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16.1 Chapter overview

Mmeasured only once and randomly allocated to the conditions of an experiment this assumption
is likely to be reasonable.! [t jg often plausible €ven ifrandom assignment s not Possible. On the
other hand, if people are Measured more than once, the responses for a given person are almost
certainly correlateq. This gives rise to what is termed g ‘repeated measures’ or ’within—subjects’
design.

Or matched design might be selecteq because the resulting mode] has 8reater statisticg] power
Or precision. It jg also increasingly common, as Statistical models for correlateq measures haye
become more Sophisticated, that the clusters or correlated measyres themselves gre a focus of
Iesearch. A researcher May be interesteq in the performance of individug] children in schoo],
but they may ajso be interesteq in the performance of different schools. The main focus of thig
chapter is op, ANOVA models With repeated Measures on one or more factors, Multileve] regres-
Sion models (that attempt to mode] the clustered Structure of the data directly) are considered
in g Subsequent chapter.
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more than two levels on a factor or for a factorial design, but a similarly creative solution is
feasible.

In a one-way independent measures design, the ANOVA parameterization of the model (with
the usual sum-to-zero constraint for 7) is:

Yg=u-rtey

What if you represent the deviations of each participant from the grand mean in a similar way?
This gives a repeated measures model of the form:

Y=+ + 7+ Equation 16.]

In this model both 7; and z; must each sum to zero. Figure 16.1 shows the deviations of partici-
pant and level means for a trivial repeated measures ANOVA model with three levels and only
two participants. The =; term represents the deviation of each person’s own mean (over all J
levels of the factor) from the grand mean (after stripping out the average effect of the factor 7).

At first glance this looks almost exactly like a two-way independent measures ANOVA model
incorporating only main effects (and no interaction). An important difference is that whereas
the treatment r is a fixed factor, = is a random factor.2-3 Participants are viewed as randomly
sampled from an infinite population, whereas the levels of the treatment are considered com-
pletely representative of the population of interest. The variance accounted for by the x; term
is due to systematic differences between participants: individual differences in v (often termed
within-subject variance). The shared subscript i of the participant and error variance indicates
what is happening. In one-way independent measures ANOVA the variance not captured by

5

T T T
Time 1 Time 2 Time 3

Figure 16.1 Deviations from the grand mean for a one-way repeated measures ANOVA,
three time points and two participants
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Equation 16.2

This type of mode] js the One implemented In repeated measures ANOVA analysis, anq jf a
subject—by—treatment Interaction Is present jt will, in theory, Produce moye accurate tests of the
factor (see Howel], 2002) 4

Estimating this mode]
cation has €xactly one m Per participant in each Combinatjon of the
fixed factor.5 With only o i i

N a repeated Measures deg; typical appli-
levels of the
ion, the & and T7y terms

not a problem
€rror term js formed from €stim bo

: S (Kirk, 1995. Howe]]
. Use ; is smay] relative to , Or because 7 Is large relative to 7 (e.g.,
if 7y~ T;)
Itis possible to test Whether the additive or non-additiye Interactj
Kirk, 1995), but the chojce of mod




E——— |

626 Serious Stats

—

. -

et S

——

——

———

These are experimental error and systematic between-subject variation a
differences)

Le., individug]

0 =02 0r + ”szubje s Equation 16,3

In a repeated measures design, the individual differences can be Separated out from the error
term to get a purer estimate of error (e, 62 =62,,,). This is po

ssible because multiple obser-
vations for each person allow Uszubje «ts L0 be estimated from the variation between them

one observation per person per level of a factor (the state of affairs in an independent m
design) makes it impossible to untangle systematic individua] differences from other so

€rror. You can't tell if someone has scored high through chance or because their true
the population is high.

Having
easures
urces of
score in

sometimes helpfy] if
participants are scarce or difficult to recruit (because it allows a researcher o maximize the

value of each participant’s contribution). A further advantage of the repeated measures mode]
is that the same equations also apply to matched or stratified designs. The calculatio
require that the same person be measured several times, just that observations are
with a particular structure. Equivalent correlations between measures arise for ob

matched at the individual leve] (€.8., if each person is matched with a similar perso
more comparisons on control conditions).

The main difference between matched and repeated measures desi
tation. A repeated measures design (@ssuming random or otherwise r
generalizes to all members of the population sampled, whil
: only to the population of matched sets of individuals (
repeated measures design thus reach similar conclusio
representative of the wider population. The difficulty of

ns do not
correlated
Servations
N in one or

gns is in their interpre-
cpresentative sampling)
¢ a matched design generalizes
Kirk, 1995). The matched design a
ns only to the extent that matching

mi

to be superior for low correlations between the confo
ANCOVA is superior for high correl
makes ANCOVA more popular. In
covariate. Matching is a better strat

These characteristics imply cert
cipal disadvantage is that, becaus
influenced by the order in which

unding variable and the response,
ations. In practice, the difficulty of obtaining good ma
addition, ANCOVA usually assumes a linear effect of
egy if the effect is curvilinear (Maris, 1998). )
ain disadvantages of repeated measures designs. The |
€ measurements are typically spread over time, they ma
they are obtained. If the order of measurement is cont
nterbalancing) order effects can be reduced and perha

manipulation is causing differences in the outcome.

Order effects come in many different flavors (€.8., practice effects, fatigue effects
over effects) and are a particularly dangerous source of confounding. If the eXPf"ﬂ :
not able to control the order of measurement it may be possible to reduce the i
order effects (e.g., building in breaks to reduce fatigue effects) but not eliminate
additional controls are also useful for counterbalanced or randomized orders of test
they should reduce error variance. It is also useful to model order of testing as @
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€INg equal, the test of the treatment (fixeq factor)
would address the same null hypothesis: Ho: 4 =uy=. ..
independent Measures design is an estimate of the
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Up to this point, 4 Number of technical poj i
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independent measures ANOVA takes the form:

E(MSfactor) = 032 =+ “Uzz

E(Mserror) = 052

Greek letter subscripts are used to differentiate these quantities from the ‘rough and ready’ versions
used earlier. An expected mean square is a long-run average (as if calculated over many samples).
The constant n is the sample size per group (assuming a balanced design) and reflects the increase
in observed treatment variance expected when larger samples are taken. The expected value of the
F ratio thus depends on o (the treatment variance, accounted for by a factor in the population).
This expectation is one if 02 =0 and greater than one if o2>0.

The expected mean squares for one-way repeated measures ANOVA depend on the presence
of subject-by-treatment interactions. As the complete absence of subject-by-treatment variance is
somewhat implausible, it is usual to adopt a structural model with interactions included. The mean
squares for this structural model are:

E(Mssubjects) = 052 + ka:%
E(MSfaCm,—) = 0'82 + narz + O'rzn

E(Mserror) = 052 + 01;271

This leads to an F ratio for the factor that uses MSerror as the denominator (so that, on average, the
o2 terms cancel out). The F ratio for the subjects in this structural model is:

o2 +ko?

E(Fsubjects) = = wwe 3y

This quantity is biased and can’t be relied on as a test of systematic individual differences (at least if
o2_is not zero). In factorial repeated measures ANOVA, assuming that subject-by-treatment inter-
actions are present leads to the aliasing of the error term with subject-by-treatment interactions.
For this reason it is not wise to pool the error terms in factorial repeated measures designs. How:
ever, by using the treatment-by-subject interaction terms as error terms for treatment effects it is
possible to construct true F ratios with an expected value of one when Hg is true (Howell, 2002;
Kirk, 1995).

16.3.2 ANOVA with repeated measures on all factors i
The calculations for repeated measures ANOVA can be conducted using a similar appros
that of independent measures ANOVA. Hand calculation typically involves setting out
MS and F in an ANOVA table, though most computer software employs a general lin

solution. The standard sigma-restricted ANOVA parameterization treats the participan
effect coded categorical predictor (using n— 1 indicator variables to code the n part
Rutherford (2001) illustrates this by demonstrating how to run repeated measures ANC
multiple regression with effect coding.
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Table 16.1 One-way ANOVA with repeated measyres
r
I
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(though you would not, in general, want to). In spite of these differences, the basic interpretation
of the test of the main effects of A and B, or of the A x B interaction, are unchanged from a two-
way independent measures design. The familiar tools of inspecting the level means and ce]]
means or inspecting interaction plots can all be employed.

Formulas for SS and MS of both random and fixed effects factors are identical for the indepen-
dent and repeated measures models. The main effects calculations use the level or participant
means (as appropriate) after averaging over the other factors. Calculating the interaction SS or
MS might seem difficult, but in a balanced design (which is common for repeated measures)
this is simply done by calculating the cell means for a two-way table for A x B, A x subjects or
B x subjects. Armed with the SS for A, B and subjects it is possible to calculate each interaction
SS by subtraction from total SS for the two-way table (or from the residuals of the double-
centered table just as for the interaction in a two-way independent measures design). The A x
B x subjects interaction can in turn be calculated by subtraction from SS;,, for the analysis.

16.3.3 Assumptions in repeated measures ANOVA

Repeated measures ANOVA is a form of general linear model and inherits those assumptions

common to all least squares designs. However, having correlated measures violates one of the :
standard ANOVA assumptions (independence of observations). As repeated measures are cor~ |
related, it is necessary to fall back on the pure regression form of the assumption: that residuals £
are sampled from an independent, normal population of errors with constant variance.
A new complication is that the distribution of residuals - in particular its variance - depends
both on the variances of the repeated measurements and the covariances between them. St
ping out the subjects and by-subjects variation does not necessarily guarantee independence
and homogeneity of variance of the residuals (Kirk, 1995). Only under a restrictive conditi T
known as sphericity will the patterns of variance and covariances between repeated measure 4
meet the standard regression or general linear model assumptions. i
For repeated measures, the specific distributional assumptions of the ANOVA model P
therefore be set out as: pe

i) correlated measures,
ii) normal distribution of errors and
ili) sphericity.

The correlated measures assumption is justified a priori where matched or repeated mea
ments are employed. Unless there is a compelling argument that the correlation betweer
measures is exactly zero, a repeated measures model is required. Researchers are 0ccas
tempted to test the correlations for significance before using a repeated measures an
repeated or matched measurements. This is dangerous, and it is possible to show (€.8:1
ulation) that correlations too small to be detected by a preliminary test can nevertheles
material impact on the analysis.

The normal distribution of error assumption is identical to that for mdependent
designs or for multiple regression. The residuals (of which there are several for each n
being measured) are assumed to have been sampled from a normal population of ert
this assumption is identical to that for independent measures designs, it is impo "
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that plotting the outcome Y by condition wi
ing the assumption. In in
cell mean)

Il no longer be an adequate procedure for check-
dependent measures ANOVA the outcome is merely a constant (the
plus the residual; residuals and Y therefore always show the Same pattern within
each group. In a Ieépeated measures mode] this is no longer the case. In

outcome Y is a function of 7, = and . The distribution of Y for a given value of j could be com-
pletely different from the distribution of ¢. Although 7 Is constant within g group, =; will vary,

The outcome v is therefore g joint function of both = and ¢ (i.e., the distribution of outcome
depends on both individual differences and error).

16.3.4 Sphericity

Paired data provide a simple case in which to introduce the con
Iepeated measures ANOVA design with two leve

cept of sphericity. For g one-way
covariance matrix (see Key Concept 12.2)

Is~equivalent to 3 paired ¢ test - the population
of the repeated measurements has this structure:
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02,1 022
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are two repeated measurements
the difference is therefore always
single variance can't differ from itself. Violati
measures factor has more than two levels.

The same logic applies to interaction terms. Sphericity is on]
multiple degrees of freedom (df), and therefo
contrast in a regression model. A factor wit
with more than two levels requires more than one predictor or contrast to code (regardless of
whether dummy or effect coding is used). Sphericity is always true for effects with only 1 df.

Sphericity is a serious problem for multiple df effects in repeated measures ANOVA designs;
For instance, Keselman et al. (2001) point out that violations of sphericity are likely to be com-
mon in longitudinal designs. This is because a commonly observed pattern is that of decreasing
correlations over time (a pattern not consistent with sphericity). If sphericity is violated, the
F ratio for an effect will not follow an F distribution with df defined by the numerator and
denominator of the ratio. As a consequence, the p values for the usual test will be inaccurate,
Violations of sphericity always lead to tests that are more liberal than suggested by the observed
test statistic. The degree of inaccuracy is often substantial (.., the observed p value could be
much smaller than a P value based on the true distribution of the test statistic). The degree of
bias for the test increases with the severity of the violation. This, in turn, tends to increase as
the number of Iepeated measurements rises (in essence because there is more room for severe
departures to occur). If there are many repeated measures, serious violations of sphericity are.
likely to be common, leading to liberal inferences (€.8., increased Type I error rates).

It is therefore essential to check the sphericity assumption for all repeated measures
ANOVA analyses (except those with two levels on all factors). An obvious starting point is the
population covariance matrix for a one-way repeated measures design:

of oy O13 ... o1k

92,1 022 923 ... Oyk

0'3’1 03,2 U:f 03’1(

%,1 O%k2 Ok3 ... 013
The pattern of covariances corresponding to sphericity is difficult to spot, because the varian
of differences are not displayed directly. It is possible to calculate them using the va
sum law (see Key Concept 3.2). For instance, the variance of the differences between
two repeated measurements would be o7 + 022 — 201 2. This becomes tedious for large mall
Many textbooks, particularly older ones, recommend looking for a related (but more restrl
pattern known as compound Jymmelry. Compound symmetry entails both that the popu
variances are equal (of=0f=.. .=op) and that the population covariances are equal (01,25
-+ =0k k). To detect this pattern in the sample covariance matrix, requires that the as
the main diagonal are similar to each other (57 NoE A ~62) and that the off-diag
are also similar in value G12%613 -+~ 0k k). If compound symmetry holds, then
is always true (e.g., it holds when homogeneity of variance and independence are
Additionally, if approximate compound symmetry is present, sphericity is unlikely to be
violated (though this can be hard to judge). .

The trouble is that, while compound symmetry always implies sphericity, sphericity/€

true even if compound symmetry is not. This is obvious from the covariance matrix for
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power is the main concern then épr should be preferred (unless the degree of sphericity violation
is severe).

There is a surprising amount published on the relative merits of different sphericity correc-
tions. Recent work has focused more on the relative power of different procedures (see Kirk,
1995). Two further strategies for dealing with sphericity ought to be considered. Probably the
best strategy is to avoid tests of multiple df effects altogether. Repeated measures contrasts
have 1 df and therefore make it possible to avoid sphericity concerns altogether. A second
strategy is to use a type of multivariate analysis of variance (MANOVA) known as profile analysis 8
This MANOVA approach will, under some conditions, provide more powerful tests than those of
epsilon-corrected F ratios (Kirk, 1995). The precise conditions under which this occurs depend,

Example 16.1 Uppal (2006) investigated young children’s ability to recognize different emo-
tions. Particular interest focused on the ability to recognize and discriminate pride from other
emotions (e.g., happiness or surprise). She showed 90 children (aged between seven and nine years)
Ctures, each showing actors expressing either pride, happiness or surprise. For each

ked to point to the picture that expressed one of the three emotions (ascued

ging over other conditions of the experiment not considered
for pride, 71.1% for happiness and 78.9% for surprise. Table 16.3 summarizes &
output for one-way repeated measures ANOVA with emotion as the fixed factor. The main effect
of emotion is not statistically significant, F2,178 = 1.82, MS, = 1,544p = .165. No differences are
detected in average accuracy of recognizing the three emotions.

Table 16.3 Table for one-way ANOVA on the pride data

Source 5S

Subjects 241,262
Emotion 5,616
Error (emotion x subjects)

Total

Both suggest no violation of sphericity, and the upward bias of & is evident (as it exceeds th
imum value of the parameter it is estimating). The Greenhouse-Geisser correction (if im
would produce an almost identical main effect: .95 175 84 = 1.82, p=.166 (although no c@
is warranted when both ¢ statistics are so close to the upper bound).
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in condition j, and f; is the mean of participant i across all J levels, normalized scores can be
expressed as:

_yz/} =Vij— ai+ /:Lgmnd Equation 16.5

Why does computing a CI based on the normalized scores lead to intervals that are too narrow?
It happens because adding the grand mean to all values induces a positive correlation between
the levels that wasn't there before (Morey, 2008). The degree of positive correlation is related to
the number of levels J (being largest when J = 2 and decreasing as J rises). As the normalized
scores are positively correlated, the estimate of error variance computed from them is lower
by a factor of ( — 1)/J than it would be for the original scores (and hence the CI is too narrow).
This factor can be used to correct the CI computed from normalized scores. Thus Morey (2008)
suggests computing a CI of the form

A J s i
i £ tgp 1 a2 1 [H Equation 16.6

where &, is the standard error of the mean computed from the normalized scores of the /™ level.
For factorial designs, Morey indicates that J should be replaced by the total number of conditions
across all repeated measures fixed factors (i.e., excluding the subject’s random factor). If the
design also incorporates independent measures, the intervals can be computed separately for
each of the groups defined by the independent measures factors. The intervals themselves have
the same expected width as the Loftus-Masson CIs, but do not assume sphericity. Except when:
J =2, their width varies as a function of the variances and covariances of the repeated measures
samples.

One criticism of this general approach is that it treats participants as a fixed effect rathel
than a random effect (Blouin and Riopelle, 2005). This does not matter if the focus is com
parison between means, but it does overestimate the precision with which sample means at
measured (because it neglects sampling error between participants). Blouin and Riopelle’s sol
tion is to obtain ClIs for sample means from a multilevel model. A more pragmatic approachis
select the interval estimate to match the purpose of the plot. Cousineau-Morey intervals will
appropriate if means are being plotted to emphasize systematic differences between conditi€
However, as the width of a Cousineau-Morey or Loftus-Masson interval is larger than that
difference in means (by a factor of +/2), plots of these intervals are easy to misinterpret. ove
of 95% Cls around individual means is often misinterpreted as indicating that a 95% CI for
difference in means would include zero.

The same problem arises in independent designs and the solution proposed in Chap
was to adjust the width so that absence of overlap corresponds to the required CI for tf
ference. For large numbers of means (or other statistics) an approach based on multip ‘ .
standard errors can be used (Goldstein and Healy, 1995; Afshartous and Preston, 2010). F
small numbers of means encountered in repeated measures ANOVA analyses, Baguley
proposes the following adjustment to the Cousineau-Morey interval: ]

. N2 J . Equati
MjiT tn—1,1-a/2 ]_—10131 £k
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ely on g pooled
ures (Baguley 2011)
Example 16.2 Table 16 4 'eports the width and limits of 95% confidence Intervals Computed
using the Loftus-Masson and Cousmeau~Morey methods for th

Table 16.4 Comparison of Loftus-Masson and Cousineau-Mor
id

€y 95% Cls, for accuracy of
entifying €motions (from the One-way ANOvA of the pride data)

Emotion
95% Ci Happiness Pride Surprise
Loftu5~/\/lasson
Lower 62.9 59.9 70.7
Upper 79.3 76.2 87.1
(Width) (16.3) (16.3) (16.3)
Cousineau-Morey
Lower 63.0 59.4 71.0
Upper 79.2 76.7 86.8
(Width) (16.3) (17.3) (15.8)
The widih of the Loftus-Masson Cls is constant, whereas the Cousineau~Morey intervals vary. They
Use a pooled &rror term (ang assume nejther homogeneity of variance nor homogeneity of
COvariance). Their Expected valye js €qual to that of the Loftus-Masson intervals ang is identica)
p!ott:ng the intervals the main aims are to reveal the pattern of differences between means
recision with Which means are measureq. Two-tiereq €rror bar plots make jt Possible to
SPlay both j, the same plot (Baguley, 2011) Figure 162 plots d:ﬂerence-ad;usted Cousineay
Viorey intervals Constructed from Equation 16.7 as inner tier error bars, anqg Cls
110de] a5 o outer tier,
The Multijeye



638 Serious Stats

Percentage accuracy

T T T
Happiness Pride Surprise

Emotion

Figure 16.2 Two-tiered error bar plot for the one-way ANOVA of the pride data. The inner
tier is a difference-adjusted 95% Cl (so that overlapping Cls correspond to a
95% Cl in the difference in means that includes zero). The outer tiers display:
95% Cls for the individual means.

emotions is equal or similar in accuracy. The outer tier is also informative. Although the 95% Cls ai
rather wide, all comfortably exclude accuracy levels expected by random guessing (around 33%
There is evidence that children in this age range (seven to nine years) can recognize all thr
emotions. s

16.4 Combining independent and repeated measures: miX
ANOVA designs

A design that includes both independent and repeated measures factors is termed a ,‘
mixed measures design (though other labels such as split-plot design are also applied)- &
ANOVA design allows a researcher to have some of the advantages of a repeatcid
design (e.g., to account for individual differences) in the presence of one or more ind
measures factors (e.g., individual difference factors). A common example is a pré-post
where different groups are compared at two or more time points (e.g., beforé and
intervention).
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This leads to one further difficulty. It is possible to represent each effect by a single population
covariance matrix in a repeated measures design. Independent measures designs have a sep-
arate covariance matrix for each independent group in the population. It is necessary not only
for sphericity to hold for the population each group is sampled from, but also for the covariance
matrices of the groups to be equal in the population for the repeated measures test statistics
to follow an F distribution. This assumption of mixed ANOVA designs is known as multisample
sphericity. 1t is often difficult to satisfy in practice.

Keselman et al. (2001) review approaches to dealing with multisample sphericity. In balanced
designs - those with equal cell sizes for the independent measures factors - the Greenhouse.-
Geisser and Huynh-Feldt adjusted tests are known to be robust. MANOVA approaches are alsg
robust in balanced designs for main effects, but may not always be robust to sphericity for
interaction tests, even in balanced designs (Keselman et al., 2001). For this reason it is prob-
ably safest to employ mixed ANOVA designs with equal or near equal cell sizes wherever
possible. It also makes sense to use epsilon-corrected tests in balanced mixed designs (which
necessarily always include an interaction test).!2 Keselman et al. consider a number of alterna-
tive approaches for unbalanced ANOVA designs, but several are difficult to implement without
specialist software. Among the approaches they propose are procedures equivalent to those
in multilevel regression models. For this reason, switching from mixed ANOVA (or MANOVA)
approaches to multilevel modeling is recommended if the design is unbalanced unless sphericity
is not an issue.

However, if all repeated measures factors have only two levels (and each effect has 1 df) nei-
ther sphericity nor multisample sphericity can be violated. Moreover, with only a few repeated
measures in each factor, departures from multisample sphericity may be minor (e.g., if all
epsilon estimates are close to one). In these cases ANOVA will probably be preferable to either
MANOVA or a multilevel model approach (though there are other reasons, such as missi
outcome data, that favor multilevel regression models).

Example 16.3 In Example 16.1, accuracy differences in the pride data were analyzed, ignoring
an independent measures factor. Uppal (2006) showed children pictures depicting emotion
face only, torso only, or both face and torso visible. Exactly 30 participants took part in eac
the three experimental conditions and it is therefore a 3 x 3 mixed measures ANOVA design. M
percentage accuracy for the nine conditions (all possible combinations of the levels of each f

are set out in Table 16.6.

sphericity is violated. €99 =.9874 and &4r = 1.0102 for both the emotion and emotion x conditi
effect. )

Table 16.6 Cell means by condition and emotion for the pride data

Both Face Torso

Pride 74.2% 50.0% 80.0%
Happiness 90.0% 83.3% 40.0%
Surprise 93.3% 76.7% 66.7%
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interaction plot for the condition x emotion effect. The interaction plot suggests that having both
face and torso visible produces consistently high performance (though there is a hint that pride is
harder to identify than happiness).

Otherwise, it looks as though pride is very difficult to identify from facial expression alone, whereas
as happiness is very hard to identify from body posture on its own. It seems likely that the inter-
action is largely down to this ‘crossover’ in performance between pride and happiness when only
face or only torso is presented. Further exploration of the interaction is warranted to confirm this
interpretation.

16.5 Comparisons, contrasts and simple effects with
repeated measures

16.5.1 Comparisons, contrasts and simple effects with repeated
measures on all factors

The best approach for pairwise comparisons, simple effects and contrasts in repeated measures
ANOVA is less well understood than for independent measures designs. The principal problem
is that of violations of sphericity. Some degree of violation is likely for most repeated measures
analyses with more than two levels on a factor. For 1 df contrasts, including pairwise com-
parisons, the sphericity assumption can be avoided if an appropriate error term is selected, The
error term is important because even small departures from sphericity (e.g., .97 <e<1) canh
a material impact on statistical power if the pooled error term from the full ANOVA is used (Boik,
1981). A pooled error term has additional df and hence potentially greater statistical power
artures from sphericity and the lack of robustnessi
at this approach is too risky for routine application
For this reason, experts tend to favor Bonferroni and modified Bonferroni corrections
separate error terms for both a priori contrasts and post hoc contrasts (including pairwi
comparisons) on repeated measures factors (Maxwell, 1980; Jaccard et al., 1984). Bonferr
corrections are preferred for interval estimates, but it is not unreasonable to plot uncorrec
Cls for exploratory work or for informal inference (€.8., to reveal patterns among means)
powerful options such as the Hochberg, Shaffer or Westfall procedures should be adoptee
formal testing. Fisher’s LSD is also appropriate for pairwise tests if there are only three me
The Hochberg procedure can be implemented easily by hand for a priori and post hoc
while the Shaffer procedure can be readily implemented by hand if all pairwise com
are required (see Example 13.5). An alternative, that tends to have high all pairs po!
adapt the PCIC approach of Dayton (2003). This can be made robust to violations of
by fitting a multilevel model with an appropriate covariance structure. For post hoc
determining the suitable number of tests to correct for is challenging. Reporting the :
to implicit contrasts for uncorrected tests is a practical (if slightly unsatisfactory) solut
One benefit of computing contrasts with separate error terms is that the procedl_zr
to the calculation of a paired ¢ test of weighted means. For pairwise comparisons this i
the familiar paired ¢ test of the differences between the level means you are intereste
a contrast involving more than two means it may be necessary to calculate the contras
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repeated measures), it is possible to treat the analysis exactly as for an independent measures
design. For instance, with a priori contrasts and comparisons a powerful modified Bonferroni
procedure such as the Westfall procedure could be employed. For repeated measures effects
sphericity is a serious concern, and the approach set out for pure repeated measures designs is
recommended.

The repeated measures approach of separate one-way ANOVAs (or factorial ANOVA for
three-way and higher-order interactions) also works for repeated measures simple effects.
For instance, if three types of problem (low, medium or high difficulty) were presented either
to novice or expert problem solvers this could be analyzed with a 2 x 3 mixed design (with
two levels on the independent factor and three levels on the repeated factor). The two simple
main effects for the repeated measures factor test the effects of problem difficulty within the
novice group and within the expert group. Each of these could be analyzed with a one- -way
ANOVA incorporating only one of the groups (and therefore not pooling error terms). Having
three levels, there is a risk that sphericity is violated. This can be assessed by looking at the
epsilon estimates and, if necessary, employing a correction.

Calculating a simple main effect for the independent factor in a mixed design is more treach-
erous. These effects are differences between groups (e.g., novices and experts) that are analyzed
at just one measurement level of a repeated measures factor (e.g., only for low difficulty prob-
lems). The obstacle for the independent measures tests in this situation is that a simple main
effect is not a method of decomposing an interaction. It decomposes SS attributable to both
the main effect and the interaction. Hence the error variance for the independent factor simple
main effect is distributed across the two error terms: subjects (A) and B x Subjects (A). The most
accurate test will be obtained by pooling these two sources of error. The SS for the error term is
the sum of the SSgypjectsa) and SSpysubjects(a), While the df is sum of dfsubjects(a) and dexsub]ws(A)
The pooled error term is therefore

SSsubjects(a) + SSBxsubjects

MSerror =
df;ubjecLs(A) + df Bxsubjects(A)

Equation 16.9

The trouble is that this pooled error term combines estimates of very unequal populatl
variances and the resulting test statistic will not follow the usual F distribution. This is a va
of the Behrens-Fisher problem encountered in the context of the independent ¢ test (see Ho
2002). It can be dealt with by applying a similar correction to the df. Corrected dferror for'l
simple main effect are computed as:

2

SSSub'ectsA +SSp sub'ec[sA) -

V= ( i )2 . )2 Equation 1
(SssubjecLs(A) ) (SSB xsubjects(A) ) v
dfsubjecLs(AJ

de xsubjects(A) )

For multiple df interactions, interaction contrasts can also be calculated. These can bé
erated along the same lines as those for an interaction contrast in an independent
design. The contrast weights for the interaction effect define patterns of means th it
between groups (e.g., differential linear trends). The difficulty is deciding on what €rto
to use. If sphericity is not violated, the error term for the interaction in the mixed ANOV \
be employed. If sphericity is violated, but the design balanced, the error df could be a
using &gg Or &y If sphericity is violated and the design unbalanced, the contrast coul
via a multilevel model.
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16.5.3 Effect size

Repeated measures and mixed designs are especially difficult to obtain appropriate standardized
effect size metrics for. Many commonly calculated quantities (e.g., 77,% or g) are not comparable
to similar metrics obtained from independent measures designs. It is a good idea to compare
effects from different designs using unstandardized measures (€.g., simple mean differences)
as a first - and possibly only - step. Standardized effect size metrics need to take into account
factors that may distort the standardizer (the variance or standard deviation used to scale the
effect). An important contributor to the standardizer in an independent measures design is
individual differences (which in a repeated measures design are estimated separately from other
sources of variance).

The generalized effect size measures of Olejnik and Algina (2003) provide a starting point
for ‘design neutral’ standardized effect size metrics. Their approach is to calculate generalized
statistics that treat repeated measures equivalently to independent measures designs. One pro-
Viso is that, for statistical power or sample size estimation, the appropriate metric is one that
matches the design of the study being planned. In theory 73 can be calculated with the formulas
for other factorial designs by treating subjects as an additional measured factor. In practice,
ANOVA software rarely provides the SS for such a calculation in a convenient format. Following
Olejnik and Algina, calculating the required denominator for néz, by subtraction is suggested. The
goal is to exclude all manipulated factors or interactions with only manipulated factors (except
the one under consideration). An indicator variable [ is used to designate whether the effect
under consideration is a manipulated factor (I=1) or a measured factor I=0):

T/z _ Ssqu@a
5 SSiotai — X Ssmanip +1x Sscyj%ct

manip

Equation 16.11

This formula excludes manipulated factors from the denominator (adding the focal effect b
in only if the focal effect is a manipulated factor). Interactions with measured factors are con:
ered measured factors. Repeated measures fixed factors tend to be manipulated factors, thoug
it may be reasonable to treat them as measured factors in some situations. y

Olejnik and Algina (2003) also extend f (generalized omega-squared) to designs
repeated measures factors. The correct formulas can become rather complex and the simpl
solution is to refer to Tables 2, 3 and 4 of their paper.

Example 16.6 In the two-way mixed ANOVA for the pride data, the two factors are the @
tion to be recognized and the experimental condition (whether the pictures showed face, t@
both face and torso). The experimental condition is a canonical example of a manipulated v
Emotion is manipulated by the experimenter, and for comparisons with other experiments
considered as such. For other purposes — for example to gauge impact on everyday perfo
it may be considered a measured variable (because expressions of happiness, pride and surpri
a routine part of everyday experience).

Treating both variables as manipulated factors, :75 for the interaction is:

. S8ttt 44231
] —_—_— =
S el 1% SSumger— 3 SSmanip  521678.2+ 1 x 44231 — (44231 + 5616 + 2606

manip
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Using MANOVA to screen for effects is analogous to using omnibus F tests prior to post
hoc tests of all pairwise comparisons. If the omnibus Hy is true (i.e., there are no differences
between means for any of the outcome variables in the population) then the MANOVA test of an
effect (e.g., a main effect of factor A) protects subsequent ANOVA tests on the separate outcome
variables. This assumes that a researcher does not perform any further tests of differences, a rule
that is not always adhered to (Huberty and Morris, 1989). Only very rarely should a researcher
adopt this practice. Most research is conducted on the premise that some effects are likely to
exist. Only rarely is the omnibus null hypothesis plausible.!'? It is more likely that a partial null
hypothesis is true; that there are non-zero effects for some outcomes and zero or negligible
effects for others (Huberty and Morris, 1989; Jaccard and Guillamo-Ramos, 2002).

Jaccard and Guillamo-Ramos (2002) provide a very clear illustration of the problem. Imagine
a clinical study with one main outcome variable (Y; =depression) and four secondary outcomes
(Y2 to Y5 measuring anxiety, self-confidence and so forth). There may be a substantial effect
for Y; but negligible or zero effects for Y, to Ys. If the Y; effect is large enough, the overall
MANOVA main effect might be statistically significant. Subsequent ANOVA tests on the sec-
ondary outcomes would then be unprotected with respect to familywise error (considering tests
of the same treatment effect on different outcomes as the family). Jaccard and Guillamo-Ramos
argue that modified Bonferroni corrections to separate univariate tests of secondary outcomes
are a better solution (though the primary outcome should rarely if ever be corrected in this way).
An alternative strategy is to report tests of all outcomes without correction. This may be sensi-
ble if the outcomes are correlated (though a powerful correction such as the Westfall procedure
may be preferred). Reporting unmodified effects may be reasonable if the correlations between
predictors are positive and substantial, provided care is taken not to conceal the true extent of'
testing when communicating the results. 3

Using MANOVA to screen for effects prior to ANOVA is generally a very bad idea. It will usually
lead either to inadequate Type I error protection or to decreased statistical power. The latter
occurs when the partial null is true, but the omnibus null is not rejected. This is a consequence
of the screening test itself lacking statistical power (see Zimmerman, 2004). The power isst
is subtle, and will be addressed shortly. The main issue is that the test of the omnibus nul
hypothesis lacks focus relative to the tests of individual outcomes such as Y; or Y.

It has already been hinted that the MANOVA omnibus tests will lack statistical power, b
this isn’t quite true. Think about the rationale for using MANOVA to provide more pow
tests. In Jaccard and Guillamo-Ramos’s example there were five outcome measures all likél
be correlated with successful treatment for depression. In a small study, none of the indivi
outcomes might reach statistical significance, but all might show an effect in the right directi€
Could you not use MANOVA to analyze the whole set of outcome variables for a more Sensi
test? This seems like a good idea, but MANOVA will not always provide a more powerfull
The power of the omnibus test in MANOVA depends on sample sizes, effect sizes and the pal
of correlations between the outcomes (Cole et al., 1994). Interestingly, Cole et al. show thati
outcome variables have high positive correlations (a situation quite likely where the Outes
are repeated measures) MANOVA will not always have high power (depending on then
effect sizes). With the right mix of effect sizes and correlations, MANOVA can have :"
power than univariate ANOVA. However, other approaches may also have good power
the most obvious choice of outcome in some studies is probably just to average the L
(e.g., taking their mean or the mean of their z scores depending on whether they
same or different scales). This approach seems particularly attractive when there ar€
correlations between outcome measures and fairly consistent effects across those meas
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MANOVA provides two additional causes for concern, one widely known and the other less
so. The widely known issue is that MANOVA produces several different, rival test statistics.
With only two outcome variables they all reduce to the same statistic, Hotelling’s T>.'* With
more than two outcomes Wilk’s A (lambda),'® Pillai’s trace, Hotelling’s trace and Roy’s largest root
are usually provided by MANOVA software. Olson (1976) recommends Pillai’s trace as the most
robust to violations of MANOVA assumptions, but Wilk’s A is also popular (see Field, 2009). The
final cause for concern is in relation to effect size. A number of MANOVA effect size metrics
have been developed, but none seem particularly useful. For instance, eta-squared variants
can be derived from Wilk’s A (a measure of unexplained sample variance for Y¢), but have
unattractive properties. Because Yc is maximized separately for each test, the total proportion
of variance explained by all effects can exceed one, and will not strictly be comparable even
within an analysis. As different studies will capitalize on sampling variability to determine Y,
MANOVA effect sizes are also not strictly comparable between studies (and this is true also for
unstandardized differences in Y¢).

In summary, MANOVA has a potential application in pure repeated measures analyses (the
focus here). It sometimes provides more powerful tests than epsilon-corrected tests when
sphericity is violated. It is less useful for mixed designs, but may be appropriate for tests on
main effects in balanced designs. However, the power advantage of MANOVA is not consistent;
switching to a multilevel model is recommended. The multilevel model approach has the flex-
ibility to mimic both ANOVA and MANOVA analyses and to relax constraints inherent in both
models (e.g., sphericity and multisample sphericity). The common strategy of MANOVA fol-
lowed by univariate ANOVA is inappropriate for testing multivariate hypotheses and should be
replaced by genuinely multivariate approaches (Huberty and Morris, 1989; Enders, 2003).

16.7 ANCOVA with repeated measures
ANCOVA with repeated measures expands the familiar repeated measures designs to include
a covariate. This approach is most appropriate for randomized experimental designs with €o
tinuous confounding variable, but can also be applied to non-experimental designs (provi
the usual cautions about using the covariate as a ‘statistical control’ are borne in mind). Ad
a covariate appears to be a relatively harmless process, but can end up being rather mes
A one-way design with single covariate would take the form:

YVi=n+Db(Ci—pc) +mi+ 1+ tmjj+ &5 Equation 16

The covariate C in Equation 16.13 is centered (by subtracting its mean yc) and takes the s¢
value for each of the i=1 to n observations. Both these points turn out to be very import2

As it turns out, this form of pure repeated measures ANCOVA design may be uninter
In Equation 16.13, the covariate is measured between participants; there is one covari §
for each of the participants. Variation in the covariate equates to individual differences DEX
participants. If the covariate was not present, this variation would get absorbed by U
jects term of the repeated measures analysis. If the covariate varied across repeated mee
(often termed a time-varying covariate) then the model would also be inappropriate,
would fail to capture important variation across observations indexed by i and j. TIME¥
covariates can be dealt with in a number of ways, but multilevel regression models pro
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included but all factors of interest (independent or repeated measures) and their interactions
are present. This first analysis is used only to assess interactions between and main effects of
repeated measures factors. The second analysis adds all covariates of interest and any covariate
by factor interactions. The second model can be used to assess the remaining effects (i.e., any
that are not pure repeated measures effects).

The former ‘global’ strategy is probably the safest method, provided all covariates are cen-
tered. The alternative ‘two phase’ method is useful if you want to estimate effects at a value of a
covariate other than its mean. This is useful, for example, in developmental trajectory analysis
(Thomas et al., 2009). It can also be also useful for obtaining contrasts and simple effects for
repeated measures factors or interactions between repeated measures factors that do not need
covariate adjustment.

16.7.1 ANCOVA, pre-post designs and gain scores

A pre-post design is a repeated measures design in which measurements of an outcome variable
are taken before an intervention or experimental manipulation (the pre-test or baseline) and
again afterwards (the post-test). When paired measures from a pre-post design are analyzed,
a popular strategy is to simplify the analysis using gain scores. A gain score is the change in
outcome between the pre-test and post-test (i.e., post-test score minus pre-test score). For a
repeated measures design with more than two time points it is possible to generalize gain
scores as change relative to baseline. Here the baseline score is subtracted from all repeated
measures prior to ANOVA analysis (and is equivalent to calculating separate gain scores for
each post-test measurement).

Analysis of gain scores isn't the only option. Think about a two independent group design
in which the aim of the study is to determine whether the change between pre-test and post-
test scores differs between the groups. Two other alternatives could be selected, one more
interesting than the other. First, one could use mixed measures ANOVA with pre-test and pos
test scores as levels of the repeated measures factor. This is a fairly uninteresting alternative
because the F ratio from the ANOVA interaction is equivalent to the independent ¢ test of th
difference in gain scores between groups (> =F). Analysis of gain scores (or analysis of chang
relative to baseline) and ANOVA of the raw scores are equivalent with respect to the test of
differential change in outcome.

The second alternative is to use the pre-test or baseline score as a covariate in the analys
This models the change between the pre-test and post-test outcome in a very different way:
illustrate what is going on, we'll adapt the approach of Wright (2006) and present the equatif
for ANOVA and ANCOVA as regression models where group is a dummy coded predictol
In the gain score model (equivalent to ANOVA) the regression model is:

gain; =post; — pre;=bo + b1 X; + €;
The corresponding ANCOVA model is:

post;=bg + bypre; + bix; + €;
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months you'd expect all the children to have forgotten some of the information. This suggests
the ANCOVA model is preferable. It is the more plausible of the two models, as it predicts older
children remember more than younger children at the post-test (conditional on the initial leve]
of recall). However, this is not necessarily the ‘correct’ answer. Even in this apparently clear-cut
example Wright and London (2009) contrive a scenario in which the gain score model may be
appropriate. What if an investigator has to select either an older or younger child to interview
immediately after a crime (with the other child being interviewed much later)? The gain score
model is useful here because it suggests that the older child should be interviewed first, because
a delay would result in a larger absolute reduction in recall relative to the younger child.!7
Although the scenario is contrived it illustrates how great care should be taken in selecting the
correct model. In addition, the usual ANCOVA concerns about the linearity of covariate effects
and the absence of interactions apply (ibid.). In this case the linearity assumption is implausible
and it might be sensible to assume an approximate power law relationship, though the precise
nature of the forgetting curve is a matter of considerable debate (e.g., see Lansdale and Baguley,
2008).

Even though specifying the correct model can be hard, some guidelines are available. If the
predictor of interest (e.g., group) is manipulated by the experimenter and therefore can be
assigned at random, then all approaches produce unbiased tests, though ANCOVA tends to
have greater statistical power (Wright, 2006). If pre-test score is confounded with the predic-
tor of interest then ANCOVA can produce unbiased estimates of the de-confounded effects
(though this is not necessarily the question of interest). ANCOVA is usually preferred in sim=
ple experimental and quasi-experimental studies looking to understand the effects of individual
predictors. Maris (1998) also argues that ANCOVA is preferable if the pre-test is used to deter-
mine the assignment to the groups being compared. If the mechanism of assignment to groups
is often unknown (e.g., because pre-existing ‘groups’ are measured) this presents a problem
These are the cases where it is necessary not only to know the precise hypothesis you wish
test, but also to try and work out which of the untestable assumptions about the model is mos
plausible. This issue is important because selecting the wrong model for the research questic
may introduce bias.

Some broad conclusions are possible. For randomized designs and situations where the pi
test determines assignment to groups ANCOVA has greater statistical power and is unbi
(Maris, 1998; Jamieson, 2004; Van Breukelen, 2006). For non-randomized studies where a:
ment to groups is not based on pre-test scores, it is argued that ANCOVA may have gré
bias (Jamieson, 2004; Van Breukelen, 2006). However, recent work comparing randomized
non-randomized studies suggests that this is not inevitable (Cook et al., 2008; Shadish'é
2008).

It appears that the key factor is being able to include predictors likely to have caused ¢
ential baseline performance, rather than just the usual range predictors used for match
statistical control (e.g., easy to measure demographic factors such as age or sex). The argi
here is closely related to that for dealing with missing data (e.g., drop out) by includin
tors of missingness. This recent work is consistent with that of Senn (2006) who dé
that in situations where ANCOVA is biased it is difficult to design studies to detect@
effect of a treatment in which change scores would not also be biased. It is sen51bi
steps to remove as many sources of bias as possible (e.g., at the design stage or by,
of covariates). The question of which statistical model is best has no simple answe
depend on the design and context of the study, with work on how best to select ana
ongoing (e.g., Dinh and Yang, 2011; Cousens et al., 2011).




Repeated Measures ANOvA 655

suggests
;ltlsgifder €asures data;
ial leve] versus broaqg form
lear-cut )
may be To rt_m any repeated Measures ANOVA it IS necessary to structure the datain 4 way that preseryes the
: relatlonshlp between repeated observations and the units being observed. To keep the explanation
terview that follows Manageable, assume that the "epeated measyres are on human participants ang that
I score the outcome IS measured at two time oints (Time 7 and Time 2). Repeated Measures analyses are
)ecause tricky to deal with because different software requires data structureq i, different ways,
child.17 Independent Measures data for €gression ang related analyses are Usually "epresented in 5 data
ting the file or SPreadsheet as folloyys:
effects
ausible Participant Predictor Outcome
precise P1 . 29
P2 6.1 12
B P3 8.5 23
. If the )
Zan be . . . ’ e -
Each variapje (a covariate Or grouping variable) js 4 distinct column ang each Participant 4 Separate /
nds .to row. These rows are often termeg ‘cases’,
oredic- The defauylt epeated measyres data structyre in many packages is to represent data jn what js
eff(?cts sometimes called progy form:
1 sim-
vidual Participant Predictor  Time T Time 2
deter- 8.3 29 33
Toups P2 6.1 12 19
blem. P3 8.5 23 20
ish to ke
mosi

:stion

Participant Predijctor Time Outcome
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Group  Participant  Outcome

G1 P1 17
G1 P1 9
| Gl P2 8
G1 P2 5
; G2 P3 11
G2 P3 12

In a cross-classified design, lower-level observations are not clustered uniquely within high-leve]
| units. A fully crossed repeated measures structure is an extreme version where both measurement
units are clustered within each other. Here the same four items in the experiment (11 to 14) are

clustered with every participant, though it would be just as valid to state that all n participants are
clustered within every item:

Participant  Item  Outcome

P1 I 10
P1 12 1
P1 13 7
P1 14 9
P2 I 15
P2 12 8

Switching between the two formats can be time-co
R have commands or functions for switching betwee
you may prefer to rearrange data in a spreadsheet s

| results visually). In larger data sets it is better to use s

/ check descriptive and other statistics to make sure th
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oftware to rearrange the data, but it is vital to
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16.8 R code for Chapter 16

16.8.1 One-way ANOVA with repeated measures (Example 16.1)

There are a number of different approaches to running repeated measures ANOVA models
R. There are pros and cons to each approach. Repeated measures ANOVA models with balang
data is one area in which the power and flexibility of R can be annoying; there are several v
different methods to fit the same model (each with its own quirks)

For a basic model it is possible to use aov
correct error terms to use in the analysis. It is
variable as a factor for use within the Error
data rather than the broad form (

() by using the Error() function to spe
also necessary to code a participant or
() function. This approach uses the long form of
used in most other software). The long form of the pride
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Withip =.(emotion))
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to using hierarchical (Type II) sums of squares, whereas aov () defaults to sequential (Type 1)
sums of squares. ez also attempts to calculate 77§ (ges in the output) by treating subjects SS as
a measured factor (other measured factors can be named using the observed argument). For
one-way repeated measures designs this produces sensible output (equivalent to n2).

Two additional methods could be mentioned at this point. One is to fit a MANOVA mode]
using the car package, though this offers no advantage over the ez approach at this stage.
The final method is to use a multilevel model (sometimes called a linear mixed model). This
approach is more versatile than repeated measures ANOVA, but will produce equivalent resyits
for a balanced design if the model is set up in the appropriate way. The example here uses the

1me () function in the nlme package (part of the base distribution for R), although 1mer () from
1me4 could also be used (but it has slightly different syntax)

library (nlme)

Ime.fit <- Ilme (accuracy ~ emotion, random = ~l|participant,
pride.long)

anova (lme.fit)

Further explanation of this and related functions will be provided in Chapter 18. One advan-

tage of this approach is that if they are fitted by maximum likelihood, R will calculate AlC and

related statistics for repeated measures models using lme () or lmer (). These are unavailable

from aov () objects fitted including Error (). The default fitting method for 1me () is restricted
maximum likelihood (RML). This produces inferences that are identical to repeated measures
ANOVA in a completely balanced design with a fully nested data structure. To compare AIC (or
AlCc or BIC) for fixed effects it is necessary to switch to maximum likelihood methods (so that
the log-likelihood is estimated correctly). The following commands compare the one-way model

with emotion as a factor against the intercept-only model (in which all emotions have the same
mean level of accuracy):

io.ml <- lme (accuracy ~ 1, random = ~1l|participant,
pride.long, method="ML")

ow.ml <- lme(accuracy ~ emotion, random = ~l|participant,
pride.long, method='ML")

AIC(io.ml, ow.ml)

delta.aic <- AIC(ow.ml) - AIC(io.ml)
exp (delta.aic/2)

16.8.2 Plotting repeated measures Cls (Example 16.2)

The Loftus-Masson CIs in Table 16.4 can be obtained using functions provided by
(2011). Similar code is available from Wright (2007), who also provides a bootstrap Versic
functions in Baguley (2011) support plotting of difference-adjusted Cousineau-Morey:
Cls from multilevel models with different covariance structures (for both one-way
measures and two-way mixed designs). Afshartous and Preston (2010) pfOVidf3 R
extending Goldstein-Healy intervals (Goldstein and Healy, 1995) to dependent designs:
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The 1me() function also works, though the car package output reported via ez is more
informative.

Ime.fit <- lme(accuracy ~ emotion*condition, random =
~1l|participant, pride.long)
anova (lme. fit)

To plot something similar to Figure 16.3, interaction.plot () could be used:
interaction.plot (pride.long$emotion, pride.long$condition,

pride.longS$Saccuracy, xlab='Emotion’, ylab= ’'Percentage
accuracy’, legend = FALSE)

A prettier, color plot could be specified using the ez package ezplot () function. This function
returns an object that can be edited further using the ggplot2 package.

ezPlot (data=pride.long, wid = . (participant), dv=. (accuracy),
within = . (emotion), between = .(condition), x = . (emotion),
split = . (condition), do_bars=FALSE)

The x argument defines which of the repeated (within) or independent (between) factors is
on the x-axis and split determines whether to split by levels of another factor (as sepa-
rate lines). Setting do_bars=TRUE adds error bars based on Fisher’s LSD (not desirable in this
case). Baguley (2011) includes a two-tiered error bar function for mixed designs based on
two.tiered.ci (). Below, reshape () is used to get the full pride data set into broad form and
the participant ID stripped out so that the grouping variable is the first column in the new data
frame pride.mixed. Shown here is a basic plot that can be edited or relabeled:

pride.broad2 <- reshape(pride.long, idvar = ’'participant’,
direction = ’‘wide’, timevar = ’‘emotion’, v.names =
"‘accuracy’) [2:5]

two.tiered.mixed (pride.broad2, group.var='first’, lines=TRUE)

16.8.4 Contrasts on a repeated measures factor (Example 16.4)

A contrast is a form of weighted comparison of means. With pure repeated measures des
contrasts can be run as paired ¢ tests between weighted means. To illustrate this Examp:
runs a contrast for the pride data set. Working with the broad form of the data set, ﬁr.st
two vectors, one for the accuracy of the pride emotion and one for the mean happl
surprise. The ¢ test can then be run comparing the means of these vectors.

pride.mean <- pride.broad$pride
nonpride.mean <- (pride.broad$happiness +
pride.broad$surprise) /2

t.test (nonpride.mean, pride.mean, paired=TRUE)
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As an alternatijve to the ¢ test or 95%
Bayes factors or likelihood intervals if

JZS.prior.Bf.ls(1.30, 90)
t.lik.int(6.94444, 5.33, 90)

There is nothing specig] about I€peated measyres contrasts — any ANOVA contrast that outputs
a ! statistic can pe used to calculate 3 Bayes factor or g likelihood interval,

Interaction Contrasts with repeated Measures (Example 16.5)

Interaction Contrasts for pure repeated Mmeasures effects can be calculateq using the ¢ tegt

approach describeg €arlier. This avoids Sphericity problems (possibly with some loss of power),

but does not extend to mixed measures interaction terms. One way to deal with mixed effects is
described in Example 16,5 To calcul

€ssary to decide on the interaction Wweights and it is usuall

form. For instance, the matrix for the contrast in Examp

cont <- matrix(c(0,0,0,l,—l,O,—l,l,O), 3, 3)

The interaction residuals (the cej means after Sweeping out the main effects) could be obtained
In severa] ways. However, R can provide them directly using the moges . tables() function,
Using the interaction model from the aov () command fitted earlier (pride -mixed) the residuals
are given in the table for the emotion:condit;iep interaction,

model.tables(pride.mixed)
int.resids <-
model.tables(pride.mixed)$tables$’emotion:condition’

The contragt Score is the summed product of the Interaction residuals multiplied by the contrast
Weights, While SScontrasy is obtained from contrast score and n per ce].

C.score <- sum(cont*lnt.resids)
C.score

n <- 30
SS.contrast «_ c.score“2/(sum(contA2)/30)
ss.contrast

COn[ras[ =40333 33 and s slightly larger than in the worked €xample (because of rounding

T). F, b, 1}1]61'[117g andr; 5]er21'ng are:
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r.alerting <- cor(as.vector(resids),as.vector(cont))
r2.alerting <- r.alerting”2
c(r.alerting, r2.alerting)

ms.error <- 1325

F <- ss.contrast/ms.error

F ; pf(F, 1, 174, lower.tail = FALSE)

As the F ratio is very large the p value is tiny, though it is more interesting to focus on r2

alerting
This suggests that the interaction contrast accounts for most of the variance of the interactiogn
effect.

It is also possible to adapt the cell means approach described in Chapter 15 to mixed and
repeated measures models. These analyses are run as multilevel models. First, the cell means
interaction model needs to be fitted using Ime ().

library (nlme)

pride.cmm <- Ime (accuracy ~ 0 + emotion:condition,
~l|participant, pride.long)
pride.cmm

random =

The glht () function isn't the most flexible option for running the contrast. Instead, we'll use

estimable () from the package gmodels. This is used for calculating ‘estimable functions’ (

ear functions of model parameters) which contrasts are a special case of. The function is m
flexible than g1ht

(), but doesn't directly support corrections for multiple testing. The key adv.
‘ tage of estimable

lin-
ore

b
an-

() is that it takes input from a wide range of model objects plus a contras
matrix. To reduce confusion, the contrast matrix works with named parameters (with unna

parameters set to zero). The following example grabs the names required for the contrast fron
the model object and adds them to the contrast matrix. Because a cell means model has be
fitted, the names are those of the nine cell means (€.g., emotionhappiness : conditionbot

is the cell mean for the happiness emotion with both torso and face presented).

library (gmodels)

labels <- names (coef (pride.cmm)) [1:9]

contr <- matrix(c(o,0,0,l,—l,O,—l,l,O),1,9
dimnames:list(’contrast’,1abels))

’

estimable (pride.cmm, contr)

The reported ¢ statistic is 5.517036. Its squared value is 30.43769, identical, allowing fo §
ing error, to the 30.44025 obtained for F by the other method. The function provides a %
a conf.int=.95 argument is added, but these are on the incorrect scale. The follo
will rescale the contrast score, SE and CI without also (incorrectly) rescaling the df:

estimable(pride.cmm, contr, conf.int=.95) [1:2]/2
estimable (pride.cmm, contr, conf.int=.95) [6:71/2
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ators for generalizeq n?
to consider variables as mg

nipulated or measured is slightly Subjective (and may vary with
context). Using R can make t ularly for the totg] SS.
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N <- 30%3*3
Ss.tot <- var(pride.long$accuracyﬁ*(N—l)
To get the generaliz

ed measures then involves Mmanually adjusting the denominator using
information from the ANOvA output:
1l use

3" (lin-
more
dvan-
ntrast

Ss.effect <- 44231
ges <- Ss.effect / (ss.tot «+ Ss.effect - sum(ss.effect + 5616
+ 26060))
geés.contrast «- SS.contrast /
Sum(ss.effect 4+ 5616 + 26060)
ges.contrast)

(

Ss.tot + SS.contrast -

)

c(ges,

Note that €ZANOVA() also provides g

ion. Its output of 0.09026790
ated in Example 16.6 - indicati it i

ges <- ss.effect/(ss.tot =

26060)
ges

ezANOVA(data:pride.long, dv=. (
within =.(emotion)
.(emotion),

accuracy), wig =
+ between =

detailedzTRUE)

.(participant),
observed=

.(condition),
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16.8.7 R packages

Bates, D. M., Maechler, M., and Bolker, B. M. (2011) Ime4: Linear mixed-effects models using S4
classes. R package version 0.999375-39.

Fox, J., and Weisberg, S. (2010) An R Companion to Applied Regression, (2nd edn). Thousand
Oaks CA: Sage.

Lawrence, M. A. (2011) ez: Easy analysis and visualization of factorial experiments. R package
version 3.0-0.

Pinheiro, J., Bates, D. M., DebRoy, S., Sarkar, D, and the R Core team (2011) nlme: Linear and
Nonlinear Mixed Effects Models. R package version 3.1-98.

Warnes, G. R., et al. (2011) gmodels: Various R programming tools for model fitting. R package
version 2.15.1.

16.9 Notes on SPSS syntax for Chapter 16

16.9.1 ANOVA with repeated measures (Examples 16.1 and 16.3)

Repeated measures ANOVA analyses in SPSS use the general linear model cLx command (which
can also run UNIANOVA commands using the same syntax).

SPSS data file: pride_rm.sav

GLM pride happiness surprise
/WSFACTOR=emotion 3
/METHOD=SSTYPE (2)
/PRINT=DESCRIPTIVE
/WSDESIGN=emotion.

The statement pride happiness surprise defines the variables making up the within subje
(repeated measures factors) and /WSFACTOR=emotion 3 tells SPSS that there is one re|
measures factor with three levels. The /PRINT subcommand requests descriptive stat
Fitting a mixed ANOVA is straightforward with the same command:

GLM pride happiness surprise BY condition

/WSFACTOR=emotion 3

/METHOD=SSTYPE (2)

/PRINT=DESCRIPTIVE

/WSDESIGN=emotion.
A covariate could be added with a wrTy statement. Additional repeated measures
pendent measures can be added. For instance, a four-way mixed ANOVA with two I
measures factors and two independent measures factors (2 and B) could be run as:
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GLM C1p1 ClD2 c2p1 C2D2 BY A B
/WSFACTOR:factOrl 2P
/METHOD=SSTYPE(2)
/WSDESIGN:factorl fac
/DESIGN=2 B A*B.

olynomial factor2 2 Polynomial

tor2 factorl*factory

/WSFACTOR definition tell
and their interactions,
These models can also be fitted usi

as being able to rejayx the Sphericity
AIC, AIC¢ and BIC.

ng the SPSS multileve] modeling MTxED command. As wel]
assumption for these models, it is also possible to obtain

i -Masson CJs
SPSS syntax for the unc

sing normalized datg. To obtaj
Is for the pride data you can g

correct width for g 95%
obtains the normalized
1852). The Iatter js cal

t
» While Cousineay provides

n the corrected Cousineay-
SO adjust noming] confidence (in this case to 98.2%)

Clwhen n=30 and j= 3 (see Baguley, 2011). The fol.
data from the participant means and the grand mean
culated from the participant means USing DESCRIPTIVES.

to obtain the

lowing syntax
(72.685185185

SPSSdamyﬂa'pride_rm.sav

COMPUTE pmeans:(pride+happiness+surprise)/3.
DESCRIPTIVES VARIABLES:pmeanS
/STATISTICS:MEAN.

COMPUTE n_pride =

EXECUTE.

GRAPH
/ERRORBAR(CI 98.2)

]
n_pride n_happiness I_surprise. .

Many I'€peated measures contrasts can be run using the
Ng commands compute a

paired ¢ test commands. The fo]
weighted contrast for the pri
Example 16 4.

de versus other emotion contr.

low-
ast in il
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SPSS data file: pride_rm.sav

; . ; ) 1
COMPUTE prlde_v_other:prlde—(happ1ness+surprlse)/2. ]
EXECUTE.
T-TEST

/TESTVAL=0

/VARIABLES=pride_v_other
/CRITERIA=CI(.95).

This is a very versatile method for running contrasts on repeated measures. It avoids a pooled

error term, but may sacrifice power if sphericity is true. The contrast can also be run using GLM,
by changing the default within-subject contrasts:

GLM pride happiness surprise
/WSFACT = emotion(3)

special

(111

=1 .5 5

0 =1 1).

This gives an F test of the contrast by default. With three levels there are two orthogonal
contrasts by default (usually linear and quadratic polynomials specified by Polynomial). The
contrasts are set out as a ‘matrix’ over several lines to reveal the structure (though it is not
strictly necessary). The first row 1 1 1 defines the intercept, the second the contrast of inter-
est and the third is an arbitrary contrast orthogonal to the first (which happens to compare the
happiness and surprise means).

The default repeated and mixed measures ANOVA output (

see the mixed ANOVA syntax
above) includes pol

ynomial contrasts for the repeated measures factors and interaction cons
trasts for effects involving repeated measures factors. Unfortunately, these are only really
interpretable if the repeated measures factor is ordered (e.g., time points), which it is not fo
the pride data. In principle, it is possible to get SPSS to run custom interaction contrasts fe

mixed designs, but the difficulty of setting up the contrast coefficients often makes it easier
carry out the analysis by another route (e.g., by hand) '
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