CHAPTER 11

Multilevel structures

As we illustrate in detail in subsequent chapters, multilevel models are extensions
of regression in which data are structured in groups and coefficients can vary by
group. In this chapter, we illustrate basic multilevel models and present several
examples of data that are collected and summarized at different levels. We start with
simple grouped data—persons within cities—where some information is available
on persons and some information is at the city level. We then consider examples of
repeated measurements, time-series cross sections, and non-nested structures. The
chapter concludes with an outline of the costs and benefits of multilevel modeling
compared to classical regression.

11.1 Varying-intercept and varying-slope models

With grouped data, a regression that includes indicators for groups i1s called a
varying-intercept model because it can be interpreted as a model with a different
intercept within each group. Figure 11.1a illustrates with a model with one contin-
uous predictor & and indicators for J = 5 groups. The model can be written as a
regression with 6 predictors or, equivalently, as a regression with two predictors (x
and the constant term), with the intercept varying by group:

varying-intercept model: y; = a;y; + 57 + €.

Another option, shown in Figure 11.1b, is to let the slope vary with constant inter-
cept:

varying-slope model: y; = a + G T; + €.
Finally, Figure 11.1c shows a model in which both the intercept and the slope vary
by group:

varying-intercept, varying-slope model: y; = a;p) + 5557 + €.

The varying slopes are interactions between the continuous predictor > and the
group indicators.

As we discuss shortly, it can be challenging to estimate all these a;'s and 3;'s,
especially when inputs are available at the group level. The first step of multilevel
modeling is to set up a regression with varyving coefficients; the second step is to
set up a regression model for the coefficients themselves.

11.2 Clustered data: child support enforcement in cities

With multilevel modeling we need to go beyvond the classical setup of a data vector
y and a matrix of predictors X (as shown in Figure 3.6 on page 38). Each level of
the model can have its own matrix of predictors.

We illustrate multilevel data structures with an observational study of the effect
of city-level policies on enforcing child support payments from unmarried fathers.
The treatment is at the group (city) level, but the outcome is measured on individual
families.
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Varying intercepts Varying slopes Varying intercepts and slopes

W

Figure 11.1 Linear regression models with (a) varying intercepts (y = a;+5x), (b) varying
slopes (y = o + 3;1), and (c) both (y = a; + 3;x). The varying intercepts correspond to
group indicators as regression predictors, and the varying slopes represent interactions
between x and the group indicators.

dad mom  informal city city enforce  benefit city indicators
I age race support I name intensity level 1 2 ... 20
1 19 hisp 1 1 Dakland 0.52 1.0 1 o0 .- 0
2 27 black 0 1 Dakland 0.52 1.01 1 o0 .- 0
3 26 black 1 1 Dakland 0.52 1.01 1 o0 .- 0
248 10 white 1 3 Baltimore 005 110 0 0 0
249 26 black 1 3 Baltimore 0.05 1.10 o 0 ]
1366 21  black 1 20 Norfolk —011 L0800 0 .- 1
1367 28 hisp 0 20 Norfolk —0.11 1.08 o o .. 1

Figure 11.2 Some of the data from the child support study, structured as a single matriz
with one row for each person. These indicators would be used in classical regression to
allow for variation among cities. In a multilevel model they are not necessary, as we code
cities using their inder variable (“city ID") instead. We prefer separating the data into
individual-level and city-level datasets, as in Figure 11.5.

Studying the effectiveness of child support enforcement

Cities and states in the United States have tried a variety of strategies to encourage
or force fathers to give support payments for children with parents who live apart.
In order to study the effectiveness of these policies for a particular subset of high-
risk children, an analysis was done using a sample of 1367 noncohabiting parents
from the Fragile Families study, a survey of unmarried mothers of newhorns in
20 ecities. The survey was conducted by sampling from hospitals which themselves
were sampled from the chosen cities, but here we ignore the complexities of the
data collection and consider the mothers to have been sampled at random (from
their demographic category) in each eity.

To estimate the effect of child support enforcement policies, the key “treatment”
predictor is a measure of enforcement policies, which is available at the eity level.
The researchers estimated the probability that the mother received informal sup-
port, given the city-level enforcement measure and other city- and individual-level
predictors.
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dad mom informal city
I age  race  support 1D

1 19 hisp 1 1 city city enforee-  benefit
97 black 0 1 1D name mernt level
3 26 Dlack 1 1 1 Oakland 052 101
: : . : : 2 Austin 0.00 0.75
248 10 white 1 2 3 Baltimore —0.05 1.10
249 26  black 1 3 : : : :
: : : : : 20 Norfolk —0.11 1.08
1366 21 black 1 20
1367 28 hisp 0 20

Figure 11.3 Data from the child support study, structured as two matrices, one for persons
and one for cities. The inputs at the different levels are now clear. Compare to Figure 11.2,

A data matriz for each level of the madel

Figure 11.2 shows the data for the analysis as it might be stored in a computer
package, with information on each of the 1367 mothers surveyed. To make use
of the multilevel structure of the data, however, we need to construct two data
matrices, one for each level of the model, as Figure 11.3 illustrates. At the left is
the person-level data matrix, with one row for each survey respondent, and their
cities are indicated bv an index variable; at the right i1s the city data matrix, giving
the name and other information available for each city.

At a practical level, the two-matrix format of Figure 11.3 has the advantage
that it contains each piece of information exactly once. In contrast, the single large
matrix in Figure 11.2 has each city’s data repeated several times. Computer memory
is cheap so this would not seem to be a problem:; however, if city-level information
needs to be added or changed, the single-matrix format invites errors.

Conceptually, the two-matrix, or multilevel, data structure has the advantage of
clearly showing which information is available on individuals and which on cities. It
also gives more flexibility in fitting models. allowing us to move bevond the classical
regression framework.

Individual- and group-level models

We briefly outline several possible ways of analyzing these data, as a motivation
and lead-in to multilevel modeling.

Individual-level regression. In the most basic analysis, informal support (as re-
ported by mothers in the survey) is the binary outcome, and there are several
individual- and city-level predictors. Enforcement is considered as the treatment,
and a logistic regression is used, also controlling for other inputs. This is the starting
point of the observational study.

Using classical regression notation, the model is Pr(y; =1) = logit ! (X:3), where
X includes the constant term, the treatment (enforcement intensity), and the other
predictors (father's age and indicators for mother’s race at the individual level;
and benefit level at the city level). X is thus constructed from the data matrix of
Figure 11.2. This individual-level regression has the problem that it ignores city-
level variation beyvond that explained by enforcement intensity and benefit level,
which are the city-level predictors in the model.
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city city enforce-  benefit #In  avg prop.  proportion with
I name ment level sample age black informal support
1 Oakland 0.52 101 T& 259 06T 0.55
2 Austin 0.00 0.75 91 258 042 054
3  Baltimore —0.05 L1 11 270 0386 067
20 Norfolk -0.11 1.08 31 r4 084 0.65

Figure 11.4 City-level data from child support study [as in the right panel of Figure 11.5).
olso including sample sizes and sample averages from fhe individual responses.

Group-level regression on cify averages. Another approach is to perform a city-
level analysis, with individual-level predictors included using their group-level av-
erages. Figure 11.4 illustrates: here, the outcome, gy, would be the average total
support among the respondents in city j, the enforcement indicator would be the
treatment, and the other variables would also be included as predictors. Such a
regression—in this case, with 20 data points—has the advantage that its errors are
automatically at the citv level. However, by ageregating, it removes the ability of
individual predictors to predict individual outcomes. For example, it is possible that
older fathers give more informal support—hut this would not necessarily translate
into average father's age heing predictive of more informal support at the city level.

Individual-level regression with city indicators, followed by group-level regression af
the estimated city effects. A slichtly more elahorate analvsis procesds in two steps,
first fitting a logistic regression to the individual data i given individual predictors
(in this example, father’s age and indicators for mother's race) along with indicators
for the 20 cities. This first-stage regression then has 22 predictors. {The constant
term 1= not included since we wish to Include indicators for all the cities; see the
discussion at the end of Section 4.5.)

The next step in this two-step analvsis i= to perform a linear regression at the city
level, considering the estimated coefficients of the city indicators (in the individual
model that was just fit) as the “data” y;. This city-level regression has 20 data points
and uses, as predictors, the city-level data (in this case, enforcement intensity and
benefit level). Each of the predictors in the model is thus included in one of the two
TEETESS10NE,

The two-step analysis is reasonable in this example but can run into problems
when sample sizges are small in particular groups, or when there are interactions be-
tween individual- and group-level predictors. Multilevel modeling is a more general
approach that can include predictors at both levels at onee.

Multilevel models

The multilevel model looks something like the two-step model we have described,
except that both steps are fitted at once. In this example, a simple multilevel model
would have two components: a logistic regression with 1369 data points predicting
the binary outcome given individual-level predictors and with an intercept that can
vary by city, and a linear regression with 20 data points predicting the city intercepts
from city-level predictors. In the multilevel framework, the keyv link between the
individual and city levels is the city indicator—the “city ID™ wvariable in Figure
11.3, which takes on values between 1 and 20.
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For thiz example, we would have a logistic regression at the data level:
Priy;=1) = Ing‘it'l{Xi,ﬁ + o), fori=1,....n, (11.1)

where X is the matrix of individual-level predictors and j|i] indexes the city where
person i resides. The second part of the model—what makes it “multilevel”—is the
regression of the city coefficients:

aj ~N(Uy,02), for j=1,...,20, (11.2)

where U7 is the matrix of city-level predictors, -+ is the vector of coefficients for the
city-level regression, and o, is the standard deviation of the unexplained group-level
EITOTE,

The model for the o's in (11.2) allows us to include all 20 of them in model (11.1)
without having to worry about collinearity. The key iz the group-level variation
parameter o,, which is estimated from the data (along with o, 5, and a) in the
fitting of the model. We return to this point in the next chapter.

Diirections for the observational study

The “treatment” variable in this example i not randomly applied; hence it is guite
possible that cities that differ in enforcement intensities could differ in other impor-
tant ways in the political, economic, or cultural dimensions. Suppose the goal were
to estimate the effects of potential interventions (such as increased enforcement),
rather than simply performing a comparative analysis. Then it would make sense
to set this up as an observational study, gather relevant pre-treatment information
to capture variation among the cities, and perhaps use a matching approach to
estimate effects. In addition, good pre-treatment measures on individuals should
improve predictive power, thus allowing treatment effects to be estimated more
accurately. The researchers studying these child support data are also looking at
other outcomes, including measures of the amity hetween the parents as well as
financial and other support.

Along with the special concerns of cansal inference, the nsual recommendations of
regression analysis apply. For example, it might make sense to consider interactions
in the model (to see if enforcement is more effective for older fathers, for example).

11.3 Hepeated measurements, time-series cross sections, and other
non-nested structures

Repeated measurements

Another kind of multilevel data structure involves repeated measurements on per-
sons (or other units)—thus, measurements are clustered within persons, and pre-
dictors can be available at the measurement or person level. We illustrate with a
model] fitted to a longitudinal dataset of about 2000 Australian adolescents whose
smoking patterns were recorded every six months (via guestionnaire) for a period of
three years. Interest lay in the extent to which smoking behavior can be predicted
based on parental smoking and other background variables, and the extent to which
bovs and girls pick up the habit of smoking during their teenage years. Figure 11.5
illustrates the overall rate of smoking among survey participants.

A mmltilevel logistic regression was fit, in which the probability of smoking de-
pends on sex, parental smoking, the wave of the study, and an individual parameter
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Figure 11.5 Prevalence of regular (daily) smoking among parficipants responding af each
wave in the study of Austmlion adolescents (who were on average I5 years old af wave ).

PErs0T parents smoke? wave 1 wave 2
1D 5EX  IIom dad age smokes? age smokes?
1 f Y A 15:0 N 15:6 N
2 f N N 147 N 15:1 N
3 m Y N 15:1 N 15:7 Y
4 f N N 15:3 N 15:9 N

Figure 11.6 Data from the smoking sfudy as they might be sfored in a single compufer
file ond read info B as a maotrir, data. [Ages are in years:months. ) These datoa have a
multilevel structure, with observations nesfed within persons.

for the person. For person j at wave {, the modeled probability of smoking is

Priu; =1) = lug[t_l{ﬂu + # p:smc-kej + fafemale; +
+3y(1 — female;) - t + Fefemale; - t + ay ), (11.3)

where psmoke is the number of the person’s parents who smoke and female is an
indicator for females, so that 55 and 3, represent the time trends for boys and girls,
respectively. !

Figures 11.6 and 11.7 show two ways of storing the smoking data, either of which
would be acceptable for a multilevel analysis. Figure 11.6 shows a single data matrix,
with one row for each person in the study. We could then pull out the smoking
outcome ¥ = (y;) in R, as follows:

v <- data[.seq(6,16,2)]

female <- ifelse (data[.2]=="£f", 1. 0)
mom.smoke <- ifelse (datal,3]=="Y", 1, 0}
dad.=smoke <- ifelse {(datal,4]=="Y", 1. 0}
pemoke <- mom.smoke + dad.smoke

and from there fit the model (11.3).
Figure 11.7 shows an alternative approach using two data matrices, one with a

! Alternatively, we could include a main effect for time and an intersction between time and sex,
Prigpe =11 = logit—(Fy + &, - psmoke, 4+ B - female; + g -t + G, - fernaley -t + ay), 5o that
the time trends for bovs and girls are ,53 and 3y + J, respectively. This parameterization is
appropriate to the extent that the comparison betwean the sexes is of interest; in this case we
used (11.3) so that we could easily interpret Fz and Fy symmetrically.
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person
age  smokes? 1D wave
15:0 N 1 1 . 2
person parents smoke?

147 N 2 1 I SEX MO dad
15:1 N 3 1
15:3 N 4 1 L f Y ¥

) ) . 2 f N N

: : : 3 m Y N
15:6 N 1 2 4 f N N
15:1 N 2 2
15:F Y 3 2
15:0 N 4 2

Figure 11.7 Data from the smoking study, with observational dafo written as a single long
mairiz, obs.data, with person indicafors, followed by a shorter matriz, person.data. of
person-level information. Compare to Figure 116,

row for each observation and one with a row for each person. To model these data,
one could use R code such as

¥ <- obs.datal,Z]

person <- obs.datal[,3]

wave <- obs.datal[,4]

female «<- ifelze (person.datal,2]=="f". 1, 0}
mom. smoke <- ifelse (person.datal,3]=="Y", 1, 0]
dad.=moke <- ifelse (person.datal.4]=="Y", 1, 0]
psmoke <- mom.smoke + dad.smoke

and then parameterize the model using the index i to represent individual observa-
tions, with j[i| and t[i] indicating the person and wave associated with observation
i

Priy;=1) = logit™ 1{30 + .ﬂlmm':'kej[ﬂ + _Hgfﬁ'mﬂﬂj[.'] +
+8s(1 — femaley ) - t[i] + Hatemale;;) - tli] + o). (11.4)

Models (11.3) and (11.4}) are equivalent, and both can be fit in Bugs (as we
describe in Part 2B). Choosing between them is a matter of convenience. For data
in a simple two-way structure (each adolescent is measured at six regular times), it
can make sense to work with the double-indexed outcome variable, {yj, ). For a less
rectangular data structure (for example, different adolescents measured at irregular
intervals) it can be easier to string together a long data vector (1;), with person
and time recorded for each measurement, and with a separate matrix of person-level
information (as in Figure 11.7).

Time-series cross-sectional data

In settings where overall time trends are important, repeated measurement data are
sometimes called time-series cross-sectional. For example, Section 6.3 introduced a
study of the proportion of death penalty verdicts that were overturned, in each of
34 states in the 23 years, 1973-1995. The data come at the state » vear levels but
we are also interested in studying variation among states and over time.
Time-series cross-sectional data are typically (although not necessarily) “rectan-
gular” in structure, with observations at regular time intervals. In contrast, gen-
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eral repeated measurements could easily have irregular patterns (for example, in
the smoking study, some children could be measured only once, others could be
measured monthly and others yvearly). In addition, time-series eross-sectional data
commonly have overall time patterns, for example, the steadv expansion of the
death penalty from the 1970s through the early 1990s. In this context one must
consider the state-vear data as clustered within states and also within vears, with
the potential for predictors at all three levels. We discuss such non-nested models
in Section 13.5.

Cither non-nested structures

MNon-nested data also arise when individuals are characterized by overlapping cate-
gories of attributes. For example, consider a study of earnings given occupation and
state of residence. A survey could mnclude, say, 1500 persons mn 40 job caterories
in 50 states, and a regression model could predict log earnings given individual
demographic predictors X, 40 indicators for job categories, and 50 state indicators.
We can write the model generalizing the notation of {11.1)-(11.2):

Hi=xi.3+&j|1]+’r'k|ﬂ+fi1 fori=1,....n, (11.5)
where j|i] and k[i] represent the job category and state, respectively, for person i.
The model becomes multilevel with resressions for the job and state coefficients.

For example,
a; ~ N{Usa, ‘72]1 for § =1,...,40, (11.6)

where [V is a matrix of occupation-level predictors (for example, a measure of social
status and an indicator for whether it is supervisory), a is a vector of coefficients
for the job model, and o, 1= the standard deviation of the model errors at the level
of job category. Similarly, for the state coefficients:

M ~N(Vig,0?) for k= 1,...,50. (11.7)

The model defined by regressions (11.5)-(11.7) is non-nested because neither the
job categories j[i| nor the states k[i] are subsets of the other.

As this example illustrates, regression notation can become awkward with mul-
tilevel models becanse of the need for new symhbols (U7, V', a, g, and so forth) to
denote data matrices, coefficients, and errors at each level.

11.4 Indicator variables and fixed or random effects
Classical regression: including a baseline and J — 1 indicator variables

As discussed at the end of Section 4.5, when including an imput variable with
J caterories into a classical regression, standard practice is to choose one of the
categories as a baseline and include indicators for the other J — 1 categories. For
example, if controlling for the J = 20 cities in the child support study in Figure 11.2
on page 238, one could set city 1 (Oakland) as the baseline and include indicators
for the other 19. The coefficient for each city then represents its comparison to
Oakland.

Multilevel regression: including all J indicators

In a multilevel model it is unnecessary to do this arbitrary step of picking one of
the levels as a baseline. For example, in the child support study, one would include
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indicators for all 20 cities as in model (11.1). In a classical regression these could
not all be included because they would be collinear with the constant term, but in
a multilevel model this is not a problem because they are themselves modeled by a
group-level distribution (which itself can be a regression, as in (11.2)). We discuss
on page 393 how the added information removes the collinearity that is present in
the simple least squares estimate.

Fired and random effects

The varying coefficients (a;'s or 5;'s) in a multilevel model are sometimes called
random effects, a term that refers to the randomness in the probahility model for
the group-level coefficients (as, for example, in (11.2) on page 241).

The term fired effects is used in contrast to random effects=—but not in a con-
siztent way! Fixed effects are usually defined as varving coefficients that are not
themselves modeled. For example, a classical regression including J — 1 = 19 city
indicators as regression predictors i sometimes called a “fixed-effects model” or a
model with “fixed effects for cities.” Confusingly, however, “fixed-effects models”
sometimes refer to regressions in which coefficients do not vary by group (so that
they are fixed, not random).?

A question that commonly arises is when to use fixed effects (in the sense of vary-
ing coefficients that are unmodeled) and when to use random effects. The statistical
literature is full of confusing and contradictory advice. Some say that fixed effects
are appropriate if group-level coefficients are of interest, and random effects are
appropriate if interest lies in the underlying population. Others recommend fixed

? Here we outline five definitions that we have seen of fixed and random effacts:

1. Fixed effects are constant across individuals, and random effects vary. For example, in a growth
study, a model with random intercepts a4y and fixed slope § corresponds to parallel lines for
different individuals i, or the model g = op 4+ Gt Kreft and De Leoww (1998, p. 12) thus
distinguish between fixed and random coefficients.

2. Effects are fixed if they are interesting in themselves or random if there is interest in the un-
derlying population. Searle, Casella, and MceCulloch (1992, section 1.4) explore this distinection
in depth.

3. “When a sample exhausts the population, the corresponding variable is fized; when the sample
i=s a small (i.e., negligible) part of the population the corresponding variable is random”™ [ Green
and Tukey, 1%G60).

4. “If an effect is assumed to be a realized value of a random variable, it is called a random effect”
(LaMotte, 1983).

5. Fixed effects are estimated using least squares (or, more generally, maximom likelihood) and
random effects are estimated with shrinkage | “linear unbiased prediction™ in the terminology
of Robinson, 1901). This definition is standard in the multilevel modeling literature (see, for
example, Snijders and Bosker, 1999, section 4.2) and in econometrics.

In & multilevel model, this definition implies that fixed effects Fy are estimated conditional on a
group-level variance og = oo and random effects §; are estimated conditional on og estimated
from data.

Of these definitions, the first clearly stands apart, but the other four definitions differ also.
Under the second definition, an effect can change from fixed to random with & change in the
goals of inference, even if the data and design are unchanged. The third definition differs from
the others in defining a finite population (while lesving open the question of what to do with
a large but not exhaustive sample), while the fourth definition makes no reference to an actual
(rather than mathematical) population at all. The second definition allows ficed effects to come
from a distribution, as long as that distribution is not of interest, whereas the fourth and fifth
do not use any distribution for inference about fixed effects. The fifth definition has the virtue
of mathematical precision but leaves unclear when & given set of effects should be considered
fixed or random. In summary, it is easily possible for a factor to be *fixed” according to some
definitions above and “random” for others. Because of these conflicting definitions, it is no
surprise that “clear answars to the question “fixed or random?’ are not necessarily the norm”™
(Searle, Casella, and MeCulloch, 1992, p. 15).
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effects when the groups in the data represent all possible groups, and random effects
when the population includes groups not in the data. These two recommendations
(and others) can be unhelpful. For example, in the child support example, we are
interested in these particular cities and also the country as a whole. The cities are
only a sample of cities in the United States—but if we were suddenly given data
from all the other cities, we would not want then to change our model.

Our advice (elaborated upon in the rest of this book) is to always nse multilevel
modeling (“random effects” ). Becanse of the conflicting definitions and adviee, we
avoid the terms “fixed” and “random” entirely, and focus on the description of
the model itself (for example, varying intercepts and constant slopes), with the
understanding that batches of coefficients (for example, aq,.. ., ar) will themselves
be modeled.

11.5 Costs and benefits of multilevel modeling
Cuick overview of classical regression

Before we go to the effort of learming multilevel modeling, it 15 helpful to briefly
review what can be done with classical regression:
« Prediction for continnous or discrete outcomes,

« Fitting of nonlinear relations using transformations,

s Inclusion of categorical predictors using indicator variables,
+ Modeling of interactions between inputs,

e Cansal inference (under appropriate conditions).

Maotivations for multilevel modeling

There are various reasons why it might be worth moving to a multilevel model,
whether for purposes of causal inference, the study of varation, or prediction of
future cutcomes:

o Accounting for individual- and group-level variation in estimating group-level
regression coefficients. For example, in the child support study in Section 11.2,
interest lies in a city-level predictor (child support enforcement), and in classi-
cal regression it is not possible to include city indicators along with city-level
predictors.

« Modeling variation among individual-level regression coefficients. In classical re-
gression, one can do this using indicator varables, but multilevel modeling 1s
convenient when we want to model the variation of these coefficients across
groups, make predictions for new groups, or account for group-level variation in
the uncertainty for individual-level coefficients.

« HEstimating regression coefficients for particular groups. For example, in the next
chapter, we discuss the problem of estimating radon levels from measurements
in several counties in Minnesota. With a multilevel model, we can get reasonahle
estimates even for counties with small sample sizes, which would be difficult
using classical regression.

One or more of these reasons might apply in any particular study.

Complerity of multilevel models

A potential drawback to multilevel modeling 13 the additional complexity of coeffi-
clents varving by group. We do not mind this complexity—in fact, we embrace 1t
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in its realism—however, it does create new difficulties in understanding and sum-
marizing the model, issues we explore in Part 3 of this book.

Additional modeling assumptions

As we discuss in the next few chapters, a multilevel model requires additional
assumptions beyond those of classical regression—hasically, each level of the modeal
corresponds to its own regression with its own set of assumptions such as additivity,
linearity, independence, equal variance, and normality.

We usuallv don't mind. First, it can be possible to check these assumptions.
Perhaps more important, classical regressions can typically be identified with par-
ticular special cases of multilevel models with hierarchical variance parameters set
to gero or infinitv—these are the complete pooling and no pooling models discussed
in Sections 12.2 and 12.3. Our ultimate justification, which can be seen through ex-
amples, is that the assumptions pav off in practice in allowing more realistic models
and inferences.

When does multilevel modeling make a difference?

The usnal alternative to multilevel modeling 1= classical regression—either ignor-
ing group-level variation, or with varying coefficients that are estimated classically
(and not themselves modeled | —or combinations of classical regressions such as the
individual and group-level models described on page 239.

In vartous limiting cases, the classical and multilevel approaches coincide. When
there 15 verv hittle group-level vanation, the multilevel model reduces to classical
regression with no group indicators; conversely, when group-level coefficients vary
greatly {compared to their standard errors of estimation), multilevel modeling re-
duces to classical rerression with group indicators.

When the number of groups is small (less than five, say), there is typically not
enough mformation to accurately estimate group-level variation. As a result, multi-
level models in this setting typically gain little beyvond classical varying-coefficient
models.

These limits give us a sense of where we can gain the most from multilevel
modeling—where it is worth the effort of expanding a classical regression in this
way. However, there 1s little risk from applying a multilevel model, assuming we are
willing to put in the effort to set up the model and interpret the resulting inferences.

11.6 Bibliographic note

Several introductory books on multilevel models have heen written in the past
decade in conjunction with specialized computer programs (see Section 1.3), in-
cluding Randenbush and Bryk (2002), Goldstein {1995), and Snijders and Bosker
(1999). Kreft and De Leeuw (1998) provide an accessible introduction and a good
place to start (although we do not agree with all of their recommendations). These
hooks have a social science focus, perhaps because it is harder to justify the use
of linear models in laboratory sciences where it 18 easier to isolate the effects of
individual factors and so the functional form of responses i3 hetter understood.
Giltinan and Davidian (1995) and Verbeke and Molenberghs (2000) are books on
nonlinear multilevel models focusing on biostatistical applications.

Another approach to regression with multilevel data structures i= to use classical
estimates and then correct the standard errors to deal with the dependence in the
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data. We brieflv discuss the connection between multilevel models and correlated-
error models in Section 12.5 but do not consider these other inferential methods,
which include generalized estimating eguations (see Carlin et al., 2001, for a com-
parison to multilevel models) and panel-correcied standard errors (see Beck and
Katz, 1095, 1996).

The articles in the special issue of Political Analysis devoted to multilevel mod-
eling (Kedar and Shively, 2005) illustrate several different forms of analysis of mul-
tilevel data, including two-level classical regression and multilevel modeling.

Gelman [2005) discusses difficulties with the terms “fixed” and “random” effects.
See also Kreft and De Leeuw (1998, section 1.3.3), for a discussion of the multiplicity
of definitions of fixed and random effects and coefficients, and Hobinson (1998) for
a historical overview.

The child support example comes from Nepomnyaschy and Garfinkel (2005). The
teenage smoking example comes from Carlin et al. (2001), who consider several
different models, including a multilevel logistic regression.

11.7 Exercises

1. The file apt.dat in the folder rodents contains data on rodent infestation in
a sample of New York City apartments (see codebook rodents.doc). The file
dist.dat contains data on the 55 “community districts” (neighborhoods) in the
city.

(a) Write the notation for a varying-intercept multilevel logistic regression (with
community districts as the groups) for the probability of rodent infestation
using the individual-level predictors but no group-level predictors.

(t) Expand the model in {(a) by including the variables in dist . dat as group-level
predictors.

| B}

. Time-series cross-sectional data: download data with an outcome v and predic-
tors X 1n each of J countries for a series of K consecutive years. The outcome
should be zome measure of educational achievement of children and the predic-
tors should he a per capita income measure, a measure of income inequality, and
a variahle summarizing how democratic the country is. For these countries, also
create country-level predictors that are indicators for the countries’ geographic
regions.

(a) Set up the data as a wide matrix of countries x measurements (as in Figure
11.6).

(b} Set up the data as two matrices as in Figure 11.7: a long matrix with JK
rows with all the measurements, and a matrix with J rows, with information
on each country.

() Write a multilevel regression as in {11.5)-(11.7). Explain the meaning of all
the variables in the model.

3. The folder olympics has seven judges’ ratings of seven figure skaters (on two cri-
teria: “technical merit™ and “artistic impression™ ) from the 1932 Winter Olympics.

(a) Construct a Tx 7 x 2 array of the data (ordered by skater, judge, and judging
criterion).

(b} Reformulate the data as a 98 x 4 array (similar to the top table in Figure 11.7),
where the first two columns are the technical merit and artistic impression
seores, the third column is a skater 11D, and the fourth column is a judge 1.
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(c) Add another column to this matrix representing an indicator variable that
equals 1 if the skater and judge are from the same country, or O otherwise.

4, The folder cd4 has CIM percentages for a set of young children with HIV who
were measured several times over a period of two years. The dataset also includes
the azes of the children at each measurement.

(a) Graph the outcome (the CD4 percentage, on the square root scale) for each
child as a function of time.

(b} Each childs data has a time course that can be summarized by a linear fit.
Estimate these lines and plot them for all the children.

(c) Set up a model for the children’s slopes and intercepts as a function of
the treatment and age at baseline. Estimate this model using the two-step
procedure—first estimate the intercept and slope separately for each child, then
fit the hetween-child models using the point estimates from the first step.



CHAPTER 12

Multilevel linear models: the basics

Multilevel modeling can be thought of in two equivalent wavs:

« We can think of a generalization of linear regression, where intercepts, and possi-
hly slopes, are allowed to vary by group. For example, starting with a regression
model with one predictor, w; = @ + Fr; + €;, we can generalize to the varying-
intercept model, y; = ajp + 8 + €, and the varying-intercept, varying-slope
model, i = i+ Ej[ﬂri + ¢; (see Figure 11.1 on page 238).

o Equivalently, we can think of multilevel modeling as a regression that includes a
categorical input variahle representing group membership. From this perspective,
the group index is a factor with J levels, corresponding to J predictors in the
regression model {or 20 if they are interacted with a predictor r in a varyving-
intercept, varying-slope model; or 3.0 if they are interacted with two predictors
X1y X(z); and so forth).

In either case, J—1 linear predictors are added to the model (or, to put it another

way, the constant term in the regression is replaced by J separate intercept terms).

The crucial multilevel modeling step 1s that these J coeflicients are then themselves

given a model [most simply, a common distribution for the J parameters o; or,

more generally, a regression model for the o;'s given group-level predictors). The

group-level model is estimated simultaneously with the data-level regression of .
This chapter introduces multilevel linear regression step by step. We begin in

Section 12.2 by characterizing multilevel modeling as a compromise between two
extremes: complete pooling, in which the group indicators are not included 1o the
model, and no pooling, in which separate models are fit within each group. After
laying out some notational difficulties in Section 12.5, we discuss in Section 12.6 the
different roles of the individual- and group-level regressions. Chapter 13 continues
with more complex multilevel structures,

12.1 Notation

We briefly review the notation for classical regression and then outline how it can
he generalized for multilevel models. As we illustrate in the examples, however, no
single notation 15 appropriate for all problems. We use the following notation for
classical regression:

o Units i =1,..., n. By units, we mean the smallest items of measurement.
e Outeome measurements ¥ = (yy....,%, ). These are the unit-level data being
modelad.

+ Regression predictors are represented by an n » & matrix X | so that the vector
of predicted values is # = X3, where ¢ and 3 are column vectors of length n
and &, respectively. We include in X the constant term (unless it is explicitly
excluded from the model), so that the first column of X is all 1°s. We usually
lahel the coefficients as g, ..., Fp_;. but sometimes we index from 1 to k.

e For each individual unit i, we denote its row vector of predictors as X;. Thus,
#; = X ;7 18 the prediction for unit i.

51
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¢ For each predictor &, we label the (k+1)* column of X as Xixy (assuming that
Aoy s a column of 1's).

o Any information contained in the unit labels i should be coded in the regres-
sion inputs. For example, if § = 1,...,n represents the order in which persons
i enrolled in a study, we should create a time variable {; and, for example, in-
clude it in the matrix X of regression predictors. Or, more generally, consider
transformations and interactions of this new input variable,

For multilevel models, we label:

o Groups § = 1,.... J. This works for a single level of grouping (for example,
students within schools, or persons within states).

o We occasionallv use £ = 1..... K for a second level of grouping (for exam-
ple, students within schools within districts; or, for a non-nested example, test
responses that can be characterized by person or by item). In any particular
example, we have to distinguish this & from the number of predictors in X . For
more complicated examples we develop idiosyneratic notation as appropriate,

o Index variables ji] code group membership. For example, if §(35] = 4, then the
35" unit in the data (i = 35) belongs to group 4.

e Coefficients are sometimes written as a vector 4, sometimes as o, F (as in Figure
11.1 on page 238), with group-level regression coefficients typically called .

e We make our R and Bugs code more readable by typing o, 3, as a,b,g-

o We write the varying-intercept model with one additional predictor as y; =
@i +31; +¢; or Yy ~ N{&J-[,-] + Ar;, 53}. Similarly, the varyving-intercept, varving-
slope model is ¥ = oy + BT + & or wi o~ N{ag) + ,6_,-[.-]3.-:03].

« With multiple predictors, we write »; = X;H + g, or y; ~ N[X.-B,crg]_ His
a matrix of coefficients that can be modeled using a general varving-intercept,
varying-slope model (as discussed in the next chapter).

¢ Standard deviation is 7, for data-level errors and o, o, and so forth, for group-
level errors.

o Group-level predictors are represented by a matrix U7 with J rows, for example,
in the group-level model, a; ~ N{U;7y, 2). When there is a single group-level
predictor, we label it as lowercase u.

12.2 Partial pooling with no predictors

As noted in Section 1.3, multilevel regression can be thought of as a method for
compromising between the two extremes of excluding a categorical predictor from
a model (complete pooling), or estimating separate models within each level of the

categorical predictor (noe pooling).

Complete-pooling and no-pooling estimates of county radon levels

We illustrate with the home radon example, which we introduced in Section 1.2 and
shall use throughout this chapter. Consider the goal of estimating the distribution of
radon levels of the houses within each of the 85 counties in Minnesota.! This seems

! Radon levels are always positive, and it is reasonable to suppose that effects will be multiplica-
tive; hence it is appropriate to model the data on the logarithmic scale (see Section 4.4). For
some purposes, though, such as estimating total cancer risk, it makes sense to estimate averages
on the original, unlogeed scale; we can obtain these inferences using simulation, as discussed
at the end of Section 12.8.
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PARTIAL POOLING WITH NO PREDICTORS

No pooling Multilevel model

Figure 12.1 Estimates £+ standard errors for the average log radon levels in Minnesofa
counfies plotted versus the (fittered) number of observations in the county: (o) no-pooling
analysis, (b} multilevel (partial pooling) analysis, in both cases with no house-level or
county-level predictors. The counties with fewer measurermnents have more variable esti-
mafes and lorger higher sfandard errors. The horizonfal line in each plot represents an
estimate of the average radon level across all counties. The leff plot illustrafes a problem
with the no-pooling analysiz: i systematically causes us to think that certain countics are
more extreme, just because they have smaller sample sizes.

simple enough. One estimate would be the average that completely pools data
across all counties. This 1gnores variation among counties in radon levels, however,
g0 perhaps a hetter option would be simply to use the average log radon level in
each county. Figure 12.1a plots these averages against the number of ohservations
in each county.

Whereas complete pooling ignores variation between counties, the no-pooling
analysis overstates it. To put 1t ancther way, the no-pooling analysis overfits the
data within each county. To see this, consider Lac (ui Parle County (circled in the
plot), which has the highest average radon level of all 85 counties in Minnesota.
Thiz average, however, is estimated using only two data points. Lac Qui Parle may
very well be a high-radon county, but do we really believe it is that high? Mayhe,
but probably not: given the variability in the data we would not have much trust
in an estimate based on only two measurements,

To put it another way, looking at all the counties together: the estimates from
the no-pooling model overstate the variation among counties and tend to make the
individual counties look more different than thev actually are.

Partial-pooling estimates from a multilevel model

The multilevel estimates of these averages, displayed in Figure 12.1b, represent a
compromize hetween these two extremes. The goal of estimation is the average log
radon level o; among all the houses in county j, for which all we have available
are a random sample of size n;. For this simple scenario with no predictors, the
multilevel estimate for a given county j can be approximated as a weighted average
of the mean of the observations in the county (the unpooled estimate, 3;) and the
mean over all eounties (the completely pooled estimate, gy ):

Fl

= 1 =
2 multilewel |:r! yj N Ta Yal 121
D'.ii o — T . |:: 2.1)
dte



254 MULTILEVEL LINEAR MODELS: THE BASICS

where n; is the number of measured houses in county j, cr: iz the within-county
variance in log radon measurements, and aﬁ is the variance among the average
log radon levels of the different counties. We could also allow the within-county
variance to vary by county (in which case o, would be replaced by o, ; in the
preceding formula) but for simplicity we assume it is constant.

The weighted average (12.1) reflects the relative amount of information available
about the individual county, on one hand, and the average of all the counties, on

the other:

s Averages from counties with smaller sample sizes carry less information, and the
weighting pulls the multilevel estimates closer to the overall state average. In the
limit, if ny = 0, the multilevel estimate is simply the overall average, fan.

# Averages from counties with larger sample sizes carry more information, and the
corresponding multilevel estimates are close to the county averages. In the limit
as n; — oo, the multilevel estimate is simply the county average, g;.

# In intermediate cases, the multilevel estimate lies hetween the two extremes.
To actually apply (12.1), we need estimates of the variation within and between

counties. In practice, we estimate these variance parameters together with the o;'s,
either with an approximate program such as lmer() (see Section 12.4) or using
fully Bayesian inference, as implemented in Bugs and described in Part 2B of this
book. For now, we present inferences (as in Figure 12.1) without dwelling on the
details of estimation.

12.3 Partial pooling with predictors

The same principle of finding a compromise hetween the extremes of complete
pooling and no pooling applies for more general models. This section considers
partial pooling for a model with unit-level predictors. In this scenario, no pooling
might refer to fitting a separate regression model within each group. However, a less
extreme and more common option that we also sometimes refer to as “no pooling”
is a model that includes group indicators and estimates the model classically.®

As we move on to more complicated models, we present estimates graphically
but do not continue with formulas of the form (12.1). However, the general prin-
ciple remains that multilevel models compromise between pooled and unpooled
estimates, with the relative weights determined by the sample sizge in the group and
the variation within and hetween groups.

Complete-pooling and no-pooling analyses for the radon dafa, with predictors

Continuing with the radon data, Figure 12.2 shows the logarithm of the home radon
measurement versus floor of measurement? for houses sampled from eight of the 85
counties in Minnesota. {We fit our model to the data from all 85 counties, including
a total of 919 measurements, but to save space we display the data and estimates
for a selection of eight counties, chosen to capture a range of the sample sizes in
the survey.)

In each graph of Figure 12.2, the dashed line shows the linear regression of log

2 This varsion of “no pooling” does not pool the estimates for the intercepts—the parameters
we focus on in the corrent discussion—but it does completely pool estimates for any slope
ooefficients (they are forced to have the same value across all groups) and also assumes the
residual variance is the same within each group.

# Measurements were taken in the lowest living area of each house, with basement coded as 0
and first Aoor coded as 1.
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Figure 12.2 Complete-pooling [dashed lines, y = o« + fz) and no-pooling (solid lines,
y = iy + Br ) regressions fit fo radon data from the 85 counties in Minnesota, and displayed
Jor eight of the counties. The estimated slopes 3 differ slightly for the fwo models, but here

our forus is on the intercepis.

radon, given the floor of measurement, using a model that pools all counties together
(50 the same line appears in all eight plots), and the solid line shows the no-pooling
regressions, obtained by including county indicators in the regression (with the
constant term removed to avold collinearity; we also could have kept the constant
term and included indicators for all but one of the counties). We can write the
complete-pooling regression as ¥; — o + S7; + & and the no-pooling regression as
¥ = ajj + Fr; + €;, where jli] is the county corresponding to house i. The solid
lines then plot y = & + SI from the complete-pooling model, and the dashed lines
show y = &; + Oz, for j = 1,... .8, from the no-pooling model.
Here is the complete-pooling regression for the radon data:

lm(formula = y ~ x} R output
coef.est coef.se

(Intercept) 1.33 0.03

x -0.61 .07

n=918, k = 2
residual =sd = 0.82

To fit the no-pooling model in R, we include the county index (a variahle named
county that takes on values between 1 and 85) as a factor in the regression—thus,
predictors for the 85 different counties. We add “—17 to the regression formula to
remove the constant term, so that all 85 counties are included. Otherwise, B would
use county 1 as a haseline,

Im(formula = y - x + factor{county) - 1) R output
coef.est coef.=d

x -0.72 0.07

factor({county}l  0.84¢ 0.38

factor (county)2 0.87 0.10

factor(county}85 1.19 0.53

n =919, k = 86
residual =sd = 0.76

The estimated slopes 3 differ slightly for the two regressions. The no-pooling
model includes county indicators, which can change the estimated coefficient for
x, if the proportion of houses with basements varies among counties. This is just
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Figure 12.3 {a} Estimaies £ standand errors for the county intercepts oy in the model
yi = gy + Bre + errony, for the no-pooling analysis of the radon data, plofted versus num-
ber of observafions from the county. The counfics with fewer measuremenis have more
wvariable estimaies with higher standard errors. This graph illustrates a problem with clas-
sical regression: if sysfematically couses us to think that cerfain countics are more exireme,
Just because they howve smaller sample sizes.

(&) Multilevel {portial pooling) estimates & standard errors for the county intercepts og
for the madon data, plotied versus number of observations from the county. The horizontal
line shows the complefe pooling estimate. Comparing to the left plof {no pooling). which is
on the same scale, we see thai the muliilevel estimate is fypically closer to the complete-
pooling estimate for counties with few observations, and closer to the no-pooling estimaies
for counties with many observationas.

These plots differ only slightly from the no-pooling and muliilevel estimates withouf the
house-level predictor, as displayed in Figure 18.1.

a special case of the rule that adding new predictors in a regression can change
the estimated coefficient of x, if these new predictors are correlated with = In
the particular example shown in Figure 12.2, the complete-pooling and no-pocling
estimates of @ differ only slightly; in the graphs, the difference can be seen most
clearly in Stearns and Ramsey counties.

Problems with the no-pooling and complete-pooling analyses

Both the analyvses shown in Figure 12.2 have problems. The complete-pooling anal-
vais Ignores anyv variation in average radon levels between counties. This is unde-
girahle, particularly since the goal of our analysis was to identify counties with
high-radon homes. We do not want to pool away the main subject of our study!

The no-pooling analvsiz has problems too, however, which we can again see in
Lac Quw Parle County. Even after controlling for the floors of measurement, this
county has the highest fitted line (that is, the highest estimate d;), but again we
do not have much trust in an estimate based on only two observations.

More generallv, we would expect the counties with the least data to get more
extreme estimates &; in the no-pooling analyses. Figure 12.3a illustrates with the
estimates + standard errors for the county intercepts o5, plotted versus the sample
gize in each county j.

Multilevel analysis

The simplest multilevel model for the radon data with the floor predictor can be
written as

v~ Moy + _.ﬂri.crij: fori=1,...,n, (12.2)
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Figure 124 Multilevel (partial pooling) regression lines y = oy + 8r fit io madon dafa
Jrom Minnesofa, displayed for eight counfies. Light-colored dashed and solid lines show
the complefe-pooling and ne-pooling estimates, respectively, from Figure 12 5a.

which looks like the no-pooling model but with one key difference. In the no-pooling
model, the a;'s are set to the classical least squares estimates, which correspond to
the fitted intercepts in a model run separately in each county (with the constraint
that the slope coefficient equals § in all models). Model (12.2) also looks a little
like the complete-pooling model except that, with complete pooling, the o;'s are
riven a “hard constraint”™ —they are all fixed at a common o

In the multilevel model, a “soft constraint™ is applied to the o;'s: they are as-
gigned a probability distribution,

aj ~N{jtg,02), forj=1,...,J (12.3)

with their mean p, and standard deviation o, estimated from the data. The distri-
bution (12.3) has the effect of pulling the estimates of a; toward the mean level p.,,
but not all the way—thus, in each county, a partial-posling compromise betwesn the
two estimates shown in Figure 12.2. In the limit of ¢, — =0, the soft constraints
do nothing, and there is no pooling; as 0. — (0, they pull the estimates all the wayv
to zero, vielding the complete-pooling estimate.

Figure 12.4 shows, for the radon example, the estimated line from the mult-
level model (12.2), which in each county lies between the complete-pooling and
no-pooling regression lines. There is strong pooling (solid line closer to complete-
pooling line) in counties with small sample sizes, and only weak pooling (solid line
closer to no-pooling line) in counties containing many measurements.

Going back to Figure 12.3, the right panel shows the estimates and standard
errors for the county intercepts oy from the multilevel model, plotted versus county
sample size. Comparing to the left panel, we see more pooling for the counties with
fewer ohservations. We also see a trend that counties with larger sample sizes have
lower radon levels, indicating that “countv sample size” i3 correlated with some
relevant county-level predictor.

Average regression line and individual- and group-level variances

Multilevel models typically have so many parameters that it is not feasible to closely
examine all their numerical estimates. Instead we plot the estimated group-level
models (as in Figure 12.4) and varying parameters (as in Figure 12.3b) to look
for patterns and facilitate comparizsons across counties. It can be helpful, however,
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to look at numerical summaries for the hyperparameters—those model parameters
without group-level subscripts.

For example, in the radon model, the hyperparameters are estimated as i, =
1.46, ,6 = —0.69, &, = 0.76, and &, = 0.33. (We show the estimates in Section 12.4.)
That is, the estimated average resression line for all the counties is w = 1.46 —0.69z,
with error standard deviations of 0.76 at the individual level and 0.33 at the county
level. For this dataset, variation within counties {after controlling for the flioor of
measurement) is comparable to the average difference between measurements in
houses with and without basements.

One way to interpret the variation between counties, on, i5 to consider the
variance ratio, cri,f'ui, which in this example is estimated at 0.33%/0.76% = 0.19,
or about one-fifth. Thus, the standard deviation of average radon levels between
counties 18 the same as the standard deviation of the average of 5 measurements
within a county (that is, 0.76/+/5 = 0.33). The relative values of individual- and
group-level variances are also sometimes expressed using the intracloss correlation,
cril.l’{crz + cr:}, which ranges from 0 if the grouping conveys no information to 1 if
all members of a group are identical.

In our example, the group-level model tells us that the county intercepts, a;, have
an estimated mean of 1.46 and standard deviation of 0.33. {What is relevant to our
discussion here is the standard deviation, not the mean.) The amount of information
in this distribution is the same as that in 5 measurements within a county, To put it
another way, for a county with a sample size less than 5, there is more information
in the group-level model than in the county's data; for a county with more than 5
ohservations, the within-county measurements are more informative (in the sense
of providing a lower-variance estimate of the county’s average radon level). As a
result, the multilevel regression line in a county 15 closer to the complete-pooling
estimate when sample size is less than 5. and closer to the no-pooling estimate when
sample size exceeds 5. We can see this in Figure 12.4; as sample size increases, the
multilevel estimates move closer and closer to the no-pooling lines.

Partial pooling (shrinkage) of group coefficients a;

Multilevel modeling partially pools the group-level parameters o; toward their
mean level, u,. There is more pooling when the group-level standard deviation
7, 15 small, and more smoothing for groups with fewer observations. Generaliz-
ing (12.1), the multilevel-modeling estimate of a; can be expressed as a weighted
average of the no-pooling estimate for its group (g; — 8%;) and the mean, p.:

o =
estimate of o; = —E—(#; — %] + = Ha- 12.4
i ?i’+;12'[y1 _1'] Ei__I_El!_F ) 1
¥ o w -

When actually fitting multilevel models, we do not actually use this formula; rather,
we fit models using Imer () or Bugs, which automatically perform the caleulations,
using formulas such as {12.4) internally. Chapter 19 provides more detail on the
algorithms used to fit these models.

Classical reqression as a special case

Classical regression models can be viewed as special cases of multilevel models.
The limit of o, — 0 vields the complete-pooling model, and o, — oo reduces to
the no-pooling model. Given multilevel data, we can estimate o,. Therefore we
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see o reason (except for convenience) to accept estimates that arbitrarily set this
parameter to one of these two extreme values.

12.4 Quickly fitting multilevel models in R

We fit most of the multilevel models in this part of the book using the 1mer()
funetion, which fits linear and generalized linear models with varying coefficients.*
Part 2B of the book considers computation in more detail, including a discussion
of why it can be helpful to make the extra effort and program models using Bugs
(typically using a simpler lmer(} fit as a starting point). The lmer({)} function
15 currently part of the R package Matrix; see Appendix C for details. Here we
introduce Imer() in the context of simple varving-intercept models.

The Imer function

Varying-intercept model with no predictors.  The varying intercept model with no
predictors (discussed in Section 12.2) can be fit and displayed using lmer() as
follows:

MO <- Imer (y 1 + (1 | county))

display (MO}
This model simply includes a constant term (the predictor “17) and allows it to
vary by county. We next move to a more interesting model including the floor of
measurement as an individual-level predictor.
Varying-infercept model with an individual-level predictor.  'We shall introduce mul-
tilevel fitting with model (12.2)-(12.3), the varying-intercept regression with a single
predictor. We start with the call to Imer():

M1 <- Imer (y " x + (1 | county))

This expression starts with the no-pooling model, “y 7 x,” and then adds “(1 |
county),” which allows the intercept {the coefficient of the predictor “1,” which is
the column of ones—the constant term in the regression) to vary by county.

We can then display a quick summary of the fit:

display (ML)
which yields

Imer{formula = y ~ x + (1 | county))
coef.est coef.=e

(Intercept) 1.46 0.05

T -0.69 0.07

Error terms:
Groups  Name Std.Dev.
county (Intercept) .33
Residual 0.786

# of obs: 919, groupa: county, 85
deviance = 2163.7

=

The name lmer stands for “linear miced effects in R,” but the function actually works for
generalized linear models as well. The term “mixed effects™ refers to random effects (coefficients
that vary by group) and ficed effects (coefficients that do not vary ). We avoid the terms “fixed”
and “random” (see page 2453) and instead refer to coeflicients as “modeled” (that is, grouped)
or “unmodeled.”

R code

R code

R code

R output
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The top part of this display shows the inference about the intercept and slope
for the model, averaging over the counties. The bottom part gives the estimated
variation: dx = 0.33 and &y = 0.76. We also see that the model was fit to 919
houses within 85 counties. We shall ignore the deviance for now.

Estimated regression coefficients
T see the estimated mode]l within each county. We type

coef (M1)
which vields
Scounty
(Intercept) x
1 1.19 -0.69
2 0.83 -0.69
3 1.48 -0.69
B 1.38 -0.69

Thus, the estimated regression line 1= ¥ = 1.19 —0.69x in county 1, y = 0.93 + 0.60x
in county 2, and so forth. The slopes are all identical becanse they were specified
thus in the model. {The specification (1|county) tells the model to allow only the
intercept to vary. As we shall discuss in the next chapter, we can allow the slope to
vary by specifying (1+x|county) in the regression model.)

Fired and random effects.  Alternatively, we can separately look at the estimated
maodel averaging over the counties—the “fixed effects” —and the county-level errors—
the “random effects.” Typing

fixef (M1)
vields
(Intercept) I
1.46 -0.69

The estimated regression line in an average county is thus ¥y = 1.46 — 0.69x. We
can then look at the county-level errors:

ranef (M1)
which vields

(Intercept)
1 =0.27
2 -0.83
3 0.02

B5 -0.08

These tell us how much the intercept is shifted up or down in particular counties.
Thus, for example, in county 1, the estimated intercept is 0.27 lower than average,
so that the regression line is (1.46 — 0.27) — 0.6z = 1.19 — 0.692, which is what
we saw earlier from the call to coef (3. For some applications, it 18 best to see the
estimated model within each group; for others, it is helpful to see the estimated
average model and group-level errors.



QUICKLY FITTING MULTILEVEL MODELS IN R 261
U'necertainties in the estimafed coefficients

We wrote Little functions se . fixef () and se.ranef () for quickly pulling out these
standard errors from the model fitted by Imer (). In thiz example,

se.fixef (M1)

vields
(Intercapt) b 4
0.05 0.07
and

se.ranef (M1)

vields,
$county
{Intercept)
1 0.25
2 0.10
3 0.26
B85 0.28

As dizcussed in Section 12.3, the standard errors differ according to the sample size
within each countyv; for example, counties 1, 2, and 85 have 4, 52, and 2 houses,
respectively, in the sample. For the within-county regressions, standard errors are
only given for the intercepts, since this model has a common slope for all counties.

Summarizing and displaying the fitted model

We can access the components of the estimates and standard errors using list no-
tation in K. For example, to get a 95% confidence interval for the slope (which, in
this model, does not vary by county):

fizef (H1)["x"] + c{-2,2)*ze.fixzaf (M1} ["x"]
or, equivalently, since the slope 1= the second coefficient in the regression,
fivef (M1} [2] + c(-2,2)*ze.firef (M1} [2]

The term “fixed effects” iz used for the regression coefficients that do not vary by
group (such as the coefficient for = in this example) or for group-level coefficients
or group averages (such as the average intercept, u, in (12.3)).

Identifying the bafches of coefficients. In pulling out elements of the coefficients
from coef () or ranaf (), we must first identify the grouping (county, in this case).
The need for this labeling will hecome clear in the next chapter in the context of

non-nested models, where there are different levels of gronping and thus different
gtructures of varying coefficients.

For example, here is a 95% confidence interval for the intercept in county 26:
coef (M1} §county[26,1] + c(-2,2)+se.ranef (H1)$county [26]

and here is a 95% confidence interval for the error in the intercept in that county
(that is, the deviation from the average):

as .matrix(ranef (M1)$county) [26] + c(-2,2)}*se.ranef (M1)$county[26]

For a more elaborate example, we make Figure 12.4 using the following commands:
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a.hat.Ml <- coef (M1}Scounty[.1] # 1st column is the intercept
b.hat.M1 <- coef (M1}$county[.Z] # 2nd element is the slope
x.jitter <- x + runif(n,-.05,.05) # jittered data for plotting
par (mfrow=c(2,4}) # make a Zx4 grid of plots

for (j in display8){
plot (x.jitter[county==j]. ylcoumty==j]. zlim=c(-.0%,1.08),
ylim=y.ramge, xlab="floor", ylab="log radon level", main=uniq.name[j]}
## [wnig.neme is a vector of county names that was created earlier]
curve (coef(lm.pocled)[1] + coef(lm.pooled) [2]+x, 1lty=2, col="grayll",
add=TRUE)
curve (coef(lm.unpooled) [j+1]1 + coef(lm.unpooled) [1]*x, col="grayl0®,
add=TRUE)
curve (a.hat.M1[j] + b.hat M1[jl#x. lwd=1, col="black", add=TRUE}
¥
Here, 1m. pooled and 1m. unpooled are the classical regressions that we have already
fit.

Maore complicated models

The Imer(} function can also handle many of the multilevel regressions discussed
in this part of the book, including group-level predictors, varving intercepts and
slopes, nested and non-nested structures, and multilevel generalized linear models.
Approximate routines such as lmer () tend to work well when the sample size and
number of groups iz moderate to large, as in the radon models. When the number of
groups is small, or the model becomes more complicated, it can be useful to switch
to Bavesian inference, using the Bugs program, to better account for uncertainty
in model fitting. We return to this point in Section 16.1.

12.5 Five ways to write the same model

We begin our treatment of multilevel models with the simplest structures—nesfed
models, in which we have ohservations i = 1, ..., n clustered in groups 7 = 1....,.J,
and we wish to model variation among groups. Often, predictors are available at
the individual and group levels. We shall use as a running example the home radon
analysiz described above, using as predictors the house-level r; and a measure of
the logarithm of soil uranium as a county-level predictor, u;. For some versions of
the model, we include these both as individual-level predictors and label them as
X.']_ and X.'-g.

There are several different wayvs of writing a multilevel model. Rather than in-
troducing a restrictive uniform notation, we describe these different formnlations
and explain how they are connected. It is useful to be able to express a model in
different ways, partly so that we can recognize the similarities between models that
only appear to be different, and partly for computational reasons.

Allowing regression coefficients fo vary across groups

Perhaps the simplest way to express a multilevel model generally 1s by starting with
the classical regression model fit to all the data, y; = G, + 51 X0 + FXp + -+ &,
and then generalizing to allow the coefficients 3 to vary across groups; thus,

v = o + G Xa + Fo g oo+ e
The “multilevel” part of the model involves assigning a multivariate distribution to
the vector of s within each group, as we discuss in Section 13.1.
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For now we will focus on varging-intercept models, in which the only coefficient
that varies across groups is the constant term 8y (which, to minimize subscripting,
we label ). For the radon data that include the floor and a county-level uraninm
predictor, the model then hecomes

Ui = aj + 5Xa + e +e

where Xi is the i*® element of the vector X1y representing the first-floor indicators
and X;s is the it element of the vector X2y representing the uranium measurement
in the county containing house i. We can also write this in matrix notation as

Ui = oy + X+ g
with the understanding that X includes the first-floor indicator and the county

uraninm measurement but not the constant term. This is the way that models are

built nsing Imer (), including all predictors at the individual level, as we discuss in
Section 12.6.

The second level of the model is simply

a; ~ N(fia, 02). (12.5)
Group-level errors. The model (12.5) can also be written as
aj = pig +1;, with g; ~ N{0, o2 ). (12.6)

The group-level errors 1; can be helpful in understanding the model; however, we
often use the more compact notation (12.5) to reduce the profusion of notation.
(We have also toyed with notation such as o; = u® + €7 in which ¢ is consistently
used for regression errors—but the superscripts seem too confusing, As illustrated
in Part 2B of this book, we sometimes use such notation when programming models
in Bugs.)

Combining separate local regressions

An alternative way to write the multilevel model is as a linking of local regressions
in each group. Within each group 7, a regression is performed on the local predictors
(in this case, simply the first-floor indicator, z;), with a constant term o that is
indexed by group:

within county 7: y; ~ Nio; + E'I.',EFE:I, fori=1,....n;. {12.7)

The county uranium measurement has not yet entered the model since we are imag-
ining separate regressions fit to each county—there would be no way to estimate the
coefficient for a county-level predictor from any of these within-county regressions.

Instead, the county-level uranium level, u;, is included as a predictor in the
second level of the model:

a; ~ N0 +muy, 03). (12.8)

We can also write the distribution in (12.8) as N{L;, o2 ), where [/ has two columns:
a constant term, Uygy, and the county-level uranium measurement, Uyy,. The errors
in this model (with mean 0 and standard deviation o) represent variation among
counties that is not explained by the local and county-level predictors.

The multilevel model combines the J local regression models (12.7) in two ways:
first, the local regression coefficients  are the same in all J models (an assumption
we will relax in Section 13.1). Second, the different intercepts o are connected
through the group-level model {12.8), with consequences to the coefficient estimates
that we dizcuss in Section 12.6.
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Group-level errors. We can write (12.8) as

o5 = o + 71t + 7, with n; ~ N(0, %), (129)
explicitly showing the errors in the county-level regression.

Modeling the coefficients of a large regression model

The dentical model can be written as a single regression, in which the local and
group-level predictors are combined into a single matrix X

y; ~ N(X; 3, 05), (12.10)

where, for our example, X includes vectors corresponding to:
¢ A constant term, Xq;
» The fioor where the measurement was taken, X;
s The county-level uranium measure, X a,;
¢ J (not J—1) county indicators, X 5. ..., Xy 0.
At the upper level of the model, the J county indicators (which in this case are
Ba, ... F152) follow a normal distribution:

B; ~N(0,02), forj=3,...,J+2. (12.11)

In this case, we have centered the 3; distribution at 0 rather than at an estimated
pig because any such pg would be statistically indistinguishable from the constant
term in the regression. We return to this point shortly,

The parameters in the model (12.10)-(12.11) can be identified exactly with those
in the separate local regressions above:

s The local predictor  in model (12.7) is the same as Xy (the floor) here.
# The local errors €; are the same in the two models.

o The matrix of group-level predictors 7 in (12.8) is just X, here (the constant
term) joined with X5, (the uranium measure).

e The group-level errors m, ..., 0 in (12.9) are identical to s, ..., 8742 here

¢ The standard-deviation parameters o, and o, keep the same meanings in the
two models.

Moving the constant term around. The multilevel model can be written in yet
another equivalent way by moving the constant term:

% = N(X;8,0)), fori=1...,n

8 o~ Nipip.02), forj=3,....J+2 (12.12)
In this version, we have removed the constant term from X (so that it now has only
J + 2 eolumns) and replaced it by the equivalent term p, in the group-level model.

The coefficients J5...., Fr4o for the group indicators are now centered around pg,

rather than 0, and are equivalent to o, ..., 07 as defined earlier, for example, in
model (12.9).

Regreszion with multiple error terms

Another option is to re-express model (12.10), treating the group-indicator coeffi-
clents as error terms rather than regression coefficients, in what iz often called a
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“mixed effects” model popular in the social sciences:

¥ o~ N[X.-E+r]-j[,-|,cr:}: fori=1,....n

nj ~ N(0,az), (12.13)

where j[i| represents the county that contains house i, and X now contains only
three columns:

o A constant term, Xgy;
s The floor, X“};

¢ The county-level uranium measure, X 5.

This is the same as model (12.10)—(12.11), simply renaming some of the 3;'s as
1;'s. All our tools for multilevel modeling will automatically work for models with
multiple error terms.

Large regression with correlafed errors

Finallv, we can express a multilevel model as a classical regression with correlated
ErTOTs:

vi = Xaf+ 8, &l N0, E), (12.14)

where X is now the matrix with three predictors (the constant term, first-floor
indicator, and county-level uranium measure) as in (12.13), but now the errors 2%
have an n x n covariance matrix X. The error 2l in (12.14) is equivalent to the
sum of the two errors, 5y + €, in (12.13). The term 1573, which is the same for all
units i in group j, induces correlation in el

In multilevel models, ¥ is parameterizged in some way, and these parameters are
estimated from the data. For the nested mmitilevel model we have been considering
here, the variances and covariances of the n elements of ¢l can be derived in terms
of the parameters oy, and o,:

For any unit i: Yu= ‘I.?E.I'{E:-’il] = cr: +ol
For any units i, k within the same group j: Ya= cu\rl[fl?“,f““] =
For any units i, k in different groups: Y= cuv{fﬁ'“,fﬁ“] =M.

It can also be helpful to express X in terms of standard errors and correlations:

sd(e;) = VEia=,opy +02
]
Tk _ EEE':;E if j |'E.| = _?[.k]
vEiLkk 1] if 3[i] # i[k).
We generallv prefer modeling the multilevel effects explicitly rather than burving

them as correlations, but once again it 18 useful to see how the same model can be
written in different ways.

COTT( €1, €k )

12.6 Group-level predictors
Adding a group-level predictor to improve inference for group coefficients o;

We continue with the radon example from Sections 12.2-12.3 to illustrate how a
multilevel model handles predictors at the group as well as the individual levels.
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Figure 12.5 Multilevel (partial pooling) regression lines y = oy 4 Gz fit fo mdon data,
displayed for eighf counfies, including wranium oz o county-level predictor. Light-colored
lines show the multilevel estimates, without uranium as a predictor, from Figure 12.4.

Figure 12.6 Estimated county coefficients ay (£1 sfondard ervor) plofted versus county-
level wmnivm measwrement uy, along with the estimafed multilevel regression line oy =
7o+ muy. The county coefficients roughly follow the line buf not exactly; the deviation of
the cocfficients from the line &5 captured in oy, the sfandard deviation of the errore in the

county-level regression.

We use the formulation
¥ o~ Ny + S, f.rg]l, fori=1,...,n
a; ~ N+ mnu;,02), forj=1,...,J, (12.15)

where x; is the house-level first-floor indicator and w; is the county-level uranium
measure,

u.full <- ulcounty]

M2 <- Imer (y - x + w.full + (1 | county)}}

display (M2)
This model includes floor, uranium, and intercepts that varv by county. The Imer ()
function only accepts predictors at the individual level, so we have converted u; to
uE"‘J] = w4} (with the variable county playing the role of the indexing ilil), to pull
out the uranium level of the county where house i 15 located.

The dizplay of the 1mer () fit shows coefficients and standard errors, along with

estimated residual variation at the county and individual {“residual” ) level:
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Imer{formula = y - x + u.full + (1 | coumtyl)
coef.est coef.ze

(Intercept) 1.47 0.04
x -0.67 0.07
u.foll 0.72 0.08
Error terms:
Groups  Name 5td.Dev.
county  (Intercept) 0.16
Rezidual 0.76

# of oba: 819, groups: coumty, 85
deviance = 2122.9

As in our earlier example on page 261, we use coef () to pull out the estimated
coefficients,

coef (M2)
vielding
$county
{Intarcept) x u.full
1 1.45 -0.67 0.72
1.48 -0.67 0.72
B85 1.42 -0.67 0.72

Cinly the intercept varies, so the coefficients for x and u. full are the same for all 85
counties. (Actually, u.full is constant within counties so it cannot have a varying
coefficient here.) On page 280 we shall see a similar display for a model in which
the coefficient for x varies by county.

As before, we can also examine the estimated model averaging over the counties:

fizef (M2)
vielding
(Intercapt) x u.full
1.4T7 =067 0.72

and the countv-level errors:
ranef (H2)
vielding
{Intercept}

-0.02
Q.01

[ S ]

85 =0.04

The results of fixef() and ranef() add up to the coefficients in coef (): for
county 1, 1.47 — 0.02 = 1.45, for county 2, 1.47+ 0.01 = 1.48, ..., and for county
85, 1.47 — 0.04 = 1.42 {up to rounding error).

R output

R code

R output

R code

R output

R code

R output
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Interpreting the coefficients within counties

We can add the unmodeled coefficients {the “fixed effects™ ) to the county-level errors
to get an intercept and slope for each county. We start with the model that averages
over all counties, y; = 1.47 — 0.67z; + 0.72uy; (as obtained from display(M2) or
fixef(M2).

Now consider a particular county, for example county 85. We can determine its
fitted regression line in two ways from the lmer () output, in each case using the
log uranium level in county 85, ug; = 0.36.

First, uzing the the last line of the display of coef (M2), the fitted model for county
85 is g = 142 — 0.67Tz; + 0.72ug; = (1,42 4+ 0.72- 0.36) — 0.67x; = 1.G8 — 0.67x;,
that iz, 1.68 for a house with a basement and 1.01 for a house with no basement.
Exponentiating gives estimated geometric mean predictions of 5.4 pCi/L and 2.7
pCi/L for houses in county 85 with and without basements.

Alternativelv, we can construct the fitted line for county 85 by starting with the
results from fixef (M2)—that is, 3 = 147 — 06Tz + 0.72u;3), setting wyy = uss =
(0.36—and adding the group-level error from ranef (M2), which for county 85 is
—0.04. The resulting model is y; = 1.47— 067z; +0.72-0.36 — 0.04 = 1.68 — 0L.67x;,
the same as in the other caleulation (up to rounding error in the last digit of the
intercept).

Figure 12.5 shows the fitted line for each of a selection of counties, and Figure
12.6 shows the county-level regression, plotting the estimated coefficients a; versus
the county-level predictor u;. These two figures represent the two levels of the
multilevel model.

The group-level predictor has increased the precision of our estimates of the
county intercepts oy the +£1 standard-error bounds are narrower in Figure 12,6
than in Figure 12.3b, which showed a;'s estimated without the uranium predictor
(note the different scales on the y-axes of the two plots and the different county
variables plotted on the r-axes).

The estimated individual- and county-level standard deviations in this model are
&y = 0.76 and &, = 0.16. In comparison, these residual standard deviations were
0.76 and 0.33 without the uranium predictor. This predictor has left the within-
county variation unchanged—which makes sense, since it i1z a county-level predictor
which has no hope of explaining variation within any county—hut has drastically
reduced the unexplained variation between counties. In fact, the variance ratio is
now only uﬁjag = D.IGZI.I’EI.'?G“ = [.044, so that the county-level model is as good
as 1/0.044 = 23 observations within any county. The multilevel estimates under
this new model will be close to the complete-pooling estimates (with county-level
uranium included as a predictor) for many of the smaller counties in the dataset
hecause a county would have to have more than 23 observations to be pulled closer
to the no-pooling estimate than the complete-pooling estimate.

Interpreting the coefficient of the group-level predictor

The line in Figure 12.6 shows the prediction of average log radon in a county
(for homes with basements—that is, x; — (—since these are the intercepts o),
as a function of the log uranium level in the county. This estimated group-level
regression ling has an estimated slope of about 0.7. Coefficients between (1 and 1
are tvpical in a log-log regression: in this case, each increase of 1% in uranium level
corresponds to a 0.7% predicted increase in radon.

It makes sense that counties higher in uranium have higher radon levels, and it
also makes sense that the slope is less than 1. Radon is affected by factors other
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than soil uranium, and the “uranium”® variable in the dataset is itself an imprecize
measure of actual soil uranium in the county, and so we would expect a 1% increase
in the uranium variable to match to something less than a 1% increase in radon.
Compared to classical regression, the estimation of this coefficient is trickier (since
the a;'s—the “data”™ for the county-level regression—are not themselves observed)
but the principles of interpretation do not change.

A multilevel model can include county indicators along with a county-level
predicior

Uszers of multilevel models are often confused by the idea of including county in-
dicators along with a countv-level predictor. [s this possible? With 85 counties in
the dataset, how can a regression fit 85 coefficients for counties, plus a coefficient
for countv-level uraninum? This would seem to induce perfect collinearity into the
regression or, to put it more bluntly, to attempt to learn more than the data can
tell us. Is 1t really possible to estimate 86 coefficients from 85 data points?

The short answer 1= that we really have more than 85 data points. There are
hundreds of houses with which to estimate the 85 county-level intercepts, and 35
counties with which to estimate the coefficient of county-level uraninm. In a classical
regression, however, the 85 county indicators and the county-level predictor would
indeed bhe collinear. This problem is avolded in a multilevel model becanse of the
partial pooling of the a;'s toward the group-level linear model. This is illustrated in
Figure 12,6, which shows the estimates of all these 86 parameters—the 85 separate
points and the slope of the line. In this model that includes a group-level predictor,
the estimated intercepts are pulled toward this group-level regression line (rather
than toward a constant, as in Figure 12.3b). The county-level uranium predictor
u; thus helps us estimate the county intercepts a; but without overwhelming the
mformation in individual counties.

Partial pooling of group coefficients a; in the presence of group-level predictors

Equation (12.4) on page 258 gives the formula for partial pooling in the simple
model with no group-level predictors. Once we add a group-level regression, a; ~
N{Uj’r.aﬁ}: the parameters o; are shrunk toward their regression estimates d; =
Uyv. Equivalently, we can say that the group-level errors 1j; (in the model a; =
Ui + n5) are shrunk toward 0. As always, there is more pooling when the group-
level standard deviation o, is small, and more smoothing for groups with fewer
observations. The multilevel Etimate of o; is a weighted average of the no-pooling
estimate for its group (%; — X ;7) and the regression prediction d;:

Eﬂ-
estimate of o; =~ "—a'—l - {estimate from group 7) +
o oE
i B
1
oz . .
+ #—— - (estimate from regression).  (12.16)
Gt
Equivalently, the group-level errors 7; are partially pooled toward zero:
i 1
. o _ —_ )
estimate of n; =~ o (7; — X ;53— Ujy) + 77— -0
=7 T ar w2 T aT

¥ - .} -
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12.7 Model building and statistical significance
From classical fo multilevel regression

When confronted with a multilevel data structure, such as the radon measurements
considered here or the examples in the previous chapter, we tvpically start hy fitting
gome simple classical regressions and then work our way up to a full multilevel
model, The four natural starting points are;

« Complete-pooling model: a single classical regression completelv ignoring the
group information—that is, a single model fit to all the data, perhaps including
eroup-leve] predictors but with no coefficients for group indicators.

e MNo-pooling model: a single classical regression that includes group indicators
(but no group-level predictors) but with no model for the group coefficients.

e Separate models: a separate classical regression in each group. This approach is
not always possible if there are groups with small sample sizes. (For example,
in Figure 12.4 on page 257, Aitkin County has three measurements in homes
with basements and one in a home with no basement. If the sample from Aitkin
County had happened to contain only houses with basements, then it would he
impossible to estimate the slope 3 from this county alone.)

o Two-step analvsis: starting with either the no-pooling or separate models, then
fitting a classical group-level regression using, as “data,” the estimated coeffi-
cients for each group.

Each of these simpler models can be informative in its own right, and they also set
us up for understanding the partial pooling in a multilevel model, as in Figure 12.4.

For large datasets, fitting a model separately in each group can be computa-
tionally efficient az well. One might imagine an iterative procedurs that starts by
fitting separate models, continues with the two-step analvsis, and then returns to
fitting separate models, but using the resulting group-level regression to guide the
estimates of the varying coefficients. Such a procedure, if formalized appropriately,
is in fact the usual algorithm used to fit multilevel models, as we discuss in Chapter
17.

When is multilevel modeling maost effective?

Multilevel model 18 most important when it is close to complete pooling, at least
for some of the groups (as for Lac Qui Parle County in Figure 12.4 on page 257).
In this setting we can allow estimates to vary by group while still estimating them
precisely. As can be seen from formula (12.16), estimates are more pooled when the
group-level standard deviation o, is small, that is, when the groups are similar to
each other. In mntrast, when 7. is large, so that groups vary greatly, multilevel
modeling is not much better than simple no-pooling estimation.

At this point, it might seem that we are contradicting ourselves. Earlier we mo-
tivated multilevel modeling as a compromise between no pooling and complete
pooling, but now we are saying that multilevel modeling is effective when it 1= close
to complete pooling, and ineffective when 1t 15 close to no pooling. If this 1= s0, why
not just alwavs use the complete-pooling estimate?

We answer this guestion in two ways. First, when the multilevel estimate 18 close
to complete pooling, it still allows variation between groups, which can be impor-
tant, in fact can be one of the goals of the study. Second, as in the radon example,
the multilevel estimate can be close to complete pooling for groups with small sam-



MODEL BUILDING AND STATISTICAL SIGNIFICANCE .|

ple size and close to no pooling for groups with large sample size, automatically
performing well for hoth sorts of group.

Using group-level predictors o make partial pooling more effective

In addition to being themselves of interest, group-level predictors play a special
role in multilevel modeling by reducing the unexplained group-level variation and
thus reducing the group-level standard deviation o.. This in turn increases the
amount of pooling done by the multilevel estimate (see formula (12.16)), giving more
precise estimates of the a;'s, especially for groups for which the sample size nj is
small. Following the template of classical regression, multilevel modeling typically
proceeds by adding predictors at the individual and group levels and reducing
the unexplained variance at each level. (However, as discussed in Section 21.7,
adding a group-level predictor can actually increase the unexplained variance in
some situations.)

Statistical significance

It 15 notf appropriate to use statistical significance as a criterion for including par-
ticular group indicators in a multilevel model. For example, consider the simple
varyving-intercept radon model with no group-level predictor, in which the averaze
intercept p, is estimated at 1.46, and the within-group intercepts o; are estimated
at 1.46 — 0.27 £0.25 for county 1, 1.46 —0.53 £0.10 for county 2, 1.46 + 0.02 = 0.28
for county 3, and so forth (see page 261).

County 1 15 thus approximately 1 standard error away from the average intercept
of 1.46, county 2 is more than 4 standard errors away, ... and county 85 is less than
1 standard error away. Of these three counties, only county 2 would he considered
“statisticallv significantly™ different from the average.

However, we should include all 85 counties in the model, and nothing is lost by
doing so. The purpose of the mmltilevel model is not to see whether the radon levels
in county 1 are statistically significantly different from those in county 2, or from
the Minnesota average. Rather, we seek the best possible estimate in each county,
with appropriate accounting for uncertainty. Rather than make some significance
threshold, we allow all the intercepts to vary and recogmize that we may not have
much precision in many of the individual gronps. We illustrate this point in another
example in Section 21.8.

The same principle holds for the models discussed in the following chapters, which
include varying slopes, non-nested levels, discrete data, and other complexities.
Onee we have included a source of variation, we do not use statistical significance
to pick and choose indicators to include or exclude from the model.

In practice, our higgest constraints—the main reasons we do not use extremely
elaborate models in which all coefficients can varv with respect to all grouping
factors—are fitting and understanding complex models. The Imer () function works
well when it works, but it can break down for models with many grouping factors.
Bugs is more general (see Part 2B of this book) but can be slow with large datasets
or complex models. In the meantime we need to start simple and build up gradually,
a process during which we can also build understanding of the models being fit.
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12.8 Predictions for new observations and new groups

Predictions for multilevel models can be more complicated than for classical re-
gression because we can apply the model to existing groups or new groups. After
a brief review of classical regression prediction, we explain in the context of the
radon model.

Review of prediction for classical regression

In classical regression, prediction is simple: specify the predictor matrix X for a set
of new observations® and then compute the linear predictor X 3, then simulate the
predictive data:

s For linear regression, simulate independent normal errors € with mean 0 and
standard deviation o, and compute 7 = X 3+ £; see Section 7.2,

e For logistic regression, simulate the predictive hinary data: Pr{i;) = logit™ ! {JE’.-;S]
for each new data point #; see Section 7.4.

« With binomial logistic regression, specify the number of tries n; for each new
unit ¢, and simulate 4; from the binomial distribution with parameters n1; and
logit™ (X ;3); see Section 7.4.

« With Poisson regression, specify the exposures i; for the new units, and simulate
By PDiSSDIlI{ﬂ,-ER"'g:I for each new i; see Section 7.4.

As discussed in Section 7.2, the estimation for a regression in R gives a set of ng .
simulation draws. Each of these 15 used to simulate the predictive data vector ,
vielding a set of n,., simulated predictions. For example, in the election forecasting
example of Figure 7.5 on page 146:

model.l <- 1m (vote.B88 ~ wvote.86 + party.88 + inc.88)
display (model.1)
n.sims <- 1000
gim.1 <- =zim (model.l. m.sims}
beta.sim <- sim. 1§beta
sigma.sim <- sim.1$sigma
n.tilde <- length (vote.B88)
X.tilde <- cbind (rep(l,m.tilde), vote.88, party.90, inc.90)
y.tilde <- array (NA. c(n.sims, n.tilde))
for (= in 1:n.sims) {
y.tilde[s,] <- rnom (n.tilde, X.tildel*¥beta.sim[s,], sipgma.sim[=])
}

This matrix of simulations can be used to get point predictions (for example,
median(y.tilde[,3]1) gives the median estimate for #3) or predictive intervals
(for example, quantile(y.tilde[,3],c(.02E,.976))) for individual data points
or for more elaborate derived quantities, such as the predicted number of seats
won by the Democrats in 1990 (see the end of Section 7.3). For many applications,
the predict() function in R is a good way to quickly get point predictions and
intervals (see page 48); here we emphasize the more elaborate simulation approach
which allows inferences for arbitrary quantities.

% Pradictions are more complicated for time-series models: even when parameters are fit by clas-
sical regression, predictions must be made sequentially. See Sections 8.4 and 24.2 for examples.
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Prediction for a new observation in an erizting group

We can make two sorts of predictions for the radon example: predicting the radon
level for a new house within one of the counties in the dataset, and for a new house
in a new county. We shall work with model (12.15) on page 266, with floor as an
individual-level predictor and uraninm as a group-level predictor

For example, suppose we wish to predict 4, the log radon level for a house with no
basement (thus, with radon measured on the first floor, so that ¥ = 1) in Hennepin
County (j = 26 of our Minnesota dataset). Conditional on the mode]l parameters,
the predicted value has a mean of agg + 3 and a standard deviation of e, That is,

§[8 ~ Niasg + 8%, 03),

where we are using # to represent the entire vector of model parameters.
Given estimates of o, 5, and my, we can create a predictive simulation for 4 using
R code such as

x.tilde <= 1

sigma.y.hat <- sigma.hat(M2)Ssigmafdata

coef .hat <- as.matrix{coef (H2)$county) [26.]

y.tilde <- rmorm (1. coef.hat ¥*% c(l, x.tilde, u[26]}, =igma.y.hat)

More generally, we can create a vector of n. sims simulations to represent the pre-
dictive uncertainty in i:

n.sims <- 1000
coef .hat <- as.matrix{coef (H2)$county) [26.]
y.tilde <- roorm (1000, coef.hat %% c(l, x.tilde, u[26]), =igma.y.hat)

Still more generallv, we can add in the inferential uncertainty in the estimated
parameters, o, 3, and 7. For our purposes here, however, we shall ignore inferential
uncertainty and just treat the parameters o, 3, oy, 0, as if they were estimated
perfectly from the data® In that case, the computation gives us 1000 simulation
draws of ¥, which we can summarize in various ways. For example,

quantile (y.tilde, c(.25,.5,.7T6))

gives us a predictive median of 0.76 and a 50% predictive interval of [0.26, 1.27).
Exponentiating gives us a prediction on the original (unlogged) scale of exp(0.76) =
2.1, with a 50% interval of [1.3, 3.6].

For some applications we want the average, rather than the median, of the pre-
dictive distribution. For example, the expected risk from radon exposure is propor-
tional to the predictive average or mean, which we can compute directly from the
simulations:

unlogged <- exp(y.tilde)
mean (unlogged)

In this example, the predictive mean is 2.9, which is a bit higher than the median
of 2.1. This makes sense: on the unlogged scale, this predictive distribution is skewed
to the right.

% One reason we picked Hennepin County (j = 26) for this example is that, with a sample size
of 104, its average radon level is accurately estimated from the available data.
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Prediction for o new observation in a new group

Mow suppose we want to predict the radon level for a house, once again with no
hasement, but this time in a county not included in our analvsis. We then mnst
generate a new county-level error term, &, which we sample from its N{vp +711;, 2]
distribution. We shall assume the new county has a wranium level equal to the
average of the uraninum levels in the observed counties:

u.tilde <- mean (u)
grab the estimated g, 71,04 from the fitted model:

g.0.hat <- firef(M2)["(Intercept)"”]
g.1.hat <- firef(MZ)["u.full"]
gigma.a.hat <- sigma.hat(MZ}$sigmafcounty

and simulate possible intercepts for the new county:
a.tilde <- rnorm (n.=zims, g.0.hat + g.1.hat#n.tilde, sigma.a.hat)

We can then simulate possible values of the radon level for the new house in this
county:

y.tilde <- ronorm (n.zims, a.tilde + b.hat*x.tilde, sigma.y.hat)

Each simmlation draw of @ uses a different simnlation of &, thus propagating the
uncertainty about the new county into the uncertainty about the new house in this
county.

Comparizon of within-group and between-group predictions.  The resulting predic-
tion will be more uncertain than for a house in a known county, since we have no
information about &. Indeed, the predictive 50% interval of this new § is [0.28, 1.34],
which is slightly wider than the predictive interval of [0.26, 1.27] for the new house
in county 26. The interval iz only slightly wider becanuse the within-county variation
in this particular example is much higher than the between-county variation.

More specifically, from the fitted model on page 266, the within-county (residual)
standard deviation o, is estimated at 0.76, and the between-county standard devi-
ation o, 1= estimated at (.16, The log radon level for a new house in an already-
measured county can then be measured to an accuracy of about £0.76. The log
radon level for a new house in a new county can be predicted to an accuracy of
about ++/0.76% + 0.16% = +0.74. The ratio 0.78/0.76 iz 1.03, so we would expect
the predictive interval for a new house in a new county to be about 3% wider
than for a new house in an already-measured county. The change in interval width
15 small here because the unexplained between-county vanance is so small in this
dataset.

For another example, the 50% interval for the log radon level of a house with no
basement in county 2 is [0.28, 1.30], which iz centered in a different place but also
is narrower than the predictive interval for a new county.

Nonlinear predictions

Section 7.3 illustrated the use of simulation for nonlinear predictions from classical
regression. We can perform similar caleulations in multilevel models. For example,
suppose we are interested in the average radon level among all the houses in Hen-
nepin County (j = 26). We can perform this inference using poststratification, first
estimating the average radon level of the houses with and without basements in the
county, then weighting these by the proportion of houses in the county that have
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basements. We can look up this proportion from other data sources on homes, or
we can estimate it from the available sample data.

For our purposes here, we shall assume that 90% of all the houses in Hennepin
County have basements. The average radon level of all the houses in the county is
then 0.1 times the average for the houses in Hennepin County without basements,
plus 0.9 times the average for those with basements. To simulate in R:

y.tilde.basement <- rnorm (n.zims, a.hat[26], =igma.y.hat)
y.tilde.nobasement <- rnorm (n.=ims, a.hat[26] + b.hat, =igma.y.hat)

We then compute the estimated mean for 1000 houses of each type in the county
(first exponentiating since our model was on the log seale):

mezn.radon.basement <- mean (exp (y.tilde.basement))
mean . radon.nobasement <- mean (exp (y.tilde.nobasement))

and finally poststratifv given the proportion of houses of each type in the county:
mean.radon <- .9+mean.radon.basement + .l*mean.radon.basement

In Section 16.6 we return to the topic of predictions, using simulations from Bugs
to capture the uncertainty in parameter estimates and then propagating inferential
uncertainty into the predictions, rather than simply using point estimates a. hat,
b.hat, and so forth.

12.9 How many groups and how many observations per group are
needed to fit a multilevel model?

Advice is sometimes given that multilevel models can only be used if the numhber of
groups 15 higher than some threshold, or if there is some minimum number of obser-
vations per groups. Such advice 18 mispuided. Multilevel modeling includes classical
regression as a limiting case (complete pooling when group-level variances are zero,
no pooling when group-level variances are large). When sample sizes are small, the
kev concern with multilevel modeling is the estimation of variance parameters, but
it should still work at least as well as classical regression.

How many groups ¥

When J, the number of groups, is small, it is difficult to estimate the betwesn-group
variation and, as a result, multilevel modeling often adds little in such situations,
hevond classical no-pooling models. The difficulty of estimating variance parameters
1= a technical 1ssue to which we return in Section 19.6; to simplify, when o, cannot
be estimated well, it tends to be overestimated, and so the partially pooled estimates
are close to no pooling (this is what happens when o, has a high value in (12.16)
on page 269).

At the same time, multilevel modeling should not do any worse than no-pooling
regression and sometimes can be easier to interpret, for example because one can
mclude indicators for all J groups rather than have to select one group as a baseline
categorv.

Chne or two groups

With only one or two groups, however, multilevel modeling reduces to classical
regression (unless “prior information™ is explicitly included in the model; see Section
18.3). Here we usually express the model in classical form (for example, including

R code
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a single predictor for female, rather than a multilevel model for the two levels of
the sex factor).

Even with only one or two groups in the data, however, multilevel models can
he useful for making predictions about new groups. See also Sections 21.2-22.5 for
further connections between classical and multilevel models, and Section 22,6 for
hierarchical models for improving estimates of variance parameters in settings with
many grouping factors but few levels per factor.

How many obzservations per group

Even two observations per group is enough to fit a multilevel model. It i= even
acceptable to have one observation in many of the groups. When groups have few
chservations, their a;'s won’t be estimated precisely, but they can still provide par-
tial information that allows estimation of the coefficients and variance parameters
of the individual- and group-level regressions.

Larger datasets and more compler models

Az more data arise, it makes sense to add parameters to a model. For example,
consider a simple medical study, then separate estimates for men and women, other
demographic breakdowns, different regions of the country, states, smaller geographic
areas, Interactions between demographic and geographic categories, and so forth.
Az more data become available it makes sense to estimate more. These complexities
are latent everywhere, but in small datasets it 15 not possible to learn so much, and
it i not necessarily worth the effort to fit a complex model when the resulting
uncertainties will be so large.

12.10 Bibliographic note

Multilevel models have been used for decades in agriculture (Henderson, 1950,
1984, Henderson et al., 1959, Robinson, 1991) and educational statistics (Novick
et al., 1072, 1973, Bock, 1980), where it is natural to model animals in groups
and studentz in classrooms. More recently, multilevel models have hecome popu-
lar in many social sciences and have been reviewed in books by Longford (1993),
Goldstein (1995), Kreft and De Leeuw (1998), Snijders and Bosker (1999), Verbeke
and Molenberghs (2000), Leyland and Goldstein (2001), Hox (2002), and Rauden-
bush and Bryk (2002). We do not attempt to trace here the many applications of
multilevel models in various scientific fields.

It might alzo he useful to read up on Bavesian inference to understand the the-
oretical background behind multilevel models.” Box and Tiao (1973) 5 a classic
reference that focuses on linear models. [t predates modern computational meth-
ods but might be useful for understanding the fundamentals. Gelman et al. [(2003)
and Carlin and Louis (2000) cover applied Bayesian inference including the basics of
multilevel modeling, with detalled discussions of computational algorithms. Berger

7 As we discuss in Section 18,3, multilevel inferences can be formulated non-Bayesianly; however,
understanding the Bayesian derivations should help with the other approaches too. All mul-
tilevel models are Bayvesian in the sense of assigning probability distributions to the varving
regrassion coeflicients. The distinetion between Bayesian and non-Bayesian multilevel mod-
els arises only for the question of modeling the other parameters—the nonvarying coefficients
and the variance parameters—and this is typically a less important issue, especially when the
number of groups is large.
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(1985) and Bernardo and Smith (1994) cover Bayesian inference from two different
theoretical perspectives.

The R function 1mer () is described by Bates (2005a, b) and was developed from
the linear and nonlinear mixed effects software described in Pinheiro and Bates
(2000).

Multilevel modeling used to be controversial in statistics; see, for example, the
discussions of the papers by Lindley and Smith (1972) and Rubin (1980) for some
gense of the controversy.,

The Minnesota radon data were analyzed by Price, Nero, and Gelman (1996);
see also Price and Gelman (2004) for more on home radon modeling.

Statistical researchers have studied partial pooling in many ways; see James and
Stein (1960), Efron and Morris (1979), DuMouchel and Harris (1983), Morris (1983),
and Stigler (1983 ). Louis (1984), Shen and Louis (1998), Louis and Shen (1999, and
Gelman and Price (1999) discuss some difficulties in the interpretation of partially
pooled estimates. Zaslavsky (1903) discusses adjustments for undercount in the
11.5. Census from a partial-pooling perspective. Normand, Glickman, and Gatsonis
(1997} discuss the use of multilevel models for evaluating health-care providers.

12,11 Exercises

1. Using data of your own that are appropriate for a multilevel model, write the
maodel in the five ways discussed in Section 12.5.

2. Continuing with the analysis of the CId data from Exercize 11.4:

(a) Write a model predicting CIM percentage as a function of time with varving
intercepts across children. Fit using Imer() and interpret the coefficient for
time.

(b) Extend the model in (a) to include child-level predictors (that is, group-level
predictors) for treatment and age at baseline. Fit using 1mer () and interpret
the coefficients on time, treatment, and age at baseline.

(c) Investigate the change in partial pooling from (a) to (b) both graphically and
numerically.

(d) Compare results in (b) to those obtained in part {c).

3. Predictions for new observations and new groups:

(a) Use the model fit from Exercize 12.2(h) to generate simulation of predicted
CDM percentages for each child in the dataset at a hypothetical next time
point.

(b} Use the same model fit to generate simulations of CD4 percentages at each of
the time periods for a new child who was 4 vears old at baseline.

4. Posterior predictive checking: continuing the previous exercise, use the fitted
maode] from Exercize 12.2(b) to simulate a new dataset of CD4 percentages (with
the same sample size and ages of the original dataset) for the final time point of
the study, and record the average CD4 percentage in this sample. Repeat this
process 1000 times and compare the simulated distribution to the ohserved CD4
percentage at the final time point for the actual data.

o

. Using the radon data, include county sample size as a group-level predictor and
write the varving-intercept model. Fit this model using 1mer().

6. Return to the beauty and teaching evaluations introduced in Exercise 3.5 and
4.8,
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(a) Write a varying-intercept model for these data with no group-level predictors.
Fit thiz model using 1mer () and interpret the results.

(b} Write a varving-intercept model that you would like to fit including three
eroup-level predictors. Fit this mode] using Imer () and interpret the results.

() How does the variation in average ratings across instructors compare to the
variation in ratings across evaluators for the same instructor?

7. This exercize will use the data yvou found for Exercizse 4.7, This time, rather than
repeating the same analysis across each year, or country (or whatever group the
data varies across), fit a multilevel model using Imer () instead. Compare the
results to those obtained in your earlier analysis.

8. Simulate data (outcome, individual-level predictor, group indicator, and group-
level predictor) that would be appropriate for a multilevel model. See how partial
pooling changes as vou vary the sample size in each group and the number of
ETOUpS.

9. Number of observations and number of groups:

(a) Take a simple random sample of one-fifth of the radon data. (You can cre-
ate this subset using the sample() function in R.) Fit the varying-intercept
model with floor as an individual-level predictor and log uraninm as a county-
level predictor, and compare vour inferences to what was obtained by fitting
the model to the entire dataset. (Compare inferences for the individual- and
eroup-level standard deviations, the slopes for floor and log uranium, the av-
erage intercept, and the county-level intercepts.)

(b} Repeat step (a) a few times, with a different random sample each time, and
summarize how the estimates varv.

(c) Repeat step (a), but this time taking a cluster sample: a random sample of
one-fifth of the counties, but then all the honses within each sampled county.



CHAPTER 13

Multilevel linear models: varying slopes,
non-nested models, and other
complexities

This chapter considers some generalizations of the hasic multilevel regression. Mod-
els in which slopes and intercepts can vary by group (for example, yi = oy +
Bixi +---, where @ and 3 both vary by group j; see Figure 11.1c on page 238)
can also be nterpreted as interactions of the group index with individual-level pre-
dictors.

Another direction is non-nested models, in which a given dataset can be struc-
tured into groups in more than one way. For example, persons in a national survey
can be divided by demographics or by states. Responses in a psychological experi-
ment might be classified by person (experimental subject), experimental condition,
and time.

The chapter concludes with some examples of models with nonexchangeahle mul-
tivariate structures. We continue with generalized linear models in Chapters 14-15
and discuss how to fit all these models in Chapters 16-119.

13.1 Varying intercepts and slopes

The next step in multilevel modeling is to allow more than one regression coefficient
to vary by group. We shall illustrate with the radon model from the previous chap-
ter, which 1= relatively simple because it only has a single individual-level predictor,
z (the indicator for whether the measurement was taken on the first floor).

We hegin with a varying-intercept, varving-slope model including = but without
the county-level uraninm predictor; thus,

v o~ N + Fjax, l:'.l'::l: fori=1,....n

. 2
(a;) N _\;((Fn)( a2 Pa'u_fﬁ)): for j=1,....J. (13.1)
B; ta Poa0s O

with variation in the a;'s and the 3;'s and also a between-group correlation param-
eter p. In R:

M3 <- Imer (y " x + (1 + x | county))
display (M3}

which yields

lmer{formula = y " x + (1 + x | countyl)
coef.est coef.se

(Intercept) 1.46 0.05
b 4 -0 .68 0.09
Error terms:
Groups Name Btd.Dev. Corr
county  (Intercept) 0.35
I .34 -0.34

]

R code

R output
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Residual 0.7
# of obs: 919, groups: county, B5
deviance = 2161.1

In this model, the unexplained within-county variation has an estimated standard
deviation of &, = (.75; the estimated standard deviation of the county intercepts
is Fp = 0.35; the estimated standard deviation of the county slopes is 7z = 0.34;
and the estimated correlation hetween intercepts and slopes is —0.34.

We then can type

coef (M3)
to yield

Scounty

(Intercept) x
1 1.14 -0.564
2 0.93 -0.77
3 1.47 -0.67
BE 1.38 -0.65

Or we can separately look at the estimated population mean coefficients ., pg and
then the estimated errors for each county. First, we type

fizef (M3)
to see the estimated average coefficients (“fixed effects™ ):
(Intercept) b 4
1.46 -0.68
Then, we type
ranaf (M3)

to see the estimated group-level errors (“random effects"):

(Intercept) T
1 —0.32 0.14
2 -0.63 -0.09
3 0.01 0.01
85 -0.08 0.03

We can rezain the estimated intercept and slope o, §; for each coumty hy simply
adding the errors to pe. and pg; thus, the estimated regression line for county 1 is
(1.46 — 0.32) + (—0.68 + 0.14)z = 1.14 — 0.54x, and so forth.

The group-level model for the parameters (o, 5;) allows for partial pooling in
the estimated intercepts and slopes. Figure 13.1 shows the results—the estimated
lines y = aj + fjr—for the radon data in eight different counties.

Including group-level predictors

We can expand the model of (o, 3) in (13.1) by including a group-level predictor
(in this case, soil uranium):

LTAT ’rﬁ‘+’r‘|‘ﬂj) ( Th Wuaﬁ)) o )
(Ej) N((qﬁ+~r{'u,- g PR Jfori=1,....0  (13.2)

The resulting estimates for the a;’ and §;'s are changed slightly from what is
displaved in Figure 13.1, but more interesting are the second-level models them-
gelves, whose estimates are shown in Figure 13.2. Here 13 the result of fitting the
model in R:
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Figure 13.1 Multilevel {parfial pooling) regression lines v = ay + Fyx, displayed for eight
counfies j. In this model, both the intercept and the slope vary by county. The Light solid
ond dashed lines show the no-pooling and complete pooling regression lines. Compare to
Figure 124, in which only the intercept varies.

Figure 13.2 [a) Estimates £ standard errors for the county infercepts ay, plotted versus
counfy-level wranium messurement wy, along with the estimated multilevel regression line,
a = 5 + yiu. (b) Estimates £ standard errors for the county slopes 5y, plotied versus
county-level uranium measurement uy. along with the estimafed multilevel regreszion line,
8 = "_rg + "_r;?u. Estimates and standaord errors are the posterior medions and standard
deviations, respectively. For each graph, the county coefficients roughly follow the line
buf not exactly; the discrepancies of the coefficients from the line are summarized by the
couniy-level standard-deviation paramefers on, o5.

Imer{formula = y ~ x + u.full + xiu.full + {1 + x | county)) R output
coef .eat coef.ze
(Intercept) 1.47 .04
x -0.67 0.08
u. full 0.81 0.09
x:u.full -0.42 .23
Error terms:
Groups  Name 5td.Dev. Corr
county  (Intercept) 0.12
x 0.31 0.41
Rezidual 0.76

# of oba: 919, groups: county, BB
deviance = 2114.3

The parameters 3, "rg T ‘ﬁg in model (13.2) are the coefficients for the intercept,
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x, u.full, and x:u.full, respectively, in the regression. In particular, the inter-
action corresponds to allowing uranium to be a predictor in the regression for the
slopes.

The estimated coefficients in each group (from coef (M4)) are:

$county

(Intercept) r u.full rm.full
1 1.45 -0.66 0.81 -0.42
2 1.50 -0.89 0.81 =0.42
85 1.44 -0.70 0.81 -0.42

Or we can display the average coefficients (using fixef (M4)):

(Intercept) x u.full zru.full
1.47 -0.67 0.81 -0.42
and the group-level errors for the intercepts and slopes (using ranef (M4) ):
(Intercept) b 4
1 -0.01 0.02
2 0.03 -0.21

85 -0.02 -0.03

The coefficients for the intercept and x vary, as specified in the model. This can be
compared to the model on page 267 in which only the intercept varies.

Going from Imer output to infercepts and slopes

As before, we can combine the average coefficients with the group-level errors to
compute the intercepts oy and slopes 3; of model (13.2). For example, the fitted
regression model in county 85 15 y; = 1.47 — 0.6772; + 0810 — 042105 — 0,02 —
0.03x;. The log uranium level in county 83, wgs, 15 0,36, and so the fitted regression
line in county &5 is ¥; = 1.73 — 0.852;. More generally, we can compute a vector of
county intercepts o and slopes 3:

a.hat. M2 <- coef(Ma)[,1] + coef(M4)[,3]*u
b.hat.Me <— coef(M3)[,2] + coef(M4)[,4]*u
Here it is actnally useful to have the variable u defined at the county level (as

compared to u.full = ulcounty] which was used in the lmer() call). We next
consider these linear transformations algebraically.

Varying slopes as interactions

Section 12.5 gave multiple ways of writing the basic multilevel model. These same
ideas apply to models with varying slopes, which can be considered as interactions
hetween group indicators and an individual-level predictor. For example, consider
the model with an individual-level predictor z; and a group-level predictor w;,

W o= oyt BTt
g o + T+ r]_‘T?‘

B = %t

We can re-express this as a single model by substituting the formulas for a; and
A; into the equation for y;:

ui = [’n’i‘ + 1w + r:;.-‘[.-|] + [7%3 + g + frf[.-]] i + €. (13.3)
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This expression looks messy but it i3 reallv just a regression including various
interactions. If we define a new individual-level predictor v; = wuyy (in the radon
example, this is the uranium level in the county where your house is located), we
can re-express (13.3) term by term as

W =a+ b’U.‘ + E'J-ll-] + di'--,: + ev;r; + -lrj[i]I'l: + £;.

This can be thought of in several ways:

¢ A varying-intercept, varving-slope model with four individual-level predictors
(the constant term, v;, 7;, and the interaction v;x;) and varying intercepts and
slopes that are centered at zero.

e A regression model with 4 + 2.0 predictors: the constant term, v;, x;, v;x;, indi-
cators for the J groups, and interactions between r and the J group indicators.

o A regression model with four predictors and three error terms.

e Or, to go back to the original formulation, a varving-intercept, varying-slope
model with one group-level predictor.

Which of these expressions is most useful depends on the context. In the radon
analvsiz, where the goal is to predict radon levels in individual counties, the varving-
intercept, varving-slope formulation, as pictured in Figure 13.2, seems most appro-
priate. But in a problem where interest hes i the regression coefficients for o,
;. and their interaction, it can be more helpful to focus on these predictors and
consider the unexplained variation in intercepts and slopes merely as ertor terms.

13.2 Varying slopes without varving intercepts

Figure 11.1 on page 238 displays a varying-intercept model, a varving-slope model,
and a varving-intercept, varying-slope model. Almost always, when a slope is al-
lowed to vary, it makes sense for the intercept to vary also. That i1z, the graph in
the center of Figure 11.1b usually does not make sense. For example, if the coeffi-
cient of floor varies with county, then it makes sense to allow the intercept of the
regression to vary also. It would be an implausible scenario in which the counties
were all identical in radon levels for houses without basements, but differed in their
coefficients for .

A situation in which a constani-intercept, varying-slope model is appropriate

Cecasionally i1t 18 reasonable to allow the slope but not the intercept to vary by
group. For example, consider a study in which J separate experiments are performed
on samples from a common population, with each experiment randomly assigning
a control condition to half its subjects and a treatment to the other half. Farther
guppose that the “control” conditions are the same for each experiment but the
“treatments" vary. In that case, it would make sense to fix the intercept and allow
the slope to varyv—thus, a basic model of:

wi ~ Nla+8Ti, o))
0; ~ N{ug,08), (13.4)

where T; = 1 for treated units and 0 for controls. Individual-level predictors conld
be added to the regression for v, and anv interactions with treatment could also
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have varving slopes; for example,
by o~ N {Q + Ei'.' + gl,_]'[l'|.]ﬂl' + _Hg:jh-]z.-']“.-, J:]

1) = N((): G 757)) st g3
(E‘Lj pz )\ prioe o sforj=1...,J  (13.5)

The multilevel model could be further extended with group-level predictors char-
acterizing the treatments.

Fitting in R
To fit such a model in Imer(), we must explicitly remove the intercept from the

group of coefficients that vary by group; for example, here is model {13.4) including
the treatment indicator T as a predictor:

Imer (y " T + (T - 1 | groupl))

The varving slope allows a different treatment effect for each group.
And here is model (13.5) with an individual-level predictor x:

Imer (y "x + T+ (T + x:T - 1 | group))

Here, the treatment effect and its interaction with x vary by group.

13.3 Modeling multiple varying coefficients using the scaled
inverse-Wishart distribution

When more than two coefficients vary (for example, y; ~ N{3;,+ 5 X5 + 52X, aJ}:

with &, &, and F; varying by group), it is helpful to move to matrix notation in

modeling the coefficients and their group-level regression model and covariance

matrix.

Simple model with two varying coefficients and no group-level predictors

Starting with the model that begins this chapter, we can rewrite the basic varving-
intercept, varying-slope model (13.1) in matrix notation as

v o~ N(XiBjy,o05), fori=1,...,n

B; ~ N(MgXg), fori=1,...,J (13.6)

where

e X is the n x 2 matrix of predictors: the first column of X is a column of 1's (that
is, the constant term in the regression), and the second column is the predictor
. X; is then the vector of length 2 representing the ith row of X, and X,_-Bj[ﬂ i
sSimply @+ ﬁj[i]z.- from the top line of (13.1).

s B = (o, 7)is the J = 2 matrix of individual-level regression coefficients. For any
group j, B; is a vector of length 2 corresponding to the j*"' row of B (although
for convenience we consider B; as a column vector in the product X; By in
model (13.6)). The two elements of B; correspond to the intercept and slope,
respectively, for the regression model in group j. Byj) in the first line of (13.6)
is the j[i|** row of B, that is, the vector representing the intercept and slope for
the group that includes unit i

o Mg = (pia,pg) is a vector of length 2, representing the mean of the distribution
of the intercepts and the mean of the distribution of the slopes.
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¢ g is the 2 x 2 covariance matrix representing the variation of the intercepts
and slopes in the population of groups, as in the second line of (13.1).
We are following our general notation in which uppercase letters represent matrices:
thus, the vectors o and 3 are combined into the matrix B.
In the fitted radon model on page 279, the parameters of the group-level model are
estimated at Mp = (1.46, —0.68) and £ = ( 0 pTalb ) where &, = 0.35,
PTaTe T
dy = 0.34, and 5 = —0.34. The estimated coefficient matrix Bis given by the 85x 2
array at the end of the display of coef (M3) on page 280.

More than fwo varying coefficients

The same expression as above holds, except that the 2°s are replaced by K 's, where
K is the number of individual-level predictors (including the intercept) that vary by
group. As we discuss shortly in the context of the inverse-Wishart model, estimation
becomes more difficult when K > 2 because of constraints among the correlation
parameters of the covariance matrix Eg.

Including group-level predictors

More generally, we can have J groups, K individual-level predictors, and L pre-
dictors in the group-level regression (including the constant term as a predictor in
both cases). For example, K = L = 2 in the radon model that has floor as an
individual predictor and uranium as a county-level predictor.

We can extend model (13.6) to include group-level predictors:

W o~ N{X'I-Bj[ﬂ‘ ﬂﬁ} for i = 1,...171
B; ~ N(U;G.Eg), forj=1,....J

(13.7)

where B is the J x K matrix of individual-level coefficients, [7 is the J »x L matrix
of group-level predictors (including the constant term), and & is the L x K matrix
of coefficients for the group-level regression. IU; is the jth row of U, the vector of
predictors for group j, and so U;(5 is a vector of length K.

Model (13.1) is a special case with K = L = 2, and the coefficients in (' are
then ’r.?,"ru’g,’y’f‘,’;rl'ﬂ_ For the fitted radon model on page 279, the 4% are the four
unmaodeled coefficients (for the intercept, x, u.full, and x:u.full, respectively),
and the two columns of the estimated coefficient matrix B are estimated by a.hat
and b.hat, as defined by the R code on page 282,

Including individual-level predictors whose coefficients do not vary by group

The model can be further expanded by adding unmodeled individual-level coeffi-
cients, so that the top line of (13.7) becomes

i ~ N(XPF° + X;Byjy, 02), fori=1,...,m, (13.8)

where X” is a matrix of these additional predictors and 3° is the vector of their
regression coefficients (which, by assumption, are common to all the groups).
Model (13.8) is sometimes called a mired-effects regression, where the s and
the H's are the fired and mandom effects, respectively. As noted on pages 2 and
245, we avoid these terms becanse of their ambiguity in the statistical literature.
For example, sometimes unvarving coefficients such as the 3%'s in model (13.8) are
called “fixed,” but sometimes the term “fixed effects™ refers to intercepts that varv
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by groups but are not given a multilevel model (this is what we call the “no-pooling
maondel,” as pictured, for example, by the solid lines in Figure 12.2 on page 255).

Equivalently, model (13.8) can be written by folding X® and X into a common
predictor matrix X, folding 4 and B into a common coefficient matrix B, and
using model {13.1), with the appropriate elements in Eg set to zero, implying no
variation among groups for certain coefficients.

Modeling the group-level covariance matriz using the scaled inverse- Wishart
distribution

When the number K of varving coefficients per group i= more than two, modeling
the correlation parameters p is a challenge. In addition to each of the correlations
being restricted to fall between —1 and 1, the correlations are jointly constrained in
a complicated way—technically, the covariance matrix g must be positive definite,
(An example of the constraint is: if gz = 0.9 and py5 = 0.9, then g3 must be at
least 0.62.)

Modeling and estimation are more complicated in this jointly constrained space.
We first introduce the inverse-Wishart model, then generalize to the scaled inverse-
Wishart, which is what we recommend for modeling the covariance matrix of the
distribution of varyving coefficients.

Inverse- Wishart model. One model that has been proposed for the covariance
matrix Xg is the inverse- Wishart distribution, which has the advantage of being
computationally convenient (especially when using Bugs, as we illustrate in Section
17.1) but the disadvantage of being difficult to interpret.

In the model £ ~ Inv-Wishartg (]}, the two parameters of the inverse-
Wishart distribution are the degrees of freedom (here set to K + 1, where K is
the dimension of B, that is, the number of coefficients in the model that vary by
group) and the scale (here set to the K = K identity matrix).

To understand this model, we consider its implications for the standard deviation
and correlations. Recall that if there are K varying coefficients, then Xp isa K <« K
matrix, with diagonal elements Epp = r.:rE and off-diagonal-elements £y = ppopo
(generalizing models (13.1) and (13.2) to K = 2).

Setting the degrees-of-freedom parameter to K+ 1 has the effect of setting a
uniform distribution on the individual correlation parameters (that is, they are
assumed equally likely to take on any value between —1 and 1).

Sealed inverse- Wishart model. When the degrees of freedom parameter of the
inverse-Wishart distribution is set to K +1, the resulting model is reasonable for the
correlations but is quite constraining on the scale parameters op. This 13 a prob-
lem hecanse we wonld like to estimate o from the data. Changing the degrees of
freedom allows the s to be estimated more freely, but at the cost of constraining
the correlation parameters.

We get around this problem by expanding the inverse-Wishart model with a new
vector of scale parameters £x:

Ep = Diag(£)QDiag(£),
with the unscaled covariance matriz (@ being given the inverse-Wishart model:
€} ~ Inv-Wishartg . (I).

The variances then correspond to the diagonal elements of the unscaled covariance
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Figure 13.3 Mulfilevel regression lines y = a4+ 8,1 for log earnings on height famong these
with positive earnings), in four ethnic cafegories j. The groy lines indicate uncertainiy in
the fitfed regressions.

o

Figure 13.4 Scatterplot of esfimated intercepts and slopes (for whites, hispanics, blacks,
and others), (ag, 8y), for the earnings-height regressions shown in Figure 3.3 The ex-
treme negafive correlation arises becouse the cenfer of the range of height is far frem zero.
Compare to the cogfficients in the rescaled model, as displayed in Figure 13.7.

matrix ), multiplied by the appropriate scaling factors £:
oy = Xik = EpQuk, for k=1,... K,
and the covariances are
YH = &efiQu, for k,JI=1,..., K,

We prefer to express in terms of the standard deviations,

Te = |Ek|v Qe

and correlations

P = Ep/f(owar).
The parameters in £ and () cannot he interpreted separately: they are a convenient
way to set up the model, but it is the standard deviations o and the correlations gy
that are of interest (and which are relevant for producing partially pooled estimates
for the coefficients in B).

As with the unscaled Wishart, the model implies a uniform distribution on the
correlation parameters. As we discuss next, it can make sense to transform the data
to remove any large correlations that could be expected simply from the structure
of the data.

13.4 Understanding correlations between group-level intercepts and
slopes

Recall that varying slopes can be interpreted as interactions between an individual-
level predictor and group indicators. As with classical regression models with in-
teractions, the intercepts can often be more clearly interpreted if the continuous
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Figure 13.5 Skeich illustrating the difficully of simulisneously estimating o and 5. The
lines show the regressions for the four ethnic groups as displayged in Figure 153 .3: the cenfer
of the range of © values 45 far from zero, and so small changes in the slope induce large
changes in the intercept.

Figure 13.6 Multilevel regression lines y = oy 4 8=z, for log earnings given mean-adjusted
height (zi = Ty — T), in four ethnic groups j. The gray lines indicate uncerfainty in the
fitted regressions.

predictor is appropriately centered. We illustrate with the height and earnings ex-
ample from Chapter 4.

We beoin by fitting a multilevel model of log earmings given height, allowing the
coefficients to vary by ethmicity. The data and fitted model are displayed in Figure
13.3. (Little is gained by fitting a multilevel model here—with only four groups,
a classical no-pooling model would work nearly as well, as discussed in Section
12.9—hut this is a convenient example to illustrate a general point. )

Figure 13.4 displays the estimates of {0y, §;) for the four ethnic groups, and they
have a strong negative correlation: the groups with high values of o have relatively
low values of 4, and vice versa. This correlation occurs because the center of the
r-values of the data is far from zero. The regression lines have to go roughly through
the center of the data, and then changes in the slope induce opposite changes in
the intercept, as illustrated in Figure 13.5.

There is nothing wrong with a high correlation betwesn the o's and G's, hut
it makes the estimated intercepts more difficult to interpret. As with interaction
models in classical regression, 1t can be helpful to subtract the average value of the
continuous r before including it in the regression; thus, w; ~ N{ogu + G2 0'3}:
where z; — r; —%. Figures 13.6 and 13.7 show the results for the earnings regression:
the correlation has pretty much disappeared. Centering the predictor = will not
necessarily remove correlations between intercepts and slopes—but any correlation
that remains can then be more easily interpreted. In addition, centering can speed
convergence of the Gibbs sampling algorithm used by Bugs and other software.

We fit this model, and the subsequent models in this chapter, in Bugs (see Chap-
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Figure 13.7 Scatterplof of estimafed intercepts and slopes, (o, Jy). for the regression of
earnings on mean-adjusted height z, for the four groups j displayed in Figure [5.6. The
coefficients are no longer strongly correlated (compare fo Figure 15.4 ).

ter 17 for examples of code) becanse, as discussed in Section 12.4, the current
version of lmer () does not work so well when the number of groups is small—and,
conversely, with these small datasets, Bugs 18 not too slow.

13.5 MNon-nested models

So far we have considered the simplest hierarchical structure of individuals § in
groups j. We now discuss models for more complicated grouping structures such as
mtroduced in Section 11.3.

Erample: a psychological erperiment with two potentially interacting factors

Figure 13.58 displays data from a psychological experiment of pilots on flight simu-
lators, with n = 40 data points corresponding to J = 5 treatment conditions and
K = B different airports. The responses can he fit to a non-nested multilevel model
of the form

v o~ N{p+ 75 + deg, crijl. fori=1,...,n
T~ N{ﬂ,aﬂi], forj=1,...,J
d o~ N{ﬂ,uﬁj, fork=1.... K. (13.9)

The parameters y; and § represent treatment effects and airport effects. Their
distributions are centered at zero (rather than given mean levels p,, ps) because
the regression model for y already has an intercept, p, and any nonzero mean for
the v and & distributions could be folded into p. As we shall see in Section 19.4,
it can sometimes he effective for computational purposes to add extra mean-level
parameters into the model, but the coefficients in this expanded model must be
mterpreted with care.

We can perform a guick fit as follows:

Imer {y = 1 + (1 | group.id} + (1 | scenaric.id))

where group.id and scenaric.id are the index variables for the five treatment
conditions and eight airports, respectively.

When fit to the data in Figure 13.8, the estimated residual standard deviations
at the individual, treatment, and airport levels are &, = 0.23, &, = 0.04, and
&5 = .32, Thus, the variation among airports is huge—even larger than that among
individual measurements—hbut the treatments vary almost not at all. This general
pattern can be seen in Figure 13.85.

R code
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Figure 13.8 Success rates of pilots troining on a flighf stmulafor with five different treaf-
menis and cight different airports. Shadings in the 0 cells i represent different success
rafes vy, with black and white corresponding fo 0 and [00%, respectively. For convenience
in reading the display, the freatments and airports have each been sorfed in increasing order
of average success. These {0 daia poinis have two groupings—ireatments and airports—
which are not nested.

Dats in vector form
Data in matrix form

¥ i k

airport treatment conditions 0.8 1 1
1 038 025 050 014 043 0.00 1 2

2 000 000 06T 000 0,00 .38 1 3

3 0.38 050 033 71 029 0.00 1 4

4 000 012 000 000 086 0.23 1 5

5 033 050 014 020 086 1.00 1 i3

il 100 100 1.00 100 086 0.12 1 T

T 012 012 000 014 014 100 1 g

g 100 086 1.00 100 075 0.25 2 1

Figure 139 Data from Figure 15.8 displayed as an array (ym) and in our preferred nota-
tion as a wector (y;) with group indicetors ji] and k[i].

Model (13.9) can also be written more cleanly as y; ~ N{u +v; + 8g, 03}, hut we
actually prefer the more awkward notation using j[i] and k[i| becanse it emphasizes
the multilevel structure of the model and i= not restricted to balanced designs. When
modeling a data array of the form (y;x), we usually convert it into a vector with
index variahles for the rows and columns, as illustrated in Figure 13.9 for the flight
simulator data.

Example: regression of earmings on ethnicity categories, age categories, and height

All the ideas of the earlier part of this chapter, introduced in the context of a
gimple structure of individuals within groups, apply to non-nested models as well.
For example, Figure 13.10 displays the estimated regression of log earmings, w;. on
height, z; (mean-adjusted, for reasons discussed in the context of Figures 13.3-
13.6), applied to the J = 4 ethnic groups and K = 3 age categories. In essence,
there is a separate regression model for each age group and ethnicity combination.
The multilevel model can be written, somewhat awkwardly, as a data-level model,

i ~ N{ejia ki + Bita ki 23 03), fori=1,....m,
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blmokn, age 18-34 hispamnioz, sge 18-34

Figure 13.10 Multilevel regression lines y = -'3_?.& 4 ﬁ}_k;. for log earnings y given mean-
adjusied height z, for four ethnic groups j and three age categories k. The gray lines
indicafe uncertainty in the fiffed regressions.

a decomposition of the intercepts and slopes into terms for ethnicity, age, and
ethnicity = age,

o 2 ethxa
(3)-(2) () () (F2),
Bik i \it Tk Vg
and models for variation,
ath
('Tg;_-h ) N N((G)L”‘) forj—1,....J
s 0
g
( Tk, ) ~ N (( v ) LE) fork—1,... . K
Tk 0

ethx
(Tﬂi”m) -~ N((ﬂ)zﬂh“a*) for j=1,....0; k=1,....K
ethwage I E : 1 geesaddy K= Loooa, .
Tk

Because we have included means go, g1 in the decomposition above, we can center
each batch of coefficients at 0.

Interpretation of data-level variance. The data-level errors have estimated resid-
ual standard deviation &, — 0L87. That is, given ethnicity, age group, and height,
log earnings can be predicted to within approximately +£0.87, and so0 earnings them-
selves can be predicted to within a multiplicative factor of €™5 = 2.4, So earnings
cannot he predicted well at all by these factors, which is also apparent from the
scatter in Figure 13.10.

Interpretation of group-level variances. The group-level errors can be separated
into intercept and slope coefficients. The intercepts have estimated residual stan-
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Figure 1311 Data from a 5 % 5 latin square experiment studying the effects of five ordered
treatments on the pields of millet crops, from Snedecor and Cochran (1959). Each cell
shows the randomly assigned treaftment and the observed yield for the plot.

dard deviations of (Tigth)1/2 = 0,08 at the ethnicity level, (£38%)1/2 = 0,25 at the
age level, and {EE[E]‘“E“jl” = 0.11 at the ethnicity = age level. Because we have
rescaled height to have a mean of zero (see Figure 13.10), we can interpret these
standard deviations as the relative importance of each factor (ethnicity, age group,
and their interaction) on log earnings at the average height in the population.

This model fits earnings on the log scale and so these standard deviations can
he interpreted accordingly. For example, the residual standard deviation of 0.08 for
the ethnicity coefficients implies that the predictive effects of ethnic groups in the
model are on the order of +0.08, which correspond to multiplicative factors from
about e~0-08 — (1,092 to 50F = 1.08.

The slopes have estimated residual standard deviations of (£55)1/2 = (.03 at
the ethnicity level, (£3%)1/2 = 0,02 at the age level, and (E52*8%)1/2 — 002 at
the ethnicity x age level. These slopes are per inch of height, so, for example, the
predictive effects of ethnic groups in the model are in the range of £3% in income
per inch of height. One can also look at the estimated correlation between intercepts
and slopes for each factor.

Erample: a latin square design with grouping factors and group-level prediciors

MNon-nested models can alzo include group-level predictors. We illustrate with data
from a 5 5 latin square experiment, a design in which 25 units arranged in a square
grid are assigned five different treatments, with each treatment being assigned to one
unit in each row and each column. Figure 13.11 shows the treatment assisnments
and data from a small agricultural experiment. There are three non-nested levels
of grouping—rows, columns, and treatments—and each has a natural group-level
predictor corresponding to a linear trend. (The five treatments are ordered.)
The corresponding multilevel model can be written as
vi ~ N+ 85+ Efr‘[’,_-]r“‘“ - ﬁl‘[ﬁ“, cr:]l, fori=1,....25

A~ N(y™ - [ —3),0%

Gl N(y='*™ . (k —3),03 columa). for k=1,...,5

Bt N7 - (I - 3),08 oy )s for [=1,...,5. (13.10)

Iﬂ\l':l"

Thus §, k, and [ serve simultaneously as values of the row, column, and treatment
predictors.

By subtracting 3, we have centered the row, column, and treatment predictors at
zero; the parameter g has a clear interpretation as the grand mean of the data, with
the different F's supplying deviations for rows, columns, and treatments. As with
group-level models in general, the linear trends at each level potentially allow more
precise estimates of the group effects, to the extent that these trends are supported
by the data. An advantage of multilevel modeling here is that it doesn’t force a
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Figure 13.12 Estimafes £1 sfandard error for the row, column, and freatment ¢ffects for
the latin square data in Figure [3.11. The five levels of each facior are ordered, and the
lines display the estimated group-level regressions, y=p4+y" -(z-3), — T gy
ond y= . {x—3).

choice between a linear fit and separate estimates for each level of a predictor. (This
15 an issue we discussed more generally in Chapter 11 in the context of including
group indicators as well as group-level predictors. )

Figure 13.12 shows the estimated row, column, and treatment effects on graphs,
along with the estimated linear trends. The grand mean p has been added back to
each of these observations so that the plots are on the scale of the original data.
Thiz =ort of data structure 1z commonly studied using the analysiz of variance,
whose connections with multilevel models we discuss fully in Chapter 22, including
a discussion of this latin square example in Section 22.5.

13.6 Selecting, transforming, and combining regression inputs

Az with classical regression (see Section 4.5), choices must be made in multilevel
models about which input variables to include, and how best to transform and
combine them. We discuss here how some of these decizions can be expressed as
particular choices of parameters in a multilevel model. The topic of formahzng
modeling choices 15 currently an active area of research—key concerns include nsing
information in potential input variables without being overwhelmed by the com-
plexity of the relating model, and including model cholce in uncertainty estimates.
As discussed in Section 9.5, the assumption of ignorability in observational studies
15 more plausible when controlling for more pre-treatment inputs, which gives us a
motivation to include more regression predictors.

Classical models for regression coefficients

Multilevel modeling includes classical least squares regression as a special case,
In a mmltilevel model, each coefficient is part of a model with some mean and
standard deviation. (These mean values can themselves be determined by group-
level predictors in a group-level model.) In classical regression, every predictor is
elther in or out of the model, and each of these options corresponds to a special
case of the multilevel model.

(45 n

o If a predictor iz “in.” this corresponds to a coefficient model with standard
deviation of =c: no group-level information 1 used to estimate this parameter,
gn it 18 estimated directly using least squares. It turns out that in this case
the group-level mean is irrelevant (see formula (12.16) on page 269 for the case
T = oo); for convenience we often set it to 0.

o If a predictor 1= “out,” this corresponds to a group-level model with group-level
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mean 0 and standard deviation 0 the coefficient estimate 15 then fixed at zero
(zee (12.16) for the case o, — 0) with no uncertainty.

Multilevel modeling as an alternative to selecting regression prediciors

Multilevel models can be used to combine inputs into more effective regression
predictors, generalizing some of the transformation ideas dizcussed in Section 4.6,
When many potential regression inputs are available, the fundamental approach is
to include as many of these inputs as possible, but not necessarily as independent
least squares predictors.

For example, Witte et al. (1994} describe a logistic regression in a case-control
study of 362 personz, predicting cancer incidence given information on consumption
of 87 different foods (and also controlling for five background variables which we do
not discuss further here). Each of the foods can potentially increase or decrease the
probability of cancer, but it would be hard to trust the result of a regression with
A7 predictors fit to onlv 362 data points, and classical tools for selecting resression
predictors do not seem =0 helpful here. In our general notation, the challenge i= to
estimate the logistic regression of cancer status y on the 362 x 37 matrix X of food
consumption (and the 362 = 6 matrix X" containing the constant term and the 5
background variables).

More information is available, however, because each of the 87 foods can be
characterized by its level of each of 35 nutrients, information that can be expressed
as an 87 » 36 matrix of predictors £ indicating how much of each nutrient 1= in
each food. Witte et al. fit the following multilevel model:

Pr(yi =1) = logit " (X{8" + XaByj), fori=1,...,362
B; ~ N(Zyy,a}), forj=1,... 87 (13.11)

The food-nutrient information in £ allows the multilevel model to estimate separate
predictive effects for foods, after controlling for systematic patterns associated with
nutrients. In the extreme case that og = 0, all the variation associated with the
foods is explained by the nutrients. At the other extreme, ¢z = oo would imply
that the nutrient information is not helping at all.

Model (13.11) is helpful in reducing the number of food predictors from 87 to
35, At this point, Witte et al. used substantive understanding of diet and cancer
to understand the result. Ultimatelv, we would like to have a model that structures
the 35 predictors even more, perhaps by categorizing them into batches or com-
bining them in some way. The next example sketches how this might be done; it is
currently an active research topic to generally structure large numbers of regression
predictors.

Linear transformation and combination of inputs in a multilevel model

For another example, we consider the problem of forecasting presidential elections
by state (see Section 1.2). A forecasting model based on 11 recent national elections
has more than 500 “data points”—state-level elections—and can then potentially in-
clude many state-level predictors measuring factors such as economic performance,
incumbency, and popularitv. However, at the national level there are really only
11 ohservations and so one must be parsimonious with national-level predictors.
In practice, thiz means performing some preliminary data analyvsis to pick a sin-
gle economic predictor, a single popularity predictor, and maybe one or two other
predictors based on incumhbency and political ideology.
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Setting up a model! to allow partial pooling of a set of regreszsion predictors

A more general approach to including national predictors is possible using multilevel
modeling, For example, suppose we wish to include five measures of the national
economy (for example, change in GDP per capita, change in unemployment, and
so forth). The usual approach (which we have followed in the past in this problem)
i= to choose one of these as the economic predictor, =, thus writing the model as

ti=a+ fri+---, (13.12)

where the dots indicate all the rest of the model, including other state-level and
national predictors, as well as error terms at the state, regional, and national levels.
Here we focus on the economic inputs, for simplicity setting aside the rest of the
model.

Instead of choosing just one of the five economic inputs, it would perhaps be
better first to standardize each of them (see Section 4.2), orient them so they are
in the same direction, label these standardized variables as X4, for 7 = 1,...,5,
and then average them into a single predictor, defined for each data point as

1.3
ETE:TE E Xy, fori=1,...n (13.13)
4]
i=1

This new x*E& can be included in place of = as the regression predictor in (13.12)
or, equivalently,

v = a+BE .

1 1
@+ Eﬁxil +"'+EﬁX~;5+"' -

The resulting model will represent an improvement to the extent that the averase
of the five standardized economy measures is a better predictor than the single
measure chosen before.

However, model (13.13) is limited in that it restricts the coefficients of the five
separate =7z to be equal. More generally, we can replace (13.13) by a weighted
aAverage:

xR = %g’ﬁ.ﬂfij, fori=1,....,m (13.14)
g0 that the data model becomes
¥ = o+fr] 4.
= ﬂ'l'%':flﬁxil +"'+%T5.'5Xi5 +--. (13.15)

We would like to estimate the relative coefficients ~; from the data, but we cannot
gimply use classical regression, since this wonld then be equivalent to estimating a
geparate coefficient for each of the five predictors, and we have already established
that not enough data are available to do a good job of this.

Instead, one can set up a model for the ;'s:

¥ ~N(1,02), for j=1,...,5, (13.16)

so that, in the model (13.15), the commeon coefficient § can be estimated classically,
but the relative coefficients ; are part of a multilevel model. The hyperparameter
., can be interpreted as follows:

o If o, = 0, the model reduces to the simple averaging (13.14): complete pooling
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of the ;' to the common value of 1, so that the combined predictor 2% js
simply ™%, the average of the five individual X ;'s.

s If 7, = oo, there is no pooling, with the individual coefficients %’yj,ﬁ estimated
separately using least sguares.

. 'Whe_n a., is positive but_ finite, the v;'s are partially pooled, S0 t.h_at the five
predictors r; have coefficients that are near each other but not identical.

Depending on the amount of data available, o, can be estimated as part of the
mode] or set to a value such as 0.3 that constrains the 4;'s to be fairly close to 1
and thus constrains the coefficients of the individual ©¥'s toward each other in the
data model (13.15).

Connection fo factor analysis

A model can include multiplicative parameters for both modeling and computa-
tional purposes. For example, we could predict the election outcome in year ¢ in
state & within region r(s| as

5]
e = ﬁ:D}X;E} + o Eﬂjl:'x;:::' + 02 Ye + Etsﬁr[,]:: + Esi
i=1

where X" iz the matrix of state » vear-level predictors, X iz the matrix of year-
level predictors, and -y, §, and ¢ are national, regional, and statewide error terms.
In this model, the auxiliary parameters oo and o exist for purely computational
reasons, and thev can be estimated, with the understanding that we are interested
only in the products asy, and asd. . More interestingly, a; serves both a compu-
tational and modeling role—the _5;13 parameters have a common N{%aﬁ,] model,
and o has the interpretation as the overall coefficient for the economic predictors.

More generally, we can imagine K batches of predictors, with the data-level
regression model using a weighted average from each batch:

y=X0g0 4 g wvel 44 g Ko
where each predictor =} ™ is a combination of J; individual predictors z3%:

Ji

for each k: I}"““‘* = ’jrjgrfk, fori=1,...,n
1

1
T

(B~
This 1s equivalent to a regression model on the complete set of availlable predictors,
ol plilygpl2 ol plH plwK | where the predictor 275 gets the co-
efficient :,};’;rj-;nﬁg. Each batch of relative weights -y is then modeled hierarchically:

for each k: 7y ~ N(L a3 ), for j=1,..., Jy,

with the hyperparameters o ;. estimated from the data or set to low values such
as 0.3.

In this model, each combined predictor % -*¥&: E represents a “factor” formed by a
linear combination of the Ji individual predictors, G represents the importance of
that factor, and the ~;&'s give the relative importance of the different components.

As noted at the beginning of this section, these models are currently the subject
of active research, and we suggest that they can serve as a motivation to specially
tailored models for individual problems rather than as off-the-shelf solutions to
generic multilevel problems with many predictors.
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13.7 More complex multilevel models

The models we have considered so far can be generalized in a vanety of ways.

Chapters 14 and 15 discuss multilevel logistic and generalized linear models. Other

extensions within multilevel linear and generalized linear models include the fol-

lowing:

e Variances can vary, as parametric functions of mmput variables, and in a mul-
tilevel way by allowing different variances for groups. For example, the model
1 N{X{,ﬁ,af], with o; = exp(X;v), allows the variance to depend on the
predictors in a way that can be estimated from the data, and similarly, in a
multilevel context, a model such as oy = exp(e;)) + bri) allows variances to vary
by group. (It is natural to model the parameters ¢ on the log scale because they
are restricted to be positive.)

# Models with several factors can have many potential interactions, which them-
selves can be modeled in a structured way, for example with larger variances for
coefficients of interactions whose main effects are large. This 15 a model-based,
multilevel version of general advice for classical regression modeling.

# Rerression models can be set up for multivanate outcomes, so that vectors of
coefficients become matrices, with a data-level covariance matrix. These models
hecome correspondingly more complex when mmltilevel factors are added.

# Time series can be modeled in many ways going beyvond simple autoregressions,
and these parameters can vary by group with time-zeries cross-sectional data.
This can be seen as a special case of non-nested groupings (for example, country
x wyear), with calendar time being a group-level predictor.

e One way to go beyond hnearity 15 with nonparametric regression, with the sim-
plest version being w = g(X:, #) + &, and the function g being allowed to have
some general form (for example, cubic splines, which are piecewise-continuons
third-degree polynomials). Versions of such models can also be estimated using
locally weighted regression, and again can be expanded to multilevel structures
as appropriate.

» More complicated models are appropriate to data with spatial or network struc-
ture. These can be thought of as generalizations of multilevel models in which
groups (for example, social networks) are not necessarily disjoint, and in which
group membership can be continuous (some connections are stronger than oth-
ers) rather than simply “in" or “out.”

We do not discuss anv of these models further here, but we wanted to bring them

up to be clear that the particular models presented in this book are just the starting

point to our general modeling approach.

13.8 Bibliographic note

The textbooks by Kreft and De Leeuw (1998), Raudenbush and Bryk (2002), and
others discuss multilevel models with varying intercepts and slopes. For an early
example, see Dempster, Rubin, and Tsutakawa [(1981). Non-nested models are dis-
cussed by Rasbash and Browne (2003). The flight simulator example comes from
Gawron et al. (2003), and the latin square example comes from Snedecor and
Cochran (1989).

Models for covariance matrices have been presented by Barnard, MeCulloch, and
Meng (1996), Pinheiro and Bates (1996), Daniels and Kass (1999, 2001), Daniels

and Pourahmadi (2002). Boscardin and Gelman (1996) discuss parametric models
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for unequal variances in multilevel linear regression. The scaled inverse-Wishart
maodel we recommend comes from O'Malley and Zaslavsky (2005).

The models for combining regression predictors discussed in Section 13.6 ap-
pear in Witte et al. (1994 ), Greenland (2000), Gelman (2004b), and Gustafson and
Greenland (2005). See also Hodges et al. (2005) and West (2003) on methods of
including many predictors and interactions in a regression. Other work on select-
ing and combining regression predictors in multilevel models includes Madigan and
Raftery (1994), Hoeting et al. {1999}, Chipman, George, and McCulloch (2001), and
Dunson (2006). The election forecasting example is discussed in Gelman and King
(1993) and Gelman et al. (2003, section 15.2); see Fair (1978), Rosenstone [ 1983),
Camphell (1992), and Wlezien and Erikson (2004, 2005) for influential work in this
area.

Some references for hierarchical spatial and space-time models include Besag,
York, and Mollie (1941), Waller et al. (1997), Besag and Higdon (1999), Wikle et al.
(2001}, and Bannerjee, Gelfand, and Carlin {2003). Jackson, Best, and Richardson
(2006) discuss hierarchical models combining aggregate and survey data in public
health. Datta et al. (1999) compare hierarchical time series models; see also Fay and
Herriot (1979). Girosi and King (2005) present a multilevel model for estimating
trends within demographic subgroups.

For information on nonparametric methods such as lowess, splines, wavelets, haz
ard regression, generalized additive models, and regression trees, see Hastie, Tihshi-
rani, and Friedman (2002), and, for examples in R, see Venables and Ripley (2002).
Crainiceann, Ruppert, and Wand (2005) fit spline models using Bugs. MacLehose
et al. (2006) combine ideas of nonparametric and multilevel models.

13.9 Excrcises

1. Fit a multilevel model to predict course evaluations from beanty and other pre-
dictors in the beauty dataset (see Exercizes 3.5, 4.8, and 12.6) allowing the
intercept and coefficient for beauty to vary by course catesory;

(a) Write the model in statistical notation.

(b} Fit the model using Imer () and discuss the results: the coefficient estimates
and the estimated standard deviation and correlation parameters. Identify
each of the estimated parameters with the notation in your model from (a).

{c) Display the estimated model graphically in plots that also include the data.

2. Models for adjusting individual ratings: a committee of 10 persons is evaluat-
ing 100 job applications. Each person on the committes reads 30 applications
(structured so that each application is read by three people) and gives each a
numerical rating between 1 and 100

(a) It would be natural to rate the applications based on their combined scores;
however, there 15 a worry that different raters use different standards, and we
would like to correct for this. Set up a model for the ratings (with parameters
for the applicants and the raters).

(b} It is possible that some persons on the committes show more variation than
others in their ratings. Expand your mode] to allow for this.

3. Non-nested model: continning the Olvmpic ratings example from Exercise 11.3:

(a) Write the notation for a non-nested multilevel model (varyving across skaters
and judges) for the technical merit ratings and fit using 1mer(}.
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b} Fit the model in (a) using the artistic impression ratings.
{c) Display your results for both outcomes graphically.
(d}) Use posterior predictive checks to investigate model fit in (a) and (b).

4. Models with unequal variances: the folder age . guessing contains a dataset from

Gelman and Nolan (2002) from a classroom demonstration in which 10 groups
of students guess the ages of 10 different persons based on photographs. The
dataset also includes the true ages of the people in the photographs.
Set up a non-nested model to these data, including a coefficient for each of the
persons in the photos (indicating their apparent age), a coefficient for each of
the 10 groups (indicating potential systematic patterns of groups guessing high
or low), and a separate error variance for each group (so that some groups are
more consistent than others).

4. Return to the CIM data introduced from Exercise 11.4.

(a) Extend the model in Exercise 12.2 to allow for varying slopes for the time
predictor.

(k) Next fit a model that does not allow for varying slopes but does allow for
different coefficients for each time point (rather than fitting the linear trend).

(¢} Compare the results of these models both numerically and graphically.

6. Using the time-series cross-sectional dataset yvou worked with in Exercise 11.2,
fit the model you formulated in part () of that exercise.



