
Lecture 2 
Basic ANOVA and regression 

R101: A practical guide to making R your everyday statistical tool (PSY532)  



Programme 

• T-tests 

• Linear 
regression 

• ANOVA 

• Repeated-
measures 
ANOVA 

• Logic of the analysis 
• Hypotheses from our dataset 

─ Regression: A  hypothesis from a related but 
slightly different experiment 

─ ANOVA: As for regression + Hypothesis 2 from 
Lecture 1 

─ Repeated-measures ANOVA: Hypothesis 1a 
from Lecture 1 

• Working together in R:  
─ Obtaining descriptive statistics 
─ Running the analysis 
─ Checking assumptions 

• Reporting the analysis 
• Seminar: Repeated-measures ANOVA; 

bootstrapping 
 

Readings: LSR for everything except Repeated-Measures ANOVA 



T-tests 

Used for comparing: 

– two means that come from different groups with the same variance on 
a measure (Student t-test)  

– two means that come from different groups with differing variances 
(Welch test) 

–a group mean and a theoretical value (one-sample t-test) 

– means recorded by the same people in different conditions (related 
samples t-test) 

 

Quick demonstration of the Welch test: Did participants who were asked to 
think aloud during the soccer game score higher on the measure of 
supernatural strategising (PostSupIoC)? 
 

R has other packages for running t-tests but an advantage of the lsr 
package is that it calculates a Cohen’s d, a measure of effect size – i.e., of the 
size of differences between two groups. 

Reading: LSR, Ch 13 



Linear regression 

Logic of the analysis – one predictor 

residual for observation i of N 
(e.g., day 78 of 80) 

• We use a sequence of calculations 
(maximum likelihood estimation; 
MLE) to draw a line that minimises 
the sum of the squared values of the 
residuals 

• MLE makes two key assumptions: 
─ Residuals are normally 

distributed (with mean 0) and 
have a standard deviation that is 
the same at every value of the 
predicted variable/ “outcome” 
variable (grumpiness) 

─ There is a linear relationship 
between the predictor (sleep) 
the outcome (grumpiness) 

Reading: LSR, Ch 15 



Logic of the analysis – one predictor (continued) 

• R2 tells us the extent to which the sum of 
squared residuals is smaller than the sum 
of the following: square of (each value of 
the outcome variable minus the mean of 
the outcome variable) 

• Two answers to the same question of 
whether there is a significant relationship 
between the predictor and the outcome 
(null hypotheses in green): 

− T-test to determine whether the 
slope of the regression line (slope 
coefficient in the model) is 
significantly different from zero 

− F-test (ANOVA) to determine 
whether the model performs better 
than an intercept-only model (i.e., an 
equation in which the slope 
coefficient equals zero and the 
intercept then equals the outcome 
variable’s mean) 

horizontal line at 
the mean of the 
outcome variable 
(grumpiness) 

The model: 

Slope coefficient Intercept Residual 



Depression 

http://www.ats.ucla.edu/stat/sas/teach/reg_int/reg_int_cont.htm 

Y 

X2 

X1 

Logic of the analysis – two (or more) predictors 

The model: 

• We use MLE to determine an equation 
that minimises the sum of the squared 
values of the residuals (equation of a 3D 
plane for two predictors) 

• MLE makes the same key assumptions as 
for analyses with a single predictor 

• Interactions between the predictors are 
possible 

The model: 
Yi = b2Xi2 + b1Xi1 + b3Xi1Xi2 + b0 + εi 

http://www.ats.ucla.edu/stat/sas/teach/reg_int/reg_int_cont.htm


Logic of the analysis – two predictors (continued) 

• R2 has the same meaning, but you can also 
calculate adjusted R2 , which is smaller 
than R2 if there are many predictors and/or 
the sample size is small 

• Three associated hypothesis tests (null 
hypotheses in green): 
− T-tests  for each coefficient in the 

model: is it significantly different from 
zerozero? 

− F-test (ANOVA) to determine whether 
the model performs better than an 
intercept-only model (i.e., an equation 
in which all slope coefficients equal zero 
and the intercept is then equal to the 
outcome variable’s mean) 

− Hierarchical regression: F-test (ANOVA) 
to determine whether a model 
featuring one or more additional 
predictors performs better than the 
original model 

Horizontal plane 
from the mean of 
the outcome 
variable (Y) 

Intercept-only model 

X1 
X2 

Y 

b2 

b1 

p. 481 

X1 
X2 

Y 



Experiment 

• N = 97 

• 100 trials of the soccer-themed slot-machine task under one of five win-
frequency conditions 
– 1 win per 2 trials, per 3 trials, per 4 trials, per 8 trials and per 16 trials 

• Pre-game and post-game questionnaires almost identical to those in the 
Success-Slope experiment from Lecture 1. Final win amount (final credits) 
also calculated. 

 

Hypothesis 

In many causal judgement experiments, as the frequency with which two 
events co-occur increases, conclusions that one event causes the other have 
been found to increase in strength. Example: treatment with a certain drug 
and recovery. Here, we expect the same to the be the case for wins and 
choices made during the game. As win frequency increases, choices should 
come to be considered more causally effective (i.e., more strategic). Win 
frequency should predict natural or supernatural illusion of control. 

Hypothesis from our dataset (actually from another very similar 
dataset; SF in your Study Materials/Data folder) 



‘Natural’ IoC 
1. My skill in playing the game. 
2. I got better with practice. 
3. I developed a logical strategy for 

playing. 
4. Experience in playing computer 

games. 
Natural IoC variable: Average of 
these items 

‘Supernatural’ IoC 
1. I took advantage of moments 

when my luck was good. 
2. I’ve always been a lucky kind of 

person. 
3. I knew how to make my luck 

turn good. 
4. A certain lucky way of playing 

just seemed to work for me.  
5. The players I chose. 
6. I learned how to predict the 

movements of the goalkeeper. 
Supernatural IoC variable: Average of 
these items 

 

Post-game measure of illusion of problem-
solving – slight difference from SS data 

All chance. 
It was all chance. 

 We will use Supernatural IoC (PostSupIoC) as our outcome variable in 
this demonstration because it has more items and is therefore a 
potentially more reliable measure of the illusion of problem-solving. 



Working together in R – descriptive statistics 

Graph – ggplot2 commands are in the script  

Correlation table 
As shown in the script, create a subset data frame of the variables you want to 
correlate, then use the correlate function in the lsr package. You should 
include all possible predictors of the outcome variable for which data is 
available. 



Working together in R – Running the analysis 

Revised hypothesis based on the correlation table 

Once gambling-related beliefs and soccer interest assessed in the pre-
game questionnaire (PreSoccerInterest; PreDBC_Sup) are accounted 
for, win frequency (LogWinFreqPerc) is a significant predictor of the 
illusion of supernatural control (PostIoCSup). 
 
See script for a demonstration of a hierarchical regression approach to 
testing this hypothesis. We use the lm and anova functions for which 
you do not need to install a package (they are in the ‘base’ package). 
We also make use of the lsr package. 



Working together in R – Checking assumptions 

Assumption Checks available in R If the assumption is not met... 

Normality of residuals hist(residuals(model1), 
breaks = 20) 

plot(model1, which = 2) 

shapiro.test(residuals 
(model1)) 

Transform one or more of the 
predictors 

Constant variance of 
residuals 
•  lack of influential 

points 
• homogenieity of 

variance 

plot(model1, which = 4) 
plot(model1, which = 5) 
 
plot(model1, which = 3) 
ncvTest(model1) 

Run regression without influential 
points (see script) 
 
Run regression with 
heteroscedasticity-corrected 
covariance matrix (see script) 

Linearity of the 
relationship between 
the outcome and the 
predictor(s) 

Plot of fitted values against 
observed values 

plot(model1, which = 1) 

residualPlots(model1) 

Transform one or more of the 
predictors 
 



Reporting the analysis 

• Table showing coefficients, R2, T-test and hierarchical regression results 
(if any). Standardised coefficients (β) tend to also be reported. 

• Summary of results, given the hypothesis: Overall, the analysis indicated 
that illusion-of-control ratings increased with increases in win-frequency, 
once the influence of background beliefs and soccer interest was 
accounted for. 

Hierarchical 
regression 
step 

Predictors b SE b β t p Adj R2 

1 Intercept 

DBC total 

2 Intercept 

DBC total 

Win-
frequency 



ANOVA: Independent measures 

Logic of the analysis – one predictor (here, drug type, with 3 levels) 

A
n

xi
et

y 

Anxifree Joyzepam Placebo 

Group means 

*Note: Data in illustration does not correspond to 
textbook 

• We calculate two quantities: 
– Sum of squares 

expressing difference 
between each individual 
score and the group 
mean: ...... 

– Sum of squares 
expressing difference 
between group means 
and grand mean – 
variability due to factor 
(drug type) 

• These enable us to compute 
an F-value, which can then 
be tested for significance. 

Reading: LSR, Ch 14 and 16 



• N is number of participants 
• G is number of groups 
• i is a participant number 
• k is an integer representing the group 

number/factor level 
 

• Effect size – eta-squared: 

SS expressing difference between all 
scores (regardless of group) and grand 

mean   



Logic of the analysis: The F-statistic as a model comparison 

• The F-test, as it is used in both ANOVA and regression, is really a 
comparison of two statistical models. 

• In an ANOVA with one predictor, the F-test is a comparison of an 
intercept-only model (M0, null hypothesis) to a model involving the 
intercept and the predictor (M1, alternative hypothesis).  

 



Grand mean 

Win frequency 

Po
st

Su
p

 Io
C

 

Logic of the analysis – ANOVA as regression (illustration for ANOVA 
with one predictor) 

When we use the aov function, the chosen group’s mean is the intercept (baseline) 
in a “dummy coded” regression. In this case, the regression has four predictors (see 
next slide). Using the aov function additionally involves a model comparison (see 
script, ANOVA Example 1). 

A group mean 
selected by 
researcher (e.g., 
the lowest win-
frequency 
condition). 



Win frequency data (first 6 cases) “dummy coded” with 1/16 as 
reference group 

PNo SupIoC 1/8 (X1) 1/4 (X2) 1/3 (X3) 1/2 (X4) 

2 0.8333 1 0 0 0 

3 0.0000 0 0 0 0 

4 2.5000 0 1 0 0 

5 4.1667 0 0 1 0 

6 0.6667 0 0 0 1 

7 4.5000 0 0 0 0 

The regression model: 
Yp= b1X1p + b2X2p + b3X3p + b4X4p  + b0 + εi 

Mean of 1/16 group  

Difference between means of 1/2 
group and 1/16 group  

Participant p’s 
code on X1 

SupIoC of 
participant p 

We determine the values 
of b0, b1, b2, b3 and b4 
using the summary.lm 
function. 



Other possible contrasts in the regression component 

• The dummy coding in the previous slide contained a treatment 
contrast. 

• Other possible contrasts include Helmert, sum-to-zero (“effect 
coding”) and manually set orthogonal contrasts. 

 

PNo0 1/8 (X1) 1/4 (X2) 1/3 (X3) 1/2 (X4) 

2 1 -1 -1 -1 

3 -1 -1 -1 -1 

4 0 2 -1 -1 

5 0 0 3 -1 

6 0 0 0 4 

7 -1 -1 -1 -1 

Win frequency data (first 6 cases) with Helmert contrast and  1/16 as 
reference group: 

This coding enables us to 
contrast the second level 
with the reference level, 
the third with the average 
of the first two, and so on. 



PNo 1/16 (X1) 1/8 (X2) 1/4 (X3) 1/3 (X4) 

2 0 1 0 0 

3 1 0 0 0 

4 0 0 1 0 

5 0 0 0 1 

6 -1 -1 -1 -1 

7 1 0 0 0 

Win frequency data (first 6 cases) with sum-to-zero contrast (“effect 
coding”) and  1/2 as reference group (as per script): 

The regression model: 
Yp= (1/5)b1X1p + (1/5)b2X2p + (1/5)b3X3p + (1/5)b4X4p  + b0 + εi 

This coding enables us to 
contrast the mean of each 
group except the reference 
group with the grand 
mean. The grand mean is 
“weighted” (see script) if 
the groups are not equal in 
sample size. 

Mean of 1/16 group minus 
weighted grand mean 

(Weighted) grand 
mean  

Mean of 1/8 group minus 
weighted grand mean 



Rules for manually setting orthogonal contrasts 

Rules: 

1. The weights within any contrast must sum to zero 

2. The weights for any pair of contrasts must sum to zero when the dot 
product is taken. 

 

Illustration: 

• Contrast A = (a, b, c, d, e) 

• Contrast B = (f, g, h, i, k) 

• Contrast C = (l, m, n, o, p) 
 

If the rules are met: 

1. a + b + c + d + e = 0, f + g + h + i + k = 0, and l + m + n + o + p = 0 

2. a*f + b*g + c*h + d*i + e*k = 0, l*f + m*g + n*h + o*i + p*k = 0, and 

a*l + b*m + c*n + d*o + e*p = 0 
 

For a worked example, see ANOVA Example 3 in script. 

Each contrast should compare two sets of 
means (e.g., mean of a, b and d to the 
mean of c and e). Chunks with a negative 
weight (e.g., -1) are compared to chunks 
with a positive weight. So in this example, 
we would assign weights like this: (1, 1, -
1, 1, -1) or (-1, -1, 1, -1, 1). 

Reading: Field chapter 



Logic of the analysis – ANCOVA (with one predictor and one 
covariate) 

(covariate; e.g., beliefs in value of 
strategies even before the game – 
PreDBC_Sup) 

(categorical predictor, here with two 
levels; e.g., win-freq of 1/2 vs. 1/16) 

(o
u

tc
o

m
e 

va
ri

ab
le

; 
e.

g.
, P

o
st

Su
p

Io
C

) 

• If the categorical predictor has 
more levels (e.g., 5 as in our 
example), there might be more 
parallel lines: 

– The vertical distance 
between lines represents 
the effect of the categorical 
predictor 

• Two covariates could be 
visualised as parallel regression 
planes. 

• Parallel slopes (lack of 
relationship between predictor 
and covariates) are assumed. 

• Covariates can be categorical! 



Logic of the analysis – ANOVA with two or more predictors 

From the same data that gives us this table, 

we can calculate... 

Factor A  
(3 levels) 

Factor B (2 levels) 

Row 
marginal 
means 

Column marginal 
means 

Grand mean 

Group means – e.g., 
for group 1,1 



Total sum of squares expressing distance 
between all data points and grand mean 

Sum of squares expressing difference 
between row marginal means and grand 

mean – variability due to Factor A 

Sum of squares expressing difference 
between column marginal means and grand 

mean – variability due to Factor B 

Four sets of degrees of freedom: 
• For Factor A 
• For Factor B 
• For the interaction between A and B 
• For the residuals 

Sum of squares expressing the extent to 
which the group means cannot be 

predicted based on the marginal means 
alone – variability due to interaction 

between A and B (see next slide) 

Using the first four quantities, we can 
calculate the residual sum of squares 

This is all the information we 
need for computing the F-
value for each predictor and 
interaction term. We can 
also compute an effect size 
(eta-squared) for each 
predictor/interaction – e.g., 
for Factor A: 



Interactions 



Logic of the analysis: Different types of hypothesis tests (model 
comparisons)  in unbalanced designs 

• An issue to consider in any factorial ANOVA (i.e., ANOVA with two 
or more predictors) where group sample sizes are not equal (e.g., 
where group 1,1 has N = 25 and group 3,1 has N = 17) 

• To do with the F statistic as a model comparison (see earlier slide) 



Name Model comparison method Recommended for Not recommended for 

Type I Sums 
of Squares 
(R default) 

Sequential; The first term that is 
entered “grabs” all the variance 
in Y that it can. The second term 
grabs as much as possible of the 
remaining variance, and so on. 

Situations where cell 
sizes (1,1; 1,2 etc) 
reflect differences in 
proportions in the 
population. 
 

Situations where it is 
crucial to know the 
effect size (eta 
squared). 

Situations where you do 
not have a theoretical 
justification for the 
ordering of predictors. 

Type II 
Sums of 
Squares 

Non-sequential, hierarchical; 
The null model always contains 
less terms, so that the term 
whose significance we are 
trying to test is not part of a 
higher-order term in the model 
(i.e., an interaction). 

Most situations 

Type III 
Sums of 
Squares 
(SPSS 
default) 

Non-sequential, unique; The 
null model always contains one 
less term, corresponding to the 
term whose significance we are 
trying to test. 

Situations where you 
expect a significant main 
effect and an interaction. 
The main effects are 
meaningless when there is 
a significant interaction. 



Working together in R – descriptive statistics 

Interaction plot 

Descriptive statistics 
As shown in the script, check for a correlation between the outcome 
variable and any proposed covariates. Also use the psych package to 
generate relevant descriptive statistics, as we did in the last lecture. 

Plot suggests 
that there 
might be an 
interaction. 



Working together in R – Running the analysis 

A different hypothesis – this time from our SS data (Hypothesis #2) 

Once gambling-related beliefs (PreDBC_Total) are accounted for, a 
higher percentage of wins (PostHowManySingleWins) should be 
remembered in the descending condition relative to the others 
(SeqCond). Sequence condition could interact with question wording 
(PostHowManySingleCaptionType). 
 
See script for a demonstration of a Type II Sums of Squares ANCOVA 
test of this hypothesis. We use the lm function for which you do not 
need to install a package. The Anova function we use is in the car 
package. We also make use of the psych package (describeBy), and 
the effects package (function: effect). 



Working together in R – Checking assumptions 

Assumption Checks available in R If the assumption is 
not met... 

Normality of residuals hist(residuals(anova_ 
SSHyp2)) 
shapiro.test(residuals 
(anova_SSHyp2)) 

Try a generalised linear 
model – discussed in a 
few lectures’ time 

Constant variance of 
residuals across 
predicted group means 
– homogeneity of 
variance 

leveneTest(formula) – car package. Formula 
must specify a saturated model (i.e., a 
model with all possible main effects and 
interactions) with no covariates. 

oneway.test() 
kruskal.test() 

Homogeneity of 
regression slopes 
(ANCOVA) 

HRS <- aov(outcome variable ~ 
predictor*covariate) or with multiple 
predictors: 

HRS <- aov(outcome variable 
~predictor1*predictor2 *covariate) 

Anova(HRS, type = 2) 

Try a more complex 
model where the 
covariate is a predictor 

Independence between 
the covariate and 
predictor(s) (ANCOVA) 

aov(predictor1*predictor2~covariate) 

 

Try a more complex 
model where the 
covariate is a predictor. 



Reporting the analysis – as in Results section 

• Table (or very clear graph) showing means and SDs across factor levels. As 
in the interaction plot. 

• In text: An ANCOVA (with Type II Sums of Squares) was conducted with 
percentage of remembered wins as the outcome variable, success-slope 
and question wording as predictors, and background beliefs (Drake Beliefs 
About Chance total score) as a covariate. After the significant influence of 
background beliefs was accounted for (F(1,325) = 11.32, p < .001, eta-
squared = .03), the analysis revealed a significant main effect of success-
slope (F(3,325) = 3.10, p = .03, eta-squared = .02), a significant main effect 
of question wording (F(1,325) = 38.08, p < .001, eta-squared = .09), and a 
significant interaction effect (F(3,325) = 3.83, p = .01, eta-squared = .03). 
Planned comparisons of the Descending condition’s mean to those of 
other groups under a treatment contrast revealed a significant difference 
between the Ascending and Descending groups (p = .05). As regards the 
interaction, the effect of question wording was found to be marginally 
significantly different in the Ascending, as compared to the Descending, 
condition (p = .07). As the descriptive statistics suggest, question wording 
was irrelevant to the win-frequency estimates of participants in the 
Ascending condition. Notably, the homogeneity of variance assumption 
was violated in the analysis. 

• F values (with degrees of freedom), p values and effect sizes can also be 
reported in a table. 

• A table showing estimated marginal means could also be included. 
 



Discussing the analysis – as in Discussion section 

The results suggest that more wins were remembered when most wins 
were concentrated early in the experienced sequence, rather than late 
in the sequence. This is partly consistent with our expectation that 
memory for wins would resemble memory for word lists, where the 
words at the top of the list are remembered more clearly. Interestingly, 
the early-wins condition did not differ from the evenly-spaced and U-
shaped conditions in terms of remembered wins. For the U-shaped 
condition, a likely explanation is that the early wins there were clearly 
remembered. For the evenly-spaced condition, it is possible that 
memory was boosted by the “spacing” of the wins. The effects of 
spacing are well-known in the memory literature. Words tend to be 
remembered better the wider their spacing across time. The spacing 
effect is also likely to have been responsible for the effects of question 
wording. People seemed to have been underestimating the frequency 
of losses, possibly because these were not as widely spaced as wins. 
Why this effect of question wording was not observed in the late-wins 
(Ascending) condition is unclear. 



Reading 

Navarro, D. J. (2014). Learning statistics with R: A tutorial for 
psychology students and other beginners. Available online: 
http://health.adelaide.edu.au/psychology/ccs/teaching/lsr/. 
Chapters 13-16. 
  
Baguley, T. Serious Stats: A Guide to Advanced Statistics for the 
Behavioural Sciences. Palgrave Macmillan: UK. Chapter 16 
“Repeated Measures ANOVA” (pdf in Study 
Materials/Readings). 
 
Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics 
Using R. Sage: UK. Chapter 10. Comparing several means: 
ANOVA (pdf in Study Materials/Readings). 

http://health.adelaide.edu.au/psychology/ccs/teaching/lsr/

