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17.1 Chapter overview

The generalized linear model is an extension to the general linear model that will deal with
discrete outcomes. This chapter provides a brief overview of the generalized linear model with
particular focus on logistic regression for categorical outcomes and Poisson regression for count
data. The links between logistic regression, Poisson regression and alternative models for cate-
gorical outcomes (multinomial, ordered logistic regression) and count data (negative binomia]
and zero-inflated models) are also reviewed. The chapter ends by considering the difficulty of
modeling repeated measures data with discrete outcomes.

17.2 Modeling discrete outcomes in the general linear model

The general linear model is developed on the assumption that the outcome Y is continuous and
unbounded. This limitation does not extend to the predictors in these models, which may be
categorical or continuous. The solution to incorporating categorical predictors into regression
models is to select an appropriate coding scheme (€.g., dummy or effect coding). Extending this
approach to deal with a discrete outcome variable is less effective.

First, consider the case of a dichotomous variable. This could be coded as a continuous out-
come taking either the value zero or the value one. The problem here is threefold: i) the usual
linear regression model assumes Y is unbounded, ii) the predicted outcome is continuous and
therefore can take values between zero and one and iii) distributional assumptions about the
errors of the model will be violated. The first two problems are most relevant to prediction - as
models that predict impossible values can be hard to interpret or lead to problems in application.
On the other hand, if the focus is on predicting average rather than individual outcomes, the
performance of the model could be satisfactory. Much will depend on the quality of the model
(€.g., in terms of fit) and the precision you require. Recall also that, as a rule, it is the degree of
distributional violations, not merely their presence, that matters. As each dichotomous obser=
vation is a Bernoulli trial, the outcome Y can be considered to have a binomial distribution
independence of trials is plausible). Under circumstances where the normal approximation t€
the binomial is good, general linear models (e.g., ¢ tests, regression and ANOVA) will tend
perform well. In practice, this is when the distribution is approximately symmetrical and sa
sizes are moderate to large. Prediction using a general linear model will be poorest when &
average value of Y approaches zero or one and best when it is close to .5.

An alternative way of conceptualizing the problem of dealing with discrete outcomes‘
consider it an issue of linearity. A linear regression model predicts the same change in
a given change in X. If Y is bounded, then a linear model tends to run into problems. A
approaches an upper or lower bound, a change in X that works well for mid-range value?
may exceed the minimum or maximum possible value of Y. Having a bounded rangé ~,;.
outcome variable is therefore a fundamental obstacle for a linear regression model. To co ]
model a discrete outcome it is necessary to find a way to allow the effect of X to vary acro
legitimate range of Y. In other words, having an upper or lower bound implies that the
X on Y is non-linear. Although a linear approximation will sometimes work well, the
is to find ways to capture the non-linear effect of X on v explicitly. This does not NECEs
require a non-linear regression model (e.g., transformations of X or Y may get aroul
restriction).
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ilar challenges: i) counts

are bounded at zero,

as continuous can lead to fractiona] rather than integer Predictions ang

| deal With iii) the distributiong] assumptions of the model wil] pe violated. Again, these problems gre

odel with more pronounceq for prediction than hypothesis testing. If the focus is hypothesis testing,

o f - a linear regression that assumes continuous T€sponses will often suffice. This is particularly

{1 for Ccoate— true for large samples where count data, oftep Presumed to pe Poisson dlstnbuted, are often

asb?rfomial well approximated by a normaj distribution Even in smgj samples the approximation may

- ficulty of be reasonable and can be assisted by an appropriate transformation (eg., a Square root or
ety Freeman~Tukey transformation).

The usua] regression diagnostics for checking normality ang homogeneity of variance hej
to determine the quality of the model. Even when the normal approximation s 8ood, it wij]
be wise to Compare resylts with a mode] assuming a discrete outcome Modeling a discrete

model outcome as continuous may make the results less Persuasive (particu]arly as an appropriate
discrete mode] is usually not difficyjt to fit). Furthermore, treating the outcome as discrete should

wous and lead to more Precise estimates and accurate predictions (though these gains wil] SOmetimes

'h may be be marginal). A corollary of this s that g reégression mode] for discrete Outcomes may also

egression have greater statistical power. One Strategy is to fit both kinds of models. If there are major

nding this discrepancies between the results, this js usually an Indication that it IS necessary to tregt the
outcome as discrete 2

uous out-
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uOUStfg‘ld 17.3 Generalized linear models

about the

;tllizgti_ois 1731 A brief Introduction to the generalized lineay model
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Is a common default. Any distribution from the €Xponential family (a set of related distributiong
that includes the normal) can be selected as g random component 4 The link is the component
that determines the relationship between the Systematic and random component. It works by
specifying a function, the Jink Junction g(.), which connects the random and Systematic compo-
nents. The link makes it possible to model any monotonic function of the mean of the origina]

outcome. The expected value of the outcome E(y) is therefore related to the linear functjon of
predictors via this link:

E) =8 (W) =bo+b;X, +.+DgXy Equation 17,1

untransformed outcome. The genera
model as a special
Junction:

ous,
udes the genera] linear
al linear model is termeq the identity

lized linear mode] therefore incl
case. The link function for the gener.

Sw=u Equation 17.2

This is an example of a canonical Jink Junction. The definition of a cano

somewhat technical, but it represents a natural or default choice associ

random component. For g normal random component the identity functi
because it maps the range of the predictions of the regression onto the
For a Poisson random component the canonical link function is the Io
binomial distribution it is the logistic function. Although, the generaliz
other random components (and permits non-canonical link functions)
is restricted to canonical link functions for the binomial,
statistical mode]s.

nical link function is
ated with a particular
oOn is a natural chojce
permitted range of ¥,
garithm, while for the
ed linear model allows
, the following discussion
Poisson and a few closely related

17.3.2 Estimation and inference

software uses an iterative maximum likelihood (ML) estimatit
method (see Agresti, 1996), although Bayesian methods (e. 8., MCMC estimation) are some in
adopted (particularly where there are convergence problems). The algorithms for fitting th
models are very similar to those used in obtaining para
(see Chapter 18).

Although the details of estimation for a
ciple behind it is extremely simple. The m
estimates for the parameters. The |
calculated (i.e., a quantity propor
the data at hand). The estimates

’

odel is first fitted with some vaguely plausible sta
ikelihood of the mode] with these parameter estimates is!
tional to the probability of these parameter estimates g
are then altered and the likelihood recalculated. The prt
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witions continues yntjj changmg the parameter estimates has no discernable Impact on the likelihood
Yonent (€8, toa Predetermined number of decimg] Places). Fitting a mode] this way Iequires greater
ks by computing power than for Jeast Squares estimation and models Sometimes faj] to converge on
smpo- an adequate solution. For thjs T€ason, non-iteratjye Solutions are preferred if available. Thjg
riginal applies for models with g normal random Component and Identity Jink (Standard Jegst Squares
tion of bParameter estimates gre therefore alsq maximum likelihood €stimates).

A by-product of ML €slimation is the maximized loglikelihoog of the mode] (Le., the valye
. of the loglikelihood at convergence). This can be used to derive a deviance Statistic equa] to -2
ni7.1 times the loglikelihoog of the model. =2In (). This Statistic has an approximate 2 distribution
The quality of the approximation varies according to the type of §eneralized linegy model (ibiq).
sdi i Deviance statistics make it possible to test nested models by referring the difference between
addil models to g 42 distribution with degrees of freedom (@) equal to the change in the Number of
anie parameters This test ig often termed g likelihood atio test (LRT) though it is g conventiong]
sctiahl null hypothesis Significance test (NHST). For Comparisons of models dlffermg by only a small
Number of barameters thege x? tests are generally very accurate (though the overall test of
uous, deviance of an Individug] model may not be). It is also straightforwarq to use likelihood or
linesg mformation—theoretlc approaches to Compare nested and non-nesteq methods (e, §., using AIC)
entity Individya] barameters can pe tested this way, but it is a]sg common to yse g normal approx
Imation in the form of a Wald test This Wald test involves deriving 4 x? test Statistic from the
ratio of a squareq model coefficient to i :
7z

b? .
—5 ~ 2 Equation 173
on is b
cular
10ice The Wald test can be extended to test severg] Parameters simultaneously (€.8., aset of dumm |
of Y. Variables coding g Categorica] Predictor) by Summing the tegt Statistics and comparing them o |
r the . a x?2 distribution Thus for 7 predictors this test would take the form
lows
sion

|

J p2 |

ated > 7~ Equation 17 4 ]
j=1 b/'

TRZ ~ N(@©,1)

9

ick, approximate test o confidence inter- |

deviance tests should be preferred for
€ar models. The deviance of the mode] can also be used to
Wald cj, through what is called profiling. This involves fing-

adjusting g single parameter estimate unti] the deviance of the mode]
€quired appropriate critjcg] value above anq be

low its maximum (e.g., 1.92 or
aPPmmmater half of Xf'%). This is a profile likelihood approac

h because a1 other parameters
isance Parameters) gre fixed at their maximum likelihood estimate (MLE).
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- However, there
S particular problems that would be

Effect size statistics based on standardized metrics are particularly problematic when com-
puted for generalized linear model
employed for these mode]
tinely report standardized
t transforming the mode]
(e.g., counts or probability of
a success) can be very effective. Statistical power for generalized models can also be tricky,
A very basic first approximation is often to calculate power for a similar least squares mode]
(perhaps incorporating a transformation). This will be sufficient for some applications. Software
such as G*Power also has o isti i i lations (Fay]
et al., 2007).

17.4 Logistic regression

In some fields, notably in clinical or health research, many of the outcome measures are
dichotomous (e.g., correct or incorrect; dead or alive). Logisti

sis of choice for such data. A logi |
distribution as its random co i mation as its link function, Tj
logistic transformation may ili pplication in forming a CI for an od
ratio. Thus logistic regression uses a logit link of form:

B 2
g(u)—ln(‘l_ﬂ)

log odds) are required to model these prob
using an additive mode] of predictors (see Key Concept 17.1). The logistic regression eq :
relates the probability of success p for the jth observation to a linear combination of predic

P,
In ! )=b0+b1X“‘+..,+quqj
1-P; :

If the change in notation from p to P is confusing, bear in mind that the expec}ed val

outcome Y is estimated by its mean (equivalent to the probability of success P for a bil

distribution). )
Equation 17.7 expresses the relationship between the predictors and the outc

S

modeled (the log odds of success), but for interpreting the parameter estimates it iS
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inction. The
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; with a dis-
1 a binomial
ess and the
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{0 base et

Bip== = ebotbixiit.. by, Equation 17.g
kg
Going one step further, it js possible to represent the €quation in terms of the probability of
success:
. OI‘ eb0+b]X“‘+...+quq‘,' E t 1

| +0i _’_eb0+blxlf+~-~+bllxq,i TR kg
You may also encounter the €quation in the foIIowing form (obtaineq by algebraic Iearrange-
ment):

1
PI' =

i v -SSR Equation 17.1¢

Although Equation 17.1¢ is arguably somewhat simpler, the ear]
because it Provides a more direct connection to the odds and
€quations, Using these formulas it is possible to
model either in log odds, odds

Or probability form,
Logistic reégression relaxes SOme assumptions of I

ier format Wwill be used here

log odds (logit) versions of the
produce prediction €quations from g fitted

P, the probability of event with only two possible outcomes and turns
Ininto a logit (natural logarithm of the 0dds of the event or log odds) Switching from g dichotomous
outcome to the probability of that outcome is a clever way to turn a discr
one. At the i

but not boundary at zero. This problem s resolved by using the logarithm of
0 he natural logarithm, being the default ¢




674 Serious Stats '

Because the odds are always greater than zero, the logarithm of the odds ranges from —oo to co. At one
level the transformation is merely a mathematical trick that turns a discrete binary outcome into a con-
tinuous, unbounded outcome. Yet the choice is not completely arbitrary. Both odds and probabilities are
themselves directly interpretable. While in some situations it is preferable to work with probabilities, odds
and odds ratios are preferable in others (depending on your goal and on factors such as whether you
wish to incorporate or strip out the influence of the base rates). Furthermore, using log odds in a linear
regression model implies that, while the predictors have an additive relationship with respect to the log
odds, their influence on the odds is multiplicative.

A final insight is that the logistic transformation maps differences in the predictors onto a non-
linear function with a particular form. To see this relationship between probability and predictors,
the inverse of the logistic function (i.e., its cumulative distribution function or cdf) needs to be
plotted:

eX

P=
1+ eX

The inverse of the logistic function has a sigmoidal (S-shaped) curve.

Figure 17.1 depicts the inverse of a logistic function relating the aggregated effect of one or more
predictors on the x-axis to the predicted probability on the y-axis. The curve has an almost linear section
in the middle where a normal linear regression model would provide a good fit (e.g., within the range
.2 < P <.8). It curves sharply at the extremes and converges either on zero or on one. This behavior neatly
captures the required non-linearity of effects at the boundary. The function itself can be shifted up or

1.0

0.8 -

Probability
o
)

1

©
i
!

Figure 17.1 A sigmoidal curve produced by the inverse of the logistic function (the cdf of
logistic distribution)
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Example 17.1 Subbotsky (2009, Experiment 3) reports an experiment looking at the impact of
a suggested magical intervention on the content of dreams. Participants chose a target dream to
focus on for three successive nights (e.g., involving them in some attractive role or activity). Some
participants were offered a magical suggestion (a ‘magic spell’ to help them achieve their target
dream) and some were not. One outcome of interest was the content of non-target dreams in the
subsequent period. In the magical suggestion condition seven out of 21 non-target dreams were
classified as ‘scary’, while in the no magical suggestion condition one out of 26 non-target dreams
were classified as ‘scary’. The total sample size (N) is therefore 47. Subsequent examples refer to this
data set as the dream data.

It is possible to analyze these data via logistic regression. As the experimental condition is a cat-
egorical predictor it can be dummy coded (with magical suggestion coded one and no suggestion [
coded zero). Dream content is the outcome (with a scary dream coded as one and an ordinary
dream as zero). The prediction equation is:

P
In ( - ) =-—3.22+2.53 x group

The deviance for this model is 35.211 and AIC is 39.211 (35.211 plus two times the total number
of parameters k= 2). The model has residual df equal to N—gq—1=45. The term g is the number
of predictors in the model (exactly as it would be in multiple regression).

The goodness-of-fit of the model could be assessed against a x 2 distribution with 45 df. The NHST
of goodness-of-fit is non-significant (as df > x2). A non-significant goodness-of-fit test supposedly
indicates a good fit (i.e., one not significantly different from a perfect fit), but the usual problems
apply. In large samples the test will reject Ho when there are only small departures from a model,
while small samples will often fail to reject Ho when the fit is relatively poor. Add to this the fact
that the distribution of the deviance may only be poorly approximated by x2. The overall test of
the deviance of the model is generally regarded as an unsatisfactory approach. A model comparison =
approach is preferred for inference. "

For an individual predictor (such as the effect of group here) it is common to calculate a Wald test b
or Cl. The SE for the intercept is 1.02 and the group slope is 1.12. A significance test of the intercept™
is uninteresting, but an interval estimate might be useful. With the dummy codes defined as above;
the intercept is the estimate of the logits of a scary dream for the no magical suggestion condition. =
A 95% Wald Cl for the intercept is: 4

bo £ 2975 X Gpy ¥ —3.2£1.96x 1.02=-3.2£1.99

The Wald Cl is not very accurate (tending to be too narrow). A more accurate approach is to ¢
the profile likelihood: 95% CI [-6.10, —1 .67]. There are several ways to get the Cl for the
condition, but an easy way is to reverse the group coding (so that the magical suggestion cond
is coded zero). Profile likelihood then gives a 95% Cl of [-1.66, 0.18] for the magical suggestl
condition. The interpretation of these point and interval estimates is quite tricky because they e
on a logit scale. The issue of interpretation is explored in a later section (see Example 17.2). Fo
moment I'll just point out that when the odds are one the probability is .5 and the log Odd
sero. As neither of the intervals include zero this suggests that the probability of a scary drean
either group is lower than .5 (as you would expect from the data). N

The group effect (regardless of coding) is the difference in the logits for the two CORGIE
The Wald z test statistic is 2.53/1.12, and therefore z = 2.26, p < .05. Alternatively xz.(
47)= 2.262~5.1, p <.05. (The value of p=.024 is identical because these tests are equivas

NI A+ Y T AT S
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of the statistical model. It is therefore often employed because of its conceptual link to generalized I

linear models. A second useful property is that, because deviance is equal to —2In(¢), G2 has a
direct connection to likelihood inference (e.g., the calculation of information criteria such as AIC,
AIC¢ or BIC).

17.4.1 Interpreting parameter estimates in logistic regression

Interpretation of parameters in logistic regression can become convoluted. It helps to start by
considering a model with only two predictors:

15' 5
ln( 115 > =bo+b1Xy; + baxy; Equation 17.11

—kEj

The coefficient by is the intercept of the generalized linear regression equation and determines
the logits (log odds) when all predictors are zero. The coefficient b, is the slope, expressed in
logits, of X; when X; is held constant. This is directly comparable to the interpretation of a
coefficient in multiple regression. A one-unit increase in X; is associated with a b; increase in
the log odds of success (assuming that X, is unchanged). If the predictors are orthogonal (or
correlations between predictors are very low) the coefficients can reasonably be interpreted in
isolation. Otherwise collinearity and multicollinearity present the usual difficulties for teasing
apart effects of individual predictors (though, as usual, the overall fit and model predictions are
unaffected as long as parameters can be estimated).

A logistic regression in logit form can be difficult to interpret (though it gets easier with
experience). The slope of the inverse logistic curve (e.g., see Figure 17.1) for a given probability:
P and predictor is:

bgP (1 —P) Equation 17.12

For values close to P=.5 the slope of the predictor expressed on a probability scale is aro
0.25 times the coefficient on the logit scale. This leads to an approximation using a ‘divide
four rule’ (Gelman and Hill, 2007). Using the rule, you can interpret the maximum effect @
a predictor on the probability of an outcome by dividing its slope by four. This will be ace
rate for probabilities near .5, but will overestimate the impact of the predictor for probabiliti
approaching zero or one.

It is typically easier to interpret the regression coefficients in terms of their impact ons
odds or probabilities of success. The odds of the logistic regression model with two predi€
are obtained by applying the function e* to each side of the logistic regression to give:

o % — ebo+b1X1i+baXy; Equation 1
-1

This is a prediction equation for the odds of success. A useful feature is that each of th
ficients (including the intercept) has a direct interpretation in terms of odds. The intgr
is the odds of success when all the other predictors are coded zero. The slope eb"ls o
tor by which the odds of success are expected to increase for each unit increase it
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alized X5 held constant). Likewise, eb2 jg the multiplier for the od

s a One-unit increase in Xp. Thus the slopes in the odds form

5 AIC, form of odds ratio (OR). The OR is therefore g useful effect sj
(€.g., for situations Wwhere results from other studies with dichotomouys outcomes are Compared
with results from Io

gistic I€gression). The OR ig particularly €asy to interpret for Categorical
predictors with dummy coding. Under thig barameterization, ebq would represent the OR for

ds of success associated with g
of the regression equation are g
Ze estimate in logistic regression

predictors in the model). The
nder effect coding is less transparent. The OR for an effect coded
start by categorical predictor represents the square root of the change in odds of success.6
Comparing the O for continuous predictors with categorical ones (on either coding scheme)
should be done Wwith caution. The OR for a continuoys predictor will often pe small in magnitude
relative to those of categorical predictors. But, as In multiple regression a one-unit change
n 17.11 In X might be only a fraction of the possible change (in terms of the range in the sample or
in the Population). If You need to Compare the two make the Comparison for g substantia]
2rmines change in the continuous predictor (€.8., two SD or the maximum possijb]e change) or rescale
:ssed in the continuous predictor to facilitate the comparison You wish to make Coefficients smaller
on of a than 0.1 or 0.01 tend to be awkwarg to work with (e 8., because software reports results to only
‘ease in two or three decimal places) Rescaling predictors can rémove this sort of problem and make
>nal (or parameter estimateg €asier to interpret (without changing the fundamenta] model). CIs for the
reted in odds ratios are obtained by Separately transforming the lower and Upper bounds of the ¢y in log
teasing odds form, moving from a Symmetrical interya] estimate to an asymmetrical one,
ons are A final option is to present the equation in probability form, Many people wil] find predicteqd
probabilities Intuitively more appealing than odds (and certainly than log odds). on the other
er with hand, the mathematica] properties of odds are Sometimes very convenient for researchers
bability Effects on the odds scale are insensitjye

n17.12

around
vide by

¢ €Po+b1x+byxsy;
ffect of

. . i
L iy ation 17.1
F; 1+eb0+b1x1,-+b2x2,- Equ n17.14
> accu
bilitie

on t

di’ dummy coded cate

2 I'produce a smajter absolute increase in the j"
Predicteqd Probability of syccess for a group with 4 high average probability of success (e.g., .80) i
than for one with a Jow average probability of success (

the daty o, log odds scales (e.g.,
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Figure 17.3 Comparing linear and logistic regression fits for a simulated data set with a single o
continuous predictor g
systematic component (very much as you would in linear regression). Gelman and Hill (2007) I
provide examples of other ways to plot data from a logistic regression. f
Figure 17.3 plots the predicted probabilities for a logistic regression involving a single con- 1
tinuous predictor (using simulated data). The panel on the left shows the line of best fit for a '(
simple linear regression to the same data, while the panel on the right gives the fitted curve from’ |
a logistic regression. The observations are also plotted. These points fall either on one or zero t
(with darker circles indicating where more points have landed). The fit of the linear regressior 1
is poor at the extremes, but corresponds rather closely to the logistic fit for predicted proba r
bilities in the middle of the distribution. This illustrates how a linear regression can produ r
satisfactory results when the average probability is close to .5. »
Figure 17.3 also underlines an important property of the predictions. They are not predictio b
of the individual outcomes (successes or fails). They are predictive probabilities: predicti€ d
of the probability of an outcome (in this case the probability of a success). This is a S 2
distinction, but one that is very important. Had the predicted probabilities been plotte 1

points would all have fallen exactly on the regression line. Thus plotting the predictions
a useful way to illustrate the fit of the model with continuous predictors.

Some authors (e.g., Gelman and Hill, 2007) advocate standardizing continuous predict
logistic regression to aid interpretation. This can be done in the usual fashion (subtractif
mean and dividing by the SD prior to entering them in the regression). My own preferé
to avoid standardization in most situations. For logistic regression this rescaling won't€
the tests, but will change the coefficients (because a one-unit change will represent a ¢
change in the predictor). F

In a logistic regression with standardized dichotomous predictors, it may make S
use effect coding for categorical predictors. Doing this ensures that, provided —% and
are equally (or near equally) prevalent, the SD of the dichotomous predictor will

one. An equivalent option advocated by Gelman (2008c) involves dummy coding €&
I
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predictors, and then rescaling continuoys predictors b

Thi i

fficients analogous to those in least
squares models consult Menard (2004).

If you decide not to Ous predictors, jt frequently aids interpretation to
center those that are n Rescaling continuous predictors (e.g., multiplying or
dividing by a constant) is also sensible if it produces coefficients that gre €asier to work with.
Rescaling effect coded predictors by dividi i

coded predictors produces the codes

dummy coding (e.g

standardijze continu
Ot on ratio scales,

., the slope of the effect Iepresents the diff,
those of effect coding. Last of gJ]

model is additive, the usual i

ltiplicative) ang
included. As with linear regres-

p
In (ﬁ) =-1.039+0.6878 x majority,
== !
Expressed in odds form it js:

0 = Pil =e—1.039+0.6878xma/oriry
1-5,
The 0f, o, Majority s therefore ¢0.6878 _ 1.99. An approximate 95% Cl using the Walg method
1138, 2.87) The more accurate profile likelihood C js [1.38, 2.88).

The close agreement is not
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surprising with such a large sample size, but for smaller samples the choice of Cl could be important.
As the majority is scaled in units of 10,000 votes, every 10,000 increase in parliamentary majority
is associated with a near doubling of the odds of an expenses problem. Going from the smallest to
largest majority is roughly an increase of 20,000 votes, so the OR for the most marginal to most safe
seat is around 2 x 2 =4. Putting it on a probability scale:

e—1.039+0.6878 x majority

e e—1.039+0.6878 x majority

P(problem) =

The probability of an expenses problem for a person in a seat with zero majority (which can arise if
the election is a dead heat and decided by coin toss) would be:

¢ 199  ,0.3538 ..
1+e1039 1403538

P(problem |majority = 0) = .261

A similar calculation for f’(problem[majority: 10,000) = .413 and for i’(problem|majority:
20,000) =.583.

Figure 17.4 plots predictive probability of an expenses problem for this model against parlia-
mentary majority (with approximate 95% confidence bands) and reveals a very clear pattern. The
likelihood ratio test of the model (and therefore of the effect of majority) is statistically significant,

A
G2 =13.9, p=.002, and AAIC =11.9 (LRaic = 384) favors the model containing the majority pre- t
dictor. At this stage it is worth considering other possible predictors. Adding political party to the o
model doesn’t improve the model fit once the 17 extra parameters are accounted for (AX]Z7 =-29.0, fl
AAIC=5.0).
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Figure 17.4 Predicted probability of expenses problem by parliamentary majority (W
approximate 95% confidence bands) for the expenses data
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rimportant. A similar mode| (groupmg minor partjes together as ‘Other’) adds only four extra Parameters, pyt

ry majority barely improves the fit and is not more informative (Ax2= 4.2 VNAIG = 3.8). Further predictors,
smallest to such as number of years sitting as an pp could be added to test additionga| hypotheses or refine the

0 most safe model (but are not considered here),

One of the striking features of Figure 17.4 is just how straight the slgmoidal curve jg for these
data. This suggests that the methods such a5 linear regression Or correlation wouylq give similar
results (at least for inference). Although the simple linear regression angd logistic reégression lead

' to similar inferences, the logistic "egression is the more correct mode| and should be first choice
when working with continuous predictors and independent dichotomoys outcomes. Even when
can arise if the overal| findings are similar (as for the éxpenses data) the predictions ang the interva) estimates
from the logistic mode| will be superior.
* http://markreckons.blogspot.com/
majority =
' 4.2 Deviance and mode] fit
nst parlia-
ttern. The
ignificant, An obvious royte to assessing mode] fit in logistic Iegression (gjven that the models are fit
jority pre- ted using ML methods) is tq determine the deviance of the mode]
rty to the observed values (zero Or one) for each
==29.0,

the deviance is:

If Y; represents the jth
of the N outcomes and 7 is it

S predicted probability,

N

Z—z[Y]In (ﬁj)+(1 ~-Y)In (1 —P,)]

Deviance — —2In(¢) =

Equation 17,15
The expression

within the Square brac
Ielated to the pj

kets is the loglikelihoo
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(and is closely
refore depends

ed probability js
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for each observation, thus resulting in perfect prediction. The deviance of a saturated model is
therefore always exactly zero, and there is no need to fit the saturated model directly. Attempting
to fit a saturated model will also produce errors in some software. Because its deviance is zero,
this implies that the deviance of any other model is expressed relative to the saturated model
(e.g., if Ds is the deviance of the saturated model and D, is the deviance of the null mode],
Do =Dgy —Ds).

The link between the residual deviance of a generalized linear model and SS;e;g,q Makes it
tempting to characterize the fit of the model in terms of the proportion of deviance or variance it
explains. Several different forms of R? analog have been proposed for generalized linear mod-
els. These are known collectively as pseudo-R? measures (because none perfectly mimic the
properties of R?). All pseudo-R? measures have major limitations (in addition to the problems
inherent in the use of standardized effect sizes - see Chapter 7). A major difficulty is that the
total variance to be explained in a generalized linear model tends to vary as a function of the
mean - and thus the proportion of variance explained is an ill-defined quantity (except in very
restricted circumstances). Ultimately, using a predictive power measure - based on the correla-
tion between observed and predictive values on the untransformed scale - is suggested (Zheng
and Agresti, 2000). This measure has similar limitations to those of common pseudo-R? mea-
sures, can be applied to other generalized linear models, and has a clear interpretation in terms
of the predictions of a model. For logistic regression it may sometimes also be useful to look at
the percentage of outcomes (successes and fails) classified correctly by the model, though this
approach has its drawbacks as well.”

17.4.3 Model checking and logistic regression diagnostics

It is one thing to assess the fit of a model, but another to detect or deal with any proble
In this section we'll briefly address residuals (and related leverage and influence statisti

collinearity diagnostics, sparse data and the phenomenon of complete separation. One furthe
issue - overdispersion — will also be mentioned, but will be explored in more detail in relation |
Poisson regression models.

A number of different regression diagnostics can be computed for generalized linear
els. The two main types are deviance residuals and Pearson residuals (related to the fit of
likelihood and Pearson x? statistics respectively). The raw residuals on the logit scale a
ally avoided because they do not have particularly good distributional properties (but ¢
used to assess linearity of the systematic component). Pearson residuals are calculated
the difference between observed and predicted probabilities. This is scaled by the estima
the standard deviation of the binomial distribution for each value. As the variance of a
Bernoulli trial from a binomial distribution is P(1 — P), this produces the equation:

The formula for deviance residuals is:

ep,= ( Y- B, ) \/—2 [¥iin (B) + (1 -¥) In (1 -B)]

=
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predictor values. While this seems like a good thing, it is not. Perfect prediction means that the
model cannot be fitted and no parameter estimates can be obtained. This can happen for any
regression model, but is unlikely for a truly continuous response (and rare for counts). In con-
trast, complete separation can easily happen when sampling dichotomous outcomes in a small
sample or if too many predictors are added to a model and it becomes saturated. The same
solutions that can work for sparse data (altering the study design or collecting additional obser-
vations) may also prevent complete separation. If complete separation arises due to over-fitting
then it will make sense to reduce the number of predictors, though collecting more data may be
the only viable option in small samples. Quasi-complete separation is also possible. This happens
if subsets of values for one predictor are tied on the outcome variable (e.g., all values coded one
for a predictor are associated with zero on the outcome variable). Quasi-complete separation is
harder to detect and leads to large and unstable SEs (similar to the effects of collinearity). It is
worth checking whenever the SEs are unreasonably large (and collecting more data is again
often the best solution). Adding information to the model in the form of a Bayesian prior may
also resolve separation problems, for the same reason that adding new data may provide a fix
(Gelman and Hill, 2007).

Overdispersion is a potential problem if the probability distribution of the generalized linear
model random component has a variance that is a function of the mean. Logistic and Poisson
regression are good examples. For the binomial distribution used in logistic regression, the
mean is P and the variance is I3<l ~I5>. As a consequence, the expected residual deviance
of the model Dy, is equal to v=N —qg—1 (the residual df of the model). This implies the ratio
Dyy/v=1 (though some variability is to be expected due to sampling error). Either the Pearson y2
or model deviance can be used to detect overdispersion using the estimate Dy;/v. This quantity
is an estimate of the overdispersion parameter ¢.8 Overdispersion causes the SEs to be too
small (and hence interval estimates will be too narrow and tests too liberal). It is also possible,
if somewhat unusual, to get underdispersion (and hence SEs that are too large). Overdispersion
parameters can be used to correct inferences (see Box 17.2) though this may not be the best
way of dealing with the problem.

If overdispersion is suspected, try first to gauge the extent of the problem. If the estimate of ¢,
is much greater than one then it is likely that the problem is serious enough to distort the analy=
sis. A number of things can cause overdispersion in a logistic regression model. These include
poorly fitting model (e.g., missing one or more important predictors), not including interacti
between predictors, and lack of independence between observations. Finding a better-fitting
model by adding predictors, removing predictors or including interaction terms may help resolv
the problem. If lack of independence is suspected (e.g., in repeated measures or clusterés
data), then it may be possible to model the extra random variation between observations eg
switching to a different random component or to a multilevel logistic regression model).

Example 17.3 Many of the methods for interrogating residuals in linear regression are availab
for logistic regression, but may be hard to interpret. Plots of residuals or influence (e.g., €0@

distance) are always worth checking. For the expenses data the residuals are not particularly exr
(studentized residuals range from —1.29 to 1.64). The influence statistics also suggest no rea .
concern (all Cook’s distances are lower than 0.01). Assessing overdispersion requires calculating

iTe!

overdispersion parameter. This both provides an estimate of the dispersion parameter and proy L
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correction to Sfs and tests. Doing so for the €Xxpenses data estimates the overdispersion Parameter at
1.002876 (c| )- The standard €rrors and tests are virtually unchanged.

correction factor for the SEs s v'1.002876 — 1.001437
larger after the correction.

This should not be s

urprising, because the
(see Box 17.2). Thus

each SE js only 0.14%

17.4.4 Multinomial logistic regression
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category (often the last outcome J)

is chosen as a reference cate
are estimated for the rémaining J

gory and one or more slopes
— 1 outcomes. This produces J

— I equations of the form:
By
In 15; :b0+b1X]lj+...+quq,j

Equation 17.18
7.

This models each of the J — 1 outcomes in terms of its log odds rel
script 7 is the index for all j— 1 Lo N observations (but to simpl
I subscript will be dropped for the rest of this discussion). N
because its predicted probability is a function of the probab

ative to an intercept. The syp-
ify presentation of the €quations the
O equation is required for outcome J
ilities of the other outcomes:

This is identical to logistic regression when J=2 and where 15/ =1-p, (the predicted probabi]ity
of a failure, if P, is g success).
For a model with two predictors and t

hree outcome Categories (labeled a, b and c)
regression equations are-

the/—1=2

In (?) =bo, + by, x| + by,

o

P
In <[3_b> =bob +bIbX1 +b2bX2

[of

Equation 17.19

This defines the log odds of outcomes g and b relative to the reference outcome category c.
What if you are interested in the log odds of a relative to b? Agresti (ibid.) explains how the log

odds of any two categories can be determined from the differences in their coefficients, By this
method, the log odds of ¢ relative to b are:

15‘7 fja IAJb
In — |=In =— | —-1In =~ |=(by. —b +(b; —b X1+ (by —b o
(Pb) (Pc> (PC> ( Oa Ob) ( la Ib) 1 ( 2a zb) ¢)

Equation 17.2(

This follows because odds are ratios of probabilities. Both the odds £, /8, and Py/Pc have a cor
mon numerator (and division on the untransformed scale is €quivalent to subtraction on the .
scale). It is entirely legitimate to use a formula such as that in Equation 17.20 to extract indi: v
ual coefficients. It is also possible to switch to another reference category (and this approad

superior if you want the SEs of the coefficients). This merely produces a change in sign !
log odds. The log odds of b relative to a for predictor X, are therefore equal to by, — bag. Th
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Third, the model treats observations as independent. Models such as ordered logistic regres-
sion and generalized multilevel models relax these assumptions. The latter potentially allows
all three limitations of a standard multinomial logistic regression model to be addressed (though
other approaches are possible).

17.4.5 Ordered logistic regression

If categorical outcomes are ordered, fitting a multinomial logistic regression model for
unordered outcomes ignores potentially crucial information about the data. Agresti (1996) dis-
cusses several approaches to the analysis of ordered categorical data. Of these, the proportional
odds model is the most widely adopted model for bounded ordinal data.!! The proportional odds
model assumes that N independent observations fall into a set of J ordered categories. These are
usually coded as a set of sequential integers (e.g., one to J). The coding of order should preserve
the natural or logical order of the outcomes, but there is no requirement for the intervals to
be equally spaced. Typical examples include grading of academic performance (e.g., where it is
not reasonable to assume that the difference between a grade ‘A’ and a grade ‘B’ is the same as
between ‘E’ and ‘F’) or Likert-style rating scales. Although ordinal outcomes lend themselves to
ordered logistic regression, a least squares regression model with a good fit may well produce
similar results (especially if the goal is hypothesis testing rather than prediction).

For discrete, ordinal outcomes the aim is to find a way of representing this order within the
logistic regression framework. Logistic regression is ideally suited to dealing with dichotomous
outcomes, and multinomial logistic regression extends this to polychotomous outcomes, by
breaking down the model into pairs of dichotomous outcomes. The same solution can be
adapted to deal with ordered categories. The key distinction is that ordered outcomes have
greater constraints on them than unordered outcomes. These constraints are met by modeling
the cumulative probability of each outcome rather than the probability of each separaté
outcome.

To see why using cumulative probability preserves the ordinal information in the data it
helps to look at a simple case. For a rating scale with /=3 possible responses, the outcomes
could be ‘disagree’, ‘neutral’ and ‘agree’. The cumulative probability of the first response
simply the probablhty that someone disagrees Pd,sagme The cumulative probability of the secor
response is Pdlsagree plus Ppeurar @and the cumulative probability of the third response is Pgisq
Preutral +f3agre@ = 1.2 The constraint here is that the cumulative probability increases a
the ordered outcomes; changes in a predictor either increase or decrease the probablll
greater agreement (they cannot do both). For instance, a change in X could not increase Piisa
and ngree at the expense of Ppeyrg. Such a pattern could easily be modeled in an uno
multinomial regression (that treats agreement and disagreement as separate categories I
than two ends of a continuum).

The proportional odds model therefore treats ordered categories as if they were a
logistic regression models for the J — 1 cumulative probabilities. As with unordered multing
logistic regression, these logistic regression models are estimated simultaneously (with th
straint that the cumulative probability for the last category P; equals one). In terms of equi
the J cumulative probabilities can be represented as: -

|

15(}/5]‘):151 +15] Equa f‘.l,‘
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on a one-unit increase in X. The cumulative probabilities are harder to interpret (e.g., the cumu-

lative probability for outcome J, the last outcome is one). Instead, the predictive probabilities

of the separate outcomes can be derived with a little arithmetic. The predictive probability of
outcome j can be defined as:

p(y:j):p(ygj)~P(Y§j—1) Equation 17.32

The predictive probability for an outcome is therefore the cumulati

ve probability for outcome
j minus the cumulative probability for the preceding outcome (if there is one). If / =3 (with
j=coded 1, 2 or 3) and the predicted cumulative probabilities are .36 and .82, the predictive
probability of j; is .36. It follows that the probabi

lity of j, = .80 — .36 = .44 and the probability of
ja=1-.80=.20.
The most obvious limitation of this form of ordered

tional odds restriction itself. Sometimes the effect of a predictor will vary between cut-points
and a more flexible model is required. Often, even thou

gh the proportional odds assumption is
unlikely to be met exactly, the odds will be sufficiently similar for each outcome that the pro-
portional odds model provides a pretty good fit. Som

e software (e.g., SPSS) will provide a null
hypothesis test of the proportional odds assumption, but often with large samples these tests

tend to reject the assumption even when it holds up quite well (Harrell, 2001). A better check is
to compare the coefficients between separate logistic regression models with identical predic-
tors for each cut-point. The proportional odds assumption implies that effects of a predictor on
the logit scale should be similar for each of these models. Modeling the effects of predictors at
different cut-points substantially increases the number of parameters to be fitted when J is large
(up to an additional J —2 effects per predictor). The assumption of proportional odds is rather
like fitting a straight line to a messy X-Y relationship. Looking for a curve that fits better than

the straight line might lead to over-fitting (unless there are ways to narrow down the scope of
possible models).

The independence assumption can also be a major limitation (
repeated measures models). Some specialist software (e.g., MLwiN)
tional odds models to be fitted for repeated measures data and also

be fitted for each intercept. Other approaches can also be used to re
assumption (see Agresti, 1996; Yee, 2010).

logistic regression model is the propor-

e.g., for rating data with
permits multilevel propor-
allows separate slopes to:
lax the proportional o

Example 17.4 Underwood et al. (2007) investigated perceptions of road safety in 119 chi
from two UK schools in years three, five and seven (roughly seven, nine and eleven years old). Th
looked at a number of measures, including a free sort task involving 20 pictures of road scent
Responses on the free sort task were coded and analyzed in several different ways. One analy

used multiple regression to predict the use of a ‘safe to cros

s’ code based on gender, year gro
and two other codes:

‘visibility’ (vis) and ‘other road users’ (oru). This analysis suggested t
safe.to cross codes were predicted by other road users for girls, but not boys. However, the
cross code occurred infrequently (either zero, one, two or three times). Because zero was th
common response the data are sparse (and less than ideal for multiple regression). One
alternative is ordered logistic regression. i

Afirst step is to fit a main effects only proportional odds logistic regression model with sa'fe to!
(stc) as the outcome and year group (three, five or seven), female, vis and oru as predictors

The
pro
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95% CI (Wald)

b SE Wald z OR Lower Upper
stc>0 —-1.026 0.530 -1.94 0.358 0.127 1.128
stc>1 —2.240 0.613 —3.66 0.106 0.032 0.354
stc> 2 —4.769 1.330 =5 0.008 0.001 0.115
year 5§ —2.873 1.124 =075 0.057 0.006 0.512
year 7 —0.263 0.572 —2.55 0.769 0.251 2.358
female —0.472 0.631 —0.46 0.624 0.181 2.146
oru ~0.091 0.353 -0.26 0.913 0.457 1.825
female x ory, 1.403 0.607 2.31 4.066 2.146 13.348

Note: The Coefficients and inferences arise from a mode| including year group, gender, other road users and a
gender by other road user interaction,

stc>0 26377
stc>1 .09619
stc> 2 .00842

The conditionaj probability that stc — g is 1 minus the sum of
Probabilities of each outcome (conditi

stc=0 73624
stc=1 16757
stc=2 .08777

stc=3 .00842
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Cumulative probabilities incorporating predictor effects can be obtained from the regression
equation in probability form:
ebo),(—2.873year5— 0.263year7—0.472 female—0.0910ru+1.403 femalex oru

= =
P(Y =stc) bow—2,873year5—0.263year7—0 472 female—0.0910ru+1.403 femalex oru

1+e

The effect of particular interest here is the female x oru interaction. This indicates that the oru effect
is negligible for males (OR=e=2907 =0.91) but positive for females (OR=e'-4?> =4.07). So the odds
of a moving up a threshold (to the next highest stc value) increase by roughly four for a one-unit
increase in oru, but only for girls. Thus the ‘other road user’ codes in the free sort predict safe to
cross responses in girls, but not boys. Figure 17.5 shows the predicted probability of zero, one, two
or three safe to cross codes as a function of the sex of a child and the number of oru codes for year
three children. The other year groups show a similar pattern.

oru=0 oru=1 oru=2 oru=3 oru=4 oru=5
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Figure 17.5 The predicted probability of zero, one, two or three safe to cross codes as a
function of other road user (oru) codes by sex of child

Note: The upper panels show the predicted probabilities for boys (solid lines). The lower

panels show the predicted probabilities for girls (dashed lines).

This illustrates the potential impact of the interaction effect. For boys (upper panel, solid lines) !,_
presence of an oru code has little impact on a safe to cross response, whereas the probability of such
a code increases markedly for girls (lower panel, dashed lines) as the number of oru codes increases
Although this model produces broadly similar results to the multiple regression it would pro
not be a good idea to rely on either analysis too heavily. The findings suggest an interesting af
potentially important difference in how the boys and girls assess road conditions, but the data @
too sparse to warrant high confidence in these conclusions. The proportional odds assumption o
be checked for fitting separate logistic regression models for each cut-point (see Harrell, 2001).

17.5 Modeling count data

There are several potentially reasonable approaches when an outcome variable.
independent counts. The starting point for modeling count data is very often the choice b
a least squares linear regression model and Poisson regression. The residuals of least s




jion

fect
dds
Init
2 to
wWo
ear

cross

cross

ver

Modeling discrete Outcomes 95
M\\\\\N\\\

model. Models Specialized for co
relative to least Squares alternatives (
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and negative binomial regressi

see Atkins and Gallup 2007, Hilbe, 2007).

Somewhat restrictive, alternative models such as quasipoisson
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excess zeroes will rare

or without g transform

“Z€I0 counts in another comp
ly be adequately modeled using normal linear r.

ation) and present 3 particularly difficujt challen

cgression models (with
ge for researchers,

parameters (e.9., in a model with n
Culated from either the Pearson 2

Both estimates should be similar in magnitude.

The expected value of ¢ in a mode] that is neither overdis

Owing to sampling error, it wil| hardly ever be exactly one for
Suggest overdispersion, whij

persed nor underdispersed is one.

real data. Valyes greater than one
e values less than one suggest underdispersion (rare for logistic regres-
sion, but g plausible, if infrequent, outcome in Poisson regression). Some authors (e.g., Field, 2009)
'eCommend the cautious approach of picking the more extreme statistic to assess overdispersion,

Ore commonly, people report the Pearson x2 estimate of ¢ (and the choice of statistic js rarely
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critical). It is even possible to construct a NHST for the overdispersion parameter, though this is
generally undesirable; what matters is the degree of overdispersion (or underdispersion) and not
whether it is present.

The effects of overdispersion are to underestimate the variance and therefore the SEs, while under-
dispersion overestimates them. This is one reason why more emphasis is placed on the former rather
than the latter. The overdispersion parameter, being an estimate of the ratio of the true variance to
the model estimate can be used to correct the inferences. This is usually accomplished by adjusting
the SEs. The corrected SE is /¢ larger than that in the overdispersed or underdispersed model,
because the sampling variance of the statistic is proportional to the variance of the model. If the
uncorrected SE for a parameter estimate is 6, the corrected SE is therefore: :

NG

This should explain why ¢ > 2 is considered a serious problem. If ¢ =2 then the o will be too small
by a factor of 1/+/24.71. This is nearly 30% smaller than it should be. Even if ¢ is as low as 1.2
the uncorrected SEs will be almost 10% smaller than required. Many researchers are cautious about
overdispersion and take steps to deal with it. Correcting the SEs manually is one method, but can be
cumbersome for complex models. You could also incorporate the overdispersion parameter (or an
equivalent parameter) within your statistical model (e.g., using a quasipoisson or negative binomial
random component in place of the Poisson distribution).

Overdispersion or underdispersion is a difficulty for all forms of inference (not merely NHSTs),
and the overdispersion parameter can be used to correct interval estimates (e.g., by adjusting
the SE for a Wald Cl). A correction to AIC quasi-AIC (QAIC or gAICc) has also been proposed

(Lebreton et al., 1992; Bolker et al., 2009). This uses ¢ to rescale the deviance. Thus gAIC would be
computed as:
: qpaic=—210 | ¢ Equation 17.33
Pc

The extension to qAICc (for small samples) is straightforward:

2k (k+1)

—2In(0)
Rl vy

AlC-= —~ 2k +
e Pc

Equation 17.34

Here ¢ is the best available estimate of the dispersion parameter — usually the estimate from the‘
most complex model under consideration other than the saturated model (Richards, 2008).

17.5.1 Poisson regression

Outcomes in Poisson regression are assumed to be independent counts with a Poissq !
tribution. This distribution has a single rate parameter % (lambda) that is both its me
its variance. In a Poisson regression model, the goal is to model » as a linear function €
predictors. The main complication is that count data are bounded at zero (they can n?t
ative) and, particularly when counts are small, a linear (additive) function for predictir
problematic. B

Poisson regression is a form of generalized linear model in which a logarithmic link ft
is employed (Agresti, 1996). The random component consists of the ¥ counts assumed |
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a Poisson distribution_ The canonical link function is.

&M =In(y)
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Equation 17 35
Given that the rate

Parameter is the mean of a Poisson distributi
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gression, this €quation in the general
al untransformed outco

on to both sideg gives:
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me (the y; counts)
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Equation 17.37
Although Equation 1737

0 effect. The multiplicatj
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7 could be €xpressed as:

N equation. For

Yi=ebo x gbixy; X ... x ebaXgi

Equation 17 39
The interpretation of Poi

18son coefficients jg less complex than for logistic r
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fer, this can be
e the bercentage increase of

Equation 17 40
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to the Proportion of change (Gelmga
€qual to a 0.08 or 8% i
Would expect the o

quation can be rearranged
on the left-hand side. Applying the

0 be expressed
ent gives a generalized linear

Equation 17.3¢
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sample tests can be obtained from the asymptotic Wald statistics (though profiling gives more
accurate CIs in small samples). The deviance of a Poisson model is:

N ”
Deviance=-21n(¢) =2 Z (yj In (Jf) - i —j/l-)> Equation 17.41
i

i=1

This calculation requires only y; (the observed counts) and ; (the predicted counts from the

model). The difficulty therefore stems from estimating parameters that maximize the likelihood '
(as opposed to the formulas themselves). This expression implies that the deviance residuals,

the square root of the contribution of each observation to the total deviance, take the form:

ep, = <J/1 —Ji ) /9 ( i In G/Q) — (i —j/,)) Equation 17.42
lyz =W I

The Pearson residuals are the difference between the observed and predicted counts divided by
their estimated SD. This SD is estimated from the square root of the estimated mean (which is
also the variance of the Poisson distribution):

ep =42 Equation 17.43
i

To obtain approximately constant variance for the residuals it is usual to get the adjusted or
standardized residuals. Again this involves dividing by /1 —h;. The standardized residuals are
preferred for assessing the distributional assumptions of Poisson regression, though studentized
residuals (calculated in the usual way) are superior for detecting extreme observations.
Corresponding influence measures such as Cook’s distance can also be derived.

For model checking, deviance residuals tend to have better distributional properties than
Pearson residuals. In large samples the approximate x? distribution of the deviance and can
be used to assess the goodness-of-fit of the model (though as always, comparisons between
models are preferred). Plots of residuals can highlight extreme observations and sometimes
reveal lack of independence (e.g., by plotting standardized residuals versus a potential SOUrce
of dependency such as order of data collection or time of day), or departures from linearity (€.
plotted against predictor or fitted values), but are less useful than for least squares models.

A serious concern for any Poisson regression model is overdispersion (see BOX 17.2).
Overdispersion (and sometimes underdispersion) occurs because a Poisson distribution has:
single rate parameter that is both its mean and its variance. As in logistic regression, its varianc
is therefore a function of the mean. Poisson regression models can underestimate or OVEr&
timate the true variance if the population of counts being modeled is more or less va
than expected by its mean. For data where each observation is a count accumulated over
same units (e.g., a count of six represents six arguments for the same couple) overdispers
or underdispersion tends to be very common. Lindsey (1999) argues that correctly dispe
Poisson models are plausible only if the observations are accumulations of independe
quencies rather than counts per se. While overdispersion is common, it is still importak
explore a number of models before concluding that overdispersion is both present and:s
cient to distort the results. A poorly fitting model will make it difficult to gauge the ?{
overdispersion or underdispersion correctly. For repeated measures data, multilevel POISSE
multilevel logistic regression should also be investigated. |
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None of the intervals includes zero (though the effect of operations seems to be measured rather
imprecisely).

There are several things worth checking at this sta
points (e.g., Cook’s distance of .53 and .64),
df. What about overdispersion? The residual
2.68. For Pearson x2, =28.2/12=2.35. B
surprising given the paired mortality count

ge. Several of the hospitals have quite influential
but this is hardly surprising in a model with low residual
deviance is 32.8 with 12 df. This suggests p=32.1/12=
oth statistics indicate substantial overdispersion (not too
s from within the same hospitals).

17.5.2 Offsets and rates

The Poisson distribution is often used to com

pare rates of occurrence of discrete events spread
over time or over an area. Unlike a simple P

oisson model, Poisson regression treats the rate as
an additive function of a set of predictors. Modeling rates in this way is straightforward when

the exposure to events is equivalent for all observations. Under such circumstances the model
for the rates and the counts is equivalent. If a mean of ten counts were observed in a period
of ten seconds, this is a rate of ten per ten seconds or (less clumsily) one event per second.

In these situations it is possible to determine the expected rate from the predicted mean count
after fitting the model. The rate can also be o}

btained directly from the model by adding an
offset. If the opportunity to observe events is not equivalent for all observations, then adding an
offset is a requirement.!3 From this perspective, an offset is merely an adjustment to a Poisson
regression model that permits the predicted outcome to be interpreted as a rate rather than a
count when exposure varies between units. 14

To understand how an offset works, envisage a data set that consists of counts sampled
over a period of ten days. These might represent the number of arguments for a married couple
or accidents reported in a workplace. The data can therefore be represented as number of
events (arguments, accidents) over a given time period (ten days). The number of events is the
observed count Y and the time period is the exposure E. The rate is therefore defined as Y/E8
Even in a laboratory experiment it may not be possible to fully control the exposure period. The

eXposure may vary naturally, by design or by misfortune (€.8., some workplaces or couples may
contribute data for only seven or eight days rather than the full ten). To model the rate noy
requires a regression equation of the forms

| In (%) =bg +bIX11j+..-+ququ Equation 178

As the logarithm of a ratio is the difference between the logarithm of the numerator ¢
denominator, this model can also be expressed as,

r

In(y;) —In (Ej) = by +b1Xy i+ 4 bgXg Equation |

where the —In (E;) term is the offset. Most software for generalized linear models ha§ OF
to include an offset. If the software doesn't, it can still incorporate an offset (provid
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In(y,)=In (E)) +bo + bixyi+...+ bagxy, Equation 17.4¢

ich the natural logarithm of the €xposure has been

(Ei) has been forced to equal one,

So an alternative (and more general) way of thinking about an offset is that it involves adding

a predictor with g slope of exact]

as given rather than €stimated). Thj I to fit if the goal is to de-confound the
effects of differentia] €xposure from the outcome. There

tcomes cannot be converted to
or. To model this mortalit
0s) as an offset to the mo

a rate per 1000 Operations by
y rate involves adding the logarithm
del. The model with no offset was:

In (morta//'ty) =bo + by pre + bz low + b, op.k

The model with the offset becomes:

In (mortality) = bo + by pre+ b, low +1In (op.k)

Fitting this model gives the prediction equation:

In (mortality) = 1.604 +0.655 pre + 0.768 Jow +1n (op.k)

Expressing this as a rate gives:

mortality

- e1.6041—0.655 pre+0.768 low
op.k

This mModel has devia
df = 15 AlC 104.3)

df and AIC =875, Relative to the nyj| model (G2
=20.8, AAIC —

the main effects model with the offset provides a superior fit (Adf=2,
—16.8). The profile likelihood Cis for the rate ratios are-

pre  95% CI[1.25, 3.02]
low 959% C| [1.39, 3.43]
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Although the coefficients have changed slightly, the biggest shift has been in the intercept.

The predicted mortality rate per 1000 operations for a hospital in a low-income country after the
surgical checklist has been introduced is:

mortalit
; Joan @1-604+0.655x0+0.768x1 _ 1.604+0.768 _ 12372 _ 10.7
op.

For a similar hospital without the checklist, the rate would be 20.6. The overall ratio (risk ratio) for
mortality post-checklist is .52, 95% CI [0.33, 0.80], indicating a substantial decrease in risk.

The overdispersion parameter (calculated from the Pearson x?) has also decreased slightly from
2.35 to 2.14. This is still a clear signal of overdispersion.

17.5.3 Negative binomial and quasipoisson regression

Adjusting standard errors for a fitted Poisson model using an overdispersion parameter can be
time-consuming and rather inflexible. A more satisfactory approach is to model the dispersion
of the data separately from the mean - using a quasipoisson or a negative binomial model.!®
Quasipoisson regression does this by fitting a model with a random component in which the
variance is a linear function of the mean determined by an additional parameter:

o7 =pu; Equation 17.47

This parameter has been labeled ¢ because it is functionally equivalent to an overdispersion
parameter (the difference being that it is incorporated directly into the model rather than being
applied as a correction post hoc). A disadvantage is that software that fits a quasipoisson
model can't readily assess its relative fit to the Poisson model. It provides the same parameter
estimates, but with revised standard errors.

Quasipoisson isn't the only option. The negative binomial can be adopted as an alternative
to the Poisson distribution. The negative binomial distribution is usually first encountered &
a distribution for modeling n, the number of Bernoulli trials to observe r failures for a fiXes
probability P.!® For this reason it is convenient to treat the parameters of the negative bino
in a generalized linear model as x and o2 (which can be expressed as functions of P @

and which are both constrained to be greater than zero. Cook (2009) shows how the mean€
negative binomial distribution can be written as:

(1-p)
P

w=r Equation 17

For modeling the dispersion of count data, the crucial property of the negative binomial i
the variance can be expressed as:

(1-P) 1,
Pz SHt L

2=r Equation

Thus, at one level, the negative binomial distribution is just a convenient probability
with an extra parameter. What makes it particularly attractive is that when r is 1arge, /1
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your software does not offer quasipoisson or negative binomial regression as an option. gAIC or
gAICc can also be obtained manually if required. For instance, qAIC for the main effects model with
offset is 41.33, while qAIC for the two-way interaction model with offset is 43.33. This suggests that
the simpler model is slightly more informative (AGAIC = 2.0).

Running the quasipoisson regression in R produces the corrected SE for each coefficient auto-
matically. Even better, it also provides profile likelihood Cls for the quasipoisson model. Fitting this
model with the offset In(op.k) will necessarily produce identical coefficients to those from the Poisson
regression. The 95% profile likelihood Cls for mortality rate ratios from the quasipoisson model
(corrected for overdispersion and including the offset) are:

pre [1.03, 3.75]
low [1.14, 4.30]

Both Cls are wider than before. In addition, the interval estimate for the pre-post difference in
mortality now only barely excludes one. The p value from the Wald test is .067 and from the more
accurate likelihood ratio test it is .041.

Fitting a negative binomial model is also an option here. The negative binomial regression is
more than a linear adjustment to the variance - it fits a different distribution — and so may produce
different parameter estimates. In a negative binomial model with the same predictors and an offset
the prediction equation is:

In (mortality) =1.613 +0.653 pre+ 0.736 low + In (op.k)

This model has deviance 20.6 with 13 df and AIC=84.6. The coefficients are indeed slightly different
(e.g., the difference between pre and post checklist mortality is a little larger). The profile likelihood
Cls for the mortality rate ratios are:

pre [1.06, 3.52]
low [1.15, 3.85]

Both 95% Cls now exclude one and the likelihood ratio p value for the test of time is .031.

The choice between negative binomial and quasipoisson is not necessarily an easy one (though
they often produce similar models). Given that the negative binomial is perhaps a more principled =55
approach to overdispersion it would be my default choice. Here both models point to very similar
models of the data (and it would be unwise to focus too much on the difference in p values).
Diagnostics such as Cook’s distance also hint at a marginal preference for the negative binomial
model, which has slightly lower influence statistics (all now < .30). :

17.5.4 Dealing with zero-inflated count data

A feature of count data is that zeroes are not infrequent, even if the rate at which events o
exceeds zero. Poisson and negative binomial models both assume a rate of occurrence g :
than zero, so (in these models) the absence of events is either bad luck or indicates an €Xpe .
too narrow to observe them. This handles the presence of zero counts for some phen_
but is unreasonable for others. What if some of the zero counts represent a true absgnc’e‘v 0!
event; measurements on a unit that simply doesn't generate them? A well-known illustr
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is for Criminal behg

vior. A study might look at 4 large sample of teenagers to determine what
Cor factors influence violent criming] behavior. Some of the teenagers will commit one or more
with violent crimes, byt the majority (if the sample is Iepresentative) won't. One way to consider this
that is to suppose that there are two Subpopulations of teenagers - one with a zero rate of violent
crime and one with a non-zero rate, 18 A potential solution s to fit separate Statistical models:
uto- one to predict whether g teenager has a zero or non-zero rate of violent crime and one to predict
this the number of crimes for the Jatter. This Strategy leads to g class of models termed ‘mixture
sson models’ (Atkins and Gallup, 2007). For the first model a way of predicting the occurrence of an
odel event is required. Coding occurrence gs one and non-occurrence s zero leads to the problem of
predicting g dichotomous outcome from a set of predictors, and thus g logistic regression model
can be employed. To predict the non-zero crime counts severg] models could be considered, but
Poisson and negative binomia] T€gression are the obvioys choices (depending on the dispersion
of the counts). v
e in A zero-inflated Poisson regressiop is therefore a mixture model with a Poisson regression
1ore nested within g logistic regression:
i
n is Y ~ ] © e Pl Equation 17.50
os Yy L Poisson (eb“b'xlrf*'“*b‘fxq") with Py > 0) =P q ) J
fset i
A zero-inflated negative binomia] regression is a mixture model of the form:
0 with P(Y:O):I—Pj .
Y~ flm) { ~ NB (ebo+b1xu+..,+quq,;lUz) with P (v 0 =P, Equation 1751
‘ent
»od
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(a) Poisson (b) Zero-inflated poisson (c) Zero-inflated negative binomial
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Figure 17.7 Counts sampled from simulated data, with =7 and either (a) a Poisson
distribution, (b) a zero-inflated Poisson distribution with P=.2, or (c) a zero-inflated
negative binomial distribution with P=.2 and r=0.2

Modeling the data as a mixture in this way can lead to difficulties of interpretation. Perhaps
the most important point is that it will always be safer to interpret the overall fit and predic-
tions of the model rather than interpret the components separately. Zeroes in the model arise
from both components, so interpreting the components in isolation could lead to misleading
conclusions. An analogy here can be made with interpreting interaction terms in a regression
model; interpretation of the product term in isolation will be misleading relative to plotting
the predictions of the model. One situation in which the separate interpretation of the compo-
nents can be defended is if there is strong theoretical justification for the view that a mixture
of two populations is being modeled. If this mixed population interpretation is appropriate then
inferences based on separate components can be restricted to the population of interest. If this
interpretation is not justified there may be advantages to switching to a different approach such
as a hurdle model. A hurdle model also separates performance into two components, but one
component (typically a logistic regression) models all the zeroes, while the other component
(a truncated Poisson or negative binomial) models the non-zero counts (see Zeileis et al., 2008).
Hurdle models and zero-inflated models tend to produce very similar overall fits, so the choicé
between them relates to the interpretation of the separate components. In a hurdle model i
easier to separate out the effects of predictors on zero responses and non-zero responses.

17.6 Modeling discrete outcomes with correlated measures

The generalized linear models considered so far have all assumed independent observa
The random component of the models has distribution such as the normal, binomial, Poiss
negative binomial that requires independence. In the case of a normal generalized linear me
it is possible to develop models that explicitly account for the correlation and assume indé
dence of residuals. In addition, for both logistic regression and Poisson regression, €O
observations can be a cause of overdispersion (or even underdispersion). Modeling the
sion (e.g., using negative binomial regression) may also provide a partial solution to p
with correlated or repeated outcomes. A more principled approach is possible by sett
generalized estimating equation (GEE) or a multilevel generalized linear model (see Chapte
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re binomial More restrictive, but simpler approaches also exist for some Situations (see Agresti, 1996). One
well-known approach, for working with paired dichotomies, is illustrated here.
17.6.1 Logistic regression with paired observations
A relatively simple approach to dealing with eépeated or correlated Mmeasures where oy;-
comes are dichotomouys Is possible for paired data (€.8., from matched pairs or repeated
e Measures designs). The approach is known as conditional maximum likelihood or conditional
’:‘0 logistic regression. Agresti (ibid.) shows how this is related to simpler procedures such as
McNemar's test of change in 2 x tables (and can be extended to more complex study
designs).
3 For paired data, the model of interest is probably of the form
>-inflate
Py .
In (1 P) :boJ+b1x][,j+...+quq,,j Equation 17.52
— by
Perha‘ps This looks to be g regular logistic I€gression except that the intercept by is a random vari-
i pl‘ed']C- able equivalent to g subject term in a one-way repeated measures ANOVA . Unfortunately, fitting
del arise multiple intercepts cayses estimation difficulties if there are large numbers of participants (ibiq).
islead}ng Conditional logistic regression works by eliminating the subject effect from the likelihood esti-
‘Bressian mate entirely. The conditional maximum likelihood is therefore estimated for the parameters
plotting (in the sense that the estimates are all conditiong] on the subject termy,
+ COmPSy This can be done using specialized Software, but it is also possible to arrive at the conditional
Iixture estimates using standard logistic reégression software. This is done by fitting a no-intercept
late the.n model with a constant as the outcome (e, Y=1 for a] cases) and with the difference
st. If this between the paired cases (g series of values equal to —1, 0 or 1) as the predictor. Applied
ach such 0 a 2 x 2 table, the difference between the deviance of the null and residual mode] would
but ong be roughly €quivalent to the more familiar McNemar test. However, unlike the McNemar
nponent test, other predictors can be added to the model. These are included as additiong] predictors
[-'200_8)' (along with the differences) in the usual way. If the cases differ in term
edcetllci)tlc;: tor value it is also
o)

possible to use the pet
Vvariable,
s€s.

4

are several controls fo
Tequire different solutio
rather than being explj

of repeated o
ns. A final issue is that the random effect i

citly modeled (as it would be in a my]

{
I' correlated measyres designs

{
Streated as a nuisance variable “
tilevel model).

Example 17.8 Toill
Case-c
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Controls
no prf  prf
Cases  no prf 8 4 12
prf | 17 ol] 18
25 5 30

To run a conditional logistic regression using standard logistic regression software requires data
arranged as two columns: one for cases and one for controls. As there are 30 case-control pairs,
there will be 30 rows. Of these, one row will contain one for both cases and controls (indicating
both have the potential risk factor). Seventeen rows will have one entered for cases and zero for
controls. Four rows will have zero for case and one for controls. The remaining eight cases will have
zero for both cases and controls. For the analysis you will also need a column of constants (with 30
rows containing one in each cell). Last, you will need a column of differences (created by subtracting
the control column from the case column).

After setting the data up as described, the next step is to run a logistic regression with no intercept
and with the column of constants the outcome. The model has one predictor: the difference scores
(though it would be possible to add others). The cases and controls are not entered into the analysis
directly — they are just used to create the difference scores. The log odds estimated from this model
(for the difference predictor) are the log odds of cases having the risk factor relative to controls.
These log odds are 1.45. The corresponding odds ratio is therefore e!45 =4.25, or .81 expressed as a
probability. This odds ratio is identical to that obtained from the McNemar test (17/4=4.25). Using
profile likelihood, the 95% Cl for the odds ratio is [1.57, 14.77]. The likelihood ratio or deviance test
is: G2 (1, N=30)=8.66, p=.0032.

This procedure ought to work with most logistic regression software (but may not in practice).
It is also possible to ‘trick’ other procedures to run the analysis — including survival analysis in SPSS
or R (though this requires data arranged in a slightly different form).

17.7 R code for Chapter 17
17.7.1 The logistic function

The logistic function can be plotted via several routes. Figure 17.1 used the curve () functior
and specified the equation directly:

curve (exp (x) / (l+exp (x) ), ylab = ’Probability’, xlab = NA,
xlim=c(-5,5), lwd=2, lty=3)

This shows how the predictive probability depends on the predictors (in this case X)-. Itis ¢
instructive to see the probability density plotted against that of the normal distribution (&
Figure 17.2). The normal distribution needs to be scaled to have the same standard d
(defined by the first command below). The remaining functions plot the density of a s

logistic distribution and add the scaled normal on top (with an appropriate legend).
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logis.sd <- pi/370.5
curve(dlogis(x), xlim:c(—S,S), vlab = ’Probability density’,
lwd=1)
curve(dnorm(x,O,logis.sd), lty= 3, add = TRUE, lw=1.5)
legend(l.6, 0.23, legend = c(’Logistic', "Scaled normal’), lty
=c(1,3), Cex = 1, lwd:c(l.S,l))
Note that a similar figure to that in Figure 17.1 could have been obtained directly using the cdf
or inverse quantile function for the logistic distribution. This is simpler, but hides
€quation (which is worth be

the form of the
coming familiar with)

curve(plogis(x), x1im =e(=5,5))

group membership or the - . Usin
need to type in lots of numbers (e.g., rep(0,26) repeats the val
Vector specifies the 8roup (zero for no suggestion and one for sugg

U€ zero 26 times). The first
the response (zero for no Scary dream and one for scary dream)

estion). The second Specifies

group <- c(rep(0,26)

¢ rep(l,21))
scary <- ¢(1

¢ rep(0,25), rep(1l,7), rep(0,14))

The logistic regression is ry
using a formula simj]
fied for the random C

N using the gim() function. This Specifies a general
arto that of the 1m () functi

On. One difference is that a family
omponent of the generalized linear model. This defaul

linear mode]
is now speci-
tsto fami ly=normal.

glm(scary ~ group,

i
fl |
family:binomial(link = logit))

f \
glm(scary ~ family:binomial)

group,

ing. However, because “
ivered slightly differently, there can be differences in how ‘
models) created by the two functions,

f
summary () function for the model:

functions act on objects (
Wald tests are given by the

subbot .mod <- glm(scary ~

group, family:binomial)
summary(subbot.mod)
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anova (subbot .mod)
dropl (subbot.mod, test = ‘Chisqg’)

The confint () command gives the profile likelihood CIs for generalized linear models.
confint (subbot.mod)

As dummy coding is being used for the grouping variable it is also very simple to reverse the
coding. The main reason to do this is simply to change the intercept to obtain the CI for the
other group:

summary (glm(scary ~ I(1 - group), family=binomial))

confint (glm(scary ~ I(1 - group), family=binomial))

The usual Pearson x? test of independence can be obtained by creating a contingency table and
using chisq.test ():

ctable <- matrix(nrow=2, ncol=2)
ctable[1:4] <- c(1, 7, 25, 14)
ctable

chisqg.test (ctable, correct=FALSE)

17.7.3 Interpreting logistic regression coefficients (Example 17.2)

Example 17.2 modeled the effect of a continuous predictor — the electoral majority of a UK
member of parliament - on a discrete outcome (whether there was a reported allegation of
expenses abuse). As the majority data range from 37 to nearly 20,000 it is convenient to rescale
the majorities by expressing them in units of 10,000:

expenses <- read.csv(’expenses.csv’)
majority.10k <- expenses$majority/10000

The model with majority as predictor and problem as outcome can then be fitted using glm() -

model.10k <- glm(problem ~ majority.10k, family=binomial,
data = expenses)
summary (model.10k)

Wald CIs on the logit scale are computed by adding or subtracting the appropriate margin @
error (e.g., +1.96 SE for a 95% CI). However, the profile indicates the likelihood CIs that she
be more accurate:

confint (model.10k)

In most cases the odds ratios are easier to interpret than the logit scale coefficients. The €IS
the odds scale can be obtained by exponentiation:

exp (model.l0kScoefficients)
exp (confint (model.10k))
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The predictions for €ach MP on the logit scale are €asily obtained using the predict ( ) function.
To change the scale to the predicted probabilities (by using the inverse of the link function)
type='response’ can be specified. Alternatively the fitted values of the model can pe used
(as these are calculated on the untransformed résponse scale) Compare the following outputs
predict(model.lok)
predict(model.lok, type:’response’)
EtEe model.10k$fitted.values
" the
Plotting predicted values on the probability scale VEIsus a predictor such as majority is now
easy:
and

plot(expenses$majority,mod

el.lOk$fitted.values,
ylab:’Probability(

Expenses problem) ’, xlab:’Majority’)

. 4. Figure 17.4 gJs
confidence bands. This is done by using the predict function to obtain Standard errors for 20,000
OI 50 predicted new valyes (with a range of zero to two for the majority variable scaled in units
of 10,000) and using these to calculate a margin of error at eac

h point. Adding or subtracting |
these to the fitted values gives upper or lower bounds for the log odds.

0 adds approximate Wald

maj <- data.frame(majority.lOk = seq(0

I [

[

+ 2, 1/10000)) J

moe <- predict(model.lOk, newdata=ma7j, se.fit:TRUE)[[Z]] * s

UK Qnorm(.975) |

1 of ub <- predict(model.lok, newdata=ma7, se.fit=FALSE) + moe f 5
sale 1b <- predict(model.lOk, newdata=ma7, se.fitzFALSE) - moe

Adding these to a pl

Ot lines () joins the points and gives the appearance of a smooth function:

| i
lines(c(O:ZOOOO),exp(lb)/(1+exp(1b))
lines(c¢ ¢

+ col='dark gray’)
O:2000O),exp(ub)/(

1+exp(ub)), col='"dark gray’)

The rest of the €Xample considers the deviance and AIC for the model:

anova(model.lOk,

\
test = "Chisqg’)
dropl(model.lOk, test = "Chisqg’)
|
model.null <- glm(problem ~ 1; family=binomial, data =
expenses)

AIC(model.lOk) = AIC(model.null)

LR.aic <- 1/exp((AIC(model.10k) - AIC(model.null))/Z)
LR.aic

The mode| isn't improveq by adding party affiliation (8iven that this requires an extra 17 df) or
€ extra foyr para

meters when minor parties are categorized as ‘other’.
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all.parties <- glm(problem ~ majority.l0k + factor(Party),
family=binomial, data = expenses)
dropl (all.parties)

main.parties <- glm(problem ~ majority.10k + Lab + Con +
LibDem + SNP + Other,

family=binomial, data = expenses)
dropl (main.parties)

Note that if the conventional significance test is applied for the all.parties model the more
complex model is a statistically significantly better fit:

dropl (all.parties, test = ’Chisqg’)

This is a good example where throwing predictors at a model will often produce a substantial
shift in fit. This is a doubly bad model; because it ignores the problem of over-fitting and because

some of the smaller ‘party’ labels are for MPs who had been ejected from a main party because
of expenses allegations.

17.7.4 Model checking in logistic regression (Example 17.3)

Quantities such as the standardized and unstandardized residuals, Cook’s distance and leverage
can be obtained from a g1m() model in the same way as for a linear regression model.

cooks.distance (model.10k)
resid (model.10k)

By default the residuals are the working residuals of the model (on the transformed scale - not

in terms of the untransformed response). The standardized and studentized residuals may also
be useful and can be obtained with familiar commands:

rstandard (model.1l0k)
rstudent (model.10k)

The summary command also provides the dispersion parameter used for the model. This should

be one for a logistic regression, and refitting the model as a quasipoisson model gives a Slm
method to extract the dispersion parameter:

-~ A = A e

summary (model.10k) $dispersion

model.1l0k.q <- glm(problem ~ majority.10k,
family=quasibinomial, data = expenses)
summary (model.10k.q) Sdispersion

17.7.5 Ordered logistic regression (Example 17.4)
The traffic data used in this exafnple can be read into R from an SPSS file.

library (foreign)

traffic <- read.spss(’traffic.sav’, to.data.frame:TRUE)



Modeling discrete outcomes 7713
o \M\x\\:\\\m&\ .

To run an or

package and polr() in Mass. The
function seems to cope best. The followi
predictor visg.

install.packages(’rms')
library(rms)

o traf.me <- lrm(stc ~ female + year + oru + vis, dataztraffic)
traf.me
traf.null <- Irm(stc ~ 1; data:traffic)
traf.null
wtial .
use P A better mode] drops vis and there is also some indication that the fit is improved by adding
use the female:ory interaction
traf.me2 <- lrm(stc ~ female + year + oru, dataztraffic)
traf.int <- lrm(stc ~ female + year + oru + female:oru,
data:traffic)
traf.me2
age traf.int j
The formula for the traf.int model could be represented more succinctly as stc ~ year +
female*ory. ‘
not ’
Iso - ‘

17.7.6 Poisson regression (Example 17.5)

Example 17 5 returns to the surgical checklist d

different hospitals, using data in the ‘checklist.cs
the predictors. 1n thi

effects mode] adds

checklist <- read.csv(’checklist.csv’)
op.k <- checklist$operations/1000

mort.me <- glm(mortality ~ time + op.k + income,
datazchecklist, familyzpoisson)

summary(mort.me)

For the difference in deviance and |

ikelihood ratio test versus the null model use the anova ()
functiop.

anova(mort.me, update(mort.me, ~ 1), test = ‘Chisqg’)
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The model with all two-way interactions can be tested in same way:

mort.int <- glm(mortality ~ (time + operations + income)”2,

data=checklist, family= poisson)

anova (mort.me, mort.int, test = ’‘Chisqg’)
AIC (mort.int) - AIC (mort.me)

The CIs (using profile methods) for the log scale and the count scale are given by:

confint (mort.me)

exp (confint (mort.me))
Residuals and Cook’s distance can be obtained with the usual commands:

residuals (mort.me)

cooks.distance (mort.me)

The residual deviance obtained directly from the model object could also be calculated from the
residuals directly:

mort.me$deviance

sum (residuals (mort.me)”2)

The Pearson x? statistic of 28.2 is also easy to calculate from residuals, but it is necessary to use
the Pearson residuals:

sum(residuals (mort.me, type=’'pearson’)”2)

Either quantity can be used to estimate the dispersion parameter by dividing by the residual df,
though the Pearson x? produces larger estimates and tends to be preferred.

sum (residuals (mort.me)”2) /12

sum(residuals (mort.me, type='pearson’)”2)/12
The latter is the parameter reported by R for a fitted quasipoisson model:

summary (update (mort.me, family = quasipoisson))$dispersion

17.7.7 Offsets and rates (Example 17.6)

Treating the number of operations in the previous example as a predictor is probably nQi
best approach. A better approach, that allows the Poisson model to treat the mortality as
per operation (strictly per 1000 operations) is to enter the number of operations as an offt

mort.off <- glm(mortality ~ time + income, data=checklist,

offset=log(op.k), family=poisson)

An €q
usefu
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=

y different parameterization th
using a ‘size’ parameter equal to 1 /7.
shows the similarity of the two distributi

glm(mortality ~ time + i
data:checklist,

ncome + offset(log(

op.k)),
family:poisson)

exp(confint(mort.off))
sum(resid(mort.off,

type = ‘Pearson’)”2) /13
The drop1 () function is also useful fo

I investigatin
Or with an NHST of the change in de

g the effects of individual predictors with AIC
viance:

dropl(mort.off, test = "Chisqg’)

17.7.8 Negative binomial and quasipoisson regression (Example 17.7)
Figure 17.6 shows how the ion and the Poisson are almost indis-
i ping factor’ r is very small (and overdispersion negligible). A con-
(rather than discre i

) function uses slightly di

siz <- 25p
curve(dpois(4, x), xlim:c(0,25), xlab:expression(mu)
mainzexpression(paste(’(b) ‘sitalic(r)
cex.main =0.95, ylab = ’Likelihood’)

’

+'=0.004")),

curve(dnbinom(4, size=gigz, mu=x), add = TRUE, 1ty = 3)
legend(l2.5, 0.175, legend = e
lty:c(1,3)

‘negative binomial -
+ Ccex = (.8)

+"Poisson’),

To show the potential difference in the distribution as ‘¢
Pane] (a):

lumpiness’ increases, compare it with
siz <- 5

Curve (dpois (4, x), xlim:c(0,25),

main:expression(paste(’(a)’

=0.95, wlab = ’Likelihood’)
curve(dnbinom(4, size=sigz, mu=x), add = TRUE, 1ty = 3)
legend(l2.5,.l75,

legend = ¢ (’'negative binomia
lty:c(l,3), cex = 0.8)

lty = 1, Xlab:expression(mu),
; italic(r),’: 0.27)), cex.main

1’,’Poisson’),
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To deal with the overdispersion in the checklist data, one option is to adjust the SEs using
the overdispersion parameter. R makes this option simpler by fitting a quasipoisson model that
also supports profile likelihood CIs. The dropl () function also provides accurate NHSTs (but

| not AIC).

mort.oqg <- glm(mortalityNtime+income, data=checklist,
offset=log(op.k), family=quasipoisson)
summary (mort.oq)

exp (confint (mort.oq) )

dropl (mort.oq, test = ‘Chisqg’)

The pbmle package provides functions to compute qAIC and gAICc. These require the esti-
mated dispersion parameter as input. Here the dispersion paramet

er is extracted from g
quasipoisson model and qAIC computed for the two-way interaction model (the most complex
under consideration):

library (bbmle)

disp <- summary (glm(mortality ~ time * income, data=checklist,
offset=log(op.k), family:quasipoisson))$dispersion

mort.off.int <- glm(mortality ~ time * income,

data=checklist,
offset=log(op.k),

family=poisson)
QAIC (mort.off, dispersion = disp)
QAIC (mort.off.int, dispersion

QAIC(mort.off, dispersion = disp) - gAIC (mort.off.int,
dispersion = disp)

= disp)

As qAIC is rather simple to com

pute, it may be easier to do it directly from the dispersion and
loglikelihood. This calculation s

hould match for the mort . off . int model above:
(logLik(mort.off.int)[1]*—2)/disp + 4 * 2

The negative binomial model is less limited than the quasipoisson
such as MASS to fit it. MASS provides the g1m.nb () function to fit negative binomial generali

linear models. This has a default ‘log’ link function and works slightly differently from glm()
(e.g., in requiring an offset to be part of the formula). Refitting the checklist main effect mod
with an offset is done as follows:

, but requires a packagt

library (MASS)

mort.nb <- glm.nb(mortality ~ time + income +

offset(log(op.k)), data=checklist)
summary (mort.nb)

Again the profile likelihood CI and tests of the predictors are obtained using familiar functio
mort.nb <- glm.nb(mortality ~ time + income +

offset(log(op.k)), data=checklist)
summary (mort .nb)
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exp(confint(mort.nb))

dropl(mort.nb, test = "Chisqg’)

Residuals, cook’s distance and so forth are also provided:

resid(mort.nb, type ='pearson’)
predict(mort.nb, type =

'response’)
cooks.distance(mort‘nb)

17.7.9 Modeling Zero-inflated count data

Zero-inflated Poisson, n
available in Statistical s

ions for working with these models
Of R packages. The in Fi
therzinbinom()

install.packages(

"emdbook ' )
install.packages(

'VGAM )
library(emdbook)
library(VGAM)

count <- 7
brob <- .2

n <- 10000
size <- 5

par(mfrow:c(l,3), mar:c(4,4,2,1)+.1, Pty='g-
¢/ count), xlim:c(0,20),
cex.mainzl.l, xlab

cex=1)
hist(rpois(n ylimzc(0,2500)

= "Count’,

; main=- (g)
Poisson’,

col='1light gray’)
hist(rzipois(n, count, prob), Xlimzc(O,ZO),
Zero—inflated Poisson’,

+ col='1light gray’)

ylim:c(0,2500)
main =’ (b) Cex.main=1.71, xlab =
'Count

hist(rzinbinom(n, count, size, prob)
ylim=c(0,2500), breaks = 25, main=
negative binomial’,

gray’)

p xlim:c(O,ZO),

“ie) Zero—inflated

cex.main = 1.1, xlab:’Count’, col='"1light

Very powerful, 4 mo
Sion models is the
only Zero-inflated p,

() is
I regres-
ntercept
ecify the |

tending Poisson ang negative binomig
eroinfl () function from the pscl package. For instance, to fit an i
oisson or negative binomial mode] for the checklist data you'd sp

I
install.packages(’pscl’)
library(pscl)
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zeroinfl (mortality ~ 1, dist='poisson’, link = ‘logit’,
data=checklist)

zeroinfl (mortality ~ 1, dist='negbin’, link = 'logit® ;
data=checklist)

The dist argument indicates the family used for the count part of the mixture model (the link
function here is always the log and need not be specified). The 1ink argument specifies the link ;
function for the zero-inflation part of the mixture model. The defaults are dist='poisson’ and
link = "logit’. The following model adds income as a predictor to both parts of the model:

zeroinfl (mortality ~ income, data=checklist)

Sometimes it makes sense to add predictors only to the count part of the model (

or possibly
only the zero-inflation part)

- Here, although a zero-inflation model doesn't look that plausible, it
is more plausible (and fits better) if the predictors (including offset) are added to the count part

of the model only. This is achieved by separating the predictors in each component using | (

not
to be confused with its role in other functions such as multilevel models)

zeroinfl (mortality ~ time + income + offset (log(op.k))|1
data=checklist)

’

You may prefer to fit a hurdle model in place of the zero-inflated model. This is also possible
within the psc1 package by using the hurdle () function with the same formula structure:

hurdle (mortality ~ time + income + offset(log(op.k))|1
data=checklist)

7

In general the models will have very similar overall fits and predictions (but slightly different
parameter estimates because of the way excess zeroes are modeled). Thus the choice between

them rests on the appeal of the mixed population interpretation versus a single population:
interpretation.

17.7.10 Logistic regression with paired data (Example 17.8)

Analyzing paired outcomes when data are dichotomous can be accomplished via several routé:
One of the simplest is conditional logistic regression. A very basic illustration uses case-contt
data where two groups of participants (cases and controls) are compared on some risk fac
(coded zero for risk factor not present and one for risk factor present). What distinguishes
from an independent groups analysis is that the cases and controls are matched in pairs (&
for age, gender and so forth)

The first step is to load in the case-control pairs into a data frame with two columns (Oné
cases and one for controls).

cc.dat <- read.csv(’case_control.csv’)
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There also needs to be a vector of 30 constants and a separate vector of 30 risk factor differences
(one difference for €ach pair):

const <- rep(1l,30)

ik To fit the conditiong] logistic regression, just run a logistic regression with no intercept with the
link constant as outcome and the differences as g predictor:
and ) ) i } ,
el: e E1E <= glm(const ~ 0 + diff, famlly:blnomlal)
The log odds, odds ratio and probability of having the risk factor for the cases relative to the
controls are:
Hﬂy cc.fit$coefficients
s it exp(cc.fit$coefficients)
)éﬂ exp(cc.fit$coefficients)/(1 + exp(cc.fit$coefficients))
nos The CI for the odds ratio i
exp(confint(cc.fit))
To fit the same mode] using conditiona] logistic reégression commands re
structure, with Separate vari i
dle

the participant number for » €ase and predictor such as the

risk factor in the
€s the repeated measures

long form rather than

clg.dat <- read.csv(’cond_lg.csv’)
nt

|
as outcome, the identifier to define the ’
Iepeated measures ‘straty’ and add the predictor in the usual way. The clogit () function in
the survivai Package will fit this model-

library(survival)

clg.fit <- clogit (case ~ prf + Strata(id), data = clg.dat) (
However, this method doesn'‘t provide profile like]

thood CIs (and the Wald CI it does report is
quite a bit wider here).

Summary (clg.fit)

17.7.11

R packages
BOlker, B. M. (2009) emdbook: Ecological Models and Data (Book Support). R package i
Version 1.2
BOlkeT, B. M, and r Development Core Team (2011) bbmle: Tools for General Maximum /
Likelihoog Estimation. R package version 0.9.7

Harrell, EE.Jr. 201 1)

: e‘
I'ms: Regression Modeling Strategies. R package version 3.3-1. “
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R-core members, DebRoy, S., Bivand, R., et dl. (2011) foreign: Read Data Stored by Minitab, S,
SAS, SPSS, Stata, Systat, dBase. R package version 0.8-42.

Therneau T., and Lumley, T. (2009) survival: Survival Analysis, including Penalised Likelihood.
R package version 2.35-7.

Venables, W. N., and Ripley, B. D. (2002) MASS: Modern Applied Statistics with S. (4th edn)
Springer: New York.

Yee, T. W. (2009) VGAM: Vector Generalized Linear and Additive Models. R package version
0.7-9.

Zeileis, A., Kleiber, C., and Jackman, S. (2008) Regression Models for Count Data in R. Journal of
Statistical Software, 27(8).

17.8 Notes on SPSS syntax for Chapter 17
17.8.1 Generalized linear models

SPSS has both specialized commands (e.g., for binary logistic regression, ordinal logistic regres-
sion and loglinear models) and a very powerful generalized linear model command. For a basic

logistic regression the LocIsTIC REGRESSION command can be used. This example uses the

dream data, but input requires a dichotomous outcome for each participant (rather than as a
contingency table):

SPSS data file: dream.sav

LOGISTIC REGRESSION VARIABLES scary
/METHOD=ENTER group
/SAVE=PRED
/PRINT=CI (95) .

The odds ratios are reported as Exp (8) where B is the coefficient on the log odds (logit) scale:
Here the /PRINT subcommand requests a CI for the odds ratio and /Save requests predicted
probabilities saved to the spreadsheet. Additional predictors can be entered by listing them
after group.

As arule these SPSS commands are quite easy to run via menus, but less flexible. In contrast
the generalized linear model command GenLIN is incredibly powerful, but can be rather fiddl)

to run using menus. For most models you can reply on the SPSS defaults to set up the modeé;

correctly with some basic syntax. Here is the same logistic regression via GENLIN. -

GENLIN scary BY group

/MODEL group DISTRIBUTION=BINOMIAL LINK=LOGIT.

The point of using GENLIN is that it can do a lot more than the simpler command and (evenie
basic model such as this) automatically provides AIC, BIC and, most useful of all, AIC¢
as other information criteria and fit indices). It also provides profile likelihood Cls if request

GENLIN scary BY group

/MODEL group DISTRIBUTION=BINOMIAL LINK=LOGIT
/CRITERIA CILEVEL=95 CITYPE=PROFILE (.0001) .
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The PROFILE(.0001) argument sets the required accuracy of the CI (which is obtained by
iterative fitting). It is also trivia] to change the reference category for the outcome:

GENLIN scary (REFERENCE=LAST)

/MODEL group DISTRIBUTION=BI
/CRITERIA CILEVEL=95 CITYPE=PR

BY group

NOMIAL LINK=LOGIT
OFILE(.OOOl).

GENLIN

outcome BY factorl WITH covariatel

/MODEL factori covariatel] INTERCEPT=YES
DISTRIBUTION:POISSON LINK=LOG.

CRITERIA subcommand as abov
will list all the options for

syntax reference (from the <Hel
Poisson regression model

different subcommands. The following example fits a m
for the surgical checklist data for counts arranged in a ¢
d use a canonica]

p> menu)
ain effects
ontingency
ntax should
he compuTr

link function so this Sy
operations is fi

Ist rescaled (as in Example 17.4) using t
command:

SPSS data file: mortality.sav

COMPUTE op_kzoperations/lOOO.
EXECUTE.

GENLIN mortality BY income time WITH op_k
/MODEL income time op_k DpIg

TRIBUTION:POISSON
/CRITERIA CILEVEL=95 CITYPE

|
=PROFILE(.0001).

can be used:

COMPUTE log_op_k
EXECUTE.

= LN(op_k) .

GENLIN mortality BY income time

/MODEL income time DISTRIBUTION:POISSON OFFSETzlog_op_k
/CRITERIA CILEVEL=95 CITYPE=

PROFILE(.0001) .
Itis also possible to change the distribution to ne
Statement. However, the d

gative binomial by alterin
add DISTRIBUTION:NEGBI

ispersion is fixed €qual to one by default.
N(MLE) to the MODEL subcommand:

8 the pIsTRIBUTION
To fit estimate the dispersion

GENLIN mortality BY income time

/MODEL income time DISTRIBUTION=NEGBIN(

MLE) OFFSET=log_op_k
/CRITERIA CILEVEL=95 CITYPE=PROFILE

(.0001) .
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This produces output similar to (but not quite the same as)

that from glm.nb() in R.
Ordered logistic regression uses similar syntax within th

€ PLUM command:

PLUM outcome BY factorl WITH covariatel
/CRITERIA=CIN(95)
/LINK=LOGIT
/PRINT TPARALLEL.

The TPARALLEL statement requests a test of
portional odds assumption - though as alre
too often in larger samples)
likelihood Cls:

parallel lines (in effect a significance test of the pro-
ady noted this NHST tends to reject the assumption
. The GENLIN command does a similar analysis but supports profile

GENLIN outcome (ORDER:ASCENDING)
/MODEL factorl covariatel

DISTRIBUTION=MULTINOMIAL LINK=CUMLOGIT
/CRITERIA CILEVEL=95 CITYPE=PROFILE(.0001) .

BY factorl WITH covariatel

17.8.2 Conditional logistic regression

SPSS won't accept a constant as an outcome for lo

sion commands won't work for the case-control data in Example 17.8. However, the survival
model approach will work. As with the example using R, the data needs to be in long form (as in
the file cond_1g. sav). First, use coMPUTE to get a time variable that codes time as one when

case =1 and two when case =0 (i.e., for controls), then run the survival using the following
syntax:

gistic regression, so regular logistic regres-

SPSS data file: cond_lg.sav

COMPUTE time=1+(case=0) .
EXECUTE.

COXREG time WITH prf
/STATUS=case (1)
/STRATA=id
/PRINT=CI (95) .

Other predictors can be added as covariates or factors in the normal way using wiTs or BY.
that the measures don't really need to be separated in time (the correlation between case ar
control or other matched observations just needs to be treated as if it is a repeated measure)
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