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Chapter

Introduction

Amos is short for Analysis of MOment Structures. It implements the general
approach to data analysis known as structural equation modeling (SEM), also
known as analysis of covariance structures, or causal modeling. This approach
includes, as special cases, many well-known conventional techniques, including the
general linear model and common factor analysis.

Output:

visperc

54
lozenges

49| 77

paragraph
68
sentence

71
.84

wordmean

Chi-square = 7.853 (8 df)
p =.448

Amos (Analysis of Moment Structures) is an easy-to-use program for visual SEM.
With Amos, you can quickly specify, view, and modify your model graphically
using simple drawing tools. Then you can assess your model’s fit, make any
modifications, and print out a publication-quality graphic of your final model.
Simply specify the model graphically (left). Amos quickly performs the
computations and displays the results (right).
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Chapter 1

Structural equation modeling (SEM) is sometimes thought of as esoteric and difficult
to learn and use. This is incorrect. Indeed, the growing importance of SEM in data
analysis is largely due to its ease of use. SEM opens the door for nonstatisticians to
solve estimation and hypothesis testing problems that once would have required the
services of a specialist.

Amos was originally designed as a tool for teaching this powerful and
fundamentally simple method. For this reason, every effort was made to see that it is
easy to use. Amos integrates an easy-to-use graphical interface with an advanced
computing engine for SEM. The publication-quality path diagrams of Amos provide a
clear representation of models for students and fellow researchers. The numeric
methods implemented in Amos are among the most effective and reliable available.

Featured Methods

Amos provides the following methods for estimating structural equation models:
Maximum likelihood

Unweighted least squares

Generalized least squares

Browne’s asymptotically distribution-free criterion

Scale-free least squares

Bayesian estimation

Amos goes well beyond the usual capabilities found in other structural equation
modeling programs. When confronted with missing data, Amos performs
state-of-the-art estimation by full information maximum likelihood instead of relying
on ad-hoc methods like listwise or pairwise deletion, or mean imputation. The program
can analyze data from several populations at once. It can also estimate means for
exogenous variables and intercepts in regression equations.

The program makes bootstrapped standard errors and confidence intervals available
for all parameter estimates, effect estimates, sample means, variances, covariances,
and correlations. It also implements percentile intervals and bias-corrected percentile
intervals (Stine, 1989), as well as Bollen and Stine’s (1992) bootstrap approach to
model testing.

Multiple models can be fitted in a single analysis. Amos examines every pair of
models in which one model can be obtained by placing restrictions on the parameters
of the other. The program reports several statistics appropriate for comparing such
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models. It provides a test of univariate normality for each observed variable as well as
a test of multivariate normality and attempts to detect outliers.

Amos accepts a path diagram as a model specification and displays parameter
estimates graphically on a path diagram. Path diagrams used for model specification
and those that display parameter estimates are of presentation quality. They can be
printed directly or imported into other applications such as word processors, desktop
publishing programs, and general-purpose graphics programs.

About the Tutorial

The tutorial is designed to get you up and running with Amos Graphics. It covers some
of the basic functions and features and guides you through your first Amos analysis.

Once you have worked through the tutorial, you can learn about more advanced
functions using the online Help, or you can continue working through the examples to
get a more extended introduction to structural modeling with Amos.

About the Examples

Many people like to learn by doing. Knowing this, we have developed many examples
that quickly demonstrate practical ways to use Amos. The initial examples introduce
the basic capabilities of Amos as applied to simple problems. You learn which buttons
to click, how to access the several supported data formats, and how to maneuver
through the output. Later examples tackle more advanced modeling problems and are
less concerned with program interface issues.

Examples 1 through 4 show how you can use Amos to do some conventional
analyses—analyses that could be done using a standard statistics package. These
examples show a new approach to some familiar problems while also demonstrating
all of the basic features of Amos. There are sometimes good reasons for using Amos
to do something simple, like estimating a mean or correlation or testing the hypothesis
that two means are equal. For one thing, you might want to take advantage of the ability
of Amos to handle missing data. Or maybe you want to use the bootstrapping capability
of Amos, particularly to obtain confidence intervals.

Examples 5 through 8§ illustrate the basic techniques that are commonly used
nowadays in structural modeling.
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Example 9 and those that follow demonstrate advanced techniques that have so far not
been used as much as they deserve. These techniques include:

Simultaneous analysis of data from several different populations.

Estimation of means and intercepts in regression equations.

Maximum likelihood estimation in the presence of missing data.

Bootstrapping to obtain estimated standard errors and confidence intervals. Amos
makes these techniques especially easy to use, and we hope that they will become
more commonplace.

Specification searches.
Bayesian estimation.
Imputation of missing values.
Analysis of censored data.

Analysis of ordered-categorical data.

Mixture modeling.

Tip: If you have questions about a particular Amos feature, you can always refer to the
extensive online Help provided by the program.

About the Documentation

Amos 17.0 comes with extensive documentation, including an online Help system, this
user’s guide, and advanced reference material for Amos Basic and the Amos API
(Application Programming Interface). If you performed a typical installation, you can
find the Amos 17.0 Programming Reference Guide in the following location:
C:A\Program Files\SPSS Inc\Amos 17.0\Documentation\Programming Reference.pdyf.

Other Sources of Information

Although this user’s guide contains a good bit of expository material, it is not by any
means a complete guide to the correct and effective use of structural modeling. Many
excellent SEM textbooks are available.

m  Structural Equation Modeling: A Multidisciplinary Journal contains
methodological articles as well as applications of structural modeling. It is
published by:
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Lawrence Erlbaum Associates, Inc.
Journal Subscription Department
10 Industrial Avenue

Mahwah, NJ 07430-2262 USA
www.erlbaum.com

®m  Carl Ferguson and Edward Rigdon established an electronic mailing list called
Semnet to provide a forum for discussions related to structural modeling. You can
find information about subscribing to Semnet at
www. gsu.edu/~mkteer/semnet.html.

m  Edward Rigdon also maintains a list of frequently asked questions about structural
equation modeling. That FAQ is located at www. gsu.edu/~mkteer/semfaq.html.
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are committed to correcting any program errors. If you believe you have encountered
one, please report it to the SPSS Inc. technical support staff.

James L. Arbuckle
Bangkok, Thailand
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Tutorial: Getting Started with
Amos Graphics

Introduction

Remember your first statistics class when you sweated through memorizing formulas
and laboriously calculating answers with pencil and paper? The professor had you do
this so that you would understand some basic statistical concepts. Later, you
discovered that a calculator or software program could do all of these calculations in
a split second.

This tutorial is a little like that early statistics class. There are many shortcuts to
drawing and labeling path diagrams in Amos Graphics that you will discover as you
work through the examples in this user’s guide or as you refer to the online Help. The
intent of this tutorial is to simply get you started using Amos Graphics. It will cover
some of the basic functions and features of Amos and guide you through your first
Amos analysis.

Once you have worked through the tutorial, you can learn about more advanced
functions from the online Help, or you can continue to learn incrementally by working
your way through the examples.

If you performed a typical installation, you can find the path diagram constructed
in this tutorial in this location: C:\Program Files\SPSS Inc\Amos 17.0\Tutorial. The
file Startsps.amw uses a data file in SPSS Statistics format. Getstart.amw is the same
path diagram but uses data from a Microsoft Excel file.

Tip: Amos 17.0 provides more than one way to accomplish most tasks. For all menu
commands except Tools — Macro, there is a toolbar button that performs the same task.
For many tasks, Amos also provides keyboard shortcuts. The user’s guide
demonstrates the menu path. For information about the toolbar buttons and keyboard
shortcuts, see the online Help.
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About the Data

Hamilton (1990) provided several measurements on each of 21 states. Three of the
measurements will be used in this tutorial:

m  Average SAT score
®m  Per capita income expressed in $1,000 units

®  Median education for residents 25 years of age or older

You can find the data in the Tutorial directory within the Excel 8.0 workbook
Hamilton.xls in the worksheet named Hamilton. The data are as follows:

SAT | Income | Education
899 | 14.345 12.7
896 16.37 12.6
897 | 13.537 12.5
889 | 12.552 12.5
823 11.441 12.2
857 | 12.757 12.7
860 | 11.799 12.4
890 | 10.683 12.5
889 | 14.112 12.5
888 | 14.573 12.6
925 13.144 12.6
869 | 15.281 12.5
896 | 14.121 12.5
827 | 10.758 12.2
908 | 11.583 12.7
885 | 12.343 12.4
887 | 12.729 12.3
790 | 10.075 12.1
868 | 12.636 12.4
904 | 10.689 12.6
888 | 13.065 12.4
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The following path diagram shows a model for these data:

Education \
/ SAT

Incame

This is a simple regression model where one observed variable, SAT, is predicted as a
linear combination of the other two observed variables, Education and Income. As with
nearly all empirical data, the prediction will not be perfect. The variable Other
represents variables other than Education and Income that affect SAT.

Each single-headed arrow represents a regression weight. The number 1 in the
figure specifies that Other must have a weight of 1 in the prediction of SAT. Some such
constraint must be imposed in order to make the model identified, and it is one of the
features of the model that must be communicated to Amos.

Launching Amos Graphics

You can launch Amos Graphics in any of the following ways:

m  Click Start on the Windows task bar, and choose All Programs — SPSS Inc —
Amos 17.0 — Amos Graphics.

Double-click any path diagram (*.amw).

Drag a path diagram (*.amw) file from Windows Explorer to the Amos Graphics
window.

m  Click Start on the Windows task bar, and choose All Programs — SPSS Inc —
Amos 17.0 — View Path Diagrams. Then double-click a path diagram in the View
Path Diagrams window.

B  From within SPSS Statistics, choose Add-ons — Applications — Amos from the
menus.
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Creating a New Model

» From the menus, choose File — New.

Your work area appears. The large area on the right is where you draw path diagrams.
The toolbar on the left provides one-click access to the most frequently used buttons.
You can use either the toolbar or menu commands for most operations.

Unnamed project : Group number 1 : Input
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Specifying the Data File
The next step is to specify the file that contains the Hamilton data. This tutorial uses a
Microsoft Excel 8.0 (*.xls) file, but Amos supports several common database formats,
including SPSS Statistics *.sav files. If you launch Amos from the Add-ons menu in
SPSS Statistics, Amos automatically uses the file that is open in SPSS Statistics.
» From the menus, choose File — Data Files.

» In the Data Files dialog box, click File Name.

» Browse to the Tutorial folder. If you performed a typical installation, the path is
C:\Program Files\SPSS Inc\Amos 17.0\Tutorial.

» In the Files of type list, select Excel 8.0 (*.xls).
» Select Hamilton.xls, and then click Open.

» In the Data Files dialog box, click OK.

Specifying the Model and Drawing Variables

The next step is to draw the variables in your model. First, you’ll draw three rectangles
to represent the observed variables, and then you’ll draw an ellipse to represent the
unobserved variable.

» From the menus, choose Diagram — Draw Observed.

» In the drawing area, move your mouse pointer to where you want the Education
rectangle to appear. Click and drag to draw the rectangle. Don’t worry about the exact
size or placement of the rectangle because you can change it later.

» Use the same method to draw two more rectangles for Income and SAT.

» From the menus, choose Diagram — Draw Unobserved.
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» In the drawing area, move your mouse pointer to the right of the three rectangles and
click and drag to draw the ellipse.

The model in your drawing area should now look similar to the following:

O

Naming the Variables

» Inthe drawing area, right-click the top left rectangle and choose Object Properties from
the pop-up menu.

» Click the Text tab.

» In the Variable name text box, type Education.

:?: Object Properties

Colars ] Test I Parameters ] Farmat ] "igibility ]

Eant Size Fant Style

I'IE "I IHeguIar 'I

Y anable name

Education i’
" ariable |abel

- Set Default

Undo

» Use the same method to name the remaining variables. Then close the Object
Properties dialog box.
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Your path diagram should now look like this:

Tutorial: Getting Started with Amos Graphics

Education

Income

SAT

Drawing Arrows

Now you will add arrows to the path diagram, using the following model as your guide:

Educstion

Income

SAT

N
e

» From the menus, choose Diagram — Draw Path.
» Click and drag to draw an arrow between Education and SAT.

» Use this method to add each of the remaining single-headed arrows.

» From the menus, choose Diagram — Draw Covariances.

» Click and drag to draw a double-headed arrow between Income and Education. Don’t

worry about the curve of the arrow because you can adjust it later.
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Constraining a Parameter

To identify the regression model, you must define the scale of the latent variable Other.
You can do this by fixing either the variance of Other or the path coefficient from Other
to SAT at some positive value. The following shows you how to fix the path coefficient
at unity (1).

In the drawing area, right-click the arrow between Other and SAT and choose Object
Properties from the pop-up menu.

Click the Parameters tab.

In the Regression weight text box, type 1.

.. Dbject Properties

Colors ] Text I Parameters I Faormat ] Wigibility ]

Font zize and style————— — Orientation

|1 4 j| R egular j IH:::rizu:untaI j

Bearezzion weight Set Default

[1

Undo

Close the Object Properties dialog box.

There is now a 1 above the arrow between Other and SAT. Your path diagram is now
complete, other than any changes you may wish to make to its appearance. It should
look something like this:
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Education

Nt
b

Incormne

Altering the Appearance of a Path Diagram

You can change the appearance of your path diagram by moving and resizing objects.
These changes are visual only; they do not affect the model specification.

To Move an Object
» From the menus, choose Edit — Move.

» In the drawing area, click and drag the object to its new location.

To Reshape an Object or Double-Headed Arrow
» From the menus, choose Edit — Shape of Object.

» In the drawing area, click and drag the object until you are satisfied with its size and
shape.

To Delete an Object

» From the menus, choose Edit — Erase.

» In the drawing area, click the object you wish to delete.
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To Undo an Action

» From the menus, choose Edit — Undo.

To Redo an Action

» From the menus, choose Edit - Redo.

Setting Up Optional Output

Some of the output in Amos is optional. In this step, you will choose which portions of
the optional output you want Amos to display after the analysis.

» From the menus, choose View — Analysis Properties.
» Click the Output tab.

» Select the Minimization history, Standardized estimates, and Squared multiple correlations
check boxes.
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Analyziz Properties

» Close the Analysis Properties dialog box.
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Performing the Analysis

The only thing left to do is perform the calculations for fitting the model. Note that in
order to keep the parameter estimates up to date, you must do this every time you
change the model, the data, or the options in the Analysis Properties dialog box.

» From the menus, click Analyze — Calculate Estimates.
» Because you have not yet saved the file, the Save As dialog box appears. Type a name

for the file and click Save.

Amos calculates the model estimates. You can watch the progress of calculations in the
panel to the left of the path diagram, but the calculations happen so quickly that you
may see only the summary after calculations are complete.

lteration b -]
kinimurn was achieved
Wtiting output
Chi-sguare = 0.0, df=10

Viewing Output

When Amos has completed the calculations, you have two options for viewing the
output: text and graphics.

To View Text Output

» From the menus, choose View — Text Output.

The tree diagram in the upper left pane of the Amos Output window allows you to
choose a portion of the text output for viewing.

» Click Estimates to view the parameter estimates.
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Regression Weights: {Group number 1 - Default model)

Estitnate | 3.E. C.E. P | Lahel
SAT «---Incomme 2156 3125 690 490
SAT «---Educatn 136.022] 30 555 4452 ***

Standardized Regression Weights: { Group number 1 - Default model)

Estimate
BaT <--1 Incotne 11
SAT =--- Educatn N

Covariances: {(Group number 1 - Default model)

Estitnate | 5.E. Z.E. P | Lahel
Incorne <--=Educatn A2 085 1.952 051

Correlations: (Group numhber 1 - Default model)

Estitniate
Income<--= Educatn 485

Variances: (Group number 1 - Default model)

Estitnate | 3.E. CE. P | Lahel

Income 2562 810 3.162 .002
Educatn 037 .00F 3.162 .002
Other 382.°736(121.032  3.1643) .002

Squared Multiple Correlations: (Group number 1 - Default model)

Estitnate

SAT

.B03

To View Graphics Output

» Click the Show the output path diagram button

» In the Parameter Formats pane to the left of the drawing area, click Standardized

estimates.
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Instandardized estimates

Standardized estimates

Your path diagram now looks like this:

Education \Q‘ a0

Income

The value 0.49 is the correlation between Education and Income. The values 0.72 and
0.11 are standardized regression weights. The value 0.60 is the squared multiple
correlation of SAT with Education and Income.

» In the Parameter Formats pane to the left of the drawing area, click Unstandardized
estimates.

Your path diagram should now look like this:

03
Education Qﬂj 38274
A 286 SAT
Income /

Printing the Path Diagram

» From the menus, choose File — Print.

The Print dialog box appears.
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Groups Modelz
Crefault model Pririt
Cloze
Formats
|Inztandardized estimates
Standardized estimates Printer Setup

» Click Print.

Copying the Path Diagram

Amos Graphics lets you easily export your path diagram to other applications such as
Microsoft Word.

» From the menus, choose Edit — Copy (to Clipboard).

» Switch to the other application and and use the Paste function to insert the path
diagram. Amos Graphics exports only the diagram; it does not export the background.

Copying Text Output
» In the Amos Output window, select the text you want to copy.
» Right-click the selected text, and choose Copy from the pop-up menu.

» Switch to the other application and and use the Paste function to insert the text.






Example

Estimating Variances and
Covariances

Introduction

This example shows you how to estimate population variances and covariances. It also
discusses the general format of Amos input and output.

About the Data

Attig (1983) showed 40 subjects a booklet containing several pages of advertisements.
Then each subject was given three memory performance tests.

Test

Explanation

recall

The subject was asked to recall as many of the advertisements as possible.
The subject’s score on this test was the number of advertisements recalled
correctly.

cued

The subject was given some cues and asked again to recall as many of the
advertisements as possible. The subject’s score was the number of
advertisements recalled correctly.

place

The subject was given a list of the advertisements that appeared in the
booklet and was asked to recall the page location of each one. The subject’s
score on this test was the number of advertisements whose location was
recalled correctly.

Attig repeated the study with the same 40 subjects after a training exercise intended
to improve memory performance. There were thus three performance measures
before training and three performance measures after training. In addition, she
recorded scores on a vocabulary test, as well as age, sex, and level of education.
Attig’s data files are included in the Examples folder provided by Amos.

23
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Bringing In the Data

>

>

From the menus, choose File — New.
From the menus, choose File — Data Files.
In the Data Files dialog box, click File Name.

Browse to the Examples folder. If you performed a typical installation, the path is
C:A\Program Files\SPSS Inc\Amos 17.0\Examples.

In the Files of type list, select Excel 8.0 (*.xls), select UserGuide.xls, and then click
Open.

In the Data Files dialog box, click OK.

Amos displays a list of worksheets in the UserGuide workbook. The worksheet
Attg_yng contains the data for this example.

In the Select a Data Table dialog box, select Attg_yng, then click View Data.

Afto_miz
Alto_miz
Grantk
Grant_x
rat_fem
Grnt_mal
Harmilton

Olsz_al |

Wiew Data

] Cancel

The Excel worksheet for the Artg_yng data file opens.
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- UzerGuide_xls

age|vocab short| vocabulary

fotta_old 1 20 13 E

tha s
Aty iz 2 L) 12 B4
Grart 3 19 10 59
Grant_x 4 25 14 =]
Grrt_fern 5 18 4 47
Grnt_mal
Hamilton 6 18 12 65
Olss_all — 7 18 5 51
Olzs_exp 2 5 a7
Wwarren3y q 19 o =3 -
Wt arreny LI 4 | Ll

As you scroll across the worksheet, you will see all of the test variables from the Attig
study. This example uses only the following variables: recalll (recall pretest), recall2

(recall posttest), placel (place recall pretest), and place2 (place recall posttest).

» After you review the data, close the data window.

>

In the Data Files dialog box, click OK.

Analyzing the Data

In this example, the analysis consists of estimating the variances and covariances of the
recall and place variables before and after training.

Specifying the Model

>

>

From the menus, choose Diagram — Draw Observed.

In the drawing area, move your mouse pointer to where you want the first rectangle to

appear. Click and drag to draw the rectangle.

From the menus, choose Edit — Duplicate.

Click and drag a duplicate from the first rectangle. Release the mouse button to

position the duplicate.
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» Create two more duplicate rectangles until you have four rectangles side by side.

Tip: If you want to reposition a rectangle, choose Edit — Move from the menus and drag

the rectangle to its new position.

Naming the Variables

» From the menus, choose View — Variables in Dataset.

The Variables in Dataset dialog box appears.

» Click and drag the variable recalll from the list to the first rectangle in the drawing

area.

» Use the same method to name the variables recall2, placel, and place?2.

= - =
.= Variables in Dataset [El E3

subjact
age
wocab_short
wocabulany
education
SEx

recalll
recallz
cuedi
cuedd
placel
place?

» Close the Variables in Dataset dialog box.
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Changing the Font

» Right-click a variable and choose Object Properties from the pop-up menu.

The Object Properties dialog box appears.

» Click the Text tab and adjust the font attributes as desired.

recalll recall2 placel E place? |,

:?; Object Properties

Colors I Test I FParameters ] Farmat I Wigibility I

Font Size Faont Style

I Reaqular - |

- Set Default

Undo

Establishing Covariances

If you leave the path diagram as it is, Amos Graphics will estimate the variances of the
four variables, but it will not estimate the covariances between them. In Amos
Graphics, the rule is to assume a correlation or covariance of O for any two variables
that are not connected by arrows. To estimate the covariances between the observed
variables, we must first connect all pairs with double-headed arrows.

» From the menus, choose Diagram — Draw Covariances.

» Click and drag to draw arrows that connect each variable to every other variable.

Your path diagram should have six double-headed arrows.
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Performing the Analysis
» From the menus, choose Analyze — Calculate Estimates.
Because you have not yet saved the file, the Save As dialog box appears.

» Enter a name for the file and click Save.

Viewing Graphics Output W
» Click the Show the output path diagram button .

Amos displays the output path diagram with parameter estimates.
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In the output path diagram, the numbers displayed next to the boxes are estimated
variances, and the numbers displayed next to the double-headed arrows are estimated
covariances. For example, the variance of recalll is estimated at 5.79, and that of
placel at 33.58. The estimated covariance between these two variables is 4.34.

Viewing Text Output
» From the menus, choose View — Text Output.

» In the tree diagram in the upper left pane of the Amos Output window, click Estimates.

=1ofx]
Q& meE B o 2 -5 -0 -[TJOF@ : @

Ex01.armw -
- Analysis Summary Estimates (Group number 1 - Default model) —
- Maotes for Group
H-Yariable Summary Scalar Estimates {(Group number 1 - Default model)
- Pararnater summary
&+ Motes for bModel Maximum Likelihood Estimates

[ . 3
-~ Minimization Histary
=-Model Fit

- Execution Tirme

Covariances: (Group number 1 - Default model)

Estimate SE. CR. P Lahel

recalll <=-= recall2 256 1.16 220 03

recall? <=--> placel 2m 2.64 7B A4

placel <--> place? 1780 522 343 EE

recall? <--= place? 43 213 20 a4
Group number 1 recalll <=--= placel 434 234 1.86 06

recalll =--> place? 357 1.90 1.88 06
Default model Variances: (Group number 1 - Default model)

Estimate SE. CR. F Lahel

recalll 578 13 442
recall2 794 180 442
place1 3358  7FBO 442 T

place? 2216 .02 4437 R t
4| |_'|J

The first estimate displayed is of the covariance between recalll and recall2. The
covariance is estimated to be 2.56. Right next to that estimate, in the S.E. column, is an
estimate of the standard error of the covariance, 1.16. The estimate 2.56 is an
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observation on an approximately normally distributed random variable centered
around the population covariance with a standard deviation of about 1.16, that is, if the
assumptions in the section “Distribution Assumptions for Amos Models” on p. 35 are
met. For example, you can use these figures to construct a 95% confidence interval on
the population covariance by computing 2.56 £ 1.96 x 1.160= 2.56 £2.27 . Later, you
will see that you can use Amos to estimate many kinds of population parameters
besides covariances and can follow the same procedure to set a confidence interval on
any one of them.

Next to the standard error, in the C.R. column, is the critical ratio obtained by
dividing the covariance estimate by its standard error (2.20 = 2.56/1.16) . This ratio
is relevant to the null hypothesis that, in the population from which Attig’s 40 subjects
came, the covariance between recalll and recall? is 0. If this hypothesis is true, and
still under the assumptions in the section “Distribution Assumptions for Amos
Models” on p. 35, the critical ratio is an observation on a random variable that has an
approximate standard normal distribution. Thus, using a significance level of 0.05, any
critical ratio that exceeds 1.96 in magnitude would be called significant. In this
example, since 2.20 is greater than 1.96, you would say that the covariance between
recalll and recall? is significantly different from O at the 0.05 level.

The P column, to the right of C.R., gives an approximate two-tailed p value for
testing the null hypothesis that the parameter value is O in the population. The table
shows that the covariance between recalll and recall? is significantly different from 0
with p = 0.03. The calculation of P assumes that parameter estimates are normally
distributed, and it is correct only in large samples. See Appendix A for more
information.

The assertion that the parameter estimates are normally distributed is only an
approximation. Moreover, the standard errors reported in the S.E. column are only
approximations and may not be the best available. Consequently, the confidence
interval and the hypothesis test just discussed are also only approximate. This is
because the theory on which these results are based is asymptotic. Asymptotic means
that it can be made to apply with any desired degree of accuracy, but only by using a
sufficiently large sample. We will not discuss whether the approximation is
satisfactory with the present sample size because there would be no way to generalize
the conclusions to the many other kinds of analyses that you can do with Amos.
However, you may want to re-examine the null hypothesis that recalll and recall2 are
uncorrelated, just to see what is meant by an approximate test. We previously
concluded that the covariance is significantly different from 0 because 2.20 exceeds
1.96. The p value associated with a standard normal deviate of 2.20 is 0.028 (two-
tailed), which, of course, is less than 0.05. By contrast, the conventional ¢ statistic (for
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example, Runyon and Haber, 1980, p. 226) is 2.509 with 38 degrees of freedom

(p = 0.016). In this example, both p values are less than 0.05, so both tests agree in
rejecting the null hypothesis at the 0.05 level. However, in other situations, the two
p values might lie on opposite sides of 0.05. You might or might not regard this as
especially serious—at any rate, the two tests can give different results. There should be
no doubt about which test is better. The ¢ test is exact under the assumptions of
normality and independence of observations, no matter what the sample size. In Amos,
the test based on critical ratio depends on the same assumptions; however, with a finite
sample, the test is only approximate.

Note: For many interesting applications of Amos, there is no exact test or exact standard
error or exact confidence interval available.

On the bright side, when fitting a model for which conventional estimates exist,
maximum likelihood point estimates (for example, the numbers in the Estimate
column) are generally identical to the conventional estimates.

» Now click Notes for Model in the upper left pane of the Amos Output window.

=1
RE&mueE Be 2 -8 -0 ~[T[OFBR : @

Ex07 @ ;I

- Analysis Summarny Motes for Model {Default model)

- MNaotes for Group
#-“arahle Summary Computation of degrees of freedom (Default model)
- Parameter summary
E B .

E

Mumber of distinct sample moments: 10
Mumber of distinct parameters ta be estimated: 10

~Minimization Histary Degrees of freedom (10 - 10; 0
- Model Fit

- Execution Time

Result (Default model)

Minimum was achieved

Chi-sguare = .00

Degrees of freedom =0
—— Probahility level cannot be computed

—— ||

The following table plays an important role in every Amos analysis:

Number of distinct sample moments: | 10
Number of distinct parameters to be estimated: | 10
Degrees of freedom (10 — 10): 0
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The Number of distinct sample moments referred to are sample means, variances, and
covariances. In most analyses, including the present one, Amos ignores means, so that
the sample moments are the sample variances of the four variables, recalll, recall2,
placel, and place2, and their sample covariances. There are four sample variances and
six sample covariances, for a total of 10 sample moments.

The Number of distinct parameters to be estimated are the corresponding
population variances and covariances. There are, of course, four population variances
and six population covariances, which makes 10 parameters to be estimated.

The Degrees of freedom is the amount by which the number of sample moments
exceeds the number of parameters to be estimated. In this example, there is a one-to-
one correspondence between the sample moments and the parameters to be estimated,
so it is no accident that there are zero degrees of freedom.

As we will see beginning with Example 2, any nontrivial null hypothesis about the
parameters reduces the number of parameters that have to be estimated. The result will
be positive degrees of freedom. For now, there is no null hypothesis being tested.
Without a null hypothesis to test, the following table is not very interesting:

Chi-square = 0.00
Degrees of freedom = 0
Probability level cannot be computed

If there had been a hypothesis under test in this example, the chi-square value would have
been a measure of the extent to which the data were incompatible with the hypothesis. A
chi-square value of O would ordinarily indicate no departure from the null hypothesis.
But in the present example, the 0 value for degrees of freedom and the O chi-square value
merely reflect the fact that there was no null hypothesis in the first place.

Minimum was achieved

This line indicates that Amos successfully estimated the variances and covariances.
Sometimes structural modeling programs like Amos fail to find estimates. Usually,
when Amos fails, it is because you have posed a problem that has no solution, or no
unique solution. For example, if you attempt maximum likelihood estimation with
observed variables that are linearly dependent, Amos will fail because such an analysis
cannot be done in principle. Problems that have no unique solution are discussed
elsewhere in this user’s guide under the subject of identifiability. Less commonly,
Amos can fail because an estimation problem is just too difficult. The possibility of
such failures is generic to programs for analysis of moment structures. Although the
computational method used by Amos is highly effective, no computer program that
does the kind of analysis that Amos does can promise success in every case.
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Optional Output

So far, we have discussed output that Amos generates by default. You can also request
additional output.

Calculating Standardized Estimates

You may be surprised to learn that Amos displays estimates of covariances rather than
correlations. When the scale of measurement is arbitrary or of no substantive interest,
correlations have more descriptive meaning than covariances. Nevertheless, Amos and
similar programs insist on estimating covariances. Also, as will soon be seen, Amos
provides a simple method for testing hypotheses about covariances but not about
correlations. This is mainly because it is easier to write programs that way. On the other
hand, it is not hard to derive correlation estimates after the relevant variances and
covariances have been estimated. To calculate standardized estimates:

» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Output tab.

» Select the Standardized estimates check box.

.. Analysis Properties

E stimation I Mumerical I Bias
Permutations I F andom # I Title
Cutput farmatting I Cutput I Bootztrap
[¥ Minimization histany [~ Indirect, direct & total effects
Ftéﬁtandardized estimates [~ Factor score weights
[~ Squared multiple corelations [~ Covariances of estimates

» Close the Analysis Properties dialog box.
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Rerunning the Analysis

Because you have changed the options in the Analysis Properties dialog box, you must
rerun the analysis.

» From the menus, choose Analyze — Calculate Estimates.
» Click the Show the output path diagram button.

» In the Parameter Formats pane to the left of the drawing area, click Standardized
estimates.

|Inztandardized eshmates

Standardized estimates

|Parameter Formats

Viewing Correlation Estimates as Text Output

» From the menus, choose View — Text Output.
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» In the tree diagram in the upper left pane of the Amos Output window, expand
Estimates, Scalars, and then click Correlations.

_io/x]
R & WNS & o2 -5 -0 ~[TO)HB @

Ex01 . arma ;l

& Analysis Summany Correlations: {Group number 1 - Default model)
- Motes for Group
m-Yariahle Summary Estimate

-~ Parameter summary recalll =—-= recall2 23

- MNotes for Model

_ recall? <+ placel 12
|:—:|--Eist|mates place1%<--> place? il
=-Scalars recall? <-—-= place2 03
recalll <-> placel =

recalll <-> placed 42

- Minimization History
- Model Fit
- Ewaoution Time

Distribution Assumptions for Amos Models

Hypothesis testing procedures, confidence intervals, and claims for efficiency in
maximum likelihood or generalized least-squares estimation depend on certain
assumptions. First, observations must be independent. For example, the 40 young
people in the Attig study have to be picked independently from the population of young
people. Second, the observed variables must meet some distributional requirements. If
the observed variables have a multivariate normal distribution, that will suffice.
Multivariate normality of all observed variables is a standard distribution assumption
in many structural equation modeling and factor analysis applications.

There is another, more general, situation under which maximum likelihood
estimation can be carried out. If some exogenous variables are fixed (that is, they are
either known beforehand or measured without error), their distributions may have any
shape, provided that:

®m  For any value pattern of the fixed variables, the remaining (random) variables have
a (conditional) normal distribution.

B The (conditional) variance-covariance matrix of the random variables is the same
for every pattern of the fixed variables.
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®  The (conditional) expected values of the random variables depend linearly on the
values of the fixed variables.

A typical example of a fixed variable would be an experimental treatment, classifying
respondents into a study group and a control group, respectively. It is all right that
treatment is non-normally distributed, as long as the other exogenous variables are
normally distributed for study and control cases alike, and with the same conditional
variance-covariance matrix. Predictor variables in regression analysis (see Example 4)
are often regarded as fixed variables.

Many people are accustomed to the requirements for normality and independent
observations, since these are the usual requirements for many conventional procedures.
However, with Amos, you have to remember that meeting these requirements leads
only to asymptotic conclusions (that is, conclusions that are approximately true for
large samples).

Modeling in VB.NET

>

Itis possible to specify and fit a model by writing a program in VB.NET or in C#. Writing
programs is an alternative to using Amos Graphics to specify a model by drawing its path
diagram. This section shows how to write a VB.NET program to perform the analysis of
Example 1. A later section explains how to do the same thing in C#.

Amos comes with its own built-in editor for VB.NET and C# programs. It is
accessible from the Windows Start menu. To begin Example 1 using the built-in editor:

From the Windows Start menu, choose All Programs — SPSS Inc — Amos 17.0 -
Program Editor.

In the Program Editor window, choose File — New VB Program.
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File Edt Format

Heada]

= Module MainModule
Public Sub Main()
"Your code goes here.

End Sub -
End Module -
4 »
Description
Run
I _’I Close

» Enter the VB.NET code for specifying and fitting the model in place of the ‘Your code

goes here comment. The following figure shows the program editor after the complete
program has been entered.

- C:\Examples\Ex01_vb

File Edt Fomat
eadey
= Module MainModule
& Sub Main{)
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Begin Group(Sem.AmosDir & "Examples\UserGuidexIs", "Attg_yng")
Sem.AStructure("recalll")
Sem.Astructure("recall2")
Sem.Astructure("placel™)
Sem.AStructure("place2"”)
Sem.FtModel()
Finally
Sem.Dispose()
End Try
- EndSub
- End Module

[« |

Description B |

Note: The Examples directory contains all of the pre-written examples.
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To open the VB.NET file for the present example:

» From the Program Editor menus, choose File — Open.

» Select the file ExO1.vb in the Amos 17.0\Examples directory.

The following table gives a line-by-line explanation of the program.

Program Statement

Explanation

Dim Sem As New AmosEngine

Declares Sem as an object of type
AmosEngine. The methods and properties of
the Sem object are used to specify and fit the
model.

Sem.TextOutput

Creates an output file containing the results of
the analysis. At the end of the analysis, the
contents of the output file are displayed in a
separate window.

Sem.BeginGroup ...

Begins the model specification for a single
group (that is, a single population). This line
also specifies that the Artg_yng worksheet in the
Excel workbook UserGuide.xls contains the
input data. Sem.AmosDir() is the location of the
Amos program directory.

Sem.AStructure("recall1")
Sem.AStructure("recall2")
Sem.AStructure("place1")
Sem.AStructure("place2")

Specifies the model. The four AStructure
statements declare the variances of recalll,
recall2, placel, and place? to be free
parameters. The other eight variables in the
Attg_yng data file are left out of this analysis. In
an Amos program (but not in Amos Graphics),
observed exogenous variables are assumed by
default to be correlated, so that Amos will
estimate the six covariances among the four
variables.

Sem.FitModel()

Fits the model.

Sem.Dispose()

Releases resources used by the Sem object. It is
particularly important for your program to use
an AmosEngine object’s Dispose method before
creating another AmosEngine object. A process
is allowed only one instance of an AmosEngine
object at a time.

Try/Finally/End Try

The Try block guarantees that the Dispose
method will be called even if an error occurs
during program execution.

» To perform the analysis, from the menus, choose File — Run.
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Generating Additional Output

Some AmosEngine methods generate additional output. For example, the Standardized

method displays standardized estimates. The following figure shows the use of the
Standardized method:

2. C\Examples\Ex01 vb

File Edit Format

eader

= Module MainMaodule

& Sub Main{)

Dim Sem As New AmosEngine

Try
Sem.TextOutput()
Sem.Standardized
Sem.Begin Group(Sem.AmosDir & "Examples\UserGuidexIs", "Attg_yng")
Sem.AStructure("recalll")
Sem.Astructure("recall2")
Sem.AStructure("placel’
Sem.AStructure("place2’
Sem.FtModel()

)
)

Anally
Sem.Dispose()
End Try
+  End Sub
- End Module
|«] |
Description . |
7 I _’I Close |
.| Debug output Y

Modeling in C#

Writing an Amos program in C# is similar to writing one in VB.NET. To start a new
C# program, in the built-in program editor of Amos:

» Choose File — New C# Program (rather than File — New VB Program).

» Choose File — Open to open Ex0I.cs, which is a C# version of the VB.NET program
Ex01.vb.
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Other Program Development Tools

The built-in program editor in Amos is used throughout this user’s guide for writing
and executing Amos programs. However, you can use the development tool of your
choice. The Examples folder contains a VisualStudio subfolder where you can find
Visual Studio VB.NET and C# solutions for Example 1.
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2

Testing Hypotheses

Introduction

This example demonstrates how you can use Amos to test simple hypotheses about
variances and covariances. It also introduces the chi-square test for goodness of fit and
elaborates on the concept of degrees of freedom.

About the Data

We will use Attig’s (1983) spatial memory data, which were described in Example 1.
We will also begin with the same path diagram as in Example 1. To demonstrate the
ability of Amos to use different data formats, this example uses a data file in SPSS
Statistics format instead of an Excel file.

Parameters Constraints

The following is the path diagram from Example 1. We can think of the variable

objects as having small boxes nearby (representing the variances) that are filled in
once Amos has estimated the parameters.

41
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— — — /

recalll recall2 placel place?

AN AN A

You can fill these boxes yourself instead of letting Amos fill them.

Constraining Variances
Suppose you want to set the variance of recalll to 6 and the variance of recall2 to 8.

» In the drawing area, right-click recalll and choose Object Properties from the pop-up
menu.

» Click the Parameters tab.

» In the Variance text box, type 6.

;?; Object Properties
Colors ] Text I Parameters l Farmat ] Yizibiliby I

Font size and style——— [~ Origntation

|'| 2 jl Reqular j I Harizontal ﬂ

Wariance Set Default

|E1 Unda

» With the Object Properties dialog box still open, click recall2 and set its variance to 8.
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» Close the dialog box.

The path diagram displays the parameter values you just specified.

recalll || recallz || placel place2

This is not a very realistic example because the numbers 6 and 8 were just picked out
of the air. Meaningful parameter constraints must have some underlying rationale,
perhaps being based on theory or on previous analyses of similar data.

Specifying Equal Parameters

Sometimes you will be interested in testing whether two parameters are equal in the
population. You might, for example, think that the variances of recalll and recall2
might be equal without having a particular value for the variances in mind. To
investigate this possibility, do the following:

» In the drawing area, right-click recalll and choose Object Properties from the pop-up
menu.

» Click the Parameters tab.
» In the Variance text box, type v_recall.
» Click recall2 and label its variance as v_recall.

» Use the same method to label the placel and place2 variances as v_place.

It doesn’t matter what label you use. The important thing is to enter the same label for
each variance you want to force to be equal. The effect of using the same label is to
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require both of the variances to have the same value without specifying ahead of time
what that value is.

Benefits of Specifying Equal Parameters

Before adding any further constraints on the model parameters, let’s examine why we
might want to specify that two parameters, like the variances of recalll and recall2 or
placel and place2, are equal. Here are two benefits:

m  If you specify that two parameters are equal in the population and if you are correct
in this specification, then you will get more accurate estimates, not only of the
parameters that are equal but usually of the others as well. This is the only benefit
if you happen to know that the parameters are equal.

m  If the equality of two parameters is a mere hypothesis, requiring their estimates to
be equal will result in a test of that hypothesis.

Constraining Covariances

Your model may also include restrictions on parameters other than variances. For
example, you may hypothesize that the covariance between recalll and placel is equal
to the covariance between recall2 and place2. To impose this constraint:

» In the drawing area, right-click the double-headed arrow that connects recalll and
placel, and choose Object Properties from the pop-up menu.

» Click the Parameters tab.
» In the Covariance text box, type a non-numeric string such as cov_rp.

» Use the same method to set the covariance between recall? and place2 to cov_rp.
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w_recall w_recall v_place w_place

recallt recall? placet place2

+3% Object Properties

Colors ] Test ] Parameters I Format ] Wizibility ]

Faont size and style——————— ~ Orientation

|'| 2 j| Reqular j I Harizontal j

LCovanance Set Default

|cc:v_r|:l e

Moving and Formatting Objects

While a horizontal layout is fine for small examples, it is not practical for analyses that
are more complex. The following is a different layout of the path diagram on which
we’ve been working:

w_recall ,/_\ w_recall

recalll recall2

cov_| cov_rp
v_place v_place

place1 ‘ ‘ place2
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You can use the following tools to rearrange your path diagram until it looks like the
one above:

®  To move objects, choose Edit — Move from the menus, and then drag the object to
its new location. You can also use the Move button to drag the endpoints of arrows.

m  To copy formatting from one object to another, choose Edit — Drag Properties from
the menus, select the properties you wish to apply, and then drag from one object
to another.

For more information about the Drag Properties feature, refer to online Help.

Data Input

This example uses a data file in SPSS Statistics format. If you have SPSS Statistics
installed, you can view the data as you load it. Even if you don’t have SPSS Statistics
installed, Amos will still read the data.

» From the menus, choose File — Data Files.
» In the Data Files dialog box, click File Name.

» Browse to the Examples folder. If you performed a typical installation, the path is
C:A\Program Files\SPSS Inc\Amos 17.0\Examples.

» In the Files of type list, select SPSS Statistics (*.sav), click Attg_yng, and then click
Open.

» If you have SPSS Statistics installed, click the View Data button in the Data Files dialog
box. An SPSS Statistics window opens and displays the data.

=3 Attg_yng - SP55 Data Editor

File  Edit Wiew Data Transform  Statigtice Graphs  Uiiliiez  Window  Help

ZJ|8| B 2| B =] &l FleE SklE %2

1:subject 1]
subject age v_short vocah educatio
1 1 20 13 B3 14
2 2 34 12 64 14
3 3 19 10 g9 13
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» Review the data and close the data view.

» In the Data Files dialog box, click OK.

Performing the Analysis
» From the menus, choose Analyze — Calculate Estimates.

» Inthe Save As dialog box, enter a name for the file and click Save.

Amos calculates the model estimates.

Viewing Text Output
» From the menus, choose View — Text Output.

» To view the parameter estimates, click Estimates in the tree diagram in the upper left
pane of the Amos Output window.

Scalar Estimates {Group humber 1 - Default model)

Maximum Likelihood Estimates

Covariances: (Group humber 1 - Default model)
Estimate | S E. | CE. P | Lahel

recall?|<--=recalll 287 1321 138 .02
recalld <--=placel 4271 1.8 149 14 |cov_imp
placed =--=placel U715 515 333 ***
recalll | <--=placel 271 182 149 .14 |cov_rp
recalll =--=place? 461 217 213 .03
recalld <--=placel 222 2331 100 532

Yariances: (Group humber 1 - Default model)
Estimate = 5.E. | CE. | P | Label

recalll 7.05  1.23 550 ***) v _recall
recalll 705 123 5.300*%**| v_recall
placel 753 518 533 % v _place

placel 2753 518 532" v place
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You can see that the parameters that were specified to be equal do have equal
estimates. The standard errors here are generally smaller than the standard errors
obtained in Example 1. Also, because of the constraints on the parameters, there are
now positive degrees of freedom.

Now click Notes for Model in the upper left pane of the Amos Output window.

Computation of degrees of freedom (Default model)

Mumber of distinet sample moments: | 10
Mutnber of distinct parameters to be estitnated: 7
Dregrees of freedom (10 - 7 3

While there are still 10 sample variances and covariances, the number of parameters to
be estimated is only seven. Here is how the number seven is arrived at: The variances
of recalll and recall2, labeled v_recall, are constrained to be equal, and thus count as
a single parameter. The variances of placel and place2 (labeled v_place) count as
another single parameter. A third parameter corresponds to the equal covariances
recalll <> placel and recall2 <> place2 (labeled cov_rp). These three parameters,
plus the four unlabeled, unrestricted covariances, add up to seven parameters that have
to be estimated.

The degrees of freedom (10 — 7 = 3) may also be thought of as the number of
constraints placed on the original 10 variances and covariances.

Optional Output

The output we just discussed is all generated by default. You can also request additional
output:

From the menus, choose View — Analysis Properties.
Click the Output tab.

Ensure that the following check boxes are selected: Minimization history, Standardized
estimates, Sample moments, Implied moments, and Residual moments.
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Analysis Properties

=<

<

I

<l

1

=1

I

» From the menus, choose Analyze — Calculate Estimates.
Amos recalculates the model estimates.
Covariance Matrix Estimates

» To see the sample variances and covariances collected into a matrix, choose View —
Text Output from the menus.

» Click Sample Moments in the tree diagram in the upper left corner of the Amos Output
window.
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The following is the sample covariance matrix:

placel
placel
recalll
recall?

placel
33.58
17.90
4.34
2.01

Sample Covariances (Group number 1)

place? | recalll | recalld

2314
357 579
43 1.56 7.94

» In the tree diagram, expand Estimates and then click Matrices.

The following is the matrix of implied covariances:

placel
place?
recalll
recalld

placel
4753
17.15
27
2.22

Implied Covariances (Group humber 1 - Default model)

placed | recalll | recalll

27.53
4.61 7.05
271 287 7.05

Note the differences between the sample and implied covariance matrices. Because the
model imposes three constraints on the covariance structure, the implied variances and
covariances are different from the sample values. For example, the sample variance of
placel is 33.58, but the implied variance is 27.53. To obtain a matrix of residual

covariances (sample covariances minus implied covariances), put a check mark next to

Residual moments on the Output tab and repeat the analysis.

The following is the matrix of residual covariances:

placel
placeld
recalll
recalld

placel
6.05
i
1.43
-.21

Residual Covariances (Group number 1 - Default model)

place? | recalll | recall?

-5.37
-1.03 -1.27
-2.28 -.32 .89
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Displaying Covariance and Variance Estimates on the Path Diagram

As in Example 1, you can display the covariance and variance estimates on the path
diagram.

» Click the Show the output path diagram button.
» In the Parameter Formats pane to the left of the drawing area, click Unstandardized
estimates. Alternatively, you can request correlation estimates in the path diagram by

clicking Standardized estimates.

The following is the path diagram showing correlations:

recalll recall2

33 1B

place1 ‘ ‘ place2

Labeling Output

It may be difficult to remember whether the displayed values are covariances or
correlations. To avoid this problem, you can use Amos to label the output.

» Open the file Ex02.amw.

» Right-click the caption at the bottom of the path diagram, and choose Object Properties
from the pop-up menu.

» Click the Text tab.
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Example 2
Testing hypotheses
Attig's (1983) young subjects
Model Specification

:?; Object Properties

Colors ] Text I Parameters ] Forrmat ] Wigibility I

Font Size Font Style
|22 - | I Fegular - |
Figure caption

Example 2 =
Testing hypaotheses
Aﬁig'sé1 983) voung subjects

“formal Set Default

Hhde

K

Notice the word \format in the bottom line of the figure caption. Words that begin with
a backward slash, like \format, are called text macros. Amos replaces text macros with
information about the currently displayed model. The text macro \format will be
replaced by the heading Model Specification, Unstandardized estimates, or
Standardized estimates, depending on which version of the path diagram is displayed.

Hypothesis Testing

The implied covariances are the best estimates of the population variances and
covariances under the null hypothesis. (The null hypothesis is that the parameters
required to have equal estimates are truly equal in the population.) As we know from
Example 1, the sample covariances are the best estimates obtained without making any
assumptions about the population values. A comparison of these two matrices is
relevant to the question of whether the null hypothesis is correct. If the null hypothesis
is correct, both the implied and sample covariances are maximum likelihood estimates
of the corresponding population values (although the implied covariances are better
estimates). Consequently, you would expect the two matrices to resemble each other.
On the other hand, if the null hypothesis is wrong, only the sample covariances are
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maximum likelihood estimates, and there is no reason to expect them to resemble the
implied covariances.

The chi-square statistic is an overall measure of how much the implied covariances
differ from the sample covariances.

Chi-square = 6.276
Degrees of freedom = 3
Probability level = 0.099

In general, the more the implied covariances differ from the sample covariances, the
bigger the chi-square statistic will be. If the implied covariances had been identical to
the sample covariances, as they were in Example 1, the chi-square statistic would have
been 0. You can use the chi-square statistic to test the null hypothesis that the
parameters required to have equal estimates are really equal in the population.
However, it is not simply a matter of checking to see if the chi-square statistic is 0.
Since the implied covariances and the sample covariances are merely estimates, you
can’t expect them to be identical (even if they are both estimates of the same population
covariances). Actually, you would expect them to differ enough to produce a chi-square
in the neighborhood of the degrees of freedom, even if the null hypothesis is true. In
other words, a chi-square value of 3 would not be out of the ordinary here, even with a
true null hypothesis. You can say more than that: If the null hypothesis is true, the chi-
square value (6.276) is a single observation on a random variable that has an
approximate chi-square distribution with three degrees of freedom. The probability is
about 0.099 that such an observation would be as large as 6.276. Consequently, the
evidence against the null hypothesis is not significant at the 0.05 level.

Displaying Chi-Square Statistics on the Path Diagram

You can get the chi-square statistic and its degrees of freedom to appear in a figure
caption on the path diagram using the text macros \cmin and \df. Amos replaces these
text macros with the numeric values of the chi-square statistic and its degrees of
freedom. You can use the text macro \p to display the corresponding right-tail
probability under the chi-square distribution.

» From the menus, choose Diagram — Figure Caption.

» Click the location on the path diagram where you want the figure caption to appear.

The Figure Caption dialog box appears.
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» Inthe Figure Caption dialog box, enter a caption that includes the \cmin, \df, and \p text
macros, as follows:

° Figure Caption

x|
Font size CK |
(" Center align 20

@ Leftalign Cancel
i~ Right align [~ Bold
(" Center on page [ Ialic

Press Ctrl-Enter when finished

Caption

IChi-souare =Yemin (df df)
p=io

When Amos displays the path diagram containing this caption, it appears as follows:

Chi-square = 6.276 (3 df)
p=.099
257
708 705

recallt ‘ recall2

451 222
27.53 2753
place1 ‘ place2

1715

Example 2
Testing hypotheses
Attig's (1983) young subjects
Unstandardized estimates
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Modeling in VB.NET

The following program fits the constrained model of Example 2:

.5 C-\Examples\Ex02 vb

File Edit Fomat

El Module MainModule

B Sub Main()

Dim Sem As New AmosEngine

Try
Sem.TextOutput()
Semn.Standardized()
Sem.ImpliedMoments()
Sem.SampleMoments()
Sem.ResidualMoments()

Sem.Beqin Group(Sem.AmosDir & "Bxamples\Attg_yng.sav")

Sem.AStructure("recalll (v_recall)™)
Sem.AStructure("recall2 (v_recall)")
Sem.AStructure("placel (v_place)")
Sem.AStructure("place2 (v_place)")
Sem.astructure("recalll <= placel (cov_rp)")
Sem.AStructure("recall2 == place2 (cov_rp)")
Sem.FtModel()
Fnally
Sem.Dispose()
End Try
- End Sub G
L End Module =
4] | _vl_I
Description Bun
7 I I _'I Close

Compile emars I Debug output I Y
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This table gives a line-by-line explanation of the program:

Program Statement

Explanation

Dim Sem As New AmosEngine

Declares Sem as an object of type
AmosEngine. The methods and
properties of the Sem object are used to
specify and fit the model.

Sem.TextOutput

Creates an output file containing the
results of the analysis. At the end of the
analysis, the contents of the output file
are displayed in a separate window.

Sem.Standardized()
Sem.ImpliedMoments()
Sem.SampleMoments()
Sem.ResidualMoments()

Displays standardized estimates, implied
covariances, sample covariances, and
residual covariances.

Sem.BeginGroup ...

Begins the model specification for a
single group (that is, a single
population). This line also specifies that
the SPSS Statistics file Attg_yng.sav
contains the input data. Sem.AmosDir()
is the location of the Amos program
directory.

Sem.AStructure("recall1 (v_recall)")
Sem.AStructure("recall2 (v_recall)")
Sem.AStructure("place1 (v_place)")
Sem.AStructure("place2 (v_place)")
Sem.AStructure("recalll <> place1 (cov_rp)")
Sem.AStructure("recall2 <> place2 (cov_rp)")

Specifies the model. The first four
AStructure statements constrain the
variances of the observed variables
through the use of parameter names in
parentheses. Recalll and recall? are
required to have the same variance
because both variances are labeled
v_recall. The variances of placel and
place?2 are similarly constrained to be
equal. Each of the last two AStructure
lines represents a covariance. The two
covariances are both named cov_rp.
Consequently, those covariances are
constrained to be equal.

Sem.FitModel()

Fits the model.

Sem.Dispose()

Releases resources used by the Sem
object. It is particularly important for
your program to use an AmosEngine
object’s Dispose method before creating
another AmosEngine object. A process is
allowed to have only one instance of an
AmosEngine object at a time.

Try/Finally/End Try

This Try block guarantees that the
Dispose method will be called even if an
error occurs during program execution.
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» To perform the analysis, from the menus, choose File — Run.

Timing Is Everything

The AStructure lines must appear after BeginGroup; otherwise, Amos will not recognize
that the variables named in the AStructure lines are observed variables in the
attg_yng.sav dataset.

In general, the order of statements matters in an Amos program. In organizing an

Amos program, AmosEngine methods can be divided into three general groups’.

Group 1 — Declarative Methods

This group contains methods that tell Amos what results to compute and display.
TextOutput is a Group 1 method, as are Standardized, ImpliedMoments, SampleMoments,
and ResidualMoments. Many other Group 1 methods that are not used in this example
are documented in the Amos 17.0 Programming Reference Guide.

Group 2 — Data and Model Specification Methods

This group consists of data description and model specification commands.
BeginGroup and AStructure are Group 2 methods. Others are documented in the Amos
17.0 Programming Reference Guide.

Group 3 — Methods for Retrieving Results

These are commands to...well, retrieve results. So far, we have not used any Group 3
methods. Examples using Group 3 methods are given in the Amos 17.0 Programming
Reference Guide.

Tip: When you write an Amos program, it is important to pay close attention to the
order in which you call the Amos engine methods. The rule is that groups must appear
in order: Group 1, then Group 2, and finally Group 3.

For more detailed information about timing rules and a complete listing of methods and
their group membership, see the Amos 17.0 Programming Reference Guide.

1 There is also a fourth special group, consisting of only the Initialize Method. If the optional Initialize Method
is used, it must come before the Group 1 methods.
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More Hypothesis Testing

Introduction

This example demonstrates how to test the null hypothesis that two variables are
uncorrelated, reinforces the concept of degrees of freedom, and demonstrates, in a
concrete way, what is meant by an asymptotically correct test.

About the Data

For this example, we use the group of older subjects from Attig’s (1983) spatial
memory study and the two variables age and vocabulary. We will use data formatted
as a tab-delimited text file.

Bringing In the Data

>

>

From the menus, choose File — New.
From the menus, choose File — Data Files.
In the Data Files dialog box, select File Name.

Browse to the Examples folder. If you performed a typical installation, the path is
C:\Program Files\SPSS Inc\Amos 17.0\Examples.

59



60
Example 3

» In the Files of type list, select Text (*.txt), select Attg_old.txt, and then click Open.

» In the Data Files dialog box, click OK.

Testing a Hypothesis That Two Variables Are Uncorrelated

Among Attig’s 40 old subjects, the sample correlation between age and vocabulary is
—0.09 (not very far from 0). Is this correlation nevertheless significant? To find out, we
will test the null hypothesis that, in the population from which these 40 subjects came,
the correlation between age and vocabulary is 0. We will do this by estimating the
variance-covariance matrix under the constraint that age and vocabulary are

uncorrelated.

Specifying the Model

Begin by drawing and naming the two observed variables, age and vocabulary, in the
path diagram, using the methods you learned in Example 1.

age vocabulary

Amos provides two ways to specify that the covariance between age and vocabulary
is 0. The most obvious way is simply to not draw a double-headed arrow connecting
the two variables. The absence of a double-headed arrow connecting two exogenous
variables implies that they are uncorrelated. So, without drawing anything more, the
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model specified by the simple path diagram above specifies that the covariance (and
thus the correlation) between age and vocabulary is 0.
The second method of constraining a covariance parameter is the more general
procedure introduced in Example 1 and Example 2.
From the menus, choose Diagram — Draw Covariances.
Click and drag to draw an arrow that connects vocabulary and age.
Right-click the arrow and choose Object Properties from the pop-up menu.
Click the Parameters tab.
Type 0 in the Covariance text box.

Close the Object Properties dialog box.

Your path diagram now looks like this:

afe vocabulary

;?; Object Properties

Colorz I Text ] Parameters I Faormat ] izibility ]

Fort zize and style Orientation

|1 a j| R egular j IHn:nriz::nntaI j

Covaniance Set Default

Id (e
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» From the menus, choose Analyze — Calculate Estimates.

The Save As dialog box appears.

» Enter a name for the file and click Save.

Amos calculates the model estimates.

Viewing Text Output
» From the menus, choose View — Text Output.
» In the tree diagram in the upper left pane of the Amos Output window, click Estimates.

Although the parameter estimates are not of primary interest in this analysis, they are
as follows:

Covariances: (Group humber 1 - Default model)
Fstimate 5 E  CE. P Label
age<-->vocabulary .00
Correlations: (Group humber 1 - Default model)
Estitnate
age«--= vocabulary .00
Variances: (Group humber 1 - Default model)

Estitnate S.E CE. P Lahel
age 21.57 480 447 w#*
vocabulary 131,20 2073 443 ***

In this analysis, there is one degree of freedom, corresponding to the single constraint
that age and vocabulary be uncorrelated. The degrees of freedom can also be arrived
at by the computation shown in the following text. To display this computation:

» Click Notes for Model in the upper left pane of the Amos Output window.
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Computation of degrees of freedom (Default model)

Mumber of distinct sample moments: 3
Mumnber of distinct parameters to be estimated. 2
Degrees of freedom (3 -2 1

The three sample moments are the variances of age and vocabulary and their
covariance. The two distinct parameters to be estimated are the two population
variances. The covariance is fixed at 0 in the model, not estimated from the sample
information.

Viewing Graphics Output
» Click the Show the output path diagram button.

» In the Parameter Formats pane to the left of the drawing area, click Unstandardized
estimates.

The following is the path diagram output of the unstandardized estimates, along with
the test of the null hypothesis that age and vocabulary are uncorrelated:

Chi-square = 348 (1 df)
p=.555
2187 131.28
‘ age vocabulary ‘
00
Example 3
More h%(gothesm testing
Aftig's (1983} old subjects
Unstandardized estimates

The probability of accidentally getting a departure this large from the null hypothesis
is 0.555. The null hypothesis would not be rejected at any conventional significance
level.
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The usual ¢ statistic for testing this null hypothesis is 0.59 (df = 38, p = 0.56
two-sided). The probability level associated with the ¢ statistic is exact. The probability
level of 0.555 of the chi-square statistic is off, owing to the fact that it does not have an
exact chi-square distribution in finite samples. Even so, the probability level of 0.555
is not bad.

Here is an interesting question: If you use the probability level displayed by Amos
to test the null hypothesis at either the 0.05 or 0.01 level, then what is the actual
probability of rejecting a true null hypothesis? In the case of the present null
hypothesis, this question has an answer, although the answer depends on the sample
size. The second column in the next table shows, for several sample sizes, the real
probability of a Type I error when using Amos to test the null hypothesis of zero
correlation at the 0.05 level. The third column shows the real probability of a Type I
error if you use a significance level of 0.01. The table shows that the bigger the sample
size, the closer the true significance level is to what it is supposed to be. It’s too bad
that such a table cannot be constructed for every hypothesis that Amos can be used to
test. However, this much can be said about any such table: Moving from top to bottom,
the numbers in the 0.05 column would approach 0.05, and the numbers in the 0.01
column would approach 0.01. This is what is meant when it is said that hypothesis tests
based on maximum likelihood theory are asymptotically correct.

The following table shows the actual probability of a Type I error when using Amos
to test the hypothesis that two variables are uncorrelated:

Nominal Significance Level
Sample Size
0.05 0.01

3 0.250 0.122
4 0.150 0.056
5 0.115 0.038
10 0.073 0.018
20 0.060 0.013
30 0.056 0.012
40 0.055 0.012
50 0.054 0.011
100 0.052 0.011
150 0.051 0.010
200 0.051 0.010
>500 0.050 0.010
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More Hypothesis Testing

Here is a program for performing the analysis of this example:

.5 C-\Examples\Ex03.vb

File Edit Fomat

eadel

= Module MainModule

B Sub Main{)

Dim Sem As MNew AmosEngine

Try
Sem.TextOutput()
Sem.Standardized()
Sem.ImpliedMoments()
Sem.SampleMoments()

Sem.AStructure("age <—= vocabulary (0)")
Sem.FtModel()

Finally
Sem.Dispose()

End Try

- End Sub

L End Module

[«

Sem.Begin Group(Sem.AmosDir & "Examples\Attg_old.txt")

ol

Description

4 | i

Run

Close

 Compile emors 1| Debug output

4

The AStructure method constrains the covariance, fixing it at a constant 0. The program
does not refer explicitly to the variances of age and vocabulary. The default behavior
of Amos is to estimate those variances without constraints. Amos treats the variance of
every exogenous variable as a free parameter except for variances that are explicitly

constrained by the program.






Example

a

Conventional Linear Regression

Introduction

This example demonstrates a conventional regression analysis, predicting a single
observed variable as a linear combination of three other observed variables. It also
introduces the concept of identifiability.

About the Data

Warren, White, and Fuller (1974) studied 98 managers of farm cooperatives. We will
use the following four measurements:

Test Explanation
erformance A 24-item test of performance related to “planning, organization,

p controlling, coordinating, and directing”
A 26-item test of knowledge of “economic phases of

knowledge management directed toward profit-making...and product
knowledge”

value A 30-item test of “tendency to rationally evaluate means to an
economic end”

satisfaction An 11-item test of “gratification obtained...from performing the
managerial role”

A fifth measure, past training, was also reported, but we will not use it.

In this example, you will use the Excel worksheet Warren5v in the file
UserGuide.xls, which is located in the Examples folder. If you performed a typical
installation, the path is C:\Program Files\SPSS Inc\Amos 17.0\Examples.

67
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Here are the sample variances and covariances:

rowtype | wamame_ |performance| knowledge value| zabisfaction| past_braining
4] 93 93 93 94 9a
o performance 0.0209

o knowledge 0077 0.052

coy value 0.0245 0.028 01212

coy satizfaction 0. 0045 0.0044 -0, 0063 0,090

oy pazt_training T 00192 0.0353 -0.0065 0.0946
mean 00589 1.379E 28773 24613 21174

Warren5v also contains the sample means. Raw data are not available, but they are not
needed by Amos for most analyses, as long as the sample moments (that is, means,
variances, and covariances) are provided. In fact, only sample variances and
covariances are required in this example. We will not need the sample means in
Warren5v for the time being, and Amos will ignore them.

Analysis of the Data

Suppose you want to use scores on knowledge, value, and satisfaction to predict
performance. More specifically, suppose you think that performance scores can be
approximated by a linear combination of knowledge, value, and satisfaction. The
prediction will not be perfect, however, and the model should thus include an error
variable.

Here is the initial path diagram for this relationship:

knowledge \

1
vallle — perform ance

satisfaction

Example 4
Conventional linear regression
Job performance of farm managers
{(Model Specification)
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The single-headed arrows represent linear dependencies. For example, the arrow
leading from knowledge to performance indicates that performance scores depend, in
part, on knowledge. The variable error is enclosed in a circle because it is not directly
observed. Error represents much more than random fluctuations in performance scores
due to measurement error. Error also represents a composite of age, socioeconomic
status, verbal ability, and anything else on which performance may depend but which
was not measured in this study. This variable is essential because the path diagram is
supposed to show all variables that affect performance scores. Without the circle, the
path diagram would make the implausible claim that performance is an exact linear
combination of knowledge, value, and satisfaction.

The double-headed arrows in the path diagram connect variables that may be
correlated with each other. The absence of a double-headed arrow connecting error
with any other variable indicates that error is assumed to be uncorrelated with every
other predictor variable—a fundamental assumption in linear regression. Performance
is also not connected to any other variable by a double-headed arrow, but this is for a
different reason. Since performance depends on the other variables, it goes without
saying that it might be correlated with them.

Specifying the Model
Using what you learned in the first three examples, do the following:
» Start a new path diagram.

» Specify that the dataset to be analyzed is in the Excel worksheet Warren5v in the file
UserGuide.xls.

» Draw four rectangles and label them knowledge, value, satisfaction, and performance.
» Draw an ellipse for the error variable.

» Draw single-headed arrows that point from the exogenous, or predictor, variables
(knowledge, value, satisfaction, and error) to the endogenous, or response, variable
(performance).

Note: Endogenous variables have at least one single-headed path pointing toward them.
Exogenous variables, in contrast, send out only single-headed paths but do not receive any.
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» Draw three double-headed arrows that connect the observed exogenous variables
(knowledge, satisfaction, and value).

Your path diagram should look like this:

knowledge

value —= performance

satisfaction

Identification

In this example, it is impossible to estimate the regression weight for the regression of
performance on error, and, at the same time, estimate the variance of error. It is like
having someone tell you, “I bought $5 worth of widgets,” and attempting to infer both
the price of each widget and the number of widgets purchased. There is just not enough
information.

You can solve this identification problem by fixing either the regression weight
applied to error in predicting performance, or the variance of the error variable itself,
at an arbitrary, nonzero value. Let’s fix the regression weight at 1. This will yield the
same estimates as conventional linear regression.

Fixing Regression Weights

» Right-click the arrow that points from error to performance and choose Object Properties
from the pop-up menu.

» Click the Parameters tab.

» Type 1 in the Regression weight box.
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knowledge

TRT
=
1

vallle — performance!

satisfaction

:F_-': Object Properties

Colaors ] Text ] Farameters I Format ] izibility ]

Font size and style———— — Orientation

|14 leeguIal j IHDrizuntaI j

Beagrezsion weight Set Default
Ih Wrda

Setting a regression weight equal to 1 for every error variable can be tedious.
Fortunately, Amos Graphics provides a default solution that works well in most cases.

» Click the Add a unique variable to an existing variable button.

» Click an endogenous variable.

Amos automatically attaches an error variable to it, complete with a fixed regression
weight of 1. Clicking the endogenous variable repeatedly changes the position of the
error variable.
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Viewing the Text Output

Here are the maximum likelihood estimates:

Regression Weights: (Group humber 1 - Default model)

Estimate SE CE P Label
performance<---lmowledge 26 05 4B e
petrformance<---vahie 15 04 414w
performance <--- satisfaction 05 04 12720
Covariances: {Group number 1 - Default model)
Estimate SE  CE P Label

lmowledge <--» satisfaction .00 .01 63 .53

value =--» satisfaction -.01 a1 -590 55
knowledge <--> value 03 01 328 .00

Variances: (Group number 1 - Default model)

Estimate SE CE. P Lahel
knowledge 05 N1 A.06 ***
value 12 N2 A.0a R
satisfaction .09 01 606
Zgquy 01 N0 A.OR HEE

Amos does not display the path performance <— error because its value is fixed at the
default value of 1. You may wonder how much the other estimates would be affected
if a different constant had been chosen. It turns out that only the variance estimate for
error is affected by such a change.

The following table shows the variance estimate that results from various choices for
the performance <— error regression weight.

Fixed regression weight

Estimated variance of error

0.5 0.050
0.707 0.025
1.0 0.0125
1.414 0.00625
2.0 0.00313

Suppose you fixed the path coefficient at 2 instead of 1. Then the variance estimate
would be divided by a factor of 4. You can extrapolate the rule that multiplying the path
coefficient by a fixed factor goes along with dividing the error variance by the square
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of the same factor. Extending this, the product of the squared regression weight and the
error variance is always a constant. This is what we mean when we say the regression
weight (together with the error variance) is unidentified. If you assign a value to one
of them, the other can be estimated, but they cannot both be estimated at the same time.

The identifiability problem just discussed arises from the fact that the variance of a
variable, and any regression weights associated with it, depends on the units in which
the variable is measured. Since error is an unobserved variable, there is no natural way
to specify a measurement unit for it. Assigning an arbitrary value to a regression weight
associated with error can be thought of as a way of indirectly choosing a unit of
measurement for error. Every unobserved variable presents this identifiability
problem, which must be resolved by imposing some constraint that determines its unit
of measurement.

Changing the scale unit of the unobserved error variable does not change the overall
model fit. In all the analyses, you get:

Chi-square = 0.00
Degrees of freedom = 0
Probability level cannot be computed

There are four sample variances and six sample covariances, for a total of 10 sample
moments. There are three regression paths, four model variances, and three model
covariances, for a total of 10 parameters that must be estimated. Hence, the model has
zero degrees of freedom. Such a model is often called saturated or just-identified.

The standardized coefficient estimates are as follows:

Standardized Regression Weights: (Group humber 1 - Default
meodel)

Estirnate
performance<---  knowledge 41
performance<---  walue 35
performance<--- zatisfaction 10

Correlations: (Group number 1 - Default model)

Estimate
knowledge <--»  satisfaction 08
value «--» satisfaction -.0a

knowledge <-->  wvalue 35
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The standardized regression weights and the correlations are independent of the units
in which all variables are measured; therefore, they are not affected by the choice of
identification constraints.

Squared multiple correlations are also independent of units of measurement. Amos
displays a squared multiple correlation for each endogenous variable.

Squared Multiple Comelations: (Group number 1 - Default
model)

Estimate
petrformance A0

Note: The squared multiple correlation of a variable is the proportion of its variance
that is accounted for by its predictors. In the present example, knowledge, value, and
satisfaction account for 40% of the variance of performance.

Viewing Graphics Output

The following path diagram output shows unstandardized values:

05
knowiledge

ny

-13 performance

satisfaction

Example 4
Comventional linear regression
Job performance of farm managers
iUnstandardized estimates)
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Here is the standardized solution:

Conventional Linear Regression

knowledge K 41

40

35
value —bperformanoe

sgtisfaction [ 10

Example 4

Comventional linear regression
Job performance of farm managers
(Standardized estimates)

Viewing Additional Text Output

» In the tree diagram in the upper left pane of the Amos Output window, click Variable

Summary.
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Variable Summary (Group number 1)
Y our model contains the following variables (Group humber 1)

Ohsgerved, endogenous variables
performance
Ohzerved, exogenous wariables

knowledge
walue
satisfaction

Unohzerved, exogenous variables

Error

Variable counts (Group number 1)

Mumber of wariables m your model:
Mumber of observed wariables:
Mumber of unobserved variables:
Mumber of exogenous variables:
Mumber of endogenous variables:

— Ja o= Iaoum

Endogenous variables are those that have single-headed arrows pointing to them; they
depend on other variables. Exogenous variables are those that do not have single-
headed arrows pointing to them; they do not depend on other variables.

Inspecting the preceding list will help you catch the most common (and insidious)
errors in an input file: typing errors. If you try to type performance twice but
unintentionally misspell it as preformance one of those times, both versions will
appear on the list.

Now click Notes for Model in the upper left pane of the Amos Output window.

The following output indicates that there are no feedback loops in the path diagram:

Notes for Group (Group number 1)
The model is recursive.

Later you will see path diagrams where you can pick a variable and, by tracing along
the single-headed arrows, follow a path that leads back to the same variable.

Note: Path diagrams that have feedback loops are called nonrecursive. Those that do
not are called recursive.
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Modeling in VB.NET

The model in this example consists of a single regression equation. Each single-headed

arrow in the path diagram represents a regression weight. Here is a program for
estimating those regression weights:

File Edt Fomat

eade] -
= Module MainModule
& Sub Main{)
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Standardized()
Sem.smc()
Sem.ImpliedMoments()
Sem.SampleMoments()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide xIs", "Warren5v")

Sem.AStructure("performance <--- knowledge")
Sem.Astructure("performance <-— value")
Sem.AStructure("performance <--- satisfaction”)
Sem.AStructure("performance <--- error (1)")
Sem.FtModel()

Fnally
Sem.Dispose()

End Try

I End Sub

L End Module

|2

Description

-

Debug output

The four lines that come after Sem.BeginGroup correspond to the single-headed arrows

in the Amos Graphics path diagram. The (1) in the last AStructure line fixes the error
regression weight at a constant 1.

Assumptions about Correlations among Exogenous Variables

When executing a program, Amos makes assumptions about the correlations among
exogenous variables that are not made in Amos Graphics. These assumptions simplify
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Equation

the specification of many models, especially models that have parameters. The
differences between specifying a model in Amos Graphics and specifying one
programmatically are as follows:

B Amos Graphics is entirely WYSIWYG (What You See Is What You Get). If you
draw a two-headed arrow (without constraints) between two exogenous variables,
Amos Graphics will estimate their covariance. If two exogenous variables are not
connected by a double-headed arrow, Amos Graphics will assume that the
variables are uncorrelated.

The default assumptions in an Amos program are:

®  Unique variables (unobserved, exogenous variables that affect only one other
variable) are assumed to be uncorrelated with each other and with all other
exogenous variables.

m  Exogenous variables other than unique variables are assumed to be correlated
among themselves.

In Amos programs, these defaults reflect standard assumptions of conventional linear
regression analysis. Thus, in this example, the program assumes that the predictors,
knowledge, value, and satisfaction, are correlated and that error is uncorrelated with
the predictors.

Format for the AStructure Method

The AStructure method permits model specification in equation format. For instance,
the single Sem.AStructure statement in the following program describes the same
model as the program on p. 77 but in a single line. This program is saved under the
name Ex04-eq.vb in the Examples directory.
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.= . C\Examples\Ex{M-eq vb

File Edt Fomat

eadel

= Module MainMo dule

& Sub Main()

Dim S5em As New AmosEngine

Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()
Sem.ImpliedMoments()
Sem.SampleMoments()

Sem.BeginGroup(5Sem.AmosDir & "Examples\UserGuide xIs", "Warmren5v")
Sem.AStructure("performance = knowledge + value + satisfaction + error (1)")
Sem.AtModel()
Anally
Sem.Dispose()
End Try
- End Sub s
- End Module

of
[« | d

[»]

Description

7 I . I _'I Close

i Compile er

4

Note that in the AStructure line above, each predictor variable (on the right side of the
equation) is associated with a regression weight to be estimated. We could make these

regression weights explicit through the use of empty parentheses as follows:

Sem.AStructure("performance = (Jknowledge + (Jvalue + ()satisfaction + error(1)")

The empty parentheses are optional. By default, Amos will automatically estimate a
regression weight for each predictor.
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Unobserved Variables

Introduction

This example demonstrates a regression analysis with unobserved variables.

About the Data

The variables in the previous example were surely unreliable to some degree. The fact
that the reliability of performance is unknown presents a minor problem when it
comes to interpreting the fact that the predictors account for only 39.9% of the
variance of performance. If the test were extremely unreliable, that fact in itself would
explain why the performance score could not be predicted accurately. Unreliability of
the predictors, on the other hand, presents a more serious problem because it can lead
to biased estimates of regression weights.

The present example, based on Rock, et al. (1977), will assess the reliabilities of
the four tests included in the previous analysis. It will also obtain estimates of
regression weights for perfectly reliable, hypothetical versions of the four tests. Rock,
et al. re-examined the data of Warren, White, and Fuller (1974) that were discussed
in the previous example. This time, each test was randomly split into two halves, and
each half was scored separately.

81
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Here is a list of the input variables:

Variable name Description

Iperformance 12-item subtest of Role Performance
2performance 12-item subtest of Role Performance
Tknowledge 13-item subtest of Knowledge
2knowledge 13-item subtest of Knowledge
Ivalue 15-item subtest of Value Orientation
2value 15-item subtest of Value Orientation
Isatisfaction 5-item subtest of Role Satisfaction
2satisfaction 6-item subtest of Role Satisfaction
past_training degree of formal education

For this example, we will use a Lotus data file, Warren9v.wkl1, to obtain the sample
variances and covariances of these subtests. The sample means that appear in the file
will not be used in this example. Statistics on formal education (past_training) are
present in the file, but they also will not enter into the present analysis. The following

is a portion of the dataset:

:?: warren9vy_wk1

File  Format Help
rowdype_ |warname_ 1pedormance | 2Zpedormance
n 98 98
Con 1 performance n.0z¢1
o Zperormance n.mye nozzz
o 1knowledge 002149 0.01493
o Zknowledge 0.0164 0013
o Twalue 002584 0.02494
con 2value 0.0z17 0.0185
] |
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Model A

The following path diagram presents a model for the eight subtests:

1
1knowledge fe.1
knowledge

1
2knowledge

1

1value
1

2value

1
1satisfaction
1 X N
error8 2satisfaction

satisfaction

Example 5: Model A
Regression with unobserved variables
Job performance of farm managers
Warren, White and Fuller (1974)
Standardized estimates

Four ellipses in the figure are labeled knowledge, value, satisfaction, and performance.
They represent unobserved variables that are indirectly measured by the eight split-half
tests.

Measurement Model

The portion of the model that specifies how the observed variables depend on the
unobserved, or latent, variables is sometimes called the measurement model. The
current model has four distinct measurement submodels.
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1

1knowledge w1

knowledge

1

@ _2knowledge

@ performance

1 - -

1satisfaction w1
1

2satisfaction

Consider, for instance, the knowledge submodel: The scores of the two split-half
subtests, lknowledge and 2knowledge, are hypothesized to depend on the single
underlying, but not directly observed variable, knowledge. According to the model,
scores on the two subtests may still disagree, owing to the influence of error3 and
error4, which represent errors of measurement in the two subtests. /knowledge and
2knowledge are called indicators of the latent variable knowledge. The measurement

model for knowledge forms a pattern that is repeated three more times in the path
diagram shown above.

Structural Model

The portion of the model that specifies how the latent variables are related to each other
is sometimes called the structural model.
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knowledge

performance

satisfaction

The structural part of the current model is the same as the one in Example 4. It is only
in the measurement model that this example differs from the one in Example 4.

Identification

With 13 unobserved variables in this model, it is certainly not identified. It will be
necessary to fix the unit of measurement of each unobserved variable by suitable
constraints on the parameters. This can be done by repeating 13 times the trick that was
used for the single unobserved variable in Example 4: Find a single-headed arrow
leading away from each unobserved variable in the path diagram, and fix the
corresponding regression weight to an arbitrary value such as 1. If there is more than
one single-headed arrow leading away from an unobserved variable, any one of them
will do. The path diagram for “Model A” on p. 83 shows one satisfactory choice of
identifiability constraints.

Specifying the Model
Because the path diagram is wider than it is tall, you may want to change the shape of

the drawing area so that it fits the path diagram better. By default, the drawing area in
Amos is taller than it is wide so that it is suitable for printing in portrait mode.
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Changing the Orientation of the Drawing Area
» From the menus, choose View — Interface Properties.
» In the Interface Properties dialog box, click the Page Layout tab.

» In the Orientation group, click Landscape.

= =
- Interface Properties

Language I

Tvpetaces I Pen ‘width I Mizz
Page Layout I Formats I Calors
Maraginz Frare

Top |4 i

Battom [4 o

Left [4 0

Right [4 o

Height g

Width [

Erame thickness [pinels] (g

Uitz Orientation

= |nches " Partrait

i~ Centimeters ]

" Points

i~ Picas Page orientation
Apply | Cancel

» Click Apply.


Ex6_modelA

87
Unobserved Variables

Creating the Path Diagram

Now you are ready to draw the model as shown in the path diagram on page 83. There
are a number of ways to do this. One is to start by drawing the measurement model
first. Here, we draw the measurement model for one of the latent variables, knowledge,
and then use it as a pattern for the other three.

» Draw an ellipse for the unobserved variable knowledge.

2

» From the menus, choose Diagram — Draw Indicator Variable.

» Click twice inside the ellipse.

Each click creates one indicator variable for knowledge:

T T

L4

As you can see, with the Draw indicator variable button enabled, you can click multiple
times on an unobserved variable to create multiple indicators, complete with unique or
error variables. Amos Graphics maintains suitable spacing among the indicators and
inserts identification constraints automatically.
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Rotating Indicators

The indicators appear by default above the knowledge ellipse, but you can change their
location.

» From the menus, choose Edit — Rotate.

» Click the knowledge ellipse.

Each time you click the knowledge ellipse, its indicators rotate 90° clockwise. If you
click the ellipse three times, its indicators will look like this:

( —

Duplicating Measurement Models

The next step is to create measurement models for value and satisfaction.

» From the menus, choose Edit — Select All.

The measurement model turns blue.
» From the menus, choose Edit — Duplicate.
» Click any part of the measurement model, and drag a copy to beneath the original.

» Repeat to create a third measurement model above the original.
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Your path diagram should now look like this:

» Create a fourth copy for performance, and position it to the right of the original.

» From the menus, choose Edit — Reflect.

This repositions the two indicators of performance as follows:
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Entering Variable Names
» Right-click each object and select Object Properties from the pop-up menu

» In the Object Properties dialog box, click the Text tab, and enter a name into the
Variable Name text box.

Alternatively, you can choose View — Variables in Dataset from the menus and then drag
variable names onto objects in the path diagram.

Completing the Structural Model

There are only a few things left to do to complete the structural model.
» Draw the three covariance paths connecting knowledge, value, and satisfaction.

» Draw a single-headed arrow from each of the latent predictors, knowledge, value, and
satisfaction, to the latent dependent variable, performance.

» Add the unobserved variable error9 as a predictor of performance (from the menus,
choose Diagram — Draw Unique Variable).

Your path diagram should now look like the one on p. 83. The Amos Graphics input
file that contains this path diagram is Ex05-a.amw.

Results for Model A

As an exercise, you might want to confirm the following degrees of freedom
calculation:

Computation of degrees of freedom (Default mocdel)

Mumber of distinct sample moments: 36
Mumber of distinct parameters to be estimated: 22
Degrees of freedom (36 - 227 14
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The hypothesis that Model A is correct is accepted.

Chi-square = 10.335
Degrees of freedom = 14
Probability level = 0.737

The parameter estimates are affected by the identification constraints.

Regression Weights: (Group humber 1 - Default model)

Estitnate SE. C.R. P Label
perfarmance  =--- knowledge 337 125 2637 007
performance =--- satisfaction JEA 054 1427 260
perfarmance  =--- value A76E ora 2225 026
Zaatizfaction =--- satisfaction 792 438 1806 0N
1=atisfaction =--- =atisfaction 1.000
2value =--- walue FE3 185 4128 A
Tvalue =--- walue 1.000
Zknowvledge  =--- knowledge Ba3 81 4252 HAE
1knowvledge  =--- knowledge 1.000
1petrfarmance <--- performance 1.000
Zperformance =--- performance BET A16 7450 HEE

Covariances: (Group number 1 - Default model)

Estimate =.E. CR. P Label
value =--= knowvledge 037 m2 3036 002
satisfaction =--= value -.00s 13 -B10 542
zatizfaction =--= knowledge 004 009 462 B44

Variances: (Group number 1 - Default model)
Estimste SE.  CR. P Lakel

satisfaction 030 032 1743 0N
wallie A00 032 3147 002
knorovledoe 045 M3 3133 002
errard ooy oo3 o 2577 010
errord 041 m1 o 3B
errard 033 007 SABT A=
£rrard 030 023 3249 0M
erramg 037 ma 4891 =
errary 022 043 431 632
errorg 043 032 1420 136
errarl oav ooz 30 002

error oa7 LN = P
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Standardized estimates, on the other hand, are not affected by the identification
constraints. To calculate standardized estimates:

» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Output tab.

» Enable the Standardized estimates check box.

Standardized Regression Weights: (Group number 1 - Default
model)
Estimate
performance <---  knowledge A6
performance =---  satisfaction 30
performance =---  value 398
2=zgtisfaction =---  =zatisfaction a7
1=atisfaction =---  satisfaction G865
2value = walue B33
1walue 2---  walue 45
Zknowledge =---  knowvledoge E18
Tknowledge  =---  knowvledge T2
Tperformance=---  petfarmance a6
Zperformance <---  performance 819
Correlations: {Group numhber 1 - Default model)
Estimate
walue =--=  knowledge 542
zatisfaction=--=  walue -84
zatisfaction=--=  knowledge ne4
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Viewing the Graphics Output

The path diagram with standardized parameter estimates displayed is as follows:

53 . _
Tknowledge b Ch_l-square =10.335 (14 df)
. p =.737
.38 knowledge
2knowledge 62 .

52 @
66

.56

g
1value 75 ]
2value 63
5
.80 ®©
1satisfaction fy.-90
satisfaction
.75

56
Example 5: Model A

Regression with unobserved variables
Job performance of farm managers
Warren, White and Fuller (1974)
Standardized estimates

.73
86 error)
67

52%2pertormancel+—errord

A3

The value above performance indicates that pure knowledge, value, and satisfaction
account for 66% of the variance of performance. The values displayed above the
observed variables are reliability estimates for the eight individual subtests. A formula
for the reliability of the original tests (before they were split in half) can be found in
Rock et al. (1977) or any book on mental test theory.

Model B

Assuming that Model A is correct (and there is no evidence to the contrary), consider
the additional hypothesis that /knowledge and 2knowledge are parallel tests. Under the
parallel tests hypothesis, the regression of /knowledge on knowledge should be the
same as the regression of 2knowledge on knowledge. Furthermore, the error variables
associated with lknowledge and 2knowledge should have identical variances. Similar
consequences flow from the assumption that /value and 2value are parallel tests, as
well as Iperformance and 2performance. But it is not altogether reasonable to assume
that Isatisfaction and 2satisfaction are parallel. One of the subtests is slightly longer
than the other because the original test had an odd number of items and could not be
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split exactly in half. As a result, 2satisfaction is 20% longer than Isatisfaction.
Assuming that the tests differ only in length leads to the following conclusions:

®  The regression weight for regressing 2satisfaction on satisfaction should be 1.2
times the weight for regressing /satisfaction on satisfaction.

m  Given equal variances for error7 and errorS, the regression weight for error8
should be /1.2 = 1.095445 times as large as the regression weight for error7.

You do not need to redraw the path diagram from scratch in order to impose these
parameter constraints. You can take the path diagram that you created for Model A as
a starting point and then change the values of two regression weights. Here is the path
diagram after those changes:

1knowledge
2knowledge

beta

knowledge

1value
2value

1satisfaction

Example 5: Model B
Parallel tests regression
Job performance of farm managers
Warren, White and Fuller (1974)
Model Specification

Results for Model B

The additional parameter constraints of Model B result in increased degrees of freedom:

Computation of degrees of freedom (Default model)

Mumber of distinct sample moments: 38
Mumber of distinct parameters to be estimated: 14
Degrees of freedom (36 - 14 22
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The chi-square statistic has also increased but not by much. It indicates no significant
departure of the data from Model B.

Chi-square = 26.967
Degrees of freedom = 22
Probability level = 0.212

If Model B is indeed correct, the associated parameter estimates are to be preferred
over those obtained under Model A. The raw parameter estimates will not be presented
here because they are affected too much by the choice of identification constraints.
However, here are the standardized estimates and the squared multiple correlations:

Standardized Regression Weights: (Group humber 1 - Default
model)

Correlations:

model)

perfarmance
Zperfarmance
1 perfarmance
2zatisfaction

1 satisfaction
2value

1walue
2knowvledge
1knowledge

(Group number 1 - Default model)

Eztimate
zatisfaction=--=  walue -055
valle =--=  knoweledge i)
zatizfaction=--= knowvledge 094

Estimate
BT
Bag
Bog
EEE
B25
464
A4E4
434
439

E=timate
performance <---  knowledge 29
perfarmance =---  gatisfaction 14
perfarmance =---  walug 352
Zsgtisfaction =---  errord Aa75
Z2zatisfaction =---  satisfaction G165
1zatisfaction =---  satisfaction Fan
2value 2em- value G583
Tvalue = value B85
Zknowledge  =---  knowledoge BE3
1knowledge  =---  knowledge EE3
1performance=---  performance 835
Zperfarmance=---  perfarmance G35

Squared Multiple Correlations: (Group humber 1 - Default
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Here are the standardized estimates and squared multiple correlations displayed on the
path diagram:

Chi-square = 26.967 (22 df)
44 p=.212

1knowledge
44 knowledge

2knowledge .66
9
A7

.53

A7

2value

.62

1satisfaction -
.67
2satisfaction .

Example 5: Model B
Parallel tests regression
Job performance of farm managers
Warren, White and Fuller (1974)
Standardized estimates

Testing Model B against Model A

Sometimes you may have two alternative models for the same set of data, and you
would like to know which model fits the data better. You can perform a direct
comparison whenever one of the models can be obtained by placing additional
constraints on the parameters of the other. We have such a case here. We obtained
Model B by imposing eight additional constraints on the parameters of Model A. Let
us say that Model B is the stronger of the two models, in the sense that it represents the
stronger hypothesis about the population parameters. (Model A would then be the
weaker model). The stronger model will have greater degrees of freedom. The chi-
square statistic for the stronger model will be at least as large as the chi-square statistic
for the weaker model.

A test of the stronger model (Model B) against the weaker one (Model A) can be
obtained by subtracting the smaller chi-square statistic from the larger one. In this
example, the new statistic is 16.632 (that is, 26.967 — 10.335)). If the stronger model
(Model B) is correctly specified, this statistic will have an approximate chi-square
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distribution with degrees of freedom equal to the difference between the degrees of
freedom of the competing models. In this example, the difference in degrees of
freedom is 8 (that is, 22 — 14). Model B imposes all of the parameter constraints of
Model A, plus an additional 8.

In summary, if Model B is correct, the value 16.632 comes from a chi-square
distribution with eight degrees of freedom. If only the weaker model (Model A) is
correct, and not the stronger model (Model B), the new statistic will tend to be large.
Hence, the stronger model (Model B) is to be rejected in favor of the weaker model
(Model A) when the new chi-square statistic is unusually large. With eight degrees of
freedom, chi-square values greater than 15.507 are significant at the 0.05 level. Based
on this test, we reject Model B.

What about the earlier conclusion, based on the chi-square value of 26.967 with
22 degrees of freedom, that Model B is correct? The disagreement between the two
conclusions can be explained by noting that the two tests differ in their assumptions.
The test based on eight degrees of freedom assumes that Model A is correct when
testing Model B. The test based on 22 degrees of freedom makes no such assumption
about Model A. If you are quite sure that Model A is correct, you should use the test
comparing Model B against Model A (the one based here on eight degrees of freedom);
otherwise, you should use the test based on 22 degrees of freedom.
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Modeling in VB.NET

Model A

The following program fits Model A:

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\Warren9v.wk1")
Sem.AStructure("1performance <--- performance (1)")
Sem.AStructure("2performance <--- performance")
Sem.AStructure("1knowledge <--- knowledge (1)")
Sem.AStructure("2knowledge <--- knowledge")
Sem.AStructure("1value <--- value (1)")
Sem.AStructure("2value <--- value")
Sem.AStructure("1satisfaction <--- satisfaction (1)")
Sem.AStructure("2satisfaction <--- satisfaction")

Sem.AStructure )"
Sem.AStructure ))")
)

(

(

(

("1performance <--- error1 (1

("2performance <--- error2 (1
Sem.AStructure("1knowledge <--- error3 (1)"
Sem.AStructure("2knowledge <--- error4
Sem.AStructureE"WaIue <--- error5 (1)")

(

(

(

(

(

(

: (1 )II
(1)
Sem.AStructure("2value <--- error6 (1)")
Sem.AStructure("1satisfaction <--- error7 (1)
Sem.AStructure("2satisfaction <--- error8 (1)

)
")

Sem.AStructure
Sem.AStructure
Sem.AStructure
Sem.AStructure
Sem.FitModel()

Finally
Sem.Dispose()

End Try

End Sub

performance <--- knowledge"
'‘performance <--- satisfaction")

performance <--- value")
'‘performance <--- error9 (1)")

Because of the assumptions that Amos makes about correlations among exogenous
variables (discussed in Example 4), the program does not need to indicate that
knowledge, value, and satisfaction are allowed to be correlated. It is also not necessary
to specify that errorl, error2, ..., error9 are uncorrelated among themselves and with
every other exogenous variable.
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The following program fits Model B:

Sub Main()
Dim Sem As New AmosEngine

Try

Sem.TextOutput()
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\Warren9v.wk1")
Sem.AStructure("1performance <--- performance (1)")
Sem.AStructure("2performance <--- performance (1)")
Sem.AStructure("1knowledge <--- knowledge (1)")
Sem.AStructure("2knowledge <--- knowledge (1)")
Sem.AStructure("1value <--- value (1)")
Sem.AStructure("2value <--- value (1)")
Sem.AStructure("1satisfaction <--- satisfaction (1)")

Sem.AStructure("2satisfaction <--- satisfaction (" & CStr(1.2) & ")")

Sem.AStructure("performance <--- knowledge")
Sem.AStructure("performance <--- value")
Sem.AStructure("performance <--- satisfaction")
Sem.AStructure("performance <--- error9 (1)")

Sem.AStructure("1performance <--- error1
Sem.AStructure("2performance <--- error2
Sem.AStructure("1knowledge <--- error3 (1
Sem.AStructure("2knowledge <--- error4 (1

(

(

(

")

Sem.AStructure("1value <--- error5 (1)")
Sem.AStructure("2value <--- error6 (1)")
Sem.AStructure("1satisfaction <--- error7 (1)")

Sem.AStructure("2satisfaction <--- error8 (" & CStr(1.095445) & ")")

Sem.AStructure("error1 (alpha)")
Sem.AStructure("error2 (alpha)")
Sem.AStructure("error8 (delta)")
Sem.AStructure("error7 (delta)")
Sem.AStructure("erroré (gamma)")
Sem.AStructure("error5 (gamma)”)
Sem.AStructure("error4 (beta)")
Sem.AStructure("error3 (beta)")
Sem.FitModel()

Finally

Sem.Dispose()

End Try
End Sub
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Exploratory Analysis

Introduction

This example demonstrates structural modeling with time-related latent variables, the
use of modification indices and critical ratios in exploratory analyses, how to compare
multiple models in a single analysis, and computation of implied moments, factor
score weights, total effects, and indirect effects.

About the Data

Wheaton et al. (1977) reported a longitudinal study of 932 persons over the period
from 1966 to 1971. Joreskog and Sorbom (1984), and others since, have used the
Wheaton data to demonstrate analysis of moment structures. Six of Wheaton's
measures will be used for this example.

Measure

Explanation

anomia67

1967 score on the anomia scale

anomia7l

1971 anomia score

powles67

1967 score on the powerlessness scale

powles71

1971 powerlessness score

education

Years of schooling recorded in 1966

SEI

Duncan's Socioeconomic Index administered in 1966

Take a look at the sample means, standard deviations, and correlations for these six
measures. You will find the following table in the SPSS Statistics file, Wheaton.sav.
After reading the data, Amos converts the standard deviations and correlations into

101



102

Example 6

variances and covariances, as needed for the analysis. We will not use the sample
means in the analysis.

rowtype_ | varname_ | anomiab7’ powles6T anomiafi powlesT1 educatio =ei
1|n 932.00 932.00 932.00 932.00 932.00 932.00
2 | corr anomiasy 1.00
3 | corr powlesET GE 1.00
4 | corr anomiar =1 A7 1.00
5 | corr powvlesT 44 52 BT 1.00
B | corr educatio - 36 -4 -.35 =37 1.00
T | corr =ei =30 -.29 -.29 -.28 o4 1.00
& | stodew .44 3.06 394 316 310 21.22
a4 | mean 13561 1476 1413 14.30 10.90 37439

Model A for the Wheaton Data

Joreskog and Sorbom (1984) proposed the model shown on p. 103 for the Wheaton
data, referring to it as their Model A. The model asserts that all of the observed
variables depend on underlying, unobserved variables. For example, anomia67 and
powles67 both depend on the unobserved variable 67_alienation, a hypothetical
variable that Joreskog and S6rbom referred to as alienation. The unobserved variables
epsl and eps2 appear to play the same role as the variables errorl and error2 did in
Example 5. However, their interpretation here is different. In Example 5, error! and
error2 had a natural interpretation as errors of measurement. In the present example,
since the anomia and powerlessness scales were not designed to measure the same
thing, it seems reasonable to believe that differences between them will be due to more
than just measurement error. So in this case, eps! and eps2 should be thought of as
representing not only errors of measurement in anomia67 and powles67 but in every
other variable that might affect scores on the two tests besides 67_alienation (the one
variable that affects them both).

Specifying the Model

To specify Model A in Amos Graphics, draw the path diagram shown next, or open the
example file Ex06—a.amw. Notice that the eight unique variables (deltal, delta2, zetal,
zeta2, and epsl through eps4) are uncorrelated among themselves and with the three
latent variables: ses, 67 _alienation, and 71_alienation.


Ex6_modelA

103

Exploratory Analysis

22 e

anom|a67‘ ‘ powlesS?‘ anom|a71 ‘ ‘ powles71

educatlo

NN

Example 6: Model A
Exploratory analysis
Wheaton (1977)
Model Specification

Identification

Model A is identified except for the usual problem that the measurement scale of each
unobserved variable is indeterminate. The measurement scale of each unobserved
variable may be fixed arbitrarily by setting a regression weight to unity (1) for one of
the paths that points away from it. The path diagram shows 11 regression weights fixed
at unity (1), that is, one constraint for each unobserved variable. These constraints are
sufficient to make the model identified.

Results of the Analysis

The model has 15 parameters to be estimated (6 regression weights and 9 variances).
There are 21 sample moments (6 sample variances and 15 covariances). This leaves 6
degrees of freedom.
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Computation of degrees of freedom [Default model)

Murnber of distinct samnple moments: 21
Mutnber of distinct parameters to be estitmated: 15
Legrees of freedom (21 - 153 f

The Wheaton data depart significantly from Model A.

Chi-square = 71.544
Degrees of freedom = 6
Probability level = 0.000

Dealing with Rejection

You have several options when a proposed model has to be rejected on statistical
grounds:

B You can point out that statistical hypothesis testing can be a poor tool for choosing
amodel. Joreskog (1967) discussed this issue in the context of factor analysis. It is
a widely accepted view that a model can be only an approximation at best, and that,
fortunately, a model can be useful without being true. In this view, any model is
bound to be rejected on statistical grounds if it is tested with a big enough sample.
From this point of view, rejection of a model on purely statistical grounds
(particularly with a large sample) is not necessarily a condemnation.

B You can start from scratch to devise another model to substitute for the rejected one.

B You can try to modify the rejected model in small ways so that it fits the data better.

It is the last tactic that will be demonstrated in this example. The most natural way of
modifying a model to make it fit better is to relax some of its assumptions. For
example, Model A assumes that eps/ and eps3 are uncorrelated. You could relax this
restriction by connecting eps/ and eps3 with a double-headed arrow. The model also
specifies that anomia67 does not depend directly on ses. You could remove this
assumption by drawing a single-headed arrow from ses to anomia67. Model A does
not happen to constrain any parameters to be equal to other parameters, but if such
constraints were present, you might consider removing them in hopes of getting a
better fit. Of course, you have to be careful when relaxing the assumptions of a model
that you do not turn an identified model into an unidentified one.
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Modification Indices

You can test various modifications of a model by carrying out a separate analysis for
each potential modification, but this approach is time-consuming. Modification
indices allow you to evaluate many potential modifications in a single analysis. They
provide suggestions for model modifications that are likely to pay off in smaller chi-
square values.

Using Modification Indices

>

>

From the menus, choose View — Analysis Properties.
In the Analysis Properties dialog box, click the Output tab.

Enable the Modification Indices check box. For this example, leave the Threshold for
modification indices set at 4.

The following are the modification indices for Model A:

Covariances: (Group number 1 - Default model)
M1 Par Change

gpsd <-->deltal 5905 -424
epsd <--=epsd  26.545 825
epsd <--reps3 32071 - BE8
gpsl <--=deltal  4.600 421
epsl <--repsd 35367 -1.069
epsl <--Fepsd 40911 1.253

Variances: (Group humber 1 - Default model)
M1 Par Change
Regression Weights: (Group humber 1 - Default model)
MLI. Par Change

powles7l <---powlesf? 5457 057
powlesTl <---anomiad?  9.006 -.085
anotnia’ 1 <---powlesd? 6775 -.069
anormia?] <---anomiaé? 10.352 07
powlesd? <---powles7l 5612 054
powlesd? <---anotnia7l 7273 -.054
anotniaf? <---powles7l  7.706 -.07a

anomiaf? <---anopdall o 9065 63
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The column heading M.I. in this table is short for Modification Index. The modification
indices produced are those described by Joreskog and Sorbom (1984). The first
modification index listed (5.905) is a conservative estimate of the decrease in
chi-square that will occur if eps2 and deltal are allowed to be correlated. The new
chi-square statistic would have 5 (= 6 — 1) degrees of freedom and would be no
greater than 65.639 (71.544 — 5.905 ). The actual decrease of the chi-square statistic
might be much larger than 5.905. The column labeled Par Change gives approximate
estimates of how much each parameter would change if it were estimated rather than
fixed at 0. Amos estimates that the covariance between eps2 and deltal would be
—0.424 . Based on the small modification index, it does not look as though much would
be gained by allowing eps2 and deltal to be correlated. Besides, it would be hard to
justify this particular modification on theoretical grounds even if it did produce an
acceptable fit.

Changing the Modification Index Threshold

By default, Amos displays only modification indices that are greater than 4, but you
can change this threshold.

From the menus, choose View — Analysis Properties.
In the Analysis Properties dialog box, click the Output tab.

Enter a value in the Threshold for modification indices text box. A very small threshold
will result in the display of a lot of modification indices that are too small to be of
interest.

The largest modification index in Model A is 40.911. It indicates that allowing eps/
and eps3 to be correlated will decrease the chi-square statistic by at least 40.911. This
is a modification well worth considering because it is quite plausible that these two
variables should be correlated. Eps/ represents variability in anomia67 that is not due
to variation in 67_alienation. Similarly, eps3 represents variability in anomia71 that is
not due to variation in 71 _alienation. Anomia67 and anomia7l are scale scores on the
same instrument (at different times). If the anomia scale measures something other
than alienation, you would expect to find a nonzero correlation between eps/ and eps3.
In fact, you would expect the correlation to be positive, which is consistent with the
fact that the number in the Par Change column is positive.



107
Exploratory Analysis

The theoretical reasons for suspecting that eps/ and eps3 might be correlated apply
to eps2 and eps4 as well. The modification indices also suggest allowing eps2 and eps4
to be correlated. However, we will ignore this potential modification and proceed
immediately to look at the results of modifying Model A by allowing eps/ and eps3 to
be correlated. The new model is Joreskog and Sérbom’s Model B.

Model B for the Wheaton Data

You can obtain Model B by starting with the path diagram for Model A and drawing a
double-headed arrow between eps/ and eps3. If the new double-headed arrow extends
beyond the bounds of the print area, you can use the Shape button to adjust the
curvature of the double-headed arrow. You can also use the Move button to reposition
the end points of the double-headed arrow.

The path diagram for Model B is contained in the file Ex06-b.amw.

‘anomia67‘ ‘powlesG7 ‘anomiaﬂ‘ ‘powles71‘

educatw‘ ‘ SEI

33

Example 6: Model B
Exploratory analysis
Wheaton (1977)
Model Specification
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Text Output

The added covariance between eps/ and eps3 decreases the degrees of freedom by 1.

Mutmber of distinct zample moments; 21
Mumber of distinct parameters to be estimated: 16

Degress of freedom (21 - 16T 5

The chi-square statistic is reduced by substantially more than the promised 40.911.

Chi-square = 6.383
Degrees of freedom = 5
Probability level = 0.271

Model B cannot be rejected. Since the fit of Model B is so good, we will not pursue the
possibility, mentioned earlier, of allowing eps2 and eps4 to be correlated. (An
argument could be made that a nonzero correlation between eps2 and eps4 should be
allowed in order to achieve a symmetry that is lacking in the Model B.)

The raw parameter estimates must be interpreted cautiously since they would have
been different if different identification constraints had been imposed.

Regression Weights: (Group number 1 - Default model)

E=timate: SE. CR. P Lakel
B7_alienation =---zes -.550 053 10294 *=
T1_alienation =---67 _alienation B17 050 12421 =
71 _alienstion =---zexs =212 049 4294 =

pcreeles T 2---T1 _alienation Aarm 049 19630 =
anomis? =71 _alienstion  1.000
poreelesBT =---67 _slienation 1.027 033 18322
anomisE?  =---E¥ _alienation  1.000
educatio Hmm BET 1.000
ZEI - 3EE 5164 A2 2255

Covariances: (Group humber 1 - Default model)

Estimate SE. CR. P Lakel
epsl=--=eps3  1.6886 240 T.E6E M

Variances: (Group number 1 - Default model)

Estimate SE. CR.P Label
Tes GE72 BST 10455 =
retal 4.700 433 10864 **
retal 3862 343 11237
eps1 5.039 371 13650 =
eps2 22 A7 BS6F
epsd 4 506 395 12473
epzd 2681 5230 53T
deftal 2728 S16 5282 =
defta? 26865967 18173 14668 **
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Note the large critical ratio associated with the new covariance path. The covariance
between epsl and eps3 is clearly different from 0. This explains the poor fit of Model
A, in which that covariance was fixed at 0.

Graphics Output for Model B

The following path diagram displays the standardized estimates and the squared
multiple correlations:

.38
.76 ?73
‘anomla67‘ ‘powlesG?‘ anom|a71‘ ‘powles71‘

Chi-square = 6.38
.85 .64 df=5
. \, .41 p=.27

‘ educatio ‘ SEI

e

Example 6: Model B
Exploratory analysis
W heaton (1977)
Standardized estimates

Because the error variables in the model represent more than just measurement error,
the squared multiple correlations cannot be interpreted as estimates of reliabilities.
Rather, each squared multiple correlation is an estimate of a lower bound on the
corresponding reliability. Take education, for example. Ses accounts for 72% of its
variance. Because of this, you would estimate its reliability to be at least 0.72.
Considering that education is measured in years of schooling, it seems likely that its
reliability is much greater.
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Misuse of Modification Indices

In trying to improve upon a model, you should not be guided exclusively by
modification indices. A modification should be considered only if it makes theoretical
Or common sense.

A slavish reliance on modification indices without such a limitation amounts to
sorting through a very large number of potential modifications in search of one that
provides a big improvement in fit. Such a strategy is prone, through capitalization on
chance, to producing an incorrect (and absurd) model that has an acceptable chi-square
value. This issue is discussed by MacCallum (1986) and by MacCallum, Roznowski,
and Necowitz (1992).

Improving a Model by Adding New Constraints

Modification indices suggest ways of improving a model by increasing the number of
parameters in such a way that the chi-square statistic falls faster than its degrees of
freedom. This device can be misused, but it has a legitimate place in exploratory
studies. There is also another trick that can be used to produce a model with a more
acceptable chi-square value. This technique introduces additional constraints in such a
way as to produce a relatively large increase in degrees of freedom, coupled with a
relatively small increase in the chi-square statistic. Many such modifications can be
roughly evaluated by looking at the critical ratios in the C.R. column. We have already
seen (in Example 1) how a single critical ratio can be used to test the hypothesis that a
single population parameter equals 0. However, the critical ratio also has another
interpretation. The square of the critical ratio of a parameter is, approximately, the
amount by which the chi-square statistic will increase if the analysis is repeated with
that parameter fixed at O.

Calculating Critical Ratios

If two parameter estimates turn out to be nearly equal, you might be able to improve
the chi-square test of fit by postulating a new model where those two parameters are
specified to be exactly equal. To assist in locating pairs of parameters that do not differ
significantly from each other, Amos provides a critical ratio for every pair of
parameters.
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» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Output tab.

» Enable the Critical ratios for differences check box.

When Amos calculates critical ratios for parameter differences, it generates names for
any parameters that you did not name during model specification. The names are
displayed in the text output next to the parameter estimates.

Here are the parameter estimates for Model B. The parameter names generated by
Amos are in the Label column.

Regression Weights: (Group humber 1 - Default model)

Estimate SE. CR. P Lakel
67 _alienation =--- sez -.5a0 0533 10294 *** par 6
71 _alienation =--- 67 _alienation B17 050 1242 *** par_4
71 _alienation =--- ses -2 049 4294 ***  pgr 5
pacnevles T =--- 71 _alienation Aam 049 19630 ***  par_1
anomis? =--- ¥1_alienstion 1.000
povelesfY  =--- B7_alienation 1.027 053 19.322 *** par_2
anomisBy  =--- 67 _alienation 1.000
educatio Hem- SES 1.000
ZEI Zee- ZET 5164 421 12255 = par_3

Covariances: (Group number 1 - Default model)
Estimste ~ SE.  CR. P Label

epsl=--= eps3 1886 240 FEBE M par T

Variances: (Group number 1 - Default model)
Estimate  SE.  CR. P Label

ses BE72  B57 10455 par_g
zetal 4700 433 10864  **  par 9
Teta? 3862 343 11257 % par_10
eps 5053 371 13650 **  par_11
Eps2 2211 317 BAEE % par_12
BpE3 4806 395 12473 par_13
Epsd 2EH 328 8437 % par_14
dettat 2728 516 5292 % par 15

delttaz 286567 18173 14663 **  par_16
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The parameter names are needed for interpreting the critical ratios in the following table:

Critical Ratios for Differences between Parameters (Default model)

par_1 par 2 par 3 par 4 par 5 par 6

par 1 .000

par_2 877 .000

par 3 9.883 9.741 .000

par 4 -4.429  -5931 -10.579 .000

par 5  -17.943 -16.634 -12.284 -18.098 .000

par 6 -22.343 -26471 -12.661 -17.300 -5.115 .000
par_7 3.903 3.689  -6.762 5.056 8490 10.124
par_8 8.955 8.866 1.707 9.576 10995 11.797

par_9 8.364 7.872 -714 9.256 11311 12.047
par_10 7.781 8.040  -2.362 9.470 11.683 12.629
par_11  11.106  11.705 -186 11.969 14.039 15431
par_12 3.826 3336  -5.599 4998  7.698  8.253
par_13  10.425 9.659 -.621 10306 12.713 13.575

par_l4 4.697 4906  -4.642 6353 8554  9.602
par_15 3.393 3283  -7.280 4.019 5508 5975
par_16  14.615 14.612 14.192 14.637 14.687 14.712

Critical Ratios for Differences between Parameters (Default model)

par 7 par 8 par 9 par 10 par 11 par 12
par_7 .000
par_8 7.128 .000
par_9 5.388 -2.996 .000
par_10  4.668 -4.112 -1.624 .000
par 11 9.773  -2.402 548 2.308 .000
par_12 740  -6.387 -5254 -3507 -4.728 .000
par_ 13 8318 -2.695 169 1.554 -507  5.042
par_14  1.798 -5.701 -3909 -2.790 -4.735 999
par_15 1.482 -3.787 -2.667 -1.799 -3.672 .855
par_ 16 14.563 14.506 14.439 14.458 14.387 14.544

Critical Ratios for Differences between Parameters (Default model)

par 13 par 14 par 15 par 16
par_13 .000
par_14 -3.322 .000
par_15 -3.199 .077 .000
par_16 14400 14.518 14.293 .000

Ignoring the 0’s down the main diagonal, the table of critical ratios contains 120
entries, one for each pair of parameters. Take the number 0.877 near the upper left
corner of the table. This critical ratio is the difference between the parameters labeled
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par_I and par_2 divided by the estimated standard error of this difference. These two
parameters are the regression weights for powles71 <— 71_alienation and
powles67 <— 67_alienation.

Under the distribution assumptions stated on p. 35, the critical ratio statistic can be
evaluated using a table of the standard normal distribution to test whether the two
parameters are equal in the population. Since 0.877 is less in magnitude than 1.96, you
would not reject, at the 0.05 level, the hypothesis that the two regression weights are
equal in the population.

The square of the critical ratio for differences between parameters is approximately
the amount by which the chi-square statistic would increase if the two parameters were
set equal to each other. Since the square of 0.877 is 0.769, modifying Model B to
require that the two regression weights have equal estimates would yield a chi-square
value of about 6.383 + 0.769 = 7.172 . The degrees of freedom for the new model
would be 6 instead of 5. This would be an improved fit (p = 0.307 versus p = 0.275
for Model B), but we can do much better than that.

Let’s look for the smallest critical ratio. The smallest critical ratio in the table is
0.077, for the parameters labeled par_I14 and par_15. These two parameters are the
variances of eps4 and deltal. The square of 0.077 is about 0.006. A modification of
Model B that assumes eps4 and deltal to have equal variances will result in a
chi-square value that exceeds 6.383 by about 0.006, but with 6 degrees of freedom
instead of 5. The associated probability level would be about 0.381. The only problem
with this modification is that there does not appear to be any justification for it; that is,
there does not appear to be any a priori reason for expecting eps4 and deltal to have
equal variances.

We have just been discussing a misuse of the table of critical ratios for differences.
However, the table does have a legitimate use in the quick examination of a small
number of hypotheses. As an example of the proper use of the table, consider the fact that
observations on anomia67 and anomia71 were obtained by using the same instrument
on two occasions. The same goes for powles67 and powles71. It is plausible that the tests
would behave the same way on the two occasions. The critical ratios for differences are
consistent with this hypothesis. The variances of eps/ and eps3 (par_11 and par_13)
differ with a critical ratio of —0.51. The variances of eps2 and eps4 (par_12 and par_14)
differ with a critical ratio of 1.00. The weights for the regression of powerlessness on
alienation (par_I and par_2) differ with a critical ratio of 0.88. None of these
differences, taken individually, is significant at any conventional significance level. This
suggests that it may be worthwhile to investigate more carefully a model in which all
three differences are constrained to be 0. We will call this new model Model C.
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Model C for the Wheaton Data

Here is the path diagram for Model