
Seminar 2 
Basic ANOVA and regression: repeated 
measures ANOVA and bootstrapping 

R101: A practical guide to making R your everyday statistical tool (PSY532)  



Programme 

• T-tests 

• Linear 
regression 

• ANOVA 

• Repeated-
measures 
ANOVA 

• Logic of the analysis 
• Hypotheses from our dataset 

─ Regression: A  hypothesis from a related but 
slightly different experiment 

─ ANOVA: As for regression + Hypothesis 2 from 
Lecture 1 

─ Repeated-measures ANOVA: Hypothesis 1a 
from Lecture 1 

• Working together in R:  
─ Obtaining descriptive statistics 
─ Running the analysis 
─ Checking assumptions 

• Reporting the analysis 
• Seminar: Repeated-measures ANOVA; 

bootstrapping 
 

Readings: LSR for everything except Repeated-Measures ANOVA 



Logic of the analysis: The F-statistic as a model comparison 

• The F-test, as it is used in both ANOVA and regression, is really a 
comparison of two statistical models. 

• In an ANOVA with one predictor, the F-test is a comparison of an 
intercept-only model (M0, null hypothesis) to a model involving the 
intercept and the predictor (M1, alternative hypothesis).  
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Logic of the analysis – ANOVA as regression (illustration for ANOVA 
with one predictor) 

When we use the aov function, the chosen group’s mean is the intercept (baseline) 
in a “dummy coded” regression. In this case, the regression has four predictors (see 
next slide). Using the aov function additionally involves a model comparison (see 
script, ANOVA Example 1). 

A group mean 
selected by 
researcher (e.g., 
the lowest win-
frequency 
condition). 



Win frequency data (first 6 cases) “dummy coded” with 1/16 as 
reference group 

PNo SupIoC 1/8 (X1) 1/4 (X2) 1/3 (X3) 1/2 (X4) 

2 0.8333 1 0 0 0 

3 0.0000 0 0 0 0 

4 2.5000 0 1 0 0 

5 4.1667 0 0 1 0 

6 0.6667 0 0 0 1 

7 4.5000 0 0 0 0 

The regression model: 
Yp= b1X1p + b2X2p + b3X3p + b4X4p  + b0 + εi 

Mean of 1/16 group  

Difference between means of 1/2 
group and 1/16 group  

Participant p’s 
code on X1 

SupIoC of 
participant p 

We determine the values 
of b0, b1, b2, b3 and b4 
using the summary.lm 
function. 

Back to script 



Other possible contrasts in the regression component 

• The dummy coding in the previous slide contained a treatment 
contrast. 

• Other possible contrasts include Helmert, sum-to-zero (“effect 
coding”) and manually set orthogonal contrasts. 

 

PNo0 1/8 (X1) 1/4 (X2) 1/3 (X3) 1/2 (X4) 

2 1 -1 -1 -1 

3 -1 -1 -1 -1 

4 0 2 -1 -1 

5 0 0 3 -1 

6 0 0 0 4 

7 -1 -1 -1 -1 

Win frequency data (first 6 cases) with Helmert contrast and  1/16 as 
reference group: 

This coding enables us to 
contrast the second level 
with the reference level, 
the third with the average 
of the first two, and so on. 



PNo 1/16 (X1) 1/8 (X2) 1/4 (X3) 1/3 (X4) 

2 0 1 0 0 

3 1 0 0 0 

4 0 0 1 0 

5 0 0 0 1 

6 -1 -1 -1 -1 

7 1 0 0 0 

Win frequency data (first 6 cases) with sum-to-zero contrast (“effect 
coding”) and  1/2 as reference group (as per script): 

The regression model: 
Yp= (1/5)b1X1p + (1/5)b2X2p + (1/5)b3X3p + (1/5)b4X4p  + b0 + εi 

This coding enables us to 
contrast the mean of each 
group except the reference 
group with the grand 
mean. The grand mean is 
“weighted” (see script) if 
the groups are not equal in 
sample size. 

Mean of 1/16 group minus 
weighted grand mean 

(Weighted) grand 
mean  

Mean of 1/8 group minus 
weighted grand mean 



Rules for manually setting orthogonal contrasts 

Rules: 

1. The weights within any contrast must sum to zero 

2. The weights for any pair of contrasts must sum to zero when the dot 
product is taken. 

 

Illustration: 

• Contrast A = (a, b, c, d, e) 

• Contrast B = (f, g, h, i, k) 

• Contrast C = (l, m, n, o, p) 
 

If the rules are met: 

1. a + b + c + d + e = 0, f + g + h + i + k = 0, and l + m + n + o + p = 0 

2. a*f + b*g + c*h + d*i + e*k = 0, l*f + m*g + n*h + o*i + p*k = 0, and 

a*l + b*m + c*n + d*o + e*p = 0 
 

For a worked example, see ANOVA Example 3 in script. 

Each contrast should compare two sets of 
means (e.g., mean of a, b and d to the 
mean of c and e). Chunks with a negative 
weight (e.g., -1) are compared to chunks 
with a positive weight. So in this example, 
we would assign weights like this: (1, 1, -
1, 1, -1) or (-1, -1, 1, -1, 1). 

Reading: Field chapter 



Logic of the analysis – ANCOVA (with one predictor and one 
covariate) 

(covariate; e.g., beliefs in value of 
strategies even before the game – 
PreDBC_Sup) 

(categorical predictor, here with two 
levels; e.g., win-freq of 1/2 vs. 1/16) 
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• If the categorical predictor has 
more levels (e.g., 5 as in our 
example), there might be more 
parallel lines: 

– The vertical distance 
between lines represents 
the effect of the categorical 
predictor 

• Two covariates could be 
visualised as parallel regression 
planes. 

• Parallel slopes (lack of 
relationship between predictor 
and covariates) are assumed. 

• Covariates can be categorical! 



Logic of the analysis – ANOVA with two or more predictors 

From the same data that gives us this table, 

we can calculate... 

Factor A  
(3 levels) 

Factor B (2 levels) 

Row 
marginal 
means 

Column marginal 
means 

Grand mean 

Group means – e.g., 
for group 1,1 



Total sum of squares expressing distance 
between all data points and grand mean 

Sum of squares expressing difference 
between row marginal means and grand 

mean – variability due to Factor A 

Sum of squares expressing difference 
between column marginal means and grand 

mean – variability due to Factor B 

Four sets of degrees of freedom: 
• For Factor A 
• For Factor B 
• For the interaction between A and B 
• For the residuals 

Sum of squares expressing the extent to 
which the group means cannot be 

predicted based on the marginal means 
alone – variability due to interaction 

between A and B (see next slide) 

Using the first four quantities, we can 
calculate the residual sum of squares 

This is all the information we 
need for computing the F-
value for each predictor and 
interaction term. We can 
also compute an effect size 
(eta-squared) for each 
predictor/interaction – e.g., 
for Factor A: 



Interactions 



Logic of the analysis: Different types of hypothesis tests (model 
comparisons)  in unbalanced designs 

• Different types of hypothesis tests are an issue to consider in any 
factorial ANOVA (i.e., ANOVA with two or more predictors) where 
group sample sizes are not equal (e.g., where group 1,1 has N = 
25 and group 3,1 has N = 17) 

• To do with the F statistic as a model comparison (see earlier slide) 



Name Model comparison method Recommended for Not recommended for 

Type I Sums 
of Squares 
(R default) 

Sequential; The first term that is 
entered “grabs” all the variance 
in Y that it can. The second term 
grabs as much as possible of the 
remaining variance, and so on. 

Situations where cell 
sizes (1,1; 1,2 etc) 
reflect differences in 
proportions in the 
population. 
 

Situations where it is 
crucial to know the 
effect size (eta 
squared). 

Situations where you do 
not have a theoretical 
justification for the 
ordering of predictors. 

Type II 
Sums of 
Squares 

Non-sequential, hierarchical; 
The null model always contains 
less terms, so that the term 
whose significance we are 
trying to test is not part of a 
higher-order term in the model 
(i.e., an interaction). 

Most situations 

Type III 
Sums of 
Squares 
(SPSS 
default) 

Non-sequential, unique; The 
null model always contains one 
less term, corresponding to the 
term whose significance we are 
trying to test. 

Situations where you 
expect a significant main 
effect and an interaction. 
The main effects are 
meaningless when there is 
a significant interaction. 



Working together in R – descriptive statistics 

Interaction plot 

Descriptive statistics 
As shown in the script, check for a correlation between the outcome 
variable and any proposed covariates. Also use the psych package to 
generate relevant descriptive statistics, as we did in the last lecture. 

Plot suggests 
that there 
might be an 
interaction. 

Back to script 



Working together in R – Running the analysis 

A different hypothesis – this time from our SS data (Hypothesis #2) 

Once gambling-related beliefs (PreDBC_Total) are accounted for, a 
higher percentage of wins (PostHowManySingleWins) should be 
remembered in the descending condition relative to the others 
(SeqCond). Sequence condition could interact with question wording 
(PostHowManySingleCaptionType). 
 
See script for a demonstration of a Type II Sums of Squares ANCOVA 
test of this hypothesis. We use the lm function for which you do not 
need to install a package. The Anova function we use is in the car 
package. We also make use of the psych package (describeBy), and 
the effects package (function: effect). 

Back to script 



Working together in R – Checking assumptions 

Assumption Checks available in R If the assumption is 
not met... 

Normality of residuals hist(residuals(anova_ 
SSHyp2)) 
shapiro.test(residuals 
(anova_SSHyp2)) 

Try a generalised linear 
model – discussed in a 
few lectures’ time 

Constant variance of 
residuals across 
predicted group means 
– homogeneity of 
variance 

leveneTest(formula) – car package. Formula 
must specify a saturated model (i.e., a 
model with all possible main effects and 
interactions) with no covariates. 

oneway.test() 
kruskal.test() 

Homogeneity of 
regression slopes 
(ANCOVA) 

HRS <- aov(outcome variable ~ 
predictor*covariate) or with multiple 
predictors: 

HRS <- aov(outcome variable 
~predictor1*predictor2 *covariate) 

Anova(HRS, type = 2) 

Try a more complex 
model where the 
covariate is a predictor 

Independence between 
the covariate and 
predictor(s) (ANCOVA) 

aov(predictor1*predictor2~covariate) 

 

Try a more complex 
model where the 
covariate is a predictor. 



Reporting the analysis – as in Results section 

• Table (or very clear graph) showing means and SDs across factor levels. As 
in the interaction plot. 

• In text: An ANCOVA (with Type II Sums of Squares) was conducted with 
percentage of remembered wins as the outcome variable, success-slope 
and question wording as predictors, and background beliefs (Drake Beliefs 
About Chance total score) as a covariate. After the significant influence of 
background beliefs was accounted for (F(1,325) = 11.32, p < .001, eta-
squared = .03), the analysis revealed a significant main effect of success-
slope (F(3,325) = 3.10, p = .03, eta-squared = .02), a significant main effect 
of question wording (F(1,325) = 38.08, p < .001, eta-squared = .09), and a 
significant interaction effect (F(3,325) = 3.83, p = .01, eta-squared = .03). 
Planned comparisons of the Descending condition’s mean to those of 
other groups under a treatment contrast revealed a significant difference 
between the Ascending and Descending groups (p = .05). As regards the 
interaction, the effect of question wording was found to be marginally 
significantly different in the Ascending, as compared to the Descending, 
condition (p = .07). As the descriptive statistics suggest, question wording 
was irrelevant to the win-frequency estimates of participants in the 
Ascending condition. Notably, the homogeneity of variance assumption 
was violated in the analysis. 

• F values (with degrees of freedom), p values and effect sizes can also be 
reported in a table. 

• A table showing estimated marginal means could also be included. 
 



Discussing the analysis – as in Discussion section 

The results suggest that more wins were remembered when most wins 
were concentrated early in the experienced sequence, rather than late 
in the sequence. This is partly consistent with our expectation that 
memory for wins would resemble memory for word lists, where the 
words at the top of the list are remembered more clearly. Interestingly, 
the early-wins condition did not differ from the evenly-spaced and U-
shaped conditions in terms of remembered wins. For the U-shaped 
condition, a likely explanation is that the early wins there were clearly 
remembered. For the evenly-spaced condition, it is possible that 
memory was boosted by the “spacing” of the wins. The effects of 
spacing are well-known in the memory literature. Words tend to be 
remembered better the wider their spacing across time. The spacing 
effect is also likely to have been responsible for the effects of question 
wording. People seemed to have been underestimating the frequency 
of losses, possibly because these were not as widely spaced as wins. 
Why this effect of question wording was not observed in the late-wins 
(Ascending) condition is unclear. 



Repeated measures ANOVA 
Reading: Baguley Ch 16  

Logic of the analysis 

A number of analyses can be labelled repeated-measures ANOVA: 

• One-way ANOVA with repeated measures: each participant provides 
measures on all levels of the predictor variable (Factor A) 

• Factorial ANOVA with repeated measures on all factors: there are 
two or more predictor variables (e.g., Factor A and Factor B), and 
each participant provides measures on all factors of all measures 

• Mixed measures factorial ANOVA: there is at least one predictor 
factor with independent measures and at least one predictor factor 
with repeated measures (e.g., Factor A is a repeated measures factor 
while Factor B is an independent measures factor). 

• Any of the above with one or more covariates. 



Total sum of squares expressing distance 
between all data points and grand mean 

Sum of squares expressing difference 
between row marginal means and grand 

mean – variability due to Factor A 

Sum of squares expressing difference 
between column marginal means and 

grand mean – variability due to Factor B 

Degrees of freedom for all six quantities – 
see Baguley p. 639 

Sum of squares expressing the extent to 
which the group means cannot be 

predicted based on the marginal means 
alone – variability due to interaction 

between A and B (see next slide) 

As on slide 11, the following still need to be calculated for every factor in the 
model (repeated or independent). For each repeated-measures factor, 
additional sets of sums of squares need to be calculated. In the description 
below, Factors B is an independent-measures factor, while Factor A is a 
repeated-measures factor. 

Sum of squares expressing distance between 
each participant’s mean score across all 

levels of the repeated-measures factor and 
the grand mean. This is the variability due to 
random individual differences on Factor A. It 
is also called within-subjects variance on A. 

Sum of squares expressing variability due to 
interaction between Factor B and random 

individual differences on Factor A 

Again, this is all the information we need 
for computing the F-value for each 
predictor and interaction term.  



Logic of the analysis: The sphercity assumption 

• Apart from the standard assumption of the normality of residuals, 
repeated-measures ANOVA has a sphercity assumption. Here is what 
this assumption means in relation to a repeated-measures factor with 
three levels. If the difference between scores on Levels 1 and 2 is 
calculated for all participants, the variance of the difference 
quantities must equal the variance of the difference quantities 
obtained by comparing Levels 1 and 3, as well as Levels 2 and 3. 

• Clearly, the assumption is met automatically if the repeated-
measures factors in the model contain only two levels (e.g., Time 1 
and Time 2). 

• The sphercity assumption is violated so often that reporting the 
results means reporting one of two corrections to the p-value given 
the degree of sphercity violation. The possible corrections are the 
Greenhouse-Geisser correction and the Huynh-Feldt correction. If the 
average of the epsilon values generated by these procedures (see 
script) is .75 or greater, the Greenhouse-Geisser p-values should be 
reported (p. 633). 



Working together in R 

Two examples: 

1. SS data Hypothesis 1a: If people perceive themselves to be 
problem-solving (learning a strategy) in games of chance, the 
number of player profile changes and the degree of kick-
direction entropy should decrease over time in the 
Ascending slope condition. 

2. SF data: If people’s perceptions of correct problem-solving 
increase with win-frequency, participants experiencing higher win-
frequency should exhibit fewer player profile changes in the last 
30 rounds compared to the middle 40 and first 30 rounds. This 
should not be observed in the lower win-frequency conditions. 



Working together in R – Descriptive statistics 

Descriptive statistics and 
interaction plot following data 
restructuring from wide form to 
long form 

See the script for a demonstration 
of using the reshape package to 
restructure the data before using 
the package  sciplot to draw a 
quick graph. The psych package 
(describeBy function) and the 
cor.test function in the base 
package are used again, as for 
ANOVA. cor.test is used to 
assess whether prior beliefs 
(PreDBC_Total) should be included 
as a covariate. In Example 2, the 
inclusion of prior beliefs as a 
covariate proves unncessary. 

Time 



Working together in R – Running the analysis 

Two packages 
The script shows two packages for repeated-measures ANOVA in R. 
The nlme package (function: lme) is best to use when there are 
covariates in the model (as in Example 1). The alternative ez package 
(function: ezANOVA) is yet to be fully developed for analysis of 
covariance, but it has the advantage of including sphercity tests and 
corrections as part of the output. 

Back to script 



Working together in R – Checking assumptions 

Assumption Checks available in R If the assumption is not met... 

Normality of residuals hist(as.numeric(residuals(l
meModelName)),breaks = 
20) 

shapiro.test(residuals(lme
ModelName)) 

Sphercity Mauchly’s test of sphercity 
is available as part of the 
output for ezANOVA, but 
Baguley recommends 
reporting corrected p-
values instead (see p. 633, 
slide 22 and script Example 
2).  

Try moulding your repeated-
measures factor into a factor 
containing just two levels. 



Reporting the analysis (Example 2) – as in Results section 

• Table (or very clear graph) showing means and SDs across factor 
levels. As in the interaction plot (sciplot). 

• In text: A repeated-measures ANOVA (with Type II Sums of Squares) 
was conducted. The outcome variable was the percentage of rounds 
in which the player profile was changed. The predictors were win 
frequency (1/16 vs. 1/8 vs. 1/4 vs. 1/3 vs. 1/2) and time period (first 
30 rounds vs. middle 40 rounds vs. last 30 rounds). The analysis 
revealed a significant main effect of time (F(2,182) = 4.04, pG-G = .02, 
ges = .01). The time periods did not differ in the mean number of 
player changes, but the descriptive statistics suggest that the 
significant effect  of time involved a decrease in the number of 
changes over time. Neither the effect of win-frequency (F(4,91) = 
1.20, pG-G = .32) nor the interaction effect (F(8,182) = 1.36, pG-G = 
.22) were significant.  

• F values (with degrees of freedom), corrected p values and effect 
sizes (ges) could alternatively be reported in a table. 



Discussing the analysis – as in Discussion section 

The results suggest that participants did not come to prefer a particular 
player over time in the higher win-frequency conditions. Instead, the 
results point to a decrease in player profile changes over time across all 
win-frequency conditions. This could be the result of boredom or 
strategising. 



Bootstrapping: worked examples 

• Basic logic: 

– randomly draw out values from your sample (with 
replacement), until you have exactly the same number of values 
as there are in your sample (e.g., 96) 

– do this 500 to 100 000 times, depending on how long you wish 
to look at the computer while  it “plays the lottery” 

– calculate the relevant test statistic (e.g., difference between 
means or regression coefficient) in each sample 

– determine confidence intervals around your test statistic based 
on a pooling of the bootstrapped estimates 

• R packages generally calculate bias-corrected and accelerated 
bootstrapped confidence intervals (BCa). These are a good default. 



Reading 

Navarro, D. J. (2014). Learning statistics with R: A tutorial for 
psychology students and other beginners. Available online: 
http://health.adelaide.edu.au/psychology/ccs/teaching/lsr/. 
Chapters 13-16. 
  
Baguley, T. Serious Stats: A Guide to Advanced Statistics for the 
Behavioural Sciences. Palgrave Macmillan: UK. Chapter 16 
“Repeated Measures ANOVA” (pdf in Study 
Materials/Readings). 
 
Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics 
Using R. Sage: UK. Chapter 10. Comparing several means: 
ANOVA (pdf in Study Materials/Readings). 

http://health.adelaide.edu.au/psychology/ccs/teaching/lsr/

