downloadable at no cost by licensed Stata
USETS.
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OTHER RESOURCES — Links and information including online Stata instruction
(NetCourses); enhancements from the Stata Journal, an independent listserver (Statalist) for
discussions among Stata users; a bookstore selling books about Stata and other up-to-date
statistical referencz:s; downloadable datasets and programs for Stata-related books; and links
to statistical web sites including Stata’s competitors.

The following sections describe some of the most important user-support resources.

Statalist

Statalist provides a valuable online forum for communication among active Stata users. It is
independent of Stata Corporation, although Stata programmers monitor it and often contribute
to the discussion. To subscribe to Statalist, send an e-mail message to
rajordemedbhsghsurnz . harvard.edn
The body of this message should contain only the following words:
subscribe statalist
The list processor will acknowledge your message and send instructions for using the list,
including how to post messages of your own. Any message sent to the following address goes
out to all current subscribers:
statallstidhsphsunZ.harvard.edu
Do not try to subscribe or unsubscribe by sending messages directly to the statalist address.
This does not work, and your mistake goes to hundreds of subscribers. To unsubscribe from
the list. write to the same majordomo address you used to subscribe:
majordome®hsphsuni . harvard.edu
but send only the message
urscoscrive statalist
or send the equivalent message
signoff statalist
If you plan to be traveling or offline for a while, unsubscribing will keep your mailbox from
filling up with Statalist messages. You can always re-subscribe.
Searchable Statalist archives are available at

http://www stata.comystatalist/archive/

The material on Statalist includes requests for programs, solutions, or advice, as well as
answersand general discussion. Alongwith the Stata Journal (discussed below), Statalist plays
a major role in extending the capabilities both of Stata and of serious Stata users.

The Stata Journal

From 1991 through 2001, a bimonthly publication called the Stata Technical Bulletin (STB)
served as a means of distributing new commands and Stata updates, both user-written and
official. Accumulated S78 articles were published in book form each year as Stara Technical
Bulletin Reprints, which can be ordered directly from Stata Corporation.
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With the growth of the Internet. instant communication among users became possible
through vehicles such as Statalist. Program files could easily be downloaded from distant
sources. A bimonthly printed journal and disk no longer provided the best avenues either for
communicating among users, or for distributing updates and user-written programs. To adapt
to a changing world, the STB had to evolve into something new.

The Stata Journal was launched to meet this challenge and the needs of Stata's broadening
user base. Like the old STB, the Stata Journal contains articles describing new commands by
users along with unofficial commands written by Stata Corporation employees. New
commands are not its primary focus, however. The Stata Journal also contains refereed
expository articles about statistics, book reviews, and a number of interesting columns,
including “Speaking Stata™ by Nicholas J. Cox. on effective use of the Stata programming
language. The Stata Journal is intended for novice as well as experienced Stata users. For
example, here are the contents from one recent issue:

“Exploratory analysis of single nucleotide polymorphism (SNP) for M.A. Cleves
quantitative traits”
“Value label utilities: labeldup and labelrename™ J. Weesie
“Multilingual datasets™ J. Weesie
“Multiple imputation of missing values: update™ P. Royston
“Estimation and testing of fixed-effect panel-data systems” LL. Blackwell, 111
“Data inspection using biplots” U. Kohler & M. Luniak
“Stata in space: Econometric analysis of spatially explicit raster data™ D. Miiller
“Using the file command to produce formatted output for other applications™ E. Slaymaker
“Teaching statistics to physicians using Stata™ S.M. Hailpern
“Speaking Stata: Density probability plots™ N.J. Cox
"Review of Regression Methods in Biostatistics: S. Lemeshow & M.L. Moeschberger

Linear, Logistic, Survival, and Repeated Measures Models™

The Stata Journal is published quarterly. Subscriptions can be purchased directly from
Stata Corporation by visiting www.stata.com.

Books Using Stata

In addition to Stata’s own reference manuals. a growing library of books describe Stata. or use
Statatoillustrate analytical techniques. These books include general introductions; disciplinary
applications such as social science, biostatistics or econometrics; and focused texts concerning
survey analysis, experimental data, categorical dependent variables, and other subjects. The
Bookstore pages on Stata’s web site have up-to-date lists, with descriptions of content:

http://www.stata.combookstore/

This online bookstore provides a central place to learn about and order Stata-relevant books
from many different publishers.
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Data Management

The first steps in data analysis involve organizing the raw data into a format usable by Stata.
We can bring new data into Stata in several ways: type the data from the keyboafd; read a text
or ASCII file containing the raw data; paste data froma spreadsheet into the Editor: or, using
a third-party data transfer program, translate the dataset directly from a system-ﬁle created b'y
another spreadsheet, database, or statistical program. Once Stata_ has the data in memory. we
can save the data in Stata format for easy retrieval and updating in the future.

Data management encompasses the initial tasks of creating a dataset, editing to correct
errors, and adding internal documentation such as variable and value labels. It glso
enconipasses many other jobs required by ongoing projects. such as adding new obsen:aﬂons
or variables; reorganizing. simplifying. or sampling from the datg; separating, comblng, or
collapsing datasets: converting variable types: and creating new variables thropgh algebraicor
logical expressions. When data-management tasks become complex or r-epetltwe, Stata users
can write their own programs to automate the work. Although Stata is best known for its
analytical capabilities, 1t possesses a broad range of data-management features as well. This
chapter introduces some of the basics. '

The User's Guide provides an overview of the different methods forAiI-lputtmg data,
followed by eight rules for determining which input method to use. Input, editing, and many
other operations discussed in this chapter can be accomplished through the Data menus. Data
menu subheadings refer to the general category of task:

Describe data

Data editor

Data browser (read-only editor)
Create or change variables
Sort

Combine datasets

Labels

Notes

Variable utilities

Matrices

Other utilities
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Example Commands

append using olddata
Reads previously-saved dataset olddata.dia and adds all its observations to the data
currently in memory. Subsequently typing save newdata, replace will save the
combined dataset as newdata.dta.

browse

Opens the spreadsheet-like Data Browser for viewing the data. The Browser looks similar
to the Data Editor. but it has no editing capability. so there is no risk of inadvertently
changing your data. Alternatively. click .

browse boats men if year > 1980
Opens the Data Browser showing only the variables boats and men for observations in
which year is greater than 1980. This example itlustrates the if qualifier. whichcan be
used to focus the operation of many Stata commands.

compress
Automatically converts all variables to their most efficient storage types to conserve
memory and disk space. Subsequently typing the command save filename,
replace will make these changes permanent.

drawnorm zI z2 z3, n(5000)
Creates an artificial dataset with 5,000 observations and three random variables.-/. =2, and
=3. sampled from uncorrelated standard normal distributions. Options could specify other
means, standard dewviations, and correlation or covariance matrices.

edit
Opens the spreadsheet-like Data Editor where data can be entered oredited. Alternatively,

edit boats year men
Opens the Data Editor with only the variables boats. year, and men (in that order) visible
and available for editing.

encode stringvar, gen(numvar)
Creates a new variable named mumvar, with labeled numerical values based on the string
(non-numeric) variable stringvar.

format rainfall %8.2f
Establishes a fixed ( £ ) display format for numeric variable rainfall. 8 columns wide. with
two digits always shown after the decimal.

generate newvar = (x + y)/100
Creates a new variable named ewvar. equal to v plus y divided by 100.

generate newvar = uniform()
Creates a new variable with values sampled from a uniform: random distribution over the
interval ranging from O to nearly 1. written [0.1).

infile x y z using data.raw
Reads an ASCII file named data.raw containing data on three variables: v, v.and z. The
values of these variables are separated by one or more white-space characters — blanks,
tabs. and newlines (carriage return, linefeed, or both) — or by commas. With white-space
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delimiters. missing values are represented by periods, not blanks. With comma-delimited
data, missing values are represented by a period or by two cons ecutive commas. Stata also
provides for extended missing values, which we will discuss later. Other commands are
better suited for reading tab-delimited, comma-delimited, or fixed-column raw data; type
help infiling for more infomation.

list
Lists the data in default or “table” format. If the dataset contains many variables. table
format becomes hard to read. and list, display produces better results. See help
1ist for other options controlling the format of data lists.

list x y z in 5/20
Lists the x. v, and = values of the 5th through 20th observations. as the data are presently
sorted. The in qualifier works in similar fashion with most other Stata commands as
well.

merge id using olddata
Reads the previously-saved dataset o/ddura.dta and matches observations from olddata
with observations in memory that have identical id values. Both o/ddata (the “using” data)
and the data currently in memory (the “master” data) must already be sorted by id.

replace oldvar = 100 * oldvar
Replaces the values of oldvar with 100 times their previous values.

sample 10
Drops all the observations in memory except for a 10% random sample. Instead of
selecting a certain percentage, we could select a certain number of cases. For example,
sample 55, count would drop ali but arandom sample of size n = 55.

save newfile
Saves the data currently in memory, as a file named newfile.dta. If newfile.dta already
exists, and you want to write over the previous version, type save newfile,
replace. Alternatively, use the menus: File - Save or File - Save As . To save
newfile.dra in the format of Stata version 7, type saveold newfile.

. set memory 24m
(Windows or Unix systems only) Allocates 24 megabytes of memory for Stata data. The
amount set could be greater or less than the current allocation. Virtual memory (disk space)
is used if the request exceeds physical memory. Type clear to drop the current data

from memory before using set memory.

sort x
Sorts the data from lowest to highest values of x. Observations with missing x values
appear last after sorting because Stata views missing values as very high numbers. Type
help gsort for a more general sorting command that can arrange values in either

ascending or descending order and can optionally place the missing values first.

tabulate x if y > 65
Produces a frequency table forx using only those observations that have v values above 65.

The if qualifier works similarly with most other Stata commands.
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use oldfile
Retrieves previously-saved Stata-format dataset o/dfile.dra from disk, and places it in
memory. If other data are currently in memory, and you want to discard those data without
saving them, type use oldfile, clear . Alternatively, these tasks can be
accomplished through File - Open or by clicking & .

Creating a New Dataset

Data that were previously saved in Stata format can be retrieved into memory either by typing
a command of the form use filename,orbymenuselections. Thissection describes basic
methods for creating a Stata-format dataset in the first place, using as our example the 1995
data on Canadian provinces and territories listed in Table 2.1. (From the Federal, Provincial
and Territorial Advisory Committee on Population Health, 1996. Canada’s newest territory
Nunavut, is not listed here because it was part of the Northwest Territories until 1999.) ’

Table 2.1: Data on Canada and Its Provinces

1995 Pop. Unemployment Male Life Female Life
Place (1000°s) Rate (percent) Expectancy Expectancy
Canada 29606.1 10.6 751 81.1
Newfoundland 3754 19.6 73.9 798
Prince Edward Island 136.1 19.1 74.8 81.3
Nova Scotia 9378 13.9 74.2 80.4
New Brunswick 760.1 13.8 74.8 80.60
Quebec 7334.2 13.2 74.5 81.2
Ontario 11100.3 9.3 75.5 81.1
Manitoba 1137.3 8.5 75.0 80.8
Saskatchewan 1015.6 7.0 75.2 81.8
Alberta 2747.0 8.4 5.5 81.4
British Columbia 3766.0 9.8 75.8 81.4
Yukon 30.1 — 71.3 80.4
Northwest Territories 65.8 — 70.2 78.0

The simplest way to create a dataset from Table 2.1 is through Stata’s spreadsheet-like Data

menu bar, or by typing the command edit . Then begin typing values for each variable, in
columns that Stata automatically calls var!, var2, etc. Thus, var! contains place names
(Canada, Newfoundland. etc.); var2, populations; and so forth.

= Stata Editor S x|
Ereservel Tesva | J . J > | Hide J Dreee | 7 -
varll3] =
varl ) var2 ) vard . vard ; vars
1]  Camada  29606.1 10.6 ?5.1 B1.1
| 2 | Newfoundland _____'7”775?57.74 19.6 ?3.9 79.8
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We can assign more descriptive variable names by double-clicking on the column headings
(such as var/) and then typing a new name in the resulting dialog box — eight characters or
fewer works best. although names with up to 32 characters are allowed. We can also create
variable labels that contain a brief description. For example, var2 (population) might be
renamed pop, and given the variable label “*Population in 1000s, 1995™.

Renaming and labeling variables can also be done outside of the Data Editor through the
rename and label variable commands:

rename varZ pop

label variable pop "Population in 1000s, 1995"

Cells left empty, such as employment rates for the Yukon and Northwest Territories. will
automatically be assigned Stata’s system (default) missing value code. a period. At any time,
we can close the Data Editor and then save the dataset to disk. Clicking [ or Window - Data

Editor brings the Editor back.

Ifthe first value entered for a vanable is a number, as with population, unemployment, and
life expectancy, then Stata assumes that this column is a “numerical variable™ and it will
thereafter permit only numerical values. Numerical values can also begin with a plus or minus
sign, include decimal points. or be expressed in scientific notation. For example. we could
represent Canada’s population as2.96061e+7. which means 2.96061 x 10" orabout 29.6 million
people. Numerical values should not include any commas, such as 29.606,100. If we did
happen to put commas within the first value typed in a column, Stata would interpret this as a
“string variable™ (next paragraph) rather than as a number.

If the first value entered for a variable includes non-numerical characters. as did the place
names above (or " 1,000 with the comma), then Stata thereafter considers this column to be a
string variable. String variable values can be almost any combination of letters, numbers,
symbols, or spaces up to 80 characters long in Intercooled or Small Stata, and up to 244
characters in Stata’SE. We can thus store names. quotations, or other descriptive information.
String variable values can be tabulated and counted. but do not allow the calculation of means,
correlations, or most other statistics. In the Data Editor or Data Browser, string variable values
appear in red. so we can visually distinguish the two variable types.

After typing in the information from Table 2.1 in this fashion, we close the Data Editor and
save our data, perhaps with the name canada(.dta:

save canadal

Stata automatically adds the cxtension .dta to any dataset name, unless we tell it to do
otherwise. 1f we alrcady had saved and named an earlier version of this file. it is possible to

write over that with the newest version by typing
save, replace

At this point, our new dataset looks like this:
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describe
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Examining such output tables gives us a chance to look for errors that should be corrected.
The gummari ze table, for instance, provides scveral numbers useful in proofreading
mcludmg the count of nonmissing observations (always 0 for string variables) and the minimun;
and maximum for each variable. Substantive interpretation of the summary statistics would be
premature at this point, because our dataset contains one observation (Car;ada) that represents
a combination of the other 12 provinces and territories.

The nextstep is to make our dataset more self-documenting. The variables could be given
more descriptive names, such as the following:

rename var3 unemp RUN R i
CITY UNIVERSITY OF HONG RONG

rename varl place
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rename var4 mlife

rename var5 flife

Stata also permits us to add several kinds of labels to the data. 1abel data describes
the dataset as a whole. For example.

label data "Canadian dataset 0"
label variable describes an individual variable. For example,

label variable place "Place name"

label variable unemp "% 15+ population unemployed, 1995"

label variable mlife "Male life expectancy years"

label variable flife "Female life expectancy years"

By labeling data and variables. we obtain a dataset that is more self-explanatory:

describe

Cocntain

Once labeling is completed, we should save the data to disk by using File — Save or typing
save, replace
We can later retrieve these data any time through & . File - Open, or by typing

use c:\datal\canadal

znziiarn fatzsez T

We can then proceed with anew analysis. We might notice, for instance, that male and female

life expectancies correlate positively with cach other and also negatively with the
unemployment rate. The life expectancy-unemployment rate correlation is slightly stronger

for males.

correlate unemp mlife flife
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The order of observations within a dataset can be changed through the sort command.
For example, to rearrange observations from smallest to largest in population. type

sort pop
String variables are sorted alphabetically instead of numerically. Typing sort place will
rearrange observations putting Alberta first. British Columbia second, and so on.

We can control the order of variables in the data. using the order command. For
example, we could make unemployment rate the second variable. and population last:

order place unemp mlife flife pop
The Data Editor also has buttons that perform these functions. The Sort button applies to
the column currently highlighted by the cursor. The << and >> buttons move the current

variable to the beginning or end of the variable list. respectively. As with any other editing.
these changes only become permanent if we subsequently save our data.

The Data Editor’s Hide button does not rearrange the data, but rather makes a column
temporarily invisible on the spreadsheet. This feature is convenient if. for example. we need
to type in more variables and want to keep the province names or some other case identification
column in view, adjacent to the “active” column where we are entering data.

We can also restrict the Data Editor beforehand to work only with certain variables, in a
specified order, or with a specified range of values. For example,

edit place mlife flife

or
edit place unemp if pop > 100

The last example employs an 1f qualifier, an important tool described in the next section.

Specifying Subsets of the Data: in and if Qualifiers

Many Stata commands can be restricted to a subset of the data by adding an in or if
qualifier. (Qualifiers are also available for many menu selections: look for an iffin or byiiffin
tab along the top of the menu.) in specifies the observation numbers to which the command
applies. Forexample, 1list in 5 tells Statato list only the 5th observation. To list the st
through 20th observations, type

list in 1/20
The letter 1 denotes the lastcase, and -4, for example. the fourth-from-last. Thus, wecould
list the four most populous Canadian places (which will include Canada itself) as follows:
sort pop
list place pop in -4/1
Note the important. although typographically subtle. distinction between 1 (number one, or
first observation)and 1 (letter el,” or last observation). The in qualifier works in asimilar

way with most other analvtical or data<editing commands. Tt always refers to the data as
preseant{y sorted.
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The if qualifieralso has broad applications, but it selects observations based on specific
variable values. As noted. the observations in canada(.dta include not only 12 Canadian
provinces or territories, but also Canada as a whole. For many purposcs. we might want to
exclude Canada from analyses involving the 12 territories and provinces. One way to do so is
to restrict the analysis to only those places with populations below 20 million (20.000
thousand): that is. every placc except Canada:

summarize if pop < 20000
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Compare this with the earlier summarize output to see how much has changed. The
previous mean of population, for example. was grossly misleading because it counted every
person twice,

The * <™ (is less than) sign is one of six relational operarors:

== is equal to
I= is not equal to (~= also works)
> is greater than
< is less than
>= is greater than or equal to
<= is less than or equal to
A double equals sign. = == ", denotes the logical test, “Is the value on the left side the same

as the value on the right?” To Stata. a single equals sign means something different: “Make
the value on the left side be the same as the value on the right.” The single equals sign is not
arelational operator and cannot be used within 1£ qualifiers. Single equals signs have other
meanings. They are used with commands that generate new variables, orreplace the values of
old ones, according to algebraic expressions. Single equals signs also appear in certain
specialized applications such as weighting and hypothesis tests.

Any of these relational operators can be used to select observations based on their values
for numerical variables. Only two operators, == and !=. make sense with string variables.
To use string variables in an if qualifier, enclose the target value in double quotes. For
example. we could get a summary excluding Canada (leaving in the 12 provinces and
territories):

summarize if place != "Canada"
Two or more relational operators can be combined within a single if expression by the
use of logical operators. Stata’s logical operators are the following:
& and
| or (symbolis a vertical bar, not the number one or letter “el™)

' not (~ also works)
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The Canadian territories (Y ukon and Northwest) both have fewer than 100,000 people. To find
the mean unemployment and life expectancies for the 10 Canadian provinces only, excluding
both the smaller places (territories) and the largest (Canada). we could use this command:

summarize unemp mlife flife if pop > 100 & pop < 20000

Variasle Zka Mesn 523, Cew, MIin Max
STIEID 11 7 3.6
alife | 10 5 Tt g
flife | 13 T C'HB

Parentheses allow us to specify the precedence among multiple operators. For example,
we might list all the places that either have unemployment below 9, or have life expectancies
of at least 75.4 for men and 81.4 for women:

list if unemp < 9 | (mlife >= 75.4 & flife >= 81.4)
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A note of caution regarding missing values: Stata ordinarily shows missing values as a
period. butinsome operations (notably sert and if although notin statistical calculations
such as means or correlations), these same missing values are treated as if they were large
positive numbers. Watch what happens if we sort places from lowest to highest unemployment
rate, and then ask to see places with unemployment rates above 15%:

sort unemp

list if unemp > 15

The two places with missing unemployment rates were included among those “greater than 15.”
In this instance the result is obvious, but with a larger dataset we might not notice. Suppose
that we were analyzing a political opinion poll. A command such as the following would
tabulate the variable vore not only for people with ages older than 65, as intended, but also for
any people whose age values were missing:

tabulate vote if age > 65

Where missing values exist, we might have to deal with them explicitly as part of the if
expression.
tabulate vote if age > 65 & age <

A less-than inequality such as age < . is a general way to select observations with
nonmissing values. Stata permits up to 27 different missing values codes, although we are
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using only the default = . " here. The other 26 codes are represented internally as numbers
even larger than ™ . “.s0 < . avoids them all. Type help missing for more details.

The in and if qualifiers set observations aside temporarily so that a particular
command does not apply to them. These gualifiers have no effect on the data in memory. and
the next command will apply to all observations, unless it too has an in or if qualifier. TQ
drop variables from the data in memory. use the drop command. For example, to drop mlife
and flife from memory. type

drop mlife flife

We can drop observations from memory by using either the in qualifier or the if
qualifier. Because we earlier sorted on unemp. the two territories occupy the _1 2th and 13th
positions in the data. Canada itselfis 6th. One way to drop these three nonprovinces employi
the in qualifier, drop in 12/13 means “drop the 12th through the 13th observations.
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The same change could have been accomplished throughan if qualifier, withacommand
that says ““drop if place equals Canada or population is less than 100.”

drop if place == "Canada" | pop < 100

(2 chssrvations delszadd

After dropping Canada. the territories. and the variables mlife and flife, we have the
following reduced dataset:

Loy O @
D ota U J3
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We can also drop selected variables or observations through the Delete button in the Data
Editor.

Instead of telling Stata which variables or observations to drop, it sometimes is simpler to
specify which to keep. The same reduced dataset could have been obtained as follows:

keep place pop unemp
keep if place '= "Canada" & pop >= 100

t3 chservatlons delezad]

Like any other changes to the data in memory, none of these reductions affect disk files
until we save the data. At that point, we will have the option of writing over the old dataset
( save, replace)and thus destroying it, or just saving the newly modified dataset with a
new name (by choosing File — Save As ., or by typing a command with the form save
newname ) so that both versions exist on disk.

Generating and Replacing Variables

The generate and replace commands allow us to create new variables or change the
values of existing variables. For example, in Canada, as in most industrial societies, women
tend to live longer than men. To analyze regional variations in this gender gap. we might
retrieve datasetcanadal.dta and generate a new variable equal to female life expectancy (flife)
minus male life expectancy (mlife). In the main part of a generate or replace
statement (unlike if qualifiers) we use a single equals sign.

use canadal, clear

(Zenedign dataset 1)
generate gap = flife - mlife

label variable gap "Female-male gap life expectancy"”

describe
Cermtalins dztz from C:tdatatranedal.Ziz
oks: _3 ataset I
r2rs € 10:4¢
zize: Eaz
stocrage
arianle mame TYRE _ape’l
clace strzl :
TCE float =4
Lnemp flazt 29,
mlifs floas 28.0g
fl-fe flzaz %9.0g
gz flecaz 35%.0
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list place flife mlife gap
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For the province of Newfoundland. the true value of gap should be 79.8 - 73.9 = 5.9 years.
but the output shows this value as 5.900002 instead. Likeall computer programs. Stata. stores
numbers in binary form. and 5.9 has no exact binary representation. The small naccuracies t-hat
arise from approximating decimal fractions in binary are unlikely to affect statistical
calculations much because calculations are done in double precision (8 bytes per number).
They appear disconcerting in data lists, however. We can change the di§play format 50 that
Stata shows only a rounded-off version. The following command specifies a fixed display
format four numerals wide. with one digit to the right of the decimal:

format gap %4.1f

Even when the display shows 5.9, however, a command such as the following will return no
observations:

list if gap == 5.9
This occurs because Stata believes the value does not exactly equal 5.9. (More technif:ally.
Stata stores gap values in single precision but does all calculations in double. and the single-
and double-precision approximations of 3.9 are not identical.)

Display formats. as well as variables names and labels, can also be changed by double-
clicking on a column in the Data Editor. Fixed numeric formats such as %4.1£ arc one of
the thrge most common numeric display format types. These are
%, dg General numeric format. where w specifies the total width or number ofcolu_mns

displayed and o the minimum number of digits that must f01101w the de.m.mal
point. Exponential notation (such as 1.00e—07. meaning 1.00 x 10" or 10 million)
and shifts in the decimai-point position will be used automatically as needed, to
display values in an optimal (but varying) fashion.

$w.df Fixed numeric format, where w specifies the total width or number of columns
displayed and < the fixed number of digits that must follow the decimal point.
$w. de Exponential numeric format, where w specifes the total width or number of

columns displayed and o the fixed number of digats that must follow the decimal
point.
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For example. as we saw in Table 2.1, the 1995 population of Canada was approximately
29.606,100 people. and the Yukon Territory population was 30,100. Below we see how these
two numbers appear under several ditferent display formats:

format Canada Yukon
29.0g 2.96e~07 30100
%9.1f 29606100.0 30100.0
%0l12.5¢ 2.96061e-07 3.01000e—04

Although the displayed values look different. their internal values are identical. Statistical
calculations remain unatfected by display formats. Other numerical display formatting options
include the use of commas, left- and right-justification, or leading zeroes. There also exist
special formats for dates, time series variables, and string variables. Type help format
for more information.

replace canmake the same sorts of calculations as generate. but it changes values
of'an existing variable instead of creating a new variable. For example. the variable pop in our
dataset gives population in thousands. To convert this to simple population. we just multiply
(* * " means multiply) all values by 1.000:
replace pop = pop * 1000

replace canmake such wholesale changes, oritcanbeused with in or if qualifiers
to selectively edit the data. To illustrate, suppose that we had questionnaire data with variables
including age and year born (born). A command such as the following would correct one or
more typos where a subject’s age had been incorrectly typed as 229 instead of 29:

replace age = 29 if age == 229

Alternatively. the following command could correct an error in the value of age for observation
number 1453:

replace age = 29 in 1453
For a more complicated example,
replace age = 2005-born if age >= . | age < 2005-born

This replaces values of variable age with 2005 minus the year of birth if age 1s missing or if the
reported age 1$ less than 2005 minus the year of birth.

generate and replace provide tools to create categorical variables as well. We
noted earlier that our Canadian dataset includes several types of observations: 2 territories, 10
provinces, and | country combining them all. Although in and if qualifiers allow us to
separate these, and drop can eliminate observations from the data, 1t might be most
convenient to have a categorical variable that indicates the observation’s “type.” The following
example shows one way to create such a variable. We start by generating npe as a constant,
equal to 1 for each observation. Next. we replace this with the value 2 for the Yukon and
Northwest Territories, and with 3 for Canada. The final steps involve labeling new variable
nype and defining labels for values 1, 2. and 3.

use canadal, clear

IZanad-an datasst )

generate type = 1
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replace type = 2 if place == "Yukon" | place == "Northwest
Territories"”
[l rezl crnzangess mTagdel
replace type = 3 if place == "Canada"

12 rezl cnangs madsl

label variable type "Province, territory or nation"

label values type typelbl
label define typelbl 1 "Province" 2 “"Territory™ 3 "Nation™”

list place flife mlife gap type
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As illustrated. labeling the values of a categorical variable requires two commands. The
label define command specifies what labels go with what numbers. The label
values command specifies to which variable these labels apply. One set of labels (created
through one label define command) can apply to any number of variables (that is. be
referenced in any number of label walues commands). Value labels can have up to
32.000 characters. but work best for most purposes if they are not too long.

generate cancreate new variables, and replace can produce new values, usingany
mixture of old variables. constants. randomvalues, and expressions. For numeric variables, the
following arithmetic operators apply:

+ add

- subtract
*  multiply
/ divide

~  raise to power
Parentheses will control the order of calculation. Without them, the ordinary rules of
precedence apply. Ofthe arithmetic operators, only addition. *“+ 7, works with string variables,
where it connects two string values into one.

Although their purposes differ, generate and replace have similarsyntax. Either
can use any mathcmatically or logically feasible combination of Stata operators and in or
if qualifiers. These commands can also employ Stata’s broad array of special functions.
introduced in the following section.

Using Functions
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This section lists many of the functions available for use with generate or replace
For example, we could create a new variable named logine, equal to the natural logarithm of
income, by using the natural log function 1ln within a generate command:

generate loginc

= ln(income)

1n is one of Stata’s mathematical functions. These functions are as follows:

abs (x)

acos {x)

asin(x)
atan(x)
atan2 (v, x)
atanh (x)
ceil(x)
cloglog (x)
comb (1, k)

cos (x)

digamma { x)
exp (x)

floor (x)
trunc (x)
invecloglog (x)
invlogit{x)

1n({x)

Infactorial (x)

lngamma (x)

log(x)
loglQ(x)
logit (x)

max(xl,x2,..,xn)

min{xl,x2,..,xn)

Absolute value of .

Arc-cosine returning radians. Because 360 degrees = 21 radians
acos (x)*180/_pi gives the arc-cosine returning degrees (_pi
denotes the mathematical constant ).

Arc-sine returning radians.

Arc-tangent returning radians.
Two-argument arc-tangent returning radians.

Arc-hyperbolic tangent returning radians.
Integer 12 such that n—1 <x < n
Complementary log-log of x: In(-In{1-x))

Combinatorial function (number of possible combinations of n things
taken & at a time).

Cosine of radians. To find the cosine of v degrees, type
generate y = cos(y * pi/180Q)
dinl'(x) 7 dx
Exponential (e to power).
Integer i such that n < x < p+1
Integer obtained by truncating x towards zero.
Inverse of the complementary log-log: T - exp(-exp(x))
Inverse of logit of x: exp(x)/(l + exp(x))
Natural (base ¢) logarithm. For any other base number B, to find the

base B logarithm of x, type
generate y = 1n(x)/1ln{(3)

Natural log of factorial. To find x factorial, type
generate y = round (exp (lnfact{x), 1)

Natural log of ['(x). To find I'(x), type
generate y = exp {lngamma (x) )

Natural logarithm: same as 1n (x)

Base 10 logarithm.

Log of odds ratio of x:  In(x /(1-x))

Maximum of x/, x2. ..., xn.

Minimum of x/, x2, ... xn
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mod {x, )
reldif (x,y)
round (x)
round {x, y)
sign (x)
sin(x)

sgrt (x)
total (x)
tan (x)

tanh (x)

trigamma (x)

Modulus of x with respect to v.
Relative difference: |x—» /(v [=1)
Round x to nearest whole number.
Round v in units of y.

—1if x<0. 0 if x=0, —1 if x>0

Sine of radians.

Square root.

Running sum of x (also sce help egen)
Tangent of radians.

Hyperbolic tangent of x.

d7Inl'(x) / dx-

Many probability functions exit as well, and are listed below. Consult help probfun
and the rteference manuals for important details, including definitions. constraints on
parameters, and the treatment of missing values.

betaden(a, b, x)
Binomial (n, k,p)

binormal{h, k, )
chi2(n, x)

chi2tail (n, x)

dgammapda {a, x)

dgammapdx (a, x)

dgammapdada (a, x)

dgammapdadx (a, x)

dgammapdxdx {a, x)

F(nl,n2, )

Fden(nl,n2, £)

Ftail(nl,n2,f)

Probability density of the beta distribution.

Probability of & or more successes in  trials when the probability of
a success on a single trial is p.

Joint cumulative distribution of bivariate normal with correlation r.
Cumulative chi-squared distribution with n degrees of freedom.
Reverse cumulative (upper-tail, survival) chi-squareddistribution with
n degrees of freedom.. chi2tail(n,x) = 1 — chi2{n.x)

Partial derivative of the cumulative gamma distribution gammap(a.x)
with respect to a.

Partial derivative of the cumulative gamma distribution gammap(a.x)
with respect to x.

2nd partial derivative of the cumulative gamma distribution
gammap(a.x) with respect to a.

2nd partial derivative of the cumulative gamma distribution
gammap(a.v) with respect to a and x.

2nd partial derivative of the cumulative gamma distribution
garnmap(a.x) with respect to x.

Cumulative F distribution with n/ numerator and n2 denominator
degrees of freedom.

Probability density function for the F distribution with #/ numerator
and 52 denominator degrees of freedom.

Reverse cumulative (upper-tail, survival) F distribution with n/

numerator and n2 denominator degrees of freedom.
Frail(n/.n2,) =1 - F(niln2.f)
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gammaden (a, b, g, x) Probability density function for the gamma family, where

gammap (a, x)

ibeta(a,b, x)

gammaden(a.1,0,x) = the probability density function for the
cumulative gamma distribution gammap(a.x).

Cumulative gamma distribution for @; also known as the incomplete
gamma function.

Cumulative beta distribution for a, &; also known as the incomplete
beta function.

invbinomial (n, k,P) Inverse binomial. For P < (.5, probability p such that the

invchi2 (n, p)
invchi2tail (n,p)

invF(nl,n2,p)

invFtail(nl,n2,p)

invgammap (a, p)

invibeta{a.,b, p)

invnchi2 {n,L,p)

probability of observing A or more successes in # trials 1s P: for P >
0.5, probability p such that the probability of observing & or fewer
successes in » trials 1s 1 — P.

Inverse of echi2 (). If chi2(nx)=p, theninvchi2(np}=x
Inverse of chi2tail ()
If chi2tail(n.x) = p
Inverse cumulative F distribution,

If F(nin2f)=p. then invE(nln2py=f
Inverse reverse cumulative F distribution.

If Ftail(nl . n2.f) = p, then invFtail(nl,n2p) =1

Inverse cumulative gamma distribution.

then invchiZtail{np) = x

If gammap(a,x) = p, then invgammap(a.p) = x
Inverse cumulative beta distribution.
If ibeta(a.bx) =p. then invibeta(a.b.p) = x

Inverse cumulative noncentral chi-squared distribution.
If nchi2(n,L.x) = p, then mvnchi2(n.L.p) = x

invnFtail{nl,n2,L,p) Inverse reverse cumulative noncentral F distribution,

invnibeta(a,b, L, p)

invnormal (p)

invttail(n,p)

nbetaden({a,b, L, x)

nchi2 (n, L, x)

nFden(nl,n2, L, x)

nFtail(nl,n2,L, x)

If nFrail(ni n2.L ) =p, then invnFtail(n/ n2.L, p)=f
Inverse cumulative noncentral beta distribution.
If nibeta(a.b L x)=p, theninvnibeta(a.b.L p)=x
Inverse cumulative standard normal distribution.
If normal(z) = p, then invnormal(p) = =
Inverse reverse cumulative Student’s ¢ distribution.
If ttail(n.r) = p, then invttail(n,p) =
Noncentral beta density with shape parameters ¢. b. noncentrality
parameter L.

Cumulative noncentral chi-squared distribution with n degrees of
freedom and noncentrality parameter L.

Noncentral 7 density with 7/ numerator and n2 denominator degrees
of freedom, noncentrality parameter L.

Reverse cumulative (upper-tail. survival) noncentral F distribution

with #/ numerator and »2 denominator degrees of freedom,
noncentrality parameter L.
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nibeta(a,b, L, x) Cumulative noncentral beta distribution with shape parameters a and
b. and noncentrality parameter L.

normal (z) Cumulative standard normal distribution.

normalden (z) Standard normal density, mean 0 and standard deviation 1.

normalden{z,s) Normal density. mean 0 and standard deviation s.

normalden {(x,m,s) Normal density. mean m and standard deviation s.
Noncentrality parameter L for the noncentral cumulative chi-squared

distribution.
If nchi2(n.Lx)=p. then npnchi2(rxp) =L

npnchiZ(n,x,p)

tden(n, t) Probability density function of Student’s r distribution with n degrees
of freedom.
ttail (n, t) Reverse cumulative (upper-tail) Student’s? distribution withn degrees

of freedom. This function returns probability 7> 1.
uniform() Pseudo-random number generator, returning values from a uniform
distribution theoretically ranging from 0 to nearly 1, written [0.1).
Nothing goes inside the parentheses with uniform (). Optionally, we can control the
pseudo-random generator’s starting seed. and hence the stream of “random”™ numbers, by first
issuing a set seed # command — where # could be any integer from Oto27 -1
inclusive. Omitting the set seed command corresponds to set seed 123456789,
which will always produce the same stream of numbers.
Stata provides more than 40 date functions and date-related time series functions. A listing
can be found in Chapter 27 of the User s Guide, or by typing help datefun. Below are
some examples of date functions. “Elapsed date™ in these functions refers to the number of
days since January 1. 1960.
date (s,,s,[,y)) Elapseddate correspondingto s,. s, is a string variable indicating the date
in virtually any format. Months can be spelied out, abbrewiated to three
characters, or given as numbers; years can include or exclude the century:
blanks and punctuation are allowed. s, is any permutation of m, d, and
[##]y with their order defining the order that month, day and year occur in
s,. ## gives the century for two-digit years in s; the default is 19y.

d(1) A date literal convenience function. For example, typing d(2jan1960) is
equivalent to typing L.

mdy (m,d, ¥) Elapsed date corresponding to m, d.and v.

day (e) Numeric day of the month corresponding to e, the elapsed date.
month (e) Numeric month corresponding to e, the elapsed date.

year (e) Nurmeric year corresponding to e. the elapsed date.

dow (&) Numeric day of the week corresponding 1o e. the elapsed date.
doy (e) Numeric day of the year corresponding to e. the elapsed date.
week (&) Numeric week of the year corresponding to e, the elapsed date.
quarter (&) Numeric quarter of the year corresponding to ¢. the elapsed date.

halfyear{e) Numeric half of the corresponding o e, the elapsed date.
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Some useful special functions include the following:

aut v oxmin wmax i b itioni i

utocode (x,n,xmin, ..maf) Forms categories from x by partitioning the interval fromxmin
.to xmay into n equal-length intervals and returning the upper bound of the
interval that contains x.

cond (x, a, b) Returns ¢ 1t x evaluates to “true” and b if x evaluates to “false.”
generate y = cond{(incl > inc2, incl, inc2)
‘crea'fes.the variable 1y as the maximum of /nc f and /ne2 (assuming neither
1s missing). )

group (%) Creates a categorical variable that divides the data as present/v sorted into
x subsamples that are as nearly equal-sized as possible.

trunc (x) Returns the integer obtained by truncating (dropping fractional parts of)
X.

max(x ,%_,...,x.) Returnsthe maximum ofx ,x,,.., v, . Missing values are ignored.

For example. max (3+2,1) evaluatesto 5.

min(x ,x-,...,x.) Returns the minimum ofx,,v,,...,x

not

recode (x,x.,x-,...,x.) Returns missing if x is missing. v, if v < x,. orx, ity <x..and
SO on. k

round (x, i) Returns x rounded to the nearesi 1.

sign{x) Returns -1 if v < 0, 01t x =0, and ~1 ifx > 0 (missing if v is missing).

total (x) Returns the running sum of x, treating missing values as zero.

String functions. not described here, help to manipulate and evaluate string variables. Type
heJ‘.p gtrfun for a complete list of string tunctions. The reference manuals and User’s
Guide give examples and details of these and other functions.

Multip]e functions, operators, and qualifiers can be combined in one command as needed
The functions and algebraic operators just described can also be used in another way that don:sr
not create or change any dataset variables. The display command pcrforrr;s a singl
calculation and shows the results onscreen. For example: =

display 2+3

:7display logln(10~83)

display invttail (120,.025) * 34.1/sqrt(975)

!

Is

Thus. display works as an onscreen statistical calculator.

Unlike a calculator, display . generate . and replace have direct access to

Stata’s statistical results. Fo i
. For example, suppose that we summarized the unempl
oyment ra
from dataset canadal .dta: i ©

summarize unemp

s
"

2. Zewv. in )4

After summarize , Stata temporarily stores the mean as a macro named r (mean) .
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display r{mean)
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We could use this result to create variable unempDEV, defined as deviations from the mean:

gen unempDEV = unemp - r (mean)

' r-ossing valo2s Ganarated)

summ unemp unempDEV
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Stata also provides another variable<creation command. egen (“extensions to
generate ), which has its own set of functions to accomplish tasks not easily done by
generate . These include such things as creating new variables from the sums, maxima,
minima. medians. interquartile ranges. standardized values. or moving averages of existing
variables or expressions. For example, the following command creates a new variable named
zscore, equal to the standardized (mean 0. variance 1) values of x:

egen zscore = std (x)
Or, the following command creates new variable avg, equal to the row mean of each
observation's values on x. 1. =, and i, ignoring any missing values.

egen avg = rowmean(x,y, z,w)
To create a new variable named sus, equal to the row sum of each observation’s values on x,
v, z. and w, treating missing values as zeroes. type

egen sum = rowsum(x,y,z,w)

The following coninand creates new variable xrank. holding ranks corresponding to values of
v yrank =1 for the observation with highest x. xrank =2 for the second highest, and so forth.

egen xrank = rank (x)

Consult help egen for a complete list of egen functions. or the reference manuals for
further examples.

Converting between Numeric and String Formats

Datasct canadal.dra contains one string variable, place. 1t also has a labeled categorical
variable, nype. Both seem to have nonnumetrical values.

use canadal2, clear

{Carzdias fataset 1
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Beneath the labels, however, npe remains a numeric variable, as we can see if we ask for the
nolabel option:

list place type, nolabel
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String and labeled numeric variables look similar when listed, but they behave differently
when analyzed. Most statistical operations and algebraic relations are not defined for string
Yariables., so we might want to have both string and labeled-numeric versions of the same
1nf0mat10n inour data. The encode command geng¢rates a labeled-numeric variable from
a string variable. The number | is given to the alphabetically first value of the string variable
2 to the second, and so on. In the following example, we create a labeled numeric variable’
named placenum from the string variable place:

encode place, gen({placenum)

‘The opposite conversion is possible, too: The decode command generates a string
variable using the values of a labeled numeric variable. Here we create string variable fypestr
from numeric variable fype: ]

decode type, gen{typestr)

\’.\/ht?n listed, the new numeric variable placenum, and the new string variable fypestr, look
similar to the originals: ’ ’
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list place placenum type typestr
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But with the nolabel option. the differences become visible. Stata views placenum and
npe basically as numbers.

list place placenum type typestr, nolabel

placsnum
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Statistical analyses. such as finding means and standard dewviations. work only with
basically numeric variables. Forcalculation purposes, numeric variables” labels do not matter.

summarize place placenum type typestr

b
1
(SIS}

Occasionally we encounter a string variable where the values are all or mostly numbers.
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describe siblings

I, &iblings s

Number c¢f siklings {string)

s Lo

(1
The new variable sibnum is numeric, with a missing value where siblings had “4 or more.”

list

[STR]
I
[¢]
(a4
3
(&
Is

The destring command provides a more flexible method for converting string

variables to numeric. In the exampie above. we could have accomplished the same thing by
typing

destring siblings, generate (sibnum) force

See help destring for information about syntax and options.

Creating New Categorical and Ordinal Variables

A previous section illustrated how to construct a categorical variable called npe to distinguish

among territories. provinces, and nation in our Canadian dataset, You can create categorical
or ordinal variables in many other ways. This section gives a few examples.

nvpe has three categories:

To convert these string values into their numerical counterparts, use the real function. For
example, the variable siblings below is a string variable, although it only has one value, *4 or

For some purposes, we might want to re-express a multicategory variable as a set of
more,” that could not be represented just as easily by a number.

dichotomies or “dummy variables.” each coded 0 or I. tabulate will create dummy
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variables automatically if we add the generate option. In the follo_wing exa?lt;lnlle.t}::z
results in a set of variables called npel, npe2, and nepe3. each representing one ot the

categories of nvpe:
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Re-expressing categorical information as a set of dummy variables inv olw};es nc? 10;536(;1'
information; in this example, rvpel through nipe3 together tell us exactly as much as fype
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does. Occasionally, however, analysts choose to re-express a measurement variable in
categorical or ordinal form, even though this does result in a substantial loss of information.
For example, unemp in canadaZ.dta gives a measure of the unemployment rate. Excluding
Canada itself from the data, we see that unemp ranges from 7% to 19.6%, with a mean of 12.26:

summarize unemp if type !'= 3

Having Canada in the data becomes a nuisance at this point, so we drop it:
drop if type == 3

(1l ckservatior deleted)

Two commands create a dummy variable named unemp?2 with values of 0 when
unemployment is below average (12.26), | when unemployment is equal to or above average,
and missing when unemp is missing. Inreading the second command, recall that Stata’s sorting
and relational operators treat missing values as very large numbers.

generate unemp?2 = 0 if unemp < 12.26
{7 missing wvalies generated)

replace unemp2 = 1 if unemp >= 12.26 & unemp <
{S veal changes made)

We might want to group the values of ameasurement variable, thereby creating an ordered-
category or ordinal variable. The autocode function (see “Using Functions” earlier in this
chapter) provides automatic grouping of measurement variables. To create new ordinal variable
unemp3, which groups values of unemp into three equal-width groups over the interval from
5 to 20, type

generate uvnemp3? = autocode(unemp,3,5,20)
{(Z missing wal.es gensrazed)

A list of the data shows how the new dummy {(unemp?2) and ordinal {unemp3) variables
correspond to values of the original measurement variable unemp.

. list place unemp unemp2 unemp3

unenp uremp2 urenc3
el ittt i et |
1. | 9.6 N 20 |
2. - . 20 |
K Z3.38 z 15 |
4 | 13.8 1 15 |
z ! 12.2 i 15 |
1 e e e e e e e e e E—————— e — e e  — — — ————— — ——— — — — — ‘
z. Ontaric 3.3 il 10 |
7 Mamltoba 8.5 z PO
8. Saskatchewan T z e
9. . oerta 8.4 Y PO
13, Colurmbla 9.8 C 1C
e e e il i
z | Yukan \
_Z | erritcries |
e e e it e +
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Both strategies just described dealt appropriately with. missing values. so t'hat Cana@1’an
places with missing‘values on unemp likewise receive missing values. on the _\'apablf:s derl\$d
from unemp. Another possible approach works best if our data contain no missing values. To
illustrate. we begin by dropping the Yukon and Northwest Territories:

drop if unemp >=

|2 opsevvaticons delsteEl)
A greater-than-or-equal-to inequality such as unemp >= . will select an}J user—specm_tled
missine value codes, in addition to the default code*.” Type help missing for details.

Having dropped observations with missing values, we now can usc the group function
to create a;1 ordinal variable not with approximately equal-width groupings. as autocc?de
did. but instead with groupings of approximately cqual size . We do this in two steps. Flrst,r
sort the data (assuming no missing values) on the variable of interest. Sec‘:ond. generate a new
variable using the group (#) function, where # indicates the number of groups desired. The

example below divides our 10 Canadian provinces into 5 groups.
sort unemp
generate unemp5 = group (5)

list place unemp unemp2 unemp3 unemp35

g.4 il 12 1
E e v 1z z
E 5. L
P | 4.3 -
5 .H - 2 R
o 1.2 1 = 2
- C - z 1% %
] - 1z 4
g | L33 N 1: !
E 19,0 1 2l =
E | > - .

Another difference is that autocode assigns values equal to the upper bound of each
interval, whereas group simply assigns 1 to the first group. 2 to the second, and so forth.

Using Explicit Subscripts with Variables

When Stata has data in memory. it alsodefines certainsystem variables that describe those dgta.
For example. N represents the total number of observations. _n represents the obser\;agon
number: n= 1 for the firstobservation, _n =2 for the second. and so on to the la§t observation
( n= Ng). If we issue a command such as the following. it creates a new variable, caselD.
eaual to the number of each observation as presently sorted:

generate caseID = _n

Sorting the data another way will change each observation’s value of n.butits caselD value
will remain unchanged. Thus. if we do sort the data another way, we can later return to the

earlier order by typing
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sort caselID

Creating and saving unique case identification numbers that store the order of observations at
an early stage of dataset development can greatly facilitate later data management.

We can use explicit subscnpts with variable names, to specify particular observation
numbers. For example, the 6th observation in dataset canadal.dta (if we have not dropped or
re-sorted anything) is Quebec. Consequently, pop/6] refers to Quebec’s population. 7334
thousand.

display pop[6]

T334.z2002

Similarly, pop/12] is the Yukon’s population:
. display pop[l12]

Explicit subscripting and the _n system variable have additional relevance when our data
form a series. If we had the daily stock market price of a particular stock as a variable named
price, for instance, then either price or, equivalently, price[ n] denotes the value of the nth
observation or day. price[ n—1]denotes the previous day’s price. and price[ n-+1] denotes the
next. Thus, we might define a new variable difprice, which is equal to the change in price since
the previous day:

generate difprice = price - price[_n-1]}

Chapter 13, on time series analysis, returns to this topic.

Importing Data from Other Programs

Previous sections illustrated how to enter and edit data by typing into the Data Editor. If our
original data reside in an appropriately formatted spreadsheet. a shortcut can speed up this
work: we might be able to copy and paste multi-column blocks of data (not including column
labels) directly from the spreadsheet into Stata’s Data Editor. This requires some care and
perhaps experimentation, because Stata will interpret any column containing non-numeric
values as representing a string variable. Single columns (variables) of data could also be pasted
into the Data Editor from a text or word processor document. Once data have been successfully
pasted into Editor columns, we assign variable names, labels, and so on in the usual manner.

These Data Editor methods are quick and easy, but for larger projects it is important to have
tools that work directly with computer files created by other programs. Such files fall into two
general categories: raw-data ASCII {text) files, which can be read into Stata with the
appropriate Stata commands; and system files, which must be translated to Stata format by a
special third-party program before Stata can read them.

To illustrate ASCII file methods, we return to the Canadian data of Table 2.1. Suppose
that, instead of typing these data into Stata’s Data Editor, we typed them into our word
processor, with at least one space between each value. String values must be in double quotes
if they contain internal spaces, as does “Prince Edward Island”. For other string values, quotes
are optional. Word processors allow the option of saving documents as ASCII (text) files, a
simpler and more universal type than the word processor’s usual saved-file format. We can
thus create an ASCII file named canada.raw that looks something like this:
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5.l 81.%

.6 732.9 78.8

36,1 19.1 74.8 81.Z

.8 L6 74,2 85.4

"Hew Srurswick" TeC.1 12.8 4.8 23.¢
"guebec" 1324.2 13.2 J4.5  BL.Z
vAmtario™ -1102.2 3.3 75.5 8L.1
wManitobz" -137.5 8.5 73 20.8
wsaska-chewar" 1013.8 7 U= 2 B81.8
nn perta" 2747 8.4 73030 BL 4
"pri-isk Columbiz" 3765 8.8 T3.E g8l.4
"yixon 20,1 . TL.3 BDLS
“;c::hwest Tevrvi-ories” &5.8 . 70.2 78

Nate the use of periods, not blanks, to indicate missing values for the Yukop and Northwest
Territories. 1f the dataset should have five variables, then for every observation, exactly five
values (including periods for missing values) must exist.

infile reads into memory an ASCII file, such as canada.raw, in which the. values are
separated by one or more whitespace characters — bl.anks, tabs, and newlines (carriage return,
line feed, or both) — or by commas. Its basic form is

infile wvariable-list using filename.raw

With purely numeric data, the variable list could be omitted, in which case Stata assign§ the
names varl, var2. var3, and so forth. Onthe other hand, we might want to give each variable
a distinctive name. We also need to identify string variables individually. Forcanada.raw, the
infile command might be

infile str30 place pop unemp mlife flife using canada.raw, clear

{12 observaticns read)

The infile variable list specifies variables in the order that they appear in the data file. The
clear option drops any current data from memory before reading in the new file.

If any string variables exist. their names must each be preceded by a ‘str#. statement.
str30 . for example, informs Stata that the next-named variable (place) isa string variable
with as many as 30 characters. Actually, none of the Canadian place names.mvolve more than
21 characters, but we do not need to know that in advance. It is often easier to overestimate
string variable lengths. Then, once data are in memory, use compress 1o ensure that no
variable takes up more space thanitneeds. The compress command automatically changes
all variables to their most memory-efficient storage type.

compress
oizcs was str30 now 3

describe
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We can now proceed to label variables and data as described earlier. At any point, the
commands save canada0 (or save canada@, replace ) would save the new
dataset in Stata format, as file canada0.dta. The original raw-data file, canada.raw, remains
unchanged on disk.

If our variables have non-numeric values (for example, “male” and “*female™) that we want
to store as labeled numeric variables, then adding the option automatic will accomplish
this. For example, we might read in raw survey data through this infile command:

infile gender age income vote using survey.raw, automatic

Spreadsheet and database programs commonly write ASCII files that have only one
observation per line. with values separated by tabs or commas. To read these files into Stata,
use insheet . [ts general syntax resembles that of infile , with options telling Stata
whether the data delimited by tabs, commas. or other characters. For example, assuming tab-
delimited data,

insheet variable-list using filename.raw, tab

Or, assuming comma-delimited data with the first row of the file containing variable names
(also comma-delimited),

insheet variable-list using filename.raw, comma names

With insheet we do not need to separately identify string variables. 1f we include no
variable list, and do not have variable names in the file’s first row, Stata automatically assigns
the variable names var!, var2, var3, .... Errors will occur if some values in our ASCII file are
not separated by tabs, commas, or some other delimiter as specified in the insheet
command.

Raw data files created by other statistical packages can be in “fixed-column’™ format, where
the values are not necessarily delimited at all, but do occupy predefined column positions. Both
infile and the more specialized command infix permit Stata to read such files. In the
command syntax itself. or ina “data dictionary” existing in a separate file or as the first part of
the data file, we hawve to specify exactly how the columns should be read.

Here is a simple example. Data exist in an ASCII file named nfresour.raw:
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These data concern natural resource production in Newfoundland. The four variables occupy
fixed column positions: columns 14 are the years (1986...1991); columns 5-8 measure
forestry production inthousands of cubic meters (2408...missing); columns 9-14 measure mine
production in thousands of dollars (764.169...793,000); and columns 1518 are the consumer
price index relative to 1986 (1000...1262). Notice that in fixed-column format, unlike space
or tab-delimited files, blanks indicate missing values, and the raw data contain no decimal
points. To read nfiresour.raw into Stata, we specify each variable’s column position:
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infix year 1-4 wood 5-8 mines 9-14 CPI 15-18

using nfresour.raw, clear
(£ cbservaticns read)

list

o AR ;o7
. | 2524 ldd
3. 2313 1288
3. 2235 1240
3. 12358
1 _____________________________
5 195° LZ2E2

More complicated fixed-column formats might require a data “dictionary.” Data
dictionaries can be straightforward, but they offer many possible choices. Typing help
infix or help infile2 obtains brief outlines of these commands. For more examples
and explanation, consult the User s Guide and reference manuals. Stata also can load, write,
or view data from OBDC (Open Database Connectivity) sources; sce help obdc.

What if we need to export data from Stata to some other, non-OBDC program? The
outfile command writes ASCII files todisk. A command such as the following will create
a space-delimited ASCII file named canada6.raw, containing whatever data were in memory:

coutfile using canadaé

The infile, insheet. infix ., and outfile commands just described all
manipulate raw data in ASCII files. A second, very quick, possibility is to copy your data from
Stata’s Browser and paste this directly into a spreadsheet such as Excell. Often the best option,
however, is to transfer data directly between the specialized system files saved by various
spreadsheet, database, or statistical programs. Several third-party programs perform such
translations. Stat/Transfer, for example, will transfer data across many different formats
including dBASE, Excel, FoxPro, Gauss, JMP, Lotus, MATLAB, Minitab, OSIRIS, Paradox,
S-Plus, SAS. SPSS, SYSTAT. and Stata. It is available through Stata Corporation
(www .stata.com) or from its maker, Circle Systems (www stattransfer.com). Transfer programs
prove indispensable for analysts working in multi-program environments or ¢exchanging data
with colleagues.

Combining Two or More Stata Files

We can combine Stata datasets in two general ways: append a second dataset that contains
additional observations: or merge with other datasets that contain new variables or values.
In keeping with this chapter’s Canadian theme, we will illustrate these procedures using data
on Newfoundland. File newf!.dra records the province’s population for 1985 to 1989,
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use newfl, clear
Mewfoundland 12E5-34G)

describe
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File newf2.dta has population and unemployment counts for some later years:

use newfz2
{Zewfoundland 1%3J-93)

describe
Centeins data frow Citdatanewfl.d-a
wbeT f NewZfoundlIand 2%90-25
:Tfs' E 3 Jul 2003 135:49
zize: 24 (28.5% cf memory frez)
stocrage display alue T
arlanle rame type formas label ariable label
vear int =9.0g vear T
FCE float 9.0g FoTulation
Ef?l:tﬁ tleat  29.0g Nurber of pecpls unempleoyve
Sorted by: o TTTTTITIITTIIITIImTIToososoossoooooe-
list
e m el
| wezarx joelel jobless
| e m e
1.1 134910 ST3400 42003
2. ] 1331 725 45000 )
2. 135%Z 27595 48000 |
4. 1 13985 TE4 45607 |
.01 1G24 S22 32002
e |
2 158t 575448 :

To combine these datasets, with news2.dra already inmemory, we use the append command:

append using newfl
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irnt =4.Clg e
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Because variable jobless occurs in newf2 (1990 to 1995) but not in newfl. its 1985 to 1939
values are missing in the combined dataset. We can now put the observations in order from Sl S o
. ‘ 7.4 198% 3ze 510
earliest to latest and save these combined data as a new file, newf3.dra: ; = ?%i: : 0 l‘
Y TE5E 0oz
fest 0 ot 3. 1988 7398 gge |
100 1EES ERa s81 1
e e e e
11. | 1933 7354 372
12,0 L83l §922 312
13. 1 1932 E£E3 BET |
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] \’Z;e W_?i.—l’l[ to merge neuﬁ with newfd4, matching observations according to yvear wherever
g 251 ]e.‘ o accomplish t!’llS: both datasets must be sorted by the index variable (whichin this
); rr(lip ES) ear). WE earlierissueda sort year command before saving newf3.dta, sowe
now do the same with new/f4.dra. Then we merge th ifyi index ve
dra. e two, speci ear ari
pow do g , specifying vear as the index variable

thoab.

[al}

sort year

merge year using newf3

describe

save newf3

m
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e
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o
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ins gata from
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append might be compared to lengthening a sheet of paper (that is. the dataset in
memory) by taping a second sheet with new observations (rows) to its bottom. merge, in its \
simplest form. corresponds to “widening” our sheet of paper by taping a second sheet to 1ts
right side, thereby adding new variables (columns). For example, dataset newf4.dta contains
further Newfoundland time series: the numbers of births and divorces over the years 1980 to

Mewfourndlend 1381-%34

3 Jul 220% 12

o

1994. Thus it has some observations in common with our earlier dataset new/3.dta. as well as ' vear o
one variable (vear) in common. but it also has two new variables not present in newf3.dta. ! tirtns inc f-.efiie _—
! divorces int v r of b:
use newf4 ] cop Number of Zi-
(Mewfound.and - 2EC0-22) jobless fopulation
roe Numper of cecple unemploye
describe :T?:gi, Tect unenployed
] Sormed tye T T
i Nete: dazaset has changed since lazt saved
list




46 Statistics with Stata

[FSRNPYRRVERR S e

LNOGF Ui

Crowd o -

48000
50C0C

(W ) g Lt

IR e B
Ok L Pl

In this example, we simply used merge to add new variables to our data, matching
observations. By default, whenever the same variables are found in both datasets, those of the
“master” data (the file already in memory) are retained and those of the “using” data are
ignored. The merge command has several options, however, that override this default. A
command of the following form would allow any missing values in the master data to be
replaced by corresponding nonmissing values found in the using data (here, newf3.dta).

merge year using newf5, update

Or. a command such as the following causes any values from the master data to be replaced by
nonmissing values from the using data, if the latter are different:

merge year using newfs, update replace

Suppose that the values of an index variable occur more than once in the master data; for
example, suppose that the year 1990 occurs twice. Then values from the using data with year
— 1990 are matched with each occurrence of vear = 1990 in the master data. You can use this
capability for many purposes, such as combining background data on individual patients with
data on any number of separate doctor visits they made. Although merge makes this and
many other data-management tasks straightforward, analysts should look closely at the results
to be certain that the command is accomplishing what they intend.

As a diagnostic aid, merge automatically creates a new variable called merge. Unless
update was specified, merge codes have the following meanings:

1 Observation from the master dataset only.
2 Observation from the using dataset only.
3 Observation from both master and using data (using values ignored if different).
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If the update option was specitied. merge codes convey what happened:
1 Observation from the master dataset only.
2 Observation from the using dataset only.
3 Observation from both, master data agrees with using.
4 Observation from both, master data updated if missing.

5 Observation from both. master data replaced if different.

Bet?ore performing another merge operation, it will be necessary 1o discard or rename this
variable. For example,

drop _merge
Or,

rename _merge _mergel

, . . .
We can merge multiple datasets with a single merge command. For example. if newf5.dta

through newf.dta are four datasets, each sorted by the variable year, then merging all four with
the master dataset could be accomplished as follows. l

merge year using newf5 newfé newf7 newf8, update replace

Other merge options include checks on whether the merging-variable values are unique. and

the ability to specify which variables to keep for the final dataset. Type help merge for
details. )

Transposing, Reshaping, or Collapsing Data

Long after a dataset has been created. we might discover that for some analytical purposes it
has the wrong organization. Fortunately, several commands facilitate drastic restructuring of
datasets. W? will illustrate these using data (growthi dta) on recent population growth in five
eastern provinces of Canada. In these data, unlike our previous examples, provi;ce names are
represented by a numerical variable with eight-character labels.

use growthl, clear
tEastern Zanada or

ul 2775 10:48
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list
3 grow2d growidl
N S .k
> 5 -3
3. 3 .5
1. z PCRO
e 45,5 I
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In this organization, population growth for each year is stored as a separate variable. We
could analyze changes in the mean or variation of population growth from year to year. On the
other hand, given this organization, Stata could not readily draw a simple time plot of
population growth against year, nor can Stata find the correlation between population growth
inNew Brunswick and Newfoundland. All the necessary information is here, but such analyses
require different organizations of the data.

One simple reorganization involves transposing variables and observations. In effect, the
dataset rows become its columns, and vice versa. This is accomplished by the xpose
command. The option clear is required with this command, because it always clears the
present data from memory. Including the varname option creates an additional variable
(named varname ) in the transposed dataset, containing original variable names as strings.

xpose, clear varname

. describe

vl £

(s Flezz

w3 Zlcacz

74 2loaz

v o flcaz

_ WAIDane strz

Scrzed by

Hote dataset has changed since last saved
list
1 2 2 4 5 varname

1. sine2
2. rowi2z
5. grow®d |
4., growgd |
5. Jrowils
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Thus, variable v/ has a province identification number (1, meaning New Brunswick) in its first
row, and New Brunswick’s population growth values for 1992 to 1995 in its second through
ﬁfth rows. We can now find correlations between population growth in different provinces, for
instance. by typing a correlate command with in 2/5 (second through fifth
observations only) qualifier:

correlate vl-v5 in 2/5
fcos=4)

SRRV
il

€ O

2.0001
The stro.ngest correlation appears between the growth of neighboring maritime provinces New
Brunswick (v/) and Nova Scotia (v3): r=.9742. Newfoundland’s (v2) growth has a much
weaker correlation with that of Ontario (v4): r= 4803

More sophisticated restructuring is possible through the reshape command. This
command switches datasets between two basic configurations termed “wide” and “long.”
Dataset growth!.dra is initially in wide format.

use growthl, clear

(Zzz-=rn Canads growzh

list

b m e e

| provino? Jrowsz2 grows3 Srowids Jrow9s
}. e Z.5 2.2 2.4
2o 4,% . B -3 -5.8
EI 2. 5.8 3.5 i.G
4. 174.3 L6301 1239 1£2.5
5. B0, 6 TIL4 48,8 47,0

A reshape command switches this to long format.
reshape long grow, i(provinc2) j{year)

(nocte: - = 97 893 %2 35

Listing the data shows how they were reshaped. A sepby () option with the list
command produces a table with horizontal lines visually separating the provinces, instead of
every five observations (the default).

Value labels are lost along the way, so provinces in the transposed dataset are indicated
only by their numbers (1 = New Brunswick, 2 = Newfoundland, and so on). The second
through last values in each column are the population gains for that province, in thousands.
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list, sepby(provinc?z)

WD
[T P PSR Y

Ire)

b

G [CERREUINY
ok G R

o

(LT S VR VY

.1

[¥s)

label data "Eastern Canadian growth--long"

label variable grow "Population growth in 1000s"

avea

o

Tole C:ildazatgrowohl.odra

The reshape commandabove began by stating that we want to put the datasetin long
form. Next, it named the new variable to be created. grow. The i (provinc2) option
specified the observation identifier, or the variable whose unique values denote logical
observations. [n this example, each province forms a logical observation. The j(year)
option specifies the sub-observation identifier, or the variable whose unique values (withineach
logical observation) denote sub-observations. Here. the sub-observations are years within each
province.

Figure 2.1 shows a possible use for the long-format dataset. With one graph command,
we can now produce time plots comparing the population gains in New Brunswick,
Newtoundland. and Nova Scotia (observations for which provinc? < 4). The graph
command on the following page calls for connectcd-line plots of grow (as y-axis variable)
against vear (x axis) if province? < 4, with horizontal lines at y: = 0 (zero population growth).
and separate plots for cach value of provine?2.
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graph twoway connected grow year if provinec2 < 4, yline (0)
by (provinec2)

New Brun Newlound Figure 2.1

w -
172
8 &\\&\\\‘\
S °
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.§ T T T ——
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() Nova Sco
c
2 o]
"
3
8 o
a
[»)
[Ty}
1, , , ‘
82 93 94 95
year

Graphs by Eastern Canadian province

Declinfes intheir fisheries during the early 1990s contributed to economic hardships inthese
three provinces. Growth slowed dramatically in New Brunswick and Nova Scotia. while
Newfoundland (the most fisheries-dependent province) actually lost population.

reshape works equaily well in reverse, to switch data from “long™ to “wide™ format.
Dataset growth3.dta serves as an example of long format.

use growth3, clear

{Zastern Caradian crowth--long)

list, sepby{provincz2)

___________________ +
Trow vear |
o TTTTTTT T e |
- iC EVE
<. .z 93
5. Z.2 K
<, 2.4 N
‘ _________________________
£ | 4.5 EFE
£. | NewIound £ 33
T. | Newfcuna -3 X
. Newfeund -5.3 EN]
el Sco el W
oL Sca 2.3 93
1. S5co 3.9 EEN
12, Sza 3.9 a5
I e e e |
13. o 174,58 2
14, o 189.1 23
15. on 122.% 34
6 | o] 182,32 EST
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17. | Quebec 80.6 92 |
18. | Quebec 77 .4 93 |
19. | Quebec 48.5 94 |
20. Quebec 47.1 95 |

e m e m e T +

To convert this to wide format, we use reshape wide:

reshape wide grow, i (provinc2) j(year)

(note: j = 92 93 94 95)

Data long -> wide
Number of obs. 20 -> 5
Number of variables 3 -> 5
i variable (4 values) year -« —> {(dropped)
x1ij variables:
’ grow -> grow92 grow93 ... grow9>d
list
ittt i +

1. | New Brun 10 2.5 2.2 2.4
2. | Newfound 4.5 .8 -3 -5.8 |
3. | Nova Sco 12.1 5.8 3.5 3.9 |
4. | Ontario 174.9 169.1 120.9 163.9 |
5. | Quebec 80.6 77.4 48.5 47.1 |
e m e m———e e — oo - oo +

Notice that we have recreated the organization of dataset growthl.dla.

Another important tool for restructuring datasets is the collapse command, which
creates an aggregated dataset of statistics (for example, means, medians, or sums). The long
growth3 dataset has four observations for each province:

use growth3, clear
(Eastern Canadian growth--long)

list, sepby(provinc2)

fomm e mm - m o +

| provinc2 grow year |

| —mmmm—mmmmm oo |

1 | New Brun 10 92 |

2 | New Brun 2.5 93 |

3 | New Brun 2.2 94 |

4 | New Brun 2.4 95 |

| === mm o |

5. | Newfound 4.5 92 |

6. | Newfound .8 93 |

7. | Newfound -3 94 |

8. | Newfound -5.8 95 |

|~=====- oo |

9. | Nova Sco 12.1 92 |

10. | Nova Sco 5.8 93 |
11. | Nova Sco 3.5 94 |
12. | Nova Sco 3.9 95 |
|—===——- =TT oo T T |

13. | Ontario 174.9 92 |
14. | Ontario 169.1 93 |
15. | Ontario 120.9 94 |
16. | Ontario 163.9 95 |
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17. | Quebec 80.6 92 |
18. | Quebec 77.4 93 |
19. | Quebec 48.5 94 |
20. | Quebec 47 .1 95 |

B il +

We might want to aggregate the different years into a mean growth rate for each province.
In the collapsed dataset, each observation will correspond to one value of the by ( ) variable,
that is, one province.

collapse (mean) grow, by(provinc2)

list
Bt et L +
| provinc2 grow |
Jmmmm oo I
1. | New Brun 4,275 |
2. | Newfound -.8750001 |
3. | Nova Sco 6.325 |
4., | Ontario 157.2 |
5. | Quebec 63.4 |
e ittt e P +

For a slightly more complicated example, suppose we had a dataset similar to growth3.dta
but also containing the variables births, deaths, and income. We want an aggregate dataset with
each province’s total numbers of births and deaths over these years, the mean income (to be
named meaninc), and the median income (to be named medinc). If we do not specify a new

variable name, as with grow in the previous example, or births and deaths, the collapsed
variable takes on the same name as the old variable.

collapse (sum) births deaths (mean) meaninc = income
(median) medinc = income, by (provincl2)

collapse can create variables based on the following summary statistics:

mean Means (the default; used if the type of statistic is not specified)
sd Standard deviations
sum Sums

rawsum  Sums ignoring optionally specified weight

count Number of nonmissing observations
max Maximums
min Minimums

median Medians

pl Ist percentiles
p2 2nd percentiles (and so forth to p99 )
igr Interquartile ranges
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Weighting Observations

Stata understands four types of weighting:

aweight Analytical weights, used in weighted least squares (WLS) regression and similar
procedures.

fweight Frequency weights, counting the number of duplicated observations. Frequency
weights must be integers.

jweight Importance weights, however you define “importance.”

pweight Probability or sampling weights, equal to the inverse of the probability that an
observation is included due to sampling strategy.

Researchers sometimes speak of “weighted data.” This might mean that the original sampling

scheme selected observations in a deliberately disproportionate way, as reflected by weights

equal to 1/(probability of selection). Appropriate use of pweight can compensate for

disproportionate sampling n certain analyses. On the other hand, “weighted data” might mean

something different — an aggregate dataset, perhaps constructed from a frequency table or

cross-tabulation, with one or more variables indicating how many times a particular value or

combination of values occurred. In that case, we need fweight.

Not all types of weighting have been defined for all types of analyses. We cannot, for
example, use pweight with the tabulate command. Using weights in any analysis
requires a clear understanding of what we want weighting to accomplish in that particular
analysis. The weights themselves can be any variable in the dataset.

The following small dataset (nfschool.dta), containing results from a survey of 1,381 rural
Newfoundland high school students, illustrates a simple application of frequency weighting.

describe

Contains data from C:\data\nfschool.dta
obs: 6 Newf.school/univer. (Seyfrit 93)

vars: 3 3 Jul 2005 10:50
size: 48 (99.9% of memory free)
storage display value

variable name type format label variable label

univers byte %8.0g yes Expect to attend university?
year byte %8.0g What year of school now?
count int %8.0g observed frequency

Sorted by:

fmmm e m e mmm e — = m +
| univers year count |
|==———=—— - To T |
1. 1 no 10 210 |
2. no 11 260
3.1 no 12 274 |
j———m——— = mmmm— T |
4 | yes 10 224
5 | yes 11 235 |
6 | yes 12 178 |
e itttk ke b +
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At first glance, the dataset seems to contain only 6 observations, and when we cross-
tabulate whether students expect to attend a university (univers) by their current year in high
school (year), we get a table with one observation per cell.

tabulate univers year

Expect to
attend

university What year of school now?

|

|

|
| 10 11 12 | Total
___________ o g
no | 1 1 1 3
yes | 1 1 1] 3
___________ o
Total | 2 2 2| 6

To upderstand these data, we need to apply frequency weights. The variable count gives
fre.quen.cws: 210 of these students are tenth graders who said they did not expect to attend a
university, 260 are eleventh graders who said no, and so on. Specifying [fweight =
count] obtains a cross-tabulation showing responses of all 1,381 students.

tabulate univers year [fweight = count]

Expect to
attend

university What year of school now?

|

I

I
2?0 10 11 12 | Total
___________ o
no | 210 260 274 | 744
yes | 224 235 178 | 637
___________ o
Total | 434 495 452 | 1,381

Carrying the analysis further, we might add options asking for a table with column
percentages ( col ), no cell frequencies ( nof ), and a x” test of independence ( chi2 ). This
reveals a statistically significant relationship (P =.001). The percentage of students expecting
to go to college declines with each year of high school.

tabulate univers year [fw = count], col nof chi2

Expect to
attend

university What year of school now?

|

|

|
2o 10 11 12 | Total
___________ o e
no | 48.39 52.53 60.62 | 53.87
yes | 51.61 47.47 39.38 | 46.13
___________ o e e e
Total | 100.00 100.00 100.00 | 100.00

Pearson chi2(2) = 13.8967 Pr = 0.001

Survey data often reflect complex sampling designs, based on one or more of the following:

disproportionate sampling — for example, oversampling particular subpopulations, in order
to get enough cases to draw conclusions about them.

clusze.rin.g — for example, selecting voting precincts at random, and then sampling individuals
within the selected precincts.
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stratification — for example, dividing precincts into “urban” and “rural” strata, and then
sampling precincts and/or individuals within each stratum.

Complex sampling designs require specialized analytical tools. pweights and Stata’s

ordinary analytical commands do not suffice.

Stata’s procedures for complex survey data include special tabulation, means, regression,
logit, probit, tobit, and Poisson regression commands. Before applying these commands, users
must first set up their data by identifying variables that indicate the PSUs (primary sampling
units) or clusters, strata, finite population correction, and probability weights. This is
accomplished through the svyset command. For example:

svyset precinct [pweight=invPsel], strata(urb_rur) fpc(finite)
For each observation in this example, the value of variable princinct identifies PSU or cluster.
Values of urb_rur identify the strata, finite gives the finite population correction, and invPsel

gives the probability weight or inverse of the probability of selection. After the data have been
svyset and saved, the survey analytical procedures are relatively straightforward.

Commands are typically prefixed by svy: ,asin

svy: mean income
or
svy: regress income education experience gender

The Survey Data Reference Manual contains full details and examples of Stata’s extensive
survey-analysis capabilities. For online guidance, type help svy and follow the links to

particular commands.

Creating Random Data and Random Samples

The pseudo-random number function uniform() lies at the heart of Stata’s ability to
generate random data or to sample randomly from the data at hand. The Base Reference
Manual (Functions) provides a technical description of this 32-bit pseudo-random generator.
If we presently have data in memory, then a command such as the following creates a new
variable named randnum, having apparently random 16-digit values over the interval [0,1) for
each case in the data.

generate randnum = uniform()

Alternatively, we might create a random dataset from scratch. Suppose we want to start a
new dataset containing 10 random values. We first clear any other data from memory (if they
were valuable, save them first). Next, set the number of observations desired for the new
dataset. Explicitly setting the seed number makes it possible to later reproduce the same
“random” results. Finally, we generate our random variable.

clear

set obs 10
obs was 0, now 10

set seed 12345

generate randnum = uniform()

R R
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1.1 .309106
2. | .6852276
3. | .1277815
4. | .5617244
5. 1 .3134516

| .5047374 |
[ .7232868 |
| .4176817 |
| .6768828 |
| .3657581 |

' In combination with Stata’s algebraic, statistical, and special functions, uniform() can
simulate V.alues sz}mpled from a variety of theoretical distributions. If we want newvar sampled
from a uniform distribution over [0,428) instead of the usual [0, 1), we type

generate newvar = 428 * uniform ()

These will still be 16-digit values. Perhaps we want only integers from 1 to 428 (inclusive):

generate newvar = 1 + trunc(428 * uniform())

To simulate 1,000 rolls of a six-sided die, type
clear

set obs 1000
obs was 0, now 1000

generate roll = 1 + trunc(6 * uniform())

tabulate roll

die | Freq Percent Cum
____________ e el
1| 171 17.10 17.10

2 | 164 16.40 33.50

3 150 15.00 48.50

4 | 170 17.00 65.50

5 | 169 16.90 82.40

6 | 176 17.60 100.00
____________ e ____

Total | 1000 100.00

We might theoretically expect 16.67% ones, 16.67% twos, and so on, but in any one sample like
these 1,000 “rolls,” the observed percentages will vary randomly around their expected values.

To simulate 1,000 rolls of a pair of six-sided dice, type
generate dice = 2 + trunc(6 * uniform()) + trunc (6 * uniform())

tabulate dice

dice | Freqg Percent Cum
____________ e
2 26 2.60 2.60

3 62 6.20 8.80

4 | 78 7.80 16.60

5 120 12.00 28.60

6 | 153 15.30 43.90

7] 149 14.9%0 58.80

8 | 146 14.60 73.40
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9 | 96 9.60 83.00

10 | 88 8.80 91.80

11 53 5.30 97.10

12 | 29 2.90 100.00

____________ - e e e — =
Total | 1000 100.00

We canuse nto begin an artificial dataset as well. The following commands create a new
5,000-observation dataset with one variable named index, containing values from 1 to 5,000.

set obs 5000
obs was 0, now 5000

generate index = n
summarize
Variable | Obs Mean Std. Dev Min Max
_____________ +_________________—________________________—___—__—__-
index | 5000 2500.5 1443.52 1 5000

It is possible to generate variables from a normal (Gaussian) distribution using
uniform(). The following example creates a dataset with 2,000 observations and 2

variables, z from an N(0,1) population, and x from N(500,75).
clear

set obs 2000
obs was 0, now 2000

generate z = invnormal (uniform())

generate x = 500 + 75*invnormal (uniform())

The actual sample means and standard deviations differ slightly from their theoretical values:

summarize
Variable | Obs Mean Std. Dev Min Max
_____________ e o
z | 2000 .0375032 1.026784 -3.536209 4.038878
x| 2000 503.322 75.68551 244.3384 743.1377

If z follows a normal distribution, v = ¢* follows a lognormal distribution. To form a
lognormal variable v based upon a standard normal z,
generate v = exp(invnormal (uniform())
To form a lognormal variable w based on an N(100,15) distribution,
generate w = exp (100 + 15*invnormal (uniform())
Taking logarithms, of course, normalizes a lognormal variable.
To simulate y values drawn randomly from an exponential distribution with mean and
standard deviationp =0 = 3,
generate y = -3 * ln(uniform())
For other means and standard deviations, substitute other values for 3.
X1 follows a y* distribution with one degree of freedom, which is the same as a squared
standard normal:

generate X1 = (invnormal (uniform())*2

By similar logic, X2 follows a x> with two degrees of freedom:
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generate X2 = (invnormal(uniform()))“z + (invnormal(uniform()))‘Z

Oth.ef statistical distributions, including ¢ and F, can be simulated along the same lines. In
afidlpon,‘ programs hgve l?een written for Stata to generate random samples follov'ving
distributions such as binomial, Poisson, gamma, and inverse Gaussian.

Although in.vnormal (uniform()) can be adjusted to yield normal variates with
particular correlations, a much easier way to do thisis through the drawnorm command. To
generate 5,000 observations from N(0, 1), type .

clear
drawnorm z, n(5000)
summ

Variable | Obs Mean Std. Dev.

z | 5000 ~.0005951 1.019788 -4.518918 3.923464

Below, we will create three further variables. Variabl i

ow, \ . e x/ is from an N(0,1) population
var¥able x2 is from N(100,15), and x3 is from N(500,75). Furthermore, we dgﬁlljle thesé
variables to have the following population correlations:

x1 x2 x3

x1[ 1.0 0.4 -0.8
x2] 0.4 1.0 0.0

x3]1-0.8 0.0 1.0

The proc?dure for creating such data requires first defining the correlation matrix C, and then
using C in the drawnorm command: ’

mat ¢ = (1, .4, -.8 \ -4, 1, 0\ -.8, 0, 1)
drawnorm x1 x2 x3, means (0,100,500) sds (1,15,75) corr (C)

summarize xl1-x3

Variable | Ob

_____________ pomoollZo o Mean  Std. Dev.  win e
x; | 5000 .0024364 1.01648 -3.478467 3.598916
X3 | 5000 100.1826 14.91325 46.13897 150.7634
X | 5000 500.7747 76.93325 211.5596 769.6074

correlate x1-x3
{obs=5000)
x1 X2 x3

X 1.0000

0.3951 1.0000
-0.8134 -0.0072 1.0000

l(iompare the sample variaples"correlations and means with the theoretical values given earlier.
andlom data generated in this fashion can be viewed as samples drawn from theoretical
populations. We should not expect the samples to have exactly the theoretical population

parameters (in this example, an x3 mean of 500, x/—x2 co lati :
—.8, and so forth). ’ rrelation of 0.4, x/—x3 correlation of
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The command sample makes unobtrusive use of uniform ’s random generator to
obtain random samples of the data in memory. For example, to discard all but a 10% random
sample of the original data, type

sample 10
Whenweaddan in or if qualifier, sample applies only to those observations meeting
our criteria. For example,

sample 10 if age < 26
would leave us with a 10% sample of those observations with age less than 26, plus 100% of
the original observations with age > 26.

We could also select random samples of a particular size. To discard all but 90 randomly-
selected observations from the dataset in memory, type

sample 90, count

The sections in Chapter 14 on bootstrapping and Monte Carlo simulations provide further
examples of random sampling and random variable generation.

Writing Programs for Data Management

Data management on larger projects often involves repetitive or error-prone tasks that are best
handled by writing specialized Stata programs. Advanced programming can become very
technical, but we can also begin by writing simple programs that consist of nothing more than
a sequence of Stata commands, typed and saved as an ASCII file. ASCII files can be created
using your favorite word processor or text editor, which should offer “ASCII text file” among
its options under File - Save As. Aneven casier way to create such text files is through Stata’s
Do-file Editor, which is brought up by clicking Window — Do-file Editor or the icon <&.

Alternatively, bring up the Do-file Editor by typing the command doedit, or doedit
filename if filename exists.

For example, using the Do-file Editor we might create a file named canada.do (which
contains the commands to read in a raw data file named canada.raw), then label the dataset and
its variables, compress it, and save it in Stata format. The commands in this file are identical
to those seen earlier when we went through the example step by step.

infile str30 place pop unemp mlife flife using canada.raw
label data "Canadian dataset 1"

lapel variable pop "Population in 1000s, 1995"

label variable unemp "% 15+ population unemployed, 1995"
label variable mlife "Male life expectancy years"

label variable flife "Female 1ife expectancy years"

compress
save canadal, replace

Once this canada.do file has been written and saved, simply typingthe following command
causes Stata to read the file and run each command in turn:

do canada
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Such batch-mode programs, termed “do-files,” are usually saved with a .do extension. More
elaborate programs (defined by do-files or “automatic do” files) can be stored in memc;ry and
can f:a'll- other programs in turn — creating new Stata commands and opening wor]cis of
pqssxbxhty for adventurous analysts. The Do-file Editor has several other features that you
might ﬁpd useful. Chapter 3 describes a simple way to use do-files in building graphs. For
further information, see the Getting Started manual on Using the Do-file Editor. '

Stata ordinarily interprets the end of a command line as the end of that command. This is
reasongble onscreen, where the line can be arbitrarily long, but does not work as well v'vhen we
are typing commands in a text file. One way to avoid line-length problems is through the
#delimit command, which can set some other character as the end-of-command delimiter.
In the following example, we make a semicolon the delimiter; then type two long commandé
that dg not end until a semicolon appears; and then finally reset the delimiter to its usual value
a carriage return ( cr ): ,

#delimit ;

infile ;tr30 place pop unemp mlife flife births deaths
marriage medinc mededuc using newcan.raw;

order place pop births deaths marriage medinc mededuc
unemp mlife flife;
#delimit cr

Stata normally pauses each time the Results window becomes full of information, and waits

scrolling until the output is complete. Typed in the Command window or as part of a program
the command ’

set more off

calls for continuous scrolling. This is convenient if our program produces much screen output
that we don’t want to see, or if it is writing to a log file that we will examine later. Typing

set more on

returns to the usual mode of waiting for keyboard input before scrolling.

Managing Memory

Whel’.l we use or File — Open a dataset, Stata reads the disk file and loads it into memory.
Load'm'g the data into memory permits rapid analysis, but it is only possible if the dataset can
fit within the amount of memory currently allocated to Stata. If we try to open a dataset that

is tqo .large, we get an elaborate error message saying ‘“no room to add more observations,” and
advising what to do next. ’

use C:\datal\gbank2.dta

(Scientific surveys off S. Newfoundland)

no room to add more observations
An attempt waslmade to increase the number of observations beyond what is
currently possible. You have the following alternatives:
1. Store your variables more efficiently; see help compress. (Think of

Stata's ata area as e area o a rectan e; ata n
off width
d ; g S ca trade

2. Drop some variables or observations; see help drop.
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3 Increase the amount of memory allocated to the data area using the set
memory command; see help memory.
r(901);

Small Stata allocates a fixed amount of memory to data, and this limit cannot'be changed.
Intercooled Stata and Stata/SE versions are flexible, however. Default allocations equ/aSlEl
megabyte for Intercooled, and 10 megabytes for Stata/SE. 1f we have Int?rcooled or Sli[ata b ,
running on a computer with enough physical memory, we can set Stata’s memory allocation
higher with the set memory command. To allocate 20 megabytes to data, type

set memory 20m

Current memory allocation

current memory usage

settable value description (}¥_i,i?%é§1
;;;_;axvar 5000 nax. variables allowed 1.733§
set memory 20M max. data space 20.222M
set matsize 400 max. RHS vars in models 1. .
22.987M

If there are data already in memory, first type the command clear toremovethem. Toreset
the memory allocation “permanently,” so it will be the same next time we start up, type

set memory 20m, permanently

In the example given earlier, ghank2.diais a 1 1.3-megabyte data§et that would not fit into
the default allocation. Asking for a20-megabyte allocation has now given us more than enough
room for these data.

Contains data from c:\data\gbank2.dta

bs: 74,078 Spring scientific surveys NAFO
e ' 3KLNOPQ, 1971-93
vars: 44 2 Mar 2000 21:28
size: 11,333,934 (46.0% of memory freey
storage display value .
variable name type format label variable label
T;________—____(;i;;t $9.0g original case number
i 59.
rec_type byte $4.0g
vessel byte %4.0qg Ve§sel
trip int %8.0g Trip number
set int %8.0g Set number
rank int %8.0g
assembla str7 %7s
year byte %4.0g Year
month byte %4.0g Month
day byte %4.0g Za{ p
byte %8.0g set_type e ype ' .
ziigtiie iit %8.0g Stratum or line fished
division str2 %2s NAFO d1v1510nl
it are str3 %3s Nfld. area grid map square

T?ghg int %8.0g Light conditions
wind dir byte %4.0g W%nd ilrectlon
wind for byte %4.0g Wind force

B byte  %4.0g
sea y
bottom byte %4.0g Type oflbotFom
time mid int %8.0g Time (midpoint)
duration byte %8.0g puration of set
tow dist int %8.0g Distance towed
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gear op byte %4.0g Operation of gear

depthcat byte $4.0g Category of depth

min_dept int %8.0g Depth (minumum)

max_dept int %8.0g Depth (maximum)

bot dept int %8.09g Depth (bottom 1f MWT)

temp sur int %8.0g Temperature (surface
tempcat byte $8.0g Category of temperature
temp fs_ int %8.0g Temperature (fishing depth)
lat float %9.0g Latitude (decimal)}

long float %9.0g Longitude (decimal)

pos _meth byte %4.0g

gear int $8.0g Gear

total byte %9.0g

species int $8.0g Species

number long %9.0g Number of individual fish
weight double %9.0g Catch weight in kilograms
latin str3l %31ls Species -- Latin name
common str27 %27s Species -- common name
surtemp float %9.0g Surface temperature degrees C
fishtemp float %9.0g Fishing depth temperature C
depth int $9.0g Mean trawl depth in meters
ispecies byte $9.0g Indicator species

Sorted by: id

Dataset ghank?2.dta contains 74,078 observations fromscientific surveys of fish populations
on Newfoundland’s Grand Banks, conducted over the years 1971 to 1993. When we
describe the data(above), Stata reports “46.09% of memory free,” meaning not 46% of the
computer’s total resources, but 46% of the 20 megabytes we allocated for Stata data. It is
usually advisable to ask for more memory than our data actually require. Many statistical and

data-management operations consume additional memory, in part because they temporarily
create new variables as they work.

It is possible to set memory to values higher than the computer’s available physical
memory. In that case, Stata uses “virtual memory,” which is really disk storage. Although
virtual memory allows bypassing hardware limitations, it can be terribly slow. If you regularly
work with datasets that push the limits of your computer, you might soon conclude that it is
time to buy more memory.

Type help limits tosee alist of limitations in Stata, not only on dataset size but also
other dimensions including matrix size, command lengths, lengths of names, and numbers of
variables in commands. Some of these limitations can be adjusted by the user.
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Graphs

Graphs appear in every chapter of this book — one indication of their vall:le and mtegrahog
with other analyses in Stata. Indced. graphics have always been one of Stata’s strong sults, and
rcason cnough for many uscrs 1o choose Stata over other packages.. The graph comman
evolved incrementally from Stata versions 1 through 7. Sta'ta version 8_ mgrked a major step
forward, however. graph underwenta fundamental redesign, expanding 1ts capabllltles for
sophisticated. publication-quality analytical graphics. Output appearance and cl;mcest.we{e
much improved as well. With the new graph command s_yntax and default§, or alternatively
through the new menus. attractive (and publishable) basic graphs are quite easy to drdaz)v.
Grap}:ically ambitious users who visualize non-basic. grapbs will find their efforts.suplg)or‘te v
a truly impressive array ol tools and options, described in the 500-page Graphics Reference
Manual. .

in the much shorter space of this chapter, the spectrum frorq elementary to creative
graphing will be covered taking an example- rather than syntax-oriented approac}wsel;: the
Graphics Reference Manual or help graph for thorough coverage of syntax). We begin
by illustrating scven basic types of graphs.

histogram histograms

graph twoway two-variable scatterplots, line plots, and many others
graph matrix scatterplot matrices

graph box box plots

graph pie pie charts

graph bar bar charts

graph dot dot plots

For cach of these basic types, therc exist many options. That is especially true for the versatile
twoway [(ype. .

Morec specialized graphs such as symmetry plots, quantile plots, and quantile—normal plots
exist as well, for examining dciails of variable distributions. A few examples of these, and also
of graphs for industrial quality control, appear in this chapter. Type help graph other
for more details. . .

Finally, the chapter concludes with techniques particularly useful in building data-rich, se;lf—
contained graphics for publication. Such techniques include adding text to grap.hs', overlziy.nig
multiple twoway plots. retrieving and reformatting saved gra'phs, anq combining multiple
graphs into onc. As our graphing commands grow more complicated, simple batch programs
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(do-files) can help to write and re-use them. The full range of graphical choices goes far
beyond what this book can cover, but the concluding examples point out a few of the
possibilities. Later chapters supply further examples.

The Graphics menu provides point-and-click access to most of these graphing procedures.

A note to long-time Stata users: The graphical capabilities of Stata 8 and 9 outshine those
of earlier versions. For analysts comfortable with old Stata, there is much new material to
learn. Menus allow a quick entry, and the new graphics commands, like the old ones, follow
a consistent logic that becomes clear with practice. Fortunately, the changeover need not be
sudden. Version 7-style graphics remain available if needed. They have been moved to the

command graph?7. Forexample, an old-version scatterplot would formerly have been drawn
by the command

graph income education
which does not work in the newer Stata. Instead, the command

graph? income education

will reproduce the familiar old type of graph. The options of graph7 are similar to those of

the old-style graph . To see an updated version of this same scatterplot, type the new
graphics command

graph twoway scatter income education

Further examples of new commands appear in the next section, which should give a sense of
what has changed (and what is familiar) with the redesigned graphical capabilities.

Example Commands

histogram y, frequency
Draws histogram of variable y , showing frequencies on the vertical axis.

histogram y, start(0) width(10) norm fraction
Draws histogram of y with bins 10 units wide, starting at 0. Adds a normal curve based on
the sample mean and standard deviation, and shows fraction of the data on the vertical axis.

histogram y, by(x, total) fraction
In one figure, draws separate histograms of y for each value of x, and also a “total”
histogram for the sample as a whole.

kdensity x, generate(xpoints xdensity) width(20) biweight
Produces and graphs kernel density estimate of the distribution of x. Two new variables
are created: xpoints containing the x values at which the density is estimated, and xdensity
with the density estimates themselves. width (20) specifies the halfwidth of the kernel,
in units of the variable x. (If width () is not specified, the default follows a simple
formula for “optimal.”) The biweight option in this example calls for a biweight
kernel, instead of the default epanechnikov .

graph twoway scatter y x
Displays a basic two-variable scatterplot of y against x.
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graph twoway 1lfit y x || scatter y x 4
Visualizes the linear regression of y on x by overlaying two twoway graphs: the

regression (linear fit or 1£it ) line, and the y vs. x scatterplot To include a 95%
confidence band for the regression line, replace 1£it with 1fitci.

. graph twoway scatter y x, xlabel(0(10)100) ylabel(-3(1)6, Porizontal)
Constructs scatterplot of y vs. x, withx axis labeled at 0, 10, ..., 100. y axis is labeled at -3,
-2, ..., 6, with labels written horizontally instead of vertically (the default).

graph twoway scatter y x, mlabel (country) .
Constructs scatterplot of y vs. x, with data points (markers) labeled by the values of variable
country.

graph twoway scatter y x1, by(x2)

In one figure, draws separate y vs. x/ scatterplots for each value of x2.

graph twoway scatter y x1 [fweight = population], msymbol{Oh) o
Draws a scatterplot of y vs. x/. Marker symbols are hollow circles (Oh}, with their size
(area) proportional to frequency-weight variable population.

graph twoway connected y time .

A basic time plot of y against time. Data points are shown connected by line segments. To
include line segments but no data-point markers, use line instead of connected:
graph twoway line y time

graph twoway line yl1 y2 time ‘ .

Draws a time plot (in this example, a line plot) with two y variables that both have the same
scale, and are graphed against an x variable named time.

graph twoway line yl time, yaxis(l) || line y2 time, yaxis(%)
Draws a time plot with two y variables that have different scales, by overlaymg two

individual line plots. The left-hand y axis, yaxis (1), gives the scale for y/, while the
right-hand y axis, yaxis (2), gives the scale for y2.

graph matrix x1I x2 x3 x4 y . '
Constructs a scatterplot matrix, showing all possible scatterplot pairs among the variables
listed.

graph box y1 y2 y3
Constructs box plots of variables y/, 2, and y3.

graph box y, over(x) yline(.22) . .
Constructs box plots of y for each value of x, and draws a horizontal line at y = .22.

graph pie a b c, pie . .
Draws one pie chart with slices indicating the relative amounts of variablesa, b, and ¢. The
variables must have similar units.

graph bar (sum) a b ¢ . )

Shows the sums of variables a, b, and ¢ as side-by-side bars in a bar chart. To (?btam means
instead of sums, type graph bar (mean) a b c . Other options include bars
representing medians, percentiles, or counts of each variable.

graph bar (mean) a, over(x) '
Draws a bar chart showing the mean of variable @ at each value of variable x.

W

Graphs 67

graph bar (asis) a b c, over (x) stack
Draws a bar chart in which the values (“as is”) of variables a, b, and ¢ are stacked on top
of one another, at each value of variable x.

graph dot (median) y, over (x)
Draws a dot plot, in which dots along a horizontal scale mark the median value of y at each
level of x. Other options include means, percentiles, or counts of each variable.

gnorm y
Draws a quantile-normal plot (normal probability plot) showing quantiles of V versus
corresponding quantiles of a normal distribution.

rchart x1 x2 x3 x4 x5, connect (1)
Constructs a quality-control R chart graphing the range of values represented by variables
xl —x5.

Graph options, such as those controlling titles, labels, and tick marks on the axes are
common across graph types wherever this makes sense. Moreover, the underlying logic of
Stata’s graph commands is consistent from one type to the next. These common elements are
the key to gaining graph-building fluency, as the basics begin to fall into place.

Histograms

Histograms, displaying the distribution of measurement variables, are most easily produced
with their own command histogram. For examples, we turn to states.dta, which contains
sclected environment and education measures on the 50 US. states plus the District of
Columbia (data from the League of Conservation Voters 1991; National Center for Education
Statistics 1992, 1993; World Resources Institute 1993).

use states
(U.5. states data 1990-91)

describe

Contains data from c:\data\states.dta

obs: 51 U.S5. states data 1990-91

vars: 21 4 Jul 2005 12:07

slze: 4,080 (99.9% of memory free)

storage display value

variable name type format label variable label
state str20 %20s State
region byte %9.0g region Geographical region
pop fleoat %9.0g 1990 population
area float %9.0g Land area, square miles
density float %7.2f People per square mile
metro float %5.1f Metropolitan area population, 3
waste float %5.2f Per capita solid waste, tons
energy int %8.0g Per capita energy consumed, Btu
miles int 38.0g Per capita miles/year, 1,000
toxic float %5.2f Per capita toxics released, lbs
green float %5.2f Per capita greenhouse gas, tons
house byte %8.0g House '91 environ. voting, %
senate byte %8.0g Senate '91 environ. voting, %
csat int %9.0g Mean composite SAT score
vsat int %8.0g Mean verbal SAT score
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msat int %8.0g Mean math SAT score

percent byte $9.0g % HS graduates taking SAT
expense int %9.0g Per pupil expenditures primé&sec
income long $10.0g Median household income, $1,000
high float %9.0g ¢ adults HS diploma

college float %9.40g 2 adults college degree

Sorted by: state

Figure 3.1 shows a simple histogram of college, the percentage of a state’s over-25
population with a bachelor’s degree or higher. It was produced by the following command:

histogram college, frequency title ("Figure 3.1")

Figure 3.1

Figure 3.1
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Under the Prefs — Graph Preferences menus, we have the choice of several pre-designed
“schemes” for the default colors and shading of our graphs. Custom schemes can be defined
as well. The examples in this book employ the s2 mono (monochrome) scheme, which among
other things calls for shaded margins around each graph. The s1 mono scheme does not have
such margins. Experimenting with the different monochrome and color schemes helps to
determine which works best for a particular purpose. A graph drawn and saved under one
scheme can subsequently be retrieved and re-saved under a different one, as described later in
this chapter.

Options can be listed in any order following the comma in a graph command. Figure 3.1
illustrates two options: frequency (instead of density, the default) is shown on the vertical axis;
and the title “Figure 3.1” appears over the graph. Once a graph is onscreen, menu choices
provide the easiest way to print it, save it to disk, or cut and paste it into another program such
as a word processor.

Figure 3.1 reveals the positive skew of this distribution, with a mode above 15 and an
outlier around 35. Ttis hard to describe the graph more specifically because the bars do not line
up with x-axis tick marks. Figure 3.2 contains a version with several improvements (based on
some quick experiments to find the right values):
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1. The x axis is labeled from 12 to 34, in increments of 2.
2. The y axis is labeled from 0 to 12, in increments of 2.
3. Tick marks are drawn on the y axis from 1 to 13, in increments of 2.
4. The histogram’s first bar (bin) starts at 12.
5. The width of each bar (bin) is 2.
histogram college, frequency title("Figure 3.2") xlabel(12(2)34)
ylabel (0(2)12) ytick(1(2)13) start(12) width(2)
Figure 3.2 Figure 3.2
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Figure 3.2 helps us to describe the distribution more specifically. For example, we now see that
in 13 states, the percent with college degrees is between approximately 16 and 18.

Other useful histogram options include:

bin (#) Draw a histogram with # bins (bars). We can specify either bin (#) or, as
in Figure 3.2, start(#) and width(#) — but not both.

percent Show percentages on the vertical axis. ylabel and ytick then refer to
percentage values. Another possibility, frequency, is illustrated in Figure
3.2. We could also ask for fraction of the data. The default histogram
showls density, meaning that bars are scaled so that the sum of their areas
equals 1.

gap (#) Leave a gap between bars. # is relative, 0 < # < 100; experiment to find a
suitable value.

addlabels Label the heights of histogram bars. A separate option, addlabopts )
controls the how the labels look.

discrete Specify discrete data, requiring one bar for each value of x.
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norm

kdensity

Overlay a normal curve on the histogram, based on sample mean and standard
deviation.

Overlay a kemal-density estimate on the histogram. The option kdenopts
controls density computation; see help kdensity for details.

With histograms or most other graphs, we can also override the defaults and specity our
own titles for the horizontal and vertical axes, The option ytitle controls y-axis titles, and
xtitle controls v-axis titles. Figure 3.3 illustrates such titles, together with some other
histogram options.  Note the incremental buildup from basic (Figure 3.1) to more elaborate
(Figure 3.3) graphs. This is the usual pattern of graph construction in Stata: we start simply,
then experimentally add options to earlicr commands retrieved fromthe Review window, as we
work toward an image that most clearly presents our findings. Figure 3.3 actually is over-
claborate, but drawn here (o show off multiple options.

histogram college, frequency title("Figure 3.3") ylabel(0(2)12)
ytick(1(2)13) xlabel(12(2)34) start(l2) width(2) addlabel

norm gap(15)
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Suppose we want to see how the distribution of college varies by region. The by option
obtains a separate histogram for cach value of region. Other options work as they do for single
histograms. Figure 3.4 shows an example in which we ask for percentages on the vertical axis,
and the data grouped mto ¥ bins.

raon
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histogram college, by(region) percent bin (8)
Figure 3.
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Graphs by Geographical region

Figure 35 below, contains a similar set of four regional graphs, but includes a fifth that
shows the distribution for all regions combined.

histogram college, percent bin(8) by(region, total)

Percent

options work in a similar fashion with other Stata graphing commands, as seen in the
sections.

West N. East South Figure 3.5
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Graphs by Geographical region

Axis labeling, tick marks, titles, and the by (varname) or by (varname, total)

following
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Scatterplots

Basic scatterplots are obtained through commands of the general form
graph twoway scatter y Xx

where v is the vertical or y-axis variable, and x the horizqntal or x-axis one. Eor example, again
using the states.dta dataset, we could plotwaste (per caplFa sqlld wastes) agams't mc.)tr; .(perc;:né
population in metropolitan areas), with the resgh shownin Figure 3.6. Each point in Figure 5.
represents one of the 50 U.S. states (or Washington DC).

graph twoway scatter waste metro

Figure 3.6
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As with histograms, we can use xlabel, xtick, xtitle, etc.to cont‘rol axis labels,
tick marks, or titles. Scatterplots also allow control of the shape, color, §1ze,. and other
attributes of markers. Figure 3.6 employs the default markers, which are solid c1rcl.es. The
same effect would result if we included the option msymbol {circle),or wrote this option
in abbreviated form as msymbol (0). msymbol (diamon'd) or ms.ymboll(D) would
produce a graph with diamond markers, and so forth. The following table lists possible shapes.

msymbol ( ) Abbreviation _ Description -
circle o} circle, solid
diamond D diamond, solid
triangle T triangle, solid
square S square, solid
plus + plus sign
x X letter x

e ~ <mall circle. solid

i
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smdiamond d small diamond, solid
smsquare s small square, solid
smtriangle t small triangle, solid
smplus smplus small plus sign

smx X small letter x
circle hollow Oh circle, hollow
diamond hollow Dh diamond, hollow
triangle_ hollow Th triangle, hollow
square_hollow Sh square, hollow
smcircle _hollow oh small circle, hollow

smdiamond hollow dh small diamond, hollow

smtriangle hollow th small triangle, hollow

smsquare hollow sh small square, hollow
point P very small dot
none i invisible

The mcolor option controls marker colors. For example, the command
graph twoway scatter waste metro, msymbol(S) mcolor(purple)

would produce a scatterplot in which the symbols were large purple squares. Type help
colorstyle for a list of available colors.

One interesting possibility with scatterplots is to make symbol size (area) proportional to
a third variable, thereby giving the data points different visual “weight.” For example, we
might redraw the scatterplot of waste against metro, but make the symbols size reflect each
state’s population (pop). This can be done as shown in Figure 3.7, usingthe fweight[ |
(frequency weight) feature. Hollow circles, msymbol (Oh), provide a suitable shape.

Frequency weights are useful with some other graph types as well. Weighting can bc a

deceptively complex topic, because “weights” come in several types, and have different
meanings in different contexts. For an overview of weighting in Stata, type help weight.
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graph twoway scatter waste metro [fweight = pop], msymbol (Oh)

o Figure 3.7
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New in Stata 9, density-distribution sunflower plots provide an alternative to scatterplots
with high-density data. Basically, they resemble scatterplots in which some of the individual
data points are replaced with sunflower-like symbols to indicate more than one observation at
that location. Figure 3.8 shows a sunflower-plot version of Figure 3.6, in which some of the
flower symbols (those with four “petals”) represent up to four individual data points, or states.
A table printed after the sunflower command provides a key regarding how many
observations each flower represents. The number of petals and the darkness of the flower
correspond to the density of data.

sunflower waste metro, addplot(lfit waste metro)

Bin width = 11.3714
Bin height = .286522
Bin aspect ratio = ,0218209
Max obs in a bin = 4
Light = 3
Dark = 13
X~center = 67.55
Y-center = .96
Petal weight = 1

flower petal No. of No. of estimated actual

type weight petals flowers obs. obs.

none 23 23

light 1 3 5 15 15

light 1 4 3 12 12

RN
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_Su_nﬂowcr plots are particularly helpful with large datasets, or when many observations plot
at sun}lar (or identical) coordinates. The example in Figure 3.8 includes a regression line
essentiallya twoway 1fit plot that has been overlaid or added to the sunflower plot b);
specifying the option addplot (1fit waste metro).

Markers in an ordinary scatterplot can be identified by labels. For example, we might want
to name the states in a scatterplot such as Figure 3.6. Fifty state names, however, would turn
the g‘raph into a visual jumble. Concentrating on one region such as the West ;eenls more
promising. An if qualificr accomplishes this, producing the results seen in Figure 3.9 on the
following page.



76 Statistics with Stata

graph twoway scatter waste metro if region==1, mlabel (state)

Figure 3.9
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Ficure 3.10 {(below) shows scparate waste — melro scatterplots for each rcgion: The
rclalioumhip between these two variables appears noticeably stceper in the South and Midwest
than it does in the West and Northeast, an impression we will later confirm. The ylabel and
xlabel options in this example give the v- and x-axis labels three-digit (maximum) fixed
display formats with no decimals, making them casier to read in the small subplots.

graph twoway scatter waste metro, by(region)
ylabel(, format ($3.0f)) xlabel(, format(%3.0f))

Figure 3.10
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Scattcrplotmatrices, producedby graph matrix,proveuseful inmultivariate analysis.
They provide a compact display of the relationships between a number of variable pairs,
allowing the analyst to scan for signs of nonlinearity, outliers, or clustering that might affect

statistical modcling. Figure 3.11 shows a scatterplot matrix involving three variables from
states.dia.

graph matrix miles metro income waste, half msymbol (oh)

Figure 3.11
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The half option specified that Figure 3.11 should include only the lower triangular part
of the matrix. The upper triangular part is symmetrical and, for many purposes, redundant.
msymbol (oh) called for small hollow circles as markers, just as we might with a scatterplot.

Control of the axes is more complicated, because there are as many axes as variables; type
help graph matrix for details.

When the variables of interest include one dependent or “effect™ variable, and several
independent or “cause” variables, it helps to list the dependent variable last in the graph

matrix variable list. That results in a neat row of dependent-versus-independent variable
graphs across the bottom

Line Plots

Mechanically, line plots are scatterplots in which the points are connected by line segments.
Like scatterplots, the various types of line plots belong to Stata’s versatile graph twoway
family. The scatterplot options that control axis labeling and markers work much the same with
line plots, too. New options control the characteristics of the lines themselves.

Linc plots tend to have different uses than scatterplots. For example, as time plots they
depict changes in a variable over time. Dataset cod.dta contains time-series data reflecting the
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unhappy story of Newfoundland’s Northern Cod fishery. This fishery, which had been among
the world’s richest, collapsed in 1992 primarily due to overfishing.

C:\data\cod.dta

Contains data from

obs: 38 Newfoundland's Northern Cod
fishery, 1960-1997
VATs: 5 4 Jul 2005 15:02
size: 684 (99,9¢ of memory free
storage display value

variable name tvpe format label variable label
vear int 8.0g Year
cod float -8.0g Total landings, 1000t
canada int "8.0g Canadian landings, 1000t
TAC int =8.0g9 Total Allowable Catch, 1000t
hicomass float 5.0g Fstimated biomass, 1000t
scrted by: year

A simple time plot showing Canadian and total landings can be constructed by drawing line
graphs of both variables against year. Figure 3.12 does this, showing the “killer spike” of
international overfishing in the late 1960s, followed by a decade of Canadian fishing pressure
in the 1980s, leading up to the 1992 collapse of the Northern Cod.

graph twoway line cod canada year

Figure 3.12
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In Figure 3.12, Stata automatically chose a solid line for the first-named y variable, cod, and
a dashed line for the second, canada. A legend at the bottom explains these meanings. We
could improve this graph by rearranging the legend, and suppressing the redundant y-axis title,
as illustrated in Figure 3.13.
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graph twoway line cod canada year, legend(label (1 "all nations")
label (2 "Canada") position(2) ring(0) rows(2)) ytitle("")

Figure 3.13
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Thfz legend option for Figure 3.13 breaks down as follows. Note that all of these
suboptions occur within the parentheses following legend.

label (1 "all nations") label first-named y variable “all nations”

label (2 "Canada") label second-named y variable “Canada”
position(2) place the legend at 2 o’clock position (upper right)
ring(0) place the legend within the plot space

rows (2) organize the legend to have two rows

By shortening the legend labels and placing them within the plot space, we leave more room
to show the data and create a more attractive, readable figure. legend works similarly for
other graph styles that have legends. Type help legend option toseealistofthe many
suboptions available.
Figgres 3.12 and 3.13 simply connect each data point with line segments. Several other

connecting styles are possible, using the connect option. For example,

connect (stairstep)
or equivalently,

connect (J)

will cause points to be connected in stairstep (flat, then vertical) fashion. Figure 3.14 illustrates

with a stairstep time plot of the government-set Total Allowable Catch (74C) variable from
cod.dta.
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graph twoway line TAC yeatr, connect(stairstep)

Figure 3.14
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Other connect choices are listed below. The default, straight line segments,

corresponds to connect (direct) or connect(l). For more details, see help

connectstyle.

connect ( ) Abbreviation Description
none i do not connect
direct 1 (letter “‘el”) connect with straight lines
ascending L direct, but only if x[i+1] > x[{]
stairstep J flat, then vertical
stepstair vertical, then flat

Figure 3.15 (on the following page) repeats this stairstep plot of 74C, but with some

enhancements of axis labels and titles. The option xtitle (™") requests no x-axis title
(because “year” is obvious). We added tick marks at two-year intervals to the x axis, labeled
the y axis at intervals of 100, and printed y-axis labels horizontally instead of vertically (the

defauit).
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graph Fwoway line TAC year, connect (stairstep) xtitle{"")
xtick (1960 (2)2000) Ytitle ("Thousands of tons")
ylabel(O(lOO)SOO, angle(horizontal)) Xtitle (™)
clpattern (dash)

800 Figure 3.15
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Instead of letting Stata detcrmine the line pattems (solid, dashed, ete.) in Figure 3.15, we

used- the F:lpattern (dash) option to call for a dashed line. Possible line pattern choices
are listed in the table below (also see help linepatternstyle)

clpattern( ) Description

solid solid line
dash dashed line
dot dotted line
dash_dot dash then dot
shortdash short dash

shortdash dot short dash followed by dot

longdash long dash
longdash _dot long dash followed by dot
blank invisible line

Jormula for example, clpattern(-.) or clpattern (—..)
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Belore swe move on to other examples and types, Figure 3.16 unites the three varlal‘)les
discussed in this section to create a single graphic showing the tragedy of the Northerr} Coq.
Note how the connect( ). clpattern( y.and legend( ) options work in this

threc-variable context.

graph twoway line cod canada TAC year, connect(li.ne line stairstep)
clpattern(solid longdash dash) xtitle("") xtlck(lQGO(%)ZOOO)
ytitle ("Thousands of tons'") ylabel(0(100)800, angle(horlzo%Fal))
xtitle("") legend(label (1 nall nations") label({2 "Canada")
label (3 "TAC") position(2) ring (0) rows(3))

800 - all nations
i — _ — Canada
700

600 -

Figure 3.16
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400
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200~

100-
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Connected-Line Plots

In the line plots of the previous section, data points are invisible and we see only the connecting
lines. The graph twoway connected command creates connected-line plots in which
the data points are marked by scatterplot symbols, The marker-symbol options described earlier
for graph twoway scatter,and also the lineconnecting options described for graph
twoway line,bothapplyto graph twoway connected aswell. Figure 3.17 shows
a default example, a connected-line time plot of the cod biomass variable (bio) from cod.dta.

graph twoway connected bio year

Figure 3.17

1000 1500 2000 2500

Estimated biomass, 1000t

500

1960 1970 1980 1990 2000
Year

The dataset contains only biomass values for 1978 through 1997, resulting in much empty
space in Figure 3.17. 1if qualifiers allow us to restrict the range of years. Figure 3.18, on
the following page, does this. Italso dresses up the image to show control of marker symbols,
line patterns, axes, and legends. With cod landings and biomass both in the same image, we
see that the biomass began its crash in the late 1980s, several years before a crisis was officially
recognized.
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graph twoway connected bio cod year if year > 1977 & year < 1989,
msymbol (T Oh) clpattern(dash solid) xlabel(1978(2?19961"
xtick (1979(2)1997) ytitle("Thousands of tens”) xtitle("")

i 1))
label (0(500)2500, angle (horizonta ) . )
iegend(label(l "Estimated biomags") label(2 “"Total landings")

position(2) rows(2) ring(0))

Figure 3.18
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Other Twoway Plot Types

In addition to basic line plots and scatterplots, the graph two.wa.q'/ ' command encompasses
a wide variety of other types. The following table lists the possibilities.

graph twoway_ Description
scatter scatterplot
line line plot
connected connected-line plot
scatteri scatter with immediate arguments (data given in the command line)
area line plot with shading
bar twoway bar plot (different from graph bar)
spike twoway spike plot
dropline dropline plot (spikes dropped vertically or horizontally to given value)
dot twoway dot plot (different from graph dot)

rarea range plot, shading the arca between high and low values

o

d AT, L b

rbar
rspike
rcap
rcapsym
rscatter
rline
rconnected
pcspike
Pccapsym
pcarrow
pPcbarrow
pcscatter
pci
pcarrowi
tsline
tsrline
mband
mspline
lowess
1fit
gfit
fpfit
lfitci
gfitci
fpfiteci
function
histogram

kdensity
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range plot with bars between high and low values

range plot with spikes between high and low values
range plot with capped spikes

range plot with spikes capped with symbols

range plot with scatterplot marker symbols

range plot with lines

range plot with lines and markers

paired-coordinate plot with spikes

paired-coordinate plot with spikes capped with symbols
paired-coordinate plot with arrows
pﬁmdcomdeepbtwhhanowshmMgtwohaﬂs
paired-coordinate plot with markers

pcspike with immediate arguments

pcarrow with immediate arguments

time-series plot

time-series range plot

straight line segments connect the (x, y) cross-medians within bands
cubic spline curve connects the (x, ») cross-medians within bands
LOWESS (locally weighted scatterplot smoothing) curve
linear regression line

quadratic regression curve

fractional polynomial plot

linear regression line with confidence band

quadratic regression curve with confidence band
fractional polynomial plot with confidence band

line plot of function

histogram plot

kernel density plot

The usual options to control line patterns, marker symbols, and so forth work where
appropriate with all twoway commands. For more information about a particular command,
type help twoway mband, help twoway function, ctc. (using any of the names
above). Note that graph twoway bar is a different command from graph bar.
Similarly, graph twoway dot differs from graph dot. The twoway versions
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provide various methods for plotting a measurement y variable aga.inst a measurement x
variable, analogous to a scatterplot or a line plot. The non-twoway versions, on the other hand,
provide ways to plot summary statistics (such as means or medians) of one or more
measurement y variables against categories of one or more x variables. The twoway versions
thus are comparatively specialized, although (as with all twoway plots) they can be overlaid
with other twoway plots for more complex graphical effects.

Many of these plot types are most useful in composite figures, constructeq by overlaying
two or mote simple plots as described later in this chapter. Others produce nice stapd-alone
graphs. For example, Figure 3.19 shows an arca plot of the Newfoundland cod landings.

graph twoway area cod canada year, ytitle("")

Figure 3.19
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The shading in area graphs and other types with shaded regions can be‘ controlled throu_gh
the option becolor . Type help colorstyle for a list of the available color.s, wh}ch
include gray scales. The darkest gray, gs0, is actually black. The lightest gray, gs16, is white.
Other values are in between. Forexample, Figure 3.20 shows a light-gray version of this graph.
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graph twoway area cod canada year, ytitle("") becolor(gsl2 gsl4)

Q Figure 3.20
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Unusually cold atmosphere/ocean conditions played a secondary role in Newfoundland’s
fisheries disaster, which involved not only the Northern Cod but also other species and
populations. For example, key fish species in the neighboring Guif of St. Lawrence declined
during this period as well (Hamilton, Haedrich and Duncan 2003). Dataset gulf dta describes
environment and Northern Gulf cod catches (raw data from DFO 2003).

Contains data from C:\data\gulf.dta

obs: 56 Gulf of St. Lawrence
environment and cod fishery
vars: 7 10 Jul 2005 11:51
size: 1,344 (99.9% of memory free)
Storage display value
variable name type format label variable label
winter int %8.0g Winter
minarea float %9.0g Minimum ice area, 1000 km"2
maxarea float %9.0g Maximum ice area, 1000 km~2
mindavys byte %8.0g Minimum ice days
maxdays byte %8.0qg Maximum ice days
cilt float %9.0g Cold Intermediate Layer
temperature minimum, C
cod float %9.0g N. Gulf cod catch, 1000 tons

The maximum annual ice cover averaged 173,017 km? during these years.

summarize maxarea

Variable | Obs Mean Std. Dev. Min Max

maxarea 38 173.0172 37.18623 47.8901 220.1805
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Figure 3.21 uses this mcan (173 thousand) as the base for a spike plot, in which spikes
above and below the linc show above and below-average ice cover, respectively. The
yline (173) option draws a horizontal line at 173.

graph twoway spike maxarea winter if winter > 1963, base(173)
yline (173) ylabel (40(20)220, angle(horizontal))
xlabel (1965(5)2000)

Figure 3.21
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The base () format of Figure 3.21 emphasizes the succession of unusually harsh winters
(above-average maximum ice cover) during the late 1980s and early 1990s, around the time of
Newfoundland’s fisheries crisis. We also see anearlier spell of mild winters in the early 1980s,
and hints of a reccnt warming trend.

A different view of the same data, in Figure 3.22, employs lowess regression to smooth the
time series. The bandwidth option, bwidth (. 4), specifies a curve based on smoothed data
points that arc calculated from weighted regressions within a moving band containing 40% of
the sample. Lower bandwidths such as bwidth (.2}, or 20% of the data, would give us a
morejagged, less smoothed curve that more closely resembles the raw data. Higher bandwidths
such as bwidth (. 8), the default, will smooth more radically. Regardless of the bandwidth
chosen, smoothed points towards either extreme of the x values must be calculated from
increasingly narrow bands, and therefore will show less smoothing. Chapter 8 contains more
about lowess smoothing.

R —
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graph Fwoway lowess maxarea winter if winter > 1963, bwidth{(.4)
yline(173) ylabel (40(20)220, angle (horizontal))
xlabel (1965(5)2000)

20 Figure 3.22
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Range‘ plots connect high. and low y values at each level of x, using bars, spikes, or shaded
areas. Daily stock.market prices are often graphed in this way. Figure 3.23 shows a capped-
spike range plot using the minimum and maximum ice cover variables from guff.dia.

graph twoway rcap minarea maxarea winter if winter > 1963,

ylabel (0(20)220, angle (horizontal)) ytitle("Ice area, 1000 km~2")
xlabel (1965(5)2000)

220% ] ) Figure 3.23
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These examples by no means exhaust the possibilities for_twoway graphs. Other
applications appear throughout the book. Later in this chapter, we will see examples involving
overlays of two or more twoway graphs, forming a single image.

Box Plots

Box plots convey information about center, spread, symmetry, and outliers at a glance. To
obtain a single box plot, type a command of the form

graph box y

If several different variables have roughly similar scales, we can visually compare their
distributions through commands of the form

graph box w x y =z

One of the most common applications for box plots involves comparl:ng .the Qistribution of
one variable over categories of a second. Figure 3.24 compares the distribution of college
across states of four U.S. regions, from dataset states.dta.

graph box college, over{region) yline(19.1)

Figure 3.24
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The median proportion of adults with college degrees tends to be highest i.n the Nonh.easti
and lowest in the South. On the other hand, southern states are more variable. Reglopa
medians (lines within boxes) in Figure 3.24 can be cpmpared v1sgally to the '50-state median
indicated by the yline (19.1) option.. This median was obtained by typing

summarize college if region < ., detail
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Chapter 4 describes the summarize » detail command. The if region <
qualifier above restricted our analysis to observations that have nonmissing values of region;
that is, to every place except Washington DC.

The box in a box plot extends from approximate first to third quartiles, a distance called the
interquartile range (IQR). Tt therefore contains approximately the middle 50% of the data.
Outliers, defined as observations more than | SIQR beyond the first or third quartile, are plotted
individually in a box plot. No outliers appear among the four distributions in Figure 3.24.
Stata’s box plots define quartiles in the same manner as summarize, detail. Thisisnot
the same approximation used to calculate “fourths” for letter-value displays, 1v (Chapter 4),
See Frigge, Hoaglin, and Iglewicz (1989) and Hamilton (1992b) for more about quartile
approximations and their role in identifying outliers.

Numerous options control the appearance, shading and details of boxes in a box plot; see
help graph box foralist. F igure 3.25 demonstrates some of these options, and also the
horizontal arrangement of graph hbox , using per capita energy consumption from
states.dta. The option over ( region, sort(1)) callsforboxessorted inascending order
according to their medians on the first-named (and in this case, the only) y variable.
intensity (30) controls the intensity of shading in the boxes, setting this somewhat lower
(less dark) than the default seen in F igure 3.24. Counterintuitively, the vertical line marking
the overall median (320) in Figure 3.25 requiresa yline option, rather than xline .

graph hbox energy, over (region, sort (1)) yline{(320) intensity(30)

Figure 3.25
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The energy box plots in F igure 3.25 make clear not only the differences among medians
but also the presence outliers — four very high-consumption states in the West and South.
With a bit of further investigation, we find that these are oil-producing states: Wyoming,
Alaska, Texas, and Louisiana. Box plots excel at drawing attention to outliers, which are easily
overlooked (and often cause trouble) in other steps of statistical analysis.

>



92 Statistics with Stata

Pie Charts

Pie charts are popular tools for “presentation graphics,” although they have little value for
analytical work. Stata’s basic pie chart command has the form

graph pie w x y z, pie

where the variables w, x, y, and z all measure quantities of something in similar units (for
example, all are in dollars, hours, or people).

Dataset 4Kethnic.dta, on the ethnic composition of Alaska’s population, provides an
illustration. Alaska’s indigenous Native population divides into three broad cultural/linguistic
groups: Aleut, Indian (including Athabaska, Tlingit, and Haida), and Eskimo (Yupik and
Inupiat). The variables aleur, indian, eskimo, and nonnativ are population counts for each
group, taken from the 1990 U.S. Census. This dataset contains only three observations,
representing three types or sizes of communities: cities of 10,000 people or more; towns of
1,000 to 10,000; and villages with fewer than 1,000 people.

Contains data from C:\data\AKethnic.dta

obs: 3 Alaska ethnicity 1990
vars: 7 4 Jul 2005 12:0¢6
size: 63 (99.9 of memory free)

storage display value
variable name type format label variable label
comtype byte 8.0g popcat Community type (size)
pop float %9.0Cg Population
n int %8.0g number of communities
aleut int %8.0g Aleut
indian int %8.0g Indian
eskimo int £28.0g Eskime
nonnativ float %9.0g Non-Native

Sorted by:

The majority of the state’s population is non-Native, as clearly seen in a pie chart (Figure
3.26). The option pie(3, explode) causes the third-named variable, eskimo, to be
“exploded” from the pie for emphasis. The fourth-named variable, ronnativ, is shaded a light
gray color, pie(4, color(gsl3)), for contrast with the smaller Native groups. (In this
monochrome book, our examples use only gray-scale colors, but keep in mind that other
possiblities such as color(blue) or color (cranberry) cxist. Type help
colorstyle forthelist. plabel (3 percent, gap(20)) causesa percentage label
to be printed by the eskimo (variable 3) slice, with a gap of 20 relative radial units from the
center. We see that about 8% of Alaska’s population is Eskimo (Inupiat or Yupik). The
legend option calls for a four-row box placed at the 11 o’clock position within the plot
space.
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graph pie aleut indian eskimo nonnativ, pie(3, explode)
pie(4, color(gsl3)) plabel (3 percent, gap (20))
legend(position(11) rows (4) ring(0))
Alout Figure 3.26
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Non-Natives are the dominant group in Figure 3.26, but if we draw separate pies for each
type of community by addinga by (comtype) option, new details emerge (Figure 3.27, next
pgge). The option angle0 () specifies the angle of the first slice of pie. Setting this first-
slice angle at 0 (horizontal) orients the pies in Figure 3.27 in such a way that the labels are more
readable. The figure shows that whereas Natives are only a small fraction of the population in
Alaska cities, they constitute the majority among those living in vil lages. In particular, Eskimos
ma_ke up a large fraction of villagers — 35% across all villages, and more than 90"/<: in some
This gives Alaska villages a different character from Alaska citics. ‘
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graph pie aleut indian eskimo nonnativ, pie(3, explode)
pie(4, color{gsl3)) plabel(3 percent, gap({8))
legend (rows (1)) by (comtype) angle0(0)

Figure 3.27
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Bar Charts

Although they contain less information than box plots, bar charts provide simple and versatile
displays for comparing sets of summary statistics such as means, medians, sums, or counts. To
obtain vertical bars showing the mean of y across categories of x, for example, type

graph bar (mean) y, over (x)
For horizontal bars showing the sum of y across categories of x/ within categories of x2, type
graph hbar (sum) Yy, over (x1l) over (x2)

The bar chart could display any of the following statistics:

mean Means (the default; used if the type of statistic is not specified)
sd Standard deviations
sum Sums

rawsum  Sums ignoring optionally specified weight

count Numbers of nonmissing observations
max Maximums
min Minimums

median Medians

pl 15t percentiles
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p2 2nd percentiles (and so forth to p99 )
iqr Interquartile ranges

This list of available summary statistics is the same as that for the collapse command(sce
Chapter 2), and also for a number of other commands including graph dot (nextscction)
and table (Chapter 4).

Dataset statehealth.dta contains further data on the U.S. states, combining socioeconomic
measures from the 1990 Census with several health-risk indicators from the Centers for Disease
Control (2003), averaged over 199498,

Contains data from C:\data\statehealth.dta

obs: 51 Health indicators 1894-98 (CDC)

vars: 12 9 Jul 2005 11:56

size: 3,315 (99.9% of memory free)

storage display value

variable name type format label variable label

state str20 %20s US State

region bvte %9.0g region Geographical region

income long %210,0g Median household income, 1990
income?2 float %11.0g income?2 Median income 1low or high
high float %9.0g % adults HS diploma, 1990
college float %9.0g % adults college degree, 1990
overweight float %9.0g % overwelght
inactive float %9.0g % inactive in leisure time
smokeM fleoat %9.0g % male adults smcking
smokeF float %9.0g % female adults smoking
smokeT fleat %%.0g % adults smoking
motor float %9.0g Age-adjusted motor-vehicle

related deaths/100,000

Figure 3.28 graphs the median percent of population inactive in leisure time (inactive)
across four geographical regions (region). We sec a pronouncedregional difference: inactivity
rates are highest in the South (36%), and lowest in the West (21%). Note that the vertical axis
has automatically been labeled “p 50 of inactive,” meaning the 50th percentile or median. The
blabel (bar) option labels the bar heights (20.9, etc.). bar(l, becolor (gs(10))
specifies that bars for the first-named y variable (inactive; there is only one) should be filled
with a medium-light gray color.
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graph bar (median) inactive, over(region} blabel (bar})
bar (1, bcolor(gsl0))

Figure 3.28
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Figure 3.29 (following page) elaborates this idea by adding a second Variable, qverwez'ght,
and coloring its bars a darker gray. The bar labels are size (medium) in Flgur'e'3'.%9,
making them larger than the defaults, size (small),usedin Figure 3.28. Other possibilities
for size( ) suboptions include labels that are tiny , medsmall, medlargg , Oor
large. See help textsizestyle foracompletelist. Figure 3.29 showsthgt regional
differences in the prevalence of overweight individuals are less pronounced than differences
in inactivity, although both variables” medians are highest in the South and Midwest.

L e
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graph bar (median) inactive overweight, over (region)

blabel (bar, size (medium})

bar(l, bcolor(gsl0}) bar(2, bcolor (gs7))

Figure 3.29
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The risk indicators in statehealth.dta include motor-vehicle related fatalities per 100,000
population (mofor). On the next page, Figure 3.30 breaks these down regionally, and then into
subgroups of low- and high-income states (states having median household incomes below or
above the national median), revealing a striking correlation with wealth. Within each region,
the low-income states exhibit higher mean fatality rates. Across both income categories,
fatality rates are higher in the South, and lower in the Northeast. The order of the two over
options in the command controls their order in organizingthe chart. Forthis example we chose
a horizontal bar chartor hbar . In such horizontal charts, ytitle, yline, etc.refer to
the horizontal axis. yline (17.2) marks the overall mean,
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raph hbar (mean) motor, over (income2) over(region) yline£17.2)
° ytitle ("Mean motor-vehicle related fatalities/100,000"™)

Figure 3.30
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Bars also can be stacked, as shown in Figure 3.31. This plot, b?SCd on thg Alaska ethnicit);
data (AKethnic.dta), employs all the defaults to display ethnic composition by type o

community (village, town, or city).

graph bar (sum) nonnativ aleut indian eskimo, over (comtyp) stack

Figure 3.31
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Figure 3.32 redraws this plot with better legend and axis labels. The over option now
includes suboptions that relabel the community types so the horizontal axis ismore informative.
The legend option specifies fourrows in the same vertical order as the bars themselves, and
placed in the 11 o’clock position inside the plot space. It also improves legend labels.
ytitle, ylabel,and ytitle options format the vertical axis.

graph bar (sum) nonnativ aleut indian eskimo,

over (comtyp, relabel(l "Villages <1,000" 2 "Towns 1,000-10,000"
3 "Cities >10,000"))

legend (rows (4) order(4 3 2 1) position(ll) ring({(0)
label (1l "Non-native") label(2 "Aleut")
label (3 "Indian") label(4 "Eskimo"))

stack ytitle (Population)

ylabel (0 (100000)300000) ytick(50000(100000)350000)

Figure 3.32
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Figure 3.32 plots the same variables as the pie chart in Figure 3.27, but displays them quite
differently. Whereas the pie charts show relative sizes (percentages) of ethnic groups within
each community type, this bar chart shows their absolute sizes. Consequently, Figure 3.32 tells

us something that Figure 3.27 could not: the majority of Alaska’s Eskimo (Yupik and Inupiat)
population lives in villages.

Dot Plots

Dot plots serve much the same purpose as bar charts: visually comparing statistical summaries
of one or more measurement variables. The organization and Stata options for the two types
of plot are broadly similar, including the choices of statistical summaries. To see a dot plot
comparing the medians of variables x, y, z, and w, type

graph dot (median) x y z w
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For a dot plot comparing the mean of y across categories of x, type
graph dot (mean) y, over(x)

Figure 3.33 shows a dot plot of male and female smoking rates by region, from
statehealth.dta. The over optionincludes a suboption, sort (smokeM ), whichcalls for
the regions to be sorted in order of their mean values of smokeM — that is, from lowest to
highest smoking rates. We also specify a solid triangle as the marker symbol for smokeM, and
hollow circle for smokeF.

graph dot (mean) smokeM smokeF, over (region, sort{smokeM))
marker (1, msymbol (T)) marker (2, msymbol (Oh))

Figure 3.33
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Although Figure 3.33 displays only eight means, it does so in a way that facilitates several
comparisons. We sce that smoking rates are generally higher for males; that among both sexes
they are higher in the South and Midwest; and that regional variations are substantially greater
for the male smoking rates. Bar charts could convey the same information, but one advantage
of dot plots is their compactness. Dot plots (particularly when rows are sorted by the statistic
of interest, as in Figure 3.33) remain easily readable even with a dozen or more rows.

Symmetry and Quantile Plots

Box plots, bar charts, and dot plots summarize measurement variable distributions, hiding

individual data points to clarify overall patterns. Symmetry and quantile plots, on the other
hand, include points for every observation in a distribution. They are harder to read than
summary graphs, but convey more detailed information.

|
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A hl.stog'ram of per-capita energy consumption in the 50 U.S. states (from srazes dia)
appears in Figure 3.34. The distribution includes a handful of very high-consumption st'ates
which happeq to be oil producers. A superimposed normal (Gaussian) curve indicates that’
energy has a lighter-than-normal left tail, and a heavier-than-normal right tail — the definition

of positive skew,

histogram energy, start (100) width(100)
frequency norm

25

15 20

Frequency

10

5

0 100 200 3060 400 500 600 700 800

Per capita energy consumed, Btu

xlabel (0(100)1000)

Figure 3.34
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Figure 3.35 depicts this distribution as a symmetry plot. It plots the distance of the ith
observation above the median (vertical) against the distance of the ith observation below the
median. All points wouldlie on the diagonal line if this distribution were symmetrical. Instead,
we see that distances above the median grow steadily larger than correspondingdistances below
the median, a symptom of positive skew. Unlike Figure 3.34, Figure 3.35 also reveals that the
energy-consumption distribution is approximately symmetrical near its center.

symplot energy

. Figure 3.35
Per capita energy consumed, Btu g

Distance above median
400 600 800

200

0

0 50 100 150
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Quantiles are values below which a certain fraction of the data lie. For example, a .3
quantile is that value higher than 30% of the data. If we sortr observations in ascending order,
the ith value forms the (i —.5)/n quantile. The following commands would calculate quantiles

of variable energy:
drop if energy >=
sort energy
generate quant = (_n - .5)/ N

Asmentioned in Chapter 2, _nand _N are Stata system variables, always unobtrusively present
when there are datain memory. _nrepresents the current observation number, and N the total

number of observations.
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Quantlle_ plots automatically calculate what fraction of the observations lie below each
value, and display the results graphically as in Figure 3.36. Quantile plots provide aac I?Fa
reference for someone who does not have the orj ginal dataathand. From well-labeled . ';C
plots,.we can estimate order statistics such as median (.5 quantile) or quartiles (.25 quiliml ;
quant}les). The IQR equals the rise between .25 and .75 quantiles. We could ‘ | s
quantile plot to estimate the fraction of observations falling below a éiven value Hhoreada

quantile energy

Figure 3.36
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Quantile-normal plots, also called normal probability plots, compare quantiles of a
variable’s distribution with quantiles of a theoretical normal distribution having the same mean
and standard deviation. They allow visual inspection for departures from normality in every
part of a distribution, which can help guide decisions regarding normality assumptions and
efforts to find a normalizing transformation. Figure 3.37, a quantile-normal plot of energy,
confirms the severe positive skew that we had already observed. The grid option calls for
a set of lines marking the .05, .10, .25 (first quartilc), .50 (median), .75 (third quartile), .90, and
.95 quantiles of both distributions. The .05, .50, and .95 quantile values are printed along the
top and right-hand axes.

gnorm energy, grid

Figure 3.37
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Quantile—quantile plots resemble quantile-normal plots, but they compare quantiles
{ordered data points) of two empirical distributions instead of comparing one empirical
distribution with a theoretical normal distribution. On the following page, Figure 3.38 shows
a quantile—quantile plot of the mean math SAT score versus the mean verbal SAT score in 50
states and the District of Columbia. Ifthe two distributions were identical, we would see points
along the diagonal line. Instead, data points form a straight line roughly parallel to the
diagonal, indicating that the two variables have different means but similar shapes and standard

deviations.
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ggplot msat vsat

Quantile-Quantile Plot Figure 3.38

500 550 600

Mean math SAT score

450

400
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Mean verbal SAT score

Regression with Graphics (Hamilton 1992a) includes an introduction to reading quantile-
based plots. Chambers et al. (1983) provide more details. Related Stata commands include
pnorm (standard normal probability plot), pchi (chi-squared probability plot), and gchi
(quantile—chi-squared plot). ,

Quality Control Graphs

Quality‘control charts help to monitor output from a repetitive process such as industrial
production. Stata offers four basic types: c chart, p chart, R chart, and ¥ chart. A fifth type
called Shewhart after the inventor of these methods, consists of vertically-aligned X and R’
;harts. Iman (1994) provides a brief introduction to R and charts, including the tables used
in calculating their control limits. The Base Reference Manual gives the command details and
formulas used by Stata. Basic outlines of these commands are as follows:

cchart defects unit

Coqstructs ac chart with the number of nonconformities or defects (defects) graphed
against the unit number (unif). Upper and lower control limits, based on the assumption
that number of nonconformities perunit follows a Poisson distribution, appear as horizontal

lines in the chart. Observations with values outside these limits are said to be “out of
control.”

pchart rejects unit ssize
Constrgcts ap chart w.ith the proportion of items rejected (rejects / ssizey graphed against
the un{t nqmber (ymt). Upper and lower control limit lines derive from a normal
approxlrpat.lon, Fakmg sample size (ssize) into account. If ssize varies across units, the
control limits will vary too, unless we add the option stabilize .
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rchart x1 x2 x3 x4 x5, connect(l)
Constructs an R (range) chart using the replicated measurements in variables x/ through

x5 — that is, in this example, five replications per sample. Graph the range within each
sample against the sample number, and (optionally) connect successive ranges with line
segments. Horizontal lines indicate the mean range and control limits. Control limits are
estimated from the sample size if the process standard deviation is unknown. When o is
known we can include this information in the command. For example, assuming ¢ = 10,
rchart x1 x2 x3 x4 x5, connect(l) std(10)
xchart xI x2 x3 x4 x5, connect(l)
Constructs an X (mean) chart using the replicated measurements in variables x/ through
x35. Graphs the mean within each sample against the sample number and connect successive
means with line segments. The mean range is estimated from the mean of sample means
and control limits from sample size, unless we override these defaults. For example, if we
know that the process actually has p = 50 and o =10,
xchart x1 x2 x3 x4 x5, connect(l) mean{(50) std(10)
Alternatively, we could specify particular upper and lower control limits:
xchart x1 x2 x3 x4 x5, connect(l) mean(50) lower (40)
upper (60)
shewhart x1 x2 x3 x4 x5, mean(50) std(10)
In one figure, vertically aligns an X chart with an R chart.

To illustrate a p chart, we turn to the quality inspection data in qualfityl dta.

Contains data from C:h\data‘qualityl.dta

obs: 16 Quality contreol example 1
vars: 3 4 Jul 2005 12:07

slze: 112 (99.9% of memory free)

storage display value

variable name type format label variable label
davy byte 9.0g Day sampled
55ize byte 29.0g Number of units sampled
rejects bvte 29.0g Number of units rejected

Bt ittt R +
day sslize rejects
[mmmm e e f
1. 1 528 53 10 |
2. 7 53 12
3. 1 26 52 12
4. 1 21 52 10 |
5. | 6 51 10 |
bmm +

Note that sample size varies from unit to unit, and that the units (days) are not in order.
pchart handlesthese complications automatically, creating the graph with changing control
limits seen in Figure 3.39. (For constant control limits despite changing sample sizes, add the
stabilize option.)

E—
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pPchart rejects day ssize

W Figure 3.39
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2465637
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2 units are out of control

Dataset qual?'ryZ.dta, borrowed from Iman (1994:662), serves to illustrate rchart and
xcharF - Variables x/ through x4 represent repeated measurements from an industrial
production process; 25 units with four replications each form the dataset.

Contains data from C:\datal\quality2.dta

obs: i
Jome: 22 Quality control {(Iman 1994:662)
: : 4 Jul 2005 12:07
size: 500 (99.9% of memory free)
. storage display valge TS
variable name type format label variable label
x1 float ss.0g  TTTTITTITTTTTOTTomeees
x2 float %9.0g
x3 float %9.0g
x4 float %9.0g
serted by: L TTTTITTTIIIIRTIIomooossmomoooooes

list in 1/5

P e e +
| x1 x2 ®3 x4 |
e !
1. 1 4.6 2 4 2.6
2. 1 6.7 3.8 5.1 4.7 |
3.1 4.6 4.3 4.5 3.9 |
4. | 4.9 6 1.8 5.7 |
5. 1 7.6 6.9 2.5 4.7 |
o —————— +
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Figure 3.40, an R chart, graphs variation in the process T

. ‘e l ekl
informs us that one unit’s rangc 1s “out of control.

rchart x1 x2 x3 x4, connect (1)

Range

10 15
0 ° Sample

1 unit is out of controt

ange over the 25 units. rchart

Figure 3.41,an ¥ chart, shows variation in the process mean.

outside the control limits.

xchart x1 x2 x3 x4, connect (1)

Average
5

10 15
° > Sample

0 units are out of control

5.641104

2472

Figure 3.40

None of these 25 means falls

4911 6.713088

3.108912

Figure 3.41

o
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Adding Text to Graphs

Titles, captions, and notes can be added to makc graphs more self-explanatory. The default
versions of titles and subtitles appear above the plot space; notes (which might document the
data source, for instance) and captions appear below. These defaults can be overridden, of
course. Type help title options for more information about placement of titles, or
help textbox options for details concerning their content. Figure 3.42 demonstrates
the default versions of these four options in a scatterplot of the prevalence of smoking and
college graduates among .S, states, using statehealth.dta. Figure 3.42 also includes titles for
both the left and right v axes, yaxis (1 2), and top and bottom x axes, xaxis (1l 2).
Subsequent ytitle and xtitle options refer to the second axes specifically, by
including the axis (2) suboption. y axis 2 is not neccssarily on the right, and x axis 2 is not
necessarily on the left, as we will see later; but these are their default positions.
graph twoway scatter smokeT college, yaxis{l 2) xaxis (1l 2)

title("This is the TITLE") subtitle("This is the SUBTITLE")

caption{("This is the CAPTION") note("This is the NOTE")

ytitle ("Percent adults smoking")

ytitle("This is Y AXIS 2", axis (2))

xtitle ("Percent adults with Bachelor's degrees or higher")
xtitle("This is X AXIS 2", axis(2))

This is the TITLE Figure 3.42
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Percent adults with Bachelor's degrees or higher
This is the NOTE

This is the CAPTION

Titles add text boxes outside of the plot space. We can also add text boxes at specified
coordinates within the plot space. Several outliers stand out in this scatterplot. Upon
investigation, they turn out to be Washington DC (highest college value, at far right), Utah
(lowest smokeT value, at bottom center), and Nevada (highest smokeT value, at upper left).
Text boxes provide a way for us to identify these observations within our graph, as
demonstrated in Figure 3.43. The option text(15.5 22.5 "Utah") places the word

“Utah” at position y = 15.5, x = 22.5 in the scatterplot, directly above Utah’s data point.
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Similarly, we place the word “Nevada” aty = 33.5,x =15, and draw a box (with small margins;

sce help marginstyle ) around that state’s name. Three lines of left-justified text are
placed next to Washington DC (each line specified in its own set of quotation marks). Any text
box or title can have multiple lines in this fashion; we specify each line individually in its own
set of quotations, then specify justification or other suboptions. The “Nevada™ box uses a
default shaded background, whereas for the “Washington DC” box we chose a white
background color (see help textbox options and help colorstyle).

graph twoway scatter smokeT college, yaxis(l 2) xaxis (1l 2)
title("This is the TITLE") subtitle("This is the SUBTITLE")

caption("This is the CAPTION") note("This is the NOTE")
ytitle ("Percent adults smoking")

ytitle("This is Y AXIS 2", axis(2))

xtitle("Percent adults with Bachelor's degrees or higher")
xtitle("This is X AXIS 2", axis(2))

text(15.5 22.5 "Utah")

text(33.5 15 "Nevada", box margin(small))

text(23.5 32 "Washington DC" "is not actually"” "a state",
box justification(left) margin(small) bfcolor(white})

.. . Fi e 343
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Overlaying Multiple Twoway Plots

Two or more plots from the versatile graph twoway family can be overlaid, one atop the
other, to form a single unified image. Figure 1.1 in Chapter 1 gave a simple example. The
twoway family includes several model-based types such as 1fit (linearregression line),
gfit (quadratic regression curve), and so forth. By themselves, such plots provide minimal
information. For example, Figure 3.44 depicts the linear regression line, with 95% confidence
bands for the conditional mean, from the regression of smokeT on college (states.dta).

*r—'
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graph twoway 1fitci smokeT college

g Figure 3.44
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", Almore mformgtive_ graph results when we overlay a scatterplot on top of the regression
¢ plot, as seen in Figure 3.45. To do this, we essentially give two distinct graphin
commands, separated by “ | | . sepne

graph twoway 1fitci smokeT college
11 scatter smokeT college

Figure 3.45
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The second plot (scatterplot) overprints the first in Figure 3.45. This order has
consequences for the default line style (solid, dashed, etc.) and also for the marker symbols
(squares, circles, etc.) used by cach sub-plot. More importantly, it superimposes the scatterplot
points on the contidence bands so the points remain visible. Try reversing the order of the two
plots in the command, to see how this works.

Figure 3.46 takes this idca a step further, improving the image through axis labeling and
legend options. Becausc these options apply to the graph as a whole, not just to one of the
subplots, the options are placed after a second | | separator, followed by a comma. Most of
these options rescmble those used in previous examples. The order (2 1) option here does
something new: it omits one of the three legend items, so that only two of them (2, the
rcgression line, followed by 1, the confidence interval) appear in the figure. Compare this
legend with Figure 3.45 to see the difference. Although we list only two legend items in Figure
3.46, it 1s still neccssary to specify a rows (3) legend format as if all three were retained.

graph twoway lfitci smokeT college

| scatter smokeT ccllege

|1 , xlabel(12(2)34) ylabel(14(2)32, angle(horizontal))

xtitle("Percent adults with Bachelor's degrees or higher")

ytitle ("Percent adults smoking")

note ("Data from CDC and US Census")

legend(order (2 1) label(l "95% c.i."”) label(2 "regression line")
rows(3) position(l) ring(0)}

Figure 3.46
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The two separate plots (LE£itei and scatter ) overlaid in Figure 3.46 share the same
vy and x scales, so a single set of axes applies to both. When the variables of interest have
different scales, we need independently scaled axes. Figure 3.47 illustrates this with an overlay
of two line plots based on the Gulf of St. Lawrence environmental data in gulf.dia. This figure
combines time series of the minimum mean temperature of the Gulf’s cold intermediate layer
waters (ci/), in degrees Celsius, and maximum winter ice cover {(maxarea), in thousands of
square kilometers. The ¢if plot makes use of yaxis (1), which by default is on the left. The
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maxarea plot makes use of yaxis (2), which by default is on the right. The vari

yl.abel » Ytitle, yline, and yscale options each include an axis (1)OUS
axis (2) suboption, declaring which y axis they refer to. Extra spaces inside the quotati o
marks for ytitle provided a quick way to place the words of these titles where we wlon
them,' near the numerical labels. (For a different approach, see Figure 3.48.) The text bant
containing “Northern Gulf fisheries decline and collapse” is drawn with me;iiu;n—wide mx ins
aroynd th.e text; see help marginstyle for other choices. yscale(ran e&(lrgl)ns
optloqs give both y axes a range wider than their data, with specific values chogen aft)
experimenting to find the best vertical separation between the two series. 4

- graph twoway line cil winter i
: ; yaxis (1l 1 - i
Ytitle("Degrees C ) ysea e(raﬁgegit;iaf?ls(l))
illne(O) ylabel(—l(.5)1.5, axis(l) angle(horizontal) nogrid)
ext (1 1992 "Northern Gulgf" "fisheries decline"”
, box margin (medium))
] line maxarea winter,
yaxis (2) ylabel(50(50)200, axis(2) angle (horizontal))
yscale(range(—100,221) axis (2))
ytitle ("
yline(173.6, axis (2) lpattern(dot))
N if winter > 1949,
xtltle(”"). *1abel(1950(10)2000) xtick (1950(2)2002)
legend(pOSLtlon(ll) ring (0) rows(2) order (2 1)
label (1 "Max ice area") label(2 "Min CIL temp"))

note("Source: Hamilton, Haedri
’ ch and .
DFO (2003)") nd Duncan (2003); data from

"and collapse"

1000s of km~2", axis (2))

1950 1960 1970 1980 1990 2000
Source: Hamilton, Haedrich and Duncan (2003); data fromDFO (2003)
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The text box on the right in Figure 3.47 marks th
Xt - . ¢ late-1980s and early-1990s period when
flﬁey ﬁ.sherles 1.nclud11-1g Fhe Northern Gulf cod declined or collapsed. As the grapﬁ shows, the
isheries declines coincided with the most sustained cold and ice conditions on record. ’

— |
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To place cod catches in the same graph with temperature and ice, we need three
independent vertical scales. Figure 3.48 involves three overlaid plots, with all y axes at left

(default). The basic forms of the three component plots are as follows:

connected maxarea winter

A connected-line plot of maxarea vs. winter, using y axis 3 (which will be leftmost in our final
graph). The y axis scale ranges from —300 to +220, with no grid of horizontal lines. Its title is
“Ice area, 1000 km”2.” This title is placed in the “northwest™ position, placement (nw).

line cil winter
A line plot of ¢il vs. winter, using y axis 2. y scale ranges from —4 to +3, with default labels,

connected cod winter
A connected-linc plot of cod vs. winter, using y axis 1. The title placement is “southwest,”

placement (sw).

Bringing these threc component plots together, the full command for Figure 3.48 appears
on the next page. y ranges for each of the overlaid plots were chosen by experimenting to find
the “right” amount of vertical scparation among the three series. Options applied to the whole
graph restrict the analysis to ycars since 1959, specify legend and x axis labeling, and request

vertical grid lincs.

1
Graphs 115

graph twoway connected maxarea winter yaxis (3)
scal - . !
;’titlzif;nge( 300,220) axis(3)) ylabel (50(50)200, nogrid axi
¢e area, 1000 km*2", axis(3) placement =G
clpattern (dash) nt (nw))

;iab:;?? z;;r:;ngzzé(girls(Z) yscale(range(—4,3) axis(2))
Ttitle("CIL temperature, degrees ¢, axis (2y)) clpattern(solid)
co i i

yiabeljﬁezz:iizozxz;1iij, Yaxis (1) yscale(range(O,ZOO) axis (1))

ytitle("Cod catch, 1000 tons™, axis(l) placement(sw))

11 if winter > 1859,

legan(rinng? position(7) label (1 "Max ice area")

ces a ei(Z Min CIL temp") label (3 "Cod catch") rows (3))
itle(") xlabel(1960(5)2000, grid)

Figure 3.48
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Graphing with Do-Files

E)irgrll();;f}?(t)id irgi)htlcs !lke Figure 3.48 require graph commands that are many physical lines

Chaior 3 hgel ia a views the whole.C(‘)mmand as one logical line). Do-files, introduced in

Command’f 1:p n writing s.uch multi-line commands, They also make it easy to save the
or future re-use, in case we later want to modify the graph or draw it again

The following commands, typed into Stata’s Do-file Editor and saved with the file name

fig03_48.do, become a new do-file for drawing Figure 3,48, Typing

do fig03 48

th i
¢n causes the do-file to execute, redrawing the graph and saving it in two formats
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#delimit ;

use c:\datal\gulf.dta, clear ;

graph twoway connected maxarea winter, yaxis(3)
yscale (range (-300,220) axis(3)) ylabel(50(50)200, nogrid axis(3))
yvtitle ("lce area, 1000 km"2", axis(3) placement (nw))
clpattern(dash)
[ line cil winter, vyaxis(2) yscale(range(-4,3) axis(2))
yiabel(, nogrid axis (2)
ytitle ("CIL temperature, degrees C", axis(2)) clpattern{solid)
| connected cod winter, vaxis{l) yscale(range(0,200) axis (1))
ylabel (, nogrid axis (1))
yvtitle ("Cod catch, 1000 tons", axis(l) placement {sw))
I if winter > 1959,
legend{ring (0) position(7) label(l "Max ice area")

label (2 "Min CIL temp") label (3 "Cod catch") rows(3))

xtitle("") xlabel (1960(5)2000, grid)
saving(c:\data\fig03 48.gph, replace) ;

graph export c:\data\fig03 48.eps, replace ;

#delimit cr

The first line of this do-file sets the semicolon (;) as end-of-line delimiter. Thereafter, Stata
does not consider a line finished until it encounters a semicolon. The second line simply
retrieves the dataset (gulf.dra) necded to draw Figure 3.48; note the semicolon that finishes this
line. The long graph twoway command occupies the next 15 lines on this page, but Stata
treats this all as one logical line that ends with the semicolon after the saving () option.
This option saves the graph in Stata’s .gph format.

Next, the graph export command creates a second version of the same graph in
Encapsulated Postscript format, as indicated by the .eps suffix in the filename fig04 48.eps.
(Type help graph export to learn more about this command, which is particularly
useful for writing programs or do-files that will create graphs repeatedly.)

The do-file’s final #delimit cr command re-sets a carriage return as the end-of-line
delimiter, going back to Stata’s usual mode. Although it is not visible on paper, the line
#delimit cr must itself end with a carriage rcturn (hit the Enter key), creating one last
blank line at the cnd of the do-filc.

Retrieving and Combining Graphs

Any graph saved in Stata’s “live” .gph format can subsequently be retrieved into memory by
the graph use command. For example, we could retrieve Figure 3.48 by typing

graph use fig03 48

Once the graph is in memory, it is displayed onscreen and can be printed or saved again with
a different name or format. From a graph saved earlier in .gph format, we could subsequently
save versions in other formats such as Postseript (.ps), Portable Network Graphics (.png), or
Enhanced Windows metafile (.cmf). We also could change the color scheme, either through
menus or direetly in the graph use command. fig03 48.gph was saved in the s2
monochrome scheme, but we could see how it looks in the s1 color scheme by typing

graph use fig03 47, scheme(slcoclor)

T
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Qraphs saved on disk can also be combined by the graph combine command Thi
provides a way to bring multiple plots into the same image. For illustration, we return't hs
Qulfof St. Lawrence data shown earlier in Figure 3.48. The following comrilands draw gmt ‘
simple time plots (not shown), saving them with the names fig03 _49a.gph, fig03 49b gph arr?(fi:

fig03_49c.gph. The margin (medium) suboptio i in wi
. ) .
- 49C | t-I puons specify the margin width for title boxes

graph twoway line maxarea winter if winter > 1964 xtitle("")
:}i?ei(1965(5)2000, grid) ylabe1(50(50)200, nogrid)
itle ("Maximum winter ice area" ositi i
R tion (4
margin(medium)) P ‘4 FRalo) box
ytitle("1000 km~2") saving(fig03 49a)

graph twoway line cil winter if winter > 1964, xtitle("")
:%:?et(1965(5)2000, grid) Ylabel(-1(.5)1.5, nogrid)
itle("Minimum CIL temperature"” iti i
position(1
margin (medium)) ’ (1) =ing(0) box
ytitle("Degrees C") saving(fig03 49b)

graph twoway line cod winter if winter > 1964, xtitle("")
:}i?e%(1965(5)2000, grid) ylabel(0(20)100, nogrid)
1tle ("Northern Gulf cod catch" ositi i
B on(l
margin (medium)) P (1) £ing(0) box
ytitle("1000 tons") saving (fig03 49c)

. Tp combine these plots, we type the following command. Because the three plots have
i eptlcal X s.cales, it makes sense to align the graphs vertically, in three rows. The imargin
option specifies “very small” margins around the individual plots of Figure 3.49.

graph combine £fig03_49%9a.gph fig03 49b.gph figl03 49c.gph
imargin(vsmall) rows (3) - - ' '

o Figure 3.49
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Typc help graph_combine formore information onthiscommand. Options control
details including the number of rows or columns, the size of text and markers (which otherwise
become smaller as the number of plots increases), and the margins between individual plots.
They can also specify whether x or y axes of twoway plots have common scales, or assign all
components a common celor scheme. Titles can be added to the combined graph, which can
be printed, saved, retrieved, or for that matter combined again in the usual ways.

Our final cxample illustrates several of these graph combine options, and a way to
build graphs with unequal-sized components. Suppose we want a scatterplot similar to the
smoking vs. collcge grads plot sccn earlicr in Figure 3.42, but with box plots of the v and x
variablcs drawn beside their respective axes. Using statehealth.dta, we might first try to do this
by drawing a vertical box plotof smokeT, a scattcrplot of smokeT vs. college, and a horizontal
box plot of college, and then combining the three plots into one image (not shown) with the
following commands.

graph box smokeT, saving(wrongl)

graph twoway scatter smokeT college, saving(wrongl2)
graph hbox college, saving(wrong?2)

graph combine wrongl.gph wrong2.gph wrong3.gph

The combined graph produced by the commands above would look wrong, however. We
would end up with two fat box plots, each the size of the whole scatterplot, and none of the axes
aligned. For a more satisfactory version, we need to start by creating a thin vertical box plot
of smokel. The fxsize (20) optioninthe following command fixes the plot’s x (horizontal)
size at 20% of normal, rcsulting in a normal height but only 20% width plot. Two empty
caption lines are included for spacing reasons that will be apparent in the final graph.

graph box smokeT, fxsize(20) caption("" "y
ytitle("") ylabel (none) ytick(15(5)35, grid) saving(fig03_50a)}

For the second component, we create a straightforward scatterplot of smoke vs. college.

graph twoway scatter smokeT college,
ytitle ("Percent adults smoking")
xtitle ("Percent adults with Bachelor's degrees or higher")
ylabel(, grid) xlabel(, grid) saving(fig03 50b)

The third component is a thin horizontal box plot of college. This plot should have normal

width, but a y (vertical) size fixed at 20% of normal. For spacing reasons, two empty left titles
are included.

graph hbox college, fysize(20) 1lltitle("") 1l2title("")
ylabel (none} ytick(10(5)35, grid) ytitle("") saving(fig03 50c)
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These three components come together in Figure 3.50. The graph combine
command’s cols (2) option arranges the plots in two columns, like a 2-by-2 table with one
empty cell. The holes (3) option specifies that the empty cell should be the third one, so
our three component graphs fill positions I, 2, and 4. iscale(1.05) enlarges mar’ker
symbols and text by about 5%, for readability. The empty captions or titles we built into the
original box plots compensate for the two lines of text (title and label) on each axis of the
scatterplot, so the box plots align (although not quite perfectly) with the scatterplot axes.

graph combine £ig03 50a.gph £ig03 50b.gph fig03 50c.gph,
cols(2) holes(3) iscale(l.05) -

© Figure 3.50
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Summary Statistics and Tables

The summarize command finds simple descriptive statistics such as medians, means, and
standard deviations of measurement variables. More flexible arrangements' of summary
statistics arc available through the command tabstat . For categorical or ordinal variables,
tabulate obtains frequency distribution tables, cross-tabulations, assorted tests, and
measures of association. tabulate canalso constructone-or two-way table_s of means and
standard deviations across categories of other variables. A general table.-maklr'lg .command,
table , produces as many as seven-way tables in which the cells contain §tatlstlcs such as
frequencies, sums, means, or medians. Finally, we review further one-variable prlocedures
including normality tests, transformations, and displays for. exployatory data analysis (EDA).
Most of the analyses covered in this chapter can be accomplished either through the commands
shown or through menu selections under Statistics — Summaries, tables & tests. '

In addition to such general-purpose analyses, Stata provides many tables of partlcular
interest to epidemiologistsl. These are not described in th.is chapter, but can be viewed by
typing help epitab. Selvin (1996) introduces the topic.

Example Commands

summarize yl y2 y3 o N . 1
Calculates simple summary statistics (means, standard deviations, minimum and maximum
values, and numbers of observations) for the variables listed.

summarize yl1 y2 y3, detail ‘ ‘ ‘ dard
Obtains detailed summary statistics including percentiles, median, mean, standar
deviation, variance, skewness, and kurtosis.

summarize y1 if x1 > 3 & x2 < . . . ‘
Finds summary statistics for y/ using only those observations for which variable x/ 18
greater than 3, and x2 Is not missing.

summarize yl [fweight = w], detail ‘ . '
Calculates detailed summary statistics for y/ using the frequency weights in variable w.

tabstat yl, stats(mean sd skewness kurtosis n)

Calculates only the specified summary statistics for variable y/.

tabstat yl1, stats{min p5 p25 p50 p75 p95 max) by(fl) .
Calculates the specified summary statistics (minimum, 5th percentile, 25th percentile, etc.)
for measurement variable y/, within categories ofx/.
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tabulate x1
Displays a frequency distribution table for all nonmissing values of vartablc x/.
tabulate x1, sort miss

Displays a frequency distribution of x/, including the missing values. Rows (values) are
sorted from most to least frequent.

tabl x1 x2 x3 x4
Displays a series of frequency distribution tables, one for each of the variables listed.
tabulate x1 x2
Displays a two-variable cross-tabulation with xJ as the row variable, and x2 as the columns.
tabulate x1 x2, chi2 nof column
Produces a cross-tabulation and Pearson x° test of independence. Does not show cell
frequencies, but instead gives the column percentages in each cell.
tabulate x1 x2, missing row all
Produces a cross-tabulation that includes missing values in the table and in the calculation

of percentages. Calculates “all” available statistics (Pearson and likelihood -, Cramer’s
¥, Goodman and Kruskal’s gamma, and Kcndall’s ).

tab2 x1 x2 x3 x4
Performs all possible two-way cross-tabulations of the listed variables,
tabulate x1, summ{y)

Produces a one-way table showing the mean, standard deviation, and frequency of y values
within each category of x/.

tabulate x1 x2, summ(y) means
Produces a two-way table showing the mean of y at each combination of x/ and x2 values,

by x3, sort: tabulate x1 x2, exact
Creates a three-way cross-tabulation, with subtables for x/ (row) by x2 (column) at each
value of x3. Calculates Fisher’s exact test for cach subtable, by varname, sort:
works as a prefix for almost any Stata command where it makes sense. The sort option
is unnecessary if the data already are sorted on varname.

table y x2 x3, by(x4 x5) contents (freq)
Creates a five-way cross-tabulation, of y (row) by x2 {column) by x3 (supercolumn), by x4
(superrow 1) by x5 (superrow 2). Cells contain frequencies.

table x1 x2, contents (mean yl1 median y2)

Creates a two-way table of x7 (row) by x2 (column). Cells contain the mean of y/ and the
median of y2.

Summary Statistics for Measurement Variables

Dataset ¥Ttown.dta contains information from residents of a town in Vermont. A survey was
conducted soon after routine state testing had detected trace amounts of toxic chemicals in the
town’s water supply. Higher concentrations were found in several private wells and near the
public schools. Worried citizens held meetings to discuss possible solutions to this problem.
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ins C:\data\VTtown.dta .

Congalna fare frOTS? \ VT town survey (Hamilton 1885)

o 7 11 Jul 2005 18:05

vars: 7

sizeo: 1,683 (99.9% of memory fzee)

storage display value ‘ ,

variable name type format label variable label =
ﬁ;:;;; ______ byte =8.0g sexlbl Respondent's gender
?‘f ; byte %8.0g Years liwved in town
'%éé\ byte 38.0g kidlbl Have children <19 in town?
Kl‘i byte ~“8.0g Highest year school completgd
eihzin s byte “8.0g kidlbl Attended meetings on pollution
TMet‘ﬂgQ byte %8.0g contamlb Believe own property/water
o 7 contaminated
school byte =8.0g close School closing opinion
> Il < -= . .

To find the mean and standard deviation of the variable /ived (ycars the respondent had
lived in town), type

summarize Ilived
Variable | Obs Mean Std. Dev. Min Max

lived | 153 19.26797 16.95466 1 81

This table also gives the number of nonmissing observations and the varia.ble’s minimum ar}d
maximumvalues. [fwehadsimplytyped summarize withnovariable list, we would obtain
means and standard deviations for every numerical variable in the dataset.

To see more detailed summary statistics, type

summarize lived, detail

Years lived in town

Percentiles Smallest

1% 1 1

5% Z 1
2t Z -
10 3 1 Chs 153
25% B 1 Sum of Wgt. 153
50 15 Mean 19.26797
o Largest Std. Dewv. 16.95466

75% 29 65
905 42 65 Variance 287.4606
95% 55 68 Skewness 1.20880?
99% &8 81 Kurtosis 4.025642

This summarize, detail output includes basic statistics plus the following:

Percentiles: Notably the first quartilc (25th percentile), median (50th percler.ltile), and third
quartile (75th percentile). Because many samples do not d1v1de. eveply into
quarters or other standard fractions, these percentiles are approximations.

Four smallest and four largest values, where outliers might show up.

|
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Sum of weighis: Stata understands four types of weights: analytical weights ( aweight),
frequency weights ( fweight ). importance weights ( iweight ), and
sampling weights ( pweight ). Different procedures allow, and make sense
with, different kinds of weights. summarize, detail , for example,
permits aweight or fweight. For explanations see help weights.

Variance: Standard deviation squared (more properly, standard deviation equals the
square root of variance).

Skewness: The direction and degree of asymmetry. A perfectly symmetrical distribution
has skewness = 0. Positive skew (heavier right tail) results in skewness > 0;
negative skew (heavier left tail) results in skewness < 0.

Kurtosis: Tail weight. A normal (Gaussian) distribution is symmetrical and has kurtosis
= 3. If a symmetrical distribution has heavier-than-normal tails (that is, is

sharply peaked), it will have kurtosis > 3. Kurtosis < 3 indicates lighter-than-
normal tails.

The tabstat command provides a more flexible alternative to summarize. We can
specify just which summary statistics we want to see. For example,

tabstat lived, stats(mean range skewness)

variable | mean range skewness

With a by (varname) option, tabstat constructs a table containing summary
statistics for each value of varname. The following example contains means, standard
deviations, medians, interquartile ranges, and number of nonmissing observations of lived, for
cach category of gender. The means and medians both indicate that, on average, the women

in this sample had lived in town for fewer years than the men. Note that the median column is
labeled “p50™, meaning 50th percentile.

tabstat lived, stats(mean sd median iqr n) by (gender)

summary for variables: lived
by categories of: gender (Respondent's gender)

gender | mean sd p&0 igr N
_______ F e

male | 23.48333 19.69125 19.5 28 60
female | 16.54839 14.39468 13 19 93
_______ A _______T
Total | 19.26797 16.9546%6 15 24 153

Statistics available for the stats () option of tabstat include:

mean Mean

count Count of nonmissing observations
n Same as count

sum Sum

max Maximum
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min Minimum

range Range = max — min

sd Standard deviation

var Variance

cv Coefficient of variation = sd / mean

semean  Standard crror of mean = sd / sqrt(n)
skewness Skewness
kurtosis Kurtosis

median Median (samc¢ as p50 )
1st percentile (similarly, p5, p10, p25, p50, p75, p95,0r p99)

pl
igr Interquartile range = p75 — p25
q Quartiles; equivalent to specifying p25 p50 p75

Further tabstat options give control over the table layout and labeling. Type help
tabstat to sce a complete list.

The statistics produced by summarize or tabstat describe the sampleathand. We
might also want to draw inferences about the population, for example, by constructing a 99%

confidence interval for the mean of lived.
ci lived, level (99)
Cha Mean std. Err. [99% Conf. Intervall]

Yariable |
_____________ o o e o

lived | 153 19.26797 1.370703 15.69241 22.84354
Based on this sample, we could be 99% confident that the population mean lies somewhere
in the interval from 15.69to 22.84 ycars. Here we useda level ( ) option to specify a 99%
confidence interval. If we omit this option, ci defaults to a 95% confidence interval.
Other options allow c¢i to calculate exact confidence intervals for variables that follow
binomial or Poisson distributions. A related command, e¢ii, calculates normal, binomial, or
Poisson confidencc intervals directly from summary statistics, such as we might encounter in
a published article. It does not require the raw data. Type help ci for details about both

commands.

Exploratory Data Analysis

Statistician John Tukey invented a toolkit of methods for exploratory data analysis (EDA),
which involves analyzing data in an exploratory and skeptical way without making unneeded
assumptions (see Tukey 1977; also Hoaglin, Mosteller, and Tukey 1983, 1985). Box plots,
introduced in Chapter 3, are one of Tukey’s best-known innovations. Another is the stem-and-
leaf display, a graphical arrangement of ordered data values in which initial digits form the
“stems” and following digits for each observation make up the “leaves.”

PRRT—

e e R e
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stem lived

Stem-and-leaf plot for lived (Years lived in town)

0* | llllll1222223333333344444444
0. | 55555555555566666666777889999
1* ] 0000001122223333334
1. | 55555567788899
2%

|

I

!

\

000000111112224444
Z. 56778899
3% 00000124
3. 5555666789
4 0012
4. | 598
5* | 00134
5. | 556
6% |
6. | 5558
7
7.
8% | 1

gf | and SCCO[?d.dlgltS of 0-4 (that is, respondents who had lived in town 10-14 years). 1
E?_otes ﬁrs_t (_jl_glts of 1 apd second digits of 5t0 9 (15-19 years). We can control the nur.nbe'r

0h mei perinitial digit with the lines ( ) option. Forexample, a five-stem versionin which

the 1* stem hold leaves of 0-1, 1t leaves of 2-3, 1f leavesof4-5 15 |

and 1. leaves of 8-9 could be obtained by typing LT eseresy

stem lived, lines (5)
Type help stem for information about other options.

Letter-value displays ( 1w ) use order statistics to dissect a distribution.

lv lived

# 153 Years lived in town
M 77 T T
E . 5 13 | Spread pseudosigma
£ > | : o 29 | 24 17.9731
; o | . 2 39 | 36 15.86391
K oo ’ ; 27 52 | 50 16.62351
: : | : O.;S 60.5 | 59.5 16.26523
N ; | : v g 65 | 64 15.15955
’ T ! ; . 68 | 67 14.597¢2
: ! ! 7.;? 74.5 | 73.5 15.14113
| 81 # 80 15.32737
|
faner fence | . l # below # above
outer fence | -67 13? j : ;
0 0

M deno i “ N i i

" rtgls the med@n, ‘and E the “fourths” (quartiles, using a different approximation than
¢ quartile approximation used by summarize, detail and tabsum). E, D, C

0u£5i2egott; cutpff points such that roughly 1/8, 1/16, 1732, ... of the distribution’ rerr;ains’

extremeem foer: talls.thlle secondlcolumn of numbers gives the “depth,” or distance from nearest

, cach letter value. Within the center b i i

e . each | oX, the middle column gives

) I:m szrpmarles, which arc averages of the two letter values. Ifmidsummariesdriftawaygfrom
¢ median, as they do for /ived, this tells us that the dictriRmtiam Fam e oo+
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skewed as wc move farther out into the tails. The “spreads” are differences between pairs of
letter values. Forinstance, the spread between F ’s equals the approximate interquartile range.
Finally, “pseudosigmas” in the right-hand column estimate what the standard deviation should
be if these letter values described a Gaussian population. The F pseudosigma, sometimes called
a “pseudo standard deviation” (PSD), provides a simple and outlier-resistant check for

approximate normality in symmetrical distributions:

1. Comparing mean with median diagnoses overall skew:
mean > median positive skew
mean = median symmetry
mean < median negative skew
If the mean and median are similar, indicating symmetry, then a comparison
between standard deviation and PSD helps to evaluate tail normality:
standard deviation > PSD  heavier-than-normal tails
standard deviation=PSD  normal tails
standard deviation < PSD  lighter-than-normal tails
Let F,and F', denote 1stand 3rd fourths (approximate 25th and 75th percentiles).

Then the interquartile range, JOR, equals F, - F,, and PSD = IQR / 1.349,
We call an x value a “mild outlier” when it

2.

1v also identifies mild and severe outliers.
lies outside the inner fence, but not outside the outer fence:
F,=-3I0R <x<F,-15I0R or F,+1.5IQR<x< F,+3I0R
The value of x is a “severe outlier” if it lies outside the outer fence:
x<F,-3IQR or x>F,+3I0QR
1lv gives these cutoffs and the number of outliers of each type. Severe outliers, values beyond
the outer fences, occur sparsely (about two per million) in normal populations. Monte Carlo
simulations suggest that the presence of any severe outliers in samples of # = 15 to about
20,000 should be sufficient evidence to reject a normality hypothesis at a = .05 {Hamilton
1992b). Severe outliers create problems for many statistical techniques.
summarize, stem,and 1lv all confirm that /ived has a positively skewed sample
distribution, not at all resembling a theoretical normal curve. The next section introduces more
formal normality tests, and transformations that can reduce a variable’s skew.

Normality Tests and Transformations

Many statistical procedures work best when applied to variables that follow normal
distributions. The preceding section described exploratory methods to check for approximate
normality, extending the graphical tools (histograms, box plots, symmetry plots, and
quantile-normal plots) presented in Chapter 3. A skewness—kurtosis test, making use of the
skewness and kurtosis statistics shown by summarize, detail , can more formally
evaluate the null hypothesis that the sample at hand came from a normally-distributed

population.

]
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sktest lived

sAewness/Kur Losis tes s for Normal i Y
L
valle I r ke << a
ariable P (S,»CWI’]E.JQ) Pr(Kur 0sisy ad ¢ j(2) lP/ e 2
rob>c

lived
| 0.000 0.028 24.79 J.0000

)9 S( . 2 L y / ' y - . , (
” k I'()S] F “ 8 and 1r Ot Stat t S Cons ([e]e(l O lﬂ 1 ()()()0 Stata I()u“dS 6]

displayed probabilities to three or four decimals; “0.0000” really means P < 00005

Ot ' i i
her normality or log-normality tests include Shapiro- Wilk W ( swilk)and Shapi
apiro—

Francia i
craly ( sfrancia ) methods, Type help sktest to see the options

change distribution<’ < . .
and pgerhzispsntr);](t)lrzns shlapes, with the aim of making skewed distributions more symm tri
betwoen variab s (Iéfiiir y normal. Transformations might also help linearize r‘e)llati < ;1?3‘1
¢ apter ). Table 4.1 shows a progression called the “ladder of p(:)ns -
. wers

variable equal to the natura] (base ) logarithm of /ived, type

generate loglived = ln(lived)

root) and —.5 {reciprocal root) transformations.

orig

Tablie 4.1: Ladder of Powers

Transformati
on Formula
Effect
cube
new = -
old +3 reduce severe negative skew

square
new = A
o : old +2 reduce mild negative skew
old
e v ° no change (raw data)
ew =
- old +.5 reduce mild positive skew
new =
o log ) In(old) reduce positive skew
A 0 neéw = logl0(old) |
negative reciprocal
‘ p root new = -(old +-,5) reduce severe positi k
negative reciprocal l e
new = -(old *-1})
‘ ! re eV iti
negative reciprocal square new = -(old ~-2) e e e shen

negative reciprocal cube new = -(old *~-3)

When raising ¢
il kgth(; }elljp}(])wer less than zero, we take negatives of the result to preserve the
ghest value of o/d becomes transformed into the hiochect <alvia &
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and so forth. When o/d itself contains negative or zero values, it is necessary to add a constant
before transformation. Forexample, if arrests measures the number of times a person has been
arrested (0 for many people), then a suitable log transformation could be

generate larrests = ln(arrests + 1)
The ladder command combines the ladder of powers with sktest tests for
normality. [t tries each power on the ladder, and reports whether the result is significantly

nonnormal. This can be illustrated usingthe severely skewed variable energy, per capita energy
consumption, from states.dta.

ladder energy

Transformaticn formula chi2 (2} P({chi2)
cube energy”™3 53.74 ¢.000
square energy”2 45.53 0.000
raw energy 33.25 0.000
square-roct sgrt (energy) 25.03 0.000
log log (energy) 15.88 0.000
reciprocal root l1/sgrtienergy) 7.36 0.025
reciprocal 1/energy 1.32 0.517
reciprocal square 1/ (energy”2) 4.13 0.127
recipreccal cube 1/ {energy”3) 11.56 0.003

It appears that the reciprocal transformation, 1/energy (or energy '), most closely resembles
a normal distribution. Most of the other transformations (including the raw data) are
significantly nonnormal. Figure 4.1 (produced by the gladder command) visually supports
this conclusion by comparing histograms of each transformation to normal curves.

gladder energy

_ o Figure 4.1
8 cubic g square - identity
-3 2\ (=3
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2 § g
g g g
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o v 2
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o 8 o 2
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Per capita energy consumed, Btu
Histograms by transformation

Figure 4.2 shows a corresponding set of quantile—normal plots for these ladder of powers
transformations, obtained by the “quantile ladder” command qladder . To make the tiny
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plots more readable in this example we scale the labels and marker symbols up by 25% with
the scale(1l.25) .optlon, The axis labels (which would be unreadable and crowded) are
suppressed by the options ylabel (none) xlabel (none).

gladder energy, scale(l.25) ylabel (none) xlabel (none)

cubic square identity Figure 4.2
PR E——— w ..M’ MI
sqgn log 1/sqrt
. ,M ' ”’./ ’/
inverse 1/square 1/cubic

Per capita energy consumed, Bty
Quantile-Normal plots by transformation

An altel"natlve technique called Box-Cox transformation offers finer gradations between
transformations and automates the choice among them (easier for the analyst, but not always

a good thing). The command beskew0 finds a value of A (lambda) for the Box-Cox
transformations

yE=h o A>0ord<0
or

¥ =1n(y) A=0
such that y ™ has approximately 0 skewness.

Applying this t ;
transformed variable beneray: pplytng 0 energy, we obtain the

bcskew0 benergy = energy, level (95)

Transform | L [95% Conf. Interval) Skewness

{energy”L-1)/L | -1.246052 -2.052503
: - 1. 052503 -.616338
(1 missing value generated) 3 000281

That is, benergy = (energy '3 — 1)/(=1.246) is the transformation that comes closest to

symmetry (as defined by the skewness statistic). The Box—Cox parameter A = -1.246 is not far
from our ladder-of-powers choice, the -1 power. The confidence interval for A
-2.0525<A <-6163 ’

allows us to reject some other possibilities includin i
‘ g logarithms (A = 0) or square roots (A =.5).
Chapter 8 describes a Box Cox approach 1o regression modeling. ( L
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Frequency Tables and Two-Way Cross-Tabulations

p

tabulating the categorical variable meetings:

tabulate meetings

Ettended
meetings on | - cum
pollution | rreq ﬁ?fffi?t ____________
____________ +-;_;_>_‘1 69.28 69.28
no } :1~ 30.72 100.00
yes b A eere 20T

______ ;:;;;:N“-“ 123 100.00

istributi ie t have thousands of values.
distributions for variables tha .
tabulate can producc frequency butions ble it mans valugs
¢ distribution table for a va alue
t a manageable frequency : Jaes
EO CO‘;S:”;ZU might %I’St want to group those values by applying gel;erate
ecode nerate ).
ions (see Chapter 2 or help ge
recode or autocode options (s AT
iable names creates a two-way cro :
bulate followed by two varia ' uaon Tor
exan:;le here is a cross-tabulation of meetings by kids (whether respondent has ¢
19 living in town):

tabulate meetings kids

Attended | ‘ )
meefings | Have chlldze? <19 in
cn | town? .
lluticn | ne ves | To
postutien Lo one o ves [
____________ e m e
| a2 59 | 106
HHS | 11 36 ] 47
ges ooy o
""" Totsl 1 63 9 | ;53
ot 62

i lting table.
i 5 he second forms columns in the resu
- ed variable forms the rows, and t §
1\;1; sflresihnain(:nly 11 of these 153 pcople were non-parents who attended the meeting

tabulate has a number of options that arc useful with frequency tables:
a

i 11 of these
Equivalent to the options chi2 lrchi2 gamma taub V. Notallo

i i ub assume
= options will be equally appropriate fora given table. gm: anldr:::lrflu.-2 poume
that both variablcs have ordered categories, whereas chi2 , ,
do not.
* (chi i fa two-wa
hi2 Displays the contribution to Pearson %* (chi-squared) in each cell of a y
cchniy
table.
for each cell.
cell Shows total percentages | | .
hi2 Pearson i~ test of hypothesis that row and column variables are independent.
. i 0’ i - table.
lrechi2 Displays the contribution to likelihood-ratio % in each cell of a two-way
clrc

T TTT————————

+
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column  Shows column percentages for each cell.

exact Fisher’s exact test of the independence hypothesis. Superior to chi2 ifthe table

contains thin cells with low expected frequencies. Often too slow to be practica]
In large tables, however.

expected Displays the expected frequency under the assumption of independence in eachcell
of a two-way table.

gamma Goodman and Kruskal’s Y (gamma), with its asymptotic standard error (ASE).
Measures association between ordinal variables, based on the number of
concordant and discordant pairs (ignoring ties). -1 « Y < L

generate (new) Createsa set of dummy variables named newl, new?2, and so on to represent
the values of the tabulated variable.

lrehi2  Likelihood-ratio X test of independence hypothesis. Not obtainable if the table
contains any empty cells.

matcell (matname) Saves the reported frequencies in matmame.

matcol (matname) Saves the numeric values of the | x ¢ column stub in matiame.
matrow(matname) Saves the numeric values of the r x | row stub in matname.
missing Includes “missing” as one row and/or column of the table.

nofreq  Does not show cel] frequencies,

nokey Suppresses the display of a key above two-way tables. The default is to display the
key if more than one cell statistic is requested and otherwise to omit it. Specifying

key forces the display of the key.
nolabel Shows numerical values rather than value labels of labeled numeric variables,

plot Produces a simple bar chart of the relatjve frequencies in a one-way table,

replace Indicates that the immediate data specified as arguments to the tabi command
are to be left as the current data in memory, replacing whatever data were there.

row Shows row percentages for each cell.

sort Displays the rows in descending order of frequency (and ascending order of the
variable within equal valucs of frequency)

The identities of the rows and columns will be determined from g the data,

including the varname = 0 group, and so there may be entries in the table with
frequency 0.

taub Kendall’s ¢ (tau-b), with its asymptotic standard error (ASE). Measures

association between ordinal variables. taub is similar to gamma , but uses a
correction for ties, -1 < T, < 1.

v Cramer’s ¥ (note capitalization), a measure of association for nominal variables.

In2x2tables, -1 < pe . In larger tables, 0 < 1 < |
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wrap Requcsts that Stata take no action on wide, two-way tables to make them regdable.
Unless wrap is specified, wide tables are broken into pieces for readability.

To get the column percentages (because the column variable, kids, is the independent
variable) and a  test for the cross-tabulation of meetings by kids, type

tabulate meetings kids, column chi?2

| frequency |
| column percentage |

e e e +
attanded |
meetings | Have children <19 in
on | town?
pollution | no yes | Total
___________ R S
no | 52 54 | 106
| 82.54 60.00 | 69.28
___________ S iatatiaiete
yes | 11 Kl 47
| 17.46 40.00 | 30.72
___________ e iaiatata
Total | 63 30 | 153
| 100.00 100.00 | 100.00
Pearson chiz(l) = 8.84064 pr = 0.003

Forty percent of the respondents with children attended msf,et.ings, cpmpared with about
17% of the respondents without children. This association is statistically significant (P = .'O(.)3).
Occasionally we might need to re-analyze a published table, without access to‘the original
raw data. A special command, tabi (“immediate™ tabulation), acco mp]lshés this. Type the
cell frequencies on the command line, with table rows separated by “ \ 7. For illustration, h.ere
ishow tabi could reproduce the previous x” analysis, given only the four cell frequencies:

tabi 52 54 \ 11 36, column chi?

| frequency |
| column percentage |

B it +

| col
row | 1 29 Total
___________ S S
1| 52 54 | 106
| 82.54 60.00 | 69.28
___________ S
2 11 36 | 47
| 17.4¢6 40.00 30.72
___________ it
Total | 63 90 | 153
| 100.00 100.00 | 100.00

i+
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Unlike tabulate, tabi does notrequire or refer to any data in memory. By adding the
replace option, however, we can ask tabi to replace whatever data are in memory with
the new cross-tabulation. Statistical options (chi2, exact, nofreq, and so forth) work
the same for tabi astheydo with tabulate.

Multiple Tables and Multi-Way Cross-Tabulations

With surveys and other large datasets, we sometimes need frequency distributions of many
different variables. Instead of asking for each table separately, for example by typing
tabulate meetings,then tabulate gender,and finally tabulate kids, we
could simply use another specialized command, tabl :

tabl meetings gender kids
Or, to produce one-way frequency tables for each variable from gender through school in this
dataset (the maximum is 30 variables at one time), type

tabl gender-school

Similarly, tab2 creates multiple two-way tables. For example, the following command

cross-tabulates every two-way combination of the listed variables:

tab2 meetings gender kids
tabl and tab2 offer the same options as tabulate.

To form multi-way contingency tables, one approach uses the ordinary tabulate
command with a by prefix. Here is a three-way cross-tabulation of meetings by kids by
contam (respondent believes his or her own property or water contaminated), with x* tests for
the independence of meetings and kids within each level of contam:

by contam, sort: tabulate meetings kids, nofreq col chiZ2

-> contam = no
Attended
meetings | Have children <19 in
on | town?
pollution | no yes | Total
___________ b o o o
no | 91.30 68.75 | 78.18
yes | 8.70 31.25 | 21.82
___________ S TP
Total | 100.00 100.00 | 100.00
Pearson chi2(1l) = 7.9814 Pr = 0.005
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-> contam = yes

Attended

meetings | Have children <19 in

on | town?
pollution no yes | Total
,,,,,,,,,,, b L ___
no | 58.82 38.4% 46.35
ves | 47.18 61.54 | 53.49
,,,,,,,,,,, Y SO,
Total | 100.00 132.00 | L0D.0G6

Pearson chiz2(1l) = 1.7131 Pr = 0.191

Parcnts were more likely to attend meetings, among both the contaminated and uncontaminated
groups. Only among the larger uncontaminated group is this “parenthood effect” statistically
significant, however. As multi-way tables separate the data into smaller subsamples, the size
of these subsamples has noticeable effects on significance-test outcomes.

This approach can be extended to tabulations of greater complexity. For example, to get
a four-way cross-tabulation of gender by contam by meeiings by kids, with x° tests for cach
meetings by kids subtable (results not shown), type the command

by gender contam, sort: tabulate meetings kids, column chi2

A better way to produce multi-way tables, if we do not need percentages or statistical tests,
is through Stata’s gencral table-making command, table. This versatile command has many
options, only a few of which are illustrated herc. To construct a simple frequency table of

meetings, type

table meetings, contents(freq)

httended

meetings |

on |

pelluezicn | Treqg
no 106
ves | 47

For a two-way frequency table or cross-tabulation, type

table meetings kids, contents(freq)

| Have
Attended | children
meetings | <19 in
on | town?
pollution | no yes
__________ e
o 52 54
es 11 36

t
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If we specify a third categorical variable, it forms the “supercolumns™ ofa threc-way table:
table meetings kids contam, contents(freq)

| Eelieve own
| pProperty/water

Attended | contaminated and Have
meetings | children <19 in town?
on | ~-— no --—- == yes --
pollution | o] yes no ves
__________ bm e e ________
no 42 44 10 10
ves | 9 20 7 16

.More complicated tables require the by () option, which allows up to four “supperrow”
variables. table thus can produce up to seven-way tables: one row, one column. one
supercolumn, and up to four superrows. Here is a four-way example:

table meetings kids contam, contents (freq) by (gender)

Responden

|

t's !
gender | Believe own
and | property/water
Attended contaminated and Have
meetings I ¢hildren <19 in town?
on | === no --- -~- yes —-
pollution | no yes no yes
__________ e e~
male |

nc | 18 18 3

ves | 7 3 6
__________ bemm e mm e
female |

no | 24 26 7 7

ves | 2 13 4 10

The contents( ) option of table specifies what statistics the table’s cells contain:
contents (freq) Frequency
contents (mean varname) Mean of varname
contents (sd varname) Standard deviation of varname
contents (sum varname) Sum of varname
contents (rawsum varname) Sums ignoring optionally specified weight
contents (count varname) Count of nonmissing observations of varname
contents (n varname) Same as count
contents (max varname) Maximum of varname
contents (min varname) Minimum of varname
contents (median varname) Median of varname

contents (iqr varname) Interquartile range (IQR) of varname
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contents (pl varname) 1stpmcenﬂleofvarname
contents (p2 varname) 2nd percentile of varname (so forthto p99)

The next section illustrates several more of these options.

Tables of Means, Medians, and Other Summary Statistics

tabulate readily produces tables of means and standard deviations within categories of the
tabulated variable. For example, to form a one-way table with means of /ived within each

category of meetings, type

tabulate meetings, summ{lived)

At tended |

mzetings on | Summary of Years lived in town
pollution | Mean std. Dev. Freqg.
____________ ettt b
no | 21.508434 17.743809 106
yes | 14.21276¢6 13.911109 47
,,,,,,,,,,,,, ity
Total | 19.267974 16.954663 153

Meectings attenders appear to be relative newcomers, averaging 14.2 years in town, compared
with 21.5 years for those who did not attend.
We can also use tabulate to form a two-way table of means by typing

tabulate meetings kids, sum (lived) means

Means of Years lived in town

Attended
meetings | Have children <19
on i in town?
pcllution | no ves | Total
___________ PR
| 28.307692 14.962963 | 21.509434
yes | 3.363636 11.416667 | 14.212766
___________ A
Total | 27.444444 13.544444 | 19.,267974

Both parents and nonparents among the mecting attenders tend to have lived fewer years in
town, so the newcomer/oldtimer division noticed in the previous table is not a spurious
reflection of the fact that parents with young children were more likely to attend.

The means option used above called for a table containing only means. Otherwise we
get a bulkier table with means, standard deviations, and frequencies in each cell. Chapter 5
describes statistical tests for hypotheses about subgroup means.

Although it performs no tests, table nicely builds up to seven-way tables containing
means, standard deviations, sums, medians, or other statistics (see the option list in previous
section). Hete is a one-way table showing means of lived within categories of meefings:

t
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table meetings, contents (mean lived)

Attended
meetings
cn

pecllution rncan (lived
no 21.5C94
ves 14,2128

A two-way tablc of means is a straightforward extension:

table meetings kids, contents(mean lived)

Attended
meetings Have children <19
on in town?

no yes

28,3077 14.963
23.3636 11.4167

Table cells can contain more than one statistic. Suppose we want a two-way table with both
means and medians of the variable /ived:

table meetings kids, contents (mean lived median lived)

Attended

meetings {Have children <19

on | in town?

pollution | no ves

e e -
no ' 28.3077 14.963

| 27.5 12.5
|
ves | 23.3636 11.4167
|

The medians in the table above confirm our earlier conclusion based on means: the meeting
attenders, both parents and nonparents, tended to have lived fewer years in town than their non-
attending counterparts. Medians within each cell are less than the means, reflecting the positive
skew (means pulled up by a few long-time residents) of the variable lived.

.T}'le cell contents shown by table could be means, medians, sums, or other summary
statistics for two or more different variables.
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Using Frequency Weights

summarize , tabulate, table, and related commands can be used with frequency
weights that indicate the number of replicated observations. For example, file sextab2.dta
contains results from a British survey of sexual behavior (Johnson et al. 1992). It apparently

has 48 observations:

Contains data from C:\data\sextab?.dta
48 British sex survey (Johnson 82)

ohs:
vars: 4 11 Jul 2005 18:05

size: 4372 (99.9% of memory free)

storage display value

variable name type format label variable label
age byvte %8.0g age Age
gender byte 38.0g gender Gender ‘
lifepart byte z8.0g partners # heterosex partners lifetime
count int 28.0g Number of individuals

Sorted by: age lifepart gender

One variable, count, indicates the number of individuals with each combination of
characteristics, so this small dataset actually contains information from over 18,000
respondents. For example, 405 respondents were male, ages 16 to 24, and reported having no

heterosexual partners so far in their lives.

list in 1/5

| age gender lifepart count |

| ___________________________________
1. | 16-24 male none 405 |
2. | 16-24 female none 465 |
3. 1 16-24 male one 323 |
4. | 16=-24 female one 606 |
5. | 16-24 male two 194 |

We use count as a frequency weight to create a cross-tabulation of lifepart by gender:

tabulate lifepart gender [fw = count]

#
heterosex |

partners | Gender
lifetime | male female | Total
___________ S S
none | 544 586 | 1130
one | 1734 4146 | 5880
two | 887 1777 | 2664
3-4 | 1542 1908 | 3450
5~9 | 1630 1364 | 2994
10+ | 2048 708 | 2756
___________ o bl
Total | B389 10489 | 18874

The usual tabulate options work as expected with frequency weights. Here is the same
table showing column percentages instead of frequencies:

-

!
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tabulate lifepart gender [fweight = count], column nof
#
heterosex
partners | Gender
lifetime | male female | Total
___________ e e ______
none | 6.49 5.59 | 5.99
one | 27.68 39.53 | 31.15
two f 10.58 16.94 | 14.11
3-4 18.39 18.19 | 18.28
5-9 19.44 13.00 | 15.86
10+ | 24.42 6.75 | 14.60
___________ Fm e
Total 100.00 100.00 | 100.00

Other types of weights such as probability or analytical weights do not work as well with
tabulate because their meanings are unclear regarding the command’s principal options.

A different application of frequency weights canbe demonstrated with summarize. File
collegel.dta contains information on a random sample consisting of 11 U.S. colleges, drawn
from Barron’s Compact Guide to Colleges (1992).

Contains data from C:\data\lcollegel.dta

bs:
Vzrs' 11 Colleges sample 1 (Barron's 92y
Ars: 5 11 Jul 2005 18:05
size: 429 (99.9% of memory free)
‘ storage display value o TTTTmTmTYT
variable name type format label variable label
sghofi ;trZB 328s College or university
enro . int jB.Og Full-time students 13891
pctmale byte %8.0g Percent male 1991
msai }nt %8.0g Average math SAT
Yf?__, int $8.0g Average verbal SAT
Sorted by: T e s s s e

Tl;le vlariables include msat, the mean math Scholastic Aptitude Test score at each of the 11
schools.

list school enroll msat

e _______
_________________ +
| school enroll msat |
' ________________________________
_____________ 1
1. | Brown University 5550 680 |
2. | U. Scranton 3821 554 |
3. | U. North Carolina/Asheville 2035 540
4. Claremont College 849 660 |
5. | DePaul University 6197 547
I _______________________________
______________ '
6, | Thomas Aquinas College 201 570 |
7. Davidson College 1543 640 |
g. | U. Michigan/Dearborn 3541 485 |
9. | Mass. College of Art 961 182 |
10, Oberlin College 2765 640
‘ _________________________________
____________ ‘
11 | American University 5228 587 |
e ____
_______________________ +
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We can easily find the mean msai value among these 11 schools by typing
summarize msat

variable Obs e

an math SAT score the same weight. DePaul

i i h school’s me
T S e 20 fimes 25 omas Aquinas College. To take the

University, however, has 30 times as many studgnts as Th
different enrollments into account we could weight by enroll,

summarize msat [fEweight = enroll]
variaople | Cks Mean Std. Dev Min -‘_%?f
_____________ e
msat | 32691 583,064 £3.10665 482 680
Typing
summarize msat [freq = enroll]

would accomplish the same thing.
The enrollment-weighted mean, unlike th

suming they a
the 32,691 students at these colleges (assuming they al th ‘
could not say the same thing about the standard deviation, minimum, or maximum. Apart from

the mean, most individual-level statistics cannot be calculated s%mply by Wei‘ghtmg (li(ata th'flt
alrcady are aggregated. Thus, we need to use weights with caution. They might mi e sense
in the context of one particular analysis, but seldom do for the dataset as a whole, when many

different kinds of analyses are needed.

e unweighted mean, is equivalent to the mean for
11 took the SAT). Note, however, that we

ANOVA and Other
Comparison Methods

Analysis of variance (ANOVA) encompasses a set of methods for testing hypotheses abo ut
differences between means. Its applications range from simple analyses where we compare thie
means of v across categories of x, to more complicated situations with multiple categorical ard
measurement x variables. ftests for hypotheses regarding a single mean {one-sample) ora pair
of means (two-sample) correspond to elcmentary forms of ANOVA,

Rank-based “nonparametric” tests, including sign, Mann—Whitney, and Kruskal-Wallis,
take a different approach to comparing distributions. These tests make weaker assumptionns
about measurement, distribution shape, and spread. Consequcntly, they remain valid under- a
wider range of conditions than ANOVA and its “parametric” relatives. Careful analysts
sometimes use parametric and nonparametric tests together, checking to see whether both poizt
toward similar conclusions. Further troubleshooting is called for when parametric and
nonparametric results disagree.

anova is the first of Stata’s model-fitting commands to be introduced in this book. Lilkke
the others, it has considerable tlexibility encompassing a wide variety of models. anova can
fit one-way and N-way ANOVA or analysis of covariance (ANCOVA) for balanced amd
unbalanced designs, including designs with missing cells. It can also fit factorial, nestcad,
mixed, or repeated-measures designs. One follow-up command, predict , calculates
predicted values, several types of residuals, and assorted standard errors and diagnostic
statistics after anova. Another followup command, test . obtains tests of user-specitied
null hypotheses. Both predict and test work similarly with other Stata model-fittim g
commands, such as regress (Chapter 6).

The following menu choices give access to most operations described in this chapter:
Statistics — Summaries, tables, & tests — Classical tests of hypotheses
Statistics — Summaries, tables, & tests — Nonparametric tests of hypotheses
Statistics - ANOVA/MANOVA
Statistics — General post-estimation — Obtain predictions, residuals, etc., after estimation

Graphics — Overlaid twoway graphs

144
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Example Commands

|
g
|

anova y x1 x2
Performs two-way ANOVA, testing for differences among the means of y across categories

of xI and x2.

anova y x1 x2 x1*x2
Performs a two-way factorial ANOVA, including both the main and interaction (x/*x2)
effects of categorical variables x/ and x2.

anova y x1 x2 x3 x1*x2 x1*x3 x2*x3 x1*x2*x3
Performs a three-way factorial ANOVA, including the three-way interaction x/ *x2*x3, as
well as all two-way interactions and main effects.

anova reading curriculum / teacher|curriculum
Fits a nested model to test the effects of three types of curriculum on students’ reading
ability (reading). teacher is nested within curriculum ( teacher|curriculum )
because several different teachers were assigned to each curriculum. The Base Reference
Manual provides other nested ANOVA examples, including a split-plot design.

anova headache subject medication, repeated (medication)
Fits a repeated-measures ANOVA model to test the effects of three types of headache
medication (medication) on the severity of subjects’ headaches (headache). The sample
consists of 20 subjects who report suffering from frequent headaches. Each subject tried
each of the three medications at separate times during the study.

anova y x1 x2 x3 x4 x2*x3, continuous (x3 x4) regress
Performs analysis of covariance (ANCOVA) with four independent variables, two of them
(x1 and x2) categorical and two of them (x3 and x4) measurements. Includes the x2*x3
interaction, and shows results in the form of a regression table instead of the default
ANOQVA table.

kwallis y, by(x)
Performs a Kruskal—Wallis test of the null hypothesis that y has identical rank distributions
across the k categories of x (k > 2).

oneway y X
Performs a one-way analysis of variance (ANOVA), testing for differences among the
means of y across categories of x. The same analysis, with a different output table, is
pnxhwedby anova y X.

oneway y x, tabulate scheffe
Performs one-way ANOVA, including a table of sample means and Scheffé multiple-
comparison tests in the output.

ranksum y, by ({x)
Performs a Wilcoxon rank-sum test (also known as a Mann—Whitney U test) of the null
hypothesis that y has identical rank distributions for both categories of dichotomous
variable x. If we assume that both rank distributions possess the same shape, this amounts
to a test for whether the two medians of y are equal.
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serrbar ymean se x, scale(2)
Constructs a standard-error-bar plot from a dataset of means. Variable ymean holds the
group mcans of y; se the standard errors; and x the values of categorical variable x.
scale (2) asks for bars extending to +2 standard errors around each mean (default is =1
standard error).

signrank yl1 = y2
Pf:rf(.)rms. a Wilcoxon matched-pairs signed-rank test for the equality of the rank
distributions of v/ and v2. We could test whether the median of y/ differs from a constant
such as 23.4 by typing the command signrank yi = 23.4.

signtest y1 = y2
Tes_ts the equality of the medians of v/ and v2 (assuming matched data; that is, both
variables measured on the same sample of observations). Typing signtest y1 = 5
would perform a sign test of the null hypothesis that the median of y/ equals 5.

ttest y = 5
Performs a one-sample ¢ test of the null hypothesis that the population mean of v equals 5.

ttest yl1 = y2
Performs a one-sample (paired difference) ¢ test of the null hypothesis that the population
mean ofy]. gquals that of y2. The default form of this command assumes that the data are
paired. With unpaired data (v and y2 are measured from two independent samples), add
the option unpaired.

ttest y, by (x) unequal
Performs a two-sample ¢ test of the null hypothesis that the population mean of y is the
same for both gategories of variable x. Does not assume that the populations have equal
variances. (Without the unequal option, ttest does assume equal variances.)

One-Sample Tests

One-sample 7 tests have two seemingly different applications:

. Testing whether a sample mean y differs significantly from an hypothesized value |, .

2. Testing \.)vhether the means of v, and y, , two variables measured over the same set of
observations, differ significantly from each other. This is equivalent to testing whether the
mean of a “difference score” variable created by subtracting y, from y, equals zero.

We use essentially the same formulas for either application, although the second starts with
information on two variables instead of one.

The data in writing.dta were collected to evaluate a college writing course based on word
processing {Nash and Schwartz 1987). Measures such as the number of sentences completed
in timed writing were collected both before and after students took the course. The researchers
wanted to know whether the post-course measures showed improvement.
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describe

Contains data from C:\data\writing.dta
24 Nash and Schwartz (1987)

obs:

vars: 9 12 Jul 2005 10:16

size: 312 (99.9% of memory free)

storage display value

variable name type tormat label variable label
id byte “8.0g s1bl Student ID
pres byte %8.0g # of sentences (pre-test)
preP byte 58.0g 4 of paragraphs (pre-test)
preC byte %28 .0g Coherence scale 0-2 (pre-test)
prek byte 58.0g Evidence scale 0-6 (pre-test)
posts byte %8.0g # of sentences (post-test)
postP byte 58.0g # of paragraphs (post-test)
postC byte %8, 0g Coherence scale 0-2 (post-test)
postE byte %8.0g Evidence scale 0-6 (post-test)
Sorted by:

Suppose that we knew that students in previous years were able to complete an average of
10 sentences. Before examining whether the students in writing.dta improved during the
course, we might want to learn whether at the start of the course they were essentially like
earlier students — in other words, whether their pre-test (preS) mean differs significantly from
the mean of previous students (10). To see a one-sample ¢ test of Hy:p = 10, type

ttest preS = 10

One-sample t test

Variable | Obs Mean std. Err. 3td. Dev. [95% Conf. Interval]
_________ O S
preS | 24 10.79167 .9402034 4.606037 8.846708 12.73663
Degrees of freedom: 23
Ho: mean (preS) = 10
Ha: mean < 10 Ha: mean != 10 Ha: mean > 10
t = 0.84270 t = 0.8420 t = 0.8420
P <t = 0.7958 P> |t] = 0.4084 P >t = 0.2042

The notation P > t means “the probability of a greater value of ¢ "— that is, the one-tail
test probability. The two-tail probability of a greater absolute ¢ appears as P > |t| =
.4084 . Because this probability is high, we have no reason to reject Hi:pp = 10. Note that
ttest automatically provides a 95% confidence interval for the mean. We could get a
different confidence interval, such as 90%, by addinga lewvel (90) option to this command.

A nonparametric counterpart, the sign test, employs the binomial distribution to test
hypotheses about single medians. For example, we could test whether the median of preS
equals 10. signtest gives us no reason to reject that null hypothesis either,
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signtest presS = 10

Sign test
sign | observed expected
_____________ e e ____
positive | 12 11
negative | 10 11
zero | 2 2
_____________ b __©
all | 24 24

One-sided tests:
Ho: median of pres - 10

= 0 vs
Ha: median of pres - 10 > ¢
Pr (#positive >= 12) =
Binomial(n = 22, x »= 12, p = 0.5) = 0.415¢
Ho: median of pres - 10 = g vs
Ha: median of pres - 10 < 0
Pr(#negative >= 10) =
Binomial (n = 22, x »= 10, p = 0.5 = 0.7383

Two-sided test:
Ho: median of pres - 19 = ¢ vs.
Ha: median of pres - 10 != ¢
Pr(#positive >= 12 or #negative >= 12) =
min(l, 2*Binomial (n = 22, x >= 12, p = 0,5)) = 0.8318

N Like tt.est, .si.gn‘t_:est includes right-tail, left-tail, and two-tail probabilities. Unlike
-e symmetrical td1§tr1but10ns used by ttest, however, the binomial distributions used by

s1gbn;ﬁst have different left- and right-tail probabilities. In this example, only the two-tail

probability matters because we were testing whether the writing.d “differ” '

Do g wriing.dfa students “differ” from their

Next, we can test for improvement durin g the course by testing the null hypothesis that the

meirsl) number ofl sentences completed before and after the course (that is, the means of preS and

postd) are equal. The ttest command accomplish i ’ i igni

_ plishes this as well, fi

s » finding a significant

ttest posts = pres
Paired t test

Variable | Obs Mean
_________ +___‘____~__,‘__,_;,_L,__ﬁf?,_?if;__ Std. Dev [95% Conf. Interval
e T LT
p;iei : gj 10255525 1.693779 8.297787 22.87115 29.87885
. 7 .940 -
_________ +—__*__—__—__ﬁ__ﬁ__7__»__7__Af??f_ 4.606037 8.846708 12.73663
__ﬁ_fiff;i_;__ 24 15.58333 1.383019 6.775382 12.72234 *“Ig?;;;;;
Ho: mean(posts - preS) = mean(diff) = ¢
Ha: miag(diff) < 0 Ha: mean (diff) != ¢ Ha: mean(diff) > 0
oo o = 11.2676 t = 11.2676 t = 11.2676
= 1.0000 P> |ty = 0.0000 P >t = 0.0000

Because we expect “improvement,” not just “difference” between the preS and postS
means, a one-tail test is appropriate. The displayed one-tail probability rounds off four decimal
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places to zero (*0.0000” really means P < .00005). Students’ mean sentcnce completion does
significantly improve. Bascd on this sample, we are 95% confident that it improves by betwcen
12.7 and 18.4 sentences.

7 tests assume that variables follow a normal distribution. This assumption usually is not
critical because the tests are moderately robust. When nonnormality involves severe outliers,
however, or occurs in small samples, we might be safer turning to medians instead of means and
employing a nonparametric test that does not assume normality. The Wilcoxon signed-rank
test, for example, assumes only that the distributions are symmetrical and continuous. Applying
a signed-rank test to these data yields essentially the same conclusion as ttest , that
students’ scntence completion significantly improved. Because both tests agree on this
conclusion, we can assert 1t with more assurance.

signrank postS = preS

Wilcoxon signed-rank test

sign | obs sum ranks expected
_____________ P o e __
positive | 24 300 1530
negative | 0 2 150
zero | 0 0 G
_____________ b el
all | 24 300 300
unadjusted variance 1225.090
adjustment for ties -1.863
adjustment for zeros 0.00
adjusted variance 1223.38

Ho: postS = presS
z = 4.289
Prob > |z| = 0.0000

Two-Sample Tests

The remainder of this chapter draws examples from a survey of college undergraduates by
Ward and Ault (1990) (student2.dta).

describe

Contairs data from C:l\data\studentZ.dta
obs: 243 Student survey (Ward & Ault 1990)

vars: 19 12 Jul 2005 10:16
size: 65,561 (99.9% of memory free)
storage display value

variable nane type format label variable label

id int =8.0g Student ID

year byte w»8.0g year Year in college

age byte 8.0g Age at last birthday
gender byte 59.0g s Gender (male)
major Dyte “8.0g Student major

relig byte “8.0g v4 Religious preference
drink byte %9.0g 33-point drinking scale
gpa float %9.0g Grade Point Average
grades oyte “8.0g grades Guessed grades this semester

nmrn BB 2 s

S ——
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bg]ong oyte 58.0g bclong Belong to fraternity/soro:ity
l}ve byte “8.0g v20 Wnere do you live?

miles byte =8.0g Hdow many miles from campus?
study byte 8.0g Avg. hours/week studying
athlete byte 8.%¢ yes Are you a varsity athlete?
emplgyed byte ~8.0g yes Are you employed? h
allnight byte =8.0g z21lnight How often stuay all night?
dltch byte -8.0g times How many class/month ditcl*.led7
hsdrink oyte = 9. 0g High school drinking scale A

aggress pyte =9.0g Aggressive behavior scale

About 19% of thesc students belong to a fraternity or sorority:
tabulate belong
Belong to

|
fraternity/
sorcrity | Treq. Percent Cum.

member | 47 19.34 19.34

nonmember 19¢ 80.66 100.00

____________ e mmm e e ___
Total | 243 100,00

. Another variable, drink, measures how often and heavily a student drinks alcohol, on a 33-
point scale. Campus rumors might lead one to suspect that fraternity/sorority members tend to
differ from other students in their drinking behavior. Box plots comparing the median drink
valugs of members and nonmembers, and a bar chart comparing their means, both appear
consistent with these rumors. Figure 5.1 combines these two separate plot types in onc image.

graph box drink, over (belong) ylabel (0(5) 35) saving (fig05 0la)

graph bar (mean) drink, over (belong) ylabel (0(5)35) saving (£fig05 01b)
graph combine fig05 Ola.gph fig05 0lb.gph, col(2) iscale(1.05)

Figure 5.1
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The ttest command, used carlier for one-sample and paired-difference tests, can ranksum drink, by(belong)

perform two-sample tests as well. In this application its general syntax is ttest Two-sample Wilcoxon rank-sum (Mann-Whitney) test
measurement, by (categorical). Forexample,

pelong | obs rank sum expected
ttest drink, by{(belong) L T e e _____
member 47 8535 5734
Two-szmple t test with equal variances nonmember | 196 21111 23912
_____________ b e ______ll7T
—————————————————————————————————————————————————————————————————————————————— combined | 243 29546 29646
Greoup | Obs Mean Std. Err Std. Dev [95% Conf. Interval
777777777 e e ——— e unadjusted variance 187310.67
47 24.7234 7124518 4.884323 23.28931 26.1575 adjustment for ties -472.30
196 17.7602 . 4575013 6.405018 16.85792 18.6624% |
———————————————————————————————————————————————————————————————————— adjusted variance 186838.36
243 19.107 431224 6.722117 18.25756 19.95643
***************************************************************************** Ho: drink{belong==memper) = drjnk(belong::nonmember)
diff 6.9632 9978608 4.997558 8.928842 z = 6.480
------------------------------------------------------------------------------ Prok > |z| = 0.00090
Degrees of freedom: 241
Ho: mean (member) - mean{nonmembe) = diff = 0
One-Way Analysis of Varia A
Ha: diff < ¢ Ha: diff != 0 Ha: diff > 0 y y nce (ANOVA)
t = 6.9781 t = 6.9781 t =  6.9781
P <t - 1.00600 P> It] =  0.0000 P>t = 0.0000 Analysis of variance (ANOVA) provides another way, more general than 7 tests, to test for
. _ . _ differences among means. The simplest case, one-way ANOVA, tests whether the means of
As the output notes, this ¢ test rests on an equal-variances assumption. Buttflhe fraternity ydiffer across categories of x. One-way ANOVA can be performed by a oneway command
— more i ;
) an'd sorority members §ampl§: standard de.v1a.t10n appears somewhat lower. - they are mo with the general form oneway measurement categorical. For example,
! alike than nonmembers in their reported drinking behavior. To perform a similar test without
i assuming equal variances, add the option unequal: . oneway drink belong, tabulate
i
; ttest drink, by(belong) unequal Belong to |
i! fraternity/ | Summary of 33-point drinking scale
i Two-sample t test with unequal variances ___f?f?fifz_l _____ Mean Std. Dev. Freqg.
{ Twesemple t test with wmequal variances 0 PRIREREY L feen | Std: Dev.  Frea.
b member | 24.723404 4.8943233 17
N .
Group | Obs Mean Std. Err. std. Dev. [95% Conf. Interval] __??TT?T?ff,l__ L7 Te0z0s 6-4050179 196
777777777 b o , - T TTTT oo
member | 47 24.7234 7124518 4.884323 23.28931 26.1575 Total | 29.106396  6.7221166 243
nonmembe | 196 17.7602 4575013 6.405018 16.85792 18.66249
,,,,,,,,, G Analysis of Variance
combined 243 19.107 .431224 6.722117 18.25756 19.95643 ; o ooures 58 df Ms F Prob > F
--------- b ; S .
Qiff | ¢ 9632 a46cacs 5 280627 8 645773 ] Between groups 1838.08426 1 1838.08426 48.69 0.00090
______________________________________________________________________________ : Within groups 9097,13385 241 37.7474433
Satterthwaite's degrees of freedom: 8g.22 : et bl DR S S
i Total 10935.2181 242 45.1868517
Ho: mean (member) - mean(nonmembe) = diff = 0 , )
Bartlett's test for equal variances: chi2 (1y = 4.8378 Prob>chiZz = 0.028
Ha: diff < 0 Ha: diff !'= 0 Ha: diff > 0 :
t - 8.2240 t = 8.2240 £t o= 8.2240 The tabulate option 3 e .
o
o et - 10000 5> el = 0. 0000 b st - 0 0000 : : p p duces a table of means z?nd stgndard deviations in addition to the
analysis of variance tablc itself. One-way ANOV A with a dichotomous x variable is equivalent
Adjusting for unequal variances does not alter our basic conclusion that members and to a two-sample 7 test, and its /" statistic equals the corresponding ¢ statistic squared. oneway

offers more options and processes faster, but it lacks ttest’s unequal option for

nonmembers are significantly different. We can further check this conclusion by trying a . _
abandoning the equal-variances assumption.

nonparametric Mann—Whitney U'test, also known as a Wilcoxon rank-sumtest. Assuming that
the rank distributions have similar shape, the rank-sum test here indicates that we can reject the oneway formally tests the equal-variances assumption, using Bartlett’s y*. A low
null hypothesis of equal population medians. Bartlett’s probability implies that ANOVA’s equal-variance assumption is implausible, in
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which case we should not trust the ANOVA Ftestresults. Inthe oneway drink belong
example above, Bartlett’s P = .028 casts doubt on the ANOVA’s validity.

ANOVA’s real value lies not in two-sample comparisons, but in more complicated
comparisons of three or more means. For example, we could test whether mean drinking
behavior varies by year in college:

oneway drink year, tabulate scheffe

Year in | Summary of 33-point drinking scale
college | Mean Std. Dev. Freqg.
____________ b o
Freshman | 18.975 6.9226033 40
Sophomore | 21.169231 6.5444853 65
Junior | 19.453333 6.2866081 75
Senior | 16.650794 6.6409257 63
____________ o e e
Total | 19.106996 6.7221166 243
Analysis of Variance
Source 55 df MS F Prob > F
Between groups 666.200518 3 222.066839 5.17 0.0018
Within groups 102659.0176 239 42.9666008
Total 10935.2181 242 45.1868517
Bartlett's test for equal varilances: chi2 (3) = 0.5103 Prob>chiz = 0.917

Comparison of 33-point drinking scale by Year in college

(Scheffe)
Row Mean- |
Col Mean | Freshman Sophomor Junior
_________ e e o
Sophomor | 2.18%423
| 0.429
|
Junior | LA478333 -1.7159
| 0.987 0.498
!
Senior | -2.32421 ~4.51844 -2.80254
| 0.382 0.002 0.103

We can reject the hypothesis of equal means (P = .0018), but not the hypothesis of equal
variances (P = .917). The latter is “good news” regarding the ANOVA’s validity.

The box plots in Figure 5.2 (next page) support this conclusion, showing similar variation
within each category. This figure, which combines separate box plots and dot plots, shows that
differences among medians and among means follow similar patterns.

graph hbox drink, over(year) ylabel(0(5)35) saving(fig05_ 02a)

graph dot (mean) drink, over(year) ylabel(0(5)35, grid)
marker (1, msymbol(S)) saving(fig05_02b)

graph combine fig05 02a.gph fig05_ 02b.gph, row(2) iscale(1.05)
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Figure 5.2
Freshman e I
Sophomore e R B
Junior b R IR
Senior o
o 5 ' 5 30 35

O é T T T T T s el

10 15 20
mean of drink 25 30 35

, The scheffe option (Scheffé multiple-comparison test) produces a table showing the
differences between each pair of means. The freshman mean equals 18.975 and the sophomore
mean ecllurflls 21.16923, so thesophomore~freshman differenceis 21.16923-18.975=2.19423
not .statlstlcally distinguishable from zero (P=.429). Ofthe six contrasts in thié. table (;nl thé
senior-sophomore difference, 16.6508 - 21.1692 = —4.5184, is significant (P = 002’) ]}[hus
our overall conclusion that these four groups’ means are not the same arises ma{nly fr'om the;
contrast between seniors (the lightest drinkers) and sophomores (the heaviest).

. oneway offers three multiple-comparison options: scheffe, bonferroni . and
51§ak (se?e Base Reference Manual for definitions) . The Scheffé test remains valid under
a wider variety of conditions, although it is sometimes less sensitive.

The Kruskal-Wallistest (kwallis ), @ K-sample generalization of the two-sample rank-

sumftest, provides a nonparametric alternative to one-wa
) ‘ -way ANOVA. Ittests th i
of equal population medians. enulthypothesis

kwallis drink, by (year)

Test: Equality of populations (Kruskal-Wallis test)

| year | Obs | Rank Sum
[ m o o R Fommm o |
| Freshman | 40 | 4914.00 |
| Sophomore | 65 | 9341.50
| Junior | 75 9300.50 |
| Senior | 63 | 6090.00 |
e +
chi~squared = 14.453 with 3 4.f.
probability = 0.0023
chi-squared with ties = 14.490 with 3 4.f.

probability = 0.0023
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Here, the kwallis results (P =.0023)agree with our oneway findings of significant
differcnces in drink by year in college. Kruskal-Wallis is generally safer than ANOVA if we
have reason to doubt ANOVA’s equal-variances or normality assumptions, or if we suspect
problems caused by outliers. kwallis, like ranksum, makes the weaker assumption of
similar-shapcd distributions within each group. In principle, ranksum and kwallis
should produce similar results when applied to two-sample comparisons, but in practice this is
true only if the data containno ties. ranksum incorporates an exact method for dealing with
tics, which makes it preferable for two-sample problems.

Two- and N-Way Analysis of Variance

One-way ANOV A examines how the means of measurement variable y vary across categories
of one other variable x. N-way ANOVA gencralizes this approach to deal with two or more
categorical x variables. Forexample, we might consider how drinking behavior varies not only
by fraternity or sorority membership, but also by gender. We start by examining a two-way
table of means;

table belong gender, contents(mean drink) row col

Belong to

fraternit

v/socrorit | Gender (male)

3% | Female Male Total
member 22.44444 26.13793 24.7234

nonmember 16.51724 15.5625 17.7602

It appears that in this sample, males drink more than females and members drink more than
nonmembers. The member-nonmember difference appears similar among males and females.
Stata’s N-way ANOVA command, anova, can test for significant differences among these
means attributable to belonging to a fraternity or sorority, gender, or the interaction of
belonging and gender (written belong *gender).

'
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In this example of “two-way factorial ANOVA " the output shows significant main effect
for belong (P = .0000) and gender (P = .0008), but their interaction contributes ljttle to ;]S
model' (P =.7448). This interaction cannot be distinguished from zero, so we might pr fi ;
fit a simpler model without the intcraction term (results not shown): ’ S preerto

anova drink belong gender

To include any interaction term with anova » specify the variable names joined by *
Unless the number of observations with each combination of x values is the same (a condii/' .
f:alled “balanced data™), itcan be hard to interpret the main effects in a model Lthat also inc:]ucliOn
interactions.  This does not mean that the main effects in such models are unimportanetS

however. Regression analysis mi i
: s ght help to make sense of complicated
illustrated in the following section. Presiecd ANOVA result, as

Analysis of Covariance (ANCOVA)

Analysw'ofCovariance (ANCOVA)extends N-way ANOVA to encompass a mix of categorical
anq contm.uousx variables. This isaccomplished through the anova command ifwe specify
which variables are continuous. For example, when we include gpa (college grade point
average) among the independent variables, we find that it, too, is related to drinking behalz/ior

anova drink belong gender gpa, continuous (gpa)

Number of obs = 218 R-squared = 0.2970
Root MSE = 5.68939 Adj R-squared = 0.2872
Source Pa lai §S
___________ S S S S o
Model | 2927.03087 3 975.676958 30.14 0 ngg
belong ! 1489.31999 1 1485.3195%9 46.01 0.C000
gender | 405.137843 1 405.137843 12.52 0.0005
gpa ; 407.0089 1 407.0089 12.57 0.0005
Residual | 6926.9920¢ 214 32.36917138
,,,,,,,,,,, P T .
Total | 9854,02294 217 45.41072439

anova drink belong gender belong*gender

Number of obs = 243 R-squared = 0.2221
Root MSE = 5.86592 Adj R-squared = 0.2123
S5ource | Partial §S df MS F Prob > F
______________ P,
Model | 2428.67237 3 809.557456 2275 J.0000
{
belong | 1406.236¢6 1 1406.2366 39.51 0.0000
gender | 408.520087 1 408.520097 11.48 0.0008
pelong*gender | 3.78016612 1 3.78016612 0.11 0.7448
|
Residual | 8506.54574 239 135.5922416
______________ el
Total | 10935.2181 242 45.1868517

From this analysis we know that a significant relationship exists between drink and gpa
when we control for belong and gender. Beyond their F tests for statistical signiﬁcanfe
however_, ANOVA or ANCOVA ordinarily do not provide much descriptive information abouE
how variables are related. Regression, with its explicit model and parameter estimates, does
a bette_r descriptive job. Because ANOVA and ANCOVA amount to special cas’es of
regression, we could restate these analyses in regression form. Stata does so automatically if
we add. the regress optionto anova . For instance, we might want to sce regression
output in order to understand results from the following ANCOVA.
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anova drink belong gender belong*gender gpa, continuous(gpa)

regress
Source b sSS df MS Number of obs = 218
————————————— Fmm e e F( 4, 213) = 22.57
Maodel | 2933.45823 4  733.364558 Prob > F = 0.0000
Resideal | 6820.5647 213 32.4909141 R-squared = 0.2977
————————————— Frm e e e Adj R-squared = 0.2845
Total | 9854.02294 217 45.4102439 Root MSE = 5.7001
drink Coef. Std. Err. t P>t [95% Conf. Interval
cons 27.47676 2.4399¢62 11.26 0.000 22.6672 32.28633
gelong
1 6.925384 1.286774 5.38 0.000 4.388942 9.461826
Z (dropped}
gender
1 -2.629057 .8917152 -2.95 0.004 -4.386774 -.8713407
2 (dropped)
gpa -3.0546323 .8533498 -3.55 0.000 -4.748552 -1.360713
belong*gender
101 -.8656158 1.946211 -0.44 0.657 ~-4.70191¢ 2.970685
1 2 {dropped)
2 1 (dropped)
2 2 {(dropped)

With the regress option, we getthe anova output formatted as a regression table.
The top part gives the same overall F test and R* as a standard ANOV A table. The bottom part
describes the following regression:

We construct a separate dummy variable {0,1} representing each category of each x

variable, except for the highest categories, which are dropped. Interaction terms (if

spccified in the variable list) are constructed from the products of every possible
combination of these dummy variables. Regress y on all these dummy variables and
interactions, and also on any continuous variables specified in the command line,

The previous example therefore corresponds to a regression of drink on four x variables:

1. adummy coded 1 = fraternity/sorority member, 0 otherwise (highest category of belong,

nonmember, gets dropped);

a dummy coded 1 = female, 0 otherwise (highest category of gender, male, gets dropped);

L N

the continuous variable gpa;
4. an interaction term coded 1 = sorority female, 0 otherwise.

Interpret the individual dummy variables’ regression coefficients as effects on predicted or
mean y. For example, the coefficient on the firstcategory of gender (female) equals —2.629057.
This informs us that the mean drinking scale levels for females are about 2.63 points lower than
those of males with the same grade point average and membership status. And we know that
among students of the same gender and membership status, mean drinking scale values decline
by 3.054633 with each one-point increase in grades. Note also that we have confidence
intervals and individual ¢ tests for each coefficient; there is much more information in the
anova, regress outputthan inthe ANOVA table alone.

i
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Predicted Values and Error-Bar Charts

After anova, the fo!]owup command predict calculates predicted values, residuals, or
standgrd errors and c'hagnostlc statistics. One application for such statistics is in draw’ing
graphical representations of the model’s predictions, in the form of error-bar charts

. . . For a
simple illustration, we return to the one-way ANOVA of drink by year:
anova drink year
Number of obs = 243 R-squared = 0.0600
Root MSE = 6.55489 Adj R-squared = 0.0491
Source | Partial ss§ df M5
___________ +_,___,_ﬁ__‘____,__,ﬁ_,*_,________;__‘f___‘_f)mb > F
Model | 666.200518 3 222.066839 5.17 0 OOlé
| .
year | 666.200518 3 222,066839 5.17 0.0018
| .
Residual | 10269.0176 239 42.9666008
___________ B el
Total | 10935.2181 242 45.1868517

.To calculate predicted means from the recent anova,type predict followedbyanew
variable name:

predict drinkmean
(option xb assumed; fitted values)

label variable drinkmean "Mean drinking scale"

With the stdp option, predict calculates standard errors of the predicted means:
predict SEdrink, stdp

Using these new varigbles, we apply the serrbar command to create an error-bar chart.
The scale(2) optiontells serrbar to draw error bars of plus and minus two standard
errors, from

drinkmean — 2xSEdrink
to

drinkmean + 2xSEdrink.

Ina se.rrbar command, the first-listed variable should be the means or y variable; the
second-hs.ted, t.he standgrd error or standard deviation (depending on which you want to show);
and the third-listed variable defines the x axis. The plot( ) option for serrbar can,

specify a second plot to overlay on the standard-error bars. In Figure 5.3, we overlay a line plot
that connects the drinkmean values with solid line segments.
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predict aggmean

. (oprion xb assumcd; fitted values)
serrbar drinkmean SEdrink year, scale(Z2) opric a

i £ff

lot (line drinkmean year, clpattern(solid)) legend{off) label variable aggmean "Mean aggressive behavior scale”
plo

Figure 5.3 predict SEagg, stdp

gen agghigh = aggmean + 2 * SEagg

22

gen agglow = aggmean - 2 * SEagg

graph twoway connected aggmean year
|l rcap agghigh agglow year

! , by{gender, legend(off) note(""))
-%2 ytitle ("Mean aggressive behavior scale')
@
g Fi 5.4
G igure 5.
_f_: © Female Male
-‘6 h o
&
) 7
=

16

o \\

14

Year in college

_bar charts help us to visualize mainand interacti}cl).n i
i ted for this : .

offects. Although theusual error-bar command serr?ar can, witheffort, bea;i;fli]y for e 3

urpose, an alternative approach using the more ﬂex1ble graph tv:;)vvag e o ? | | | -
Pllustrat::d below. First, we perform ANOVA, obtain group means (pre 1cte] A e A ; 1 , : .
1tandard errors, then generate new variables equal to the group ;neatn§ p usesoSive s o i
S ’ - - . S aggr

lationship between studen ‘
errors. The example examines the re , havier
ztandzds) gender, and year in college. Both the main effects of gender and year, an
ageress), H

interaction, are statistically significant.

For a two-way factorial ANOVA, error

Mean aggressive behavior scale

N A
[V
P

Figure 5.4 built error-bar charts by overlaying two pairs of plots. The first pair are female

and male connected-line plots, connecting the group means of aggress (which we calculated
nder*year
anova aggress gender year ge

using predict, and saved as the variable aggmean). The second pair are female and male

Number of obs = 243 B-squared g 32?25 capped-spike range plots { twoway rcap )in which the vertical spikes connecting variables

Raot MSE = 1.45652 Ad] R-square agghigh (group means of aggress plus two standard errors) and agglow (group means of

Source | Partial S8 df Ms _f _____ ff‘f?jf aggress minus two standard errors). The by (gender) option produccd sub-plots for females

___,,,,-Z_-_+-—f~————-—-~"——;";;‘.;gg;;; _____ 1121 0.0000 and males. Notice that to suppress legends and notes in a graph that uses a by ( ) option,
Model \‘ 166.482503 e L 5000 legend (off) and note ("") must appear as suboptions within by ( ).

gender | 94.3505972 é 24 32223?743 2.99 0.0317 The resulting error-bar chart (Figure 5.4) shows female means on the aggressive-behavior

e \ éi . ggggggg 3 8.03432529 3.79 0.0111 scale fluctuating at comparatively low levels during the four years of college. Male means are

gendertyedt ‘1 ' 2143861 higher throughout, with a sophomore-year peak that resembles the pattern seen earlier for

Residual L__‘_*??ff??ii__%%if; ———————————————————————————— drinking (Figures 5.2 and 5.3). Thus, the relationship between aggress and vear is different for

—————— Cota1 | 665.020576 242 2.74801891

males and females. This graph helps us to understand and explain the significant interaction
effect.

predict works the same way with regression analysis ( regress } as it does with
anova because the two share a common mathematical framework, A list of some other
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i tions are given
i i 6, and further examples using these op. .
ict options appears in Chapter 6, eive
ﬁlrg}?alp?er 70pThe options include residuals that can be used to ghec:( assu;ptgon;k{zg; " (gi
1 ' i i i istics (such as leverage, ,
istributi nd also a suite of diagnostic statis . o
enor;}ilt;llzllll:toﬁé:sure the influence of individual observations on modeflt res:rlltz.v . tz
ngk;in—Watson test (dwstat ), described in Chapter 13? can also be used a 'gr anova to
utrfor first-order autocorrelation. Conditional effect plotting (Ch?pter 7)5;\3:\1 zi A%\ICPOVA
:;Sproach that can aid interpretation of more complicated regression, AN \

models.

Linear Regression Analysis

Stata offers an €xceptionally broad range of regression procedures. A partial list of the
possibilities can be seen by typing help regress. This chapter introduces regress
and related commands that perform simple and multiple ordinary least squares (OLS)
regression. One followup command, predict, calculates predicted values, residuals, and
diagnostic statistics such as leverage or Cook’s D. Another followup command, test
performs tests of user-specified hypotheses. Iegress can accomplish other analyses
including weighted least squares and two-stage least squares. Regression with dummy

variables, interaction effects, polynomial terms, and stepwise variable selection are covered
briefly in this chapter, along with a first look at residual analysis.

The following menus access most of the operations discussed:
Statistics — Linear regression and related — Linear regression
Statistics - Linear regression and related — Regression diagnostics

Statistics — Generai post-estimation — Obtain predictions, residuals, etc., after estimation
Graphics - Overlaid twoway graphs

Statistics — Cross-sectional time series

Example Commands

regress y x
Performs ordinary least Squares (OLS) regression of variable ¥ on one predictor, x.
regress y x if ethnig == 3 & income > 50

Regresses y on x using only that subset of the data for which variable eft/inic ¢quals 3 and
income is greater than 50.

Predict yhat

Generates a new variable (here arbitrarily named vhat) equal to the predicted values from
the most recent regression.

Predict e, resid

Generates a new variable (here arbitrarily named €) equal to the residuals from the most
recent regression.

graph twoway 1fit Y x || scatter Yy x
Draws the simple regression line ( 1£it or linear fit) with a scatterplot of y vs. x.

P
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tter y x - SW regress y x1 x2 x3, pr(.05)
graph twoway mspline yhat ':h . IsclattesclOt of y vs. x by connecting (with a smooth Performs stepwise regression using backward elimination unti al] femaming predictors are
Draws a simple regression lme. wl, djctezpvalues (in this example named yhat). significant at the .05 level. Al listed predictors are entered on the first iteration.
cubic spline curve) the regression e ays to draw regression lines or curves in Stata. Thereafter, each iteration drops one predictor with the highest P value, unti] al| predictors
Notc: Thqre are many alternative way raph types mspline (illustrated above), remaining have probabilities below the “probability toretain,” Pr (.05). Options permit
These alternatives include the. tw-owajff_i Pnd £itei . each of which has its own forward or hierarchjcal selection. Stepwise variants exist for many other model-fitting
mband . line, lfit, lfjitCl - 4 bl. ,(a verlZy) the re,gression line or curve with commands as well; type help sw for a list.
tions. Usually we combine (o . _
advantagels ?ncljfotf)e scatterplot cyomes second in our graph twoway command, as- n - regress y xl1 x2 x3 [aweight = w]
poeam h atterplot points will print on top of the regression line. Placing Performs weighted least squares (WLS) regression of y onx/,x2,andx3. Variable w holds
e Cxampl? atb f(') Vet’i; ?l’?esccommlz)ind causes the line to print on top of the scatter. E)faln?p_les the analytical weights, which work as if we had multiplied each variable and the constant
(he scatterp his an d the following chapters illustrate some of these different possibilities. by the square root of w, and then performed an ordinary regression. Analytical weights are
throughout this and the fo £ often employed to correct for heteroskedasticity when the y and x variables are means,
rviplot dicted values) plot, automatically based on the most rates, or proportions, and w is the number of individuals making up each aggregate
H Draws a residual versus fitted (predicted va plot, observation (e.g,, city or school) in the data. If the y and x variables are individual-level,
| recent regression.

and the weights indicate numbers of replicated observations, then use frequency weights
[fweight = w] instead. See help svy ifthe weights reflect design factors such
as disproportionate sampling.

ter e yhat, yline(0)
graph twoway scat ' . . -
Draws a residual versus predicted values plot using the variables e and vhat

regress y x1 x2 x3 ) ) - régress yl1 y2 x (x z)
Performs multiple regression of y on three predictor variables, x/, x2, and x3. regress y2 yl1 z (x z)
£ Estimates the reciprocal effects of vl and 2, using instrumental variables x and z. The
regress y x1 x2 x3, robus . See the User’s Guide for f fh d i | X ]
Calculates robust (Huber/White) estimates of standard errors. € I 1rst parts of these commands Specity the structural equations:
details. The robust option works with many other model fitting commands as well. Vi=o,+oy2+a,x+ ¢,
' 3 bet y22B0+B1y2+ﬁzW+Ez
X-I X2 x ’ eta . . - 113 . .
regress y ltiple regression and includes standardized regression coefficients (“beta The parenthese§ in the commands enclose‘ variables that are exogenous to all pf tf%e
Performs multiple reg o structural equations. regress accomplishes two-stage least squares (2SLS) in this
weights”) in the output table. example.
rrelate x1 x2 x3 y . . . ol S . .
co : trix of Pearson correlations, using only observations with no missing yalue svy regress Y x1 x2 x3 ‘ . .
Displays ama \ ified. Addingthe option covariance produces a variance— Regressesyon predictorsx/, x2, and x3, with appropriate adjustments fora complex survey
onall of the variables specified. ) t'ogs sampling design. We assume that a svyset command has previously been used to sot
‘ : X i ions, - . o
covariance matrix instead of correla up the data, by specifying the strata, clusters, and sampling probabilitics. help svy
pweorr x1 x2 x3 y, sig i using pairwise deletion of missing values and lists the many procedures available for working with complex survey data. help
Displays a matrix of Pearson corre ?t;;)ns, 0 gniach correlation regress outlines the syntax of this particular command; follow references to the User’s
: iliti testsof Hy:p =00 '
showing probabilities from ¢ 0

Guide and the Survey Data Reference Manual for details.
graph matrix x1 x2 x3 y, half

. . - i 1elds - Xtreg y x1 x2 x3 x4, re ‘
: riable lists are the same, this example yie : ‘ : _ . .
Draws a scatterpl_ot matlrlx.hBecausz chrllri zv:t ion as the correlation matrix produced by the Fits a panel (cross-sectional time series) model with random effects by generalized least
ascatterplot matrix having the Zani? t'rg the dependent () variable last creates a matrix in squares (GLS). An observation in panel data consists of information about unit { at time
: and. Listing
preceding pwcorr comm ‘

£, and there are multiple observations (times) for each unit. Before using xtregq, the
variable identifying the units was specifiedbyan iis (* is”) command, and the variable
1 x2 . : ' identifying time by tis (¢ is”). Once the data have been saved, these definitions are
e “the null hypothesis that coefficients on x/ and x2 both equal zero in titying Y .( ) .
Performs an F test of the null hyp retained for future analysis by xtreg and other xt procedures. help xt lists
{ available panel estimation procedures. help xtreg gives the syntax of this command
xi: regress y x1 x2 i.catvar*x2 . 5 { of dummy and references to the printed documentation. If your data include many observations for
B « : on”’ sion of y on predictors x/, x2, a set of du ) each unit, a time-series approach could be more appropriate. Stata’s time series procedures
Performs “expanded mieraction resres ty ‘es of catvar, and a set of interaction . . 24 ide i lp p f P \vzi p It th
variables created automatically to represent categori var, > hele xi alves (introduced in Chapter 13) provide further too § tor analyzing panel data. Consult the
terms equal to those dummy variables times measurement variable x2. help g Longitudinal/Panel Datq Reference Manual for a full description.

which the bottom row forms a series of y-versus-x plots.

the most recent regression model.

more details. [
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i i ity: year

xtmixed population year || ci 4 y

Assume that we have yearly data on population, for a number of dlffe.rer.lt cities. .The

xtmixed population year partspecifiesa“fixed-effect”model, similartoordinary

i i ity: rt

regression, which describes the average trend in populathn. The || city: yeda.\;:'f pat

specifies a “random-effects” model, allowing unique intercepts and slopes (differen
starting points and growth rates) for cach city.

. xtmixed SAT grades prepcourse || district: pctcollege, |l region:
Fits a hierarchical (nested or multi-level) linear model predicting students’s SAT scorersszs.
a function of the individual students’ grades and \.Jvhe.th’er they took a pr;paraftiﬁn coltllntr ;
the percent college graduates among their SChOO]‘dlSt.I'lCt sadults; and reglf)n 0 Me ;Za[fo}rl
(region affecting y-interceptonly). See theLongztydzr?al/Pane{Dara Reference Ma
much more about the xtmixed command, which is new with Stata 9.

The Regression Table

File states.dta contains educational data on the U.S. states and District of Columbia:

describe state csat expense percent income high college region

storage display value ‘
variable name typz format label Vafif?%f_if?fi ___________________
ot o Eéag ;Zziecomposite SAT score
Cioe ?nt ;i.Og Per pupil expenditures primé&sec
beroont oot ;Z-Og 5 HS graduates taking SAT
S rome e ?15 g Median household income
g o 29 é N % adults HS diploma
rolt fioar ;9‘Og % adults college degree
Coéiiie ii:zt 59:03 region Geographical region
re Y

Political leaders occasionally use mean Scholastic ApFitude Test (SAT) sc](:)res to IrIIllai(:
pointed comparisons between the educational systems of dlfferent US statesﬁ or e;; m%ré
some have raised the question of whether SAT scores are higher in states that speSiteSAT
money on education. We might try to address this question by regressing mean CO;}I]P;OS HeoAT
scores (csat) on per-pupil expenditures {expense). The approprlat.e Stata cczimmtahn asthe fom
regress y x, where y is the predicted or dependent variable, and x the p

independent variable.

regress csat expense

3 Number of obs = 51
Source | S8 drf __Tf,a_ o o Josu o
_____________ Tisr0s.3001 1 187 = 0.0006
Model | 48708.3001 1 48708.322; Erfzu;rzd - oo
i 7.67 -s
Residual | 175306.21 49 35?__?77A— e e~ 9 oone
_____________ VT oadoiesi s s ] = 59,814
Total | 224014 .51 50 4480.2902 Root MSE
_________ g;;‘]““*’;;é;“‘ Std., Err. t P>t [95% Conf. Intervall
c . o Bre.o £ Prifl o [95% Conf. Intervall
_____________ U oanarse oveoans sies o - -.0101436
expense | -.022275¢6 .0060371 -3.69 0.001 .0343232 1226.447
cons | 1060,732 32.7009 32.44 0.000 995,

i
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This regression tells an unexpected story: the more money a state spends on education, the
lower its students’ mean SAT scores. Any causal interpretation is premature at this point, but
the regression table does convey information about the linear statistical relationship between
csat and expense. At upper right it gives an overall F test, based on the sums of squares at the
upper left. This F test evaluates the nul] hypothesis that coefficients on all x variables in the
model (here there is only one x variable, expense) equal zero. The Fstatistic, 13.61 with | and
49 degrees of freedom, leads easily to rejection of this null hypothesis (P = .0006). Prob > F

means “the probability ofa greater £ statistic if we drew samples randomly from a population
in which the null hypothesis is true.

At upper right, we also see the coefficient of determination, R > = 2174, Per-pupil
expenditures explain about 22% of the variance in states’ mean composite SAT scores.
Adjusted R*, R* = 2015, takes into account the complexity of the model relative to the
complexity of the data. This adjusted statistic is often more informative for research.

The lower half of the regression table gives the fitted model itself. We find cocfficients
{slope and y-intercept) in the first column, here yielding the prediction equation

predicted csar = 1060.732 — 0222756expense

The second column lists estimated standard errors of the coefficients. These are used to
calculate 7 tests (columns 3-4) and confidence intervals (columns 5-6) for each regression
coefficient. The ¢ statistics {coefficients divided by their standard errors) test null hypotheses
that the corresponding population coefficients equal zero. At the g — .05 significance level, we
could reject this null hypothesis regarding both the coefficient on expense (P=.001) and the
y-intercept (“.000”, really meaning P < .0005). Stata’s modeling commands print 95%
confidence intervals routinely, but we can request other levels by specifying the level ( )
option, as shown in the following:

Tegress csat expense, level (99}
Because these data do not represent a random sample from some larger population of U.S,

states, hypothesis tests and confidence intervals lack their usual meanings. They are discussed
in this chapter anyway for purposes of illustration.

The term _cons stands for the regression constant, usually set at one. Stata automatically
includes a constant unless we tell it notto. The nocons option causes Stata to suppress the
constant, performing regression through the origin. For example,

regress y x, nocons
or

regress y xl x2 x3, nocons

In certain advanced applications, you might need to specify your own constant. If the
“Independent variables” include a user-supplied constant (named ¢, for example), employ the
hascons option instead of nocons

regress y c¢ x, hascons

Using nocons in this situation would result in a misleading # test and B>, Consult the Base
Reference Manual or help regress for more about hascons.
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Multiple Regression

Multiple regression allows us to estimate how expense predicts csaf, while adjusting for a
number of other possible predictor variables. We can incorporate other predictors of csat
simply by listing these variables in the command

regress csat expense percent income high college

Source | SS df M3 Number of obs = 51
————————————— e et F( 5, 45) = 42.23
Model | 184663.309 5 36932.6617 Prob > F = 0.0000
Residual | 39351.2012 45 874.471137 R-squared = 0.8243
————————————— Bt Adj R-squared = 0.8048
Total | 224014.51 50 4480,2902 Root MSE = 29.571

csat | Coef. Std. Err. t P>t | [95% Conf. Interval]
______________ e il
expense | .0033528 .0044709 0.75 0.457 -.005652 .0123576
percent | ~2.618177 .2538491 -10.31 0.000 -3.129455 -2.106898
income | .0001056 .0011661 0.09 0.928 -.002243 .0024542

high | 1.630841 .992247 1.64 0.107 -.367647 3.629329

cellege | 2.030894 1.660118 1.22 0.228 -1.31275¢ 5.374544
_cons | 851.5649 59.29228 14.36 0.000 732.1441 970.9857

This yields the multiple regression equation

predicted csar = 851.56 + .00335expense — 2.618percent + .0001income +
1.63high + 2.03college

Controlling for four other variables weakens the coefficient on expense from —0223 to .00335,
which s no longer statistically distinguishable fromzero. The unexpected negative relationship
between expense and csat found in our earlier simple regression evidently can be explained by
other predictors.

Only the coefficient on percent (percentage of high school graduates taking the SAT)
attains significance at the .05 level. We could interpret this “fourth-order partial regression
coefficient” (so called because its calculation adjusts for four other predictors) as follows.

b,=-2.618: Predicted mean SAT scores decline by 2.618 points, with each one-point
increase in the percentage of high school graduates taking the SAT — if expense,
income, high, and college do not change.

Taken together, the five x variables in this model explain about 80% of the variance in
states” mean composite SAT scores (R°, = .8048). In contrast, our earlier simple regression
with expense as the only predictor explained only 20% of the variance in csat.

To obtain standardized regression coefficients (“beta weights”) with any regression, add
the beta option. Standardized coefficients are what we would see in a regression where all
the variables had been transformed into standard scores (means 0, standard deviations 1).
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regress csat expense percent income high college, beta

______ f?fff?,i,,_,,__??_, df MS Number of ops = 51
——————————————————— E( 5, 45) =
Model | 184663.309 5 36932.¢6617 Prob > F : = 042.23
Residual | 39351,2012 45 874.471137 R-squared - 0 gggg
_____________ +_,,_,7_;,__,______,_>_ ~ ’
777777777 Adj R-squ d =
Total | 224014.51 50 4480.2902 Root Msg e = géegjf
csat | Coef sed. Brr. e esper 0TI
_____________ +___,__ﬁ__,__,_,,__,,_f__‘____f,___P>!t‘ Beta
expense | .2033528 .0044709 0.75 o.as7 T 3 oTee
. .457
percent | -2.618177 .2538491 -10.31 0.0600 71-820185
income | .000105%6 .0011661 0.09 0,928 610?538
high | 1.630841 .992247 1.64 0.107 .136125;
college 2.030891 1.660118 1.22 0.228 '126 2
_cons | 851.5649 59.29228 14.36 0.000 h e

The standardized regression equation is

predicted csar* = 07expense* — 1.0245percent* + 0lincome* +
A36high* + 126college*

where csat*,‘ expense*, etc. denote these variables in standard-score form. We might interpret
the standardized coefficient on percent, for example, as follows:

b 2.* =-1.0245: Predicted mean SAT scores decline by 1.0245 standard deviations
w1th each one-stan@ard-dewation increase in the percentage of high school graduates
taking the SAT — if expense, income, high, and college do not change.

The Fand t tests, R*, and other aspects of the regression remain the same,

Predicted Values and Residuals

After any regression, the predict command can obtain predicted values, residuals, and

other case statistics. Suppose we have i i i
‘ . Just done a regression of composite SAT scor i
strongest single predictor: ° onhelr

regress csat percent

I\Iow, to create a new variable called yhar containing predicted y values from this regression
ype ’

predict yhat

label variable yhat "Predicted mean SAT score"

.Through the resid option, we can also create another new variable containing the
residuals, here named e:

predict e, resid

label variable e "Residual"

We might instead have obtained the sam i i
same predicted y and residual
generate commands: g s through two

generate yhat(Q = _bl_cons] + _b[percent]*percent
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generate e0 = csat - yhat0
Stata temporarily rcmembers coefficients and other details from the recent regression. Thus
_b[varname ] refers to the cocfficient on independent variable varname. _b[ cons] refers to
the coefficient on _cons (usually, the y-intercept). These stored values are useful in
programming and some advanced applications, but for most purposes, predict savesusthe
trouble of generating yhat() and e “by hand” in this fashion.

Residuals contain information about where the model fits poorly, and so are important for
diagnostic or troubleshooting analysis. Such analysis might begin just by sorting and
examining the residuals. Negative residuals occur when our model overpredicts the observed
values. That is, in these states the mean SAT scores are lower than we would expect, based on
what perccntage of students took the test. To list the states with the five lowest residuals, type

sort e

list state percent csat yhat e in 1/5

state percent csat yhat e
e |
1. | South Carclina 58 832 894.3333 -62.3333
2. | West Virginia 17 926 986.0953 -60.0952¢6
3. | North Carolina 57 844 896.5714 -52.5714
4., Texas 44 874 925.6666 -51.66666
5.1 Nevada 25 919 968.1905 -49.19049

The four lowest residuals belong to southern states, suggesting that we might be able to improve
our model, or better understand variation in mean SAT scores, by somehow taking region into

account.

Positive residuals occur when actual y values are higher than predicted. Because the data
already have been sorted by e, to list the five highest residuals we add the qualifier

in -5/1
“=5"in this qualifier means the Sth-from-last observation, and the letter “el” (note that this is
not the number “17) stands for the last observations. The qualifiers in 47/1 or in
47/51 could accomplish the same thing.
list state percent csat yhat e in -5/1

| state percent csat yhat e |

I e e it !
47, | Massachusetts 79 896 847.3333 48.66673 |
48. | Connecticut 81 8387 842.8571 54.,14292 |
43, { North Dakota 6 1073 1010.714 62.28567 |
50. | New Hampshire 75 921 856.2856 64.71434 |
51. | Iowa 5 1093 1012.952 80.04758
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predict also derives other statistics from the most recently-fitted mode] Below ar
some predict options that can be used after anova or regress )

predict new Predicted values of y. predict new, xb means the
same thing (referring to Xb, the vector of predicted y
values).

predict new, cooksd Cook’s D influencc measures,

predict new, covratio COVRATIO influence measures; effect of each
obsewatlon on the variance-covariance matrix of
¢stimates.

Predict DFx1, dfbeta(xl) DFBETAs measuring each observation’s influence on the
coefficient of predictor x/.

predict new, dfits DFITS influence measurcs.
predict new, hat Diagonal elements of hat matrix (leverage).
predict new, resid Residuals

predict new, rstandard  Standardized residuals.

predict new, rstudent Studentized (jackknifed) residuals.
predict new, stdf Standard errors of predicted individual y, sometimes
called the standard errors of forecast or the standard
errors of prediction.

predict new, stdp Standard errors of predicted mean .

predict new, stdr Standard errors of residuals.

predict new, welsch Welsch’s distance influence measures.

Fu.rther options obtain predicted probabilities and expected values; type help regress for
a list. All pr‘edlct Oplions create case statistics, which are new variables (like predicted
values and residuals) that have a value for each observation in the sample.

When using predict , substitute a new variable name of your choosing for new in the
commands shown above. For example, to obtain Cook’s D influence measures type
predict D, cooksd
Or you can find hat matrix diagonals by typing
pPredict h, hat
The names of variables created by predict (such as vhat, e, D, h) are arbitrary and are

mvgnted by the user. As with other elements of Stata commands, we could abbreviate the
options to the minimum number of letters it takes to identify them uniquely. For example

bPredict e, resid
could be shortened to

Pre e, re
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Basic Graphs for Regression

ion mode]
This section introduces some clementary graphs you can use to represent a regrestsm mode!
or examine its fit. Chapter 7 describes more specialized graphs that aid post-regr

diagnostic work. | | |
gIn simple regression, predicted values lie on the line defm.ed by Fhe regression equ?u;):r.
By plotting and connecting predicted values, we can make that line visible. The 1fit (lin

fit) command automatically draws a simple regression line.

graph twoway 1lfit csat percent . | |
Ordinarily, it is more interesting to overlay a scatterplot on the regression line, as done in
Figure 6.1.

graph twoway 1fit csat percent
scatter csat percent )
:: ytitle ("Mean composite SAT score") legend(off)

Figure 6.1
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We could draw the same Figure 6.1 graph “by hand” using the predicted values (vhar)
generated after the regression, and a command of the form
graph twoway mspline yhat percent, bands (50)
catter c¢sat percent ) i}
:: : legend(cff) ytitle("Mean composite SAT score'")
The second approach is more work, but offers greater flexibility for advgn}fe}(li appl(ljcfatlczlns slllilce};
iti i 551 Working directly with the predicted va
as conditional effect plots or nonlinear regression. : le pre s
also keeps the analyst closer to the data, and to what a regr.essmn.model is doing. .g;rtalie
twoway mspline (cubic spline curve fit to 50 cross-medians) simply draws a st'rali i
i e
when applied to linear predicted values, but will equally well draw a smooth curve in the cas
of nonlinear predicted values.
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Residual-versus-predicted-values plots provide uscful diagnostic tools
any regression analysis (also after some other models, such as ANOVA) w
draw a residual-versus-fitted (predicted valucs) plot just by typing
rvfplot, yline (0)

(Figure 6.2). Afier
€ can automatically

= Figure 6.2
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The “by-hand” alternative for drawing Figure 6.2 would be
graph twoway scatter e yhat, Yline (0)

Figure 6.2 reveals that our present model overlooks an obvious pattern in the data, The
residuals or prediction errors appear to be mostly positive at first (due to too-high predictions),
then mostly negative, followed by mostly positive residuals again. Later sections will seek a
model that better fits these data.

predict cangenerate twokinds of standard errors for the predicted y values, which have
two different applications. These applications are sometimes distinguished by the names
“confidence intervals” and “prediction intervals™: A “confidence interval” in this context
€Xpresses our uncertainty in estimating the conditional mean of y at a given x value (or a given
combination of x values, in multiple regression). Standard errors for this purpose are obtained
through

pPredict SE, stdp

Select an appropriate f value. With 49 degrees of freedom, for 95% confidence we should use
t=2.01, found by looking up the ¢ distribution or simply by asking Stata:

display invttail(49,.05/2)
2.0095752

Then the lower confidence limit is approximately
generate lowl = yhat - 2.01*SE

and the upper confidence limit is
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generate highl = yhat + 2.01*SE

Confidence bands in simple regression have an hourglass shape, narrowest at the mean of
x. We could graph these using an overlaid twoway command such as the following.
graph twoway mspline lowl percent, clpattern(dash) bands (50)
mspline highl percent, clpattern(dash) bands (50)
mspline yhat percent, clpattern(solid) bands (50)

1

Il

|1 scatter csat percent

11 , legend(off) ytitle("Mean composite SAT score")

Shaded-area range plots (see help twoway rarea ) offer a different way to draw such
graphs, shading the range between low! and highl. Alternatively, 1fiteci can do this

automatically, and take care of the confidence-band calculations, as illustrated in Figure 6.3.
Notethe stdp option, calling for a conditional-mean confidence band (actually, the default).

graph twoway lfitci csat percent, stdp
|1 scatter csat percent, msymbol (O)
|1 , ytitle("Mean composite SAT score") legend (off)
title("Confidence bands for conditional means (stdp)")

. . Figure 6.3
5 Confidence bands for conditional means (stdp)
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The second type of confidence interval for regression predictions is sometimes called a
“prediction interval.” This expresses our uncertainty in estimating the unknown value ofy for
an individual observation with known x value(s). Standard errors for this purpose are obtained
by typing

predict SEyhat, stdf

Figure 6.4 (next page) graphs this predictionband using 1£iteci withthe stdf option.
Predicting the y values of individual observations as done in Figure 6.4 inherently involves
greater uncertainty, and hence wider bands, than does predicting the conditional mean of y
(Figure 6.3). Inboth instances, the bands are narrowest at the mean of x.

I ————
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graph twoway 1fitei csat pPercent, stdf
It scatter csat Percent, msymbol (0)
|! ;, Ytitle(“"Mean composite SAT score") legend (off)
title("Confidence bands for individual-case predictions (stdf) ")

Confidence bands for individual-case predictions (stdf) Figure 6.4
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As with other .conﬁdenc'e intervals and hypothesis tests in OLS regression, the standard
errors and bands just described depend on the assumption of independent and identically

gu S .3

Correlations

correlate obtains Pearson product-moment correlations between variables.

correlate csat expense percent income high college

(obs=51)
_____________ i csat expense vpercent income high college
csat | l.0000 TTTTTTTTTIITTmmoemees
expense | ~0.4663 1.0000
percent | -0.,8758 0.6509 1.0000
1nc9me | -0.4713 0.6784 0.6733 1.0000
high | 0.0858 0.3133 0.1413 0.5099 1.0000
college | -0.3729 0.6400 0.6091 0.7234 0.5319 1.0000

.corrqlelate uses only a subset of the data that has no missing values on any of the
varlablgs ?1sted (with these particular variables, that does not matter because no observations
h?we missing values). In this respect, the correlate commandresembles regress,and
given the same variable list, they will use the same subset of the data. Analysts not emplo}ing
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regression or other multi-variable techniques, however, might prefer to find correlations based
upon all of the observations available for each variable pair. The command pwcorr
(pairwise correlation) accomplishes this, and can also furnish t-test probabilities for the null
hypothcses that cach individual correlation equals zero.

pwcorr csat expense percent income high college, sig

] csat  expense percent income high college
_____________ 4 _,_,,_,__,_,,_,__,________,-_,_-_4__,_-__________,__,_
csat | 1.0009
I
|
expense | -0.4663 1.0000
I 0.0606
|
percent | -0.8758 0.6509 1.0000

3.0000 0.0000

L
|
|
income | -0.4713 0.6784 0.6733 1.0000
| 0.0005 0.0000 0.0000
|
|

high 0.0858 0.3133 0.1413 0.5099 1.0000
| 0.5495 0.0252 0.3226 0.0001
|
college | -0.3729 0.6400 0.6091 0.7234 0.5319 1.0000

| 0.007¢C 0.0000 0.0000 0.0000 0.0001

It is worth recalling here that if we drew many random samples froma population in which
all variables really had 0 correlations, about 5% of the sample correlations would nonetheless
test “statistically significant” at the .05 level. Analysts who review many individual hypothesis
tests, such as thosc ina pwcorr matrix, to identify the handful that are significant at the .05
level, therefore run a much higher than .05 risk of making a Type I error. This problem is called
the “multiple comparison fallacy.” pwcorr offers two methods, Bonferroni and Sidak, for
adjusting significance levels to take multiple comparisons into account. Of these, the Sidak
method is more precise.

pwcorr csat expense percent income high college, sidak sig

| csat expense percent income high college
,,,,,,,,,,,,, ¢__,_,-_,,_,_-,A_,-_4__-_______,__4____,,_,A_,-_,__,__-
csal | 1.0000
\
|
expense | ~0.4663 1.0000
i 0.0084
|
percent | -0.8758 0.6509 1.0000
| 0.0000 0.0000
|
income | —0.4713 0.6784 0.6733 1.0000
| 0.0072 0.0000 0.0000
|
high | 0.0858 0.3133 0.1413 0.5099 1.0000
| 1.0000 0.3180 0.99%71 0.0020
|
college | -0.3728 0.6400 0.6081 0.7234 0.5319 1.0000

f 0.1004 0.0000 0.0000 0.0000 0.0009

i e, e v 9 R i T
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COmParlng the test probabi]ities in the table abO\/e Wlth thOSG Of the preViOuS pWCOIr
o 1 | [
p Vldes some ldea Of hOW much ad ustment occurs. In gcneral the more Variables Wi
2

co . A .
“ rrel ;te,' the more the a(%Jus'Fed probabilities will exceed their unadjusted counterparts. See th
ase Reference Manual's discussion of oneway for the formulas involved et

cor i i I
" relatg itself f)ffers several important options. Adding the covariance optio
produces a matrix of variances and covariances instead of correlations: P

correlate w x y z, covariance

Tvoi . . -
! S)g)rll?agt tge foélf?vs_/mg after a regression analysis displays the matrix of correlations betwee
ed coefficients, sometimes used to diagnose multicollinearity (see Chapter 7): "
correlate, _coef |

The following command will di i

will display the estimated ¢ ients’ vari

' oefficients — i i
from which standard errors are derived: varaneer covarinee matn.

correlate, _coef covariance

The)[;e:;rslzgqi(;;rzlatiﬁn coifﬁcients measure how well an OLS regression line fits the data
y share the assumptions and weaknesses i |
_ : of OLS, and like OLS
fce;zalli') tnot b.e mterpreted Wlthout first reviewing the corresponding scatterplgoz1 Ouf
conelgiion ﬁair%x proyldes a quick way to do this, using the same organization as: the
i i a r;x lggtllre 6.5 shows a scatterplot matrix corresponding to the pwcorr
ven earlier. Only the lower-triangular half of th X i
e ' : e matrix is drawn, and plus signs ar
as plotting symbols. We suppress y and x-axis labeling here to keep the graph unchi:):[terede

grapi T;trix csat expense percent income high college
a msymbol (+) maxis{ylabel (none) xlabel(none)) '

— .
l Mean ‘ Figure 6.5
composite
] SAT |
score ’_L
AT N
— ‘ Per pupil
v expenditures
Ce \ prim&sec

'

Wt
R

% adults
college
degree

I
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i i rix, from

To obtain a scatterplot matrix corresponding to a correlate corrlzlatloggalalify o

which all observations having missing values have been dropped, we wou I:;eoemma?‘d ary the
command. 1f all of the variables had some missing values, we could type a

graph matrix CSat expeuse pezceut income hlgh college if csat <
& expe se . & lilncome igh . & Olle e <
.
n < < & h g < o4 g

i it mi S ew dataset
To reduce the likelihood of confusion and mistakes, it might make sense to createan

keeping only those observations that have no missing values:
i igh <
keep if c¢sat < . & expense < . & income < & hig
& college <
save nmvstate |
i o as to avoid
In this example, we immediately saved the reduced dataset W]]:jh a new namleétse e
’ i i 0N i more comp .
I iti d losing the information in the old,
inadvertently writing over and 101 . © con
alternative way to eliminate missing values uses drop instead of p
i = igh >=
drop if csat >= . | expense >= . | income >= . | hig
| college >=
save nmvstate .
- rrelations.
In addition to Pearson correlations, Stata canalso calculate §evera1 r-artljl; basidazoan lauons.
These can be employed to measure associations between ordinal varia c;t 0 R
. . N
resistant alternative to Pearson correlation for measurement variables. To o arle lationpif nan
rank correlation between csat and expense, equivalent to the Pearson cor

variables were transformed into ranks, type

spearman csat expense

Number of obs = 51

Spearman's rho = -0.4282

Tesl of Ho: csat and expense are independent
rrob > |tl = 0.0017

i i h
Kendall's 1, (tau-a) and T, (tau-b) rank correlations can be found easily for these data, althoug
with larger ddatasets their calculation becomes slow:

xtau csat expense

nNumper of obs = 51 oo
Kendall's tau—-a = -0.2532
Kendall's tau-b = 3:2.2
Kend;él'i SEZiZ : lé3 0985 (corrected for ties)
of s = .

s [ Ho: csat and expense & [S] 111dependen,
° Prob > pd 0.002% (contin ity COIIEC;Ed)

For comparison, here is the Pearson correlation with its (unadjusted) P-value:
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pwcorr csat expense, sig

csat expense

-0.4663 1.6300

In this example, both spearman (—.4282)and pwcorr (—.4663) yield higher correlations

than ktau (—.2925 or—.2932). All three agree that null hypotheses of no association can be
rejected.

Hypothesis Tests

Two types of hypothesis tests appear in regress output tables. As with other common
hypothesis tests, they begin from the assumption that observations in the sample at hand were
drawn randomly and independently from an infinitely large population.

[. Overall Ftest: The F statistic at the upper right in the regression table evaluates the null

hypothesis that in the population, coefticients on all the model’s x variables equal zero.

2. Individual ¢ tests: The third and fourth columns of the regression table contain ¢ tests for
each individual regression coefficient. These evaluate the null hypotheses that in the
population, the coefticient on each particular x variable equals zero.

The 1 test probabilities are two-sided. For one-sided tests, divide these P-values in half.

In addition to these standard F and ¢ tests, Stata can perform F tests of user-specified
hypotheses. The test command refers back to the most recent model-fitting command such
as anova or regress . For example, individual ¢ tests from the following regression
report that neither the percent of adults with at least high school diplomas (hig/h) nor the percent

with college degrees (co/lege) has a statistically significant individual effect on composite SAT
scores.

regress csat expense percent income high college

Conceptually, however, both predictors reflect the level of education attained by a state’s
population, and for some purposes we might want to test the null hypothesis that hot/s have zero
effect. To do this, we begin by repeating the multiple regression quietly . because we do
not need to see its full output again. Then use the test command:

quietly regress csat expense percent income high college
test high college

(1) high = 0.9
{ 2) college = 0.0

3.32

F( 2, 45)
> F = 0.0451

Prob
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Unlike the individual null hypotheses, the joint hypothesis that coefficients on high and
college both equal zero can reasonably be rejected (P = .0451). Such tests on subsets of
coefficients are useful when we have several conceptually related predictors or when individual
coefficient estimates appear unreliable due to multicollinearity (Chapter 7).

test could duplicate the overall F test:
test expense percent income high college
test could also duplicate the individual-coefficient tests:

test expense
test percent

test income
and so forth. Applications of test more useful in advanced work include
I. Test whether a coefficient equals a specified constant. For example, to test the null
hypothesis that the coefficient on income equals 1 (H,:B = 1), instead of the usual nuli
hypothesis that it equals 0 (H,:p, = 0), type
test income = 1
2. Test whether two coefficients are equal. For example, the following command evaluates
the null hypothesis H,:p, =B ;.
test high = college

3. Finally, test understands some algebraic expressions. We could request something like
the following, which would test H,:p, = (B, + )/ 100:
test income = (high + college) /100

Consult help test for more information and examples.

Dummy Variables

Categorical variables can become predictors in aregression when they are expressed as one or
more {0,1} dichotomies called “dummy variables.” For example, we have reason to suspect
that regional differences exist in states” mean SAT scores. The tabulate command will
generate one dummy variable for each category of the tabulated variable if we add 2 gen
(generate) option. Below, we create four dummy variables from the four-category variable
region. The dummies are named reg!, reg?2, reg3 and reg4. regl equals 1 for Western states
and 0 for others; reg? equals | for Northeastern states and 0 for others; and so forth.

tabulate region, gen(reg)

Geographica

[
1l region | Freq Percent Cum
____________ e e
West | 13 26.00 26.00
N. EBast | 9 18.00 44.00
South | 16 3z2.00 76¢.00
Midwest | 12 24.00 100.00
____________ o e _
Total | 50 100.00

A

ot Al L o o

———————————
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describe regl-regd

‘ storage display value
variable name type format label variable label
regl ve w800 oI T
r:32 E;EZ (g Sg region==West )
£ = g region==N. East
;Egi Eyte :f Og regicn==Scuth
yte :8.0g region==Midwest

region=-=-wes
£ Freq Percent Cum
____________ e
G T 37 74.00 74.00
1 13 26.00 100.00
____________ e ..~
Total | 50 100.0¢C
tabulate reg2
region==N.
East | Freq Percent Cum
____________ A1
0t 41 82.00 82.00
_—_7_7‘_7_E_lﬁ_7 9 18.00 100.00
Total | 50 100.00

o~ Regrelssmg ¢sal on one dummy variable, reg2? (Northeast), is equivalent to performing a
o-sample / test of.whether mean ¢sat is the same across categories of reg2. That is, is the
mean csat the same in the Northeast as in other U.S. states? ’

regress csat reg?2

______ ??Tfff_l___,_;_??_,_,__ df MS Number of obs = 30
N T F( 1, 4 =
. Model | 35191.4017 1 35191.4017 Prob » F v = 053
esidual | 177769,978 48 3703.54121 R;squared _ 8-?222
_____________ R = .
——————— Adj R-s =
Total | 212%61.38 49 4346.15061 Roit MSEuared = 2512;3
csat | Coef Std. Brr. ot parel tess ennn LI
______________ ‘7_;ﬁ_7_,____ﬁ_;____fff;;*_;__t P>t [95% Conf Interval)
reg2 | -69.0542 22.40167 3,08 0.003  -114.0958 a4 aim
i 22 -3.08 0.003 -114.0958 -
_cons | 958.6098 9.504224 100.86 0.000 939.5002 gg%oifgg

d.ﬂrThe dummy variable cc?efﬁcient’s ¢ statistic (1 = -3.08, P = -003) indicates a significant
bt er66nce. Accordmg to this regression, mean SAT scores are 69.0542 points lower (because
=—69.0542) among Northeastern states. We get exactly the same result (¢ =3.08, P = .003)

from a simple ¢ test, which aiso shows the m
, eans as 889.555
states), a difference of 69.0542. P (ortheast) and 9586098 (ofher
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ttest csat, by(reg2)

Two-sample t test with egual variances
777____——_______>4_-___7‘A___—___'7______-77:__ terval]
________________ ; Mean Std. Err Std. Dev [G5% Conf;_fﬁ___,,__
Grouo | obs  Meen  Std. Err.  Std. Dev.  [95% Cont
N 979.5595
_________ R 558.6098 10.36563 66.37239 93;égg et
: ! ;59'5556 4.652094 13.95628 B78.8278  900.2837
Lo 8 889.5056 0 4.602094 13.95628  87B.8278 900
7777777777777777777777777 964,9158
_________ +77____’O 946.18 9.323251 65.82534 927.44?%___~7777____
combined | 0 eeas 9,235 6582530 92744
777777777 *'“""”""‘;;’6;42 22.40167 24,01262 iif;????
diff | 9.0542  22.abler 2401262
Decrees of freedom: 48
Ho: mean(0) - mean(l) = diff = 0
Ha: diff > O
i J Ha: diff != 0 d e
Hz: diff < 0 . L Y onae : : 3‘8817
- g'g§g3 P> |t] = 0.0034 P>t =
P < t .95

fstudents
This conclusion proves spurious, however, once we control for the perce(rjltagec(;ms
i , ' ! ercent.
taking the test. We do so with a multiple regression of ¢sat on both reg2 and p

regress csat reg2 percent

Ms Number of obs = o0
Source | ss df - F{ 2, 47) = 107'13
_________________________________ > F = 0.000
vvvvvv del T 174664.983 2 B7332.4916 ifzzuared ~ 0800z
Mode 296.3969 47 814.816955 ; d = 0.8125
Residual | 38296.3965 47 814.816955 Adj R-square P
____________________________ MSE = .
______ Total T 212961.38 49 4346.15061 Root
ota N
——————————————————— Coet.  std. mrr. ot poied [95% Conf. Interval]
csat | cer. oetae B b BIEE S L9os tont. Snte
7777777777777 +_—___*777_____I;V;;;26 4.03 0.000 28.79016 §6é22222
. 7.52437 . : _ 75 -2,
o 72 793009  .2134796  -13.08  0.000 féfézilza iie 374
s : 1033.749  7.270285  142.15  0.000 .
cens .

The Northeastern region variable reg2 now has a st.atistifzally si gn.lﬁcan'tpo.wAnl\;}el gﬁ;{lﬁg;;;
b=157.52437, P <.0005). The earlier negative relationship was mlsle?dm;,;. o
(SAT sc;ores a’mong Northeastern states really are lower, they lallrf n(i:))v; e

- s of students take this test in the Northeast. A smaller, < o’ sowp of
donts fer Icss than 20% of high school seniors, take the SAT in many of the n
StUdentSQOﬁﬁnNCSriheastem states, however, large majorities (64% to 81%) do so. On}(lz.e wer
Std?lfsst. f(:?daiffer(e)nces in the perce’ntages taking the test, SAT scores actually tend to be highe
a
in the Northeast. . . ' N

i ion results, it can help to write oyt t g

equaq;i(z);1 nsciuel:s:?tﬂir?; rznerﬁ)yesV Eal;]s tz)leerse.glgf)srsNortheastem states, the equation is approximately

predicted esat = 1033.7 + 57.5reg2 — 2.8percent
=1033.7+57.5 x 1 — 2.8percent
=1091.2 - 2.8percent

T ——
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For other states, the predicted csar is 57.5 points lower at an

predicted csar = 1933.7 + 57.5 %0 - 2.8percent
1033.7 - 2 8percent

Dummy variables in models such as this are termed “intercept dummy variables,” because they
describe a shift in the y-intercept or constant.

From a categorical variab)e with k categories we can define &k dummy variables, but one of
these will be redundant. Once we know a state’s values on the West, Northeast, and Midwest
dummy variables, for example, we can already guess its value on the South variable, For this
feason, no more than & — | of the dummy varijables — three, in the ca

y given level of percent:

li

» Stata wil| automatically
drop one because multicollinearity otherwise makes the calculation impossible.

regress csat regi regl2 reg3 reg4 percent

Source | 58 df MS Number of obs = 50
————————————— e T F{Oog, 45) = 64.61
Model | 181378.0a9 1 45344 ,5247 Prob > F = 0.0000
Residual | 31583.2811 45 701.85069] R-squared = 0.8517
————————————— +——-~—-~——~——-»—~~—-———-——~-~~— Adj R-squared = 0.8385
Total | 212961.38 49 4346.15061 Root MSE = 26.492
CTsat | Coef Std. Err t P>t [95% Conf. Interval)
_____________ +_g__*__ﬁ__ﬁ______;__,__,__________,‘,_<_______,__,_____ﬁ__‘,____
regl [ -23,77315 11.12578 -2.14 0.038 -46.18162 -1.364676
reqg? 25.79985 16.96365 1.52 0.135 ~8.366693 59.96639
reg3 -33.29951 10.85443 -3.07 0.004 -55,16146 ~11.43757

regd | (dropped)
percent | -2 5440583 .2140196 ~11.930 0.000 -2.977116 -Z2.115001
_cons | 1047.638 8.273625 126.62 0.000 10320.974 10e4.302

The model’s fit - including R?, Ftests, predictions, and residy
the same regardless of which dummy variable we (or Stata) choose
the coefficients, however, occurs with reference to that omitted category

sonregl, reg2, and
reg3 tell us that, at any given level of percent, the predicted mean SAT scores are

23.8 points lower in the West (regl = 1) than in the Midwest;
25.8 points higher in the Northeast (reg2 = 1) than in the Midwest; and

33.3 points lower in the South (reg3 = 1) than in the Midwest.

The West and South both differ significantly fr

om the Midwest in this respect, but the Northeast
does not.

An alternative command, aregq, fits the same model with

variable creation, Instead, it “absorbs” the effect of a k-category variable such as region. The
model’s fit, F test on the absorbed variable

estimates of the coefficients on individual dummy variables, however.
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areg csat percent, absorb(region)

Number of obs = 50
F( 1, 45) = 141.52
Prob > F = 0.0000
R-squared = 0.8517
Ad3 R-squared = 0.8385
Root MSE = 26.492

[95% Conf. Interval]

csat | Coef Std. Err t P>t
_____________ o e e
percent | ~-2.546058 .2140196 -11.90 0.000 ~2.977116 -2.115001
_cons ) 1035.445 8.38689 123.46 0.000 1018.553 1052.337
_____________ o e o
region | F{(3, 45} = 9.4865 0.000 (4 categories)

Although its output is less informative than regression with explicit dunimy variables,
areg does have two advantages. It speeds up exploratory work, providing quick feedback
about whether a dummy variable approach is worthwhile. Secondly, when the variable of
interest has many values, creating dummies for each of them could lead to too many variables
or too large a model for our particular Stata configuration. areg thus works around the usual
limitations on dataset and matrix size.

Explicit dummy variables have other advantages, however, including ways to model
interaction effects. Interaction terms called “slope dummy variables” can be formed by
multiplying a dummy times a measurement variable. For example, to model an interaction
between Northeast/other region and percent, we create a slope dummy variable called reg2perc.

generate reglperc = reg?2 * percent

(1 missing value generated)
The new variable, reg2perc, equals percent for Northeastern states and zero forall other states.
We can include this interaction term among the regression predictors:

regress csat regl percent reglperc

Source | S8 df MS Number of obs = 50
————————————— R il F{ 3, 46) = 82.27
Model | 179506.19 3 59835.3968 Prob > F = 0.0000
Residual | 33455.1897 46 727.286733 K-squared = 0.8429
————————————— R ittt Adj R-squared = 0.8327
Total | 2129%¢61.38 49 4346.15061 Root MSE = 26.968

csat | Coef Std. Err T P>t [95% Conf. Intervall
_____________ o
reg2 | -241.3574 116.6278 -2.07 0.044 -476.117 -6.597821

percent | ~2.858829 .2032947 -14.06 0.0040 -3.26804 -2.449618
regZperc | 4.179666 1.620009 2.58 0.013 .9187559 7.440576
_cons | 1035.519 6.902898 150.01 0.000 1021.624 1049.414

The interaction is statistically significant (¢ = 2.58, P = .013). Because this analysis
includes both intercept (reg2) and slope (reg2perc) dummy variables, it is worthwhile to write
out the equations. The regression equation for Northeastern states is approximately
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predicted csar = 1035.5 - 24 Areg2 — 2 9percent + 4.2reg2perc
=10355-2414 x| — 2.9percent + 4.2 x | X percent
= 794.1 + 1.3percent
For other states it is

predicted csar = 10355 2414 < 0~ 2 9percent + 4.2 X 0 x percent
=10355- 2.9percent

work as follows, with the results seen in Figure 6.6

1 .
abel define reg2 0 "other regions" 1 "Northeast"
label valuyes reg? reg2

graph twoway 1fit csat percent
11 scatter csat percent
IL. , bf(regZ, legend(off) note(""))
Ytitle ("Mean composite SAT Score")

other regions Northeast Figure 6.6

1000 1100
-

Mean composite SAT score
800

800

0 20 40 60 80 0 20 40 60 80

% HS graduates taking SAT
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mspline
enough to cover the range of the data.
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Alternatively, we could fit the regression model, calculate predicted values. and use those
h as Figure 6.7. The bands (50) options with both

commands specify median splines based on 50 vertical bands, which is more than

quietly regress csat reg2 percent reg2perc

predict yvhatl
graph twoway scatter csat percent if reg2 ==

|| mspline yhatl percent if reg2 == 0, clpattern(solid)
bands (50}

11 scatter csat percent if reg2 == 1, msymbol(Sh)

{! mspline yhatl percent if reg2 == 1, clpattern(solid)
bands (50)

i1 , ytitle("Composite mean SAT score")
legend(order(l 3) label(l "other regions")
label (3 "Northeast states”) position(lZ) ring{90))

3 .
= @ e other regions Northeast states

Figure 6.7

1000

Composite mean SAT score
900

80O

60

0 20 40 ,
9% HS graduates taking SAT

Figure 6.7 involves four overlays: two scatterplots (csat vs. percent for Northeast and other
states) and two median-spline plots (connecting predicted values, yhatl, graphed against
percent for Northeast and others). The Northeast states are plotted as hollow squares,
msymbol (Sh). ytitle and legend options simplify the y-axis title and the legend; in
their default form, both would be crowded and unclear.

Figures 6.6 and 6.7 both show the striking difference, captured by our interaction effect,
between Northeastern and other states. This raises the question of what other regional
differences exist. Figure 6.8 explores this question by drawing a csat-percent scatterplot with
different symbols for each of the four regions. In this plot, the Midwestern states, with one
exception (Indiana), seem to have their own steeply negative regional pattern at the left side of
the eraph. Southern states arc the most heterogeneous group.

———EEEE

Linear Regression Analysis 183

graph twoway scatter csat percent if regl ==1
1 scatter csat percent if reg2 == ;; mbol
1 scatter csat percent if reg3 == i mZ ; {Sh)
11 scatter csat percent if regd == 1, e )
H , msymbol (+)

l;biig:n?(position(l) ring(0) label{l "West")
( Northeast") label(3 "South") label{4 "Midwest"))

8 | i
s + igure 6.8
. s West  Northeast
. South 4 Midwest
9 +
Q et
S
&(') - + & 2
[0 &
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8 o @ [ @
cS ¢
[1:] -]
L] %Y
5 K L]
+
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gL
’ 20 2 60 80

4
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Automatic Categorical-Variable Indicators and Interactions

The xi (ex i ions impli
The X i(m(f)zztd m;eéactlons) command simplifies the jobs of expanding multiple-categor
B S0 dummy and interaction variables, and including these as predictorg .
res four—categor;ir;?a;ls. Forexample, indatasetstudent2.dta (introduced in Chapter 5) t;eiz
e year, representing a student’s i ’
ha \ year in college (freshima
). We could automatically create a set of three dummy variablegb(y typing " sophomore.

xi, prefix{(ind) i.year

he th n umim i ‘ a a
I'he three new d y variables will be named indyear 2, indye r 3, and ii‘ld_}’é’ r 4
" 3, 4. The

prefix () option specified the prefi i '
simply prefix used in naming the new dummy variables. If we typed

xi i.year

ivi i i
givingno prefix () option, the names /lyear 2, Ivear 3,and Iyear 4 would be assigned
— — . — €

(and any previously calculated vari i
: variabl i
A iables with those names would be overwritten by the new

drop I*

empl i i
ploys the wildcard * notation to drop all variables that have names beginning with _/
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By default, xi omitsthe lowest value ofthe categorical variable when creating dummies,
but this can be controllcd. Typing the command

char _dtaf[omit] prevalent
will cause subsequent xi commands to automatically omit the most prevalent category (note
the use of square brackets). char _dta[] preferences are saved with the data; to restore

the default, type

char dtafomit]

Typing
char year[omit] 3

would omit year 3. To restore the default, type

char year[omit]

xi canalsocreateinteraction terms involving two categorical variables, or one categorical
and onc measurement variable. For example, we could create a set of interaction terms for year
and gender by typing

xi i.year*i.gender
From the four categories of year and the two categories of gender, this xi command creates

seven new variables — four dummy variables and three interactions. Because their names all
begin with [/, we can use the wildcard notation /* to describe these variables:

describe _I*

storage display value

variable name type format label variable label

Iyear 2 byte $8.0g year==

Iyear 3 byte 38.0g year==3
:Iyear_4 byte %8.0g year==4

Igender_1 byte $8.0g gender==
:Iyeanen~2il byte 28.0g yvear==2 & gender==]
_IyeaXgen 3 1 byte %8.0g vyear==3 & gender==
_IyeaXgen_4 1 byte %8.0qg year==4 & gender==1

To create interaction terms for categorical variable year and measurement variable drink

(33-point drinking behavior scale), type
xi i.year*drink

Six new variables result: three dummy variables for year, and three interaction terms
representing each of the year dummies times drink. For example, for a sophomore student
_Iyear2 = 1 and _IyeaXdrink 2 = 1xdrink = drink. For a junior student, fyear? = 0 and
_IyearXdrink_2 = Oxdrink =0; also _Iyear3 =1 and IyeaXdrink 3 = 1xdrink = drink, and so
forth.

describe _Iyea*

storage display value
variable name type format label variable label
Iyear 2 byte %8.0g year==2
Iyear_3 byte %8.0g year==
Iyear 4 byte %8.0g year==4

;Iyeaxdrink_Z
_IveaXdrink 3
_IveaXdrink 4

float +9.0g
float 29,0
float £9.0g

Xi: regress gpa drink i.year

This command automatic

ally creates the necessa

deSCIl . y p
g g 1
X1: regress gpa dllﬂk 1. year*dzlnk
i.vear

i.year*drink

_lyear 1-31
_IveaXdrink #

(naturally coded;

B
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(year::Z)*drink
(Yyear== J*drink
(vyear==4)*drink

(coded as above)

ry dummy variables, following the same rules
nk, year, and the Interaction of drink and year

*Iyearﬁl omitted)

Source S5
. ar
____________ *“*“*——-——-—~——7-___<L_ M5 Number of obs = 218
Model | 5.08865901 7 ocgeqona e eloy =
\ - 7 .726951249g : b 375
Resid ‘ :
_________ ual l 40.6630801 210 193433715 ;rzzu; Fd 0.0007
_____________________________ - re = 0.1112
Tot - J R-
ofal 1 45.7517391 217 310837507 QS;tRM;guaIEd o L
____________ = .44004
gpa | Coef.  Sta. pre L TTITTTTTmemeeee
_____________ +;__>_<>_7‘_;__fff>_?ff t P>l [95% Conf, Interval]
drink | -.0285369 0140405 5 o T TTTTTmmmme—e—ol
. .0140402 =2.03  0.043  _ mepn... T TTTTTmm--
_lyear 2 | - g5g3 -03 0.043 -.0562 -
_Iyear 3 ﬁ.;85§j§2 rart Tose 0.065 '1'204j2§ '8008591
Iyear 4 I -.22037 araLle “o- o 0-349 T- 8860487 arsss
Sfvear . 83 .2939595 =0.75  0.454 ' Dri1639
Iyeaxd rink {dropped) ‘ T 799568 3591114
eaXdrin~2 |
7Iyeaxdr12~§ | .8199977 .016443¢ 1.22 0.225 ~.0
_IyeaXdrin~q | '0188977 16348 9.67  0.508 —.o%fgégg BEPEE
cons | 3 434239 016369 0.64 0,525 - 0218 : aeaie
_________________ 432132 2523944 13.60  0.000 ; 934335 50426925
____________________________________ . 920691
The xi: ¢
! command ied i
can be applied in the same way before many other model-fitting

procedures such

(right-hand-side) variables such as

as logistic (Chapter 10). In general
the following, without

variable or interaction terms.

i.catvar

l.catvarl*i.catvarZ

i.catvar*measvar

Creates ;-1 dummy variables re

catvar,

Creates ;-1 dummy varjables re
catva.rl ; k~1 dummy variables fr
and (j-1)(k-1) interaction variab

measurement variable (dummy x measvar)

Aft i i
erany xi command, the new variables remain in the dataset

» itallows us to include predictor
first creating the actual dummy

presenting the ; categories of

presenting the ; categories of
om the k categories of catvar2;
les (dummy x dummy).

Creates ;| dummy variables re
catvar, and j-1 variables re

pres.enting the j categories of
presenting interactions with the
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Stepwise Regression

",
™y,

With the regional dummy variable terms we added earlier to the state-level data in states.dta,
we have many possible predictors of csatz. This results in an overly complicated model, with
several coefficients statistically indistinguishable from zero.

regress csat expense percent income college high regl reg2

reg2perc reg3

Source | SS af MS Number of obs = 50

————————————— e i e F( 9, 40) = 49,51

Model | 195420.517 9 21713.3908 Prob > F = 0.0000

Residual | 17540.863 40 438.521576 R-squared = 0.9176

————————————— fe e m s mm e m e mm e —m Adj R-squared = 0.8991

Total | 212961.38 49 4346.15061 Root MSE = 20.941

csat | Coef. S5td. Err. t P>1tl [95% Conf. Interval]

_____________ e

expense | -.0022508 .0041333 -0.54 0.589 -.0106045 .006103

percent | -2.93786 .2302596 -12.76 0.000 -3.403232 ~2.472488

income | -.0004919 .0010255 -0.48 0.634 -.0025645 .0015806

college | 3.900087 1.719408 2.27 0.029 .4250318 7.375142

high | 2.175542 1.171767 1.86 0.071 -.192688 4,543771

regl | -33.7845¢6 9.302983 -3.63 0.001 -52.58¢659 -14.98253

reg?2 | -143.5149 101.1244 ~-1.42 0.164 -347.8949 60.86509

regz2perc | 2.506616 1.404483 1.78 0.082 -.3319506 5.345183

reg3 | -8.799205 12.54658 -0.70 0.487 -34.15679 16.55838

_cons | 839.2209 76.35942 10.99 0.000 684.8927 993.549

_____________ +__7.___»4___;.‘___7_______<-____;____________—‘>___~A___-____—___.-—

We might now try to simplify this model, dropping first that predictor with the highest ¢
probability (income, P= .634), then refitting the model and deciding whether to drop something
further. Through this process of backward elimination, we seek a more parsimonious model;
one that is simpler but fits almost equally well. Ideally, this strategy is pursued with attention
both to the statistical results and to the substantive or theoretical implications of keeping or
discarding certain variables.

For analysts in a hurry, stepwise methods provide ways to automate the process of model
selection. They work cither by subtracting predictors from a complicated model, or by adding
predictors to a simpler on¢ according to some pre-set statistical criteria. Stepwise methods
cannot consider the substantive or theoretical implications of their choices, nor can they do
much troubleshooting to evaluate possible weaknesses in the models produced at each step.
Despite their drawbacks, stepwise methods meet certain practical needs and have been widely
used.

For automatic backward elimination, we issue a sw regress command that includes
all of our possible predictor variables, and a maximum P value required to retain them. Setting
the P-to-retain criteria as px (.05) ensures that only predictors having coefficients that are
significantly different from zero at the .05 level will be kept in the model.

‘4‘4-.....
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SW regress csat expense percent

i ;
regrmere cogs i ncome college high regl reg2

begin with ful] model

el j O.6341 >= 0.0500 removing income
P = 0.5273 >= 0.0500 removing reg3
bl - 8.4215 >= 0.0500 removing expense
P = 0.2107 >= 0.0509 removing reg2
Source
7777777777777 l,_;_,_,ff___,___?f___; MS Number of obs = 50
Model | 194185.761 5 s3eg49 ea. : ’ _
negroae! ( i94185.761 5 38837.1521 P;ob ; F o oo
_________ ! 8775.6194 44 426.718624 R-squared oo
________________________________ - re = 0.9118
T _— - —_
otal | 212961, 38 49 4346.15061 iggtRMgguared Do
‘‘‘‘‘ = 20.657
csat | Coef —;; 77777 : __________________________________________
_____________ +_‘___‘_7_,_7____?__?f:__;___ t P>t [95% cConf. Interval]
regl | -30.59218 8479395 361 o go1  Lan enlliTTTTITooae-
2 .4793965 -3.61 0.001 -
r§§§CS§§ : -3.119155 .1804553 -17.28 0.000 ﬁg7é§8128 i
Colﬁe .5833272 -1545969 3.77 0.000 2.712839 Caaal
higi : ;.995495 1.3598331 2.94 0.005 i 25;;27 AR
s é§21§24 .8178968 2.73 0.009 .5829313 araee
_______ _ens 1 Bus.s 2 49.98744 16.14 0.000 705.9289 ;6372521

version,

If, instead of a P-to-retain, pr (. 05), we specify a P-
then Sw regress performs forward inclusion (starting
model) instead of backward elimination. Other stepwise opt
and locking certain predictors into the model. For exam Ilc)e
that the first term (x/) should be locked into the model zfnd,

SW regress y x1 x2 x3, pr(.05) locktermi

to-enter value such ag pe(.05),
With an “empty” or constant-only
ions include hierarchical selection
the following command specifies
not subject to possible removal:

together:

SW regress y xI x2 x3 (x4 x5 x6) , pe( 10)

Many other i
. Similar);n " Stata Cf)mmands beI51des regress also have stepwise variants that work in
ner. Available stepwise procedures include the following:

sw clogit Conditional (fixed-effects) logistic regression

1 . -
sw cloglog Maximum likelihood complementary log-log estimation
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sw cnreg Censored normal regression

sw glm Generalized linear models

sw logistic Logistic regression (0dds) .

sw logit Logistic regression (coefﬁ.czlents)
sw nbreg Negative binomial regression

Ordered logistic regression
Ordered probit regression

sw ologit
sw oprobit

sw poisson Poisson regression

sw probit Probit regression

sw qreg Quantile regression

sw regress OLS regression |
sw stcox Cox proportional hazard model regr6551f)n
sw streg Parametric survival-time model regression
sw tobit Tobit regression

Type help sw for details about the stepwise options and logic.

Polynomial Regression

ili lationship
] i led an apparently curvilinear re '
ier | . chapter, Figures 6.1 and 6.2 revea tly !
E:trxl»\l/eererinmt:al\; corrf)posite SAT scores {csar) and the percenltahge ofthlgh. ic;[(;?rl ziglr(é;sat higﬁ
i i to model the upturn 1
/. Figure 6.6 illustrated one way : ‘ el
the'tes':t (\f’aeitlceesr'l )as a pghenomenon peculiar to the Northeastern states. .Tha; 1nte::55tmi-lezli 0%
f_e’ce" nabl lwell (R?, = .8327). But Figure 6.9 (next page), a remdpa slvea eapr cdiee
vlztiliteeisglot fgr the inter;ction model, still exhibits signs of trouble. Residuals app
upwards at both high and low predicted values.
quietly regress csat reg2? percent reg2perc

rvfplot, yline (0)
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Chapter 8 presents a varicty of techniques for curvilinear and nonlinear regression.
“Curvilinear regression” here refers to intrinsically linear OLS regressions (for example,
regress ) that include nonlinear transformations of the original y or x variables. Although
curvilinear regression fits a curved model with respect to the original data, this model remains
linear in the transformed variables. (Nonlinear regression, also discussed in Chapter 8, applies
non-OLS methods to fit models that cannot be linearized through transformation.)

One simple type of curvilinear regression, called polynomial regression, often succeeds in
fitting U or inverted-U shaped curves. It includes as predictors both an independent variable
and its square (and possibly higher powers if necessary). Because the csat—percentrelationship
appears somewhat U-shaped, we generate a new variable equal to percent squared, then include

percent and percent’ as predictors of csat. Figure 6.10 graphs the resulting curve.

generate percentl = percent”2

regress csat percent percentl2

Number of obs
FC 2, 48)
Prob > F
R-squared

Adj R-squared
Root MSE

51
153.48
0.0000
0.8648
0.8591
25.122

I (]

(It

Source | S8 df MS
_____________ o e
Model | 193721.829 2 86860.914¢
Residual | 302%92.6806 48  631.097513
_____________ U,
Total 224014.51 50 4480.2902
csat Coef Std. Err r

_____________ 5

percent | -6.111993 .6715406 ~9.10
percent? | .0495819 .0084179 5.89
_cons | 1065.921 9.285379 114.80

~7.462216
.032656¢6
1047.252

~4.76177
.0665072
1084.591
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predict yhat2

(option xb sssumed; fitted values)

0
h twoway mspline yhat2 percent, bands (50)

11 scatter csat percent
I , legend(off) ytltle(

grap

wMean composite SAT score")

Figure 6.10

1100

N

1000

Mean composite SAT score
900

800

40
0 20 % HS graduates taking SAT

graph twoway qfit csat percent
|| scatter csat percent

ightly better than our interaction
i in Figure 6.10 matches the data slightly e i
Th? pl(?) 1)’“0:2361 E‘;i’o"de'l m8l;19gluversus 8327). Because the curvilinear patlternS :‘;n ncza(/) rllezsf
re 6. = : K
“:0(115‘1] minliuresidual versus predicted values plot (Figure 6.1}), t'k;::leuf;?h ?especl: ton
Snrc;epe%ldent identically distributed errors also appears more piausl
1 9

polynomial model.

- |
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quietly regress csat percent percent2

rvEplot, yline(0)

o Figure 6.11
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In Figures 6.7 and 6.10, we have two alternative models for the observed upturn in SAT
scores at high levels of student participation. Statistical evidence seems to lean towards the
polynomial model at this point. For serious research, however, we ought to choose between
similar-fitting alternative models on substantive as well as statistical grounds. Which model
seems more useful, or makes more sense? Which, if either, regression model suggests or

corresponds to a good real-world explanation for the upturn in test scores at high levels of
student participation?

Although it can closely fit sample data, polynomial regression also has important statistical
weaknesses. The different powers of x might be highly correlated with each other, giving rise
to multicollinearity. Furthermore, polynomial regression tends to track observations that have
unusually large positive or negative x values, so a few data points can exert disproportionate
influence on the results. For both reasons, polynomial regression results can sometimes be
sample-specific, fitting one dataset well but generalizing poorly to other data. Chapter 7 takes
a second look at this example, using tools that check for potential problems.

Panel Data

Panel data, also called cross-sectional time series, consist of observations on i analytical units
or cases, repeated over ¢ points in time. The Longitudinal/Panel Data Reference Manual
describes a wide range of methods for analyzing such data. Most of the relevant Stata
commands begin with the letters xt; type help xt for an overview. As mentioned in the
documentation, some xt procedures require time series or tsset data; see Chapter {3, or
type help tsset, for more about this step.
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This section considers the relatively simple case of linear regression with panel data,
accomplished by the command xtreg . Our example dataset, newfdiv.dta contains
information about the 10 census divisions of the Canadian province of Newfoundland (Avalon
Peninsula, Burin Peninsula, and 8 others), for the years 1992-96.

Contains data from c:\data\newfdiv.dta
Newfoundland Census divisions

obs: 50
(source: statistics Canada)

vars: 7 18 Jul 2005 10:28
gize 2,250 (99.9% of memory free)

storage display value
variable name type format label variable label
cendiv byte %9.0g cd Census Division
divname str20 %20s repsus Division name
year int %59.0g Year
pop double %9.0g Population, 1000Cs
unemp float %9.0g9 Total unemployment, 1000s
outmig int 39.0g Qgut-migration
tcrime float %9.0g Total crimes reported, 1000s
sorted by: cendilv year

| cendiv divname year poOp unemp cutmig tcrime |
T et |
1. | Avalon Avalon Peninsula 1982 259.587 58.56 6556 26.211
2. | Avalon Avalon Peninsula 1993 261.083 52.23 6449 21.039 |
3. | Avalon Avalon Peninsula 1994 259,296 44.81 6907 20.201
4, | Avalon Avalon Peninsula 19395 257.546 39.35 . 15.536 |
5. | Avalon Avalon Peninsula 1996 255.723 38.68 . 21.268 |
T T e |
6. | Burin Burin Peninsula 1992 29.865 9.5 874 1.203 |
7.0 Burin Burin Peninsulea 1993 29.611 9.18 928 1.953 1
8. | Burin Burin Peninsula 1994 29.327 8.41 884 1.9%4 |
9. | Burin Burin Peninsula 1995 28.898 7.12 2.0603
10. | Burin Burin Peninsula 1996 28.126 6.81 1.923 |

Figure 6.12 visualizes the panel data, graphing variations in the number of crimes reported
each year for 9 of the 10 census divisions. Census division 1, the Avalon Peninsula, is by far
the largest in Newfoundland. Setting it temporarily aside by specifying 1f cendiv =1
makes the remaining 9 plots in Figure 6.12 more readable. The imargin(1=3 r=3) option
in this example calls for left and right margins subplot margins equal to 3% of the graph width,
giving more separation than the default.

tﬂc«»‘
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graph twoway connected tcrime year if cendiv != 1

by (cendiv, note("")) xtitle("") imargin(léft=3 right=3)

Burin S Coast St Georg Figure 6.12

N ‘—_.//.\ ~—

Humber Central Bonavist

N T .
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- “\\f’/*\\“‘*

N-\'—‘\*\
..1 T,

e e B
1902 1093 1994 1995 1996 1992 1963 1994 1995 1596 1992 1693 1004 1995 1996

Total crimes reported, 1000s

indi;}"il(lie dlataset c}(l)ntains 50 observations total. Because the 50 observations represent only 10
ual cases, however, the usual assumptions of OLS and other common statistical methods

do not apply. Instead, we need mod i
. ply. \ els with complex error specificati 1
unit-specific and individual-observation disturbances. peclications,allowing for borh

. r;(;rilslder ttflfc_: r.egression of y on two predictors, x and w. OLS regression estimates the
g n coefficients a, b, and ¢, and calculates the associated standard errors and tests

assuming a model of the form
y,=a+bx,+tcw, te,

::;t(;zre tkclie rtesuiluz}és for ecach observation, e, , are assumed to represent errors that have
pendent and identical distributions. The i.i.d i

: . .1.d. errors assumption appears unlikely wi
panel data, where the observations consist of the same units measured repF::atedly y it

e i/il\l Irﬁore}:) pia(;ll%ifble Eanel-data model includes two error terms. One is common to each of
its, but differs between units (1,). T i i ] i
o (#,). The second is unique to cach of the /, t observations

ytI:a+bx/'1+erl+ui+ ei[

I
whicﬁ zﬁ?; bt;)eﬁitS S;Ch:'l mo@e(li, Stata needs to know which variable identifies the i units, and
e time index ¢, This can be done within an ’
| xt command, or more
efficiently for the dataset as a whole. The commands iis (“i is”)and tis (“¢ is”)specify

the I a[’ld rvar lableS res eCtl Ve y l or newjd 1¢ Units arc ce u V1S101 ( endl all(l
p l . ew, lv.dta
y s f 3 nsus dl S ( V)
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iis cendiv
tis year
save, replace
Saving the dataset preserves the i and ¢ specifications, so the iis and tis commands

are not required ina future session. Having set these variablcs, we can now fit arandom-effects
(meaning that the common errors u , are assumed to be variable, rather than fixed) model

regressing fcrime on unemp and pop.

xtreg tcrime unemp pop, re

Random-effects GLS regression Number cf obs = 50

Group variable (1): cendiv Number of groups = 10

R-sqg: within = 0.5265 Obs per group: min = 5

between = ©.8717 avg = 5.0

overall = 0.9634 max = 5

Random effects u_i ~ Gaussian Wald chiZ (2) 705.54

corr{u_i, X) = 0 (assumed) Prob > chi2 = 0.000C

tcrime | Coef. Std. Err. z P>z [95% Conf. Interval]

_____________ b o e e

unemp | .1645266 .0381813 4.31 0.000 . 0896925 .2393607

pop | .055868987 .0073437 7.6l 0.000 .0415062 .0702931

cons | -.7264381 .301522 -2.41 0.016 -1.31741 -.1354659

_____________ o e
sigma_u | .34458437
sigma_e | .42064667

rho | LA0157462 (fraction of variance due to u_i)

The xtreg output table contains regression coefficients, standard errors, ¢ tests, and
confidence intervals that resemble those of an OLS regression. In this example we see that the
coefficient on unemp (.1645) is positive and statistically significant. The predicted number of
crimes increases by .1645 for each additional person unemployed, if population is held
constant. Holding unemployment constant, predicted crimes increase by 5.59 with each 100-
person increase in population. Echoing the individual-coefficient z tests, the Wald chi-square
test at upper right (x* = 705.54, df = 2, P < .00005) allows us to reject the joint null hypothesis
that the coefficients on unemp and pop are both zero.

This output table gives further information related to the two error terms. At lower left in
the table we find

sigma u standard deviation of the common residuals
sigma e standard deviation of the unique residuals e,
rho fraction of the unexplained variance due to differences among the units (i.e.,

differences among the 10 Newfoundland census divisions).
Var[u, [/(Var[u,] + Varfe, ])
At upper left the table gives three “R*” statistics. The definitions for these differ from the
true R* of OLS. In the caseof xtregq, the “R*” are based on fits between several kinds of
observed and predicted y values.

T T T R

e ———
——
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R* within Expla{ned variation within units — defined as the squared correlation b
deviations of v, values from unit means (y, ~7,) and deviation 1(fm et.Ween
values from unit mean predicted values G»py) " otpredicted

R* between  Explained variation between unj
petween unit means (¥ ) and }
independent variables.

ts — defined as the squared correlation
values predicted from unit means of the

R* overall Explained variati
vanation overall — defined as the 1
/ squared correlation
observed (v,,) and predicted @”) values, petween

;)ls; ct:gamplg rpodel does a very good job fitting the observed crimes overal] (R* = .96), and
50 the var1at19n§ among census division means (R2 = 97). Variations around h can
within census divisions are somewhat less predictable (R = 53) e means

The random-cffects option employed for this example is one of several possible choices

r .
e Generalized least squares (GLS) random-effects estimator; default

be between regression estimator

fe fixed-effects (within) regression estimator

mle  maximum-likelihood random-effects estimator
pa population-averaged estimator

Consult help xtreg for further options and syntax.

- . The Longinds
Reference Manual gives examples, references, and technical d ngitudinal/Panel Data

ctails,
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Regression Diagnostics

Do the data give us any reason to distrust our regression results? Can we find better ways to
specify the model, or to estimate its parameters? Careful diagnostic work, checking for
potential problems and evaluating the plausibility of key assumptions, forms a crucial step in
modern data analysis. We fit an initial model, but then look closely at our results for signs of
trouble or ways in which the model needs improvement. Many of the general methods
introduced in earlier chapters, such as scatterplots, box plots, normality tests, or just sorting and
listing the data, prove useful for troubleshooting. Stata also provides a toolkit of specialized
diagnostic techniques designed for this purpose.

Autocorrelation, a complication that often affects regression with time series data, is not
covered in this chapter. Chapter 13, Time Series Analysis, introduces Stata’s library of time
series procedures including Durbin—Watson tests, autocorrelation graphs, lag operators, and
time-series regression techniques.

Regression diagnostic procedures can be found under these menu selections:
Statistics — Linear regression and related — Regression diagnostics

Statistics — General post-estimation — Obtain predictions, residuals, etc., after estimation

Example Commands

The commands illustrated in this section all assume that you have just fit a model using either
anova or regress. The commands’ results refer back to that model. These followup
commands are of three basic types:

1. predict options that generate new variables containing case statistics such as predicted
values, residuals, standard errors, and influence statistics. Chapter 6 noted some key
options; typc help regress for a complete listing.

2. Diagnostic tests for statistical problems such as autocorrelation, heteroskedasticity,
specification errors, or variance inflation (multicollinearity). Type help regdiag for
a list.

3. Diagnostic plots such as added-variable or leverage plots, residual-versus-fitted plots,
residual-versus-predictor plots, and component-versus-residual plots. Again,typing help
regdiag obtains a full listing of regression and ANOVA diagnostic plots. General
graphs for diagnosing distribution shape and normality were covered in Chapter 2; type
help diagplots for a list of those.

__4--I-..-.-.........I..
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predict Options

Predict new, cooksd

Generates a new variable equal to C

s a ook’s distance
observation influences the fitted model v

» summarizing how much each

predict new, covratio

Predict DFx1, dfbeta(xl)

Generates Statisti i
CoefﬁCientg:BE?I case1 statistics measuring how much each observation aff; ts th
predictorx/. The dfbeta co i g more
. | mmand a i
conveniently, and in this example will auto b o same e e

ool matically name the resulting statistics DFy /-

To create a complete set of DFBETAs
Command dfbeta without arguments

Predict new, dfitsg

for all predictors in the model, simply type the

Diagnostic Tests
dwstat
Calculates the Durbin—Watson t

exai i i '
mples of this and other time Series procedures. See also:

h i 1
elp durbina Durbm—Watson h statistic
help bgodfrey Breusch-—

hettest

est for first-order autocorrelation.  Chapter 13 gives

Godfrey LM (Lagrange multiplier) statistic

that heteroskedasticity 1s a fun
predictor by typing hettest xi.
ovtest, rhsg
p . .
erforms the Ramsey regression specification error test (RESE

option rhs calls for using i
) powers of the
predicted y (default). e

vif

‘ 7) for omitted variables. The
-hand-side variables, instead of powers of

C . . .
aleulates variance inflation factors to check for multicollinearity

Diagnostic Plots

acprplot x1,

mspline msopts (bands (7
Constructs an a oo

et s an I;Jl,f(:,r)rtr)ler;tfet:Zlnc};)fr:nttzortlle]:nt—p]us—residual plot (also known as ap augmented
_ \ rthan cprplot in screeni i iti
otion aual ning for nonlinearities. Th
Cmss-mediarr:s 0J.fne msop.ts (bands (7)) call for connecting with line segments th:
Carve i §§ven vertical bgn@s. Alternatively, we might ask for a lowess-smoothed
ndwidth 0.5 byspec1fymgtheopti0ns lowess lsopts (bwidth (O(.)'St)i
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avplot x1
Constructs an added-variable plot (also called a partial-regression or leverage plot) showing
the relationship between y and x/, both adjusted for other x variables. Such plots help to

notice outliers and influence points.

avplots
Draws and combines in one image all the added-variable plots from the recent anova or

regress.

cprplot x1
Constructs a component-plus-residual plot (also known as a partial-residual plot) showing
the adjusted relationship between y and predictor x/. Such plots help detect nonlinearities

in the data.

lvr2plot
Constructs a leverage-versus-squared-residual plot (also known as an L-R plot).

rviplot
Graphs the residuals versus the fitted (predicted) values of y.

rvpplot x1
Graphs the residuals against values of predictor x/.

SAT Score Regression, Revisited

Diagnostic techniques have beendescribed as tools for “regression criticism,” because they help
us examine our regression models for possible flaws and for ways that the models could be
improved. In this spirit, we return now to the state Scholastic Aptitude Test regressions of
Chapter 6. A three-predictor model explains about 92% of the variance in mean state SAT
scores. The predictors are percent (percent of high school graduates taking the test), percens2
(percent squared), and high (percent of adults with a high school diploma).

generate percent?2 = percent”™2

regress csat percent percent2?2 high

Source | S8 df MS Number of obs = 51
————————————— B it F( 3, 47y = 193.37
Model 1 207225.103 3 69075.0343 Prob > F = 0.0000
Residual | 16789.4069 47 357.221424 R-squared = 0.9251
————————————— R et Adj R-squared = 0.9203
Total | 224014.51 50 4480.2902 Root MSE = 18.90

csat | Coef. Std. Err. t P>t [95% Conf. Interval
_____________ e e
percent | -6.520312 .5095805 -12.80 0.000 ~7.545455 ~5.495168
percent2 | .0536555 .0063678 8.43 0.000 .0408452 .0664658
high | 2.986509 .4857502 6.15 0.000 2.009305 3.963712

_cons | 844.8207 36.63387 23.06 0.000 771.1228 918.5185

The regression equation is
predicted csat = 844.82 — 6.52percent + .05percent2 + 2.9%high

1 Ry b ot
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Several Post-regression hypothesis tests

omitted-variables test ovtest i
essentially regresses h i
b . Y onthex variables, and a]
o, perfolrlm: ::\;etrs of predicted y (after standardizingﬁ\z to have mean 0 anfiovt: e' I,
; cqmtsera o F est oit'he null hypothesis that al] three coefficients on those owers o
. €ject this null hypothesis, further polynomial terms would powersf?f
mprove the

Ho: Constant variance
chiz2 (1) =
Prob > chiz = 0.0274
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is tests mi ht be . rvpplot high
- nificant” edasticity implies that our standard errors and hypothes ¢ . o ,
“Significant heter0§ { section, shows why this result occurs. The one-variable graphs described in Chapter 3 can also be employed for residual analysis.
invalid. Figure 7.2,1n the next se ' For example, we could use box plots to check the residuals for outliers or skew, or
quantile-normal plots to evaluate the assumption of normal errors.
) Added-variable plots are valuable diagnostic tools, known by different names including
Diagnostic Plots ‘ ' J part.ial—regression leverage plots, adjusted partial residual plots, oradjusted variable plots. They
edict can create new variables holding r<351d'-13‘1 an depict the relationship between v and one x variable, adjusting for the effects of other x
Chapter 6 demonstrated how PT mmand. To obtain these values from our regression of variables. If we regressed y onx2 and x3, and likewise regressed x/ on x2 and x3, then took the
predicted values after a regreés co e t}.1e o commands: residuals from each regression and graphed these residuals in a scatterplot, we would obtain an
csat on percent, percent2, and high, we typ added-variable plot for the relationship between y and x/, adjusted forx2 and x3. An avplot
predict yhat3 eomrgandlperforlns t.he necessary calculatiops automat‘ically. We can draw the adjusted-
dict e3, resid _ . variable plot for predictor high, for example, just by typing
precie i hat3 (predicted values) could be displayed in a .
The new variables named €3 (residuals) and yhat3 (P av scatter e3 yhat, - avplot high
N residual-versus-predicted graph t')y t}llpmgusgf:t?;zi?cofn‘r':a:di()btains such graphsinasingle Speeding the process further, we could type avplots to obtain a complete set of tiny
-yersus- . . . . . . . . .
yline (0). The rviplot (f esidua veh rizontal line at 0 (the residual mean), which helps added-variable plots with each of the predictor variables in the preceding regression. Figure
= step. The version in Figure 7.2 includes a ho 7.3 shows the results from the regression of csat on percent, percent2, and high. The lines
ri; in reading such plots. drawn in added-variable plots have slopes equal to the corresponding partial regression
ir cviplot, yline(0) ‘coefﬁcients. .For exaniple, the slope of the line at lower left in Figure 7.3 equals 2.99, which
o Figure 7.2 is the coefficient on high.
Vi avplots
S
o . Figure 7.3
e ®
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:'-‘:, g ;8 \ : Y
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T, d‘% 10 -Se( percegt | X) 10 e( gercentZ |;5(0)0 1000
coef = -8 5203116, se = 50958046, =-12.8 coef = 05365555, se = .00836777,t =8.43
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ically distributed arou nd 0 (symmetry is consistent with coef = 2.9865088 s:(:hl%;'s;;g (=815
: i mmetrically di . . .  se = =8
Flgurel7 2show reSId;tfiléSniy and with no evidence of outliers or curv1]1ncflaar1{y. Tfhe
the normal-errors assum ) bove-average predicted values oLy,
i . t greater for above-averag . . . , . . .
dispersion of the residuals appears some‘iwfrlf;egé cted the constant-variance hypothesis. Added-variable plots help to uncover observations exerting a disproportionate influence on
however, which is why hettest earlicrrcj . of the regression residuals. For , the regression model. In simple regression with one x variable, ordinary scatterplots suffice for
Residual-versus-fitted plots provide a one—graph ov;:rv E:i ot variable separately through this purpose. In multiple regression, however, the signs of influence become more subtle. An
more detailed study, we can plot residuals against €ac pr}fthe residuals against predictor high ‘ observation with an unusual combination of values on several x variables might have high
aseries of “residual-versus-predictor” commands. To grap leverage, or potential to influence the regression, even though none of its individual x values

(not shown), type
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is unusual by itself. High-leverage observations show up in added-varia.ble plots as points
horizontally distant from the rest of the data. We see no such problems in Figure 7.3, however.

if outliers appear, we might identify which observations these are by including observaFion
labels for the markers in an added-variable plot. This is done using the mlabel ( ) option,
just as with scatterplots. Figure 7.4 illustrates using state names (values of the string variable
state) as labels. Although such labels tend to overprint cach other where the data are dense,
individual outliers remain more readable.

avplot high, mlabel(state)

Figure 7.4
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coef = 2.9865088, se = 48575023, t=6.15

Component-plus-residual plots, produced by commands of the form cprplot x1,take
a different approach to graphing multiple regression. The component-plus residual plot for
vartable x/ graphs each observation’s residual plus its component predicted from x/,

e, +b xI,
against values of x/. Such plots might help diagnose nonlinearities and suggest alternative
functional forms. An augmented component-plus-residual plot (Mallows 1986) works
somewhat better, although both types often seem inconclusive. Figure 7.5 shows an augmented
component-plus-residual plot from the regression of csat on percent, percent2, and high.

T L fodm % e At
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acprplot high, lowess

Figure 7.5
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fefslz(s)fir;a;fat!){[ytﬁurvec(ii plattem, departing from the linear regression mode] we would have
ubtthe model’s adequacy. In Figure 7.5, however. th ’ i
: : .5, » the component-plus-resid
;iﬁ:nsfclosell:y follow the regression model. This plot reinforces the conclusicf)n we rZ;cllllil;
parber rF;m j l.gtllre. 7.2, that the pr'esent regression model adequately accounts for all
A .ar1 y VlSl.b ¢ 11.1 the raw data (Figure 7.1), leaving none apparent in its residuals
g ; ;lts)r;?gr:ii ;nt;})]]les, a d]evlerage-versus—squared—residuals plot graphs leverage (hat matrix
. ¢ residuals squared. Figure 7.6 shows such a plot fi i
To identify individual outliers, w ' i valles of stops peETession
> we label the markers with the val f i
mlabsize (medsmall) calls for “med; ’ 5, somewhat arpnr geption
: lum small” marker labels. so h.
. e . - » Somewhat larger than the
efault size of “small, (See help testsizestyle for a list of other choices.) Most of
umbile at lower left in Figure 7.6, but a few outliers stand out,
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lvr2plot, mlabel (state) mlabsize (medsmall)

Figure 7.6
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ial influence.
it must fit them well) lowa and Tennessee are poorly fit, but have .less potential infl

I ] i can read
Utah stands out as one observation that is both ill fit and plotentlallly mfluentlalio\;&;ethe read
its values by listing just this state. Because state 1$ a string variable, we enc

“Utah” in double quotes.

3 1 —-_= "Utah“
list csat yhat3 percent high e3 if state
________________________ +
T ety per el |
b) igh
| ceat yhatd Efl:i?rji_j_? ______________ |
TTos 10e7.71z -36.71239 |
1. | 1031 1067.712 5 85.1 36

Only 5% of Utah students took the SAT, and 85.1% of the statehs adul.tsb%éz?:f}:zcloﬁrlcr)z
high school. This unusual combination ofnear-ext.reme values on bothx variabl e
f%he state’s leverage, and leads our model to predict mean SAT s.cores 36.7 Pom S bfervation
0 hat Utah siudents actually achieved. Tosee exactly how much dlflj?rencg this c:n—e ot ervanon
rv:llakes we could repeat the regression using Stata’s “not equal to” qualifier !'= to

aside.

onm -
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regress csat percent percent2 high if state '= "Utah"
Source | 3¢ df MS Number of chs = 50
—————————————— e FC3, 46) = 202.867
Model | 201097.423 3 67032.4744 Prob > F = 0.0000
Residual | 15214.0968 46 330.741235 R-squared = 0.9297
————————————— B il Adj R-squared = 00,9251
Total | 216311.52 49 4414.52082 Root MSE = 18.186
csat | Coef. std. Err. t P>t [95%2 Conf. Intervall
_____________ o e
percent | -6.778706  .5044217  -13.44  (.000 -7.794054  -5.763357
percent2 | .0563562  .0062509 9.02  0.000 0437738 0689387
high | 3.281765 .4865854 6.74 J0.000 2.302319 4.26121
~cons | 827.1159 36.17138 22.87 0.000 754.3067 889.9252

In the n= 50 (instead of n = 51) regression, all three coefficients strengthened a bit because
we deleted an il1-fit observation. The general conclusions remain unchanged, however,

Chambers et al. (1983) and Cook and Weisberg (1994) provide more detailed examples and
explanations of diagnostic plots and other graphical methods for data analysis.

Diagnostic Case Statistics

Afterusing regress or anova,we can obtaina variety of diagnostic statistics through the
predict command (see Chapter 6 or type help regress ). The variables created by
predict are case statistics, meaning that they have values for each observation in the data.
Diagnostic work usually begins by calculating the predicted values and residuals,

There is some overlap in purpose among other prediet statistics. Many attempt to
measure how much each observation influences regression results. “Influencing regression
results,” however, could refer to several different things — effects on the y-intercept, on a
particular slope coefficient, on all the slope coefficients, or on the estimated standard errors,

forexample. Consequently, we have a variety of alternative case statistics designed to measure
influence.

Standardized and studentized residuals ( rstandard and rstudent) help to identify
outliers among the residuals — observations that particularly contradict the regression model.
Studentized residuals have the most straightforward interpretation. They correspond to the ¢
statistic we would obtain by including in the regression a dummy predictor coded 1 for that

observation and O for all others. Thus, they test whether a particular observation significantly
shifts the y-intercept.

Hat matrix diagonals ( hat ) measure leverage, meaning the potential to influence

regression coefficients. Observations possess high leverage when their x values (or their
combination of x values) are unusual.

Several other statistics measure actual influence on coefficients. DFBETAs indicate by how
many standard errors the coefficient on x/ would change if observation i were dropped from
the regression. These can be obtained fora single predictor, x/, in either of two ways: through
the predict option dfbeta (x1) or through the command dfbeta.
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Cook’s D ( cooksd ), Welsch’s distance ( welsch ), and DFITS ( dfits ), unlike
DFBETA, all summarize how much observation i influences the regression model as a whole
— or equivalently, how much observation / influences the set of predicted values. COVRATIO
measures the influence of the jth observation on the estimated standard errors. Below we
generate a full set of diagnostic statistics including DFBETASs for all three predictors. Note that
predict supplies variable labels automatically for the variables it creates, but dfbeta
does not. We begin by repeating our original regression to ensure that these post-regression
diagnostics refer to the proper (1 = 51) model.

quietly regress csat percent percent?2 high
predict standard, rstandard

predict student, rstudent

predict h, hat

predict D, cooksd

predict DFITS, dfits

predict W, welsch

predict COVRATIO, covratio

dfbeta

DFpercent: DFbeta(percent)

DFpercent2: DFbeta(percent?2)
DFhigh: DFbeta(high)

describe standard - DFhigh

storage display value
variable name type format label variable label
standard float %9.0g Standardized residuals
student float %9.0g Studentized residuals
h float %9.0g Leverage
D float %9.09 Cook's D
DFITS float %9.0g Dfits
W float %9.0g Welsch distance
COVRATIO float %9.0g Covratio
DFpercent float %9.0g
DFpercent?2 float %9.0g
DFhigh float %9.0g
summarize standard - DFhigh
Variable | Cbs Mean Std. Dev Min Max
_____________ S
standard | 51 -.0031359 1.010579 -2.099976 2.233378%
student | 51 -.00162 1.032723 -2.182423 2.336977
h | 51 .0784314 .0373011 .0336437 .2151227
D | 51 .0219941 .0364003 .0000135 . 1860992
DFITS | 51 -.0107348 .3064762 -.896658 . 7444486
_____________ .
W 51 ~-.089723 2.278704 -6.854601 5.52468
COVRATIO | 51 1.082452 .1316834 . 7607448 1.360136
DFpercent | 51 .000938 .1498813 -.5067295 .5269798
DFpercent2 | 51 -.0010659 1370372 -.440771 .4253558
DFhigh | 51 ~-.0012204 1747835 -.6316988 .3414851
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Sumarize S ini i
2 can

quickly check whether any are large enough

coul : 8h to cause concern. For exa le, .

o v et o e i e e T £

inequali& e dng?r}ts)tltptes a significant outlier. Alternatively, we could apply the BonferrZe .

/i, In this exam. lrl ution table: max| student | is significant at level g if | t]is signiﬁcan?ntl

Significant ol ple, we h?V§ fnax! Student | = 2.337 (lowa) and »# = 5. For o a
utlier (cause a significant shift in intercept) at q = .05, wa to be a

at .05/51; pLyata=.05,7=2.337 must be significant

display .05/51
.00098039

Stata’ i i i
ata’s ttail ( ) function can approximate the probability of || > 2.337 given df=pn—K—|

=51-3-1=47
display 2%ttail (47
.02375138 ( r 2337

The obtained P-valye (P=.0238) | _
ato = 05, )is not below a/n = 00098, so Iowa is not a significant outlier

R DS}E}J(Ti;ntlzed residuals measure the ith observation’s influence on the 1-
, > and Welsch’s distance al] measure the ith observation’s inﬂuenée

in the model (or equivalent] i
. , ¥, on all # predicted i
observations as measured by Cook’s D, t;pe ¥ values) To list the

sort D

intercept. Cook’s
on all coefficients
5 most influential

list state yhat3 p DFITS W in -5/1

state yhat3

D ETma
j;: Nortthakgta 1036.696 .0705921 .522;3;6 4 02052?
e Tenﬁgg;gg ;3i7.005 -0789454 - 5820746 —4:270465
. Iowé 1Oé§9§1 111718 -6992343 5.162398
o Soue 106%<% 8 1265392 7444486 5.52468

L7112 .1860992 ~.896658 -6.854401

The in -5/1 qualifier tells Stata to list only the fifth
(lowercage letter “1”) observations, Figure 7.7 shows one way to d
symbols in a residual-versus-predicted plot are given sizes ry N
through the “analyticalweight”option [aweight = Pieer
out, with large positive or negative residuals and high

~from-last (-5) through last
i:splay influence graphically:
tional to values of Cook’s D,
D]. Five influential observations stand
predicted csat values.
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are closely related. In practice they tend to flag the same observations as in
7.8 shows their similarity in the example at hand.

graph matrix D W DFITS, half

Figure 7.8
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thisexample, they received the names DFpercent (DFBETA for predictor percent), DFpercent2,
and DFhigh. Figure 7.9 graphs their distributions as box plots.

graph box DFpercent DFpercent2 DFhigh, legend(cols(3))

Figure 7.9
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From left to right, Figure 7.9 shows the distributions of DFBETAs for percent, percent2,
and high. (We could more easily distinguish them in color.) The extreme values in each plot
belong to Iowa and Utah, which also have the two highest Cook’s D values. For example,
Utah’s DFhigh =—.63. This tells us that Utah causes the coefficient on high to be .63 standard
errors lower than it would be if Utah were set aside. Similarly, DFpercent = .53 indicates that
with Utah present, the coefficient on percent is .53 standard errors higher (because the percent
regression coefficient is negative, “higher” means closer to 0) than it otherwise would be.
Thus, Utah weakens the apparent effects of both high and percent.

The most direct way to learn how particular observations affect a regression is to repeat the
regression with those observations set aside. For example, we could set aside all states that
move any coefficient by half a standard error (that is, have absolute DFBETAs of .5 or more):

regress csat percent percent2 high if abs(DFpercent) < .5 &
abs (DFpercent?2) < .5 & abs(DFhigh) < .5

Source | S8 df MS Number of obs = 48
————————————— R i e F( 3, 44y = 215.47
Model | 175366.782 3 58455,5939 Prob > F = 0.0000
Residual | 11937.1351 44 271.298525 R-squared = (0.9363
————————————— R e i 2dj R-squared = 0.9319
Total | 187303.917 47 3985.18972 Root MSE 16.471

csat | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ o e
percent | =-6.510868 47007189 -13.85 0.000 -7.458235 ~5.5635
percent? | .0538131 . 005779 9,31 0.000 .0421664 .0654599
high | 3.35664 .4577103 7.33 0.000 2.434186 4.279095

~cons | 815.0279 33.93199 24,02 0.000 746.6424 883.4133
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Careful inspection will reveal the details in which this regression table (based on n = 48)
differs from its » = 51 or n = 50 counterparts seen carlier. Our central conclusion —— that mean
state SAT scores are well predicted by the percent of adults with high school diplomas and,
curvilinearly, by the percent of students taking the test — remains unchanged, however.

Although diagnostic statistics draw attention to influential observations, they do notanswer
the question of whether we should set those observations aside. That requires a substantive
decision based on carcful evaluation of the data and research context. Inthis example, we have
no substantive rcason to discard any statcs, and even the most influential of them do not
fundamentally change our conclusions,

Using any fixed definition of what constitutes an “outlier,” we are liable to sec more of
them in larger samples. For this reason, sample-size-adjusted cutoffs are sometimes
recommended for identifying unusual observations. After fitting a regression model with K
coefficients (including the constant) based on »# observations, we might look more closely at
those observations for which any of the following are true:

leverage h > 2K/n
Cook’s D > 4/n
DFITS > 2VK/n
Welsch’s > 3VK
DFBETA > 2/ Vn

ICOVRATIO - 1| = 3K/n
The reasoning behind these cutoffs, and the diagnostic statistics more generally, can be found
in Cook and Weisberg (1982, 1994); Belsley, Kuh, and Welsch (1980); or Fox (1991).

Multicollinearity

If perfect multicollinearity (linear relationship) exists among the predictors, regression
equations become unsolvable. Stata handles this by warning the user and then automatically
dropping one of the offending predictors. High but not perfect multicollinearity causes more
subtle problems. When we add a new x variable that is strongly related to x variables already
in the model, symptoms of possible trouble include the following:

. Substantially higher standard errors, with correspondingly lower £ statistics.

2. Unexpected changes in coefficient magnitudes or signs.

3. Nonsignificant coefficients despite a high R*.

Multiple regression attempts to estimate the independent effects of each x variable. There is
little information for doing so, however, if one or more of the x variables does not have much
independent variation. The symptoms listed above warn that coefficient estimates have become
unreliable, and might shift drastically with small changes in the sample or model. Further
troubleshooting is needed to determine whether multicollinearity really is at fault and, if so,
what should be done about it.

Multicollinearity cannot necessarily be detected, or ruled out, by examining a matrix of

correlations between variables. A better assessment comes from regressing each x onall of the

other x variables. Then we calculate 1 —R? from this regression to sece what fraction of the first

ARG e -
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x variable’ i IS |
€ S vartance is independent of the other x variables. Forexam

variance is independent of percent and percent2: Plesabout97% othighs

quietly regress high percent bercent?

display 1 - e(r2)
.96942331

2 valu Of Sl

quletly regress percent high percent?

display 1 - e(r2)
04010307

linear to raise problems of multicollinearity.

The post-regression command vif | for variance

calculations automatically. This gives aquic oy o performs o

e kand straightforward check for multicollinearity
Y regress csat bPercent percent? high '

vif
Variable | VIF 1
_____________
percent | 24.94 0.0
i . -040103
perceth | 24.78 0.040359
¥¥¥¥¥¥¥¥ TiQh l 1.03 0.969423
Mean VIF | t6.92

The 1/VIF column at right i i '
ghtina vif table gives valu :

e ' esequalto 1 ~R? from th i
orpefcei;)(no?oe](z)tger).c vanablcs,. as can be seen by comparing the values for 4; Zr(egge;:;;n
orpere probomon )fwnth our.eirher display calculations. That is, 1/VIF (of] .Rz)tells)
otanxvariable’s variance is independ , e
s what \ _ pendent ofall the oth
proportion, such as the .04 (4% independent variation) of percent and percent?, indicates

. ,()[€) a”Ce, 1()1 the 1 \% Il Value a“d

erx variables. A low

n.

quletly regress csat bercent percent? high

display _se[percent]
-5095804¢

quietly Tegress csat percent high

display _Se[percent)
. 16162193
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With percent? inciuded in the model, the standard error for percent is three times higher:

50958046 /.16162193 = 3.1529166
This corresponds to a tenfold increase in the coefficient’s variance.
How much variance inflation is too much? Chatterjee, Hadi, and Price (2000) suggest the
following as guidelines for the presence of multicollinearity:
1. The largest VIF is greater than 10; or

2. the mean VIF is larger than 1.

With our largest VIFs close to 25, and the mean almost 17, the csaf regression clearly meets
both criteria. How troublesome the problem is, and what, if anything, should be done about tt,
are the next questions to consider.

Because percent and percent? are closely related, we cannot estimate their separate effects
with nearly as much precision as we could the effect of either predictor alone. That is why the
standard error for the coefficient on percent increases threefold when we compare the
regression of csat on percent and high to a polynomial regression of csat on percent, percent2,
and high. Despite this loss of precision, however, we can still distinguish all the coefficients
from zero. Moreover, the polynomial regression obtains a better prediction model. For these
reasons, the multicollinearity in this regression does not necessarily pose a great problem, or
require a solution. We could simply live with it as one feature of an otherwise acceptable
model.

When solutions are needed, a simple trick called “centering” often succeeds in reducing
multicollinearity in polynomial or interaction-effect models. Centering involves subtracting the
mean from x variable values before generating polynomial or product terms. Subtracting the
mean creates a new variable centered on zero and much less correlated with its own squared
values. The resulting regression fits the same as an uncentered version. By reducing
multicollinearity, centering often (but not always) yields more precise coefficient estimates with
lower standard errors. The commands below generate a centered version of percent named

Cpercent, and then obtain squared values of Cpercent named Cpercent?2.

summarize percent

Variable | Gbs Mean Std. Dev. Min Max
_____________ o e
percent | 51 35.76471 26.19281 4 81
generate Cpercent = percent - r (mean)
generate Cpercent2 = Cpercent ~2
. correlate Cpercent Cpercent2 percent percentl2 high csat
(obs=51)
| Cpercent Cperce~2 percent percent? high csat
_____________ U
Cpercent | 1.0000
Cpercent2 | 0.3791 1.0000
percent | 1.0000 0.3791 1.0000
percent? | 0.9794 0.5582 0.9794 1.0000
high | 0.1413 -0.0417 0.1413 0.11786 1.0000
csat | -0.8758 -0.0428 -0.8758 -0.7946 0.0858 1.0000
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Whereas perceny .

the contera Cersjoi;saz'd {)6!)(‘6!1[2 have a near-perfect correlation with cach other (r ~

Otherwise, correlati percent and Cpercent? are Jjust moderately correlated r=.9794),

linear trans’fonn;tfolr?né (i:rwl)l:/‘mg percent and Cpercent are identical becausz ce(;t; '-37?1)'
. clationsinvolving Cpere : rmng is a

however. Figy & Cpercent?2 are different from tho i

t . ig ,re 7.10 shows scatterplots that help to visualj h S¢ \ylthpercentZ,

fanstormation’s effects. Z¢ these correlations, and the

Figure 7.10

Cpercent
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70 % over
25 wHS
1188 diploma
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900 Mean
¢omposite
800 SAT
score
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o]
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Source |
_____________ Jr‘—’-“*—ff——__‘_,df MS Number of obs =
Model Namae . TTT T T en _ = 51
Residual f 25;3;2'103 3 69075.0343 g( b3' 47) = 193.37
______________ . 182.407 47 357.22142¢ Rro > F = 0.0000
_________________________ “squared = 0.925
Total . - ‘ <925l
al | 224914,51 50  4480.2902 ithRl\;squared = 0.9203
________ oot MSE = 18.90
csat | Coef 7_7;‘7 ——————————————————————————————————————
_—7_5 ________ +‘_‘_*“*“*‘—7——Eiﬂf_?ff_ t B>l [95% Conf Inte—;\—;;I]_
percent | -2 682362  1110mae . T TTTTmmemm——eo )
< .1119085% o3 an o T T T e e
Cpercent2 53¢cc 23.97 0.0 -
hih f 2-0;;;2;55 -0063678 8.43 o 088 2620?493 -2.457231
_cons | &80 25?3 ~4857502 6.15  0.000 ; 083352 0664659
s T 37.82329 17.95  09.00p fod 1622 3.963712
------ . 756.3458
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f the three predictors has

i8] i cause for concern: each o .
precision. The VIF table now gives less e D ent? in the

i jati vith 4% for per
more than 80% independent variation, compared v p

uncentered regression.

vif

Jariable | JIF l/VI?

,,,,,,,,,,,,, I
Covercent | 1.20 0.83}528
Cpercent? | 1.18 0.848991
high | 1.03 0.969423
_____________ R

Mean VIF | 1.14

icolli ity ] matrix
Another diagnostic table sometimes consulted to check for mul‘tlcolhn'earlty;)s tgfs o
of correlations between estimated coefficients (not variables). This matrlx can be disp
after regress, anova,of other model-fitting procedures by typing

correlate, _coef

| Cpercent Cpercc~2 high _E??i
_____________ N i
b 1.0000
Cpercent | L.
Cpercent2 | -0.3892 1.0000

i i 700 40 1.0000
high -0.1703 0.10
cozs ; 0.2105 =-0.2151 -0.9912 1.0000

sible collinearity problems.

i i ients indicate pos
1 ns between pairs of coefficien ' |
el s : s’ variance—covariance

By adding the option covariance , we can see the coefficient

matrix, from which standard errors are derived.

correlate, _coef covariance
| Cperccnt Cperce~2 high cons
_____________ i
2524
Cpercent | .012
- 277 000041
cpercent? | .000277 . :
P nigh | _.00923% .000322 , 235953

cons | .891126 ~.051817 -18.2105 1430.6
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Fitting Curves

Basic regression and correlation methods assume linear relationships. Linear models provide
reasonable and simple approximations for many real phenomena, over a limited range of values.
But analysts also encounter phenomena where linear approximations are too simple; these call

for nonlinear alternatives. This chapter describes three broad approaches to modeling nonlinear
or curvilinear relationships:

1. Nonparametric methods, including band regression and lowess smoothing.

2. Linearregressionwith transformed variables (““curvilinear regression™), including Box-Cox
methods.

3. Nonlinear regression.

Nonparametric regression serves as an exploratory tool because it can summarize data
patterns visually without requiring the analyst to specify a particular model in advance.
Transformed variables extend the usefulness of linear parametric methods, such as OLS
regression ( regress ), to encompass curvilinear relationships as well. Nonlinear regression,

on the other hand, requires a different class of methods that can estimate parameters of
intrinsically nonlinear models.

The following menu groups cover many of the operations discussed in this chapter. The
final topic, nonlinear regression, requires a command-based approach.

Graphics — Twoway
Statistics — Nonparametric analysis — Lowess smoothing
Data — Create or change variables — Create new variable

Statistics — Linear regression and related

Example Commands

boxcox y x1I x2 x3, model (lhs)
Finds maximum-likelihood estimates of the parameter A (lambda) for a Box—Cox
transformation of y, assuming that y'* is a linear function of x/, x2, and x3 plus Gaussian
constant-variance errors. The model (1lhs) option restricts transformation to the left-
hand-side variable y. Other options could transform right-hand-side (x) variables by the
same or different parameters, and control further details of the model. Type help

boxcox forthe syntax and a complete list of options. The Base Reference Manual gives
technical details.

21
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graph twoway mband y x, bands (10) 11 scatter y x
Produces a v versus x scatterplot with line segments connecting the cross-medians (median

x, median y points) within 10 equal-width vertical bands. This is one form of ‘“band
regression.” Typing mspline inplace of mband inthis command would resultin the
cross-imedians being connected by a smooth cubic spline curve instead of by line segments.

graph twoway lowess y x, bwidth(.4) |1 scatter y x
Draws a lowess-smoothed curve with a scatterplot of y versus x. Lowess calculations usc
a bandwidth of .4 (40% of thc data). In order to calculate and keep the smoothed values as

a new variable, use the related command lowess .

lowess y x, bwidth(.3) gen(newvar)
Draws a lowess-smoothed curve on a scatterplot of y versus x, using a bandwidth of .3
(30% of the data). Predicted values for this curve are saved as a variable named newvar.
The lowess command offers more optionsthan graph twoway lowess,inciuding
fitting methods and the ability to save predicted values. See help lowess for details.

nl exp?2 y x
Uses iterative nonlinear least squarcs to fit a 2-parameter exponential growth model,
predicted v="56,56,"
Theterm exp2 refers to a separate program that specifies the model itself. You canwrite
a program to define your own model, or use one of the common models (including
exponential, logistic, and Gompertz) supplied with Stata. After nl, use predict to
generate predicted values or residuals.
nl log4 y x, init(BO0=5, B1=25, B2=.1, B3=50)
Fits a 4-parameter logistic growth model ( Log4 ) of the form
predicted y=b,+ b /(1 +exp(-b,(x—b,)))
Sets initial parameter values for the iterative estimation processatb,=5,b,=25,b,= 1,

and b, = 50.

regress lny x1 sqgrtx2 invx3
Performs curvilinear regression using the variables /ny, xI, sgrix2, and invx3. These

variables were previously generated by nonlinear transformations of the raw variables v,
x2, and x3 through commands such as the following:

generate lny = ln(y)
generate sgrtx2 = sqrt(x2)

generate invx3 = 1/x3
When, as in this example, the y variable was transformed, the predicted values generated

by predict yhat,orresiduals generated by predict e, resid, willbealsoin
transformed units. For graphing or other purposes, we might want to return predicted
values or residuals to raw-data units, using inverse transformations such as

replace yhat = exp(yhat)

Band Regression

 EEEE——
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irc g:;?amy graphic tQOIS for Qisplaying the relationship, possibly nonlinear between
S‘-:atte il tcan draw a simple l?lnd of nonparametric regression, band regre;sion omc}; and
(mjmfl}; 2; ;)rfscatt;lrpl(lnz matrix.  For illustration, consider these sobering Cold’ War dartly
Cocdra) ttom MacKenzie (1990). The observations are 48 aa
. . types of long-
missiles, deployed by the U.S. and Soviet Unjon during their armsyrice 1952%51%%)60?UC1€M

Contains data from C:\data\missile.dta
prel ss .
53 48 i i
ooe ;i Missiles (MacKenzie 18390
: : 16 J { :
,fif?;¥ 1,382 (99.9% of nemory free) vER0s LeesT
storage display -_ﬁ_—: _________________________________________
‘ ¥ value
variable name type format label variable label
_________________________________________ abe
missile strlb s515g ‘Q_ﬁ—TI ___________________________
countr 3 % 2o e
cou % ?;Ee ;8.8g soviet US or Soviet missile?
poer e gg.og Year of first deployment
e o %S.Og type ICBM or submarine-launched?
Ian . .Og Rénge in nautical miles
. Circular Error Probable (miles)

Vari L .

(CEP)angl[);;s In missile.dta 1nc! ude an accuracy measure called the “Circular Error Probable”

ShOUId.la : ;c?presents the ra.dlus. of a bulls eye within which 50% of the missile’s warhead
nd. Year by year, scientists on both sides worked to improve accuracy (Figure 8 1)S

graph twoway mband cCEp Year, bands (8)
I scatter CEP year
11 ; Ytitle("Circular Error Probable, miles") legend(off)
N Figure 8.1
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Figure 8.1 shows CEP declining (accuracy increasing) over time. The option bands (8)
instructs graph twoway mband to divide the scatterplotinto 8 equal-width vertical bands
and draw line segments connecting the points (median x, median y) within each band. This
curve traces how the median of CEP changes with year.

Nonparametric regression does not require the analyst to specifyarelationship’s functional
form in advance. Instead, it allows us to explore the data with an “open mind.” This process
often uncovers interesting results, such as when we view trends in U.S. and Soviet missile
accuracy separately (Figure 8.2). The by (country) option In the following command
produces separate plots for each country, cach with overlaid band-regression curve and
scatterplot. Within the by ( ) option are suboptions controlling the legend and note.

graph twoway mband CEP year, bands (8)

Il scatter CEP year
|1 , ytitle("Circular Error Probable, miles")

by (country, legend(off) note (""))

Figure 8.2
us. U.SSR.
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Year of first deployment

The shapes of the two curves in Figure 8.2 differ substantially. U.S. missiles became much
more accurate in the 1960s, permitting a shift to smaller warheads. Three or more small
warheads would fit on the same size missile that formerly carried one large warhead. The
accuracy of Soviet missiles improved more slowly, apparently stalling during the late 1960s to
early 1970s, and remained a decade or so behind their American counterparts. To makeup for
this accuracy disadvantage, Soviet strategy emphasized larger rockets carrying high-yield
warheads. Nonparametric regression can assist with a qualitative description of this sort or
serve as a preliminary to fitting parametric models such as those described later.

We can add band regression curves to any scatterplot by overlaying an mband (or
mspline ) plot. Band regression’s simplicity makes it a convenient exploratory tool, but it
possesses one notable disadvantage — the bands have the same width across the range of x
values, although some of these bands contain few or no observations. With normally
distributed variables, for example, data density decreases toward the extremes. Consequently,

o R SRR 5] R <. Sqr AT Tt
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the lefi i i i

! eart and right endpom“ts of the band regression curve (which tend to dominate i
ppe: gnce) often reflect just a few data points. The next section describ o
sophisticated, computation-intensive approach. T & more

Lowess Smoothing

The 1
The El<r:>nv~re..f:s and‘ graph twoway lowess commands accomplish a form of
e ggneralit}:w r]t-agressmn called lowess smoothing (forlocally weighted scatterplot smoothing)
¢ lowess command is more specialized and i :
. ' more powerful, with opti
control details of the fittin , o
ontre g process. graph twoway lowess h
simplicity, and follows the familiar s iy, The Tolloaion
, yntax ofthe graph twoway family. Th i
example uses graph twoway low i y s, sl
ess issi
). Y o plot CEP against year for U.S. missiles only
graph twoway lowess CEP year if
t == 1
L en ome yeur country , bwidth(.4)
|1 , legend(off) ytitle("Circular Error Probable, miles™)

o~ - Figure 8.3

Circular Error Probable, miles
1 15

5

—_—
—
T
o T
—_—

1960 1970
198
Year of first deployment 0 1990

A graph very similar to Figure 8.2 would result if we had typed instead
lowess CEP year if country == , bwidth(.4)

Like Fi .
duriné fhgllg;g(e) 8.2,dF1gure 8.3 (next page) shows U.S. missile accuracy improving rapidly
during th valuessoellanEl;)rogresmng at a more gradual rate in the 1970s and 1980s. Lowess-
are gencrated here with the name IsCEP. The bwi - i
: 4 : : dth(.4) opt
specifies the lowess bandwidth: the fraction of the sample used in smoothing eacl(l poi)n?p"ll‘(k)llel

4 . . .
efaultis bwidth(.8). The closer bandwidth is to 1, the greater the degree of smoothing.

L .
owess predicted (smoothed) y values for n observations result from n weighted

regressions. Let & represent the half-bandwidth, truncated to an integer. Foreach y,, a
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smoothed value v, is obtained by weighted regression involving only those observations within - Contains data from C:\datalice.des
the interval from / = max(l, i — k) through i = min{i + &, n). The jth observation within this V;’?z: 271 ’ Greenlang
. . . . . . . : an i s
intcrval receives weight w, according to a tricube function: § size: . %S o 14 Ju1 200;0134 .(I;?Yewskl 1995)
TN e 4 (99.9% of memory free) :
w, = (= fu, 1) z T iterage miTTTTTemeee
: . e isplay  value T TTTTT e
where Yfrlable name type foriaiy \l}jéif variable lab
ST T T T T T T T e e e e e __ e a 1
u,=(x,—x,)/A ; year int soy T S
A stands for the distance between x , and its furthest neighbor within the interval. Weights ber ot §Ou§le 510.0g ;gjriOH concent
. . ) 5 cen {
equal | forx,=x,, but fall off to zero at the interval’s boundaries. See Chambersetal.(1983) [~ guble 6.0 Polar Cimlatigit;jgéngf
or Clevcland (1993) for more discussion and examples of lowess methods. Sorted by: year U TTTTTTTTTIemeoe——eee 0T S
lowess options include the following. : To retai d
. . . _— N am more detail i Pt g .
mean For running-mean smoothing. The default is running-line least squares . bandwidth, only 5% ofthefgglﬁ tlhlsFZ"/'I—pomt time sertes, we smooth with a relatively narrow
P\,‘, smoothing. drawn with “thick” widih top Sisuﬁ;lredg.étllgraphsthe results. The smoothed curve hag been
. . . . y . . . . . » 1§ 1
noweight  Unweighted smoothing. The defaultis Cleveland’s tricube weighting function. linewidthstyle for other choicesyofl' lngg:jsh it from the raw data. (Type help
. ) . . . ; in
%F bwidth( ) Specifies the bandwidth. Centered subsets of approximately bwidth x n i graph twoway 1 ¢ width.)
! . . . > : ow .
< observations are used for smoothing, except towards the endpoints where : | 1line SUI:_zzesulfate year, bwidth(.05) clwidth(thick)
o . . i ear, s
f{:“ smaller, unccntered bands are used. The default is bwidth (. 8). Il , ytitle ("so4yio: cziizt:er: (solid)
L . ntration, b"
- logit Transforms smoothed values to logits. legend(label (1 "lowess smoothed") 1ab§f(2) ‘raw datar))
» ) o ata"
h adjust Adjusts the mean of smoothed values to equal the mean of the original y °
%. variable; like logit, adjust is useful with dichotomous y. < Figure 8.4
we gen (newvar)  Crcates newvar containing smoothed values of y.
[T - . a
L ‘ nograph Suppresses displaying the graph. ae
. g
E;;;; plot( ) Provides a way to add other plots to the generated graph; see help S
ol . m
R plot option. go
_ £3
rlopts () Affects the rendition of the reference linc; see help cline_options. §’*
\Nk\ . - . . . . °
" Because it requires » weighted regressions, lowess smoothing proceeds slowly with large 8
samples. o8
. . . . a
In addition to smoothing scatterplots, lowess can be used for exploratory time series
smoothing. The file ice.dta contains results from the Greenland Ice Sheet 2 (GISP2) project ‘
described in Mayewski, Holdsworth, and colleagues (1993) and Mayewski, Mecker, and 1 e
colleagues (1993). Researchers extracted and chemically analyzed an ice core representing 1500 1600 1700 1800 1900
more than 100,000 years of climate history. ice.dta includes a small fraction of this Year 2000
information: measured non-sea salt sulfate concentration and an index of “Polar Circulation ———— lowess smoothed raw data
Intensity” since AD 1500,

Non-sea salt sulfate (SO, ) re
‘ ached the Greenland j ing inj i
N P and ice after bein
Smné(:)stﬁz(ej:rz;lzhii]vycl:l};:olc.an(;fs or the burning of fossil fuels such as cofl :r?; f)ti?d };(])tt(ljl g::

oth 'Ves In Figure 8.4 convey information. Th :
;)us;l;lzt;io‘?s z:}rlound aslightly rising mean from | 500 through the earlyelzlz)lgst}xge:lllgvgo SIICIOW'S
Ive the smoothed curve upward, with temporary setbacks after. 1929 (the Gorsezl:
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have been identified with known volcanic eruptions such as jccland’s Hekla (1970) or Alaska’s

Katmai (1912). .
After smoothing tine series data, itis often useful to study thglsmoloth and rou%}:}f‘;ig\;g{fez
L { i te two new variables: lowess-5mo S
ies separately. The tollowmgcommandscrea : ¢
Soefnse:l;az (smub(l)th) and the residuals or rough values (rough) calculated by subtracting the
smoothed values from the raw data.

lowess sulfate year, bwidth(.05) gen(smooth) e

label variable smooth "S04 ion concentration (smoothe )
= fate - smooth

gen rough sul - .

l1abel variable rough "g04 ion concentration (rough)

Figure 8.5 compares the smooth and rough time series in a pair of graphs annotated using
the text( ) option, then combined.

graph twoway line smooth year, ylabel(0(59)150) "Ttltle( )
ytitle("Smoothed") text (20 1540 "Renaissance
text (20 1900 "Industrialization")29 )
2 19 "
£(90 1860 "Great Depression - .
EZ:tilSO 1935 "0Oil Embargo 1973") savxng(f;gO&_OSa, replace)

150) xtitle("™)
grer’ Fwowa{Rlini”;o:Z:tfjgri6§3a:::J0;;f2", Jrientation(vertical))
yz:itii20°i370 "Laki 1783", orientation(verti?al))
text {90 1805 "pambora 18157, o?ienta?ion(vezFlziii)
text (65 1902 "Katmai 1912", orlentaFlon(ver.lzl))
text (80 1960 "Hekla 1970", orientation(vertic
yline (0} saving(figOB_OSb, replace}

graph combine figOB_OSa.gph figOB_OSb.gph, rows (2)

Figure 8.5
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Regression with Transformed Variables — 1

By subjecting one or more variables to nonlinear transformation, and then including the
transformed variable(s) in a linear regression, we implicitly fit a curvilinear model to the
underlying data. Chapters 6 and 7 gave one example of this approach, polynomial regression,
which incorporates second (and perhaps higher) powers of at least one x variable among the
predictors. Logarithms also are used routinely in many fields. Other common transformations
include those of the ladder of powers and Box—Cox transformations, introduced in Chapter 4.

Dataset tornado.dta provides a simple illustration involving U.S. tornados from 1916 to
1986 (from the Council on Environmental Quality, 1988).

Contains data from C:\dataltornado.dta

obs: 71 U.5. tornados 1916-198¢6
(Council con Env. Quality 1988)

vars 4 16 Jul 2005 14:57

slze 994 (99.9 of memory free)

storage display value

variable name type format label variable label
year int 38.0g Year
tornado int %8.04g Numbker of tornados
lives int *8.0g Number of lives lost
avlost float %9.0g Average lives lost/tornado
Sorted by: year

The number of fatalities decrcased over this period, while the number of recognized
tornados increased, because of improvements in warnings and our ability to detect more
tornados, even those that do little damage. Consequently, the average lives lost per tornado
(avlost) declined with time, but a linear regression (Figure 8.6, following page) does not well
describe this trend. The scatter descends more steeply than the regression line at first, then
levels off in the mid-1950s. The regression line actually predicts negative numbers of deaths

in later years. Furthermore, average tornado deaths exhibit more variation in early years than
later — evidence of heteroskedasticity.
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jost year
h twoway scatter av .
grer 1fit avlost year, clpattern(solld) ) 1abel(1920(10)1990)
. 1'tl ("Average number of lives lost") X
{1 ., ytitle

eitle("") legend (off) ylabel(0(1)7) yline (0)
XT1

Figure 8.6

e number of lives lost
Averag A A °
[

1

0
1920 1930 1940 1950 1960 1970 1980 199

The relationship becomes linear, and heterosl;edastéc;t) '
logarithms of the average number of lives lost (Figure ©./)-
generate loglost = 1n(avlost) )
label variable Joglost "1n(avlost)

regress loglost year

= 71
Number of obs =
source | 33 df MS F( o s 1826%3
__________________ 0.0
_________________ L > F .
________ | 115.895325 1 115.895325 gfzquarEd R
e : 69 .63595269 qua L 0l12u4
Residual | 43.8807356 &% . 0227PAT N uare o
_____________________________ t MSE = .
_________ 1 T 159.77606 70 2.28251515 ROO e
Tota 7606 70 2.2828835 TR T
_________ T e % . Intervall
_____________________ f Std. Err t P>t [95% Conf T____,_,
Coe R S
loglost | Coef.  SEG- BETC - P e
_____________ +>-——-;;;;1g7— .004618 -13.50 0.000 —inggggi 1é3_5395
b _igo 5645 9.010312 13.38 0.000 L5894 IR 70T
cons | - cor03iz L3RR - 1oz
redict yhat2
(oilion xb assumed; fitted values) . .
= - . e
1abel variable yhat2 vln{avlost) = 120.56 Yy

label variable loglost nln(avlost)

y vanishes if we work instead with

RSO TRE B, - e
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graph twoway scatter loglost year
1 mspline yhatl2 year, clpattern(solid) bands(50)
1] , ytitle{("Natural log(average lives lost)")

x1label (1920(10)1990) xtitle("") legend(off) ylabel(-4(1)2)
yline (0)

~ Figure 8.7
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Natural log(average lives lost)
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T T T T T T - 1 1
1920 1930 1940 1950 1960 1970 1980 1990

The regression model is approximately
predicted In{aviost) = 120.56 — .06year

Because we regressed logarithms of lives lost on year, the model’s predicted values are also
measured in logarithmic units. Return these predicted values to their natural units (lives lost)
by inverse transformation, in this case exponentiating (e to power) yhat2:

replace yhat2 = exp(yhat?2)
(71 real changes made)

Graphing these inverse-transformed predicted values reveals the curvilinear regression model,
which we obtained by linear regression with a transformed y variable (Figure 8.8). Contrast

Figures 8.7 and 8.8 with Figure 8.6 to see how transformation made the analysis both simpler
and more realistic.
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avlost year )
f clpattern(solld) bands (50) 1071990)
mber of lives lost") xlabel(1920(

y7) yline(O)

atte

graph twoway sC
|| mspline yhat2 year,
- ytitle(”Average nu

xtitle("")

legend(off) ylabel(O(l

Figure 8.8

umber of lives lost
4 5 6

3

Average n
2

1870 1980 1990

1920 1930 1940 1950 1960

i itti { with Box-Cox
involving Box-Cox transformations (introduced in Chapter4). F 1tj[;n€i alrenfi)_clilczl n\glside) o
1?:nosf0r1iation of the dependent variable ( model fj lTsf)F§pecf:sl8 e e nolog
i ite simi igures 3. 8.
tain results quite similar to the model 0 ' o
tO"}adO. datt:llf’: V;I(flfobw‘z;r]g command does not affect the model, but suppresscs display of log
option 1n

likelihood after each iteration of the fitting process.

poxcox avlost year, model (1hs) nolog

71
Number of obs oo 28
LR chi2 (1} = ggéog
prob > chiZ2 = .
Log likelihood = ~7.7185533 -
#_—7—_7‘-7-_74_>_—<_—4___—-_—-_—7——74_7‘if . Interval
TTTUTe o« i std. Err Z p>lzl [95% Coif ___________
avlost | Coefd sed. Erre P T s -
_________ 7—77+_’7——7>_r4_-<__5646726 -0.87 0.386 -.1828519 066
- 1659 B 126 -0.87 0.386  “.ABRRT 1L
/theta | 9560959  .0e46726 - ~U.S0 FoTTC

- s
Estimates of scale-wvariant parameters

| Coetf
e e m e
ans |
nee year | -.0661891
cons | 127.9713

/sigma | .8301177
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Test Restricted LR statistic P-Value
HO: log likelihood chi2 Prob >» chi2
theta = -1 ~84.928781 154.42 0.000
theta = 0 -8.0941578 0.75 0.386
theta = 1 -101.50385 187.57 0.600
The boxcox output shows theta = 056 as the optimal Box—Cox parameter for

transforming aviost, in order to linearize its relationship with vear. Therefore, the left-hand-
side transformation is

alviost' ") = (alvlost*** - 1)/-.056
Box-Cox transformation by a parameter close to zero, such as —.056, produces results similar
to the natural-logarithm transformation we applied earlier to this variable “by hand.” It is
therefore not surprising that the boxcox regression model

predicted alviost' **'=127.97 — .07year

resembles the earlier model (predicted In(aviost) = 120.56 — .06year) drawn in Figures 8.7 and
8.8. The boxcox procedure assumes normal, independent, and identically distributed errors.
It does not select transformations with the aim of normalizing residuals, however.

boxcox can fit several types of models, including multiple regressions in which some or
all of the right-hand-side variables are transformed by a parameter different from the y-variable
transformation. It cannot apply different transformations to each separate right-hand-side

predictor. To do that, we return to a *‘by hand” curvilinear-regression approach, as illustrated
in the next section.

Regression with Transformed Variables — 2

For a multiple-regression example, we will use data on living conditions in 109 countries found
in dataset nations.dta (from World Bank 1987; World Resources Institute 1993).

Contains data from C:\data\nations.dta

obs: 109 Data on 109 nations, ca. 1985
vars: 15 16 Jul 2005 14:57
size: 4,033 (99.9% of memory free)
storage display value

variable name type format label variable label
country str8g 39s Country
pop float %9.0g 1985 population in millions
birth byte %8.0g Crude birth rate/1000 people
death byvte %8.0g Crude death rate/1000 people
chldmort byte %8.0g Child (1-4 yr) mortality 1985
infrnort int 5% .0g Infant (<1 yr) mortality 1985
life byte $8.0g Life expectancy at birth 1985
food int 28.0g Per capita daily calories 1985
energy int 38.0g Per cap energy consumed, kg oil
gnpcap int %8.0g Per capita GNP 1985
gnpgro float %9.0g Annual GNP growth % 65-85
urban byte %8.0g % population urban 1985
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Primary enrollment % age-group

. 2 & - cu
schooll int :8'89 Secondary enroll ogagee?rroﬁp
school?2 byte ﬁg‘og Higher ed. enroll % age-g

te %8.0g
school3 by

[ . . . - g

graph matrix gnpcap chldmort birth, half

Figure 8.9
Per
caﬁita
GNP
1985
40
¥ Child (1-4
{ o)t(trglity
m
ok 1985
k".. b om wo o - *
of AT SR S
" b 5"' . %ﬁﬁ?
40 f;'-', . - TR ’ rate/1000
p 5. " people
20 .94 . .«
§ ae P L PRI
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i f gnpcap and
Experimenting with ladder-of-powers transformations reveal‘s t?at tltlﬁ l;)egwoergo ft ; 55 '
the S(;E’arc root of chldmort have distributions more syr.nmetrrtlcatiywtlhese wer outiers or
' iables. More importantly, . !
1 erage points, than the raw vari hese transformations
?menl;e:lilri‘i/natg thz nonlinearities: compare the raw-data scatterplots in Figu
arge

transformed-variables counterparts in Figure 8.10, on the following page,

denerate loggnp = loglO(gnpcap)
label variable loggnp "Log-10 of Per cap GNp"
generate srmort = sqrt(chldmort)

label variable srmort
graph matrix leoggnp sr

Log-10
of per
cap GNP
6 % .
PR Square
N : root
LS child
2 A mortality
68 . - . eetines
s XTI . SRS I
0 7 A":" - .','f-' S~ Crude
" e -'-.!’ e L 0 -_-:. * birth
20 “ej e < g rate/1000
. 4. .,.&:: I Vi people
0
2 3 4 0 2 4 6

We can now apply linear regression usin

regress birth loggnp srmort

e

Fitting Curves

"Square root child mortality"
mort birth, half

Figure 8.10

g the transformed variables;

Source Ss df MS Number of ghg = 1069
————————————— +—~————————~—~—~—~———-——————-—‘ Fe o2, 106) = 198.0¢
Model | 15837.9603 2 7918,98016 Prob > F = 0.0000
Residual | 4238.18646 106 39.9828911 R-squared = 0.7889
————————————— +-f--——-—-———‘—k—k—~—>—~——————— Adj R-squared = 0.7849
Total | 20076.14¢68 108 185.890243 Root MSE = 6.3232

birth | Coef Std. Err t P>t [95% Conf, Intervalj

e e 2 aaase it 1907 Cont materuayy
loggnp | —-2.353738 1.686255 -1.40 0.166 -5.696503 -9894259
srmort 5.5773509 -333567 10.45 0.000 4.51951 6.635207
_cons | 26.19488 6.362687 4.12 0.000 13.58024 38.80953

Unlike the raw-data regression (not shown),
capita gross national product does not signifi

mortality. The transformed-variables regression fits slightly better: R
6715, (We can compare R 2,

untransformed y variable. )

reduced the curvilinearity of the ra

Leverage plots would confi
w-data regression.

this transformed-variables
cantly affect birth rate ong

version finds that per
¢ we control for child
’, = .7849 instead of

across models here only because both have the same
rm that transformations have much
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Conditional Effect Plots

Conditional effect plots trace the predicted values of y as a function of one x variable, with
other x variables held constant at arbitrary values such as their means, medians, quartiles, or
extremes. Such plots help with interpreting results from transformed-variables regression.

Continuing with the previous example, we can calculate predicted birth rates as a function

of loggnp, with srmort held at its mean (2.49):
_b[_cons] + b[loggnp]*loggnp + _b[srmort]*2.49

generate yhatl =
label variable yhatl "birth = f(gnpcap | srmort = 2.49)

The b[varname] terms refer to the regression coefficient on varname from this session’s most
recent regression. _b[_cons] is the y-intercept or constant.

For a conditional effect plot, graph yhat! (after inverse transformation if needed, although
it is not needed here) against the untransformed x variable (Figure 8.11). Because conditional
effect plots do not show the scatter of data, it can be useful to add reference lines such as the

x variable’s 10th and 90th percentiles, as shown in Figure 8.11.

graph twoway line yhatl gnpcap, sort xlabel(,grid) xline(230 10890)

Figure 8.11

=249)
32 33 34 35

birth = f(gnpcap | srmort

3

\

15000 20000

30

0 5000 10000
Per capita GNP 1985

Similarly, Figure 8.12 depicts predicted birth rates as a function of srmort, with loggnp held

at its mean (3.09):
= _b[_cons] + _blloggnp]*3.09 + _blsrmort]*srmort

generate yhat2 =
label variable yhat2 "birth = f{(chldmort | loggnp = 3.09)"
sort xlabel(,grid) xline (0 27)

graph twoway line yhat2 chldmort,

o et o

e EE——
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Figure 8.12
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com r:)m]' s}t]rtength fand can .easﬂy be misleading. A more subst);mti\l;e)ll aiizc@hztf«d
Thparisor acc% mclqrr;le drom.lookmg_at conditional effect plots drawn with iden}t,ical nmgl "
seal s e ?13 ed easily by using graph combine,and specifying commcilSca i
pamc{llarly Ovelrnth;glr];?dgi é 3éoz;he 1‘?/ell;tical distances traveled by the predicted values 3:)1_1?\)1(:
. 4 o of the x value ile lines),
provide a visual comparison of effect magnitude " eteen 10t and oot percentile lnes).

graph COI'(lbllle .fJ.gOB 11.gph 11908 12.gp.h, Ycommon cols (2) scale(1.25
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Combining several conditional effects plots into one image with common vertical scales,
as done in Figure 8.13, allows quick visual comparison of the strength of different effects.
Figure 8.13 makes obvious how much stronger is the effect of child mortality on birth rates —
as separate plots (Figures .11 and 8.12) did not.

Nonlinear Regression —1

Variable transformations allow fitting some curvilinear relationships using the familiar
techniques of intrinsically linear models. Intrinsically nonlinear models, on the other hand,
require a different class of fitting techniques. The nl command performs nonlinear
regression by iterative least squares. This section introduces it using a dataset of simple
examples, nonlin.dta:

Contains data from c:\data\nonlin.dta

obs: 100 Nonlinear model examples
{artificial data)
vars: 5 16 Jul 2005 14:57
size 2,100 (99.9% of memory free)
storage display value
variable name type format label variable label
X byte %9.0g Independent variable
vl float %9.0g9 yl = 10 * 1.03"% + e
y2 float %9.09 y2 = 10 * (1 - .95°x) + e
y3 float %9.0g y3 = 5 + 25/ (L+exp{-.L1*{x-50)1))
+ e
v4 float %9.0g yd = 5 +

25*exp(—exp(—.l*(x—50))) + e

Sorted by: X

The nonlindta data are manufactured, with y variables defined as various nonlinear
functions of x, plus random Gaussian errors. yl, for example, represents the exponential
growth process yI = 10 x 1.03* . Estimating these parameters from the data, nl obtainsyl
~ 11.20 x 1.03%, which is reasonably close to the true model.

nl exp2 yl x

(obs = 100)
Tteration O0: residual SS = 27625.96
Iteration 1: residual $S = 26547.42
Iteration 2: residual 5SS = 26138.3
Tteration 3: residual SS = 26138.29
Source | 35 df M3 Number of obs = 100
————————————— e m e — e — s TS T T T F( 2, 98) = 1250.42
Model | 667018.255 2 333509.128 prob > F = 0.0000
Residual | 26138.2933 98 266.717278 R-squared = 0.9623
————————————— bommmmm e = mm S —mT oS T T adj R-squared = 0.9615
Total | 693156.549 100 6931.56549 Root MSE = 16.33148
Res. dev. = B840.3864
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Z-param. exp. growth curve, yl=pl*b2~x

vyl | Coef Std
_____________ +_A____,,____4___,;_?ff__4ﬁ__ t P>t [95% Conf. Interval]
bl | 11.20416 1146682 5.77  0.000  8.928602  13.47971
. . 2 9.77 0.000
o . 8.928602
1.028838 .0012404 829.41 0.000 1 026336 136212;1
. . 9

and correlations are asymptotic approximations)
The predic i i
P t command obtains predicted values and residuals for a nonlinear model

estimated by nl . Figure 8.14 i
.14 graphs predicted values from ¢ i i
the close fit (R* = .96) between model and data. fom the previous example, showine

predict yhatl
(option yhat assumed; fitted values)

graph twoway scatter yl x
I line yhatl x, sort
11 , legend(off) ytitle("yl =

10 * 1.03*x + e") xtitle("x")

Figure 8.14
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1 1 |

y1=10*1.03"x + e
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Th
¢ exp2 partof our nl exp2 yl x command specified a particular exponential

-

exp3 3-parameter exponential: y=b,+5b,b,"
exp2 2-parameter exponential: y=5,b,"

exp2a 2-parameter negative exponential: y=5,(1 - 5,%)
2

log4 4-parameter logistic; b starti
3 by ng level and (b, + b, ) asymptoti imit:
T 1 enpCbete hy e Rt
log3 3-parameter logistic; 0 starting level and b, asymptotic upper limit:

y=b /(1 +exp(-b,(x -b,)))
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i limit:
4-parameter Gompertz; b, starting Jevel and (b,+ b, ) asymptotic upper

p= b, + by exp(-exp(-by (x ~bs )]
‘3—parameter Gompertz; 0 starting leve
.= b exp(-exp(~b; (x ’2))) | | y
ey corresponding to exp2 (v1), exp2a (¥2), ;094 (¥v3),a
8.15 shows curves fit by nl to y2,y3,and y4.

gom4

| and b , asymptotic upper limit:
gom3

nonlin.dta contains examples
gomd (v4) functions. Figure
Figure 8.15
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Here is the code for the

their own.
nential growth model:

ite further nifunction programs of
-parameter €xpo

/

Users can wr .
nlexp2.ado program defininga 2

+1 yersion 1.1.3 129unl998
p£ogram define nlexp?
version ©
if wolrr==TR {
global S 2 "z-param. exXp .
global s 1 "pl b2"

PR
growth curve, $S_E7depv=b1*b2 2

i log Y on X.
” approximate initial values py regression of o
PP
i v - 1 "
! local exp " te{wtype) e (wexp) ')
tempvar Y
quezig }Y‘ = log(‘e(depvar)') if e (sample)
g

reg Y' *2' ‘exp'

}
global bl

if e(sample)

= exp(_b[_cons])
global b2 = exp(Fb[‘Z‘])
exit

}
replace

end

\l';$bl*($b2)”‘2'

g s -

————— |

Fitting Curves 235

This program finds some approximate initial values of the parameters to be estimated,
storing these as “global macros” named bl and b2 . It then calculates an initial set of
predicted values, as a “local macro” named 1, employing the initial parameter estimates and
the model equation:

replace "1' = S$bl * ($b2)"~ 2"

Subsequent iterations of nl will return to this line, calculating new predicted values
(replacing the contents of macro 1) as they refine the parameter estimates bl and b2 . In
Stata programs, the notation $b1 means “the contents of global macro b1 .” Similarly, the
notation " 1' means “the contents of local macro 1.”

Before attempting to write your own nonlinear function, examine nllog4.ado ,
nlgomd.ado , and others as examples, and consult the manual or help nl for
explanations. Chapter 14 contains further discussion of macros and other aspects of Stata
programming.

Nonlinear Regression — 2

Our second example involves real data, and illustrates some steps that can help in research.
Dataset lichen.dta concems measurements of lichen growth observed on the Norwegian arctic
island of Svalbard (from Werner 1990). These slow-growing symbionts are often used to date
rock monuments and other deposits, so their growth rates interest scientists in several fields.

Contains data from C:\data\lichen.dta

obs: 11 Lichen growth (Werner 1930)

vars: 8 14 Jul 2005 14:57

size: 572 (%9.9% of memory free)

storage display value

variable name type format label variable label

locale str3l %31ls Locality and feature
point strl %9s Control point
date int %8.0g Date
age int %8.0g Age 1in years
rshort float %9.0g Rhizocarpon short axis mm
rlong float 29.0g Rhizocarpon long axis mm
pshort int %8.0g P.minuscula short axis mm
plong int £8.0g P.minuscula long axis mm
Sorted by:

Lichens characteristically exhibita period ofrelatively fast early growth, gradually sfowing,
as suggested by the lowess-smoothed curve in Figure 8.16.
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Figure 8.16
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ze and compare such patterns by drawing growth curves.

Lichenometricians seek to summart O ot here

Their growth curves might not employ an explicit mathematical model,ﬁl 1; Lwe can Lo
to illustrate the process of nonlinear regression. Gompertz curves are asy

which have been widely used to model biological growth:
y="b,exp(-exp(-b(x -b3))

' i del for lichen growth.
They might provide a reasonable mo .
){f wflzntend to graph a nonlinear model, the data should contain a good rasrglge ;)i 6cloes;:rlsy
spaced x values. Actual ages of the 11 lichen samples in l?che‘fl.dza:ange frgrrtl 2 3;02 in Z_yeall
Vr&)fe can create 89 additional artificial observations, with “ages from O to

increments, by the following commands:

range newage 0 396 100
obs was 11, now 100
replace age = newage[_n—ll] if age >=
(89 real changes made) | | e
ated a new variable, newage, with 1OQ vglues ranging fromp to 396
E‘;egrr ?LSfer;lfi?sd CI;eso doing, we also created 89 new artificial ol:iservba;ttli(t)stse,sv\;l}:: rrr;lll:irrlli
values on all variables except newage. The rep%\.ace commaf{l t51115 e e i o
artificial-case age values with newage values, starting at 0. The firs

data now look like this:

1ist rlong age newage in 1/15

| rlong age newage |
__________________ ‘

\_-A-
1 | 1 28 0 1
2 | 5 56 4 4
3.0 12 79 8 |
4 | 14 80 12 |

“ondi

i
5

v 11 vty
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5 | 13 80 16 |

| == mmm - !

6. 1 8 87J 20 |
T 7 89 24 |
8. | 10 89 28 |
9. | 34 3456 370
10. | 34 346 36 |
e LR R !

11, | 25.5 131 40 |
12. 0 44 |
13. 4 4 48 |
14. | 8 52 |
15. | 12 56 |
B ittt +

Variable | Obs Mean Std. Dev Min Max
_____________ o o e
rlong | 11 14.86364 11.31391 1 34

age | 100 170.68 104.7042 0 352

newage | 100 198 116.046 0 396

Wenow could drop newage. Only theoriginal 11 observations have nonmissing rlong
values, so only they will enter into model estimation. Stata calculates predicted values for any
observation with nonmissing x values, however. We can therefore obtain such predictions for
both the 11 real observations and the 89 artificial ones, which will allow us to graph the
regression curve accurately.

Lichen growth starts with a size close to zero, so we chose the gom3 Gompertz function
ratherthan gomd4 (which incorporates a nonzero takeoff level, the parameter b,). Figure 8.16
suggests an asymptotic upper limit somewhere near 34, suggesting that 34 should be a good
guess or starting value of the parameter b, . Estimation of this model is accomplished by

nl gom3 rlong age, init (B1=34) nolog

(obs = 11)

Source | S5 df MS Number of obs = 11
————————————— Fo oo e e F( 3, 8) = 125.68
Model | 3633.16112 3 1211.05371 Prob > F = 0.0000
Residual | 77.0888815 8 9.63611018 R-squared = 0.9792
————————————— B i Adj R-squared = 0.9714
Total | 3710.25 11 337.295455 Root MSE = 3.104208
Res. dev. = 52.63439

3-parameter Gompertz function, rlong=bl*exp(-exp(-b2* (age-b3)))
rlong | Coef . Std. Err. t P>t [95% Conf. Interval]
_____________ U
bl | 34.36637 2.26718¢6 15.16 0.000 29.13823 39.59451
b2 | .0217685 .0060806 3.58 0.007 .0077465 ,0357904
b3 | 88.79701 5.632545 15.76 0.000 75.80834 101.7857

(S5E's, P values, CI's, and correlations are asymptotlic approximations)

A nolog optionsuppresses displaying a log of iterations with the output. All three parameter
estimates differ significantly from 1.
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d values using predict and graph these to see the regression curve.
e >

N D and estimated upper limits (0 and 34.366) of

The yline optionis used to display the lower
this curve in Figure 8.17.

predict yhat

(option yhat assumed; fitted values)

scatter rlong age '
grap?lt;:;iine yhat age, clpattern(solld) bands (50)

ine (0 34.366) .
[ - legend(off) ylin ( mm" ) xlabel (0 (100) 400, grid)

ytitle("Rhizocarpon long axis,

Figure 8.17
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Especially when working with sparse data or .a‘trA
regression programs ¢an be quite sensitive 10 their imti
option with nl permits researchers to suggest t

supplied by an nlfunction program donot seem to workl. Pr
or publications by other researchers, could help supply su ¢
we could estimate through trial and error by employing gen

values based on arbitrarily<hosen sets of parame
resulting predictions with the data.

elatively complex model, non!ine-ar
al parameter estimates. The init
heir own initial values if the default values
evious experience with similar. data,
itable initial values. Alternatively,
te to calculate predicted

ter values and graph to compare the

Robust Regression

Stata’s basic regress and anova commands perform ordinary least squares (OLS)
regression. The popularity of OLS derives in part from its theoretical advantages given “ideal”
data. Iferrors are normally, independently, and identically distributed (normali.i.d.), then OLS
is more efficient than any other unbiased estimator. The flip side of this statement often gets
overlooked: if errors are not normal, or not i.i.d., then other unbiased estimators might
outperform OLS. In fact, the efficiency of OLS degrades quickly in the face of heavy-tailed
{(outlier-prone) error distributions. Yet such distributions are common in many fields.

OLS tends to track outliers, fitting them at the expense of the rest of the sample. Over the
long run, this leads to greater sample-to-sample variation or inefficiency when samples often
contain outliers. Robust regression methods aim to achieve almost the efficiency of OLS with
ideal data and substantially better-than-OLS efficiency in non-ideal (for example, nonnormal
errors) situations. “Robust regression” encompasses a variety of differenttechniques, each with
advantages and drawbacks for dealing with problematic data. This chapter introduces two

varieties of robustregression, rreg and greg, and briefly compares their results with those
of OLS ( regress).

rreg and qreg resist the pull of outliers, giving them better-than-OLS efficiency inthe
face of nonnormal, heavy-tailed error distributions. They share the OLS assumption that errors
are independent and identically distributed, however. As a result, their standard errors, tests,
and confidence intervals are not trustworthy in the presence of heteroskedasticity or correlated
errors. To relax the assumption of independent, identically distributed errors when using
regress orcertain other modeling commands (although not rreg or greg), Stata offers
options that estimate robust standard errors.

For clarity, this chapter focuses mostly on two-variable examples, but robust multiple
regression or N-way ANOVA are straightforward using the same commands. Chapter 14
returns to the topic of robustness, showing how we can use Monte Carlo experiments to
evaluate competing statistical techniques.

Several of the techniques described in this chapter are available through menu selections:
Statistics — Nonparametric analysis — Quantile regression

Statistics — Linear regression and reiated — Linear regression — Robust SE
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Example Commands

rreg y x1 x2 x3
Performs robust regression of y on three predictors, using iteratively reweighted least

squares with Huber and biweight functions tuned for 95% Gaussian efficiency. Given
appropriately configured data, rreg canalso obtain robust means, confidence intervals,
difference of means tests, and ANOVA or ANCOVA.
rreg y x1 x2 x3, nolog tune(6) genwt(rweight) iterate(10)

Performs robust regression ofy on three predictors. The options shown above tell Statanot
to print the iteration log, to use a tuning constant of 6 (which downweights outliers more
steeply than the default 7), to generate a new variable (arbitrarily named rweight) holding
the final-iteration robust weights for each observation, and to limit the maximum number

of iterations to 10.

greqg y x1 x2 x3
Performs quantile regression, also known as least absolute value (LAV) or minimum L/-

norm regression, of y on three predictors. By default, qreg models the conditional .5
quantile (approximate median) of y as a linear function of the predictor variables, and thus

provides “median regression.”

greg y xl1 x2 x3, quantile(.25)
Performs quantile regression modeling the conditional .25 quantile (first quartile) of y as

a linear function of x/, x2, and x3.

bsqreg y x1 x2 x3, rep(100)
Performs quantile regression, with standard errors estimated by bootstrap data resampling

with 100 repetitions (default is rep (20)).

predict e, resid
Calculates residual values (arbitrarily named e) after any regress, rreg, qreg,or

bsqreg command. Similarly, predict yhat calculates the predicted values of y.
Other predict options apply, with some restrictions.

regress y xl x2 x3, robust
Performs OLS regression of y on three predictors. Coefficient variances, and hence

standard errors, are estimated by a robust method (Huber/White or sandwich) that does not
assume identically distributed errors. With the cluster () option, one source of
correlation among the errors can be accommodated as well. The User’s Guide describes

the reasoning behind these methods.

Regression with Ideal Data

To clarify the issue of robustness, we will explore the small (n = 20) contrived dataset
robustl.dta:

Contains data from C:\data\robustl.dta

cbs: 20 Robust regression examples 1

(artificial data)

vars: 10 17 Jul 2005 09:35

size: 880 (99.9% of memory free}

[EEp—.
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] storage displa
Yarlable name type forﬁaty ¥2é2§ variable labe]
__________________________________________ abe
X float 39.0g T T )
5 0o ; Normal X
o flO:E ”3.8; Normal errors
ez float %9:Og rormal ek bl
o oot e Nermal errors with 1 cutlier
x3 float 8.0g oemal it e
X ot va o Normal X with 1 leverage obs
o oot oo o Normal errors with 1 extreme.
v ot 69.Og ¥3 = 10 + 2*x3 + a3
> o %9:0g Skewed errors
____________________________ vd = 10 + 2%x 4 ed
Sorted by: T

The variables x and e/ each ¢ i
_ The . ontain 20 random values from inde
distributions. y/ contains 20 values produced by the regression modi?‘ndem Fendard normal

YI=10+2x+ ¢y
The commands that manufactured these first three variables are

clear

set obs 20

generate x = invnorm(uniform())
generate el = invnorm(uniform())

generate yl1 = 10 4+ 2#x + el

With real i '
n Todzitiuclotdntlg mistakes and measurement €ITors sometimes create wildly incorrect
. ate this, we might shift the second ion’
observation’s error from — :
ettt om —0.89 to 19.89:
replace e2 = 19.89 in 2
generate y2 = 10 4+ 2#x 4 e2

y . .
»y{ and x present an ideal regression problem: the expected value of »y1 really is a linear

_____________ N Number of obs = 20

Model | 134.059351 1 134 gsgans o Y R
. . 1 134.059351 ohon
____??fi?fal l 22.29157 18 1.23842055 ETEZUQIZd D o
_________________________________ = 0.8574

Total | 156.350921 rot mopuared - 0
. 19 8.2289958¢ ae
____________________________________ Root MSE = 1.1128
vyl | Coef. S e
_____________ +___ﬁ_ﬁ__‘_,___f_?;_?ff;___ﬁ__t P>t [85% Conf. Interval]
x | 2.048057 1968465 10,40 0 000 1 eaaran IO

. 10.40 0.000
oy . 1.6344

_ | 8.963161 .24939861 39.85 0.000 9.43722 fé4jé§§§

Predict yhatio
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raph twoway scatter yl x _
s p|| line yhatlo x, clpattern(solld) sort
|l ytitle("yl = 10 + 2*x + el") 1egend(order(2)
I

label (2 "OLS line") position(ll) ring(0) cols (1))

v
¥

Figure 9.1

=10 + 2*x + el
10 12

y1
8

-2 -1

0
Normal X

An iteratively reweighted least squares (IRLS) procedure, rreg, obtains robust regression

cstimates. The first rreg iteration begins with OLS. Any observations so influential as to

i i fter this first step. Next,
' reater than 1 are automatically set aside a _ \
T o watenlated Huber function, which downweights

i lculated for each observation using a :
\gtieg:l\:zsitiirr?s ftzllat have larger residuals, and weighted 1§ast' squares is performed. l?gtg:g set\lzli:lzﬂ
WLS iterations, the weight function shifts to a Tukey b}W&lghF (as suggested by'Ll 2 tunee
for 95% Gaussian efficiency (see Hamilton 1992a for details). rreg e:stlrnatrets1 ;8218) are
errors and tests hypotheses usinga pseudovalues method (Street, Carroll and Ruppe

does not assume normality.
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This “ideal data™ example includes no serious outliers, so here rreg is unneeded. The
rreqg intercept and slope estimates resemble those obtained by regress (and are not far
from the true values 10 and 2), but they have slightly larger estimated standard errors. Given

normal i.i.d. errors, as in this example, rreg theoretically possesses about 95% of the
efficiency of OLS.

rreg and regress both belong to the family of M-estimators (for maximum-
likelihood). An alternative order-statistic strategy called L-estimation fits quantiles ofy, rather
than its expectation or mean. For example, we could model how the median (.5 quantile) of y
changes with x. greg ., an L/-type estimator, accomplishes such quantile regression and
provides another method with good resistance to outliers:

greqg yl x
Iteration 1: WLS sum ¢f weighted deviations = 17.711531
Iteration 1: sum of abs. weighted deviaticns = 17.130001
Iteration 2: sum of abs. weighted deviations = 16.858602
Median regression Number of obs = 20
Raw sum of deviations 46.84 (about 10.4)
Min sum of deviations 16.8586 Pseudo RZ = 0.6401
vl | Coef std. Err t P>t [95% Conf Interval]
_____________ o .
x| 2,1398%6 .25%0447 8.26 0.000 1.595664 2.684129
_cons | 9.65342 .3564108 27.08 0.000 §.804628 10.40221

Although greg obtains reasonable parameter estimates, its standard errors here exceed those
of regress (OLS)and rreg. Givenideal data, greg isthe least efficient of these three
estimators. The following sections view their performance with less ideal data.

Y Outliers

The variable y2 is identical to ¥/, but with one outlicr caused by the “wild” error of observation
#2. OLS has little resistance to outliers, so this shift in observation #2 (at upper left in Figure
9.2) substantially changes the regress results:

regress yZ2 X

rreg yl x
Huber iteration 1l: maximum difference %n we%ghts = .357;?23;
Huber iteration 2: maximum difference 1n we}qhts = .02}121371
Biweight iteration 3: maximum difference %n we%ghts .éi320276
Biweight iteration 4: maximum difference %n we;ghts .00265408
Biweight iteration 5. maximum difference 10 welights .
i Number of obs = 20
Robust regression estimates pamee e o oe
Prob > F = 0.0000
—-__7__7__‘1_1 ______ ;;;;—-__;tdi Err t P>t} {952 Conf. Interval]
v . CErr. v Bl I9RR e LT
_____________ B T es0ds | B.%4 5 35
% 2.047813 .2290049 8.94 0.000 l.56662§ ié éi317
cons | 9.936163 .2908259 34.17 0.000 9.,3251 .

Source 55 df MS Number of obs = 20
————————————— e D e T T F( 1, 18) = 0.97
Model 18.764271 1 18.764271 Propb » F = 0.3378
Residual 348.233471 18 18.3463039 R-squared = 0.0511
————————————— B itk b Adj R-sguared = -0.0016
Total | 366.997742 19 19.3156706 Root MSE = 4.3984

vZ | Coef std. Err t P>t | [95% Conf. Interval
_____________ e
x| .7662304 .71780232 0.98 0.338 -.8683356 2.400796

cons | 11.1579 .8880542 11.29 0.000 9.082078 13.23373
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The nolog option above caused Stata not to print the iteration log. The
predict yhat2o genwt (rweight2) option saved robust weights as a variable named rweight2.

(option xb assumed; fitted values)

. " . predict resid2r, resid
label variable yhatlo "OLS line (regress)

list y2 x resid2r rweight2
OLS intercept (from 9.936t0 1 1.1579) and lessens the slope (from 2.048

857410 .0511. Standard errors quadrupled, and the QLS slope L +
differs from zero. i e s e |

The outlier raises the
t00.766). R* has dropped from Ho.
(solid line in Figure 9.2) no longer significantly

dlinein Fi ure 9.2. % 1. ] 5.37 -1.97 -.7403071 .94644465 |
The outlier has little impact on rreg,however,asshownbythedashf 10and2g' i 50 ) 2ete 1lss 19 84921 n
; ameters ’ 5 3.1 5.83 -1.74 -.6354806 96037073 |
; remain close to the true par. : ) ) ) ] .
TherobustcoefﬁmentsbarelyChaﬂgeaand 4. | 8.58  -1.36 1. 262494 8493384 |
therobuststandarderrorsincreasemuch. 5. 1 6.16 -1.07 -1.731421 L7257631 |
) ! [ oo oo |
rreg y2 x, nolog genwt (rweight2) { 6. | 9.80 -0.69 1.156554  .87273631 |
cumper of obs = 19 : 7.0 8.12  -0.55  -.8005085  ,93758391 |
u ! 2
, cimates 17y = 63.01 . 8. | 10.40  -0.49 1.36075  .B2606386 |
— Robust regression €9 7 bl; . YT o o000 9. | 9.35 -0.42 17222 .99712388 |
" Fro 16, | 11.16 0.33 4979582 97581674 |
__________________ i el
____________________________________ 3 ] 11. 4 11.40 0.44 .5202664  .97360863 |
‘>£i -""“‘“";'_' _____ Coef std. Err t P>t (9% E?If__{?ff‘f_]_ ¢ 12. | 13.26 0.69 1.885513  .68048066 |
ye b e T § 13. | 10.88 0.78  -.6725982 95572833 |
________________________ 007 2.505023 4 . . . . -95
§‘ ——— T L 579015 5493146 7.94  0.000 1;223986 1665695 : 14. | 9.58 0.79 -1.992389  .64644918 |
& n’; | 1500897 13071265 32.59  0.000 SRl . 15. | 12.41 1.26  -.0925257  .99913568 |
» co IV T
5 =i m e m T ST T T T e st !
= e 16. | 14.14 1.27 1.617685  .75887073 |
'& 17. | 12.66 1.47  -.2581189  .99338589 |
o predict yhat2r 18. | 12.74 1.61  -.4551811 .97957817 |
= (option xb assumed; fitted values) 19. 1 12.70 1.81  -.8909839  .92307041 |
- ”
. eqression (rreg) 20. | 14.19 2.12  -.0144787  .99997651 |
’r*:; label variable yhat2r "robust reg e ¥
o
By t ay scatter y2 X
. graph twoway olid) sort . . . .
i || 1line yhat2o x, clpatternti ngd)ash) cort Residuals near zero produce weights near one; farther-outresiduals get progressively lower
. ttern o . . . . . .
QJ [| 1line Yhat2r2"' ‘itpi sux + e2") weights. Observation #2 has been automatically set aside as too influential because of Cook’s
: i rdytlzleigy:n position{l) ring(0) cols(l) margin(sides)) : D>1. rregqg assigns its rweight2 as “missing,” so this observation has no effect on the final
| end (order b . .
.‘ leg ( estimates. The same final estimates, although not the correct standard errors or tests, could be
— Figure 9.2 obtained using regress with analytical weights (results not shown):
OLS regression (regress) ] ]
19 R rommtmgmsﬂonvwg) regress y2 x [aweight = rweight2]
Applied to the regression of y2 on x, qreg also resists the outlier’s influence and
performs better than regress,butnotaswellas rreg. qreg appearsless efficient than
o rreg, and in this sample its coefficient estimates are slightly farther from the true values of
N
o 10 and 2.
+
g greg y2 x, nolog
;2 - Median regression Number of obs = 20
- Raw sum of deviations 56.68 {about 10.88;
:\I‘ Min sum of deviations 36.20036 Pseudo RZ = 0.3613
>
o | T T el
A\l v2 | Coef, Std. Err. t P>t} [95% Conf. Interval]
_____________ O
x | 1.821428  .4105944 4.44  0.000 9588014 2.684055
cons | 10.115  .5088526 19.88  0.000 9.045941 11.18406
55 | oSN
[Te]

0
Normal X
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Monte Carlo researchers have also noticed that the standard errors calculated by qreg
sometimes underestimate the true sample-to-sample variation, particularly with smaller
samples. As an alternative, Stata provides the command bsqregqg, which performs the same
median or quantile regression as greg , but employs bootstrapping (data resampling) to
estimate the standard errors. The option rep( ) controls the number of repetitions. Its
default is rep(20), which is enough for exploratory work. Before reaching “final”
conclusions, we might take the time to draw 200 or more bootstrap samples. Both qreg and
bsqgreg fitidentical models. In the example below, bsqreg also obtains similar standard
errors. Chapter 14 returns to the topic of bootstrapping.

bsqreg y2 x, rep(50)

(fitting base model)
[ e XY o B olfc R i o= B 1 = 5 0 s )

Median regression, bootstrap(50) SEs Number of obs = 20
Raw sum of deviations 56.68 (about 10.88)
0.3613

Min sum of deviations 36.20036 Pseudo R2 =

ve | Coef. sStd. Err t P>t | [95% Conf. Interwval]
_____________ o
X 1.821428 .4084728 4.46 0.000 . 9632587 2.679598

_cons | 10,115 .4774718 21.18 0.000 9.111869 11.11813

X Outliers (Leverage)

rreg, qreqg,and bsqreg deal comfortably with y-outliers, unless the observations with
unusual y values have unusual x values (leverage) too. The ¥3 and x3 variables in robust.dta
present an extreme example of leverage. Apart from the leverage observation (#2), these

variables equal y and x.
The high leverage of observation #2, combined with its exceptional y3 value, make it
influential: regress and gqreg both track this outlier, reporting that the “best-fitting” line

has a negative slope (Figure 9.3).

regress y3 x3

Source | 58 df MS Number of obs = 20
————————————— B e it T F( 1, 18) = 11.01
Model | 139.306724 1 139.306724 Prob > F = 0.0038
Residual | 227.691018 18 12.649501 R-sqguared = 0.3796
————————————— B e e e e it Adj R-squared = 0.3451
Total | 366.997742 19 18.3156706 Root MSE = 3.5566

v3 Coef Std. Err t P>t [95% Conf. Interval
_____________ o e e
x3 | -.6212248 .1871973 -3.32 0.004 -1.014512 -.227938

cons 10.80931 .8063436 13.41 0.000 9.115244 12.50337

predict yhat3o
label variable yhat3o "OLS regression {regress)"

Robust Regression 247

qreg y3 x3, nolog

Median regression N
umber of obs

Réw sum of deviations 56.68 (about 10.88) ) 20
Min sum of deviations 56.194¢66 P d 2
seudo R =
0.008¢
v3 | Coef. Std _; ____________________________________________
_____________ +___;_______‘_¥__ﬁ_,_ff_______fi_ P>1t] [95% Conf, Interval]
X3 | -.6222217 347103 198 0000 1.angaee T TITTTT
. -1.79 0.090 -1.35
. . 1458
_________ ?Tf_i__—i};36533 1.419214 8.01 0.000 8.383676 iioggégg
predict yYhat3q
1 .
abel variable Yhat3gq "median regression (qreg)"
rreg y3 x3, nolog
Robust regression estimates N
umber of cbs = 19
F( 1, 17y = 63.01
Procbh > F = 0.0000
y3 | Coef . S;; _______________________________________________
_____________ +_;_______________;‘?ff;__,___f P>t [95% Conf. Interval)
x3 1.979015 2693146 7.94 0. 000 1.gesmnn TTITITITIS
. 7.94 0.000 1
. 453007
_cons | 10.00897 .3071265 32.59 0.000 9.360986 f652§g;§

predict yhat3r
label variable Yhat3r "robust regression (rregq)"

graph twoway scatter ¥3 x3
11 l%ne Yhat3o x3, clpattern(solid) sort
11 l?ne Yhat3r x3, clpattern(longdash) sort
;Liti:?? ghat3q x3, clpattern(shortdash) sort ,
e (g) = io + 2*x +_e3"? legend(order(4 3 2) position(5)
g cols (1) margin(sides)) ylabel(—30(10)30)

3 1 Figure 9.3

y3=10+2* +e3
0 10 20

-10

-20

......... median regression (qreg)
— —— robust regression (rreg)
OLS regression (regress)

-30
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Figure 9.3 illustrates that regress and dqreg are not robust against leverage (x-
outliers). The rreg program, however, not only downweights large-residual observations
(which by itself gives little protection against leverage), but also automatically sets aside
observations with Cook’s D (influence) statistics greater than L. This happened when we
rreg ignored the one influential observation and produced a more
reasonable regression line with a positive slope, based on the remaining 19 observations.

Setting aside high-influence observations, as done by rreg, provides a simple but not
foolproof way to deal with leverage. More comprehensive methods, termed pounded-influence
regression, also exist and could be implemented in a Stata program.

The examples in Figures 9.2 and 9.3 involve single outliers, but robust procedures can
handle more. Too many severe outliers, or a cluster of similar outliers, might cause them to
break down. But in such situations, which are often noticeable in diagnostic plots, the analyst

must question whether fitting a linear model makes sense. It might be worthwhile to seek an
explicit model for what is causing the outliers to be different.

Monte Carlo experiments (illustrated in Chapter 14) confirm that estimators like rreg
and qreg generally remain unbiased, with better-than-OLS efficiency, when applied to
heavy-tailed (outlier-prone) but symmetrical error distributions. The next section illustrates
what can happen when ¢TTOTS have asymmetrical distributions.

regressed y3 on x3;

Asymmetrical Error Distributions

‘x The variable e4 1n robustl.dta has a skewed and outlier-filled distribution: e4 equals el (a
! standard normal variable) raised to the fourth power, and then adjusted to have 0 mean. These
i skewed errors, plus the linear relationship with x, define the variable y4 = 10 + 2x + e4.
i Regardless of an error distribution’s shape, OLS remains an unbiased estimator. Qver the tong
run, its estimates should center on the true parameter values.

RUN PUr SHAW LIBRARY

—
e
" regress y4 x
source | 38 df MS Number of obs = 20
————————————— +f-——————f—-—————4~~-—————-—~»f Fe o1, 18) = 6.97
Model | 155.870383 1 155.870383 prob > ¥ = (.01696
Residual | 4072 .341909 18 279.3523283 R-squared = 0.2792
————————————— +—~—---———4~>--————4—»7——————4~ Adj R-squared = 0.2392
Total | 558,212291 19 29.37935%243 rRooOt MSE = 4.7278
va | Coef std. Err T P>t [95% Conf. Intervall
_____________ +4,,-______,-___-__--________________4__,______________,#_______4
X 2.208388 .8362862 2.64 0.017 .4514157 3.96536
_cons | 3.975681 1.062046 9.39 0.000 7.744406 12.20696

The same is not true for most robust estimators. Unless errors are symmetrical, the median
line fit by greg, or the biweight line fitby rreg, does not theoretically coincide with the
expected-y line estimated by regress. So long as the errors’ skew reflects only a small
fraction of their distribution, rreg might exhibit littie bias. But when the entire distribution

is skewed, as with e4, rreg will downweight mostly one side, resulting in noticeably biased

J-intercept estimates.

s
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rreg y4 x, nolog

R¢ 3 regressi estimate 1 e 3
g sion stir s
Numb Q ob

iy = 20

. 1, 18) = 1319.29

_________ Prob > F = 0.0000
v | Coef __;; ______________________________________

_____________ }___“'**—————f—;cjf,%ffffv E P>t [95% Conf. In;é;;;;;
z | 052073 0537435 36.30 0. 006  1.839163 2

cons | 7.476669 '2232435 36.32  0.000 1.839163  2.064984

. 518  109.55  0.000 2 333278 2.064984

. 7.620061

Although the L o
OLS line ar&fd the t;;i?oi llmercept in Figure 9.4 is too low, the slope remains parallel to th
is closer to the true slope (;). Indf;ct, being less affected by outliers, the rreg slope (109;
I an as a much Small b .
This 1llustrat . er standard error than that
getting bia :le(elsetsll;a niridGOff of u51'ng rreg or similar estimators with Skewid(:efrr;re.gres s .
oetimates of ofh ates of the y-intercept, but can still expect unbiased and relati 5. wWe fl.sk
er regression coefficients. In many applications, such ¢ at}¥ely precise
K coetticients are

S ereStlI‘lg than the 'intel ept i g a(le() WO hw l]le Vi()[e()\/e]
3 .

[Tel
o .
wmom e true model . Flgure 94
OLS regression (regress)
— — — robust regression (rreg)
o | [ ]
o~
(32
L]
+
'><
N )
+
o
-
n
2]
o |
e
m -

0
Normal X 2

Robust Analysis of Variance

Contains data fro
mC:
obs: 22(6:'\data\facmty.dta

vars: 6
size: 2,938 (99.9%

College faculty salaries

17 Jul .
of memory frec) 2005 09:32
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storage display value
variable name type format label variable label
rank byte %8.0g rank Academic rank
gender byte £8.0g sex Gender (dummy variable)
female byte %8.0g Gender (effect coded)
assoc byte %8.0g Asscc Professor (effect coded)
full byte $8.0g Full Professor (effect coded)
pay float %9.0g Annual salary
Sorted by:

Faculty salaries increase with rank. [n this sample, men have higher average salaries:
table gender rank, contents(mean pay)

(dummy Academic rank
Assist Assoc Full
29280 38622.22 52084.9
28711.,04 38019.05 47190

Male

An ordinary (OLS) analysis of variance indicates that both rank and gender significantly
affect salary. Their interaction is not significant.

anova pay rank gender rank*gender

Number of obs = 226 R-squared = 0.7305
Root MSE = 5108.21 Adj R-squared = 0.7244
Source | Partial 85 df MS F Prob » F
____________ g Y
Model | 1.5560e+10 5 3.1120e+09 119.26 0.0000
|
rank | 7.6124e+09 2 3.8062e+08 145.87 0.06000
gender | 1273618283 1 127361829 4.88 0.0282
rank*gender | 87957720.1 2 43998860.1 1.69 0.1876
|
Residual | 5.7406e+09 220 26093824.5
____________ T g O
Total | 2.1300e+10 225 94668810.3

But salary is not normally distributed, and the senior-rank averages reflect the influence of
a few highly paid outliers. Suppose we want to check these resuits by performing a robust
analysis of variance. We need effect-coded versions of the rank and gender variables, which

this dataset also contains.

tabulate gender female

Gender
{dummy | Gender (effect coded}
variable) | -1 1 Total
___________ T
Male | 149 0 149
Female | Q 77 | 77
___________ e
Total | 149 77 | 226

0 O e oo 2
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tabulate rank assoc

Ac i
ademic Assoc Professor (effect coded)

|
rank | -1

___________ +__-__—>—_7‘_~-_—_—_‘?~_ 1 Total
Assist | 64 o 5_+ __________

Asso 1
FUI; | 0 0 105 | .
| S o 105
________ S 0 57
Total | gq o, 7T T
al | 64 57 105 226

tab rank fuig
Acadizii : Full Professor (effect coded)
n
~1

___________ +—_______ﬁ__‘_‘_-_;-_?_< 1 Total
Assigt | 64 o 5_+ __________

: i
;S?f | 105 0 | e
N J : ; 105
_________ R 57 | 57
Potal 1 ITTTTmmmmeeemee DL Fom e
otal | 64 105 57 | 226

generate femassoec = female*assgsoc
generate femfull = female* ful]

; 1I.\/Iales and ass'istant professors are “omitted categories™
uplicate the previous ANOVA using regression:

re
gress pay assoc full female femassoc femfull

In this example. Now we can

Source | sg
_____ df
*_; ““““ e e T M3 Number of opg = 226
odel | 1.5560e+10 & 4 1. . F( 5
- : 5 3.1120 ¢ 220) = 119,26
Residual e+09
_____________ N 5.7406e+09 220 260938245 grgz > Fd = 0.0000
___________________________ ~“square = 0.7305%
Tot - ‘ :
otal | 2.1300e+10 225 94668810, 3 gggtRégguared - 0.7244
______________ = 5108.2
pay | Coef ‘_5 _____________________________________________
T *““"-————————_E?;_?ff___ T P>t [95% Conf. Intervaii
ass50C | -663.8995 543 asgga . L TTTTTmmmmmm—
full | 10652935 533'8499 -1.22  0.223 -1735.722 1079225
female | 1011 i74 .9227 13.59 0.000 9107.957 7.9229
tomaseon | yosll 457.6938 "2.21 0.028  -1913. 1219788
femtors | 105 264 543.8499 1.30 ¢.193 -362 5199 T10g,1ees
tom | Thdss. 77 783.9227 “1.83  0.068 e 359 1781.409
_______ ToIDoL_ 0PPB453 457.6938 g5 ag gl g00 3aoé2'4§16 §g§-6819
- ‘ 86.56

test assoc full

1) asscec = p.9
(2) full = 0.9

FC o2, 220)
Prob > F

145,87
0.0000

It
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test female
{ 1) female = 0.0

F( 1, 2200 - 4.88
Prob > F = 0.0282

test femassoc femfull

( 1) femassoc = 0.0
( 2) femfull = 0.0
F( 2, 220) = 1.635
Prob » F = 0.1876

regress followed by the appropriate test commands obtains exactly the same R *
and F test results that we found earlier using anova . Predicted values from this regression

—amdi ]
equal the mean salaries.
predict predpayl
g; (option xb assumed; fitted values)
é‘ ! label variable predpayl "OLS predicted salary"
i
E i table gender rank, contents (mean predpayl)
I
Bl
:g , Gender [
b , (dummy { kcademic rank
»’ ; variable) | Assist Assoc Full
L e e LT R P
w2 Male | 29280 38622.22  52084.9
F‘ E Female | 28711.04 38019.05 47199
S T
& , , .
Predicted values (means), R*, and F tests would also be the same regardless of which
categories we chose to omit from the regression. Our “omitted categories,” males and assistant
T professors, are not really absent. Their information is implied by the included categories: if

a faculty member is not female, he must be male, and so forth.
To perform a robust analysis of variance, apply rreg to this model:

rreqg pay assoc full female femassoc femfull, nolog

. e
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test assoc full

(1) assoc = 0.0
{ 2) full = 9.0

F( 2, 220) = 182.67
Prob > F - 0.0000

test female
(1) female = 9.9

(o1, 220) = 3.78
Prob > ¥ = 0.0532

test femassoc femfull

(1) femassoc = 0.0
(2} femfull = ¢.g¢

Feo2, 220} = 1.16
Prob > F = 0.3144

rreg downweights several outliers, mainly hi
robust means, again use predicted values:

Predict pPredpay2
(option xb assumed; fitted values)

ghly-paid male full Profegsors, TO see the

label i
variable Predpay2 "Robust Predicted salary"”

table gender rank, contents (mean Predpay2)

d
(dummy Academic rank

Assist Assoc Full

Male 28916.15 38567.93 s07en oo
5 . 567.93 49760
Female | 28848.29 37464.51 46434-§§

The male-female salary gap among assi
robust means. It does not entirely vanish, however

With effect coding and suitable interaction terms

exactly. rreg cando parallel analyses, testing for diffi

regress can duplicate ANOVA
erences amongrobuy myeans instead

Robust regression estimates Number of obs = 226
F( 5, 220) = 138.25

Prob > F = 0.0000

pay | Coef Std. Err t P>t [95% Conf. Interval]
_____________ g
assoc | -315.6463 458.1588 -0.69 0.492 -1218.588 587.2956

full | 9765.296 660.4048 14.79 0.000 8463.767 11066.83

female | -749.4949 385.5778 -1.94 0.053 -1509.394 10.40395
femassoc | 197.7833 458.1588 0.43 0.666 -705.1587 1100.725
femfull | -913.348 660.4048 -1.38 0.168 -2214.878 388.1815
_cons | 38331.87 385.5778 99.41 3.000 37571.97 39091.77

the third possibility of testi i
: esting for differences amon i i
quantile regression version of the faculty pay analysisg' medians. - For mPeison, eS8
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qregq ray assoc ful

1 female femassoC femfull, nolog

- 226
Number of obs
i regression
N aw sum of devistions 1738010 (about 37360) pseudo R2 - 0.5404
Min sum of deviations 798870
-------------------- T e . aalt1 1e5% Cont. Intervall
pay | oel. ot R e T T T
_________ fm—mm— s oooTmT T - 188 107.4881
—— _ 0.086 1627.
-760 440.1693 73 1548.57
aisii : 10235 615.7735 16.78 0.000 12251532 196.2594
femzle | -623.3333 3651202 o %'322 —1024:155 710.8214
femagsoc | —196.6667  420.1577 —g ig 0.263 ~1905.236 571.9031
-691.6667  615.7735 ~he : 019.59
femfull l 69138300 365.1262 104.90 0.000 37580.41 39
cons

test assoc full

( 1) assoc = 0.0
( 2) full = 0.0

FL 2, 220) = 208.94
Prob > F = 0.0000

test female

( 1) female = 0.0

F( 1, 220} 2.91
prob » F = 0.0892

test femassoc femfull

( 1) femassoc = 0.0
( 2) femfull = 0.0

Pl 2, 220) = 1.60
Prcb > F = 0.2039

predict predpay3
{option xb assumed; fitted values)
label variable predpay3 "Median predicted salary

table gender rank, contents(mean predpay3)

Academic rank
Assist AssocC Full

(dummy

28500 38320 49950
28950 36760 47320

Male

i i ies in each
Predicted values from this quantile regression closely resemble the median salaries in
subgroup, as we can verify directly:

N
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table gender rank, contents(median pay)

Gender |
(dummy | Academic rank
variable) | Assist Assoc Full
__________ U
Male | 28500 383290 49950
Female | 28950 36590 46530

greg thus allows us to fit models analogous to N-way ANOVA or ANCOVA, but
involving .5 quantiles or approximate medians instead of the usual means. In theory, .5
quantiles and mediansare the same. In practice, quantiles are approximated from actual sample
data values, whereas the median is calculated by averaging the two central values, ifa subgroup
contains an even number of observations. The sample median and .5 quantile approximations
then can be different, but in a way that does not much affect model interpretation.

Further rreg and greg Applications

Diagnostic statistics and plots (Chapter 7) and nonlinear transformations (Chapter 8) extend the
usefulness of robust procedures as they do in ordinary regression. With transformed variables,
rreg or greg fitcurvilinearregressionmodels. rreg can also robustly perform simpler
types of analysis. To obtain a 90% contidence interval for the mean of a single variable, y, we
could type either the usual confidence-interval command eci :

ci y, level (90)

Or, we could get exactly the same mean and interval through a regression with no x variables:
regress y, level (90)

Similarly, we can obtain robust mean with 90% confidence interval by typing
rreg y, level(90)

greg could be used in the same way, but keep in mind the previous section’s note about how
a .5 quantile found by greg might differ from a sample median. In any of these commands,
the level( ) optionspecifies the desired degree of confidence. If we omit this option, Stata
automatically displays a 95% confidence interval.

To compare twomeans, analysts typically employ atwo-sample ¢ test ( ttest ) or one-way
analysis of variance ( oneway or anova). Asseen earlier, we can perform equivalent tests
(vielding identical ¢ and F statistics) with regression, for example, by regressing the
measurement variable on adummy variable (here called group) representing the two categories:

regress y group

A robust version of this test results from typing the following command:
rreqg y group

qreg performs median regression by default, but it is actually a more general tool. It can
fit linear models for any quantile of y, not just the median (.5 quantile). For example,
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commands such as the following analyze how the first quartile (.25 quantile) of y changes with Wh . o
heteros lf;d\::t ir;irle;s Oyjeonx,(g_e obtagmS e)1 significant positive slope. A scatterplot shows strong
’ ver (Figure 9.5). Variation around th ion line ; .
x. Because errors do not ap identi - ¢ regression line increases with
pear to be identically distributed at
. ; all values of x, th
Assuming constant crror variance. the slopes of the .25 and .75 quantile lines should be roughly errors, confidence intervals, and test printed by regress © Standard
qreg thus could perform a check for heteroskedasticity or subtle kinds of areg would face the same problem.

X.

gqreg y x, quant(.25)
ar¢ untrustworthy. rreg or

the same.
nonlinearity. regress y8 x

______ ??fffil_»_,_;_fi___‘__?f_______b_df Number of ohs = 500
Robust Estimates of Variance — 1 Rooraae |' égg;f;m 1 1607.35658 gL He8 s 1330
———————————— +-————-;__}ff_*_f??__}1'9983767 R-squared = 8:2?28
Both rreg and greg tend to perform better than OLS ( regress or anova ) in the Tetal | 7582.5482 499 15.195;&; iggtﬁ:guared I
—_— presence of outlier-prone, nonnormal errors.  All of these procedures share the common ¢ e 3.4639
i assumption that errors follow independent and identical distributions, however. If the "-»—f———f—z?-l _____ Coef Std, Err t_"';;’";J‘"‘“E;;;-;;;;——; ________
distributions of errors vary across x values or observations, then the standard errors calculated < | 1-éi;é;é_""IQJIQI;"‘“‘““"—‘--“~-~—-f-——-——————?fffffﬂ
by anova. regress. rreg,or qreg probably will understate the true sample-to- _cons | 10.06642  .154914 éig; 8888 égé%i% 2£127813
——————————————————————————————— ’ : ] 0.3708

sample variation, and yield unrealistically narrow confidence intervals.

regress andsome other model fittingcommands (although not rreg or qreg)have
an option that estimates standard ecrrors without relying on the strong and sometimes
implausible assumptions of independent, identically distributed crrors. This option uses an
approach derived independently by Huber, White, and others that is sometimes referred to as

Figure 9.5

25

ty
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‘ a sandwich estimator of variance. The artificial dataset (robust2.dta) provides a first example, £ .
Zs e T
! Contains data from C:\datal\robust?.dta b
F chs: 500 Robust regression examples 2 g
¢ (artificial data) 50
’ vars: 12 17 Jul 2005 09:03 j2
Y size: 24,500 (99.9+ of memcry free) o
| I £

) storage display value x

] variable name type format label variable label o~

_______________________________________________________________________________ +
X float ~9.0g Standard normal x 9.0
e’ float ~9.0¢g Standard normal errors ;
¥ 5 float 59.0g y5 = 10 + 2*x + e5 (normal >
i.i.d. errors)
ef float -2.Cqg Contaminated normal errors: o
95% N(0,1), 53 (N(0,10) .
Ve float £9.0g y6 = 10 + 2*x + eb ) 4 2 ¢
(Contaminated normal errors) : B 0 2 4
e’ t.oat 29.0g Centered chi-square(l) errors Standard normal x
v7 float 5%2.0g y7 = 10 + 2*x + e7 (skewed
errors)
e8 float -9.0g Normal errors, variance
increases with x
v8 float ~9.0g y8 = 10 + 2*x + e8
(heteroskedasticity)
group byte 9. 0g
eg float =29.Cqg Normal errors, variance
increases with x, mean &
variance increase with cluster
v9 fleat 5.04q y9 = 10 + 2*x + e9

(heteroskedasticity & .
correlated errors) N
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More credible standard errors and confidence intervals for this OLS regression can be
obtained by using the robust option:

regress y8 x, robust

Regression with robust standard errors Number of obs = 500
F( 1, 498) = 83.80
Prob » F = 0.0000
R-sqguared = 3.2120
Root MSE = 3.4639

[ Robust
v8 | Coef. Std. BErr. t P>t [95% Conf. Interval]
_____________ U
x 1.8159032 1887122 9.15 0.000 1.428¢614 2.209449
cons | 10.06642 .156184¢6 64.45 0.000 8.758561 10.37328

Although the fitted model remains unchanged, the robust standard error for the slope is 27%
larger (.199 vs. .157) than its nonrobust counterpart. Withthe robust option, the regression
output does not show the usual ANOVA sums of squares because these no longer have their
customary intetpretation.

The rationale underlying these robust standard-error estimates is explained in the User’s
Guide. Briefly, we give up on the classical goal of estimating true population parameters (’s)
for a model such as

y,=B,+PBx e
Instead, we pursue the less ambitious goal of simply estimating the sample-to-sample variation
that our b coefficients might have, if we drew many random samples and applied OLS
repeatedly to calculate b values for a model such as

y.=bytbix, te,
We do not assume that these b estimates will converge on some “true” population parameter.
Confidence intervals formed using the robust standard errors therefore lack the classical
interpretation of having a certain likelihood (across repeated sampling) of containing the true
value of B. Rather, the robust confidence intervals have a certain likelihood (across repeated
sampling) of containing b, defined as the value upon which sample b estimates converge. Thus,
we pay for relaxing the identically-distributed-errors assumption by settling for a less
impressive conclusion.

Robust Estimates of Variance — 2

Another robust-variance option, cluster, allows us to relax the independent-errors
assumptionin a limited way, when errors are correlated within subgroups or clusters ofthe data.
The data in attract.dta describe an undergraduate social experiment that can be used for
llustration. In this experiment, 51 college students were asked to individually rate the
attractiveness, on a scale from | to 10, of photographs of unknown men and women. The
rating exercise was repeated by each participant, given the same photos shuffled in random
order, on four occasions during evening social events. Variable ratemale is the mean rating
each participant gave to all the male photos in one sitting, and ratefem is the mean rating given

Robust Regression 259

to female photos. gender records th ici
. ¢ participant’s (rater’s) own i
blood alcohol content at the time, measured by Breat(halyzer) W eender and bac bis or her

Contains data from C:\datalattract.dta

obs: 204
Perceived attractiveness and
vare: ¢ drinking (D. C. Hamilton 2003)
; ; 18 Jul 2 :
_,iff. 5,508 (99.93% of memory free) b s AT
storage display v;;;; _______________________________________
variable name type format label variable label
______________________________________ e
id byte £9.0g T Tmmmeeee—ee
onder bzte fé gq Participant number
ou rees ;9-09 sex Participant gender (female)
senbac flont i9>og Blood alchohol content
releta: byie ?9'Og gender*bac interaction
drinkfrq flom: %9-09 rel Relationship status (single)
atoren floot %9.03 Days drinking in previoué week
ratomste I 99-0 Rated attractiveness of females
Y. 0g Rated attractiveness of males

Alt . .
. Seel;il(i;lgh theb?ata contain 204 ob§ervat10ns, theserepresentonly 51 individual participants
asonable to assume that disturbances (unmeasured influences on the ratings) werc;

regress ratefem bac gender genbac, cluster (id)

Regression with robust standard errors

Number of obs = 204
r( 3, 50) = 7.75

Prob » F = 0.0002

Number of clusters (id) = 51 E*SEU;rEd ool
oo SE = 1.1219

tes : Robust ~TTTTTTTTRTmooeees

efem Coef Std. E
_____________ +___,ﬁ__,v___;___;___ff<__,___f P> |t [95% Conf. Interval
bac | 2.896741 8543378 3.35  0.001 1 1eeaca TITITITC
. 3.39 0.001 1.1807

gsgger [ -.7299888 . 3383096 -2.16 0.036 —1‘408532 fetane

g coiz # .2280538 1.70814¢ 0.12 0.904 73:222859 _éoggggéi

_ 6.486767 .2289689 28.24 0.000 6.025423 é 94811

Blood alcohol content (bac) has a signi iti
‘ : gnificant positive effect: as buc goes i
attractiveness rating of female photos increases as well. Gender (female) ha% a neg;i&r:e:;gsg

slope-dummy variable regression model, approximately

predicted ratefem = 6.49 + 2.90pge — 13gender + 21genbac
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can be reduced for male participants (gender = 0) to w”
. © Female raters Figure 9.
predicted ratefem = 6.49 +2.90bac - (.73 x 0} + (.21 x 0 x bac) g o Male raters gure 9.6
QO O
= 6.49 + 2.90bac halny ‘ ,
o . e —
. . (] - -
and for female participants (gender = 1) to § w
<
predicted ratefem = 6.49 + 2.90bac — (.73 x 1) + (.21 x 1 x bac) g
O~
= 6.49 + 2.90bac - .73 + 21bac § -
-
=5.76 + 3.11bac
. . o Female raters
The slight difference between the effects of alcohol on males (2.90) and females (3.11) equals L. Male raters
the interaction coefficient, .2 . Eo
. . . o
Attractiveness ratings for photographs of males were likewise positively affected by blood 2 © o )
alcohol content. Gender has a stronger effect onthe ratings of male photos: female participants % < e
tended to give male photos much higher ratings than male participants did. For male-photo g2 I
ratings, the gender x bac interaction is substantial (—4.36), although it falls short of the .05 g~ S ;
significance level. < 0 A 2 3 4 W
regress ratemal bac gender genbac, cluster (id) Blood alcohol content
Regression with robust standard errors Number of obs = 201
F( 3, 50) = 10.96
Prob > F = 0.0000 . .
Rfsquared T 0 5ene .OLS regression with robust standard errors, estimated by regress withthe robust
Number of clusters (id) = 51 Root MSE = 1.3931 option, should not be confused with i ; S
simil di with the robust regression estimated by rreg . Despite
ar-soundaing names, th . '
“—“‘—‘""“‘F ““““““““““““ ;\—;“; ——————————————————————————————— g ¢ two prOCEdureS are unrelated, and solve different problemS_
obus
ratemale | Coef. Std. Err. t P>t} [95% Conf. Interval]
_____________ b o e L
bac |  4.246042  2.261792 1.88 0.066 -.2963004 8.788985
gender |  2.443216 4529047 5.39  0.000 1.53353 3.352502
genbac | -4.364301  3.573689 -1.22  0.228 -11.54227 2.813663
cons | 3.628043  .2504253 14.49  0.000 3.125049 4.131037

The regression equation for ratings of male photos by male participants is approximately
predicted ratemale =3.63 +4.25bac + (2.44 x 0) — (4.36 x 0 x bac)
=3.63 +4.25bac

and for rating of male photos by female participants,
predicted ratemale =3.63 + 4.25bac +(2.44 x ) - (4.36 x | x bac)

=6.07 - 0.11bac

The difference between the substantial alcohol effect on male participants (4.25) and the near-
zero alcohol effect on females (—0.11) equals the interaction coefficient,-—4.36. In this sample,
males’ ratings of male photos increase steeply, and females’ ratings of male photos remain
virtually steady, as the rater’s bac increases.

Figure 9.6 visualizes these results in a graph. We see positive rating—bac relationships
across all subplots except for females rating males. The graphs also show other gender
differences, including higher dac values among male participants. ﬂ
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Logistic Regression

The regression and ANOVA methods described in Chapters ‘5 thrcl)cugh 9 drelqulre r:;;l)srtiléz?
i ¢ full range of techniques for modeling ca ,

dent or y variables. Stata also offers a :
2?§ier?alegnd é)ensored dependent variables. A list of some relevant commands follows. For

more details on any of these, typc help command.
binreg  Binomial regression {generalized linear models).
blogit  Logit estimation with grouped (blocked) data.
pprobit Probit estimation with grouped (blockcd)' data.
clogit  Conditional fixed-effects logistic regression.
cloglog Complementary log-log estimation.

Censorcd-normal regression, assuming that y follows a Gaussian distribution but

nre . )
e is censored at a point that might vary from observation to observation.
constraint Defines, lists, and drops linear constraints. -
dprobit Probit regression giving changes in probabilities instead of coefficients.

1 Generalized linear models. Includes option to mo@el logistic, problt, or
o complementary log-log links. Allows response variable to be binary or
proportional for grouped data.
glogit  Logit regression for grouped data.
gprobit Probit regression for grouped data.
heckprob Probit estimation with selection.
kedastic probit estimation.
Z::::b Il{njzif(;sl 1'egressi§n, wherc y is either point data, interval data, left-censored data.
or right-censored data.
isti ictic regression, giving odds ratios. .
]1-:‘;:-:_“‘: i(;iliz&c rleession i similar to logistic, but giving coefficients instead of
odds ratios. .
mlogit  Multinomial logistic regression, with polytomous y variable.
nlogit  Nested logit estimation.
ologit  Logistic regression with ordinal y variable.
oprobit Probit regression with ordinal y variable. |
probit  Probit regression, with dichotomous v variable.

Logistic Regression 263

rologit Rank-ordered logit model for rankings (also known as the Plackett-Luce model,
exploded logit model, or choice-based conjoint analysis).

scobit  Skewed probit estimation.
svy: logit Logistic regression with complex survey data. Survey ( svy ) versions of
many other categorical-variables modeling commands also exist.

Tobit regression, assuming y follows a Gaussian distribution but is censored at a
known, fixed point (see enreg for a more general version).

tobit

xtcloglog Random-effects and population-averaged cloglog models. Panel { xt ) versions
of logit, probit, and population-averaged generalized linear models (see
help xtgee) also exist.

After most model-fitting commands, predict can calculate predicted values or

probabilities. = predict also obtains appropriate diagnostic statistics, such as those

described for logistic regression in Hosmer and Lemeshow (2000). Specific predict

options depend on the type of model just fitted. A different post-fitting command,

predictnl , obtains nonlinear predictions and their confidence intervals (see help
predictnl).

Examples of several of these commands appear in the next section. Most of the methods
for modeling categorical dependent variables can be found under the following menus:

Statistics — Binary outcomes

Statistics — Ordinal outcomes

Statistics — Categorical outcomes

Statistics — Generalized linear models (GLM)

Statistics — Cross-sectional time series

Statistics — Linear regression and related — Censored regression

After the Example Commands section below, the remainder of this chapter concentrates on
an important family of methods called logit or logistic regression. We review basic logit
methods for dichotomous, ordinal, and polytomous dependent variables.

Example Commands

logistic y x1 x2 x3

Performs logistic regression of {0,1} variable y on predictors x/, x2, and x3. Predictor
variable effects are reported as odds ratios. A closely related command,

logit y x1 x2 x3
performs essentially the same analysis, but reports effects as logit regression coefficients.
The underlying models fit by logistic and logit are the same, so subsequent
predictions or diagnostic tests will be identical.
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1fit
Presents a Pearson chi-squared goodness-of-fit test for the fitted logistic model: observed

versus expected frequencies of y = 1, using cells defined by the covariate (x-variable)
patterns. When a largc number of x patterns exist, we might want to group them according
to estimated probabilities. 1fit, group(l0) would perform the test with 10

approximately equal-size groups.

lstat
Presents classification statistics and classification table. lstat, lroc, and lsens

(see below) are particularly useful when the point of analysis is classification. These
commands all refer to the previously-fit logistic model.

lroc
Graphs the receiver operating characteristic (ROC) curve, and calculates area under the

curve.

lsens
Graphs both sensitivity and specificity versus the probability cutoft.

predict phat
Generates a new variable (here arbitrarily named phat) equal to predicted probabilities that
v =1 based on the most recent logistic model.

predict dx2, dx2
Generates a new variable (arbitrarily named dX2), the diagnostic statistic measuring
change in Pearson chi-squared, from the most recent logistie analysis.

mlogit y x1 x2 x3, base(3) rrr nolog
Performs multinomial logistic regression of multiple-category variable y on three x
variables. Option base (3) specifies y = 3 as the base category for comparison;, rrr
calls for relative risk ratios instead of regression coefficients; and nolog suppresses

display of the log likelihood on each iteration.

predict P2, outcome (2)
Generates anew variable (arbitrarily named P2) representing the predicted probability that

y =2, based on the most recent mlogit analysis.
glm success x1 x2 x3, family(binomial trials) eform

Performs a logistic regression via generalized linear modeling using tabulated rather than
individual-observation data. The variable success gives the number of times that the
outcome of interest occurred, and trials gives the number of times it could have occurred
for each combination of the predictors x/, x2, and x3. That s, success / trials would equal
the proportion of times that an outcome such as “patient recovers” occurred. The eform
option asks for results in the form of odds ratios (“exponentiated form™) rather than logit

coefficients.

cnreg y x1 x2 x3, censored{cen)
Performs censored-normal regression of measurement variable y on three predictorsx/, x2,
and x3. If an observation’s true y value is unknown due to left or right censoring, it is
replaced for this regression by the nearest y value at which censoring occurs. The
censoring variable cen isa {-1,0,1} indicator of whether each observation’s value of y has

been left censored, not censored, or right censored.

R |
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Space Shuttle Data

8118r msalarllcexa;np]e for this chapter, shuttle dta, involves data covering the first 25 flights of th

pe.rs.uag deN i\ ;ttle. These data contain evidence that, if properly analyzed, might have

pers Shue;tl . },;\ 0fﬁ§1als not to launch Challenger on its last, fatal flight in 1585 (that waz

o Commczss ; gnt, de;llgn;ted S"I;Z 51-L). The data are drawn from the Report of the Presiden
on tne dpace Shuttle Challenger Accident (1986 !

Tufte’s book contains an excellent discussi T ool g it ( el

' : ( ussion about data and analvtical is i
regarding specific shuttle flights are included as a string variable )1']11 thesesgz; His comments

Contains data frem C:\data\shuttle.dta

obs: 25
e . First 25 space shuttle flights

. : ) 20 Jul :
_fiff;,_k 1,675 (99.9% of memory free) o R0os e

storage display ﬁ;;I; ________________________________________
. e
variable name type format label variable label
_________________________________________ abe
éiigit Eyte %8.0g flbl Fl;;;; ___________________________
te %8.
iy bite ég gg Month of launch
o o ég.og Day of launch
e ees N 8. Year of launch
fons bite ;3483 dlbl Thermal distress incidents
e e %940g Joint temperature, degrees F
. Damage severity index (Tufte

comments str55 ¢55g ment
____________________________________ Comments (Tufte 1397)
Sorted by: T e

list rlight-temp, sepby (year)

b e ________
_______________________ +

1 -
. : s;g_é lf 12 1881 7772 none 66 |
J___;_;_________ﬁ_*___if___i??l 7986 1 or 2 70
; e
p ; :32_2 3 22 1982 8116 none 69 ;
i et 6 27 1982 8213 80 |
- 11
J_‘_*_ﬁ_ﬁ_<__________ﬁii_ﬁ_}??f 8350 none 68 |
. et S
e j Sg:_s 4q 4 1983 8494 1 or 2 67 ;
. el 6 18 1983 8569 none 72
5| e 8 30 1983 8642 none 73
___________ 11 28 1983 8732 none 70 |
10 B 23 losa grge TTITIITmmees-
= ( Sgg_jiki 2 3 1984 8799 1 or 2 57 :
) Sheie 4 6 1984 8862 3 plus 63 |
1501 srear 8 30 1984 9008 3 plus 70
11| ereaiS ig 5 1984 9044 none 78 |
'_ﬁ_~:_<__¥-ﬁ_ﬁ_—____”_?_‘_E??f_ 5078 none 67 |
15. S “C 1 24 1985 o1ss 5 LlllTTTTTITT
> ; Sggfgi_g 1 24 1985 9155 3 plus 53
17 | SreoilD 4 12 1985 9233 3 plus 67
15, | sremoil® 4 29 1885 9250 3 plus 75
tol ) SeeitS 6 17 1985 9299 3 plus 70 |
2o, | Sie-nE 7 29 1985 9341 1 or 2 81
21 | saeailt 8 27 1985 9370 1 or 2 76 |
22, | sas-ot? 10 3 1985 9407 none 79
10 30 1985 9434 3 plus 75
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23, | STS 61-B 11 26 1985 9461 1 or 2 76 |

e T T T e |
24, | STS 61-C 1 12 1986 9508 3 plus 58 |
25. | 8TS_51-L 1 28 1986 9524 31 1

This chapter examines three of the shuttle.dta variables:

The number of “thermal distress incidents,” in which hot gas blow-through or
charring damaged joint seals of a flight’s booster rockets. Burn-through of a
booster joint seal precipitated the Challenger disaster. Many previous flights had
experienced less severe damage, so the joint seals were known to be a source of
possible danger.

temp The calculated joint temperature at launch time,
Temperature depends largely on weather. Rubber O-rings sealing the booster

rocket joints become less flexible when cold.

date Date, measured in days elapsed since January 1, 1960 (an arbitrary starting point).
date is generated from the month, day, and year of launch using the mdy (month-

day-year to elapsed time; see help dates ) function:

distress

in degrees Fahrenheit.

generate date = mdy (month, day, year)
label variable date "pDate (days since 1/1/60)"

Launch date matters because several changes over the course of the shuttle program might
have made it riskier. Booster rocket walls were thinned to save weight and increase payloads,
and joint seals were subjected to higher-pressure testing. Furthermore, the reusable shuttle
hardware was aging. Sowe might ask, did the probability of booster joint damage (one or more
distress incidents) increase with launch date?

distress is a labeled numeric variable:

tabulate distress

Thermal
distress

|
|
incidents | Freqg Percent cum
____________ +-_,__‘____________,__,____,__ﬂ__-__
none | 9 39.13 39.13
1 or 2 | 6 26.09 65.22
3 plus | 8 34.78 100.00
____________ +______-_a_______,__4_-__,__,_______
Total | 23 100.00

Ordinarily, tabulate displays the labels, but the nolabel option reveals that the

underlying numerical codes are 0= “none”, 1 =“1or 27, and 2 =“3 plus.”

tabulate distress, nolabel

Thermal
distress

!

|
incidents | Freq Percent Cum
____________ +_______4__-__,______________,__*__4
0 | 9 39.13 39.13
11 6 26.09 65.22
2 8 34.78 100.00
____________ +__A____<__,_-___4________A__A__#__-

Total | 23 100,00
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We can use the

se codes to create a new du i

; mmy variable, any, ¢ i

one or more distress incidents: v, coded 0 forno distress and 1 for

generate any = distress
(2 missing values generatcd)

replace any = 1 if distress ==
(8 real changes made}

label variable any "Any thermal distress"
To see what this accomplished,
tabulate distress any

Thermal
distress
incidents

|

|

!
___________ +7—_~-_4-_9—_'—_7__7_371 Total
ncne | s o

9 0
1 or 2 | 0 6 l 2
3 plus | Q 8 |

___________ B e il N 8
Total | 9 e ;;

Logisti ' i
Variab1§;Stl’]ci g:gi;e;;lsr; ;n(l)dels. l::ow a {0,1} dichotomy such as any depends on one or more x
. . ogit resembles that of regress and i
commands, with the dependent variable listed first. mostothermodel-fiting

l°git any date, coef

Iteration O: log likelihood

: = -15.394543
iterat}on 1: log likelihood = -13.01923
Iterat}on 2: log 1likelihood = -12,39114¢6
eyatlon 3: log likelihood = -12.99109¢6
Logit estimates )
Number of obs =
23
LR chi2 (1) = 4.81
Log likelihood = -12.99109%¢6 grObd> a - S
seudo RZ =
0.1561
any | Coef. std. Eer. 2 P12l 955 cont. Interval]
_____________ +4__<____,ﬂ_7__7__;_?ff;___ z P>z [95% Conf. Intervalj
date | 0020907 0010703 1.95  0.051  -6.93e-06  .00418
. .0010703 1.9% 0.05 e84
date ) . . 1 -6.%3e-
| 18.13116 9.517217 ~-1.91 0.057 -36 7;422 ‘22;1222
. . 2

Th Sy . o

functio{; ISL;g:Lt iterative es'flmatlon procedure maximizes the logarithm of the likelihood

functh in,c]u(c;i\;/n art11 the output’s top. At iteration 0, the log likelihood describes the fit of a
g only the constant. The last log likelihood describes the fit of the final model

L =-18.13116+.0020907date [10.1
where L represents the predicted logit, or log odds, of any distress incidents: !
L =In[P(any=1)/P(any = 0)] | [10.2]

22 =200 - Ing) [10.3]

) m f
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¥ = -2[-15.394543 - (-12.991096)]
=481
The probability of a greater -, with | degree of freedom (the difference in complexity between
initial and final models). is low enough (.0283) to reject the null hypothesis in this example.
Consequently. dafe does have a significant effect.

Less accurate, though convenient, tests are provided by the asymptotic z (standard normal)
statistics displayed with logit rcsults. With one predictor variable, that predictor’s z
statistic and the overall x” statistic test equivalent hypotheses, analogous to the usual # and £
statistics in simple OLS regression. Unlike their OLS counterparts, the logit z approximation
and ¥ tests sometimes disagree (they do herc). The ¥’ test has more general validity.

Like Stata’s other maximume-likclihood estimation procedures, logit displaysapseudo
R’ with its output:

pseudoR® =1-In¥,/In¥,
For this cxample,
pseudo R* =1 —(-12.991096) / (~15.394543)
=.1561
Although they provide a quick way to describe or compare the fit of ditferent models for the
samc dependent variable, pseudo R * statistics lack the straightforward explained-variance
interpretation of true R * in OLS regression.
After 1logit,the predict command(with nooptions)obtains predicted probabilities,

Phat=1/(1 +e ") {10.5]
Graphed against date, these probabilities follow an S-shaped logistic curve as seen in Figure
10.1.

[10.4]
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- Predict Phat
label variable Phat "Predicted P(distress >= 1)

- graph twoway connected Phat date, sort

- Figure 10.1

B .8

(distress >= 1)

Predicted P
4

7500 8000 9000 9500

8500
Date (days since 1/1/60)

Th i i i

s thztc;):ff:}?;ent glgldv.en by ‘lo.glt (.0020907) describes date’s effect on the logit or lo
o they ' Ic‘ilpa Istress incidents occur. Each additional day increases the predicted log

s ot mal distress by .0020907. Equivalently, we could say that each additional "
guhtllp}?es predicted odds of thermal distress by e %7 = 1.0020929; ¢ach 100 da l ltc})lna fd e
louarlghl;s thg odds by (e 092097 y 100 _ | 53’ (e = 2.71828, the l;ase numberyfsor iraft:u(;;?

g s.)‘ ta.ta can make these calculations utilizing the _b[varngm ffici

after any estimatjon: - el coefficients stored

- display exp (_bldate])
1.0020929

- display ex bldat ~

1.2325359 Plpldatel) 2100

Or i i i

altér\zstic:?uld simply 1r.1clude an or (odds ratio) option on the logit command line. An
Ve way to obtain odds ratios employsthe logistic command described in the'next

section. logistic fits exactl
: y the same model as logi i
displays odds ratios rather than coefficients. T bt defou Pulputtable
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Using Logistic Regression

i ' istic i logit:
Here is the same regression seen earlier, but using logistic instead of log

logistic any date

= 23

Number of obs =
Logit estimates pombes o - o
Prob > chiz = 8.?§Zf

do RZ = .
Log likelihood - -12.893109¢ Pseu

L oide Rarieara mer T o T ase conr |
____________ | Odds Ratio 5td. Err. z P>z [95% Conf. Interva I
any s - Brr. oz Frfzl (95% Conf. Interval
______________________________________ 1.004197

o date T 1.002093 .0010725 1.95 0.051 . 9999931

Note the identical log likelihoods and ” statistics. Instead of coefficients (b.), i.?glosﬁ;ct
1 i “0Odds Ratio” column ofthe logistic ou
i dds ratios (e¢”). The numbers in the tio” : 9 :
:;Zp;g(fuc;ts by which the odds favoring y = 1 are multiplied, with each 1-unit increase in that
i i i ’ the same).
x variable (if other x variables’ values stay . . A
After fitting a model, we can obtain a classification table and related statistics by typing

lstat

Logistic model for any

———————— True —-=---——= Toral
~ ota
Classified | D ?_7l ___________
___________ e e
+ | 12 4 13
- | 2 5 |
B e Fomm e
___________________ 23
Total | 14 9 J
Classified + if predicted Pr (D) >= .5
True D defined as any 1= 0
__________________________ D 85.71%
Sensitivity iiz tJND; ol
Specificity Co e
Positive predictive wvalue P? - S0
Negative predictive value P1(~Dl~_1-77__;_77
_______________________________ ~ L44%
False + rate for true ~D Pr{ +| g; ij Son
False - rate for true D Pr( -1 0 25.00%
False + rate for classified + Pr(~D| 28.57¢
False - rate for classified - Pr{( D| -) ____;__i
Correctly classified 73.91%
Correctly classified

By default, 1stat employs aprobability of .5 as its Cutoff‘(although we can chaﬁge thls
by adgi’ing a c,utoff( ) option). Symbols in the classification table have the following

meanings:

. . . le.
D The event of interest did occur (that is, = 1) for that observation. Inthis example
D indicates that thermal distress occurred. . .
i i
~D The event of interest did not occur (that is, y = 0) for that observation. In

i i istress.
example, ~D corresponds to flights having no thermal dist
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+ The model’s predicted probability is greater than or equal to the cutoff point,
Since we used the default cutoff, + here indicates that the model predicts a .5 or
higher probability of thermal distress.

- The predicted probability is less than the cutoff. Here, -
probability of thermal distress below 5.

Thus for 12 Qlights, classifications are accurate in the sense that the mode] estimated at Jeast
a.5 probability ofthermal distress, and distress did in fact occur. For 5 other flights, the model
predicted less than a .5 probability, and distress did not occur. The overll “correctly
classified” rate is therefore 12 + 5 < 17 out 0f 23, 0r 73.91%. The table also gives conditional

probabilities such as “sensitivity” or the pereentage of observations with P » 5 given that
thermal distress occurred (12 out of 14 or 85.71%).

means a predicted

Hosmer and Lemeshow (2000).

predict newvar anﬁcwdlnobabﬂhythmjf=l

predict newvar, xb Linear prediction (predicted log odds thaty = 1)
predict newvar, stdp Standard error of the linear prediction

predict newvar, dbeta AB influence statistic, analogous to Cook’s D

predict newvar, deviance DeancereﬁduMibrjﬂlxpanmn,d,

predict newvar, dx2 Change in Pearson y2, written as Ax? or Ay?,

predict newvar, ddeviance Change in deviance %2, written as AD orAy’,

pPredict newvar, hat Leverage of'the jth X pattern,
predict newvar, number Assigns numbers to x patterns, j=1273 J
predict newvar, resid Pearson residual for jth x pattern, r,

Predict newvar, rstandard Standardized Pearson residual

ddeviance , and hat options do not
measure the influence of individual observations, as their counterparts in ordinary regression
do. Rather, these statistics measure the influence of “covariate patterns™; that is, the
consequences of dropping all observations with that particular combination of x values. See

Hosmer and Lemeshow (2000) for details. A later section of this chapter shows these statistics
in use.

Does booster joint temperature also affect the probability of any distress incidents? We
could investigate by including femp as a second predictor variable .
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logistic any date temp

= 23
Number of obs =
Logit estimates e - Sigi
prob » chi? = 2.262ﬁ
pseudo R2 = .
Log likelihood = -11.350748
e T Cont )
_______________ ééé Ratio std. Err z P>zl [95% Conf Int?fii—l
any | s matio sed. Exr. x  PTEL T e
____________ T T ezer 0013675 1.000293 1.005653
i 7 0.030
97 ,0013675 2.1 Fpe
Cenn ﬂ é%ggéo9 0987887 -1.48 0.140 . 6678848
temp . .

i i 1 improved our
The classification table indicates that including temperature as a predictor 1mp
correct classification rate to 78.26%.

lstat

Logistic model for any

ST TR T Total
~D e}
Classified | BT R otal
[ il it o
12 3
+ | 2 6 | 8
S S R i
_____________________ 23
Total | 14 9 |
Classified + if predicted pr(D) >= .5
True D defined as any =0
;4__1;;;1;; ______ pr( +i D) 22.;%?
ens o e
e e o iii D +}) 80.00%
Positive predictive value o R
Negative predictive value pr(-pl -)  73-77%
___________________________ ~D 33.33%
False + rate for true ~D Pr( ti D; e
False - rate for true D ‘ Pr(~D\ . s
False + rate for classified + Pr( - 2 es
False - rate for classified - pr{ DI _‘_—_—;_-_
______________________________ 78.26%

According to the fitted model, each 1-degree increase In joint tempe?itu;:drzlclé'z}zklllji (ti}(liz
dds of booster joint damage by .84 (in other words, each 1-degree warming s the ol
gf damage by about 16%). Although this effect seems strong enoufl; 6‘[0 };:a—usel: :(;)) N r,nore
asymptotic z test says that it is not stati st}cally 51gplﬁ;:anth(z 1 _:ést’ comr.nand.compares
definitive test, however, employs the 1ikel1hood—rat19 ¥’ T. e 1r st o g all
nested models estimated by maximum likelihood. Fl_rst, e.stlmate a du o cammand.
iables of interest, as done above with the log.:L.stJ.c any da e hie
Vli?er)l(t type an estimates store command, giving a name (such as full) to1denti

first model:
estimates store full

¢ vari 11
Now estimate a reduced model, including only a supset of the x Var1(';1ble:shf;§n§L Lhzefzt
model. (Such reduced models are said to be “nested.”) Finally, a commandsuc

e ]
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-

full requests atest of the nested model against the previously stored fu// model. For example
(using the quietly prefix, because we already saw this output once),

quietly logistic any date

lrtest full

likelihood-ratio test

LR chi2{1)
(Assumption: . nested in full)

Prob > chi?2

3.28
0.0701

This lrtest command tests the recent (presumably nested) model against the model
previously saved by estimates store . It employs a general test statistic for nested
maximum-likelihood models,

¥ =-2nd, -Ing,) [10.6]
where In & ; is the log likelihood for the first model (with all x variables), and In &, is the log
likelihood for the second model (with a subset of those x variables). Compare the resulting test
statistic to a ¥’ distribution with degrees of freedom equal to the difference in complexity
(number of x variables dropped) between models 0 and 1. Type help lrtest for more
about this command, which works with any of Stata’s maximum-likelihood estimation
procedures (logit, mlogit, stcox,and many others). The overall y? statistic routinely
given by logit or logistic output(equation |10.3]) is a special case of [10.6].

The previous lrtest example performed this calculation:

x? =-2[-12.991096 — (-11.350748)]
=3.28

with 1 degree of freedom, yielding P = .0701; the effect of temp is significant at ¢ = .10.

Given the small sample and fatal consequences of a Type Il error, &2 = .10 seems a more prudent
cutoff than the usual o = .05.

ron

Conditional Effect Plots

Conditional effect plots help in understanding what a logistic model implies about probabilities.
The idea behind such plots is to draw a curve showing how the model’s prediction of y changes
as a function of one x variable, while holding all other x variables constant at chosen values
such as their means, quartiles, or extremes. For example, we could find the predicted
probability of any thermal distress incidents as a function of femp, holding date constant at its
25th percentile. The 25th percentile of date, found by summarize date, detail,is
8569 — that is, June 18, 1983.
quietly logit any date temp

generate LI = b[_cons] + _bldate]*8569 + _b[temp]*temp

generate Phatl = 1/(1 + exp{-L1))

label variable Phatl "P(distress >= 1 | date = 8569)"

L1 isthe predicted logit, and Phatl equals the corresponding predicted probability that distress

> 1, calculated according to equation[10.5). Similar steps find the predicted probability of any
distress with date fixed at its 75th percentile (9341, or Juty 29, 1985):
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generate L2 = _b[_cons] + _bldate]*9341 + _b[temp]*temp
generate Phat2 = 1/(1 + exp(-L2))
label variable Phat2 "P(distress >= 1 | date = 9341)"

We can now graph the relationship between femp and the probability of any distress, for
the two levels of date, as shown in Figure 10.2. Using median splines with many vertical bands
(graph twoway mspline, bands{50)) preduces smooth curves in this figure,
approximating the smooth logistic functions.

graph twoway mspline Phatl temp, bands(50)
11| mspline Phat?2 temp, bands (50)
|1 , ytitle("Probability of thermal distress")
ylabel (0(.2)1, grid) xlabel{, grid)
legend(label (1 "June 1983") label(2 "July 1985")
rows (2) position(7) ring(0))

Figure 10.2

6 8

Probability of thermal distress
4

C\J' -
June 1883
_____ July 1985
o
T T ! y l |
30 40 70 80

. 50 60
Joint temperature, degrees F

Amongearlicr flights (date = 8569, left curve), the probability of thermal distress goes from
very low, at around 80° F, to near 1, below 50° F. Among later flights (date = 9341, right
curve), however, the probability of any distress exceeds .5 even in warm weather, and climbs
toward 1 on flights below 70° F. Note that Challenger’s launch temperature, 31° F, places it
at top left in Figure 10.2. This analysis predicts almost certain booster joint damage.

Diagnostic Statistics and Plots

As mentioned earlier, the logistic regression influence and diagnostic statistics obtained by
predict refer not to individual observations, as do the OLS regression diagnostics of
Chapter 7. Rather, logistic diagnostics refer to x patterns. With the space shuttle data,
however, each x pattern is unique — no two flights share the same combination of dafe and
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teﬂ./lp (naturally, because no two were launched the same day). Before using predict . we
quietly refit the recent model, to be sure that model is what we think: ’

quietly logistic any date temp
predict Phat3

(option p assumed; Pr(any))
label variable Phat3 "Predicted Probability"”
pPredict dx2, dx2

(2 missing values generated)

label variable dx2 "Change in Pearson chi-squared”

Predict dB, dbeta

(2 missing values generated)
label variable dB "Influence"

Predict dD, ddeviance
(2 missing values generated)

label variable db "Change in deviance"
Hosmer apd LemeshO\z)v (2000) suggest plots that help in reading these diagnostics. T
graph change in Pearson y” versus probability of distress (F igure 10.3), type:
graph twoway scatter dX2 Phat3

10

Figure 10.3

8

-squared
4 6

Change in Pearson chi

2

4 6
Predicted probability

. Two poorly fit x patterns, ‘at upper right and left, stand out. We can identify these two
flights (STS-2 and STS 51-A) if we include marker labels in the plot, as seen in Figure 10.4.
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graph twoway scatter dX2 Phat3, mlabel(flight) mlabsize (small)

Figure 10.4
=
N @ STS-2
Boo -
[
3
o
@
So ® STS_51-A
8
o
3]
)
S
‘»
r-—n, g)
M
g gN- ®5TS_51-J
b & ° 8GIGSHF
DX STS_41-G
' . aATSA -
% o @ STRHTS-3
J T T T T
g g 0 2 4 8 8 1
a = Predicted probability
u
E
5 e . , .
5ok list flight any date temp dX2 Phat3 if dX2 > 5
M.,‘
>
T S U
o B e e T +
E? [-'i | flight any date temp dx?2 Phat3 |
2 st !
% g“ 20 STS-2 1 7986 70 9.630337 .1091805 |
& [ 4. | STS-4 . 8213 80 . L0407113 |
N 14, | STS 51-A 0 9078 §7 5.899742 .8400974 |
) 25. | STS 51-L . 9524 31 09999012 |
" gy gy +
1
'y

(
|

Flight STS 51-A experienced no thermal distress, despite a late launch date and cool
temperature (see Figure 10.2). The model predicts a .84 probability of distress for this flight.
All points along the up-to-right curve in Figure 10.4 have any = 0, meaning no thermal distress.
Atop the up-to-left (any= 1) curve, flight STS-2 experienced thermal distress despite being one
of the earliest flights, and launched in slightly milder weather. The model predicts only a .109
probability of distress. (Because Stata considers missing values as “high” numbers, it lists the
two missing-values flights, including Challenger, among those with dX2 > 5.)

Similar findings result from plotting D versus predicted probability, as seen inFigure 10.5,
Again, flights STS-2 (top left) and STS 51-A (top right) stand out as poorly fit. Figure 10.5
illustrates a variation on the labeled-marker scatterplot. Instead of putting the flight-number
labels near the markers, as done earlier in Figure 10.4, we make the markers themselves
invisible and place labels where the markers would have been in Figure 10.5.

graph twoway scatter dp Phat3, m

e ———— |
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symbol (i) mlabposition (0)

mlabel(flight) mlabsize(small)
§TS-2 Fi

. igure 10.5

< STS_51-A
[N
(&3
c
3
am
©
£
g, STS_51-J

o~
1]
! STS_51-F
) STSHrs g

STS_41-G
58 ST§ Eg_
STS-3 ‘éégsfi
STS-1
. 1

Prg
STS_61C
0 2

4 .6
Predicted probability 8 !

. .dB measures an x pattern’s influence in logistic regression, as Cook’
1r.1d1v1dua1 observation’s influence in QLS. For a logistic 7
dlagnpstig plot in Figure 7.7, we can make the plotting s
done in Figure 10.6. Figure 10.6 reveals that the two wo

s D measures an
-regression analogue to the OLS
ymbols proportional to influence as
rst-fit observations are also the most

influential.

graph twoway scatter dp Phat3 [aweight = dB]
’

msymbol {oh)

(/ \\] Figure 10.6
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Poorly fit and influential observations deserve special attention because they both
contradict the main pattern of the data and pull model estimates in their contrary direction. Of
course, simply removing such outliers allows a “better fit” with the remaining data — but this
is circular reasoning. A more thoughtful reaction would be to investigate what makes the
outliers unusual. Why did shuttle flight STS-2, but not STS 51-A, experience booster joint
damage? Seeking an answer might lead investigators to previously overlooked variables or to

otherwise respecify the model.

Logistic Regression with Ordered-Category y

logit and logistic fit only models that have two-category {0,1} y variables. We need

other methods for models in which y takes on more than two categories. For example,

ologit Ordered logistic regression, wherey is an ordinal (ordered-category) variable. The
numerical values representing the categories do not matter, except that higher
numbers mean “more.” For example, the y categories might be {1 = “poor,” 2 =
“fair,” 3 = “excellent”}.

mlogit Multinomial logistic regression, where y has multiple but unordered categories
such as {1 = “Democrat,” 2 = “Republican,” 3 = “undeclared”}.

Ifyis {0,1}, logit (or logistic), ologit, and mlogit all produce essentially

the same estimates.

We earlier simplified the three-category ordinal variable distress into a dichotomy, any.
logit and logistic require {0,l} dependent variables. ologit, on the other hand,
is designed for ordinal variables like distress that have more than two categories. The
numerical codes representing these categories do not matter, so long as higher numerical values
mean “more” of whatever is being measured. Recall that distress has categories O = “none,”
1 =%1or2,” and 2 = *“3 plus” incidents of booster-joint distress.

Ordered logistic regression indicates that date and temp both affect distress, with the same
signs (positive for dare, negative for temp) seen in our earlier analyses:

ologit distress date temp, nolog

Ordered logit estimates Number of obs = 23
LR chiZ2 (2} = 12.32
Prob > chiz2 = 0.0021
Log likelihood = -18.78706 Pseudo R2 = 0.2468
distress | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ o
date | .00328¢6 .0012662 2.60 0.009 .0008043 0057677
temp | -.1733752 .0834473 -2.08 0.038 -.336929 -.0098215
_____________ e i

cutl | 16.42813 9.554813 (Ancillary parameters)

cuta | 18.12227 9.722293

Likelihood-ratio tests are more accurate than the asymptotic z tests shown. First, have
estimates store preserve in memory the results from the full model (with two

predictors) just estimated. Arbitrarily, we can name this model 4.

L TR R e b ¢

L aN—
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estimates store a

Ei:?(t,t ﬁtt afsmlllp[;r mﬁdel without temp, store its results as mode] B and ask for a likelihood
10 test of whether the fitof reduced model B d; igni ; k
ratlo st el B differs significantly from that of the ful] model,

quietly ologit distress date

estimates store B

lrtest B A

likelihood-ratio test

(Assumption: B nested in &) bt

Prob > chi2

6.12
0.0133

The lrtest output notes its assumption that model B is nested in model 4 meani
;hat the parameters estimated in B are a subset of those in 4, and that both models are estimaizg
]f}?ir:lti}ll(ee lsiil]rgs ;;)::igft ;):tsienr(;/iu?nst(hwl:;h cfa-m be tricky when the data contain missin g values),

- ates that B ’s fit is signific
temp as a’predict.or in model 4 is the only differengce, th:rﬁllill)izzgedrirﬁie; E:zsste ttl?lfspi;efs .
that femp’s contribution is significant. Similar steps find that date also has a signiﬁcan(‘[):;fz::lts
quietly ologit distress temp ‘

estimates store C

lrtest C A

likelihcod-ratio test

(Assumption: C nested in A) bron s i

Prob > chi2

10.33
0.0013

o

The estimates store and lrtest commands provide flexible tools for comparing

nested maximum-likelihood models. T
ed n ‘ - I'ype help lrtest and hel i
details, including more advanced options. F Setimates for

The ordered-logit model estimates a score, S, as a linear function of dare and temp:

S =.003286date - 1733752temp

p El

P(distress=*“none”) = P(S+u < _cutl) = P(S+u < 16.42813)
Pldistress="1 or 2")
P(distress=“3 plus™)

P cutl <S+y <« _cut2)

i

P(16.42813 < S+u < 18.12227)
P(_cut2 < S+) = P(18.12227 < S+4)

| A(fjter olggit » Predict calculates predicted probabilities for each category of the
ependent variable. We suppl.y. Predict with names for these probabilities. For example:
none could denote the probability of no distress incidents (first category of distress); onetwoi

the probability of 1 or 2 incidents (second cat ]
Ly 0 egory of distress); and th / ili
of 3 or more incidents (third and last category of distress): ) recpis the probability

i

quietly ologit distress date temp

predict none onetwo threeplus
{option p assumed; predicted probabilities)

This creates three new variables:
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Logistic Regression 281
describe none onetwo threeplus
Expect to
1
storage display value ;gelmgsf
variable name type format label variable label o 1tez | Freq.
________________________________________________________________________________________ +—*—*———7———~+—_‘_*______7____________
rone float 59.0g Pr(distress==0} orn Sage ‘ 82 [**'******************************::;::::: ““““““““
onctwo float %9.0g Pridistress==1} leaer K 120 I************************************************
threeplus float £9.0g Pr(distress==2} L nes \_ff‘ AK 1 A e
————————————— b
Total | 259 T T e e
Predicted probabilities for Challenger’s last flight, the 25th in these data, are unsettling:
list flight none onetwo threeplus if flight == 25 Kotzebue (population near 3 ' . )
g P g More thar thlrdP:) Fthor studer;?solo) is th}e( Nortt}:west Arctic’s regional hub and largest city.
Ive m Kotzebue. Th ive i
———————————————————————————————————————————— * ¢ rest live in smaller vill
to 700 r villages of 200
i flight none onetwo  threep~s | people. The relatively cosmopolitan Kotzebue students less often expect to stay wh
e il it it \ they are, and lean more towards leaving the state: y where
25. | STS 51-L  .0000754 .0003346 .99959 | _ .
i . tabulate life kotz, chi?2

Expect to Live in Kotzebue or

. : : F
Our model, based on the analysis of 23 pre-Challenger shuttle flights, predicts little chance (P Linli | Tl e
=.000075) of Challenger experiencing no booster joint damage, a scarcely greater likelihood e P o
of one or two incidents (P = .0003), but virtual certainty (P = .9996) of three or more damage S T I;_T __________
ofone or Tther iK | 80 40 | 1;5
o . eave AK |
See Long (1997) or Hosmer and Lemeshow (2000) for more on ordered logisticregression e *““"“}}““““‘ff"'i ______ .
and related techniques. The Base Reference Manual explains Stata’s implementation. o . » -
Pearson chi2(2) = 46.2992 Pr = 0.000
Multinomial Logistic Regression mlogit canreplicate this simple analysis (although its likelihood-ratio chi-s uared need
| . | | | not exactly equal the Pearson chi-squared found by tabulate): ! .
When the dependent variable’s categories have no natural ordering, we resort to multinomial | MIO9it 1ife kotz, nolog base(l) rrr

logistic regression, also called polytomous logistic regression. The mlogit commandmakes
this straightforward. If y has only two categories, mlogit fits the same model as

Multinomial logistic regression Numbe f ob
r of obs = 259

logistic. Otherwise, though, an mlogit modelis more complex. This section presents : LR chi2(2) - 46. 23
- . - : . i i ; Prob > i -
an extended example interpreting mlogit results, using data (NWarctic.dia) from a survey Log likelihood = -244.64465 szudo ;}2112 _ S'OOOO
. . : . : § = . 0863
of high school students in Alaska’s Northwest Arctic borough (Hamilton and Seyfrit 1993). s _________________________________
life | BRR  Std. Brr. o o TTTTTTT T
) _____ - brr. z B> o
Contains data from C:\data\NWarctic.dta g “‘*+*-~——~—~—~—___;___,_,____________;_7131_‘__ [95% Conf, Interval]
obs: 259 NW Arctic high school students g other ax | T T e e
(Hamilton & Seyfrit 1993) 8 kotz 2.205882  .7304664 2.39
S [ 0.
vars: 3 20 Jul 2005 10:40 - [ e D TOD DI OUTT 1152687 4221369
size: 2,5%0 (99.9% of memory free) ke leave ak | T T T T e e e e _
——————————————————————————————————————————————————————————————————————————————— i kotz | 14.4385 6.307555
- _______ - . 6.11 0.0
storage display value E “‘f‘*—*—*——————~——_7_‘____,_______>_____7__??____ 6.1323946 33.99188
variable name type format label variable label . (Outcome life==same is the comparison group) T TTTTTTTToEmemee-
life byte %8.0g migrate Expect teo live most of life? base . )
ties float %9.0g Social ties to community scale (1) Speglﬁes that category | of y (lgfe:“same”) 1s the base category for compari
kotz byte  $8.0g kotz Live in Kotzebue or smaller Q The rrr option instructs mlogit to show relative risk ratios which r bl parison.
; - : . )
village? ratios given by lOgistic. s esemble the odds

Referri
e d(;ge;rmg pac]f‘to the tabulate output, we can calculate that among Kotzebue students
0 avoring “leave Alaska” over “stay in the same area” are

P(leave AK) / P(same) =(36/93) /(17/93)
=2.1176471

Variable /ife indicates where students say they expect to live most of the rest of their lives:
in the same region (Northwest Arctic), elsewhere in Alaska, or outside of Alaska:

s

tabulate life, plot
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282 Statistics with Stata

Among other students the odds favoring “leave Alaska” over “same area” are

P(leave AK)/ P(same) = (11/166)/(75/166)

=.1466667

Thus, the odds favoring “leave Alaska” over “same area” are 14.4385 times higher for Kotzebue
students than for others:

2.1176471 / .1466667 = 14.4385 . '
This multiplier, a ratio of two odds, equals the relative risk ratio (14.4385) displayed by
mlogit. ' .

In general, the relative risk ratio for category j of y, and predictor x,, equals the amount by

which predicted odds favoring y =j (compared withy = base) are mu!tiplied,‘per l-uqit ipcreas}i
in x, other things being equal. In other words, the relative risk ratio rrr;, is a multiplier suc
'Sl

that, if all x variables except x stay the same,
Pr=jlx;)  Pp=jix.)
P(y=base|x,) P(y=base|x, *+1)

ties is a continuous scale indicating the strength of students’ social ties to family and
community. We include fies as a second predictor:

T X%

mlogit life kotz ties, nolog base(l) rrr

i i ! i Number of obs = 259
Multinomial logistic regression e i} o e
Prob > chi2 = 0.0000
= 0.1717
Log likelihood = -221.773%69 Pseudo R2
________ i;;;fI-_-__‘—‘gg%-_ std. Err. A P>z [95% Conf. Interval
_____________ e
AK |
erher kotz | 2.214184 . 7724896 2.28 0.023 1.1%7483 4&2?2222
ties | .480248¢6 .0799184 -4.41 0.000 . 3465911 | -665849 2
_____________ b o e C
AK |
reave kotz | 14.84604 7.146824 5.60 0.000 5.7785%07 38.;2232
ties | .230262 .059085 -5.72 0.000 .1392531 .

(Cutcome life==same is the comparison group)

Asymptotic z tests here indicate that the four relative risk ratios,.describing tw0).c varlab(;ef’
cffects, all differ significantly from 1.0. If a y variable has Jcateg(l)nes, then mJ'.og:Lt models
the effects of each predictor (x) variable with.J—- 1 relative risk ratios or coefficients, and §ence
also employsJ— 1 ztests — evaluating two or more separate npll hypqtheses foreach pre 1fct0r.
Likelihood-ratio tests evaluate the overall effect of each predictor. First, store the results from
the full model, here given the name full:

estimates store full

Then fit a simpler model with one of the x variables omitted, and perform a likglihood-ratlo test.
For example, to test the effect of fies, we repeat the regression with ties omitted:

quietly mlogit life kotz
estimates store no_ties

lrtest no_ties full

T

Logistic Regression 283

likelihood-ratic test

LR chi2(2)
(Assumption: no_ties nested in full)

Prob > ¢hi2

45.73
0.0000

o

The effect of fies is clearly significant. Next, we run a similar test on the effect of koz:
quietly mlogit life ties
estimates store no_kotz
lrtest no_kotz full

likelihood-ratio test LR chiz2(2)

= 39.05
(Assumption: no_kotz nested in full) Prob > chi2 =

0.0000
Ifour data contained missing values, the three mlogit commandsjustshown might have

analyzed three overlapping subsets of observations. The full model would use only
observations with nonmissing /ife, kotz, and ties values; the kotz-only model would bring back
in any observations missing just their ties values; and the ties-only model would bring back
observations missing just ko/z values. When this happens, Stata returns an error messages
saying “observations differ.” In such cases, the likelihood-ratio test would be invalid. Analysts
must either screen observations with if qualifiers attached to modeling commands, such as

mlogit life kotz ties, nolog base(l) rrr

estimates store full

quietly mlogit life kotz if ties <

estimates store no_ties

lrtest no _ties full

quietly mlogit life ties if kotz <

estimates store ne_kotz

lrtest no_kotz full

or simply drop all observations having missing values before proceeding:
drop if life >= . | kotz >= |, | ties >=

Dataset NWarctic.dta has already been screened in this fashion to drop observations with
missing values.

Both kotz and ties significantly predict /ife. What else can we say from this output? To

interpret specific effects, recal] that life = *‘same” is the base category. The relative risk ratios
tell us that:

Odds that a student expects migration to elsewhere in Alaska rather than staying in the

same area are 2.2 1 times greater (increase about 121 %) among Kotzebue students (kotz=1),
adjusting for social ties to community,

Odds that a student expects to leave Alaska rather than stay in the same area are 14.85
times greater (increase about 1385%) among Kotzebue students (kotz=1), adjusting for
social ties to community.

Odds that a student expects migration to elsewhere in Alaska rather than staying are
multiplied by .48 (decrease about 52%) with each 1-unit (since ties is standardized, its units

equal standard deviations) increase in social ties, controlling for Kotzebue/village
residence.
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284 Statistics with Stata

Odds that a student expects to leave Alaska rather than staying are multiplied by .23
(decrease about 77%) with each l-unit increase in social ties, controlling for
Kotzebue/village residence.
predict can calculate predicted probabilities from mlogit . The outcome (#)
option specifies for which y category we want probabilities. For example, to get predicted
probabilities that /ife = “leave AK” (category 3),
quietly mlogit life kotz ties

predict PleaveAK, outcome (3)
(option p assumed; predicted probability)

label variable PleaveAK "P(life = 3 | kotz, ties)"”
Tabulating predicted probabilities for each value of the dependent variable shows how the
model fits:

table life, contents (mean PleaveAK) row

Expect to
live most

|

|
of life? | mean{PleaveAK)
__________ e
same | .0811267
other AK | .1770225
leave AK | . 3892264

|
Total | .1814672

A minority of these students (47/259 = 18%) expect to lcave Alaska. The model averages only
a .39 probability of leaving Alaska even for those who actually chose this response -— reflecting
the fact that although our predictors have significant effects, most variation in migration plans
remains unexplained.

Conditional effect plots help to visualize what a model implics regarding continuous
predictors. We can draw them using estimated coefficients (not risk ratios) to calculate
probabilities:

mlogit 1life kotz ties, nolog base(l)

Multinomial logistic regression Number of obs = 259

LR chi2 (4) = 91.96

Prob > chi2 = 0.0000

Log likelihood = -221.77969 Pseudo RZ = 0.1717

life | Coef std. Err b4 Pr|z| [95% Conf. Interval]

_____________ o o el
other AK |

kotz | .794884 .3488868 2.28 0.023 .1110784 1.47869

ties | -.7334513 .1664104 -4.41 0.000 -1.05961 -.407293

cons | .206402 .1728053 1.19 0.232 -.13229%02 .5450942

_____________ o o e
leave AK |

kotz | 2.697733 .4813959 5.60 0.000 1.754215 3.641252

ties | -1.468537 .2565991 -5.72 0.000 ~-1.971462 -.9656124

cons | -2.115025 . 3758163 -5.63 0.000 -2.851611 -1.378439

(Qutcome life==same 1is the comparison group)

Logistic Regression 285

The following commands_ calculate predicted logits, and then the probabilities needed for
conditional effect plots. L2viflag represents the predicted logit of /ife = 2 (other Alaska) for

village students. 1.3 i i ; e
and sgo forthe;n S. L3kotz is the predicted logit of /ife = 3 (leave Alaska) for Kotzebue students,

generate L2villag = .206402 +.794884*0 -.7334513*ties
generate L2kotz = .206402 +.794884*1 - 7334513*ties
generate L3villag = -2.115025 +2.697733%0 -1.468537*ties
generate L3kotz = -2.115025 +2.697733+1 -1.468537*ties

Like other Stata modeling commands, mlogit saves coefficient estimates as macros
For e_xample, [2]_b[kotz] refers to the coefficient on kotz in the model’s second (life = 2).
equation. Therefore, we could have generated the same predicted logits as follows in will
be identical to L2villag defined carlier, L3k the same as L 3kotz, and so forth: ‘

generate L2v = [2]_b[_cons] +[2] bl[kotz]*0 +[2] _b[ties]*ties
generate L2k = [2]_b[_cons] +[2] _bl[kotz]*1 +{2] _blties]*ties
generate L3v = [3]_b[_cons] +[3]_b[kotz]*0 + [3] _blties]*ties
generate L3k = [3]_b[_cons] +[3]_blkotz]*1 + [3]_blties]*ties

From either set of logits, we next calculate the predicted probabilities:
generate Plvillag = 1/(1 +exp(L2villag) +exp(L3villag))
label variable Plvillag "same area”
generate P2villag = exp(LZvillag)/(1+exp(L2vi11ag)+exp(L3villag))
label variable P2villag "other Alaska"
generate P3villag = exp(L3villag)/(1+exp(L2vi11ag)+exp(L3villag))
label variable P3villag "leave Alaska"
generate Plkotz = 1/(1 t+exp (L2kotz) +exp (L3kotz))
label variable Plkotz "same area"
generate P2kotz = exp (L2kotz) /(1 +exp (L2kotz) +exp (L3kotz))
label variable P2kotz "other Alaska"

generate P3kotz = exp (L3kotz) /(1 +exp (L2kotz) +exp (L3kotz))
label variable P3kotz "leave Alaska”
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Figures 10.7 and 10.8 show conditional effect plots for village and Kotzebue students
separately.

graph twoway mspline Plvillag ties, bands (50)

|1 mspline P2villag ties, bands (50)

i i i bands (50)
11 mspline P3villag ties, _ -
11 , xlabel(-3(1)3) ylabel (0(.2)1) yline(0 1) xline(O) )
legend (order (2 3 1) position(12) ring(0) label(l "samelari))
label (2 "elsewhere Alaska") label(3 "leave Alaska") cols/(
ytitle("Probability")

Figure 10.7
|
=TT T T L elsewhere Alaska
. leave Alaska
same area
«
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=
(0]
0
j
o«
™~
[«

-3 -2 -1 0 ) 1 2 3
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graph twoway mspline Plkotz ties, bands (50)
Il mspline P2kotz ties, bands (50)
|| mspline P3kotz ties, bands (50)
N + xlabel (-3(1)3) ylabel(O(.Z)l) yline (0 1) Xline (0)
legend(order (3 2 1) Position(12) ring (0) label(l "same area")
label (2 "elsewhere Alaska") label (3 "leave Alaska'") cols (1))
ytitle("Probability")

Figure 10.8

--.. leave Alaska I —

_____ elsewhere Alaska
same area

Probability
6

4

I
-3 -2 -1 0 1 2 3
Social ties to community scale

The plots indicate that among village students, social ties increase the probability of staying
rather than movingelsewhere in Alaska. Relatively few village students expectto leave Alaska,
In contrast, among Kotzebue students, ties particularly affects the probability of leaving Alaska,

rather than simply moving elsewhere in the state. Only if they feel very strong social ties do
Kotzebue students tend to favor staying put.
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Survival and Event-Count Models

This chapter presents methods for analyzing event data. Survival analysis encompasses several
related techniques that focus on times until the event of interest occurs. Although the event
could be good or bad, by convention we refer to that event as a “failure.” The time until failure
is “survival time.” Survival analysis is important in biomedical research, but it can be applied
equally well to other fields from engineering to social science — for example, in modeling the
time until an unemployed person gets a job, or a single person gets married. Stata offers a full
range of survival analysis procedures, only a few of which are illustrated in this chapter.

We also look briefly at Poisson regression and its relatives. These methods focus not on
survival times but, rather, on the rates or counts of events over a specified interval of time.
Event-count methods include Poisson regression and negative binomial regression. Such
models can be fit either through specialized commands, or through the broader approach of
generalized linear modeling (GLM).

Consult the Survival Analsysis and Epidemiological Tables Reference Manual for more
information about Stata’s capabilities. Type help st to see an online overview. Selvin
(1995) provides well-illustrated introductions to survival analysis and Poisson regression. I
have borrowed (with permission) several ofhis examples. Other good introductions to survival
analysis include the Stata-oriented volume by Cleves, Gould and Gutierrez (2004), a chapter
in Rosner (1995), and comprehensive treatments by Hosmer and Lemeshow (1999) and Lee
(1992). McCullagh and Nelder (1989) describe generalized linear models. Long (1997) has
a chapter on regression models for count data (including Poisson and negative binomial), and
also has some material on generalized linear models. An extensive and current treatment of
generalized linear models is found in Hardin and Hilbe (2001).

Stata menu groups most relevant to this chapter include:
Statistics — Survival analysis
Graphics — Survival analysis graphs
Statistics — Count outcomes
Statistics — Generalized linear models (GLM)
Regarding epidemiological tables, not covered in this chapter, further information can be
found by typing help epitab or exploring the menus for

Statistics — Observational/Epi. analysis.

Survival and Event-Count Models 289

Example Commands

Most.of Stata’s survival-analysis ( st* ) commands require that the data have previously been

identified as survival-time by issuing an stset command (sce following). stset need

only be run once, and the data subsequently saved. ‘ )

stset timevar, failure(failvar)

Identlﬁgs single-record survival-time data. Variable timevar indicates the time elapsed
before either a Particular event (called a “failure”) occurred, or the period of observaliion
enc?ed (“censoring™). Variable failvar indicates whether a failure (failvar = 1) or censorin
(failvar =0) occurred at timevar. The dataset contains only one record per individual Thg
dataset must be stset before any further st* commands will work. I.f we
subsequently save the dataset, however, the stset definitions are saved as well

stset creates new variables named_st, d, t,and 10 that encode information necessary
for subsequent st* commands.

stset.timevar, failure(failvar) id(patient) enter (time start)
‘Ideptlﬁes multiple-record survival-time data. In this example, the variable timevar
1nd1catles ¢lapsed time before failure or censoring; failvar indicate; whether failure (1) or
censoring (0) occurred at this time. patient is an identification number. The same
¥nd1v'1dual might contribute more than one record to the data, but always ﬁas the same
identification number. startrecords the time when each individual came under observation
stdes

Describes survival-time data, listing definitions set by stset and other characteristics
of the data.

stsum

Obtains summary statistics: the total tj isk, inci
_ : Ime at risk, incidence rate, number of subject
percentiles of survival time. yeets. and
ctset time nfail ncensor nenter, byl(ethnic sex)
I}(lientlﬁes count—tllme data. In this example, the variable rime is a measure of time; nfzil is
t be numl?er of faillures occurring at time. We also specified ncensor (number of censored
0 se.rvatlons at time) and nenter (number entering at time), although these can be optional
ethnic and sex are other categorical variables defining observations in these data
cttost
Converts count-time data, previously identifiedbya ctset command, into survival-time
form that can be analyzed by st* commands.
sts graph
Grapl_15 the Kaplan-Meier survivor function. To visually compare two or more survivor
functions, such as one for each value of the categorical variable sex, use the by () option
sts graph, by (sex) ,
Toadjust, through Cox regression, for the effects ofa continuous independent variable such
as age, use the adjustfor () option,
sts graph, by (sex) adjustfor (age)
Note: the by () and adjustfor () options work similarly with the other sts
commands sts list, sts generate,and sts test.
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290 Statistics with Stata

sts list
Lists the estimated Kaplan—Meier survivor (failure) function.

sts test sex
Tests the equality of the Kaplan-Meier survivor function across categories of sex.

sts generate survfunc = S
Creatcs a new variable arbitrarily named survfunc, containing the estimated Kaplan—Meier
survivor function.
stcox xI1 x2 x3
Fits a Cox proportional hazard model, regressing time to failure on continuous or dummy
variable predictors x/-x3.
stcox x1 x2 x3, strata(x4) basechazard(hazard) robust
Fits a Cox proportional hazard model, stratified by x4. Stores the group-specific baseline
cumulative hazard function as a new variable named hazard. {Baseline survivor function
estimates could be obtained through a basesur (survive) option.) Obtains robust
standard error estimates. See Chapter 9 or, for a more complete explanation of robust
standard errors, consult the User’s Guide.
stphplot, by (sex)
Plots —In(—In(survival)) versus In(analysis time) for each level of the categorical variable
sex, from the previous stcox model. Roughly parallel curves support the Cox model
assumption that the hazard ratio does not change with time. Other checks on the Cox
assumptions are performed by the commands stcoxkm (compares Cox predicted curves
with Kaplan—Meier observed survival curves) and stphtest (performs test based on
Schoenfeld residuals). See help stcox for syntax and options.
streg xI x2, dist(weibull)
Fits Weibull-distribution model regression of time-to-failure on continuous or dummy
variable predictors x/ and x2.
streg x1 x2 x3 x4, dist(exponential) robust
Fits exponential-distribution model regression of time-to-failure on continuous or dummy
predictors x/-x4. Obtains heteroskedasticity-robust standard error estimates. In addition
to Weibull and exponential, other dist () specifications for streg includelognormal,
log-logistic, Gompertz, or generalized gamma distributions. Type help streg for
more information.
stcurve, survival
After streg, plots the survival function from this model at mean values of all the x
variables.
stcurve, cumhaz at(x3=50, x4=0)
After stregq, plots the cumulative hazard function from this model at mean values of x/
and x2, x3 set at 50, and x4 set at 0,
poisson count xI x2 x3, irr exposure(x4)
Performs Poisson regression of event-count variable count (assumed to follow a Poisson
distribution) on continuous or dummy independent variables x/—x3. Independent-variable
effects will be reported as incidence rate ratios ( irr ). The exposure() option
identifies a variable indicating the amount of exposure, if this is not the same for all
observations.

Survival and Event-Count Models 291

Note: A Poi.sson model assumes that the event probability remains constant, regardless of
how many times an event occurs for each observation. If the probability does not remain
constant, we should consider using nbreg (negative binomial regression) or gnbre

(generalized negative binomial regression) instead. °

glm count x1 x2 x3, link(log) family (poisson) lnoffset(x4) eform
Performs the same regression specified in the Poisson example above, but as a
generalized linear model (GLM). glm can fit Poisson, negative binomial, logit, and many

other'typ.es of models, depending on what link () (link function) and family ()
(distribution family) options we employ.

Survival-Time Data

Survwa]—time.data contain, at a minimum, one variable measuring how much time elapsed
pefore a certfam event occurred to each observation. The literature often terms this event of
interest a “failure,” regardless of its substantive meaning. When failure has not occurred to an
observation by the time data collection ends, that observation is said to be “censored.” The
stset cgmmand sets up a dataset for survival-time analysis by identifying which v;lriable
measures time and (if necessary) which variable is a dummy indicating whether the observation
failed or was censored. The dataset can also contain any number of other measurement or

categorical variables, and individuals (for exam i i
, ple, medical patients) can be represent
more than one observation. ) b by

To illustrate the use of stset, we will begin with an example from Selvin (1995:453)

concerning 51 individuals diagnosed with HIV. The data initial| ide i
(aids.raw) that looks like this: y reside in a raw-data file

1 1 1 34
2 17 1 42
3 37 0 47
(rows 4-50 omitted)
51 81 0 29
The first column values are case numbers (1,2,3,...,51). The second column tells how many

months elapsed after the diagnosis, before that person either developed symptoms of AIDS or
the study endgd (L, 17,37,...). The third column holds a 1 if the individual developed AIDS
symptoms (failure), or a 0 if no symptoms had appeared by the end of the study (censorin )
The last column reports the individual’s age at the time of diagnosis. ¢

We can read the raw data into memory using infile, then label the variables and data
and save in Stata format as file aids /. dra:

infile case time aids age using aids.raw, clear
(51 observations read)

label variable case "Case ID number"
label variable time "Months since HIV diagnosis"
label variable aids "Developed AIDS symptoms"

label variable age "Age in years"
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label data "AIDS (Selvin 1995:453)"

compress
case was float now Ddyte
time was float now byte
aids was float now byte
age was f:oat now byte

save aidsl
file c:hdatalaidsl.dta saved

The next step is to identify which variable measures time and which indicates fall;.reé
censoring. Although not necessary with these single-record data, we can also note whic
variable holds individual casc identification numbers. In an stset command, the first-
named variable measures time. Subsequently, we identify with failurg () the dummy
representing whether an observation failed (1) or was censored (0). After using stset,we
save the data again to preserve this information.

stset time, failure(aids) id(case)

id: case
failure event: aids != 0 & aids <
sbs. time interval: (time{ n-11, time)
exit on or before: failure

1 total obs.
0 exclusions

51 obks. remaining, representing
51 subjects .
25 failures in single failure-per-subject data
3164 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 97

save, replace
file c:\data\aidsl.dta saved

stdes vyields a brief description of how our survival-time data are structured. In;h(lis
. . o eded.
simple example we have only one record per subject, so some of this information is unne
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stdes
failure d: aids
analysis time _t: time
id: case
—————————————— per subject -—--—----------
Category total mean min median max
no. of subjects
no. of records 51 1 1 1 1
(first) entry time 0 0 0 0
(final) exit time 62.03922 1 67 97
subjects with gap 0
time on gap if gap 0 . . . .
time at risk 3164 62.03922 1 67 97
failures 25 .4901961 0] Q 1

The stsum command obtains summary statistics. We have 25 failures out of 3,164
person-months, giving an incidence rate of 25/3164 = .0079014. The percentiles of survival
time derive from a Kaplan-Meier survivor function (next section). This function estimates
about a 25% chance of developing AIDS within 41 months after diagnosis, and 50% within 81
months. Over the observed range of the data (up to 97 months) the probability of AIDS does
not reach 75%, so there is no 75th percentile given.

stsum
failure d: aids
analysis time _t: time
id: case
| incidence no. of  |==-—-- Survival time -----
| time at risk rate subjects 25% 50% 75%
_________ o o
total | 3164 .0078014 51 41 81

If the data happen to include a grouping or categorical variable such as sex (0 = male, 1 =
female), we could obtain summary statistics on survival time separately for each group by a
command of the following form:

stsum, by (sex)

Later sections describe more formal methods for comparing survival times from two or more
groups.

Count-Time Data

Survival-time ( st ) datasets like aids 1. dta contain information on individual people or things,
with variables indicating the time at which failure or censoring occurred for each individual.
A different type of dataset called count-time ( ct ) contains aggregate data, with variables
counting the number of individuals that failed or were censored at time 7. For example,
diskdriv.dta contains hypothetical test information on 25 disk drives. All but 5 drives failed
before testing ended at 1,200 hours.
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Contains data from C:\data\diskdriv.dta

Count-time data on disk drives

Hours of continuous operation
Number of failures observed

e g 21 Jul 2005 09:34
Ziiz: 48 (99.9% of memory free)
T ferage displ lue
storage display va - e apel
variable name type format label vafi??:?,_?,,_,
hours int %8.0g
e Eiiz :i.gg Number still working
censored R
Sorted by:
list
bom—mmmmmmm—————mo oo oTT T +
| hours failures censored |
__________________ \
\ ___________
1. | 200 2 g |
2.0 400 3 : |
3. 600 4 ; |
4. | 800 8 o |
5. | 1000 3 _\
‘_ ___________________________
51
0 0
R

To set up a count-time dataset, we

variable, and

command automatically converts our count-tim

the number-censored variab

ctset hours failures censored

dataset name: c:\data\diskdriv.dta

no.
no.

no. enter: -

cttost

time: hours
fail: failures
lost: censored

(data are now st)

failure event: failures '= 0 & failures <
obs. time interval: (0, hours]
exit on or before: failure

weight: [fweight=w]

(meaning all enter

specify the time variable, the number-of-failures
le, in that order. After ctset , the cttost
e data to survival-time format.

at time 0}

19400

total obs.
exclusions
physical obs. remaining, egual to

i ting
weighted obs., represen . ‘
failures in single record/single failure dati
total analysis time at risk, at risk from t =

carliest observed entry T =

last observed exit t

1200
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list
B Lt T EPRPP +
| hours failures W st _d _t t0
== e e e |
1. | 1200 0 5 1 0 1200 0
2.1 200 1 2 1 1 200 0
3.1 400 1 3 1 1 400 0 |
4. ] 600 1 4 1 1 600 0
5. | 800 1 8 1 1 800 0 |
B e e e i l
6. | 1000 1 3 1 1 1000 0 |
R e R T T +
stdes
failure d: failures
analysis time _t: hours
weight: [fweight=w]
= per subject ------—------- |
unweighted unweighted unweighted
Category total mean min median max
no. of subjects 6
no. of records 6 1 1 1 1
(first) entry time 0 0 0 0
(final) exit time 700 200 700 1200
subjects with gap a
time on gap 1f gap 0
time at risk 4200 700 200 700 1200
failures 5 .8333333 0 1 1

The cttost commanddefines a set of frequency weights, w, in the resulting st-format
dataset. st* commands automatically recognize and use these weights in any survival-time

analysis, so the data now are viewed as containing 25 observations (25 disk drives) instead of
the previous 6 (six time periods).

stsum
failure time: hours
failure/censor: failures
weight: [fweight=w]
| incidence no. of | --—- Survival time ----|
| time at risk rate subjects 25% 50% 75%
_______ o
total | 19400 .0010309 25 600 800 1000

Kaplan—-Meier Survivor Functions

Let n, represent the number of observations that have not failed, and are not censored, at the
beginning of time periodz. 4, represents the number of failures that occur to these observations
during time period 7. The Kaplan—Meier estimator of surviving beyond time # is the product of
survival probabilities in 7 and the preceding periods:
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SW= 1 4(n-d)in} [11.1]

J-w

For example, inthe AIDS data seen earlier, one of the 51 individgals developed symptorﬁs. onl);
one month a,fter diagnosis. No observations were censored this early, so the probability o

“surviving” (meaning, not developing AIDS) beyond time =1 is
S(l)= (51-1)/51=.9804

A second patient developed symptoms at fime = 2, and a third at time = 9:
S(2)= 9804 x (50— 1)/50=.9608
S(9)= 9608 x (49 -1)/49= 9412

i ' —Meier survivor curve, like the one seen in Figure
Graphing S¢#) against ¢ produces a Kaplan :
11 .lp, Stfta draws such graphs automatically with the sts graph command. Forexample,

use aids, clear
(AIDS (Selvin 1995:453))

sts graph

failure _d: aids
analysis time _t: time

id: «case
Figure 11.1
Kaplan-Meier survival estimate
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For a second example of survivor functions, we turn to data insmpkingl .a"ta, ijiiaptte; §rg$
Rosner (1995). The observations are 234 former smokers, attemp.m.lg to quit. Mos ; no
succeed. Variable days records how many days elap.sed'between quitting ar}d dsfa%mg; up ungd.
The study lasted one year, and variable smoking indicates whether an individual res
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smoking before the end of this study (smoking =1, “failure”) or not (smoking =0, “censored”).
With new data, we should begin by using stset toset the data up for survival-time analysis:

Contains data fron C:h\data\smokingl.dta

obs: 234 Smoking (Rosner 1895:607)
vars: 8 21 Jul 2005 09:35
size: 3,744 (99,9% of nemory free)
storage display value
variable name type format label variable labe]l
id int $9.0g Case ID number
days int 59.0g Days abstinent
smoking byte $9.0g Resumed smoking
age byte %9.0g Age in vyears
sex byte £9.0g sex Sex (female)
cigs byte %9.0g Cigarettes per day
co int 39.0g Carbon monoxide x 10
minutes int :9.0g Minutes elapsed since last Cig
Sorted by:

stset days, failure(smoking)

failure event: smoking != 0 g smoking <
obs. time interval: (0, days]
exit on or before: failure

234 total obs.
0 exclusions

234 obs, remaining, representing
201 failures in single record/single failure data

18946 total analysis time at risk, at risk from t = 0
earliest ohserved entry t = 0
last observed exit t = 366

The study involved 110 men and 124 women. Incidence rates for both sexes appear to be
similar:

stsum, by (sex)

failure d: smoking
analysis time _t: days

| incidence no. of | ---—_- Survival time ----- !
sex I time at risk rate subjects 25% 50% 5%
_________ +_______ﬁ_,__,_,__,______________,__‘_,_;__,_;_________,____,_;ﬁ_,____
Male | 8813 .0105526 110 4 15 68
Female | 10133 0106582 124 4 15 91
_________ +,____~_,_L__,____,____________ﬁ_,_‘__,_________,____,_,__v_,__v_k____
total | 1894¢ .0106091 234 4 15 73

Figure 11.2 confirms this similarity, showing little difference between the survivor
functions of men and women. That is, both sexes returned to smoking at about the same rate.
The survival probabilities of nonsmokers decline very steeply during the first 30 days after
quitting. For either sex, there is less than a I5% chance of surviving beyond a full year.
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sts graph, by(sex)

failure _d: smoking
analysis time _T: days
Figure 11.2
Kaplan-Meier survival estimates, by sex

0.75 1.00

0.50

0.25

0.00

sex=Male ——-——- sex = Female

i i i - test.
We can also formally test for the equality of survivor functions using a l?ferzr;}l(Okeilsl .
Unsur;rics?ngly this test finds no significant difference (P = .6772) between

recidivism of men and women.

sts test sex

failure _d: smoking
analysis time _t: days

i i tions
_og-rank test for equality of survivoxr functi

b Events EBvents
sex | observed expected
S et

95.88
Male | 93
Femaie | 108 105;3%
_______ R
Total ! 201 201.00
chiz (1) = 0;17
prrchiz = 0.6772
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Cox Proportional Hazard Models

Regression methods allow us to take survival analysis further and examine the effects of
multiple continuous or categorical predictors. One widely-used method known as Cox

regression employs a proportional hazard model. The hazard rate for failure at time ¢ is defined
as

probability of failing between times ¢ and ¢ + At
) = — - [11.2]
(At) (probability of failing after time )

We model this hazard rate as a function of the baseline hazard (4, ) at time ¢, and the effects of
one or more x variables,

h(t) = hy(yexpB,x, +Bx,+...+PB,x,) [11.3a]
or, equivalently,
Infa@)) = dnlh (O] + Bix, +Byx, +. ..+ B x, [11.3b)

“Baseline hazard” means the hazard for an observation with all x variables equal to 0. Cox
regression estimates this hazard nonparametrically and obtains maximum-likelihood estimates
of the B parameters in [11.3]. Stata’s stcox procedure ordinarily reports hazard ratios,
which are estimates of exp(f3). These indicate proportional changes relative to the baseline
hazard rate.

Does age affect the onset of AIDS symptoms? Dataset aids.dta contains information that
helps answer this question. Note that with stcox , unlike most other Stata model-fitting
commands, we list only the independent variable(s). The survival-analysis dependent variables,
timevariables, and censoring variables are understood automatically with stset data,

use aids
(AIDS (Selwvin 1995:453))

stcox age, nolog

failure _d: aids
analysis time _t: time
id: case
Cox regression -- Breslow method for ties
No. of subjects = 51 Number of obs = 51
No. of failures = 25
Time at risk = 3164
LR chiZ (1) = 5.00
Log likelihood = -86.576295 Prob > chiz = 0.0254
_t | Haz. Ratic Std. EBErr. 4 P>tz {95% Conf. Interval]
_____________ P
age | 1.084557 .0378623 2.33 0.020 1.01283 1.161363

We might interpret the estimated hazard ratio, 1.084557, with reference to two HIV-
positive individuals whose ages are ¢ and ¢ + 1. The older person is 8.5% more likely to
develop AIDS symptoms over a short period of time (that is, the ratio of their respective hazards
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is 1.084557). This ratio differs significantly (P = 020) from 1. If we wanted to state our
findings for a five-year difference in age, we could raise the hazard ratio to the fifth power:

display exp(_b[age])“s
1.5005865
Thus, the hazard of AIDS
than the first. Alternative
interval) by repeating the regression a
units. The nolog noshow options below suppress display o

dataset description.

onset is about 50% higher when the second person is five years older
ly, we could learn the same thing (and obtain the new confidence
fter creating a new version of age measured in five-year
fthe iteration logand the st-

generate ages = age/5
label variable age5 "age in 5-year units"”

stcox age5, nolog noshow

cox regression -~ Breslow method for ties

No. of subjects = 51 Number of obs = 51
No. of failures = 25
Time at risk = 3164

LR chiz (1) = 5.00

Log likelihood = ~86.576295 Prob > chi2 = 0.0254

o Haz. Ratio std. Err z p>izl [95% Conf. Intervall

_____________ +,__,__-Aﬁ__,_,,_,____r__-_,__-_f__-__-__-_,__-____,____,__,_#__,

age5 | 1.500587 ,2619305 2.33 0.020 1,065819 2.,112711

n, Cox models can have more than one independent variable.
Dataset heart.dta contains survival-time data from Selvin (1995)on 35 patients with very high
cholesterol levels. Variable rime gives the number of days each patientwas under observation.
coronary indicates whether a coronary event occurred during this time (coronary = 1) or not
(coronary=0). The data also include cholesterol levels and other factors thought to affect heart
disease. File heart.dta was previously setup for survival-time analysis byan stset time,
failure (coronary) command, so we can go directlyto st analysis.

Like ordinary regressio

describe patient - ab
storage display value

variable name type format label variable label
patient byte %9.09 patient ID number
time int %9.0g Time in days
coronary byte %£9.0g Coronary event (1) or none (0)
welght int %9.0g Weight 1n pounds
sbp int 28.0g systolic blood pressure
chol int 39.0g cholesterol level
cigs byte 28.09 Cigarettes smoked per day
ab byte 29.0g Type A (1) or B (0) personality
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stdes
fallure _d: coronary
analysis time _t: time
eaory Jmmmmm e per subject ----
_________________ total mean min jecr:edi B
______________________ 1 an
no. of subjects 35 T =
no. of records 35 B
1
1 1
(first) entry time 1
(final) exit ti ; ;
ime 2580.629 773 ?872 ;
Sgbjects with gap 6] | o
time on gap if gap J
time at risk 22
80322 2580.629 773 2875
N ] 3141
failures
8 .2285714 @] 0
1

Cox regression finds th
at cholesterol level and ci i
N, sterol and cigarettes both significantly i
nazan presscuorl;:ona(rjy :vent. Count_ermtultlvely, weight appears to decrc%isethe h.’sl);alrndC rgase th'e
and A/B personality do not have significant net effects - Systele

stcox weight sbp chol cigs ab, noshow nolog

Cox regression -- no ties
go. of Su?jects = 35
?‘ o subjects - . Number of obs = 35
Time at risk = 20322
L i i '
og likelihood = -17.263231 ;R ;th(S) - ek
rob > chiZ2 = (
_____________ 0.0158
¢ | Haz. Ratie Std. Err. 2z Pwlzl  (95% conf. Intecval
_____________ +______»___o Std. Err z P>»iz| 954 ]
o [95% Conf. Intervall]
gbp : i93i232$ .0305184 -2.06 0.039 E_é;;;;I; 777777777777
e 12032142 .8§BBOGl 0.39 0.700 .9488087 iggg7034
el PPt ,0139984 2.33 0.020 1.005067 l. Sas7
> RS .1071031 2.08 0.038 1.010707 iaen
. 2.985616 1.14 0.255 4476492 ;6432676
. .77655

Afterestimating the
model, stcox canal i
st 4 ‘so generate new variables holding the esti
oot Variablesuiatmle hazard and survivor functions. Since “baseline” refers to agsituat' mat'ed
all ¥ vanables q:te_ie tct) ze}:lro, hqwever, we first need to recenter some variables so that I(;)Sa\;mh
Comparison. Gﬁid;dnb;vth(;\:fneiilg.hs 0 poui‘lds, or has 0 blood pressure, does not provide a useufisl"
mp . imum values actually i i i

compars valt y in our data, we might shift we;

s 120 pounds, sbp so that 0 indicates 100, and chol so that 0 sldicates‘gilg'h fooha

summarize patient - ab

Variable | Ob
s

_____________ +-7“__k‘___7___‘___¥?an Std. Dev Min Max

patient | 55 18 10.24608 1
. 18 10.2469 35
time 2 : of

coromr J 35 2580.629 616.0796 77§ "

e 35 .2285714 . 426043 o

35 170.0857 23.55516 0 :

| . 120 225

sbp
35 129.7143 14.28403 104 154
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chol 35 369.2857 51.32284 343 645
cigs | 35 17.14286 13.07702 0 49
ab | 35 .5142857 .5070926 0 1

replace weight = weight - 120
(35 real changes made)

replace sbp = sbp - 100
(35 real changes made)

replace chol = chol - 340
(35 real changes made)

summarize patient - ab
Variable | Obs Mean Std. Dev. Min Max
_____________ o
patient | 35 18 10.24695 1 35
time | 35 2580.629 616.0786 773 3141
coronary | 35 .2285714 426043 0 1
welght | 35 50.08571 23.55516 0 105
sbp | 35 29.71429 14.28403 4q 54
_____________ o
chol | 35 29.28571 51.322814 3 305
cigs | 35 17.14286 13.07702 0 40
ab | 35 .5142857 5070926 0 1

Zero values for all the x variables now make more substantive sense. To create new
variables holding the baseline survivor and cumulative hazard function estimates, we repeat the
regression with basesurv () and basechaz () options:

stcox weight sbp chol cigs ab, noshow nolog basesurv(survivor)
basechaz (hazard)

Cox regression -- no ties

No. of subjects = 35 Number of obs = 35
No. of failures = 8
Time at risk = 50322

LR chi2 (%) = 13.97

Log likelihood = -17.263231 Prob » chiz2 = 0.0158

_t | Haz Ratio Std. Err zZ P>lz| [85% Conf Interval

_____________ o

weight | .9349336 .0305184 -2.06 0.039 .8769819 .9967034

sbp | 1.012947 .0338061 0.39 0.700 .9488087 1.081421

chol | 1.032142 .0139984 2.33 0.020 1.005067 1.059947

cigs | 1.203335 .1071031 2.08 0.038 1.010707 1.432676

ab | 3.04969 2.898561¢6 1.14 0.255 .4476492 20.77655

Note that recentering three x variables had no effect on the hazard ratios, standard errors,
and so forth. The command created two new variables, arbitrarily named survivor and hazard.
To graph the baseline survivor function, we plot survivor against time and connect data points
with in a stairstep fashion, as seen in Figure 11.3.
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raph i i
graph twoway line survivor time, connect(stairstep) sort

- Figure 11.3
D
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The basel: . , . .
. Weiegh?sglége il:lr;lv{;vor“??ctlon — which depicts survival probabilities for patients having
p s), b]QOd prgssure (100), “0” cholesterol (340), 0 cigarettes per day.

00ks precipitous at the
values of the predictor variables, the survival prob

Th . . )

] tcoxe sa;l;lz b;ﬁ:i;ﬂ; 'surv1;/lor-fu1.10t10n graph could have been obtained another way, without
CoX . 1ve, shown in Figure 11 4, enmploys an sts : i

adjustfor () option listing the predictor variables: SEAPR command with
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adjustfor(weight sbp chol cigs ab)

sts graph,
failure _d: coronary
analysis time _t: time
Survivor function Figure 11.4
adjusted for weight sbp chol cigs ab
g L
[19]
™~
(=]
o
o
o
Te}
N
o
o
e
° 0 1000 2000 3000
analysis time

Figure 11.4, unlike Figure 11.3, follows the usual survivo.r—func.tion convemi(()in1 (;f :(ciah?é;t
the veﬁical ax-isﬂfrom 0to 1. Apart from this difference inscaling, Figures 11.3 an A dep

the same curve. | . | e
1 i eline cumulative hazard againsttime, using ;
Figure 11.5 graphsthe estimated bas s the T et

mmand. This gra
hazard) generated by our stcox comb - This ¢ ame
;azard increasing in 8 steps (because 8 patients “failed” or had coronary events), from

to .033.

R
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graph twoway connected hazard time, connect(stairstep) sort
msymbol (Ch)

Figure 11.5

.03

.02

cumulative baseline hazard
01

500 1000 1500 2000 2500 3000
Time in days

Exponential and Weibull Regression

Cox regression estimates the baseline survivor function empirically without reference to any
theoretical distribution. Several alternative “parametric” approaches begin instead from
assumptions that survival times do follow a known theoretical distribution. Possible
distribution families include the exponential, Weibull, lognormal, log-logistic, Gompertz, or
generalized gammma. Models based on any of these can be fit through the streg command.
Such models have the same general form as Cox regression (equations {11.2] and {11.3]), but
define the baseline hazard 4 (¢) differently. Two examples appear in this section.

If failures occur randomly, with a constant hazard, then survival times follow an
exponential distribution and could be analyzed by exponential regression. Constant hazard
means that the individuals studied do not “age,” in the sense that they are no more or less likely
to fail late in the period of observation than they were at its start. Over the long term, this
assumption seems unjustified formachines orlivingorganisms, but it might approximately hold
if the period of observation covers a relatively small fraction of their life spans. Anexponential
model implies that logarithms of the survivor function, In(S5(f)), are linearly related to 1.

A second common parametric approach, Weibull regression, is based on the more general
Weibull distribution. This does not require failure rates to remain constant, but allows them

to increase or decrease smoothly over time. The Weibull model implies that In(-1n(S(¢))) is a
linear function of In(f).

Graphs provide a useful diagnostic for the appropriateness of exponential or Weibull
models. For example, returning to aids.dta, we construct a graph (Figure 11.6) of In(S(#))
versus time, after first generating Kaplan—Meier estimates of the survivor function S(¢). The
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igi i ' %2. d
v-axis labels in Figure 11.6 are given a fixed two-digit, one-decimal display format (% 1f)an

oriented horizontally, to improve their readability.

use aids, clear
(RIDS (Selvin 1995:453))

sts gen § = S
generate logs = 1n(S)

h twoway scatter logs time, _
grapyla:el(g 8(.1)0, format (%$2.1£f) angle(horlzontal))

Figure 11.6

logS
&
o

40 60 80 100
Months since HIV diagnosis

i i 3 ntial
The pattern in Figure 1 1.6 appears somewhat linear, encouraging us to try an ¢xpone

regression:

streg age, dist (exponential) nolog noshow

Exponertial regression —- log relative-hazard form
51 Number of obs 51
No. of subjects =
No. of failures = léi
Time at risk = 3 e eniz) . O g%in
prob » chiZ2 = .03

Log likelihood - -59.996976 r

YU PR P Al
T | B Ratio std. Err z P>zl [95% Conf. Interv 1

t az

The hazard ratio (1.074) and standard error (.035) estimaFed by thi; exponential ::igorsss]izr;
do not greatly differ from their counterparts (1.085 and 038)1n our earlier Cox rengirstia1 hézard
similarity reflects the degree of correspondence between empirical and expo

S ———————
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functions. According to this exponential model, the hazard of an HIV-positive individual
developing AIDS increases about 7.4% with each year of age.

After streg,the stcurve commanddraws a graph of the models’ cumulative hazard,
survival, or hazard functions. By default, stcurve draws these curves holding all x
variables in the model at their means. We can specify other x values by using the at()
option, The individuals in aids.dra ranged from 26 to 50 years old. We could graph the
survival function at age = 26 by issuing a command such as

stcurve, surviv at(age=26)

A more informative graph uses the atl () and at2 () options to show the survival curve at
two different sets of x values, such as the low and high extremes of age:

stcurve, survival atl(age=26) at2(age=50) connect(direct direct)

Figure 11.7

Exponential regression

0 20 40 60 80 100
analysis time

age=26 ___ _. age=50

Figure 11.7 shows the predicted survival curve (for transition from HIV diagnosis to AIDS)
falling more steeply among older patients. The significant age hazard ratio greater than | in
our exponential regression table implied the same thing, but using stcurve with atl ()
and at2 () values gives a strong visual interpretation of this effect. These options work in a
similar manner with all three types of stcurve graphs:

stcurve, survival Survival function.
stcurve, hazard Hazard function.
stcurve, cumhaz Cumulative hazard function.

Instead of the exponential distribution, streg can also fit survival models based on the

Weibull distribution. A Weibull distribution might appear curvilincar in a plot of In(S(¢))
versus £, but it should be linear in a plot of In(—In(S(¢))) versus In(r), such as Figure 11.8. An
exponential distribution, on the other hand, will appear linear in both plots and have a slope
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equal to 1 in the In(-In(S(¢))) versus In(¢) plot. In fapt, the data pqints in Figuredll.S ?re not
far from a line with slope 1, suggesting that our previous exponential model is adequate.

In(-1n(S))

generate loglog$s
generate logtime = ln{time)

graph twoway scatter loglogS logtime, ylabel(,angle(horizontal))

Figure 11.8

loglegS
0]

-3

4 ¢
0 1 2 3 4 °
logtime

Although we do not need the additional complexity of a Weibull model with these data,
results are given below for illustration.

streg age, dist(weibull) noshow nolog

Weibull regression -- log relative-hazard form

f obs = 51
No. of subjects 51 Number o

No. of failures = 25
Time at risk = 3164 R eniz ) _ éégg
hi2 = 0
Log likelihood = -59.778257 Prob > chi
""""""" © | Haz. Ratio  Std. Er . Polzl (95 Cont. Interval]
__________ b o el -
age | 1.07%477 0363509 2.27 0,023 j'?i??fi___,iiifffé_
————————————— e e e e e ;
/ln p | .1232638 .1820858 0.68 0.498 —.23§fij?____;f??}f?_
__________ T ey e T 1.616309
oo 1.131183 .2059723 .Z?éggij Lonee
1/p | .8840305% .1609694 .

The Weibull regression obtains a hazard ratio lestimate.(l .079) intermediate btlaltwee(r)ld(;lllz
previous Cox and exponential results. The most noticeable difference from tkliose eatrhler\;l:eibu“
is the presence of three new lines at the bottom of the table. These .rel er t(;) ! ::hehazard
distribution shape parameterp. A p valueof 1 corresponds to an exponential model:

Survival and Event-Count Mo dels 309

does not change with time, p > lindicates that the hazard increases with time; p < 1 indicates
that the hazard decreases. A 95% confidence interval for p ranges from .79 to 1.62, so we have
no reason to reject an exponential (7=1)model here, Different, but mathematically equivalent,
parameterizations of the Weibull model focus on In(p), p, or 1/p, so Stata provides all three.
stcurve draws survival, hazard, or cumulative hazard functions after streq,

dist (weibull) just as it does after streg, dist(exponential) or other streg
models.

Exponential or Weibull regression is preferable to Cox regression when survival times
actually follow an exponential or Weibull distribution. When they do not, these models are
misspecified and can yield misleading results. Cox regression, which makes no ¢ priori
assumptions about distribution shape, remains useful in a wider variety of situations.

In addition to exponential and Weibull models, streg can fit models based on the
Gompertz, lognormal, log-logistic, or generalized gamma distributions. Type help streg,

or consult the Survival Analysis and Epidemiological Tables Reference Manual, for syntax and
a list of current options.

Poisson Regression

If events occur independently and with constant probability, then counts of events over a given
period of time follow a Poisson distribution, Let r; represent the incidence rate:

count of events

ro= —_— [11.4]
number of times event could have occurred

The denominator in [11 4] 1s termed the “exposure” and is often measured in units such as
person-years. We model the logarithm of incidence rate as a linear function of one or more
predictor (x) variables:

ln(rz) = B0+ﬁlxl+ﬁ2x2+"‘+ﬁkx& [11.53]
Equivalently, the model describes logs of expected event counts:
In(expected count) = In(exposure) + B, + P, x t P+ B, [11.5b]

Assuming that a Poisson process underlies the events of interest, Poisson regression finds
maximum-likelihood estimates of the B parameters.

Data on radiation exposure and cancer deaths among workers at Qak Ridge National
Laboratory provide an example. The 56 observations in dataset oakridge.dta represent 56
age/radiation-exposure categories (7 categories of age x 8 categories of radiation). For each
combination, we know the number of deaths and the number of person-years of exposure.

Contains data from C:\data\vakridge.dta

obs: 56 Radiation (Selvin 1995:474)
vars: 4 21 Jul 2005 09:34
size: 616 (99.9% of memory free)
storage display value
variable name type format label variable label
age byte %9.0g ageg Age group
rad byte %9.0g Radiation exposure level
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Number of deaths
- 29.0g Person-years

Sorted ky:

summarize

Variakle | Obs Mean Std. Dev. Min Max
_____________ g
age | 56 4 2.0181 1 7

rad | 56 1.5 2.312024 1 8

deaths | 56 1.83928¢6 3.178203 0 16
oyears | 56 3807.679 10455.91 23 71382

| age rad deaths pyears |
_______________________________ I

1. | < 45 1 0 29901 |
2. | 45-49 1 1 6251 |
3. | 50-54 1 4 5251 |
4. | 55-59 1 3 4126 |
5. | 60-64 1 3 2778 |
_______________________________ |

6 | 65-69 1 1607 |

Does the death rate increase with exposure to radiation? Poisson regression finds a
statistically significant effect:

poisson deaths rad, nolog exposure(pyears) irr

Poisson regression Number of obs = 56
LR chiz (1) = 14,87
Prob > chi2 = 0.0001
Zog likelihood = -169.7364 Pseudo R2 = 0.0420
deaths | IRR std. Err z P>jz| [95% Conf. Intervall]
,,,,,,,,,,,,, o o o
rad | 1.236469 .0603551 4.35 0.000 1.123657 1.360606

pyears | (exposure)

For the regression above, we specified the event count (deaths) as the dependent variable
and radiation (rad) as the independent variable. The Poisson “exposure” variable is pyears, or
person-years in each category of rad. The irr option calls for incidence rate ratios rather
than regression coefficients in the results table — that is, we get estimates of exp(P) instead of
B, the default. According to this incidence rate ratio, the death rate becomes 1.236 times higher
(increases by 23.6%) with each increase in radiation category. Although that ratio is
statistically significant, the fit is not impressive; the pseudo R’ (see equation [10.4]) is only
.042.

To perform a goodness-of-fit test, comparing the Poisson model’s predictions with the
observed counts, use the follow-up command poisgof :

S e—
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Poisgof
Goodness-of-fit chi2 = 254,5475
Prob > chi2(54) = 0.0000

These goodness-of-fit test results (x? =
€ g : X" =254.5,P<.00005) indicate that our model’ icti
are significantly different from the actyal counts — another sign that the modzl fsitirgglocrtll;ms

W . .
. 59666 obtfi;n better results when we include age as a second predictor. Pseudo R? then rises
. » and the goodness-of-fit test no longer leads us to reject our model.

Polsson deaths rad age, nolog €Xposure (pyears) irr

Poisson regression

Number of cobsg = 56
LR chi2 (2) = 211.41
Log likelihood =  -71.4653 irOb; ;;m = 0.0000
seudo = 0.5966
deaths | Igé-_‘;;; __________________________________________
. B
————————————— +___,_,_;_____‘___¥_7ff_7_‘__ z Priz] [95% Conf. Interval]
rad | 1.176673 0593446 A om TN
. 5 3.23 0.001 1

. 065924
age | 1.960034 0937534 13,22 0.p00 1.7739 S lonee
pyears | (exposure) - 55 2.165631

Poisgof
Goodness-of-fit chi2 = 58.00534
Prob > chi2(53) = 0.2960

Vari:g)lre snm;zihcny, to thi}s] point we have treated rad and age as it both were continuous
S, and we expect their effects on the log death rat i

| _ e to be linear. In fact, however

;n(cjiqfndent variables are measured as ordered categories. rad = 1, for exe;mple me’aggt}(;

adiation exposure; rad = 2 means 0 to 19 milliseiverts; rad = 3 means 20 to 39 mi]’]iseivertS'

’

optionof tabulate tocreat i i
option ¢ 8 dummy variables, #/ to r8, representing each of the 8 values

tabulate rad, gen(r)

Radiation |
exposure |
level | Freq Percent Cum
____________ b T
; | 7 12.50 12.5¢
: | 7 12.50 25.00
; | 7 12.50 37.50
: | 7 12.50 50.00
; | 7 12.50 62.50
° | 7 12.50 75.00
. | 7 12.50 87.50
____________ i 7 12.50 100.00
Total | 56 100-66 ____________
describe
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. . 3z akri =.dta -
Contains data from C:\datalocakridge Radiation (Selvin 1995:474)

o ?g 21 Jul 2005 09:34
H 1L

Z?ZZ: =083 189,94 of memory free)

Tttt o Lue
storage display va ‘

variable name type format label varlabl?_if??i ___________________
7-4_7--7_7A-7_—4_7‘ & ageg Age group
o Ejte 72‘82 Radiation exposure level
s b§t2 $9.0g Number of deaths
deatns 9. ‘ .

? ars float %9.0g Person-years
T byte $8.0g rad== 1.0000
-1 y 58 . - - Coons
r2 byte %8.0g La§77 é 8000
r3 oyte %8.0g ra = 4,0000
rd byte %58.0g ad=- 5:0000
rs byte 58.0g ra == s o0
reé byte 58.0g rai:: 7.0000

7 byte +8.0g rad== .
rg byte 58.0g rad== 8.0000
r iS4 R
Sorted by:

We now include seven of these dummies (omittipg one to avqid multli:joil;)m_aarlst){i)tt?z
regression predictors. The additional complexity of this d.ummy-‘varlablcllm?f it 0;1?a%iati0n
improvement in fit. 1t does, however, add to our 1nterpretat410n. The overa 1e el o rs
on death rate appears to come primarily fr0n'1 t.he' two highest radiation EV? ] b7 an rates,
corresponding to 100 to 119 and 120 or more milliseiverts). Atthese levels, the inci
are about four times higher.

poisson deaths r2-r8 age, nolog exposure (pyears) irr

i Number of obs = 56
Poisson regressicn A ;i Sis e
Prob > chi2 = 0.0008
= 0.608
Log likelihood = -69.451814 Pseudo R2
""" deaths | IRR  Std. Err 2 P>lzl  [95% Conf. Intervall
eaths + IRR - std. Err. oz Brlal o [39% Conf. Intervall
————————————— o :
r2 | 1.473591 .426898 1.34 0.181 .835188g 2.2?82;7
r3 | 1.630688 L6659257 1.20 0.231 .7322;9 5.833389
rd | 2.375967 1.088835 1.89 0.059 L8677 2 5.511957
r5 | 7278113 .7518255 -0.31 0.758 .0961? : 8.847472
ré | 1.168477 1.20631 0.15 O.gig ilgf§823 1é el
1.98 0. . .
r7 | 4.433729 3.337738 PTG S
001 1.703168 .
3.89188 1.640878 3.22 0.
‘;i : 1.%61907 .1000652 13.21 0.000 1.775267 2.168169
pyears | (exposure)

Radiation levels 7 and 8 seem to have similar effects, so we rpight simplify the model by
combining them. First, we test whether their coefficients are significantly different. They are

not.

test r7 = r8

(1) [deaths]r7 - [deaths]r8 = 0.0

0.03
0.8676

chiZ2( 1)
Prob > chi?2
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Next, generate a new dummy variable »78, which equals 1 if either 7 or r§ equals |1:

generate r78 = (r7 | r8)
Finally, substitute the new predictor for #7 and r8 in the regression:
Poisson deaths r2-r6 r78 age, irr ex(pyears) nolog

Poisson regression

Number of obs = 56
LR chi2(7) = 215,41
Prok » chi2 = 0.0000
Log likelihood = -69.465332 Pseudo R2 = 0.6074
deaths | IRR std. Err z P>z [95% Conf. Intervall]
_____________ +_,__;___‘__,__,__,,_;,__,_,¥-__,__;<__‘__,__,<_,,_;,__,ﬁ,,__,___
rz | 1.473602 .4269013 1.34 0.181 .8351949 2.558335¢
r3 | 1.630718 .6659381 1.20 0.231 .7324415 3.630655
r4 | 2.376065 1.0888s8 1.89 0.059 .9677823 5.833629
r5 | .7278387 -7518538 -0.31 0.758 0961055 5.512165
r6 1.168507 1.206942 0.15 0.880 .1543236 8.847704
r78 | 3.980326 1.580024 3.48 0.C01 1.828214 8.665833
age | 1.961722 .100043 13.21 6.00¢C 1.775122 2.167937
Pyears | (exposure)

We could proceed to simplify the model further in this fashion. Ateachstep, test helps
to evaluate whether combining two dummy variables is justifiable.

Generalized Linear Models

Generalized linear models (GLM) have the form
g[E(y)]:B()+lel+ﬁ2x2+"‘+ﬁkx.&’ y~F [11.6]

where g[ | is the link function and F the distribution family. This general formulation
encompasses many specific models. For example, ifg[ ] is the identity function and y follows
a normal (Gaussian) distribution, we have a linear regression model:

E(y)=[30+[3|x,+B2x2+...+[3kxk, y ~ Normal [11.7]

If gl ] is the logit function and y follows a Bernoulli distribution, we have logit regression
instead:

logit[E(y)] = B, + B, x, Fhox, L+ Bx,, vy ~ Bernoulli [11.8]

Because of its broad applications, GLM could have been introduced at several different
points in this book. Its relevance to this chapter comes from the ability to fit event models.

Poisson regression, for example, requires that g[ | is the natural log function and that y follows
a Poisson distribution:

ln[E(y)]:BU-FBIx,+B2x2+...+ﬁkx“ v~ Poisson [11.9]

As might be expected with such a flexible method, Stata’s glm command permits many
different options. Users can specify not only the distribution family and link function, but also
details of the variance estimation, fitting procedure, output, and offset. These options make
glm auscful alternative even when applied to models for which a dedicated command (such
as regress, logistic,or poisson) already exicte
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We might represent a “generic” glm command as follows:
glm y x1 x2 x3, family(familyname) link (linkname)
1noffset(exposure) eform jknife
) specifies the y distribution family, link({) the link function, and
1noffset () an “exposure” variable such as that needed for Poisson regression. The eform
option asks for regression coefficients in exponentiated form, exp(B) rather than B. Standard

errors are estimated through jackknife ( jknife) calculations.
Possible distribution families are

family (gaussian) Gaussian or normal (default)

family (igaussian) Inverse Gaussian

family (binomial) Bernoulli binomial

family (poisson) Poisson
family (nbinomial) Negative binomial
family (gamma) Gamma

We can also specify a number or variable indicating the binomial denominator N (number of
ial variance and deviance functions, by

trials), or a number indicating the negative binomi

declaring them in the family () option:
family(binomial #)
family(binomial varname)

family (nbinomial ¥)

Possible link functions are

link (identity) Identity (default)
link (log) Log
link (logit) Logit

]

link (probit) Probit

link (clogleg) Complementary log-log

link (opower #) Odds power
link (power #) Power

link (nbinomial) Negative binomial
link(loglog) Log-log

link (loge) Log-complement

Coefficient variances or standard errors can be estimated in a variety of ways. A partial list

of glm variance-estimating options is given below:
Berndt, Hall, Hall, and Hausman “B-H-cubed” variance

opg

estimator.
oim Observed information matrix variance estimator.
robust Huber/White/sandwich estimator of variance.
unbiased Unbiased sandwich estimator of variance
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nwest HeFeroskedasticity and autocorrelation-consistent variance
estimator.,

jknife Jackknife estimate of variance.

jknifel One-step jackknife estimate of variance.

bstrap Bootstrap estimate of variance. The defaultis 199 repetitions;

specity some other number by adding the bsrep (#) option.

/Ii/;)r a f}l“ list of thions with some technical details, look up glm in the Base Reference
anual. A more in-depth treatment of GLM topics can be found in Hardin and Hilbe (2001).

Chapter 6 began with the simpl i i
. ' ple regression of mean composite SAT scores (csaf) o -
pupil expenditures (expense) of the 50 U.S. states and District of Columbia (sta(tes.a/za)Tl >

regress csat expense

We could fit the same model a ‘ . .
command: nd obtain exactly the same estimates with the following

glm csat expense, link(identity) family (gaussian)

Iteration 0: log likelihood = -279.99869
Gengralized linear models N
Optimization : ML: Newton-Raphson RZ;igiainf : 15
< = 49
Deviance = 175306.2097 P e
peviene - 175306.2097 (1/df) Deviance = 3577.678
. (1/df) Pearson = 3577.678
Vériance function: V{u) = 1 i
Link function :og(u) = [Gauss?an]
Standard errors ¢ OIM FraenErty]
Log likelihood = -279.9986936 AIC
BIC = 175298.346 T
csat | Coef. std. ; ____________________________________________
_____________ +_______________;_;__ff;___ z P>lz| [95% Conf. Interval]
expense | -.022275¢6 0060371 365 0.000  -.0341082  -.0104431
. -3.69 0.000 -.0341082 -
_cons | 1060.732 32.7009 32.44 0.000 996.6399 ig§24g§é

. The glm command can do more than just duplicate our regress results, however
or example, we could fit the same OLS model but obtain bootstrap standard errors: .
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glm csat expense, link{identity) family(gaussian) bstrap

Zteraticn 0O: log likelihood = -279.99869
Bootstrap iterations (139)
me—mtm—— ] === 2 —m == 3 —-—f-—— 4 ———t=--=- 5
.................................................. 50
.................................................. 100
.................................................. 150
Generalized linear models No. of obs = 51
Ovtimization : ML: Newton-Raphson Residual df = 49
Scale param = 4124.656
Ceviance = 175306.2097 (1/df) Deviance = 3577.678
Pearson = 175306.7205%7 (l/df) Pearson = 3577.678
Variance function: V{u) = 1 [Gaussian]
Link function og(u) = u [Identity]
Standard errors : Bootstrap
Log likelihood = =-279.9986336 AIC = 11.05877
BIC = 175298.34%8
| Ecotstrap
csat | Coef . Std. Err. z P>lz| [85% Conf. Interval
_____________ PR
expense | -.0222756 .0039284 -5.67 0.000 -.0289751 -.0145762
~cons | 1060.732 25.36566 41.82 0.000 1011.017 1110.448

The bootstrap standard etrors reflect observed variation among coefficients estimated from 199
samples of n = 51 cases each, drawn by random sampling with replacement from the original
n =51 dataset. In this example, the bootstrap standard errors are less than the corresponding

theoretical standard errors, and the resulting confidence intervals are narrower.

Similarly, we could use glm to repeat the first logistic regression of Chapter 10.
In the following example, we ask for jackknife standard errors and odds ratio or exponential-
form ( eform) coefficients:
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1 . :
glm any date, link(logit) family(bernoulli) eform jknife

iterat%on 0: log likelihood = ~12.995268
Iterat}on 1: log likelingod = -12.9910098
teration 2: log likelihood = ~12.99109¢
Jackknife iterations (23)
e e B T TR 3 —=—t+--- 4 ——=t--- 5
Generalized linear models
ot
Optimization * ML: Newton-Raphson ggéigf fbj : .
ua £ =
| 21
Deviance = 25.98219269 G Tl _ ;
poutane - 2s aaboes (1/df) Deviance = 1.237247
(1/df} Pearson = 1,089931
Zérlance fgnction: Vi(u) = u*(1-y) . [B
ink function : g(u) = In{u/(1-uyj) erﬁOUlll]
Standard errors Jackknife gt
é?g likelihood = -12.9910%634 AIC
= 18.711204726 oo
o f oa Jackknite TTTTTTTIImmoeo—
Yy s Ratio St
_____________ +__ﬁ__‘_;_,_ﬁ_‘__?;_?ff;,__ Z P>1z| [95% Conf. Interval]
date | 1.002083 0015486  1.35 g 196 aaniI TTTTooo-—-
| 1.002093 .001548%6 1.35 0.17¢ .89990623 1.005133

T i i
he final poisson regression of the present chapter corresponds to this glm model:

glm deaths r2-ré6 r7g a i
ge, llnk(log) famil i
lnoffset(pyea:s) eform Y (poisson)

neWAlth()]:'g'h' glm can repl ipate themodels fit by many specialized commands, and adds some
capabilities, the specialized commands have their own advantages incluziing speed and
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Principal Components, Factor,
and Cluster Analysis

Principal components and factor analysis provide methods for s.impliﬁcatlonA, 1combi}rllm a ranyarz
i i ber of underlying dimensions. ong the
correlated variables into a smaller num ! ons. Along he way to
ieving simpli i lyst mustchoose from a daunting variety of op .
achieving simplification, the analy : i : e el comveree
isti i i ions, different options might non :
really do reflect distinct underlying dimensions, ; . . X i Tenc ot
imi istinct underlying dimensions, however,
on similar results. In the absence of dis ) ‘ : cer diffsrent options
i imenting with these options can te !
ften lead to divergent results. Experimen . : . 1
garticular finding is, or how much it depends on arbitrary choices about the specific analytica

technique. o . ‘
Stata accomplishes principal components and factor analysis with five basic commands:

pca Principal components analysis.
factor Extracts factors of several different types.
i r
greigen Constructs a scree graph (plot of the cigenvalues) from the recent pca o
factor. ‘  ctory
tate Performs orthogonal (uncorrelated factors) or oblique (correlated facto
ro
rotation, after factor. r
score Generates factor scores (composite variables) after pca, factor , o
(o]
rotate.

The compostte variables generated by score can subsequently be saved, listed, graphed, or
i iable.
analyzed like any other Stata variab | |
Users who create composite variables by the older method of addlpg other vz;rlglb#e:s
together without doing factor analysis could assess their results by calculating an « reliability
coetficient:
’ liability
alpha Cronbach’s o re ‘ - . . _
Instead of combining variables, cluster analysis combines 0bs§rvat10ns by ﬁndmgnrig?e
overlapping, empirically-based typologies or groups. Clus.ter agalys’ls melthodsealie ec\;errrllmand
i | i f factor analysis. Stata’s clus
diverse, and less theoretical, than those o ‘ ' .
provides tools for performing cluster analysis, graphing the results, and forming new variables
to identify the resulting groups.

e
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Methods described in this chapter can be accessed through the following menus:
Statistics — Other multivariate analysis
Graphics — More statistical graphs

Statistics — Cluster analysis

Example Commands

Pca x1-x20
Obtains principal components of the variables x/ through x20.
pPca xl1-x20, mineigen (1)

Obtains principal components of the variables x / throughx20. Retains components having
cigenvalues greater than |.

factor x1-x20, ml factor (5)

Performs maximum likelihood factor analysis of the variables x/ throughx20. Retains only
the first five factors.

dreigen

Graphs eigenvalues versus factor or component number from the most recent factor
command (also known as a “scree graph™)

rotate, varimax factors(2)

Performs orthogonal (varimax) rotation of the first two factors from the most recent
factor command.

rotate, promax factors (3)

Performs oblique (promax) rotation of the first three factors from the most recent £ actor
command.

score f1 f2 f£3

Generates three new factor score variables named , 12, and /3, based upon the most recent
factor and rotate commands,

alpha x1-x10

Calculates Cronbach’s ¢ reliability coefficient fora composite variable defined as the sum
of x/-x/0. The sense of items entering negatively s ordinarily reversed. Options can
override this default, or form a composite variable by adding together either the original
variables or their standardized values.
cluster centroidlinkage x ¥ 2 w, L2 name(LZcent)

Performs agglomerative cluster analysis with centroid linkage, using variables X,z and
w. Euclidean distance (1.2 ) measures dissimilarity among observations. Results from this
cluster analysis are saved with the name L2cent.

cluster tree, ylabel(O(.5)3) cutnumber (20) vertlabel
Draws a cluster analysis trec graph or dendrogram showing results from the previous
cluster analysis. cutnumber (20) specifies that the graph begins with only 20 clusters
remaining, after some previous fusion of the most-similar observations. Labels are printed

in a compact vertical fashion below the graph.  cluster dendrogram does the
same thingas cluster tree.
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cluster generate ctype = groups (3), name(LZc?nt) ' .
Creates a new variable ctype (valuesof 1,2, or 3) that classifies each observation nto one

of the top three groups found by the cluster analysis named L2cent.

Principal Components

To illustrate basic principal components and factor analysis commands, we will use a small

dataset describing the nine major planets of this solar system (from Beatty et al. 19'81). The
data include several variables in both raw and natural logarithm foqn. Logarithms ar¢
employed here to reduce skew and linearize relationships among the variables.

Contains data from c:\data\planets.dta
solar system data

VZ?E; 12 22 Jul 2005 09:49

size 441 (99.9% of memory freey
storage display value

variable name type format label variable label o

%9s Planet

giiiet Eiz;t %9.Og Mean dist. sun{ kmflOA6

radius float %92.09 Equatgrial radius in km

rings byte %8.0g ringlbl Has rings?

moeons byte %8.0g Number of.known moons

mass float %9.0g Mass 1in k}loqrams .

density float %9.0g Mean density, g/cm 3

logdsun float %9.0g natural log dsu§

lograd float %%.0g9 natural log radius

logmoons float %9.0g natural log (moons + 1)

logmass float %9.09 natural log mass

logdense fleat %%9.0g natural log dense

Ssorted by: dsun

To extract initial factors or principal components, us¢ the command factor followed
by a variable list (variables in any order) and one of the following options:

pcf  Principal components factoring

pf Principal factoring (default)
ipf  Principal factoring with iterated communalities
ml Maximum-likelihood factoring

Principal components are calculated through the specialized command pca . Type help
pca or help factor to see options for these commands.
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To obtain principal components factors, type

factor rings logdsun - logdense, pcf
{obs=9)
(principal component factors; 2 factors retained)
Factor Eigenvalue Difference Proportion Cumulative

1 4.62265 3.45469 0.7706 0.7706

2 1.16896 1.05664 0.1948 0.9654

3 0.11232 0.0539%5 0.0187 0.9842

4 0.05837 0.02174 0.0097 0.9939

5 0.03663 0.03657 0.0061 1.0000

6 0.00006 0.0000 1.0000

Factor Leoadings

Variable | 1 2 Uniqueness
_____________ e et T S p——
rings | 0.97917 0.07720 0.03526
logdsun | 0.67105 -0.71093 0.04427
lograd | 0.92287 0.37357 0.00875
logmoons | 0.97647 0.00028 0.04651
logmass | 0.83377 0.54463 0.00821
logdense | -0.84511 0.47053 0.06439

O.nly the first two components have eigenvalues greater than 1, and these two components
ex‘pla'm over 96% of the six variables’ combined variance. The unimportant 3rd through 6th
principal components might safely be disregarded in subsequent analysis.

Two factor options provide control over the number of factors extracted:
factors (#) where # specifics the number of factors
mineigen (#) where # specifies the minimum eigenvalue for retained factors

The principal components factoring ( pef ) procedure automatically drops factors with
eigenvalues below 1, so

factor rings logdsun - logdense, pcf
is equivalent to
factor rings logdsun - logdense, pcf mineigen (1)
In this example, we would also have obtained the same results by typing

factor rings logdsun - logdense, pcf factors(2)

To see a scree graph (plot of eigenvalues versus component or factor number) after any
factor, use the greigen command. A horizontal line at eigenvalue = | in Figure 12.1

mgrks the u31.1al gutoff for retaining principal components, and again emphasizes the
unimportance in this example of components 3 through 6.
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greigen, yline (1)

Figure 12.1

3 4

Eigenvalues
2

ol d
o4

Al

Number

Rotation

i ¢
Rotation further simplifies factor structure. After factoring, type rotate followed by on

of these options:

varimax Varimax orthogonal rota
Promax oblique rotation, allowing correlated factors or components. Choose
a number (promax power) < 4; the higher the number, the greater the degree
of interfactor correlation. promax(3) is the default.

tion, for uncorrelated factorsor components (defaulr).

promax ()

Two additional rotate optionsare |
factors () As it does with factor , this option specifies how many factors to retain.
Horst modification to varimax and promax rotation.

Rotation can be performed following any factor analysis, whether it employed the 1Pch ,
pf, ipf.or ml options. Inthis section, we will follow through onour pcf examp e.t or
ort!;ogonal (default) rotation of the first two components found in the planetary data, we type

horst

rotate
(varimax rotation)
Rotated Factor Loadingsl

variable | 1 2 Unigueness
_____________ P
rings | 0.52848 0.82792 0.03526
logdsun | 0.97173 0.10707 0.04427
lograd | 0.25804 0.96159 0.00875
logmoons | 0.58824 0.77%40 0.04651
logmass | 0.06784 0.99357 0D.0082
NN o eaAT7q ~0.348085 0.06439
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This example accepts all the defaults: varimax rotation and the same number of factors
retained in the last factor . We could have asked for the same rotation explicitly, with the
following command:

rotate, varimax factors(2)

For oblique promax rotation (allowing correlated factors) of the most recent factoring, type

rotate, promax

(promax rctation)
Rotated Factor Loadings

YVariaple ) 1 2 Unigueness
————————————— = e e e e e e e - -
rings | 0.34664 2.76264 0.0352%6
logdsun | 1.05196 -0.17270 0.04427
lograd | 2.005%9 0.992672 0.00875
logmoons ) 0.42747 0.69070 0.04651
logmass | -0.71543 1.08534 0.00821
logdense | -0.871%0 -0.16922 0.06439

By default, this example used a promax power of 3. We could have specified the promax
power and desired number of factors explicitly:

rotate, promax({3) factors(2)
promax (4) would permit further simplification of the loading matrix, at the cost of stronger
interfactor correlations and less total variance explained.

After promax rotation, rings, lograd, logmoons, and logmass load most heavily on factor
2. This appears to be a “large size/many satellites” dimension. /logdsun and logdense load
higher on factor |, forming a “far out/low density” dimension. The next section shows how to
create new variables representing these dimensions.

Factor Scores

Factor scores are linear composites, formed by standardizing each variable to zero mean and
unit variance, and then weighting with factor score coeftictents and summing for each factor.
score performs these calculations automatically, using the most recent rotate or
factor results. Inthe score command we supply names for the new variables, such as
f1 and /2.

score f1 f2

{based on rotated factors)

Scoring Coefficients

Variable | 1 2
_____________ o e
rings | 0.12674 0.22099%
logdsun | 0.48769 -0.09689
lograd | ~-0.03840 J.30608
logrmoons | J.166064 0.193543
logmass | -0.14338 0.3438¢6
logdense | -0.39127 -0.21€09
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label variable f1 "Far out/low density”
label variable f2 "Large size/many satellites"

list planet f1 f£f2

T +
| planet f1 £2 :
’ _________________________________
1. | Mercury ~1.256881 -.9172388 |
2.0 Venus -1.188757 -.516022%
E Earth -1.03524z2 -.3939372 |
4. Mars -.59%70106 -.6799535
5. | Jupiter .3841085 1.342658
_____________________ ‘
[—-——mmmmm— -
6. | Saturn .925%058 1.184475 |
7. | Uranus .9347457 .7682409
8. | Neptune .8161058 .647119
EI Pluto 1.017025 -1.43534 |
_______________ +
ol

Being standardized variables, the new factor scores f/ and /2 have means (approximately) equal
to zero and standard deviations equal to one:

summarize f1 f£f2

e Max

Variable | Obs Mean Std. Dev ,%i? ___________
_?7777;__T;I-T77777;_;_—__;T;;;—09 1 -1.256881 1.017025
£2 1 9 -3.31e-09 1 -1.43534 1.342658

Thus, the factor scores are measured in units of standard deviations from their means. M?rcur?),
for example, is about 1.26 standard deviations below average on the far out/l ow (gignsuyd(f )
dimension because it is actually close to the sun and high deps1ty. 'Mercury is .S starlll ard
deviations below average on the large size/many satellites (f2) d1rpepsmn because itis small an

has no satellites. Saturn, in contrast, is .93 and 1.18 standard deviations above average on these

two dimensions.
Promax rotation permits correlations between factor scores:

correlate f1 f2
(obs=9)

1.0000
0.4974 1.0000

Scores on factor | have a moderate positive correlation with scores on factor 2: far out/low
density planets are more likely also to be larger, with many satellites.

If we employ varimax instead of promax rotation, we get uncorrelated factor scores:
quietly factor rings logdsun - logdense, pcf
quietly rotate

quietly score varimaxl varimaxZ2
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correlate varimaxl varimax?
(obs=9)

| varimax! varimax?
_____________ e e e __

varimaxl | 1.0000
varimax? 0.0000 1.0000

Once created by score , factor scores can be treated like any other Stata variable —
listed, analyzed, graphed, and so forth. Graphs of principal component factors sometimes help
to identify multivariate outliers or clusters of observations that stand apart from the rest. For
example, Figure 12.2 reveals three distinct types of planets,

graph twoway scatter f1 £2, yline(0) xline (0) mlabel (planet)
mlabsize(medsmall) ylabel (, angle(horizontal))
xlabel(—l,S(.S)l.S, grid)

1  Pluto Figure 12.2
* Uranus « Saturn
* Neptune
5
= Jupiter
&
2
H 0
o
2
L2
=
=
© .5
@ « Mars
w
- « Earth
o Mercury‘ Venus
-1.5
15 i -5 0 5 1 15

Large size/many satellites

The inner, rocky planets (such as Mercury, low on “far out/low density” factor 1; low also
on “large size/many satellites” factor 2) cluster together at the lower left. The outer gas giants
have opposite characteristics, and cluster together at the upper right. Pluto, which physically
resembles some outer-system moons, is unique among planets for being high on the “far out/low
density” dimension, and at the same time low on the “large size/many satellites” dimension.

This example employed rotation. Factor scores obtained by principal components without
rotation are often used to analyze large datasets in physical-science fields such as climatology
and remote sensing. In these applications, principal components are called “empirical
orthogonal functions.” The first empirical orthogonal function, or EOF1, equals the factor

score for the first unrotated principal component. EOF2 is the score for the second principal
component, and so forth.
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Principal Factoring

Principal factoring extracts principal components from a modified correlation matrix, in which
the main diagonal consists of communality estimates instead of 1’s. The factor options
pf and ipf both perform principal factoring. They differ in how communalities are
estimated:
pE Communality estimates equal R from regressing each variable on all the others.
ipf lterative estimation of communalities.

Whereas principal components analysis focuses on explaining the variables’ variance, principal
factoring explains intervariable correlations.

We apply principal factoring with iterated cormunalities ( ip£ ) to the planetary data:

factor rings logdsun - logdense, ipf
{obs=9)
(iterated principal factors; 5 factors retained)
Factor Eigenvalue Difference Proportion Cumulative
1 4.5966€3 3.46817 0.7903 0.7903
2 1.12846 1.05107 0.1940 0.9843
3 0.07739 0.06438 0.0133 0.5976
4 0.01301 0.01176 0.0022 0.9998
5 0.00125 0.00137 0.0002 1.0000
6 -0.00012 . -0.0000 1.0000

Factor Loadings

Variable | 1 2 3 4 5 Unigueness
_____________ o e
rings | 0.97599 0.068649 0.11374 -0.02065 -0.02234 0.02916
logdsun | 0.65708 ~-0.67054 0.14114 0.04471 0.00816 0.09663
lograd | 0.92670 0.37001 -0.04504 0.04865 0.01662 -0.00036
logmoons | 0.96738 -0.01074 0.00781 -0.08593 0.01597 0.0563%
logmass | 0.83783 0.54576 0.00557 0.02824 ~0.00714 ~0.00069
lcgdense | -0.84602 0.48941 0,20594 -0.00610 0.00997 0.00217

Only the first two factors have eigenvalues above 1. With pcf or pf factoring, we can
simply disregard minor factors. Using ipf , however, we must decide how many factors to
retain, and then repeat the analysis asking for exactly that many factors. Here we will retain
two factors:

factor rings logdsun - logdense, ipf factor (2)
(obs=9)
(iterated principal factors; 2 factors retained)
Factor Eigenvalue Difference Proportion Cumulative
1 4.57495 3.47412 0.8061 0.8061
2 1.10083 1.07631 0.1940 1.0000
3 0.02452 0.02013 0.0043 1.0043
4 0.00439 0.00795 0.0008 1.0051
5 -0.00356 0.02182 ~0.0006 1.0045
6 -0.02537 -0.0045 1.0000
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Factor Loadings

Variable | 1 2 Unigqueness
_____________ e _____
rings | 0.97474 0.05374 0.04699
logdsun | 0.65329 -0.67309 0.12016
lograd | 0.92816 0.36047 0.00858
logmoons | 0.96855 -0.02278 0.06139
logmass | 0.84298 J.54616 -0.00890
logdense | -0.82938 0.46490 0.09599

After this ﬁna] factor analysis, we can create composite variables by rotate and
sc;r:'e . Rotation of the .ipf. factors produces results similar to those found earlier with
pcf : a far out/low density dimension and a large size/many satellites dimension. When

Maximum-Likelihood Factoring

Maximum-likelihood factoring, unlike Stata’s other factor options, provides formal

hypothesis tests that help in determinin i
. ests g the appropriate number of factors. To obtai i
maximum-likelihood factor for the planetary data, type o asinge

factor rings logdsun - logdense, ml nolog factor (1)

(maximum likelihood factors; 1 factor retained)

__ffff?f‘__ Variance Difference Proporticn Cumulative
1 Tt
4.47258 . 1.0000 1.0000
Test: 1 vs. no factors Chi2( 6
: . ) = 62.02, Prob > chi2 = Q.0
Test: 1l vs. more factors. Chi2{( 9) = 51.73, Prob > chi2 = 0-0888
. Factor Loadings
Variable | 1 Uniqueness
____________ e ____
rings | 0.98726 0.02535
logdsun | 0.59219 0.64931
lograd | 0.93654 0.12288
logmoons | 0.85890 0.08052
logmass | 0.86918 0.24451
logdense |  ~0.77145 0.40487

The m1 output includes two X tests:
J vs. no factors

"ljhls. tests whether the current mod ¢l, withJ factors, fits the observed correlation matrix
SIgmﬁc:ant]){ be.tter thap ano-factor model. A low probability indicates that the current
model is a significant Improvement over no factors

J vs. more factors

This tests whether the current J-factor model fits significantly worse than a more

complicated, perfect-fit model. A low P-value suggests that th
bave ot by gg € current model does not
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The previous 1-factor example yields these results:

1 vs. no factors

> [6] = 62.02, P = 0.0000 (actually, meaning P < .00005). The 1-factor model
significantly improves upon a no-factor model.

1 vs. more factors

¥ [91=5173,P= 0.0000 (P < .00005). The 1-factor model is significantly worse
than a perfect-fit model.

Perhaps a 2-factor model will do better:

factor rings logdsun - logdense, ml nolog factor (2}
(obs=9)
(maximum likelincod factors; 2 factorf retained) .
Factor varience Ditference Proportion Cumulative
__-7—; 3.64200 1.67115 0.6489 0.6489
2 1.97085 . 0.3511 1.0000
Test: 2 vs. no factors. Chi2( 12) = 134,14, Prob > ch%Z = 0 0002
Té;:: 2 vs. more Iactors. Chi?{ 4y = .72, Prob > chiZ = 0.151

Factor Loadings

Jariable | 1 2 Unigueness
_____________ IR
rings | 0.586551 -0.41545 0.07829
logdsun | 0.20920 -0.85593 0.27361
lograd | 0.58437 -0.17528 0.00028
logmoons | 0.81560 -0.49882 0.084987
l;dmass ; $.29965 0.02€39 0.00000
logdense | -0.46434% 0.88565 0.00000

Now we find the following:

2 vs. no factors

y* [12]=134.14, P = 0.0000 (actually, P < .00005). The 2-factor model significantly
improves upon a no-factor model.

2 vs. more factors o
v [4]=6.72,P=0.1513. The 2_factor model is not significantly worse than a perfect-fit
model.

These tests suggest that two factors provide an adequate model. ' .
Computational routines performing maximum—lil_(elihoqd factor anal){s1s often yl}fld

“improper solutions” — unrealistic results such as negative var;ance Of ZE€TO UNIQUENEss. W' en

this happens (as it did in our 2-factor ml example), the y * tests lack formal justification.

Viewed descriptively, the tests can still provide informal guidance regarding the appropriate
number of factors.
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Cluster Analysis — 1

Cluster analysis encompasses a variety of methods that divide observations into groups or
clusters, based on their dissimilarities across a number of variables. 1t is most often used as an
exploratory approach, for developing empirical typologies, rather than as a means of testing pre-
specified hypotheses. Indecd, there exists little formal theory to guide hypothesis testing for
the common clustering methods. The number of choices available at each step in the analysis
is daunting, and all the more so because they can lead to many different results. This section
provides no more than an entry point to begin cluster analysis. Wereview some basic ideas and
illustrate them through a simple example. The following section considers a somewhat larger
example. Stata’s Multivariate Statistics Reference Manual introduces and defines the fullrange
of choices available. Everitt er al. (2001) cover topics in more detail, including helpful
comparisons among the many cluster-analysis methods.

Clustering methods fall into two broad categories, partition and hierarchical. Partition
methods break the observations into a pre-set number of nonoverlapping groups. We have two
ways to do this:

cluster kmeans Kmeans cluster analysis

User specifies the number of clusters (K) to create. Stata then finds these through an
iterative process, assigning observations to the group with the closest mean.

cluster kmedians Kmedians cluster analysis
Similar to Kmeans, but with medians.

Partition methods tend to be computationally simpler and faster than hierarchical methods. The
necessity of declaring the exact number of clusters in advance is a disadvantage for exploratory
work, however.

Hierarchical methods, involve a process of smaller groups gradually fusing to form
increasingly large ones. Stata takes an agglomerative approach in hierarchical clusteranalysis:
it starts out with each observation considered as its own separate “group.” The closest two
groups are merged, and this process continues until a specified stopping-point is reached, or all
observations belong to one group. A graphical display called a dendrogram or tree diagram
visualizes hierarchical clustering results. Several choices exist for the linkage method, which
specifies what should be compared between groups that contain more than one observation:

cluster singlelinkage Single linkage cluster analysis

Computesthe dissimilarity between two groups as the dissimilarity between the closest pair
of observations between the two groups. Although simple, this method has low resistance
to outliers or measurement errors. Obscrvations tend to join clusters one at a time, forming
unbalanced, drawn-out groups in which members have little in common, but are linked by

intermediate observations — a problem called chaining.

cluster completelinkage Complete linkage cluster analysis
Uses the farthest pair of obscrvations between the two groups. Less sensitive to outliers
than single linkage, but with the opposite tendency towards clumping many obscrvations
into tight, spatially compact clusters.

cluster averagelinkage Average linkage cluster analysis
Uses the average dissimilarity of observations between the two groups, yielding properties
intermediate between single and complete linkage. Simulation studies report that this
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works well for many situations and is reasonably robust(see Everitt et al. 2001, and sources

they cite)- Commonly used in archaeology.
Centroid linkage cluster analysis
Centroid linkage merges the groups whose means are closest (In contrast to average linkage
which looks at the average distance between elements of the two groups). This method is
subject to reversals — points where a fusion takes place at a lower level of dissimilarity
than an earlier fusion. Reversals signal an unstable cluster structure, are difficult to
interpret, and cannot be graphed by cluster tree.

Weighted-average linkage cluster analysis

Median linkage cluster analysis.
d median linkage are variations on average linkage and
In both cases, the difference is in how groups of unequal
In average linkage and centroid linkage, the number of
elements of each group are factored into the computation, giving correspondingly larger

influence to the larger group (because each observation carries the same weight). In

weighted-average linkage and median linkage, the two groups ar¢ given equal weighting
regardless of how many observations there are in each group. Median linkage, like centroid

linkage, is subject to reversals.

cluster centroidlinkage

cluster waveragelinkage

cluster medianlinkage
Weighted-average linkage an
centroid linkage, respectively.
size are treated when merged.

Ward’s linkage cluster analysis

It in the minimum increase in the error sum of squares. Does
but poorly when clusters

cluster wardslinkage

Joins the two groups that resu
well with groups that are multivariate normal and of similar size,

have unequal numbers of observations.

All clustering methods begin with some definition of dissimilarity (or similarity).
Dissimilarity measures reflect the differentness or distance between two observations, across
a specified set of variables. Generally, such measures are designed so that two identical
observations have a dissimilarity of 0, and two maximally different observations have a
dissimilarity of 1. Similarity measures reverse this scaling, so that identical observations have
a similarity of 1. Stata’s cluster options offer many choices of dissimilarity or similarity
measures. For purposes of calculation, Stata internally transforms similarity to dissimilarity:

dissimilarity = 1 — similarity

The default dissimilarity measure is the Euclidean dista
This defines the distance between observations i and j as

2 112
IS —~Xy) }
where x, is the value of variable x, for observation i, X
summation occurs over all the x variables considered.
the (dis)similarities between observations based on continuous vari

Euclidean distance ( L2squared),
ZAXH—XUZ

the absolute-value distance ( L1), maximu
coefficient similarity measure ( corre
based on binary variables include simple matching ( match
coefficent ( Jaccard ), and many others. Type help cldis fora

nce, option L2 (or Euclidean).

., the value of x,, for observation f, and
Other choices available for measuring
ables include the squared

m-value distance ( Linfinity ), and correlation
lation ). Choices for dissimilarities or similarities
ing ), Jaccard binary similarity
list and explanations.
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Egrlier_in this chapter, a principal components analysis of vari i 1
, sis of variab
llt,:_e‘l_l)c gilirzs.ﬁ(e:cliuts}igie It]ypl)es_of plapets: inner roc}cy pla:ets, outer gaslegsi:rllf;{aa’:ledtsg taac(ll::s%ul:e
Because vatiables such 25 number of mooms (et anh wate i Koy opne e
/ar : oons) and mass in ki

$§;st1;e: Vlgincrilcr(::rsr:lpl)?sras(l)fn 1:2:;, c;Jv:)th h}l: gely different .vari ances, weS:Sshl(r)lull(clilsOt%;ztir;:di( ;tzciflss)o?rf:
e standardizatiy tte highest-variance itgms. A common, although not
e hrsh the e on to zerc mean _and umt standard deviation. This is
reasons discussed earlier). s?munac:jr.nzrzar::drg?nd uslllng o o e
means, and standard deviations equal to one.0 s that fhe mew z variables have (nean zere

egen zrings = std(rings)

egen zlogdsun = std(logdsun)

egen zlograd = std{lograd)

egen zlogmoon = std(logmoons)

egen zlogmass = std{logmass)

egen zlogdens = std{logdense)

summ zrings - zlogdens
Variable | Obs
_____________ +____,_____A____,__%?éﬁ___ Std. Dev Min Max
zrings | 9 11.996-08 1 -.8432741  1.052093
-08
L, lpine 1 -.8432741
legrag : 9 -1.16e-08 1 -1.393821 i-ggggig
oot g -3.31e-09 1 -1.3471 1.372751
: .
: 1 -1.2
_ﬁ__f—fgmass | : 4 tie o9 : ! 207296 1.175849
_____ | S S 1.74466 1.365167
2logdens | 9  -1.326-08 1 -1.453143 1.128
gdens | 9 ~1.32e-08 1 -1.453143 1 128;6_
. . 1

The “thre » i inci
o b: etl}ipfzsu r;:dors}frlusm}:l suggested byqur principal components analysis is robust, and
could Pave been found oug .cluster analysm as well, For example, we might perfo;’m a
e e a 1};}5}15 w1t_h average linkage, using Euclidean distance ( L2 ) as our
i e th.at ! € option name (Ii.2avg) gives the results from this particular
snalysis & na wile e can refer to them in later commands. The results-naming feature
n we need to try a number of cluster analyses and compare their outcomes

cluster averagellnkage zZrings lOg sun zlogz d zlogmoo zliogm
g Zz d g g
a 1 n 1 ass

Nothin ;

variabﬁ:@?i}ﬁsn ;(:nheaspl))p;sr;,dalthzggh we might notice that our dataset now contains three new

e e (;n ! avg. These new L2avg* variables are not directly of interest

e o dondsogram 1.e ly by the cluster tree command to draw a cluster analysis’

153 The 1ene1 s;a izing the most recent hierarchical cluster analysis results (Figure
(planet) option here causes planet names (values of planer) to apﬁear
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cluster tree, label (planet) ylabel(0(1)5)

5- Figure 12.3
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Mercury Venus Earth Mars  Pluto Jupiter Saturn Uranus Neptune
Dendrogram for L2avg cluster analysis

Dendrograms such as Figure 12.3 provide key interpretive tools for hierarchical cluster
analysis. W¢ can trace the agglomerative process from each observation its own cluster, at
bottom, to all fused into one cluster, at top. Venus and Earth, and also Uranus and Neptune,
are the least dissimilar or most alike pairs. They are fused first, forming the first two multi-
observation clusters at a height (dissimilarity) below 1. Jupiter and Saturn, then Venus—Earth
and Mars, then Venus-Earth-Mars and Mercury, and finally Jupiter—Saturn and
Uranus—Neptune are fused in quick succession, all with dissimilaritics around 1. At this point
we have the same three groups suggested in Figure 12.2 by principal components: the inner
rocky planets, the gas giants, and Pluto. The three clusters remain stable until, at much higher
dissimilarity (above 3), Pluto fuses with the inner rocky planets. At a dissimilarity near 4, the
final two clusters fuse.

So, how many types of planets are there? The answer, as Figure 12.3 makes clear, is “it
depends.” How much dissimilarity do we want to accept within each type? The long vertical
lines between the three-cluster stage and the two-cluster stage in the upper part of Figure 12.3
indicate that we have three fairly distinct types, We could reduce this to two types only by
fusing an observation (Pluto) that is quite dissimilar to others in its group. We could expand
it to five types only by drawing distinctions between several planet groups (e.g., Mercury—Mars
and Earth-Venus) that by solar-system standards are not greatly dissimilar. Thus, the
dendrogram makes a case for a three-type scheme.

The cluster generate commandcreates a new variable indicatingthe type or group
to which each observation belongs. Inthis example, groups (3) calls for three groups. The
name (L2avg) option specifies the particular results we named L2avg. This option is most
useful when our session included multiple cluster analyses.
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cluster generate plantype = groups (3), name (L2avg)
label variable plantype "Planet type"
list planet plantype

1 | Mercury 1]
2 Venus 1]
3 | Earth 11
4 Mars 1
5 [ Jupiter 3
‘ ____________________
6. | Saturn 3
7. Uranus 3
8. | Neptune 3
9. | Pluto 2
R e L +

The inner rocky planets have been coded as plantype = 1; the gas giants as plantype = 3;
and Pluto, which resembles an outer-system moon more than it does other planets, is by itselr,"
as plantype = 2. The group designations as 1, 2, and 3 follow the left-to-right ordering of final
clusters in the dendrogram (Figure 12.3). Once the data have been saved, our new typology
could be used like any other categorical variable in subsequent analyses.

These planetary data have a strong pattern of natural groups, which is why such different
techniques as cluster analysis and principal components point towards similar conclusions. We
cogld have chosen other dissimilarity measures and linkage methods for this example, and still
arrived at much the same place. Complex or weakly patterned data, on the other hand, often
yield quite different results depending on nuances of the methods used. The clusters found by
gne‘n.lethod might not prove replicable under others, or even with slightly different analytical

ecisions.

Cluster Analysis — 2

Discovering a simple, robust typology to describe the nine planets was straightforward. For a
more_challengmg cxample, consider the cross-national data in nations.dta. This dataset
contains living-conditions variables that might provide a basis for classifying countries into
types.

Contains data from C:\data\nations.dta

obs: 109 Data on 109 nations, ca, 1985
V§rs: 15 23 Jul 2005 18:37

size: 4,142 (99,9% of memory free)

storage display value T

variable name type format label variable label
country strg %9s country
p?p float %B.Og 1985 population in millions
birth byte %8.0g Crude birth rate/1000 people
death byte 38.0g Crude death rate/1000 people
ghldmort pyte %¥8.0g Child (1-4 yr) mortality 1985
1§fmort int 38.0g Infant (<1 yr) mortality 1985
life byte %8.0g Life expectancy at birth 1985
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+8.0qg Per capita daily calories 1985
~8.0g Per cav energy consumed, kg oil
T 2.0g Per capita GNP 1985
gnparo £9.0g Annual GNP growth % 65-85
urkar ¢8.0g Y population urban 1985
schocll 8.0g Prirmary enrcllment % age-group
school2 *8.0g Seccndary enroll % age-group
schogl? +8.0g Higher ed. enroll * age-group

SorTaed Dy

In Chapter 8, we saw that nonlinear transformations (logs or square roots) helped to
normalize distributions and linearize relationships among some of these variables. Similar
arguments for nonlinear transformations could apply to cluster analysis, but to keep our
example simple, we will not pursue them here. Linear transformations to standardize the
variables in some fashion remain important, however. Otherwise, the variable gnpcap, which
ranges from about $100 to $19,000 (standard deviation $4,400) would overwhelm other
variables such as /ife, which ranges from 40 to 78 years (standard deviation 11 years). In the
previous section, we standardized planctary data by subtracting each variable’s mean, then
dividing by its standard deviation. so that the resulting z-scores all had standard deviations of
one. In this section we take a different approach, range standardization, which also works well
for cluster analysis.

Range standardization involves dividing each variable by its range. There is no command
to do this directly in Stata, but we can improvise one easily enough. The summarize,
detail command calculates one-variable statistics, and afterwards unobtrusively stores the
results in memory as macros (described in Chapter 14). A macro named r (max) stores the
variable’s maximum, and r (min) stores its minimum. Thus, to generate new variable rpop,
defined as a range-standardized version of pop (population), type the commands

quietly summ pop, detail
generate rpop = pop/{r(max) - r(min))
label variable rpop "Range-standardized population”

Similar commands create range-standardized versions of other living-conditions variables:

quietly summ birth, detail

generate rbirth = birth/{(r(max) - r(min))

label variable rbirth "Range-standardized bith rate"

quietly summ infmort, detail

generate rinf = infmort/ (r{(max) - r{min))

label variable rinf "Range-standardized infant mortality"
and so forth, defining the 8 new variables listed below. These range-standardized variables all
have ranges equal to 1.

describe rpop-rschoolZ2

storage display value
variable name type format label variable label
rpop float 28.0c¢ Range-standardized population
rbirth float -9.0g Range-standardized bith rate
rinf float =9.0g Range-standardized infant
mortality
rlife fleocat 59.0g Range-standardized 1ife
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expectancy

rfood ok g
d fleat ¢9.0g Range-standardized food per
renerqgy float 9.0 opite
flos 9.0g Range-standardized enerqgy per
rgnpca Tloat : el
ap Float  149.0g Range-standardized GNP per
. caplita
rschoo i T 9.0
choolZz float 9.0g Range-standardized secondary
school ¢
summarize rpop - rschool2
Variable | G n S ev i
_____________ S S .
bfgcp } 109 .?374493 1206471 .300%622 1.0C03¢62
r .fth i 108 .7452043 .3098672 L2272727 1.227273
F}Zf 109 .4051354 .2913825 .035503 1.035503
f;lAe | 108 1.621922 .291343 1.052632 2.052632
rfood | 108 1.2306213 . 26448329 . 7793776 1.779378
,,,,,,,,,,,,, B T e ____.T
fen%rgy | 1(7 .1539786 .2137914 .0C18464 1.00184¢
vagf%uff 103 .1666459 .2319276 .0057411 1.005741
school? | 104 .4574849 .2899882 .0196078 1.019608

Afte_r t'he variables of interest have been standardized, we can proceed with cluster analysis
As we divide more than 100 nations into “types,” we have no reason to assume that each t é
will mc]'ude a similar number of nations. Average linkage (used in our planetary examp{e?)
along with some other methods, gives each observation the same weight. This tends to make;
l?rger clusters more influential as agglomeration proceeds. Weighted average and median
linkage rpcthqu, on the other hand, give equal weight to each cluster regardless of how many
observatmng it contains. Such methods consequently tend to work better for detecting clusters
ofunequal size. Median linkage, like centroid linkage, is subject to reversals (which will occu}
W_lth these data), so the following example applies weighted average linkage. Absolute-value
distance ( L1 ) provides our dissimilarity measure.

cluster waveragelinkage rpop - rschool2, L1 name (Liwav)

The full cluster analysis proves unmanageably large for a tree graph:

cluster tree
foo many leaves; consider using the cutvalue() or cutnumber () opticns
r{lssg);

Following the error-message advice, Figure 12.4 employs a cutnumber {100) option to
forma dendrogram that starts with only 100 groups, after the first few fusions have taken place.
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cluster tree, ylabel(0(.5)3) cutnumber(100)

3 Figure 12.4
2.5W o]
g
5 2
2]
[
o]
£
2 1.5
3
E i
& N
T
o ]
5] |
G ]
0 W2 At e iy e

' dram for L1wav cluster anlysi

The bottom labels in Figure [2.4 are unreadable, but we can trace the general flow of this
clustering process. Most of the fusion takes place at dissimilarities below [. Two nations at
far right are unusual; they resist fusion until about 1.5, and then form a stable two-nation group
quite different from all the rest. This is one of four clusters remaining above dissimilarities of
2. The first and second of these four final clusters (reading left to right) appear heterogeneous,
formed through successive fusion of'a number of somewhat distinct major subgroups. The third
cluster, in contrast, appears more homogeneous. It combines many nations that fused into two
subgroups at dissimilarities below 1, and then fused into one group at slightly above 1.

Figure 12.5 gives another view of this analysis, this time using the cutvalue (1) option
to show only clusters with dissimilarities above |. The wvertlabel option, not really
needed here, calls for the bottom labels (G1, G2, etc.) to be printed vertically instead of

horizontally.
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cluster tree, ylabel (0(.5)3) cutvalue (1) vertlabel

34
Figure 12.5

2.54

1.5

L1 dissimilarity measure

T 7% 68 85 g g g o

Dendrogram for L1wav cluster analysis

. 12: Flg;'rfl: 12.5'shows, t}}ere are Il groups remaining at dissimilarities above . For
;Jb(?\)] 2es 0 1 ustration, we will consider only the top four groups, which have dissimilarities
c2. ¢ usi_:er generate createsacategorical variable for the final four groups from

the cluster analysis we named Z /way.,

cluster generate ctype = groups (4}, name (Liwav)
label variable ctype "Country type"
We could next examine which countries belong to which groups by typing
by ctype: 1list country
A more compact list of the same information appears below. This list was produced by copying

and pasting data from nations.dta into the D i
: ‘ . ata Editor to forma separate, single-
in which the columns are country types. P meiepupose dataset

b me o _____
——————————— +
1_ ctypel ctype? ctype3 ctyped |

T T T T T T T e e |
1. | Alqer%a Argentin Banglade China |
2.1 Brazil Australi Benin Iindia |
3.0 Burma Austria Bolivia |
4. | Chl}e Belgium Botswana |
5. | Colombia Canada BurkFaso |

‘ _____________________

T T T T T T T e |
€. | CostaRic Denmark Burundi |
7o DomRep Finland Cameroon |
8. | Ecuador France CenAfrRe |
9. | Egypt Greece ElSalvad |

10. | Indonesi HongKong Ethiocpia |
|~ m e __I___
T T T T T T T T e e e f
l;. Jamaica Hungary Ghana
12.

I
f
| Jordan Ireland Guatemal |
13. | Malaysia Israel Guinea |
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- , I I
14. | Mauritiu Ttaly Haiti ‘
15 ! Mexico Japan Honduras |
e
16 | MoroccO Kuwait IveryCoa !
17. | Parama Netherla Kenya ‘
18 | Paraguay NewzZeala Liberia
1 | ﬁeru Norway Madagasc |
20 | Philippi Poland Malawl :
|mmmmmm———=-—soSoTT TS TTTTTTETTTTE
21 1 SauArabpi Portugal Maurlc§n l
272. | Srilanka S Korea Mozambld
23 | Syria Singapor . Nepal :
24 | Thailand Spain NlcaFaqu
25 | Tunisia Sweden Nigex }
\-—*-—*————*-'*-*"*-*—'*—T——*f"—-
26. Turkey TrinToba Nigeria l
27 | Uruguay U_K Pakistan ]
28. | venezuel U s A PapuaNG |
29 | UnArEmir Rwanda [
30. | W German Senegal i
[ommmmm———mm—mo oS T oSS T o m T
31 | Yugoslav SierralLe |
:2. | Somalia |
iV- | Sudan |
;Z. | Tanzania |
35 Togo |
350 |
36 ; YemenhR |
3ﬂ. | ’ yemenPDR |
. .
Zaire |
gg- 1 Zanbia |
' Zimbabwe |
so. 1 EembeRRe L !
R

The two-nation cluster seen at far right in Figure 12.4 turns out to bg type1 4, Chlr(n;lJ arl)ci?

India. The broad, homogeneous third cluster in Figure 12.4, type 3, cor'ltamstz'x argeitgi]rly]igpher
. 1 inlyi ica. The relatively diverse type 2 contains nations w :
the poorest nations, mainly in Africa. : i e
ivi itions i i nd Japan. Type ,also diverse, con
living conditions including the U.S., Europe, a ‘ conains naLon
ith 1 i iti his or some other typology is meaning :
with intermediate conditions. Whether t gy T
i i - tical one, and depends on the uses for which a typ
substantive question, not a statistica , : e
i i i in the steps of our cluster analysis wou

needed. Choosing different options : ) . .
different results. By experimenting with a variety of rcasonable choices, we could gainasense
of which findings are most stable.

Time Series Analysis

Stata’s evolving time series capabilities are covered in the 350-page Time-Series Reference
Manual. This chapter provides a brief introduction, beginning with two elementary and useful
analytical tools: time plots and smoothing. We then move on to illustrate the use of
correlograms, ARIMA models, and tests for stationarity and white noise. Further applications,

notably periodograms and the flexible ARCH family of models, are left to the reader’s
explorations.

A technical and thorough treatment of time series topics is found in Hamilton (1994).

Other sources include Box, Jenkins, and Reinsel (1994), Chatfield (1996), Diggle (1990),
Enders (1995), Johnston and DiNardo (1997), and Shumway (1988).

Menus for time series operations come under the following headings:
Statistics — Time series

Statistics — Multivariate time series
Statistics — Cross-sectional time series

Graphics — Time series graphs

Example Commands

ac y, lags(8) level(%5) generate(newvar)

Graphs autocorrelations of variable y, with 95% confidence intervals (default), for lags 1
through 8. Stores the autocorrelations as the first 8 values of newvar.

arch D.y, arch(1/3) ar{(l) ma{l)

Fits an ARCH (autoregressive conditional heteroskedasticity) model for first differences

of y, including first- through third-order ARCH terms, and first-order AR and MA
disturbances.

arima y, arima(3,1,2)

Fits asimple ARIMA(3,1,2) model. Possible options include several estimation strategies,
linear constraints, and robust estimates of variance.

arima y, arima(3,1,2) sarima(l,0,1,12)
Fits ARIMA model including a multiplicative seasonal component with period 12.
arima D.y x1 L1.xI1 x2, ar(l) ma(l 12)

Regresses first differences of y on x1, lag-1 values of x/, and x2, including AR(1), MA(1),
and MA(12) disturbances.
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corrgram y, lags(8) - tssmooth nl newvar =
. . . . = Y. smoother (4253h,twice)
5, ts for | through 8. : : . +twice
Obtains autocorrelations, partial autocorrelations, and ( tests for lags | throug Applies a nonlinear smoothing filter to ¥, generating newyar. The
dfuller y | | | | smoother.(4253h, twice) optioniteratively finds running medians of span 4, 2. 5. and
Performs Dickey—Fuller unit root test for stationarity. 3, then applies Hanning, then repeats on the residuals, tssmooth nl un]?k, ,th
: . unlike other
dwstat tssmooth procedurcs, cannot work around missing values,
After regress , calculates a Durbin—Watson statistic testing first-order autocorrelation. . wntestq y, lags(15)
egen newvar = ma(y), nomiss t({7) Box-—Pierce portmanteau  test for white noise (also provided by corrgram)
Generate§lirceglx1af' equal to th(e1 span-7 moving average of v, replacing the start and end . xcorr x y, lags(8) xline(0) )
values with shorter, uncentered averages. . . .
g Giraphs cross-correlations bf;tween nput (x) and output (y) variable for lags 1-8.
generate date = mdy(month, day,year) xcorr x y, table gives a text version that includes the actual correlations (or
Creates variable date, equal to days since January 1, 1960, from the three variables month, include a generate (newvar) option to store the correlations as a variable)
day, and vear. ) .
generate date = date(str_date, "mdy")
Crcates variable date from the string vanable str_date, where str_date contains dates in Smoothing

month, day, year form such as “11/19/2001”, “4/18/98”, or “June 12, 1948”. Type help

dates for many other date functions and options. Many time series exhibit rapid up-and-down fluctuations that make it difficult to dj
iscern

underlyi 3 ine < : .

generate newvar = L3.y rE:fldeul)lllmg pzttems. Sn‘l‘oothmg such serics breaks the data into two parts, one that varies
Generates newvar equal to lag-3 values of v, gracuatly, and a second “rough” part containing the leftover rapid changes:

pac y, lags(8) yline(0) ciopts(bstyle(outline)) data = smooth + rough
Graphs partial autocorrelations with confidence intervals and residual variance for lags 1
through 8. Draws a horizontal line at 0; shows the confidence interval as an outling, instead

Dataset MILwater. dta contains data on daily water consumption for the town of Milford, New
Hampshire over seven months from January through July 1983 (Hamilton 1985b). ’

Contains data from MILwater.dta

of a shaded area (default). pral o M
pergram y, generate(newvar) ) ele Miifg/r/c}ilc/iggily water use, 1/1/83
Draws the sample periodogram (spectral density function) of variable y and creates newvar ‘:’f; o4 o 27 Jul 2005 12:41
equal to the raw periodogram values. ,‘___;__-‘,_,fif_j_f%ffffffffifree)
prais y x1 x2 ) ) . variable name St:i;ge ?;iigfy X:éSf i
Performs Prais—Winsten regression of y on x/ and x2, correcting for first-order ST I°7°7 veriable label
autoregressive errors, prais y x1 x2, corc does Cochrane-Orcutt instead. , 22;“ Eyfg 2 gq .
smooth 73 y, generate(newvar) § year izg ¢9‘03 5:;?
Gencrates newvar equal to span-7 running medians of y, re-smoothing by span-3 running : xff'ffu7_74___1?1“!?;9? _____ Water use in 1000 gallons
medians. Compound smoothers such as “3RSSH” or *4253h,twice™ are possible. Type Sorted by: T e
help smooth, or help tssmooth . for other smoothing and filters. ﬁ
tsset date, format (d) ; . Before fgrthe.r analysis, we need to convert the month, day, and year information into a
Defines the dataset as a time series. Time is indicated by variable date, which is formatted smgle numerical index of time. Stata’s mdy () function does this, creating an clapsed-date
as daily. For“panel” data with parallel time series for a number of different units, such as ': variable (named date here) indicating the number of days since January 1, 1960
cities, tsset city year identifies both panel and time variables. Most of the generate date = mdy(month,day, year) ’ .
commands in this chapter require that the data be tsset. list in 1/5
tssmooth ma newvar = y, window(2 1 2) e
Applies a moving-average filter to y, generating newvar. The window (2 1 2) option | month  day  year _7\;;;;;‘7_&;;;?
finds a span-5 moving average by including 2 lagged values, the current observation, and .. : T ;_“I;é; **** T |
2 leading values in the calculation of each smoothed point. Type help tssmooth for 2. z 2 1983 6 og gjg; :
a list of other possible filters including weighted moving averages, exponential or double j_‘ ’ l ; i;g; 610 8403 |
E 1 5 1583 ?53 Ejgé ;

exponential, Holt-Winters, and nonlinear.
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The January 1, 1960 reference date is an arbitrary default. We clan prt())vxdg ;ni)}zz
’ i t up our data for later analyses, by using t
tandable formatting for date, and also se a for :
L:;d;:: (time series set) command to identify date as the time index variable and to specify

the %d (daily) display option for this variable.

set date format (%d)
i time v;riable: date, 01737anl983 to 31jull983

l1ist in 1/5

| month day year water dat?_¥
1 1- 1 1 1983 520 Ol?anl983
2' | 1 2 1983 600 Oann1983 |
3. | 1 3 1983 610 OBqan1983 |
4. | 1 4 1983 590 04?anl983 |
5: \ 1 5 1983 620 053an1983 |

Dates in the new date format, such as “05jan1983”, are more readab.le (tlhan tilzulllgcfsr;ylgg
numerical values such as “8405” (days since January 1, ]969). I‘f‘de;nrse/ggv:e e
formatting to produce other formats, such as “05 Jan 1983” or 01/0 th. S tant
number of variable-definition, display—flormat, anfod?rtl?,iit_f:;r\],a; tfeztrll.gegispeliay g
ith ti ies. Many of these involve ways , , an
zirgzz:: I;)l; iiatzd fun}clztions are found in t.he Data Manqgement Refzrer;cesManual and the
User’s Guide, or they can be explored within Stata by typing help é es. .
The labeled values of date appear ina graph of water against dgte, whlch shl%wls) fiay—to ay
variation, as well as an upward trend in water us¢ as surmmer arrives (Figure 13.1):

graph twoway line water date, ylabe1(300(100)900)

Figure 131
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Water use in 1000 gallons
500 600

400
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Time Series Analysis 343

Visual inspection plays an important role in time series analysis. It often helps us to see
underlying patterns in jagged series if we smooth the data by calculating a “moving average”
ateach point from its present, earlier, and later values. Forexample, a “movingaverage of'span
3” refers to the mean of' y,,, »,, and y,, . We could use Stata’s explicit subscripting to
generate such a variable:

generate water3 = (water[_n-1] + water[_n] + water[_n+l])/3

Or, we could apply the ma (moving average) function of egen:
egen water3 = ma(water), nomiss t(3)
The nomiss option asks for shorter, uncentered moving averages in the tails; otherwise, the

first and last values of water3 would be missing. The t(3) option calls for moving averages
of span 3. Any odd-number span >3 could be used.

For time series ( tsset ) data, powerful smoothing tools are available through the
tssmooth commands. All but tssmooth nl can handle missing values.

tssmooth ma moving-average filters, unweighted or weighted

tssmooth exponential single exponential filters
tssmooth dexponential double exponential filters
tssmooth hwinters nonseasonal Holt-Winters smoothing
tssmooth shwinters seasonal Holt—Winters smoothing
tssmooth nl nonlinear filters

Type help tssmooth_exponential, help tssmooth hwinters, etc. for the
syntax of each command.

Figure 13.2 graphs a simple 5-day moving average of Milford water use (water5), together
with the raw data (wafer). This graph twoway commandoverlaysaline plot of smoothed
water5 values with a line plot of raw water values (thinner line). X-axis labels mark start-of-
month values chosen “by hand” (8401, 8432, etc.) to make the graph more readable.
Readability is also improved by formatting the labels as $dmd (date format, but only month
followed by day). Compare Figure 13.2°s labels with their default counterparts in Figure 13.1.

tssmooth ma water5 = water, window(2 1 2)
The smoother applied was

(1/5)*[x(t-2) + x(t-1) + 1*x(t) + x(t+l) + x{t+2)]; ={t)= water
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graph twoway line water5 date, clwidth(thick)
|1 line water date, clwidth(thin) clpattern(solid)
|1 , ylabel(300(100)900)
xlabel (8401 8432 8460 8491 8521 8552 8582 8613,
grid format (%dmd))
xtitle("") ytitle(Water use in 1000 gallons)
legend(order (2 1) position(4) ring(0) rows(2)
label (1 "5-day average") label(2 "daily water use"))

Figure 13.2
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Moving averages share a drawback of other mean-based statistics: they have little
resistance to outliers. Because outliers form prominent spikes in Figure 13.1, we might also try
a different smoothing approach. The tssmooth nl command performs outlier-resistant
nonlinear smoothing, employingmethodsand a terminology described in Vellemanand Hoaglin
(1981) and Velleman (1982). For example,

tssmooth nl water5r = water, smoother(5)

creates a new variable named wafer5r, holding the values of water after smoothing by running
medians of span 5. Compound smoothers using running medians of different spans, in
combination with “hanning”™ (%, %2, and Y -weighted moving averages of span 3) and other
techniques, can be specified in Velleman’s original notation. One compound smoother that
seems particularly useful is called “4253h, twice.” Applying this to water, we calculate
smoothed variable waterdr:
tssmooth nl waterdr = water, smoother (4253h,twice)
Figure 13.3 graphs new smoothed values, water4r. Compare Figure 13.3 with 13.2 to see

how the 4253h, twice smoothing performs relative to a moving-average. Although both
smoothers have similar spans, 4253h, twice does more to reduce the jagged variations.
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Figure 13.3
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Sometlmes our goal in smoothing is to look for patterns in smoothed plots. With these

&a;mcular data, however, the “rough” or residuals after smoothing actually hold more interest

e can calculate the rough as the difference between data and smooth, and then graph the
results in another time plot, Figure 13.4. ’ P

generate rough = water - waterdr
label variable rough "Residuals from 4253h, twice"

graph twoway line rough date,
xlabel (8401 8432 8460 8491 8521 8552 8582 8613
grid format (%dmd)) xtitle("") '

Figure 13.4
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The wildest fluctuations in Figure 134 occur around March 27-29. Water use abruptly
dropped, rose again, and then dropped even further before returning to more usual levels. On
these days, local newspapers carried stories that hazardous chemical wastes had been
discovered in one of the wells that supplied the town’s water. Initial reports alarmed people,
but they were reassured after the questionable well was taken oftline.

The smoothing tcchniques described in this section tend to make the most sense when the
observations are cqually spaced in time. For time series withuneven spacing, lowess regression
(see Chapter 8) provides a practical alternative.

Further Time Plot Examples

Dataset atlantic.dta contains tume series of climate, ocean, and fisheries variables for the
northern Atlantic from 1950-2000 (the original data sources include Buch 2000, and others
cited in Hamilton, Brown, and Rasmussen 2003). The variables include sea temperatures on
Fylla Bank off west Greenland; air temperatures in Nuuk, Greenland’s capital city; two climate
indexes called the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO); and
catches of cod and shrimp in west Greenland waters.

Contains data freom atlantic.dta
Greenland climate & fisheries

cus: 51

Vars: - a 27 Jul 2005 12:41

3172 1,734 (89.9% of memory free)

storage display value
variable namc type format label variable label
year int Sty Year
fylltenp float %9.0g Fylla Bank temp. at 0-40m
fyllsal float 39.0g Fylla Bank salinity at 0-40m
nacktemp float %9.0g Nuuk air temperature
wNARO float %9.0¢ Winter (Dec-Mar)
Lisbon-Stykkisholmur NAO

wWAEG float %8.0g Winter (Dec-Mar) AO index
coodl float %9.0g Division 1 cod catch, 1000t
tehrimpl flecat 59.0g Division 1 shrimp catch, 1000t

Before analyzing these time serics, we tsset the dataset, which tells Stata that the

variable year contains the time-sequence information.

tsset year, yearly

sime variasble: vyear, 1950 to 2000

With a tsset dataset, two new qualifiers become available: tin (times in) and
twithin (times within). To list Fylla temperatures and NAO values for the years 1950
through 1955, type

list year fylltemp wNAO if tin(1950,1955)

Form e +
year fylltemp WNAO |
[ |

1. ] 1950 2.1 LA
2. 1 1951 1.9 -1.726 1
3. 1 1952 1.6 83 |

P
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4. ] 1953 2.1 18
S. | 1954 2.3 13
i TP I
6. | 1955 1.2 -2.52 |
P e +

The twithin qualifier works similarly, but excludes the two endpoints:

list year fylltemp wNAO if twithin(1950,1955)

b m e _
________________ T
| vear fylltemp WwNAO |

‘ __________________
------- |
2. 1951 1.9 -1.26 |
3. 1 1952 1.6 83 |
4. | 1953 2.1 .18
5. ] 1954 2.3 13

bm e __

_______________ +

Weuse tssmooth nl to define a new vari ' Ini
variable, fy//4, containing 4253 h. twi
values of filltemp (data from Buch 2000). B vicesmoothed

tssmooth nl fyllg = fylltemp, smoother (4253h, twice)
Figure 13.5 graphs raw (Hlltemp) and smoothed (f¥l4) Fylla Bank temperatures. Raw

temperatures are shown as spik iati
. pike-plot deviations from the mean (1.67 °C i
emphasizes both decadal cycles and annual variations, ( 50 his graph

graph two!:ray spike fylltemp yYear, base(1.67) yline(1.67)
'l: line fyli4 year, clpattern(solid)
+ Ytitle("Fylla Bank tem
- Lt ' perature, degrees C") ylabel
xtitle( ) xt1ck(1955(10)1995) legend (off) Y s

Figure 13,5

grees C

Fylla Bank temperature, de

1850 1960 1970 1980 1980 2000

lThe smoothed values of Figure 13.5 exhibit irregular periods of generally warmer and
cooler water, ‘Of course, “warmer” is a relative term around Greenland: these su
temperatures rise no higher than 3.34 °C (37 °F). ’ mer e
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1 led the
Fylla Bank temperatures arc influenced by a large-scale atmospherlctpatte;n E?}l,er e
NorthyAtlantic Oscillation, or NAO. Figure 13.6 graphji smfc\)[[(;tcl;zt)i terl?(]))rertz;l ;re(:)sver%aid Taoh
variable named w. . R
oothed values of the NAO (a new : . o er
iénmperature definesthe leftaxisscale, yaxis 1) ,a;dI;IAO t}:;;;g:t; k3:0ar iZOm; : l).me urther
if’ is 1 or2. Forex , .
-axi ' ecify whether they refer to axis : raw
{)-ax‘slo'pum(lso i axJ}.ls (2)) marks thezero point ofthe NAO index. Onboth a?ceslinu:}rlle -
e writ ’ ition inside
laybeilrs arc written horizontally. The legend appears at the 5 o’clock position P
space, position (5) ring(0) .
. is (1)
line fyll4 year, yaxis( . .
grapzl:;::a&; (11)-3 , angle (horizontal) nogrid az:s (i:‘is )
: vgFvylla Bank temperature, degx:ee.s , : ) . ,
}lltl‘ltllien(e E3:751(\71\(?‘34 year, yaxis (2) ytitle ("Winter I;AO :L(r:)d.exax,isazﬁzl)s)( )
- le(horizontal) axis(2))_ y 1ne. , .
ylabel (tigﬁ ..';‘“ilabel (1950 (10)2000, grid) xtick (;95"5)(5’:)011959(1))
Ji.clage;ld’:label(l "Fylla temperature') label (2 "NAQ index
position (5) ring (0))

Figure 13.6

N
[ )
winter NAO index

-
L
-

Fyila Bank temperature, degrees C

-2
____ Fyllatemperature

_____ NAQ index 3

1950 1960 1970 1980 1990 2000

i i i ther.
Overlaid plots provide a way 10 visually examine hovy several time series ve;ryo:ﬁigti her
In Figure 13.6, we see evidence of anegative correlation: hlgh—NAO periods C(;rrel pWinds o
emnpe ature's ’The physical mechanism behind this correlation involves nort erT)}/l inds e
tbeg:lpgerArctic. air and water to west Greenland during h1gh-NﬁOf$§ai?$e Serizs roi oy
1 during the later part of this ,
ture—NAO correlation became stronget . la .
ii?gzgisubn to 1997. We will return to this relationship in later sections.
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Lags, Leads, and Differences

Time scries analysis often involves lagged variables, or values from previous times. Lags can

be specified by explicit subscripting. For example. the following command creates variable
WwNAQ [, equal to the previous year’s NAO value:

generate wNAO_1 = wNAO[ n-1]

(1 missing value generated)

An alternative way to achieve the same thing. using tsset data, is with Stata’s L. (lag)
operator:

generate wNAO_1 = L.wNAO
(1 missing values generated)

Lag operators are often simpler than an explicit-subscripting approach. More importantly, the
lag operators also respect pancl data. To generate lag 2 values, use

generate wNAO 2 = L2.wNAO
(2 missing values generated)

list year wNAO wNAO_ 1 wNAO 2 if tin(1950,1954)

| year wNAO  wNAO_ 1  wNAO 2 |

| = T t
1. 1 1950 1.4 |
2.1 1951 -1.26 1.4 [
3. ] 1952 .83 -1.26 1.4 |
4 | 1953 18 83 -1.26 |
5. | 1954 13 18 83 |

We could have obtained this same list without generating any new variables, by instead typing
list year wNAO L.wNAO L2.wNAO 1if tin(1950,1954)

The L. operator is one of several that simplify the analysis of tsset datasets. Other
time series operators are F. (lead), D. (difference), and S. (seasonal difference). These
operators can be typed in upper or lowercase — for example, F2.wNAO or £2.wNAO.

Time Series Operators

L. Lagy, , (L1l. means the same thing)

L2. 2-periodlagyv , (similarly, L3.,etc. L(1/4). mecans L1. through
14.)

F. Leady., ( F1. means the same thing)

F2. 2-periodleady,, (similarly, F3., etc.)

D. Difference y, -~ v, , (D1. means the same thing)

D2.  Seconddifference (y,—y,_,)— (v, , —», -) (similarly, D3 ., etc.)

S. Seasonal difference v, — v, |, (which is the same as D.)

S2.  Second seasonal difference (v, —y,,) (similarly, S3., etc.)

In the case of seasonal differences, 812 . does not mean “12th difference.” but rather a first
difference at lag 12. For example, if we had monthly temperatures instead of yearly, we might
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nt to calculate S12.temp . which would be the differcnces between Decer;ber 2(:)(2(1
::rlnperature and December 1999 temperature, November 2000 temperatures and Novemi
1999 temperature, and so forth.

Lag operators can appeardire : .
fylltem;ga or; wNAO, including as additional predictors wNAO value

years previously, without first creating any new lagged variables.

i 7397
i Iytical commands. We could regress 19
S rediot s from one, two, and three

i i 1997
regress fylltemp wNAO L1.wNAO L2.wNAO L3.wNAO if tin (1973, )

- 25
- Number of obs
source | S8 af __%%_7_ r( 4, 20) = 4.;;
,,,,,,,,,,,, fomm—mm— = oS TT T TTTT b > F = 0.00
- : 22826 Preb
3.1884913 4 7971 : _ o477
Model | 9123 50 .174464562 R-squared - o
Residual | 3.4892 e, Adj R-squared = . ~69
——————————— fommmm oo s T T T T T = 417
N Total | 6.67778254 24 278240939 root MSE
_________________________________________________ o Intervall)
———————— P>t (95% Conf.
roef std. Brr L
fylltemp | Coel.  SEa B e
_____________ o —— = mmT T TTTTT
- 931
WD | 1688424 0412995 ~4.09 0.001 -.2549917 .3222905
u : [0043805 0421436 ot 2.ott A'gigiiZQ " 058774
L2 | -.0472993 .050851 -0.93 0.363 —’0768738 .1298102
3 [ 0264682 .0495416 0.53 0.599 _i e 81063
1 1.727913 1213588 14.24 0.000 : L ______________
cons LML TSy s T ==

Equivalently, we could have typed

regress fylltemp L(0/3) .wNAO if tin (1973,1997)
The estimated model is

predicted fylitemp,= 1 128

Coefficients on the lagged terms are not statisticall

_ 169wNAO, + .004wNAO, | - 047wNAO,_,+ .026wNAO,
y significant; it appears that current

(unlagged) values of wNAO, provide the most parsimonious predictifon. I;d:dzéf \gtg:;
i l justed R? rises from . 43,

i i del without the lagged terms, the adjuste e :

esg(rir;ﬁ: \32;; rn(l)igh however. A Durbin—-Watson test for autocorrelated errors 1S inconclusive,

m , .

but that is not reassuring given the small sample size.
dwstat

i = 6
Durbhin-watson d-statistict 5s 25) 1.42380

S T al OLS
Autocorrelated errors, commonly encountered with time scrics, m\./ahdate. the usdlilscussed
confidence intervals and tests. More suitable regression methods for time seri¢s are

later in this chapter.
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Correlograms

Autocorrelation coefficients estimate the correlation between a variable and itself at particular
lags. For example, first-order autocorrelation is the correlation between y, and y, ,. Second
order refers to Cor[v,, v, ,]. and so forth. A correlogram graphs correlation versus lags.

Stata’s corrgram command provides simple correlograms and related information. The
maximum number of lags it shows can be limited by the data, by matsize, or to some
arbitrary lower number that is set by specifying the lags () option:

corrgram fylltemp, lags(9)

~1 ¢ 1 -1 Q 1
LAG AC PARC Q Prob>Q {Autocorrelation) [Partial Autocor]
1 0.4038 0.4141 8.8151 0.0030 | —-- | ===
2 0.199% 0.0565 11.012 0.0041 |- |
3 0.0788 0.0045 11.361 0.0099 | |
4 0.0071 -0.90556 11.364 0.0z228 | |
5 -0.1623 -0.2232 12.912 0.0242 — -
6 -0.0733 0.0880 13.234 0.0385 | |
7 0.0490 0.1367 13.382 0.0633 | |-
] -0.1029 -0.2510 14.047 0.0805 | -
9 -0.2228 -0.2775% 17.243 0.045%0 - |

Lags appear at the left side of the table, and are followed by columns for the autocorrelations
(AC) and partial autocorrelations (PAC). For example, the correlation between fyilftemp , and
Svlltemp ., is 1996, and the partial autocorrelation (adjusted for lag 1) is .0565. The O
statistics (Box—Pierce portmanteau) test a serics of null hypotheses that all autocorrelations up
to and including each lag are zero. Because the P-values seen here are mostly below .05, we
can reject the null hypothesis, and conclude that fylltemp shows significant autocorrelation. If
none of the @ statistics had been below .05, we might conclude instead that the scries was
“white noise” with no significant autocorrelation.

At the right in this output are character-based plots of the autocorrelations and partial
autocorrelations. Inspectionof such plots plays a role inthe specification of time series models.
More refined graphical autocorrelation plots can be obtained through the ac command:

ac fylltemp, lags(9)

The resulting correlogram, Figure 13.7, includes a shaded area marking pointwise 95%
confidence intervals. Correlations outside of these intervals are individually significant.
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Cross-correlograms help to explore relationships between two time series. Figure 13.9
shows the cross—correlogram of wNAQO and fylitemp over 1973-97. The cross-correlation is
substantial and negative at 0 Tag, but is closer to zero at other positive or negative lags. This
suggests that the relationship between the two series is “instantaneous” (in yearly data) rather

than delayed or distributed over several years. Recall the nonsignificance of lagged predictors
from our earlier OLS regression.

xcorr wNAO fylltemp if tin(1973,1997), lags{(9) xlabel(-9(1)9,

’ CILY UMNIVYINISE=. 2 § WD sasransd Snssl S0 g

. . e
A similar command, pac, produces the graph of partial autocorrelations seen in Figur

13.8. Approximate confidence intervals (estimating the standard ;HOJ, asl 1/ \1/51; %121“51(; ei\g;}eigllrz
u h ac and pac has theloo
i 13.8. The default plot produced by bot ‘ : :
ll:;g;lrel:or Figure 13.8 we chose different options, drawing a baseline at zero correlation, and
inciiéating the confidence interval as an outline instead of a shaded area.

pac fylltemp, yline (0) lags(9) ciopts (bstyle(outllne))

Figure 13.8

grid)
Figure 13.9
Cross-correlogram

3 o
2 S
a

£
g
20 o
oo 3
c O pd
« .
Q b L
: -
2g I | L i ' o
‘58 o : s » ! & ‘ ! i ‘l ! ‘ : L} f g
2 ‘ :
2 ! : |
s | il
£R 3
3o 3
2 4
o
(&}

<] (o]
- S
‘' 9876543240123 45¢67889

Lag

If we list our input or independent variable first in the ®xcorr command, and the output

0.00 0.20 0.40

Partial autocorrelations of fylitemp
[ —

-0.20

0 2 4

95% Confidence bands [se = 1/sqrt(n)]

P —

or dependent variable second — as was done for Figure 13.9 — then positive lags denote
correlations between input at time ¢ and output at time £ +1, £ +2, etc. Thus, we see a positive
correlation of .394 between winter NAO index and Fylla temperature four years later.

The actual cross-correlation coefticients, and a text version of the cross-correlogram, can
be obtained with the table option:

xcorr WNAO fylltemp if tin(1973,1997), lags(9) table

-1 0 1

LAG CORR [Cross—correlation]
-9 ~0.0541 |
-8 -0.0786 |
-7 0.1040 !
-6 -0.0261 |
-5 -0.0230 |

-4 0.3185 I=-

-3 0.1212 |
-2 0.0053 |
-1 -0.0909 |
0 -0.6740 ———-
1 -0.13¢86 -
|
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0.0757 \
0.3940 LT
0.2464 b=
0.1100 !
0.0183 ‘
0.2699 ==l
0.3042 -

WM RO W

ARIMA Models

Autoregressive integrated moving average (ARIMA) models for time series can be estimated
through the arima command. This command encompasses simple autoregressive (AR),
moving average (MA), or ARIMA models of any order. It also can estimate structural models
that include one or more predictor variables and AR or MA ecrrors. The general form of such
structural models, inh matrix notation, is

Y, ::XIB *’P;
where v, is the vector of dependent-variable values at time ¢, X, is a matrix of predictor-variable
values (usually including a constant), and p, is a vector of disturbances. Those disturbances
can be autoregressive or moving-average, of any order. For example, ARMA(1,1) disturbances

are

[13.1]

B, —pp, 0, e, 32]

where p is the first-order autocorrelation parameter, 0 is the first-order moving average
parameter, and € is a white-noise (normal i.i.d.) disturbance. arima fits simple models as
a special case of [13.1] and [13.2], with a constant (5 ;) replacing the structural term x , .
Therefore, a simple ARMA(1,1) model becomes

yr - BO + p‘r
=B0+pptl+eer—l+€r [133]
Some sources present an alternative version. In the ARMA(1,1) case, they show ¥, as a
function of the previous y value (7, ) and the present {€,) and lagged (e, ,) disturbances:
yi:a-i—py1~1+e€r—l+€1 [134]
Because in the simple structural model y, = B, + p ., equation [13.3] (Stata’s version) is
equivalent to [ 13.4], apart from rescaling the constant ¢ = (1-p)B,.
Using arima , an ARMA(I1,1) model (equation [13.3]) can be specified in either of two
ways:
arima y, ar{(l) ma(l)
or

arima y, arima(l,0,1)

The i in arima stands for “integrated,” referring to models that also involve differencing.

To fit an ARIMA(2,1,1) model, use

arima y, arima(2,1,1)

or equivalently,
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arima D.y, ar(1l 2) ma (1)

Elthc;comlnand speciﬁes amodel in which first differences of the dependent variable (v
are a tunction of first differences one and two lags previous (v, . -1, and v .,
of present and previous disturbances (e, and €, ). o "

To estimat i i
¢ a structural model in which y, depends on two predictor variables x (present

vy " ! bt}
! v On[ , W Iy lt]l IM ( 0 ) I'S, an

-V I)
—¥,,)and also

arima y x L.x W, arima(1,0,1)

Although seasonal differencing (e.g.,
included, as of this writing arima do
seasonal models.

S512.y) and/or seasonal lags (e.g., L12.x) can be
€s not estimate multiplicative ARIMA(p,dg)(P,D 0)
Ehad) s <

nd gihmc series y is considered “stationary” ifits mean and variance do not change with time

and it O;fco/\;a]{;i;ce betwe‘eny, and y . depends only on the lag u, and not on the particula;
/. A modeling assumes that our series is stationary, or can be made stationary

formation. We can check thi ion inft

oo prop ! on. check this assumption informall

(;frllr;:gftaztt}ng tlmeA;];I((;t; for trends in level or variance. Formal statistical tests for “unit rootsz
lonary process in which p, = 1, also k “

State offers thoee op) PrOS . » @180 known as a “random walk™) also help.

tests, pperron (Phillips—Perr
Dickey Foon g ‘ p on), dfuller (augmented
, gls (augmentedDickey— '
st than Afotpes ) g ey-Fullerusing GLS, generally amore powerful

Applied to Fylla Bank temperatures, a

oot 01 PPerron ftestrejects the null hypothesis of a unit

Pperron fylltemp, lag(3)

Phillips-Perron test for unit root

Number of obs = 50
Newey~West lags = 3

oot Ij—i~7—:-k Interpolateq Dickey-Fuller —-——-—___

cearilt # Critical 5¢ Critical 10% Critical

_______ istic Value Value d& 1 .

__________________________________ 3 : alue
Z{rho) S70.871 qgiggo g, o T
-18.900 -
i / 13.300 -

__________________ 4.440 -3.580 -2.930 ig 288
* MacKinnon Approximate p-value for Z(t) = 5_555; ____________________________

"""
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dfgls fylltemp, notrend maxlag(3)

DF-GLS for fylltemp Number of obs = 47
DF-GLE mu 1% Critical 5% Critical 10% Critical
[iags]) Test Statistic Value Value Value

3 -2.304 -2.620 -2.211 -1.813

2 -2.479 -2.620 -2.238 -1.938

1 -3.008 -2.620C -2.7251 -1.959
Opt Lag (Ng-Perron seq ty = 0 [use maxlag(0)
Min SC - -.6735952 at lag 1 with RMSE .6578912
Min MAIC = -.2683716¢ at lag 2 with RMSE .6569351

For a stationary series, correlograms provide guidance about selecting a preliminary
ARIMA model:

AR(p) An autoregressive process of order p has autocorrelations that damp out
gradually with increasing lag. Partial autocorrelations cut off after lag p.
MA(g) A moving average process of order g has autocorrelations that cut off after lag

g. Partial autocorrelations damp out gradually with increasing lag.

ARMA(p,g) A mixed autoregressive-moving average process has autocorrelations and
partial autocorrelations that damp out gradually with increasing lag.

Correlogram spikes at seasonal lags (for example, at 12, 24, 36 in monthly data) indicate a
seasonal pattern. Identification of seasonal models follows similar guidelines, but applied to

autocorrelations and partial autocorrelations at seasonal lags.
Figures 13.7-13.8 weakly suggest an AR(1) proccss, so we will try this as a simple model

for filltemp.
arima fylltemp, arima(l,0,0) nolog

ARIMA regression

Sample: 1950 to 2000 Number of obs = 31
Wwald chi2 (1) = 7.53
Log likelihood = -48.66274 Prob > chi?2 = 0.0061
| OPG
fylltemp | Coef std. Err z P>|z| [95% Conf. Interval]
_____________ b ol
fylltemp |
_cons | 1.68923 1513096 11.16 0.000 1.392669 1.985792
,,,,,,,,,,,,, b o o el
ARMA !
ar |
Ll .4095759 .1492491 2.74 0.006 .1170531 .7020987
,,,,,,,,,,,,, e el
/sigma | .627151 .0601859 10.42 0.000 .5091889 .7451131

After we fitan arima model, its cocfficients and other results are saved temporarily in

Stata’s usual way. For example, to see the recent model’s AR(1) coefficient and s.¢., type
display [ARMA] b[Ll.ar]
4095759

display [ARMA]_se{Ll.ar]
.14924909
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_ (1)"366 ARh(‘l) co'efﬁcient. in.this example is statistically distinguishable from zero (¢ = 2.74

fppgar t), :)v ich glvels ong md[llcatlon of model adequacy. A second test s whether the residl.xals,
0 be uncorrelated “white noise.” We can obtain residuals I

other case statistics) after arima through predict : uals falso predicted values, and

Predict fyllres, resid

corrgram fyllres, lags (15)

LAG C o .

___________ ff_ﬁ_,‘_,féj_‘_ Q Prob>¢ [Autocorrelation} [PartialOAutocor;
1 -0.0173 -0.017%¢ .0162 0.8987 T T
2 0.0467 0.0465 13631 0.93491 ] |

3 0.0386 0.0437 222029 0.9742 | F

4 0.0413 0.049¢ -31851  0.988s | |

5 -0.1834 -0.245¢ 2.2955% 0.8069 - ‘

6 -0.0498 ~0.0602 2.4442  0.8747 | |

7 0.1532 0.2156 3.8852 0.7929 | - |

8 -0.0567 -~0.0726 4.087 0.8492 | u

9 -0.2055 -0.3232 6.8055 0.6574 -~ '

10 -0.1156 -0.2418 7.6865 0.6594 | .

1} 0.1397 0.2794 9.0051 0.6214 | - °

12 -0.0028 J.1606 9.0057 0.7024 | =

13 0.1091 0.0647 9.8518 0.7060 | i

14 0.1014 -0.0547 10.603 0.7169 | ‘

15 -0.0673 -0.2837 10.943 0.7566 :

corrgram’s () test finds no significant autocorrel
could obtain exactly the same result b

for 15 lags.

wntestq fyllres,

Portmanteau test for

lags (15)

white noise

Portmanteau
Prob

By these criteria, our AR(1) or ARTMA
versions, with MA or higher-order AR t

A similar AR(1) model fi
however, information about
improves the predictions. For this model,

(Q)
chiZ(15)

statistic

the winter

we in

10.9435
0.7566

term to account for autocorrelation of errors.

: ation among residuals out to lag 15. We
yTequestinga wntestq (white noise test O statistic)

(1,0,0) model appears adequate. More complicated
erms, do not offer much improvement in fit.

ts fylltemp over just the years 1973-1997. D
North Atlantic Oscillation (w
clude wNAO as a predictor but keep an AR(1)

uring this period,
NAQ) significantly
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arima fylltemp wNAO if tin(1973,1997), ar(l) nolog

ARIMA regression

Sample: 1872 tao 1997 Number of obs = 25
Wald chiz(2) = 12.73
Log likelihood = =-10.3481 Prob > chiZ = 0.0017
| OPG
fylltemp | Coef Std. Err z Prlz| [85% Conf. Interval)}
_____________ o
fylltemp |
WwNRO | ~.1736227 .0531688 ~3.27 0.001 -.2778317 -.0694138
_cons | 1.703462 . 1348599 12.63 0.000 1.439141 1.867782
————————————— e e e e e e e e e e e e e e e —m — e -
ARMA
ar I
L1 | .29635222 .237438 1.25 0.212 -.1688478 .7618921
_____________ B e e e
/sigma | 36534 .0654008 5.59 0.000 .2371767 .4935432

predict fyllhat
(option xb assumed; predicted values)

label variable fyllhat "predicted temperature’
predict fyllres2, resid
corrgram fyllres2, lags(9)

-1 0 1 -1 0 1
LAG AC PAC Q Prob>»Q [Autocorrelation] {Partial Autocor]

-0.0234  0.0722
0.2658  ©0.3062
-0.0726 -0.2236

1 0 |
1 0 |
1 0 I
2 0 |
-0.1690 -0.2334  4.0447 0.5430 - -
4 0 |
8 0 !
8 0 [
-0.1623 -0.0999 1 0 |

O Doy U W N

wNAQ has a significant, negative coefficient in this model. The AR(1) coefficient now is
not statistically significant. 1f we dropped the AR term, however, our residuals would no lenger
pass corrgram ’s test for white noise. Figure 13.10 graphs the predicted values, fillhat,
together with the observed temperature series fylftemp. The model does reasonably well in
fitting the main warming/cooling episodes and a few of the minor variations. To have the y-axis
labels displayed with the same number of decimal places (0.5, 1.0, 1.5,.., instead of .5, 1, 1.5,...)
in this graph, we specify their formatas %2.1£.
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graph twovay line fylltemp year if tin (1973, 1997)
I line fyllhat year if tin (1973, 1987)
'Liti y%;bel(.S(.f)Z.S, angle(horizontal) format(%Z.lf))
{ e ("Degrees C") xlabel(1975(5)1995, grid) =xtitle("")
egend(label (1 "observed temperature")

l n - .
abel (2 "model prediction") position(5) ring(0) col (1))

a5 Figure 13.10

20

Degrees C
2]

observed temperature
_____ model prediction

0.5

1975 1980 1985 1990 1995

A techrpque called Prais—~Winsten regression ( prais ), which corrects for first-order
autoregressive errors, can also be illustrated with this example

Prais fylltemp wNAO if tin(1973,1997), nolog

Prais-Winsten AR(1l) regression -- iterated estimates

S
__ﬁ_,_-?Effﬁ_l,__e_k_?f_k____ ?f MS Number of obs = 25
Model | 3.35819258 1 3 scpigqes bron | ) “ooon
roaiolel 1 3.358192s58 Frob > F = 0.0
ual | 3.33743545 23 .145105889 R-squared - O.SSSé
_____________ +_—_‘_-__—_~—7_¥_~‘_7_—-__ = -
————— Adj R~ =
Total | 6.69562803 24 .278984501 Roit Mgguared = Oégggi
fyllitemp | Coef _7_g;; _______________________________________________
B 9
_____________ +_,__e_,__v_,________ff____,__E P>t [95% Conf Interval]
NAO - 17356 037567 4.62  0.000 - seisaan L IIITTTC
:Ons ; . &37356 .037567 -4.62 0.000 -.2512733 -.0958468
L _ . 703436 .1153635 14.77 0.000 1.4647 1.9
_________ S S S . 76 1.94209¢6
rho | -2951576 T e e
Durbin~Watson statistic (original) 1?;;;;gg ________________________________

Durbin-Watson statistic (transformed) 1.789412

prais isanolder method, more specialized than arima

: . lts regression-based standard
errors assume that rho (p) is known rather than estimated. Bec

ause that assumption is untrue,
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the standar
conservativ
1.789). In

d errors, tests, and confidence interval
e, especially in small samples. prais
this example, the Durbin-Watson test

significant first-order autocorrelation remains.

s given by prais tend to be anti-
provides a Durbin—Watson statistic (d =
agrees that after fitting the model, no

Introduction to Programming

As mentioned in Chapters 2 and 3, we can create a simple typc of program by writing any
sequence of Stata commands in a text (ASCII) file. Stata’s Do-file Editor (click on Window ~
Do-file Editor or the icon <& ) provides a convenient way to do this. After saving the do-file,

we enter Stata and type a command with the foorm do filename that tells Stata to read
filename.do and execute whatever commands it contains. More sophisticated programs are
possible as well, making use of Stata’s built-in programming language. Many of the commands
used in previous chapters actually involve programs written in Stata. These programs might
have originated either from Stata Corporation or from users who wanted something beyond
Stata’s built-in features to accomplish a particular task.

Stata programs can access all the existing features of Stata, call other programs that call
other programs in turn, and use model-fitting aids including matrix algebra and maximum like-
lihood estimation. Whether our purposes are broad, such as adding new statistical techniques,
or narrowly specialized, such as managing a particular database, our ability to write programs
in Stata greatly extends what we can do.

Substantial books (Stata Programming Reference Manual, Mata Reference Manual,
Maximum Likelihood Estimation with Stata) have been written about Stata programming. This
engaging topic is also the focus of periodic NetCourses (see www.stata.com) and a section of
the User's Guide. The present chapter has the modest aim of introducing a few basic tools and
giving examples that show how these tools can be used.

Basic Concepts and Tools

Some elementary concepts and tools, combined with the Stata capabilities described in earlier
chapters, suffice to get started.

Do-files

Do-files are ASCII (text) files, created by Stata’s Do-file Editor, a word processor, or any other
text editor. They are typically saved with a .do extension. The file can contain any sequence
of legitimate Stata commands. In Stata, typing the following comimand causes Stata to read

filename.do and execute the commands it contains:

do filename

361
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0. including the last, must end with a hard return — unless we

Each command in filename.d
#delimit command. For

have reset the delimiter to some other character, through a
example,

#delimit ;
o that Stata does not consider a line finished
lon as delimiter permits a single command
riage return” as the usual

This sets a semicolon as the end-of-line delimiter, s
until it encounters a semicolon. Setting the semico
to extend over more than one physical line. Later, we can resct “car
end-of-line delimiter by typing the following command:

#delimit cr

Ado-files

Ado {automatic do) files are ASCII files containing sequences of Stata commands, much like
do-files. The difference is that we need not type do filename in order to run an ado-file.

Suppose we type the command

clear

As with any command, Stata reads this and checks whether an intrinsic command by this name
exists. Ifa clear command does not exist as part of the base Stata executable (and, in fact,
it does not), then Stata next searches in its usual “ado” directories, trying to find a file named
clear.ado. 1f Stata finds such a file (as it should), it then executes whatever commands the file
contains. Ado-files have the extension .ado. User-written programs commonly go in a
directory named C:\ado\personal, whereas the hundreds of official Stata ado-files get installed
in Cstata\ado. Type sysdir ftoseead list of the directories Stata currently uses. Type
help sysdir or help adopath for advice on changing them.

The which command reveals whether a given command really is an intrinsic, hardcoded
Stata command or one defined by an ado-file; and if it is an ado-file, where that resides. For

example, logit isa built-in command, but the logistic command is defined by an ado-

file named logistic.ado:
which logit

built-in command: logit

which logistic
C:\STATA\ado\base\l\logistic.ado
*1 yersion 3.1.9 0loct2002

This distinction makes no difference to most users, because logit and logistic work

with similar ease and syntax when called.

Programs

Both do-files and ado-files might be viewed as types of programs, but Stata uses the word
“program” in a NArrower sense, to mean a sequence of commands stored in memory and
executed by typing a particular program name. Do-files, ado-files, or commands typed
interactively can define such programs. The definition begins with a statement that names the
program. For example, to create a program named count5, we start with

program countb
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. .

end

S = i
rogra 1n memo a (1 W l 1 1t time we t ](’g]al“ S name asaCOmmand.

Progr 1V i
o k%loa;]jvﬁiftictlvcly makc new commands available within Stata, so most users do not need
er a given command comes from Stata itself or from an ado-file-defined program

As we st i
ncomplete Ora‘rt :o w‘rlte a new program, we often create preliminary versions that are
just unsuccessful. The program drop command provides essential help

here, allowi
exan; | wing us to clear programs from memory so that we can define a new version Fo
ple, to clear program count5 from memory, type r

program drop count5

To clear all programs (but not the data) from memory, type
program drop _all

Local Macros

Macr
Mac ((1): fflrrle ;arr;es {(up to 31 characters) that can stand for strings, program-defined results, or
ed values. A local macro exists only within the program that defines it, and can;]ot

local iterate = 0
To refer to the contents of a | in thi
. . ocal macro (0 in this example), pl ithi
left and right single quotes. For example, ple).place the macro name withie

o display “iterate'’

Thus, to incrcase the value of iterate by one, we write
3

local iterate = “iterate’ + 1

Global Macros

Gl imi

be(l)llzzhngacrohs are similar to local macros, but once defined, they remain in memory and can

be s do);j ;)t er pr((?gramz. 1;0 refer to a global macro’s contents, we preface the macro name
r sign (instead of enclosing the name i i ingle

e g in left and right single quotes as done with
global distance = 73
display $distance * 2
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Version

Stata’s capabilities and features have changed over the years, Consequently, programs written
for an older version of Stata might not run directly under the current version. The version
command works around this problem so that old programs remain usable. Once we tell Stata
for what version the program was written, Stata makes the necessary adjustments and the old
program can run under anew version of Stata. For example, if we begin our program with the
following statement, Stata interprets all the program’s commands as it would have in Stata 6:

version 6

Comments

Stata does not attempt to execute any line that begins with an asterisk. Such lines ¢an thercfore
be used to insert comments and explanation into a program, or interactively during a Stata

session. For example,
* This entire line is a comment.
Alternatively, we can include a comment within an executable line. The simplest way to do so
is to place the comment after a double slash, // (with at least one space before the double
slash). For example,
summarize income education // this part is the comment
A triple slash (also preceded by at lcast one space) indicates that what follows, to the end of the
line, is a comment; but then the following physical line should be executed as a continuation
of the first. For example,
summarize Iincome education /// this part is the comment
occupation age
will be executed as if we had typed
summarize Income education occupation age
With or without comments, the triple slash provides an easy way to include long command lines
inaprogram. Forexample, the following lines would be read asone table command, even
though they are separated by a hard return.
table gender kids school if contam==1, contents (mean lived ///
median lived count lIived)
If our program has more than a few long commands, however, the #delimit ; approach
(described earlier; also see help delimit ) might be casier to write and read.
It is also possible to include comments in the middle of a command line, bracketed by /*
and */ . Forexample,
summarize Income /* this is the comment */ education occupation
If one line ends with /* , and the next begins with */ | then Stata skips over the line break
and reads both lines as a single command — another line-lengthening trick sometimes found
in programs.

i
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Looping

;here are a number of ways to create program loops. One simple method employs the
crvalues command. For example, the following program counts from 1 to 3.

* Program that counts from one to five

program countS5
version 8.0
forvalues i = 1/5 {
display i
]
end

5 f1_31y typ.mg these commands, we define program counts5. Alternatively, we could use the
o-file Editor to save the same series of commands as an ASCIIfile named countS.do. The
typing the following causes Stata to read the file: o "

do counts

Either way, by defining program count5 we make this available as a new command:
count5

U s o N =

The command

forvalues i = 1/5 {

assigns to local macro i the consecutive integers from 1 through 5. The command
display ‘i

shows the contents of this macro. The name i i i i
. 18 arbitrary. A slightly diff; i
would allow us to count from 0 to 100 by fives (0, 5, 10, ... I~>IIOO): shtly diffrent notation

forvalues j = 0(5)100 {

The steps between values need not be inte
gers. To count fi 4 i
(4.00,4.01,4.02, ..., 5.00), writc 1om 103 by increments of .01

forvalues k = 4(.01)5 ¢

Apy lines containing valid Stata commands, between the opening and closing curly brackets { }
;vlll be executed_repeatedly for each of the values specified. Note that nothing (on that line)’
ollows the opening bracket, and that the closing bracket requires a line of its own

The .foreac.h command takes a different approach. Instead of specifying a set of
consecutive numerical values, we give a list of items for which iteration occurs. These items

could be variables, files, strin i
. , gs, or numerical values. T hel
syntax of this command. g P foreach o see the

fo rvalue; and foreach create loopsthat repeat for a pre-specified number of times
If we want loopmg to continue until some other condition is met, the while command is..
useful. A sef:tlon of program with the following general form will repeatedly execute th
commands within curly brackets, so long as expression evaluates to “true™ ’ )
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while expression {
command A
command B
}

command Z

As in previous examples, the closing bracket } should be on its own separate line, not at the

end of a command line.

When expression evaluates to “false,
command Z. Parallel to our previous examp
to display onscreen the iteration numbers from 1 through 6:

» Program that counts from one to S1IX
program counté
version 8.0
local iterate =1
while “iterate' <= 6 {
display “iterate’
local iterate = “iterate' + 1
1
end

» the looping stops and Stata goes on to execute
le, here is simple program thatuses a while loop

leofa while loopappears inthe gossip.ado program described later in this

N e b e about programming loops.

chapter. The Programming Reference Manual contains mor

If...else .
The if and else commands tell a program to do one thing if an expre
something else otherwise. They are set up as follows:

ssion is true, and

if expression |
command A
command B

}
else {
command Z

}

For example, the following program segment chec
span is an odd number, and informs the user of the result.

if int ('span'/2) !'= {(“span' - 1)/2 { .
display "span is NOT an odd number

ks whether the content of local macro

¥
else { )
display "span IS an odd number

Arguments
Programs define new commands. In some instances (as with the carlier example, count5),

i ime it i we
we intend our command to do exactly the same thing each time it is used. Oftgn, hov:irel:fer,
i a3 fed by areuments such as variable names or options. lhere ar¢

Introduction to Programming 367

two ways we can tell Stata how to read and understand a command line that includes arguments.
The simplest of these is the args command.

The following do-file (/istres/.do) defines a program that performs a two-variable
regression, and then lists the observations with the largest absolute residuals.
* Perform simple regression and list observations with #
* largest absolute residuals.
* listresl Yvariable Xvariable # IDvariable
program listresl, sortpreserve
version 8.0
args Yvar Xvar number id
guietly regress " Yvar' ‘Xvar'
capture drop Yhat
capture drop Resid
capture drop Absres
gquietly predict Yhat
gquietly predict Resid, resid
quietly gen Absres = abs(Resid)
gsort -Absres
drop Absres
list 'id' ‘Yvar' Yhat Resid in 1/ number'
end

The line args Yvar Xvar number id tells Statathatthe command listresid
should be followed by four arguments. These arguments could be numbers, variable names,
or other strings scparated by spaces. The first argument becomes the contents of a local macro
named Yvar,the second a local macro named Xvar ., and so forth. The program then uses
the contents of these macros in other commands, such as the regression:

quietly regress “Yvar' ‘Xvar'

The program calculates absolute residuals (4bsres), and then uses the gsort command
(followed by a minus sign before the variable name) to sort the data in high-to-low order, with
missing values last:

gsort -Absres

The option sortpreserve on the command line makes this program “sort-stable”: it
returns the data to their original order after the calculations are finished.

Dataset nations.dta, seen previously in Chapter 8, contains variables indicating life
expectancy (life), per capita daily calories (food), and country name (country) for 109 countries.
We can open this file, and use it to demonstrate our new program. A do command runs do-
file listresi.do, thereby defining the program listresl:

do listresl.do
Next, we use the newly-defined 1istresl command, followed by its four arguments.
The first argument specifies the y variable, the second x, the third how many observations to

list, and the fourth gives the case identifier. In this example, our command asks for a list of
observations that have the five largest absolute residuals.

listresl life food 5 country
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| country life Yhat Refi?Ai
1. \ Libya 6 76.69201 -16.6%011
2. | PBhutan 44 60.49577 -16.48577
3. | Panama 72 58.13118 13.8688§
4, | Malawi 45 58.58232 *13.582§
5. | Ecuador 66 52.45305 13.54695

predicted in Libya, Bhutan, and Malawi. Conversely, life

i ies are lower than .
e e i Pamama an dor are higher than predicted, based on food supplies.

expectancies in Panama and Ecua

Syntax )
complicated but also more powerful way to read a

% command provides a more al .
command i ; d listres2.do is similar to our previous example, but

command line. The following do-file name
ituses syntax instead of args:

* perform simple or multiple regression ang llit
* observations with # largest absolute residua std(varname)]
* listres2 yvar xvarlist [if] [inl, number (#) [1
prograrm listres2, sortpreserve
version 8.0 . _
syntax varlist(min=1) [if] {in] .,
marksample touse
quietly regress “varlist' if
capture drop Yhat
capture drop Resid
capture drop Absres e eowser
i redict Yhat 1 .
ziiiiii Zredict Resid if ‘togse', resid
gquietly gen Absres = abs(Resid)
gsort —Absres

drop Absres . \
1ist "~id' 1' Yhat Resid In 1/ number'

Number (integer) [Id(string)]

“touse'

end

1istres2 hasthesame purpose asthe earlier listresl: it perfqrms regression, threari
lists observations with the largest absolute residuals. This newer version cont'altnsd iz\;\e” o
improvements, however, made possible by the syntax comrp;nd. It lis n(.)tt }festrlcnfl:] oo
i i ] 1. 1listres2 will work with any
variable regression, as was listresl : o
predictor variables, including none (in which case, predicted valu;s equta_J th? miegn Zi é}, e
1 iati listres2 permits opliona
residuals are deviations from the mean). : . : ' . . o
qualifiers. A variable identifying the observations 1s optional with listres2, instead

being required as it was with listresl. Forexample, we could regress life expectancy on

. . . p
food and energy, while restricting our analysis to only those countries where per capita GN

.is above 500 dollars:

s
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do listres2.do

listres2 life food energy if gnpcap > 500, n{(6) i{country)

B et T e m - +
| country life Ynat Resid |
fmmmm e e e e e |
1. | YemenPDR 46 61.349%4 ~-15.34964 |
2. | YemenAR 45 59.85839 -14.85839
3.0 Libvya &0 73.62516 ~13.62516
4. | S Africa 55 67.9146 -12.92146
5. | HongKong 76 64,64022 11.35978

e e e et I
6 | Pariama 72 61.77788 10.22212

e - +

The syntax line in this example illustrates some general features of the command:
syntax varlist{(min=1) [if] [in], Number(integer) [Id(string)]
The variable listfora 1istres2 command isrequired to contain at least one variable name
(varlist {(min=1) ). Square brackets denote optional arguments — in this example, the
if and in qualifiers, and also the 1id () option. Capitalization of initial letters for the
options indicates the minimum abbreviation that can be used. Because the syntax line in

our example specified Number (integer) Id(string), an actual command could be
written:

listres2 life food, number (6) id(country)
Or, equivalently,

listres2 life food, n(6) 1i(country)

The contents of local macro number are required to be an integer, and id is a string (such
as country, a variable’s name).

This example also illustrates the marksample command, which marks the subsample
(as qualified by if and in)to be used in subsequent analyses.

The syntax of syntax is outlined in the Programming Manual. Experimentation and
studying other programs help in gaining fluency with this command.

Example Program: Moving Autocorrelation

The preceding sections presented basic ideas and example short programs. In this section, we
apply those ideas to a slightly longer program that defines a new statistical procedure. The
procedure obtains moving autocorrelations through a time series, as proposed for ocean-
atmosphere data by Topliss (2001). The following do-file, gossip.do, defines a program that
makes available a new command called gossip. Comments, in lines that begin with * or
in phrases set off by // , explain what the program is doing. Indentation of lines has no effect
on the program’s execution, but makes it easier for the programmer to read.

capture program drop gossip // FOR WRITING & DEBUGGING; DELETE LATER

program gossip

versicn 8.0

* Syntax requires user to specify two variables (Yvar and TIMEvar), and
* the spar of the moving window. Optionally, the user can ask to generate
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to draw a graph, or both.

* a new variable holding autocorrelations,
[GENerate{string) GRaph]

syntax varlist(min-=1 max=2Z numeric), SPan{integer)
if int( span'/2) != ('span' - 1)/2 {

display as crror "Span must be an odd integer"
}
else {
* The first variable in ‘varlist' becomes Yvar, the second TIMEvar.
tokenize ‘varlist'

local Yvar "1

local TIMEvar "2°'
tempvar NEWVAR
gquietly gen 'NEWVAR' =

local miss = 0
spanlo and spanhi are local macros holding the observation number at the

* low and high ends of a particular window. spanmid holds the observation
* number at the center ¢f this window.

local spanlo = 0

local spanhi = “span'

local spanmid = int( span'/2)

while ‘spanlo' <= _N -"span' {
local spanhi = “span' + ‘spanloc’
local spanloc = “spanlo' + 1
local spanmid = “spanmid' + 1

* The next lines check whether missing values exist within the window.
* If they do exist, then no autocorrelation is calculated and we
* move on to the next window. Users are informed that this occurred.
quietly summ “Yvar' in “spanlo'/ spanhi'
if r(N) != ‘span' |{
local miss = 1
}
* The value of NEWVAR in observation “spanmid' is set equal to the first
row, first column (1,1) element of the row vector of autocorrelations

r (AC) saved by corrgram,

* %

else |
quietly corrgram “Yvar' in “spanlo'/ spanhi', lag(l)
quietly replace "NEWVAR' = el(r(AC),1l,1) in “spanmid’

}
}
if "'graph'" !
The fellowing graph command illustrates the use of comments to cause
so it reads the next two lines as if

= me o

*

*

Stata to skip over line breaks,

they were one,
graph twoway spikxe “NEWVAR' "TIMEvar', yline(0) ///

*

ytitle ("First-order autocorrelaticons of “Yvar' (span “span')'™)
}
if "miss' == 1 {
display as error "Caution: missing values exist"”
]
if "'generate'™ = "" (|
rename "NEWVAR' “generate’
label variable “generate' ///
"First-order autocorrelations of "Yvar' {(span “span'}"

end

As the comments note, gossip requirestime series ( tsset ) data. From an existing
time series variable, gossip calculates a second time series consisting of lag-1
autocorrelation coefficients within a moving window of observations — for example, a moving
9-year span. Dataset ngo.dfa contains North Atlantic climate time series that can be used for

illustration:
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Contains data from C:\data\nac.dta

obs;: 159
North Atlantic Oscillation g
mean air temperature at
vares . Stykkisholmur, Iceland
‘ 1 Aug 2005 190:
—flze 3,498 (99.9% of memory free) ? veee
storage display v;i;; ____________________________________
variable name type format label variable label
year int ey T e
sty Yea
wgig4 float %9.0g W?:Eer N&AO
w flo % i
e flozi g gg Winter NAO smoothed
omed ot ae Og Mean air temperature (C)
:9.0g Mean air temperature smoothed
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frOmT?;é‘vlarlable temp records anpua] mean air temperatures at Stykkisholmur in west Iceland
ot thest: 3999{‘ temp4. contains smoothed values of remp (see Chapter 13). Figure 14.1
Wo time series. To visually distinguish between raw ( . -
: temp) and
](temp4)‘ Varlellbles., we connect the former with very thin lines, clwidth (i)thin)m;(:g};lel:
atter with thick lines, clwidth (thick). Type help linewidthstyle fo; a list of

other line-width choices.

grapTItwi?ay line temp year, clpattern(solid) clwidth(vthin)
! 1ne.temp4 year, clpattern(solid) clwidth(thick)
| B ytltle(”Temperature, degrees C") legend (off)

T Figure 14.1
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To calculate and graph a series of autocorrelations of temp, within a moving window of 9

years, we type the following commands. They produce the graph shown in Figure 14.2.



372 Statistics with Stata

do gossip.do

gossip temp year, span(9) generate(autotemp) graph

Figure 14.2

5

First-order autocorrelations of temp (span 9)
0
|

-5

1850 1900 1850 2000
Year

In addition to drawing Figure 14.2, gossip created a new variable named autotemp:

describe autotemp

storage display value ‘
variable name type format label variable label
_-;-;_;g—_ii‘—77;I;g;__7; Og rirst-order autocorrelations of
autotem 9

temp (swan 9)

| year temp autotemp |
| —==———m—m T T T T |
1 | 1841 2.73 1
2 | 1842 4.34
3 | 1843 2.97
4 | 1844 3.41 o
5 | 1845 3.62 -.2324837
[ttt |
6. | 1846 4.28 -.0883512 |
7. 1 1847 4,45 -.0194607 |
8. | 1848 2.32 .0175247 |
9. | 1849 3.27 -.03303 |
10, | 1850 3.23 0181154 |
e itttk +

autotemp values are missing for the first four years (1841 to 1844). In 1845, the autotemp
value (—.2324837) equals the lag-1 autocorrelation of temp over the 9—yez%r span from 1841 to
1849. This is the same coefficient we would obtain by typing the following command:
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corrgram temp in 1/9, lag(l)

-1 0 1 -1 0 1
LAG AC PARC Q Prob>Q [Autocorrelation] [Partial Autocor]

1 -0.2325 -0.23%8 .66885 0.4135 -1

In 1846, autotemp (—.0883512) equals the lag-1 autocorrelation of temp over the 9 years from
1842 to 1850, and so on through the data. gutotemp values are missing for the last four years
in the data (1996 to 1999), as they are for the first four.

The pronounced Arctic warming of the 1920s, visible in the temperatures of Figure 14,1,
manifests in Figure 14.2 as a period of consistently positive autocorrelations. A briefer period
of positive autocorrelations in the 1960s coincides with a cooling climate. Topliss (2001)

suggests interpretation of such autocorrelations as indicators of changing feedbacks in ocean-
atmosphere systems.

The do-file gossip.do was written incrementally, starting with input components such as
the syntax statement and span macros, running the do-file to check how these work, and then
adding other components. Not all of the trial runs produced satisfactory results. Typing the
following command causes Stata to display programs line-by-lin¢ as they execute, so we can
see exactly where an error occurs:

set trace on

Later, we can turn this feature off by typing

set trace off

gossip.do contains a first line, capture program drop gossip,thatdiscardsthe
program from memory before defining it again. This is helpful during the writing and
debugging stage, when a previous version of our program might have been incomplete or
incorrect. Such lines should be deleted once the program is mature, however. The next section
describes further steps toward making gossip available as a regular Stata command.

Ado-File

Once we believe our do-file defines a program that we will want to use again, we can create an

ado-file to make it available like any other Stata command. For the previous example,
gossip.do, the change involves two steps:

1. With the Do-file Editor, delete the initial “DELETE LATER” line that had been inserted
to streamline the program writing and debugging phase. We can also delete the comment

lines. Doing so removes useful information, but it makes the program more compact and
easier to read.

2. Save our modified file, renaming it to have an .ado extension (for example, gossip.ado), in
anew directory. The recommended location is in C:\ado\personal; you might need to create
this directory and subdirectory if they do not already exist. Other locations are possible,

but review the User’s Manual section on “Where does Stata look for ado-files?” before
proceeding.

Once this is done, we can use gossip as a regular command within Stata. A listing of
gossip.ado follows.
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* versicn 2.0 y

*1 L. Hamilton, Statistics with Stata (2004)

program gossip

version 8.0 ‘ ‘

syntax varlist{min=1l max=2 numeric), SPan(integer)

if int( span'/2} ' ('span’ - 1}/2 A ‘ .,
digplay as error "Span must pbe an odd integer

[GENerate {string) GRaph]

}
else {
tokenize ‘varlist!
local Yvar 17
local TIMEvar “2f
tempvar NEWVAR
quietly gen “NEWVAR' —

local miss = 0

local spanlc = 0

leocal spanhi = "span'

local spanmid = int( span'/2)

while 'spanlo' <= N -'span' |
lccal spanhi = “span' + ‘spanlo’
local spanlo = “spanlo' + 1

‘spanmid' + 1

local spannid ] L
var' in ‘spanlo'/ spanhi

gquietly surm
if r(N) != “sp
local miss

vl

n' |
1

W

}

else |

gquietly corrgram “Yvar' in “spanlo'/ spanhi', lag(l)
. Ca Do
quietly replace "NEWVAR' = el (r(aCj),1,1) in spanmid
}
}
SF "ograph'" 1= v
graph twoway spixe "~NEWVAR' "TIMEvar', yline(0) /// o
vtitle("First-order autocorrelations of "Yvar' (span “span')")
}
if ‘miss' == 1 { . . . §
display as error "Caution: missing values exist
}
if "'generate'" |- "" |

rename ~NEWVAR' "generate!
lzbel wvariable "generate' /// ) ) o
"First-order autccorrelations of “Yvar' (span " span')

end

The program could be refined further to make it more ﬂexible, .elegant, and usgr-fricndlly.
Note the inclusion of comments stating the source and “version 2.0” in the first two hpes, whllch
bothbegin *! . The commentrefers to version 2.0 of gossip.ado, not State'l (an e?rller version
of gossip.ado appeared in a previous edition of this book). The Stgta version suitable for th:j
program is specified as 8.0 by the version commande'l few lines la_ter. Although the *!
comments do not affect how the program runs, they are visible toa which command:

which gossip
c:\ado\perscnall\gossip.ado

* ! version 2.0 .
> L. Hamilton, Statistics with Stata (2004

Once gossip.ado has been saved in the C:\ado'personal directory, the comm?nd go;sip
could be used at any time. If we are following the steps in this chapter, which previously
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defined a preliminary version of gossip, then before running the new ado-file version we
should drop the old definition from memory by typing

Program drop gossip

We are now prepared to run the final, ado-file version. To see a graph of span-15
autocorrelations of variable wNAQ from dataset nao.dta, for example, we would simply open
nao.dta and type

- gossip wNAO year, span(15) graph

Help File

Help files are an integral aspect of using Stata. For a user-written program such as gossip.ado,
they become even more important because no documentation exists in the printed manuals, We
can write a help file for gossip.ado by using Stata’s Do-file Editor to create a text file named
gossip.hip. This help file should be saved in the same ado-file directory (for example,
C:\ado'personal) as gossip.ado.

Any text file, saved in one of Stata’s recognized ado-file directories with a name of the
form filename.hip, will be displayed onscreen by Stata whenwe type help filename. For
example, we might write the following in the Do-file Editor, and save it in directory
C:ado\personal as file gossip 1. hip. Typing help gossipl atany time would then cause
Stata to display the text.

help for gossip L. Hamilton

Moving first-order autocorrelations

gossip yvar timevar, span{#) | generate (newvar) graph ]
Description

calculates first-order autocorrelations of time series

yvar, within a moving window of span #. For example, if we
specify span(7) gen(new), then the first
through 3rd values of new are missing. The 4th value of new ‘

equals the lag-1l autocorrelation of yvar across observations 1
through 7. The 5th value of new equals the lag-1 autocorrelation
of yvar across observations 2 through 8, and so forth. The last
3 values of new are nissing. See Topliss (2001) for a ratiocnale
and applications of this statistic to atmosphere-ocean data.
Statistics with Stata (2004) discusses the gossip program itself.

gossip requires tsset data. timevar is the time
variable to be used for graphing.

Options
span (#) specifies the width of the window for
calculating autocorrelations. This option is required;

# should be an odd integer.

gen(newvar) creates a new variable holding the
autocorrelation coefficients.
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graph requests a spike plot of lag-1 autocorrelations vs.
timevar.

Examples

gossip water month, span(13) graph
gossip water menth, span(9) gen(autowater)
gossip water month, span{l7) gen (autowater) graph

References

Hamilton, Lawrence C. 2004. Statistics with Stata. Pacific Grove,
CA: Duxbury.

Topliss, Brenda J. 2001. "climate variability I: A conceptual approach to
ocean-atmosphere feedback.™ 1In Abstracts for AGU Chapman Confe;ence, The
North Atlantic Osciliation, Nov. 28 - Dec 1, 2000, Ourense, Spain.

Nicer help files containing links, text formatting, dialog boxes, and .other features can be
designed using Stata Markup and Control Language (SMCL). All.ofﬁ‘mal Stata help ﬁlles, as
well as log files and onscreen results, employ SMCL. The following 1s an SMCL version of
the help file for gossip. Once this file has been savedin C:\ado\perspna] w1’Eh the.ﬁle name
gossip.hip, typing help gossip will produce a readable and official-looking display.

{smcl} .

(* 1aug2003}ii{...}

{hline}

help for {hi:gossipl{right:{L. Hamilton) }
{hline}

(title:Moving first-order autocorrelations}

{p 8 12} {cmd:gossip} (it:yvar timevar] {emd:, ) {cmdab:sp:an]{cmd: (}
{it:#}{emd:) b | {emdab:gen:erate} {cmd: (} {it:newvar}{cmd:) }
{cmdab:gr:apht |

{title:Description}

{p}{cmd:gossip} calculates first-order autccorrelations of time series

{it:yvar}, within a moving window of span {it:#%#}. For example, if we
specify {cmd:span (}7{cmd:)} (cmd:gen(}{it:new}{cmd:)}, then thelflrst
through 3rd values of {it:new} are missing. The 4th value of {it:new}

equals the lag-1 autocorrelation of {it:yvar} across observations 1,

through 7. The 5th value of {it:new} eguals the lag-1 autocorrelation

of {it:yvar} across observations 2 through 8, and so0 forth. Th§ last

3 values of {it:new} are missing. See Topliss (2001) for a rationale

and applications of this statistic to atmosphere~oceanlda§a. .

{browse "http://www.stata.com/bookstore/sws.html":Statlstlcs with Stata}l
¢2004) discusses the {cmd:gossip} program itself.{p end}

{pl{cmd:gossip} requires {cmd:tsset) data. {it:timevar} is the time
variable to be used for graphing.{p_end}

{title:Options}

(p O 4} {cmd:span(}{it:#){cmd:)} specifies the width of th§ window for
calculating autocorrelations. This option is required; {it:#} should be
an odd integer.
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{p 0 4} {cmd:gen(i{it:newvar}{cmd:)} creates a new variable holding the
autocorrelation coefficients.

{p 0 4} {cmd:graph} requests a spike plot of lag-l autocorrelations vs.
{it:timevar}.

{title:Examples)

{p 8 12}{inp:. gossip water month, span(l13) graph]{p end}
{p 8 12} {inp:. gossip water month, span(9) gen (autowater) } {p_end}
{p 8 12} {inp:. gossip water month, span(1l7) gen(autowater) graph}{p end}

{title:References}

{p 0 4}Hamilton, Lawrence C. 2004,
{browse "http://www.stata.com/bookstore/sws.html":Statistics with Statal.
Pacific Grove, CA: Duxbury.{p_end}

{p 0 4}Topliss, Brenda J. 2001. "Climate variability I: A conceptual
approach to ocean-atmosphere feedback." 1In Abstracts for AGU Chapman
Conference, The North Atlantic Oscillation, Nov. 28 - Dec 1, 2000, QOurense,
Spain. citation.{p end}

The help file begins with { smcl}, which tells Stata to process the file as SMCL, Curly
brackets {} enclose SMCL codes, many of which have the form {command:text} or

{command arguments:text)}. The following examples illustrate how these codes are
interpreted.

{hline] Draw a horizontal line.

{hi:gossip} Highlight the text “gossip”.

(title:Moving...!} Display the text “Moving . . .” as a title.

{right:L Hamilton} Right-justify the text “L. Hamilton”.

{p 8 12} Format the following text as a paragraph, with the first line
indented 8 columns and subsequent lines indented 12.

{cmd:gossip} Display the text “gossip” as a command. That is, show “gossip”

with whatever colors and font attributes are presently defined as
appropriate for a command.

{it:yvar} Display the text “yvar” in italics.

{emdab:spian} Display “span” as a command, with the letters “sp” marked as the
minimum abbreviation.

{p) Format the following text as a paragraph, until terminated by
{p end}.

{browse "http://www.stata.com/bookstore/sws.html":Statistics...}
Link the text “Statistics with Stata” to the web address (URL)
http://www .stata.com/bookstore/sws.html. Clicking on the words
“Statistics with Stata” should then launch your browser and
connect it to this URL.

The Programming Manual supplies details about using these and many other SMCL
commands.
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Matrix Algebra

Matrix algebra provides essential tools for statistical modeling. Stata’s matrix commands and
matrix programming language (Mata) are too diverse to describe adequately here; the subject
requires its own reference manual (Mata Reference Manual), in addition to many pages in the
Programming Reference Manual and User’s Guide. Consult these sources for information
about the Mata language, which is new with Stata 9. The examples in this section illustrate
earlier matrix commands, which also still work (hence the placement of version 8.0
commands at the start of each program).

The built-in Stata command regress performs ordinary least squares (OLS)regression,
among other things. But as an exercise, we could write an OLS program ourselves. ols/.do
(following) defines a primitive regression program that does nothing except calculate and
display the vector of estimated regression coefficients according to the familiar OLS equation:

b=(X'X) 'X'y

* A very simple program, "olsl" estimates linear regression
* coefficients using ordinary least squares (OLS).
program olsl
version 8.0
The syntax allows only for a variable list with one or more
* numeric variables.
syntax varlist{min=1 numeric)

* "tempname..." assigns names to temporary matrices to be used in this
* program. When olsl has finished, these matrices will be dropped.
tempname CcrossYX crossX crossY b
* "matrix accum..."™ forms a cross-product matrix. The K variables in
* varlist, and the N observations with nonmissing values on all K variables,
* comprise an N row, K column data matrix we might call vyX.
* The cross product matrix crossYX equals the transpose of yX times yX.
* Written algebraically:
* cross¥X = (yX)'yX
quietly matrix accum ‘crossYX' = “varlist'
* Matrix crossX extracts rows 2 through K, and columns 2 through K,
* from cross¥YX:

* crossX = X'X

matrix ‘crossX' ‘crossYX'[Z2...,2...]
* Column vector crossY extracts rows 2 through K, and column 1 from crossYX:
* crossY = X'y

matrix ‘crossY' = ‘crossYX'[2...,1]

* The column vector b contains OLS regression coefficients, obtained by

* the classic estimating eguation:

* b = inverse (X'X)X'y
matrix ‘'b' = syminv( crossX') * ‘crossY'

* Finally, we list the coefficient estimates, which are the contents of b.
matrix list "b'

end

Comments explain each command in ofs/.do. A comment-free version named o/s2.do
(following) gives a clcarer view of the matrix commands:
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program ols?2
version 8.0
syntax varlist (min=1 numeric)
tempname crossYX crossx CrossY b

quietly matrix accum 'crossyx' — ‘varlist"
matrix “cross¥X' = ‘crossYX'[2...,2. 1
matrix “crossY' = ‘crossYX'[Z...,lJ'.
matrix "b' = Syminv { crossX') * ‘crossy!
matrix list "b°

end

N(?lth(?[‘ olsi.do nor ols2.do make any provision for in or if qualifiers, syntax errors
or options. They also do not calculate standard errors, confidence intervals, or the other

aqm]]ary statistics we usually want with regression. To see just what they do accomplish, we
will analyze a small dataset on nuclear power plants (reactor. dta): ,

Contains data fron c:\data\reactor.dta

obs: 5
Reactor decommissioning costs
vars- {(from Brown et al. 1986)
S 1 Aug 2005 10:50
storage display  walue T TTTTTTTTIIoooes
variable name type variable Zabel
site T
I oo Reactor site
Capensty iZt Decommissioning cost, millions
ganne by£Q Generating capacity, megawatts
reene e Years in operation
oot B Year operations started
_________________________ Year operations closed
Sorted by: start T e

The cost ofd'ecommls.smmng a reactor increases with its generating capacity and with the
number of years in operation, as can be seen by using regress:

regress decom capacity years

iiiiiiiiiiiiii e Number of ohs = 5
T F( 2, 2) =

@odel | 4€6¢6,16571 2 2333.0828¢ Prob > F ) = éagégi

Residual | 24.6342883 2 12.3171442 R-squared = Ol9947
_____________ _’,__»»,‘,__________________ _ ’
X Tt Adj R-squared = .

Total | 4690.80 4 1172.70 Root M;g = g gggz

decom | Coef Std. Brr. ot peje) | laes mos TITTITooes

_____________ +_____‘,A,,;,‘,j,,;,‘ff,,;,,__f_,,;?>,t‘ [95% Conf. Interval]

capacity | .1758739 0247774 7.10 0.019 Og;;gg; _____ ;é;;g;_

years 3.899314 .2643087 14.75 0.005 é.76208l é O3654§

_cons | -11.39963 4.330311 -2.63 0.119 -30.03146 % 23219

Our home-brewed program ols2.do yields exactly the same regression coefficients:
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do ocls2.do

ols2 decom capacity years

~ 000D003[3,1]

decom
capacity .1758739
years 2.8993139

_cons  -11.39%633

Although its results are correct, the minimalist 0o1s2 program lacks many features we
would want in a useful modeling command. The following ado-file, ols3.ado, defines an
improved program named ols3 . This program permits in and if qualifiers, and
optionally allows specification of the level for confidence intervals. It calculates and neatly
displays regression coefficients in a table with their standard errors, ¢ tests, and confidence

intervals.

*! version 2.0 1aug2003
*1 Matrix demonstration: mcore complete OLS regression program.
program ols3, eclass

version 8.0

syntax varlist(min=1 numeric) [in] [if] [, Level{integer SS_level)]
marksample touse

tokenize " wvarlisgt'”

tempname ¢rossY¥YX c¢rossX crossY b hat V

gquietly matrix accum ‘crossYX' = “varlist' if “touse’

local ncbs = r(N)

local df = "nobs' - (rowsof{ crossYX'}y - 1)

matrix “crossX' = ‘crossYX'[2...,2...]

matrix “crossY' = ‘crossYX'[2...,1]

matrix "b' = (syminv('crossX') * “crossY')'

matrix “hat' = "b' * ‘crossY'

matrix V' = syminv{ crossxX')y * {(‘crossYX'[1l,1] - "hat'[1l,1])/ df'

ereturn post ‘b' “V', dof( df') obs( nobs') depname('1') ///
esample ( "touse')

ereturn local depvar " 1'"

ereturn local cmd "ols3"

if Tlevel' < 10 | “level' > 99 {
display as error "level( ) must be between 10 and 99 inclusive."
exit 198

}
ereturn display, level( level'

Because ols3.ado is an ado-file, we can simply type 0ls3 asa command:

ols3 decom capacity years

decom Coef Std. Err t P>t [95% Conf. Tnterval)
_____________ o e
capacity | . 1758739 .0247774 7.10 0.019 .0632653 .2824825
years | 3.899311 .2643087 14.75 0.005 2.762085 5.036543

_cons | -11.39963 4.330311 ~-2.63 0.119 -30.0314¢ 7.23219

ofs3.ado contains familiar elements including syntax and marksample commands,
as well as matrix operations built upon those seen earlier in ols/.do and ols2.do. Note the
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use of a Eight single quote ( ' ) as the “matrix transpose™ operator. We write the transpose of
the coefficients vector (syminv{ crossX') * ‘crossY') as follows:
(syminv ( crossX') = ‘crossy') !
-Th? 0ls3 program is defined as e-class, indicating that this is a statistical model-
estimation command:
program o.s3, eclass
E-class programs store their results with e () designations. After the previous ols3
command, these have the following contents:

ereturn list

scalars:

e(N) = 5
e(dffr) 2
macrocs:
e(cmd) : "ols3"®
e(depvar) : "decom"
matrices:
e (b) 1 x 3
e(V) : 3 x 3

functions:
e{sample)

display e (N)

5
matrix list e (b)
e(b}[1,3]
capacity years _cons
vl 1758739 3.8993139 -11.399633
matrix list e (V)
symmetric e(V) [3,3]
capacilty years cons
capacity  .00061392 B
vears -~.00216732 .0698591
_cons -,01492755 -.942626 18.751591

The e () results from e<lass programs remain in memory until the next e-class command.
In contrast, r-class programs such as summarize store their results with r () designations
and these remain in memory only until the next e- or r-class command. ’
Several ereturn lines in ols3.ado save the e () results, then use these in the output
display :
ereturn post "b' V', dof('df') cbs (' nobs') depname(1'} ///
esample ( touse')
The above command sets the contents of e () results, including the coefficient vector (b)
and the variance-covariance matrix (V). This makes all the post-estimation features
detailed in help estimates and help postest available. Options specify the
residual degrees of freedom ( df ), number of observations used in estimation ( nobs ),
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dependent variable name ( ~1 ', meaning the contents of the first macro obtained when we
tokenize varlist ), and estimation sample marker ( touse ).

ereturn local depvar " 1'"
This command sets the name of the dependent variable, macro 1 after tokenize
varlist, to be the contents of macro e {depvar) .

ereturn local cmd "ols3"
This sets the name of the command, ©1s3, as the contents of macro e (cmd) .

ereturn display, level (' level')
The ereturn display command displays the coefficient table based on our previous
ereturn post . This table follows a standard Stata format; its first two columns
contain coefficient estimates (from b ) and their standard errors (square roots of diagonal
elements from V). Further columns are ¢ statistics (first column divided by second), two-
tail ¢ probabilities, and confidence intervals based on the level specified in the ©1s3
command line (or defaulting to 95%).

Bootstrapping

Bootstrapping refers to a process of repeatedly drawing random samples, with replacement,
from the data at hand. Instead of trusting theory to describe the sampling distribution of an
estimator, we approximate that distribution empirically. Drawing & bootstrap samples of size
n (from an original sample also size n) yields k new estimates. The distribution of these
bootstrap estimates provides an empirical basis for estimating standard errors or confidence
intervals (Efron and Tibshirani 1986; for an introduction, see Stine in Fox and Long 1990).
Bootstrapping seems most attractive in situations where the statistic of interest is theoretically
intractable, or where the usual theory regarding that statistic rests on untenable assumptions.

Unlike Monte Carlo simulations, which fabricate their data, bootstrapping typically works
from real data. For illustration, we turn to islands.dta, containing area and biodiversity
measures for eight Pacific Island groups (from Cox and Moore 1993).

Contains data from c:;l\datalislands.dta
obs: 8 Pacific island biodiversity
{Cox & Moore 1993)

vars: 4 1 Aug 2005 10:50
size: 208 (99.9% of memory free)
storage display value
variable name type format label variable label
island strl5 %15s Island group
area float %9.0g Land area, km”2
birds byte %8.0g Number of bird genera
plants int 58.0g Number flowering plant genera

Sorted by:

Suppose we wish to form a confidence interval for the mean number of bird genera. The
usual confidence interval for a mean derives from a normality assumption. We might hesitate
to make this assumption, however, given the skewed distribution that, even in this tiny sample
(= 8), almost leads us to reject normality:
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sktest birds

Skewness/Kurtosis tests for Normality

Variable | Be(€recmmmen oo mmme——s joint ------
ariable | Pr(Skewness) Pr{Kurtosis) adj chi2(2) Prob>chi?2

Bootstrapping provides a more empirical approach to forming confidence intervals. Anr-
class command, summarize, detail unobtrusively stores its results as a series of
macros. Some of these macros are:

r (N) Number of observations
r (mean) Mean

r(skewness) Skewness

T (min) Minimum

r(max) Maximum

r(p50) 50th percentile or median
r{Var) Variance

r (sum) Sum

r(sd) Standard deviation

Stored ‘results simplify the job of bootstrapping any statistic. To obtain bootstrap
confidence intervals for the mean of birds, based on 1,000 resamplings, and save the results in
new file boot1.dta, type the following command. The output includes a note warning about the
potential problem of missing values, but that does not apply to these data,

bs "summarize birds, detail" "r(mean)", rep(1000) saving(bootl)

command: summarize birds , detail
statistic: _bs_1 = r(mean

Warning: Since summarize is not an estimation command or does not set
e(sample), bootstrap has no way to determine which observations are
used in calculating the statistiecs and sO assumes that all
observations are used. This means no observations will be excluded
from the resampling due to missing values or other reascns.

If the assumption is not true, press Break, save the data, and drop
the observations that are to be excluded. Be sure the dataset in
memory contains only the relevant data.

Bootstrap statistics Number cf obs = 8
Replications = 1000
Variable | Reps Observed Bias Std. Err. [95% Conf Interval]
_____________ F o T e el
“bs 1 | 1000 47.625 -,475875 12,39088 23.30986 71.94014 (N
; 25.75 74.8125 (P)
_______________________ 27 78.25 {BC)
Note N = normal o TToTTmmmmmmmmmTIOmmIoes
P = percentile
BC = bias-corrected
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The bs command states in double quotes what analysis is to be bootstrapped ( " summ
birds, detail" ). Following this comes the statistic to be bootstrapped, likewise in its
own double quotes ( "r {mean) " ). More than one statistic could be listed, each separated by
a space. The example above specifies two options:
rep(1000) Calls for 1,000 repetitions, or drawing [,000 bootstrap samples.

saving (bootl) Saves the 1,000 bootstrap mcans in a ncw dataset named boot!.dta.

The bs results table shows the number of repetitions performed and the “observed”
(original-sample) value of the statistic being bootstrapped — in this case, the mean birds value
47.625. The table also shows estimates of bias, standard error, and three types of confidence
intervals. “Bias™ here refers to the mean of the & bootstrap values of our statistic (for example,
the mean of the 1,000 bootstrap means of birds), minus the observed statistic. The estimated
standard error equals the standard deviation of the & bootstrap statistic values (for example, the
standard deviation ofthe 1,000 bootstrap means of birds). This bootstrap standard error (12.39)
is less than the conventional standard error (13.38) calculated by ci:

ci birds

Variable ! Obs Mean std. Err. [95% Conf. Interwval]

_____________ e e

birds | 8 47.625 13.38034 15.98552 79.26448

Normal-approximation (N) confidence intervals in the bs table are obtained as follows:
observed sample statistic + ¢ x bootstrap standard error

where ¢ is chosen from the theoretical ¢ distribution with £ — 1 degrees of freedom. Their use
is recommended when the bootstrap distribution appears unbiased and approximately normal.

Percentile (P) confidence intervals simply use percentiles of the bootstrap distribution (for
a 95% interval, the 2.5th and 97.5th percentiles) as lower and upper bounds. These might be
appropriate when the bootstrap distribution appears unbiased but nonnormal.

The bias-corrected (BC) interval also employs percentiles of the bootstrap distribution, but
chooses these percentiles following a normal-theory adjustment for the proportion of bootstrap
values less than or equal to the observed statistic. When substantial bias exists (by one
guidelinc, when bias exceeds 25% of one standard error), these intervals might be preferred.

Since we saved the bootstrap results in a file named boot!.dta, we can retrieve this and
examine the bootstrap distribution more closely if desired. The saving(bootl) option
created a dataset with 1,000 observations and a variable named _bs [/, holding the mean of each
bootstrap sample.

Contains deta from c:\datal\bootl.dta

obs: 1,000 bs: summarize birds, detaill
vars: 1 1 Aug 2005 15:10
size: 8,000 (99.9% of memory free)
storage display value
variable name type format label variable label
bs 1 float %9.0g r (mean)

Sorted by:
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summarize
Variable | Obs Mean Std. Dewv. Min Max
_____________ T
_bs 1 ] 1000 47.14512 12.3%08s8 14.625 82.5

Note that the stgndgrd deviation of these 1,000 bootstrap means equals the standard error
(12.82) shown earlier in the bs results table. The mean of the 1,000 means minus the
observed (original sample) mean equals the bias:

47.14912 — 47.625 = - 47588
Figure 14.3 shows the distribution of these 1,000 sample means, with the original-sample

mean (47.625) marked by a vertical line. The distribution exhibits mild positive skew, but is
not far from a theoretical normal curve.

histogram _bs 1, norm bcolor{gs10) xaxis({l 2) xline (47.625)
xlabel (47.635, axis(2)) =xtitle("", axis (2))

47.635 Figure 14.3

Density
02 .03 04

.01

100

r{mean)

. Biologists hayc observed that biodiversity, or the number of different kinds of plants and
animals, tends to increase with island size. In islands.dta, we have data to test this proposition

with respect to birds and flowering plants. As expected, a strong linear relationship exists
between hirds and area:
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regress birds area

o 1 = g

C 83 df MS Number of obs £

—————— ffljif—+—————f———A————————-———u——————f F( 1, 6) = 162.96
Mcdel 9669.83250 1 9669.83255 Prob > F - O.??OE
Residual 396,042448 6 59.3404C82 R-sqguared = 0.304:
——————————————————————————————————————————— Adj R-sguared = 0.958%
Toral | 10025.875 7 1432.2678% RooL MSE -  7.7033

o birds | Coef std. Err t P>t [95% Conf. Intervall
,,,,,,,,,,,,, ek
area | .0026512 .0002077 12.77 0.000 002143 ;8021594

cons | 13.97169 3.79046 3.69 0.010 4.696773 23.24662

An e-class command, regress saves a sct of e () results as noted earlier in this
chapter. It also creates or updates a set of system variables containing the model coefficients
( blvarname)) and standard errors ( _selvarname]). To bootstrap the slope and y
in?ercept from the previous regression, saving the results in file boot2.dta, type

bs "regress birds area" "_b[area] _b[_cons]", rep(1000)
saving (boot2)

command: regress birds area
statistics: bs 1 = blarea]
“bs_2 = _b[_cons]
Bocotstrap statistics Number of obs = 8
L Replications = 1000
Variable | Reps Observed Bias Std., Err [95% Conf. Interval]
_____________ e o — oo oo—oSSSSoooomooooTT
bs 1 | 1000 .0026512 -.0000737 .0003345 .0019947 .0033077 (N)
T .0019759  .0029066 (P}
| ,0019% ,002924¢6 (BC)
bs 2 | 1000 13.97169 .6230986 3.637705 6.833275 21.11011 (N)
T 7.891942  21.74494 (P
| 6.949538 19.73012 (BC
Note N = normal
P = percentile
3¢ = plas-corrected

The bootstrap distribution of coefficients on area is severely skewed (skewness =4.12).
Whereas the bootstrap distribution of means (Figure 14.3) appeared approximately qormal, aqd
produced bootstrap confidence intervals narrower than the theoretical conﬁdepce interval, in
this regression example bootstrapping obtains larger standard errors and wider confidence
intervals.

In a regression context, bs ordinarily performs what is called “data resampling,.” or
resampling intact observations. An alternative procedure called “residual resam.pl.mg”
(resampling only the residuals) requires a bit more programming work. Two additional
commands make such do-it-yourself bootstrapping easier:
bsample Draws a sample with replacement from the existing data, replacing the data in

memory.
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bootstrap  Runs a user-defined program reps () times on bootstrap samples of size
size ().

The Base Reference Manual gives examples of programs for use with bootstrap.

Monte Carlo Simulation

Monte Carlo simulations generate and analyze many samples of artificial data, allowing
researchers to investigate the long-run behavior of their statistical techniques. The simulate
command makes designing a simulation straightforward so that it only requires a small amount
of additional programming. This section gives two examples.

To begin a simulation, we need to define a program that generates one sample of random
data, analyzes it, and stores the results of interest in memory. Below we sce a file defining an
r-class program (one capable of storing r () results) named central . This program
randomly generates 100 values of variable x from a standard normal distribution. Tt next
generates 100 values of variable w from a “contaminated normal” distribution: N(0,1) with
probability .95, and N(0,10) with probability .05. Contaminated normal distributions have often
been used in robustness studies to simulate variables that contain occasional wild errors. For
both variables, central obtains means and medians.

Creates a sample containing n=100 observations of wvariables x and w.
®x~N{0,1) x 1s standard normal
w~N(0,1) with p=.95, w~N{(0,10} with p=.05 w 1s contaminated normal
Calculates the mean and median of x and w.

Stored results: r (xmean) r {(xmedian) r{wmean) r{wmedian)
program central, rclass

version 8.0

¥k A ok %

drop _all

set obs 100

generate x = invnorm(uniform())
summarize x, detail

return scalar xmean = r(mean)
return scalar xmedian = r (p50)
generate w = invnorm(uniform{})
replace w = 10*w if uniform() < .05
summarize w, detail

return scalar wmean = r{mean}
return scalar wmedian = r(p50)

end

Because we defined central asanr-class command, like summarize, it can store
its results in r () macros. central creates four such macros: r (xmean) and
r (xmedian) forthe meanand median ofx; r (wmean) andr (wmedian) forthe meanand
median of w.

Once central has been defined, whether through a do-file, ado-file, or typing
commands interactively, we can call this program with a simulate command. To create
a new dataset containing means and medians of x and w from 5,000 random samples, type
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simulate "central" xmean = r(xmean) xmedian = r (xmedian)
wmean = r (wmean}) wmedian = r (wmedian), reps(5000)
command : central
statistics: xmean = r{(xmean)
xmedlan - ri{xmedian)
wmean = r(wmean)
wmedian = r (wmedian)

This command creates new variables xmean, xmedian, wmean, and wmedian, basedonthe r ()
results from each iteration of central .

describe

Contalns data

obs: 5,000 simulate: central
vars: 4 1 Aug 2005 17:50
size: 100,000 (89.6% of memory free)
storage display value

variable name type format label variable label
xmean float %9.0g r(xmean})
xmedian float %£9.0g r (xmedian
wrecan float ~9.0g r{wmean)
wmedian float "9.0g r (wmedian

Sorted by:

summarize

Variaple | Obs Mean std. Dev Min Max
_____________ o e
xmean | 5000 -.0015915 .0987788 -.4112561 .3699467
xmedian | 5000 ~-.0015566 .1246915 -.4647848 L4740642
wmean | 5000 -.0004433 .2470823 -1.11406 .8774976
wmedian | 5000 .0030762 .1303756  -.,4584521 .5152998

The means of these means and medians, across 5,000 samples, are all close to 0 —
consistent with our expectation that the sample mean and median should both provide unbiased
estimates of the true population means (0) for x and w. Also as theory predicts, the mean
exhibits less sample-to-sample variation than the median when applied to a normally distributed
variablc. The standard deviation of xmedian is .125, noticeably larger than the standard
deviation of xmean (.099). When applied to the outlier-prone variable w, on the other hand, the
opposite holds true: the standard deviation of wmedian is much lower than the standard
deviation of wmean (.130vs. 247). This Monte Carlo experiment demonstrates that the median
remains a relatively stable measure of center despite wild outliers in the contaminated
distribution, whereas the mean breaks down and varies much more from sample to sample.
Figurc 14.4 draws the comparison graphically, with box plots (and, incidentally, demonstrates
how to control the shapes of box plot outlier-marker symbols).
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graph box xmean xmedian wmean wmedian, yline (0) legend(col(4))
marker (1, msymbol (+)) marker (2, msymbol (Th))
marker (3, msymbol (Oh)) marker (4, msymbol (Sh))

Figure 14.4
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Our final example extends the Inquiry to robust methods, bringing together several themes
from‘thls book. Program regsim generates 100 observations of x (standard normal) and two
Yy variables. y/ is a linear function of x plus standard normal errors. y2 is also a linear function
of x, bu't adding contaminated normal errors. These variables permit us to explore how various
regression methods behave in the presence of normal and nonnormal errors. Four methods are
employed: ordinary least squares (regress ), robust regression ( rreg), quantile regression
( qrgg ), and quantile regression with bootstrapped standard errors ( bsqreqg , with 500
repetltllons). Differences among these methods were discussed in Chapter 9. ’ Program
regsim applies each method to the regression of y/ on x and then to the regression of y2 on

x. For this exercise, the program is defined by an ado-fil i i
, -file sim.
C:\ado'\personal directory. ’ ;restimado, saved in the
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he a K rclass .
Ei@ii?Zr;EgZ;z,iteration &f a Monte Carlo simulation com?arlng
OLS regression (regress) with robust (rrecg) andiquggtl e "
(greg and bsqrcg) regression. Gene;ates one n = 1 éamp
with x ~ N(0,1) and vy variables defined by the models:

MODEL 1: vl = 2x + el el ~ N(0,1)
: = .95
2 v = 2x + el e?2 ~ N(0,1) with p .
aopE ) 2 - N(0,10) with p = .05

i 500G iticns.
Bootstrap standard errors for greg invelve 30U repetltiloc

versicn 8.0

Af woLr == 2t
#delimit
global 8 1 "bl blr selr blg selg selgb
V b2 blr selr b2g se2q se2gb”;
#delimit <r

exit
}
drop all
set obs 100
generate X = invnorm(uniform{))
generate & = invnorm (uniform())
generate yl = 2*x + e
reg yl %

return scalar Bl = b(x]
rreg yl xg iterate (25)

return scalar BIlR = _blx]

return scalar SEIR — _selx]
greg yl x

return scalar B1O — b=l

return scalar SE1Q = 7se[x]
bsqreg vl X, reps (500)

return scalar SELOB = _selx]
replace e = 10 * e if uniform() < .05
generate y2 = 2*x + &
reg y2 X

return scalar BZ = ~b[x]
rreqg y2 ¥, iterate (25)

return scalar BZ2R = bix]

return scalar SE2R = kso[x]
qreg v2 X

return scalar B2Q = “b(x]

return scalar SE20 = _sel[x]
bsgreg v2 X, reps{(500)

return scalar SEZQB = _se[zx]

end
The r-class program stores coefficient or standard error estimates from eight regression
analyses. Thcse results have names such as
r (Bl) coefficient from OLS regression of y/ on x
r (B1R)  coefficient from robust regression of y/ onx
r (SE1R) standard error of robust coefficient from model 1

and so forth. All the robust and quantile regressions involve multiple iterations: typ.icalily 5to
10 iterations for rreg ,about 5 for greg,and several thousand for bsqreg with its 500

bootstrap re-estimations of about 5 iterations each, per sample. Thus, a single execution of
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regsim demands more than two thousand regressions, The following command calls for five
repetitions.

simulate "regsim" b1 = r(B1l) blr = r(B1lR) selr = r(SE1R)
blg r (B1Q) selq r(SE1Q) selgb = r(SE1QB) b2 = r(B2)
b2r = r(B2R) se2r = r (SE2R) b2g = r(B2Q) se2q = r (SE2Q)
sel2qgb = r(SE2QB), reps(5)

You might want to run a small simulation like this as a trial to get a sense of the time
required on your computer. For research purposes, however, we would need a much larger
experiment. Dataset regsim.dta contains results from an overnight experiment involving 5,000
repctitions of regsim-—— more than 10 million regressions. The regression coefficients and
standard error estimates produced by this experiment are summarized below.

describe

Contains data from C:\datal\regsim.dta

cks: 5,000 Monte Carlo estimates of b in

5000 samples of n=100

vars: 12 2 Aug 2005 08:17

size: 260,000 (93.0- of memory free)
storage display value

variable name type format label variable label

bl float %9.0g OLS b {normal errors)

blr float 58.0g Robust b (ncrmal errors)

selr float %9.0g Robust SE[b] (normal errors)

blg float %9.0g Quantile b (normal errocrs)

selqg float %9.0g Quantile SE[b] (normal errors)

selab float %9.0g Quantile bootstrap SE[b]
(normal errors)

b2 float %9.0g OLS b (contaminated errors)

b2r float %9.0g Robust b (contaminated errors)

selr float %9.0g Robust SE[b] (contaminated
errors)

b2q float %9.0g Quantile b (ceontaminated errors)

se2qg flcat %9.0g Quantile SE[b] ({(contaminated
errors)

se2gb float %9.0g Quantile kootstrap SE([b]

(contaminated errors)

Sorted by:

summarize
Variable | Obs Mean Std. Dev. Min Max
_____________ o A
bl | 5000 2.000828 .102018 1.631245 2.404814
blr | 5000 2.000989 1052277 1.603106 2.391946
selr | 5000 .1041399 .0109429 .069378¢6 .1515421
blg | 5000 2.001135 .1309186 1.471802 2.536621
selqg | 5000 .1262578 .0281738 .0532731 .2371508
_____________ o e el
selgb | 5000 .1362755 .032673 0510808 . 29979
b2 | 5000 2.006001 2484688 .9001114 3.050552
b2r | 5000 2.000399 .1092553 1.633241 2.411423
selr | 5000 .1081348 0119274 .0743103 .1560973
b2g | 5000 2.000701 .137111 1.471802 2.536621
_____________ b o o e ol
selqg | 5000 .1328431 .0239644 .0542015% .2594844

se2gb | 5000 .1436366 .0346679 .0589408 .3006417
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Figure 14.5 draws the distributions of coefficients as box p]ots: To mal‘ce the plot more
readable we use the legend (symxsize (2) colgap(4)) options, WhIC‘h set the w@th
of symbols and the gaps between columns within the legend at less than Fhell‘ default size.
help legend option and help relativesize supply further information about

these options.
graph box bl blr blqg b2 b2r b2q, ytitle("Estimates of slope (b=2)")
yline (2)
legend(row(l) symxsize(2) colgap(4) . )
label (1l "OLS 1") label(2 "robust 1") label (3 "quant{le 1")
label (4 "OLS 2") label(5 "robust 2") label(6 '"quantile 2"))

Figure 14.5
Fy
o
w %
N
il
£ {
[
Ry
@ nEmmm E— —
SN T R
[«]
w
2 e
2]
2 i
@0
W=

- i

g oLs1 robust1 g quantle1 J§ OLS2 | robust?2 quantile 2

All three regression methods (OLS, robust, and quantile) produced mean coefﬁcier}t
estimates for both models that are not significantly different from the true value, f = 2. This

can be confirmed through ¢ tests such as

ttest b2r = 2

One-sample t test

Variable | Obs Mean std. Erz. Std. Dev. [95% Conf. Interval]

Degrees of freedom: 4999

Ho: meani{b2r) = 2
Ha: mean < 2 Ha: mean != 2 Ha: mean > 2
t = 0.2585 £t = 0.2585 t = 0.258?
P <t = 0.6020 P > |t] = 0.73960 P >t = 0.3880
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All the regression methods thus yield unbiased estimates of B, but they differ in their
sample-to-sample variation or efficiency. Applied to the normal-errors model I, OLS proves
the most efficient, as the famous Gauss—Markov theorem would lead us to expect. The
observed standard deviation of OLS coefficients is .1016, compared with .1047 for robust
regression and 1282 for quantile regression., Relative efficiency, expressing the OLS
coefficient’s observed variance as a percentage of another estimator’s obscrved variance,
provides a standard way to compare such statistics:

quietly summarize bl
global Varbl = r(Var)
quietly summarize blr

. display 100* ($Varbl/r(Var))
93.9924612

quietly summarize blg

display 100*({$Varbl/r (Var))
60.72269¢

The calculations above use the r (Var) variance result from summarize. We first
obtain the variance of the OLS estimates A7, and place this into global macro Varbl . Next
the variances of the robust estimates blr,and the quantile estimates blg, are obtained and each
compared with Varb1. Thisreveals that robust regression was about 94% as efficient as OLS
when applied to the normal-errors model — close to the large-sample efficiency of 95% that
this robust method theoretically should have (Hamilton 1992a). Quantile regression, in
contrast, achieves a relative efficiency of only 61% with the normal-errors model.

Similar calculations for the contaminated-errors model tel] a different story. OLS was the
best (most efficient) estimator with normal errors, but with contaminated errors it becomes the
worst:

quietly summarize b2
global Varb2 = r(var)
quietly summarize b2r

. display 100* ($Varb2/r(Var))
517.20057

quietly summarize b2qg

display 100* ($Varb2/r (Var))
328.3971

Outliers in the contaminated-errors model cause OLS coefficient estimates to vary wildly
from sample to sample, as can be seen in the fourth box plot of Figure 14.5. The variance of
these OLS coefficients is more than five times greater than the variance of the corresponding
robust coefficients, and more than three times greater than that of quantile coefficients. Put
another way, both robust and quantile regression prove to be much more stable than OLS in the
presence of outliers, yielding correspondingly lower standard errors and narrower confidence
intervals. Robust regression outperforms quantile regression with both the normal-errors and
the contaminated-errors models.
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Figure 14.6 illustrates the comparisonbetween OLS androbust regressipn Witljl ascatterplot
showing 5,000 pairs of regression coefficients. The OLS coefficients (\fertlcal ax1.s) vary much
more widely around the true value, 2.0, than rreg coefficients (horizontal axis) do.

graph twoway scatter b2 b2r, msymbol (p) ylabel(l(.5)3, grid)
yline (2) xlabel(1(.5)3, grid) xline (2)

Figure 14.6
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The experiment also provides information about the estimated standard errors under each
method and model, Mean estimated standard errors differ from the observed standard
deviations of coefficients. Discrepancies for the robust standard errors are small — 1.ess than
1%. Forthe theorctically-derived quantile standard errors the discrepancies appear abit larg(?r,
between 3 and 4%. The least satisfactory estimates appear to be the bootstrapped quantile
standard errors obtained by bsqreg . Means of the bootstrap standard errors exceed the
observed standard deviation of blg and b2g by 4 to 5%. Bootstrapping apparently over-
estimated the sample-to-sample variation.

Monte Carlo simulation has become a key method in modern statistical rescarch, anq it
plays a growing role in statistical teaching as well. These examples demonstrate how readily
Stata supports Monte Carlo work.
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Index

A
ac (autocorrelations), 339, 351--352
acprplot (augmented component-plus-
residual plot), 197, 202-203
added-variable plot, 198, 201-202
ado-file (automatic do), 233-235, 362,
373-375
alpha (Cronbach’s alpha relability),
318-319
analysis of covariance
141-142, 153-154
analysis of variance (ANOVA)
tactorial, 142, 152-153, 156
interaction effects, 142, 152-154,
156-157
median, 253-255
N-way, 152—153
one-way, 142, 155
predicted values, 155-158, 167
regression model, 153-154, 249-256
repeated-measures, 142
robust, 249-256
standard errors, 155-157, 167
three-way, 142
two-way, 142, 152-153, 156--157
anova, 142, 152158, 167, 239
append, 13,4244
ARCH model (autoregressive conditional
heteroskedasticity), 339
area plot, 86-87
args (arguments in program), 366-368
areg (absorb variables in regression),
179180
ARIMA model (autoregressive integrated
moving average), 339, 354-360
arithmetic operator, 26

(ANCOVA),

artificial data, 14, 57-61, 241, 387-394
ASCII (text) file
read data, 13-14, 39-42
write data, 42
write results (log file), 2-3, 6-7
autocode (create ordinal variables), 31,
37-38
autocorrelation, 339, 350-352, 357-358,
369-373
aweight (analytical weights), 54
axis label in graph, 66
angle, 81-82
format, 13, 24-25, 76, 305-306
grid, 113-115
suppress, 118, 129, 173
axis scale in graph, 66, 112-118

B

_b coefficients (regression), 230, 269,
273-274, 285, 356

band regression, 217-219

bar chart, 94-99, 147, 150151

Bartlett’s test for equal variances, 149-150

batch-mode program, 61

beskew0 (transforim to reduce skew), 129

beta weight (standardized regression
coefficient), 160, 164—165

Bonferroni multiple-comparison test
correlation matrix, 172—173
one-way ANOVA, 150-151

bootstrap, 246, 315-316,
389-394

box plot, 66, 90-91, 118-119, 147,
150--151, 389, 392

382-387,

401
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Box—Cox
regression, 215,226-227
transformation, 129

Box—Pierce Q test (white noise), 341, 351,
354,357-358

browse (Data Browser), 13

bs (bootstrap), 382-387

bsqreg (quantile regression with
bootstrap), 240, 246, 389-394

by prefix, 121, 133134

Cc
¢ chart (quality control), 105
caption in graph, 109-110
case identification number, 38-39
categorical variable, 35-39, 183-185
censored-normal regression, 264
centering to reduce multicollinearity,
212214
chi-squared
deviance (logistic regression), 271,
275-278
equal variances in ANOVA, 149-150
independence in cross-tabulation, 55,
130-133, 281
likelihood-ratio in cross-tabulation,
130131, 281
likelihood-ratio in logistic regression,
267-268, 270, 272-273, 281
probability plot, 105
quantile plot, 105
¢i (confidence interval), 124, 255
cii (immediate confidence interval), 124
classification table (logistic regression),
264,270-272
clear (remove data from memory), 14-15,
23,362
cluster analysis, 318-320, 329-338
coefficient of variation, 123-124
collapse, 52-53
color
bar chart, 95-96
pie chart, 92
scatterplot symbols, 74
shaded regions, 86
combine data files, 14, 4247

combine graphs. See graph combine

comments in programs, 364, 369-370,
373-374

communality (factor analysis), 326

component-plus-residual plot, 197-198,
202-203

compress, 13,40, 6061

conditional effect plot, 230-232,273-274,
284-287

confidence interval
binomial, 124
bootstrap, 383384, 386
mean, 124
regression coefficients, 163
regression line, 66, 85, 110-112, 160
robust mean, 255
Poisson, 124

constraint (linear constraints), 262

Cook and Weisberg heteroskedasticity test,
197

Cook’s D, 158, 167, 197, 206-210

copy results, 4

correlation
hypothesis test, 160, 172-173
Kendall’s tau, 131, 174-175
matrix, 18, 59, 160, 171-174
Pearson product-moment, 1, 18, 160,

171-173

regression coefficient estimates, 214
Spearman, 174

corrgram (autocorrelation), 339, 351,
357-358,373

count-time data, 293-295

covariance
regression coefficient estimates, 167,

173,197,214

variables, 160, 173

COVRATIO, 167, 197, 206

Cox proportional hazard model, 290,
299-305

Cramer’s V, 131

Cronbach’s alpha, 318-319

cross-correlation, 353-354

cross-tabulation, 121, 130-136

ctset (define count-time data), 289,
263-294

cttost (convert count-time to survival-time
data), 289, 294-295

cubic spline curve. See graph twoway
mspline

cv (coefficient of variation), 123124

D
Data Browser, 13
data dictionary, 41
Data Editor, 13, 15-16
data management, 12-63
database file, 41-42
date, 30, 266, 340-342
decode (numeric to string), 33-34
#delimit (end-of-line delimiter), 61, 116,
362
dendrogram, 319, 329, 331-337
describe (describe data), 3, 18
destring (string to numeric), 35
DFBETA, 158, 167, 197, 205-206,
208-210
DFITS, 167, 197, 206, 208-210
diagnostic statistics
ANOVA, 158, 167
logistic regression, 271, 274-278
regression, 167, 196-214
Dickey—Fuller test, 340, 355-356
difference (time series), 349-350
display (show value onscreen), 31-32, 39,
211,269
display format, 13, 24-25, 359
do-file, 60-61, 115-116, 361-362,
367-373
Do-File Editor, 60, 361
dot plot, 67, 95,99-100, 150-151
drawnorm (normal variable), 13, 59
drop
variable in memory, 22
data in memory, 14-15,23, 40, 56
program in memory, 363, 373-375
dummy variable, 35-36, 176185, 267
Durbin—Watson test, 158, 197, 350
dwstat (Durbin—Watson test), 197, 350

E
e-class, 381, 386
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edit (Data Editor), 13, 15-16

effect coding for ANOVA, 250-251

efficiency of estimator, 393

egen, 33, 331, 340, 343

cigenvalue, 318-319, 321, 326

empirical orthogonal function (EOF), 325

Encapsulated Postscript (.eps) graph, 6,
116

encode (string to numeric), 13, 33-34

epidemiological tables, 288

error-bar plot, 143, 155-157

estimates store (hypothesis testing),
272-273, 278-279, 282-283

event-count model, 288, 290, 310-313

Exploratory Data  Analysis (EDA),
124-126

exponential filter (time series), 343

exponential growth model, 216, 232-235

gxponential regression (survival analysis),
305-307

F
factor analysis, 318-328
factor rotation, 318-319, 322-325
factor score, 318-319, 323-325
factorial ANOVA, 142, 152153, 156
FAQs (frequently asked questions), 8
filter, 343
Fisher’s exact test in cross-tabulation, 131
fixed and random effects, 162
foreach, 365
format
axis label in graph, 76, 305-306
input data, 40-41
numerical display, 13, 24-25, 359
forvalues, 365
frequency table, 130-133, 138-139
frequency weights, 54-55, 66, 73-74, 120,
123, 138-140
function
date, 30
mathematical, 27-28
probability, 28-30
special, 31
string, 31
fweight (frequency weights), 54-55,
73-74, 138-140
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G
generalized linear modeling (GLM), 264,
291, 313-317
generate, 13, 23-26, 37, 39
gladder, 128
Gompertz growth model, 234-238
Goodman and Kruskal’s gamma, 131
graph bar, 66-67, 94-99, 147
graph box, 66,90-91, 118-119, 147, 389,
392
graph combine, 117-119, 147, 150-151,
222,231-232
graph dot, 67, 95, 99-100, 150-151
graph export, 116
graph hbar, 97-98
graph hbox, 91, 150151
graph matrix, 66, 77, 173-174
graph pie, 66, 92-94
graph twoway
all types, 84—85
overlays, 66, 85, [10-115, 344-345,
347-348
graph twoway area, 84, 85-86
graph twoway bar, 84
graph twoway connected, 5-6,50-51, 66,
79-80, 83-84, 114-115,157, 192—-193
graph twoway dot, 85
graph twoway Ifit, 66, 74, 85, 110, 168,
181
graph twoway Ifitci, 85, 110-112,
170-171
graph twoway line, 66, 77-82, 112-115,
117,221-222,242,244,247,344-345,
371
graph twoway lowess, 85, 88-89, 216,
219-221
graph twoway mband, 85, 216, 217-219
graph twoway mspline, 85, 182, 190,
218-219, 226, 287-288
graph twoway qfit, 85, 110, 190
graph twoway rarea, 84, 170
graph twoway rbar, 85
graph twoway rcap, 85, 89, 157
graph twoway scatter, 65-66, 72-77,
181-182, 277, 394

graph twoway spike, 84, 87-88, 347

graph use, 116

graph7, 65

gray scale, 86

greigen (graph eigenvalues), 318-319,
321-322

gsort (general sorting), 14

H

hat matrix, 167, 205-206, 210

hazard function, 290, 302, 367, 309

help, 7

help file, 7, 375-377

heteroskedasticity, 161, 197, 199-200,
223-224,239,256-258,290,315, 339

hettest (heteroskedasticity test), 197,
199-200

hierarchical linear models, 162

histogram, 65, 67-71, 385

Holt-Winters smoothing, 343

Huber/White robust standard errors, 160,
256-261

|
if qualifier, 13, 14, 19-23, 204-205, 209
if...else, 366
import data, 39-42
in qualifier, 14, 19-23, 166
incidence rate, 289-290, 293, 297,
309-310, 312
inequality, 21
infile (read ASCII data), 13-14, 4042
infix (read fixed-format data), 4142
influence
logistic regression, 271, 274-278
regression (OLS), 167, 196-198, 201,
204-208
robust regression, 248
insert
graph into document, 6
table into document, 4
insheet (read spreadshect data), 41-42
instrumental variables (2SLS), 161

interaction effect
ANOVA, 142, 152-157, 250-253
regression, 160, 180185, 211-212,

259-261

interquartile range (IQR), 53, 91, 95, 103,
123-124, 126, 135

iteratively reweighted least squares (IRLS),
242

iweight (importance weights), 54

J
Jackknife
residuals, 167
standard errors, 314-317

K

Kaplan—Meier survivor function, 289-290
295-298

keep (keep variable or observation), 23,
173

Kendall’s tau, 131, 174-175

kernel density, 65, 70, 85

Kruskal-Wallis test, 142, 151152

kurtosis, 122124, 126-127

£l

L

L-estimator, 243

label data, 18

label define, 26

label values, 25-26

label variable, 16, 18

ladder of powers, 127-129

lag {time series), 349-350

lead (time series), 349-350

legend in graph, 78,81, 112, 114-115, 157,
221,344

letter-value display, 125-126

leverage, 158, 159, 167, 196, 198,
201-206, 210, 229, 246-248

leverage-vs.-squared-residuals plot, 198
203-204

Ifit (fit of logistic model), 264

likelihood-ratio chi-squared.  See chi-
squared

L]
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line in graph
pattern, 81-82, 84, 115
width, 221, 344, 371

line plot, 77-84

link function (GLM), 291, 313-317

list, 34, 14, 17, 19, 49, 54, 265

log, 2-3

log file, 2-3, 6-7

logarithm, 27, 127-129, 223-229

logical operator, 20

logistic growth model, 216, 233-234

logistic regression, 262-287

logistic (logistic regression), 185, 262-264,
269-278

logit (logistic regression), 267-269

looping, 365-366

lowess smoothing, 88-89, 216,219-222

Iroc (logistic ROC), 264

Irtest (likelihood-ratio test), 272-273,
278-279,282-283

Isens (logistic sensitivity graph), 264

Istat (logistic classification table), 264,
270-272

Ivr2plot  (leverage-vs.-squared-residuals
plot), 198, 203204

M

M-estimator, 243

macro, 235,334, 363, 365, 367, 370, 387

Mann-Whitney U test, 142, 148-149, 152

margin in graph, 110, 113, 117-118,
192-193

marker label in graph, 66, 75-76, 202, 204

marker symbol in graph, 66, 73-75, 84,
100, 183, 277

marksample, 368-369

matched-pairs test, 143, 145146

matrix algebra, 378-382

mean, 122-124, 126,135-137, 139-140,
143-158, 387-389

median, 90-91, 122-124, 126, 135-137,
387-389

median regression. See quantile regression

memory, 14, 61-63

merge, 14, 44-50

missing value, 13-16, 21, 37-38
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Monte Carlo, 126, 246, 387-394
moving average
filter, 340, 343-344
time series model, 354-360
multicollinearity, 210-214
multinomial logistic regression, 264, 278,
280-287
multiple-comparison test
correlation matrix, 172-173
one-way ANOVA, 150-151

N
negative exponential growth model, 233
nolabel option, 32-34
nonlinear regression, 216, 232-238§
nonlinear smoothing, 340-341, 343-346
normal distribution
artificial data, 13, 59, 241
curve, 65
test for, 126129
normal probability plot. See
quantile-normal plot
numerical variables, 16, 20, 122

O

OBDC (Open Database Connectivity), 42
odds ratio. See logistic regression
observation number, 38-39
omitted-variables test, 197, 199
one-sample ¢ test, 143146

one-way ANOVA, 149-152

open file, 2

order (order variables in data), 19
ordered logistic regression, 278-280
ordinal variable, 35-36

outfile (write ASCII data), 42
outlier, 126, 239-248, 344, 388-394
overlay twoway graphs, 110-115

P

p chart (quality control), 105-107

paired-difference test, 143, 145-146

panel data, 161, 191-195

partial autocorrelation, 339340, 352

partial regression plot. See added-variable
plot

Pearson correlation, 5,19, 160, 171-173
percentiles, 122--124, 136
periodogram, 340
Phillips—Perron test, 355
pie chart, 66, 92-94
placement (legend in graph), 114-115
poisgof (Poisson goodness of fit test),
310-311
Poissonregression, 290-291,309-313,317
polynomial regression, 188—191
Portable Network Graphics (.png) graph, 6,
116
Postscript (.ps or .eps) graph, 6, 116
Prais—Winsten regression, 340, 359-360
predict (predicted values, residuals,
diagnostics)
anova, 155-158, 167
arima, 357
logistic, 264, 268-271, 284
regress, 159, 165-167, 190, 196-197,
205-210, 216, 233
principal components, 318-325
print graph, 6
print results, 4
probit regression, 262263, 314
program, 362-363
promax rotation, 319, 322-325
pweight (probability or sampling weights),
54-56
pwceorr (pairwise Pearson correlation),
160, 172—173, 174-175

Q
qladder, 128-129
quality-control graphs, 67, 105-108
quantile
defined, 102
quantile plot, 102-103
quantile-normal plot, 67, 104
quantile-quantile plot, 104-105
regression, 239-256, 389-394
quartile, 91, 125-126
quietly, 175, 182, 188

R
r chart (quality control), 67, 106, 108

r-class, 381, 387, 390
Ramsey specification error test (RESET),
197
random data, 56-60, 241, 387-394
random number, 30, 56-59, 241
random sample, 14, 60
range (create data over range), 236
range plot, 89
range standardization, 334-335
rank, 32
rank-sum test, 142, 148—149. 152
real function, 35-36
regress (linear regression), 159-165, 239,
386, 389-394
regression
absorb categorical variable, 179180
beta weight (standardized regression
coefficient), 160, 164-165
censored-normal, 264
confidence interval, 110-112, 163,
169-171
constant, 163
curvilinear, 189191, 216, 223-232
diagnostics, 167, 196-214
dummy variable, 176-185
hypothesis test, 160, 175176
instrumental variable, 161
line, 67, 110-112, 159-160, 168-171,
190, 242, 244, 247
logistic, 262-287
multinomial logistic, 264, 278,
280-287
multiple, 164-165
no constant, 163
nonlinear, 232-238
ordered logistic, 278-280
ordinary least squares (OLS), 159-165
Poisson, 290-291, 309-313, 317
polynomial, 188-191
predicted value, 165-167, 169
probit, 262-263, 314
residual, 165-167, 169, 205-207
robust, 239-256, 389-394
robust standard errors, 256-261
stepwise, 161, 186188
tobit, 188, 263
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transformed variables, 189-191, 216,
223-232
two-stage least squares (2SLS), 161
weighted least squares (WLS), 161,
245

relational operator, 20

relative risk ratio, 264, 281-284

rename, 16, 17

replace, 16, 25-26, 33

RESET (Ramsey test), 197

reshape, 49-52

residual, 159-160, 167, 200-208

residual-vs.-fitted (predicted values) plot,
160, 169, 188-191, 198, 200

retrieve graph, 116

robust
anova, 249-255
mean, 255
regression, 239-256
standard errors and variance, 256-261

ROC  curve (receiver operating
characteristic), 264

rotation  (factor analysis), 318-319,
322-325

rough, 345

rreg (robust regression), 239-256,
389-394

rviplot (residual-vs.-fitted plot), 160,
188191, 198, 200

rvpplot (residual-vs.-predictor plot

S

sample (draw random sample), 14, 60

sampling weights, 55-56

sandwich estimator of variance, 160
256-261

SAS data files, 42

save (save dataset), 14, 16, 23

save graph, 6

saveold (save dataset in previous Stata
format), 14

scatterplot.  Also see graph twoway
scatter
axis labels, 66, 72
basic, 66-67
marker labels, 67, 74-75, 202-204

’
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marker symbols, 72-73, 119, 182183
matrix, 66, 77, 173174
weighting, 66, 74-75, 207208
with regression line, 66, 110-112,
159-160, 181-182

Scheffé multiple-comparison test, 150-151

score (factor scores), 318-319, 323-325

scree graph (eigenvalues), 318-319,
321-322

search, 8-9

seasonal difference (time series), 349--350

serrbar (standard-error bar plot), 143,
155-157

set memory, 14, 62-63

shading
color, 86
intensity, 91

Shapiro-Francia test, 127

Shapiro—-Wilk test, 127

shewart, 106

Sidak multiple-comparison test, 150,
172-173

sign test, 144-145

signed-rank test, 143 146

skewness, 122124, 126127

sktest (skewness—kurtosis test), 126-127,
383

slope dummy variable, 180

SMCL (Stata Markup and Control
Language), 376-377

smoothing, 340-341, 343-346

sort, 14,19, 21-22, 166

Spearman correlation, 174-175

spectral density, 340

spike plot, 84, 87-88, 347

spreadsheet data, 41-42

SPSS data files, 42

standard deviation, 122-124, 126, 135

standard error
ANOVA, 155-157
bootstrap. See bootstrap
mean, 124
regression prediction, 167, 169-171
robust (Huber/White), 160, 256-261
standardized regression coefficient, 160,
164-165
standardized variable, 32, 331
Stat/Transfer, 42
Stara Journal, 10—11
Statalist online forum, 10
stationary time series, 340, 355-356
steox (Cox hazard model), 290, 299-303
stcurve (survival analysis graphs), 290,
307
stdes (describe survival-time data), 289,
292-293
stem-and-leaf display, 124-125
stepwise regression, 161, 186188
stphplot, 290
streg (survival-analysis regression), 290,
305-309
string to numeric, 32-35
string variable, 17, 40-41
sts generate (generate survivor function),
290
sts graph (graph survivor function), 289,
296, 298
sts list (list survivor function), 290
sts test (test survivor function), 290, 298
stset (define survival-time data), 289,
291-292, 297
stsum (summarize survival-time data), 289,
293,297
studentized residual, 167, 205, 207
subscript, 39-40, 343
summarize (summary statistics), 2, 17, 20,
31-32,90-91, 120-124, 383
sunflower plot, 74-75
survey sampling weights, 55-56, 161, 263
survival analysis, 288-309
svy: regress (survey data regression), 161
svyset (survey data definition), 56
sw (stepwise model fitting), 186—188
symmetry plot, 100, 102

syntax (programming), 368369

T

I test
correlation coefticient, 160, 172-173
means, [43-149
robust means, 255
unequal variance, 148

table, 121, 134-136, 152

tabstat, 120, 123-124

tabulate, 4, 15, 36-37, 56, 121, 130133,
136

technical support, 9

test (hypothesis test for model), 160,
175-176,312

text in graph, 109-110, 113, 222

time plot, 77-84, 343-348

time series, 339360

tin (times in), 346-347, 350, 359

title in graph, 109-110, 112-113

tobit regression, 188, 263

transfer data, 42

transform variable, 126-129, 189-190,216

transpose data, 47-49

tree diagram, 319, 329, 331-337

tsset (define time series data), 340, 342,
346

tssmooth  (time series  smoothing),
340-341, 343-346

ttest, 143-149, 392

Tukey, John, 124

twithin (times within), 346-347

two-sample test, 146-149

two-stage least squares (2SLS), 161

u

unequal variance in s test, 143, 148—149

uniferm (random number generator), 30,
56-58, 241

unit root, 355-356

use, 2-3, 15

v

variance, 122-124, 135, 214

variance inflation factor, 197, 211-212
varimax rotation, 319, 322325
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version, 364

w

web site, 9

Weibullregression (survival analysis), 305,
307-399

weighted least squares (WLS), 161, 245

weights, 55-57, 74-75, 122124, 138-140,
161

Welsch’s distance, 167, 206-210

which, 374

while, 365-366

white noise, 341, 351, 354, 357-358

Wilcoxon rank-sum test, 142, 148149,
152

Wilcoxon signed-rank test, 143, 146

Windows metafile (.wmf or .emf) graph, 6,
116

watest (Box-Pierce white noise O test),
341

word processor
insert Stata graph into, 6
insert Stata table into, 4

X

x axis in graph. See axis label in graph,
axis scale in graph

x-bar chart (quality control), 106-108

xcorr (cross-correlation), 353-354

Xi (expanded interaction terms), 160,
183-185

Xpose (transpose data), 48—49

xtmixed (multilevel mixed-effect models),
162

xtreg (panel data regression), 161,
191-195

Y
Y axis in graph. See axis label in graph,
axis scale in graph

z

z score (standardized variable), 32, 331





