DISCOVERING STATISTICS USING R

| general analysis to determine whether there are overall group differences along these
five measures; (2) look at the scale-by-scale analyses of group differences produced
in the output and interpret the results accordingly; (3) select contrasts that test the
hypothesis that second and third years will score higher than first years on all scales;
(4) select tests that compare all groups to each other and briefly compare these results
with the contrasts; and (5) carry out a separate analysis in which you test whether a
combination of the measures can successfully discriminate the groups (comment onl 3
briefly on this analysis). Include only those scales that revealed group differences
for the contrasts. How do the results help you to explain the findings of your initia

analysis? The data are in the file psychology.dat. @

Answers can be found on the companion website.

Further reading

Bray, J. H., & Maxwell, S. E. (1985). Multivariate analysis of variance. Sage University Paper:
on Quantitative Applications in the social Sciences, 07-054. Newbury Park, CA: Sage.
monograph on MANOVA is superb: I cannot recommend anything better.)

Huberty, C. J., & Morris, J. D. (1989). Multivariate analysis versus multiple univariate ai

Psychological Bulletin, 105(2), 302-308.
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tionship. Cognition and Emotion, 19(5), 729-750. g
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17.3. Factors @
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You’ll notice that there is no intercept in the equation, the reason being that the lines intersect
g at zero (hence the intercept is also zero). The bs in the equation represent the factor loadings,

Sticking with our example of popularity, we found that there were two factors underly-
ing this construct: general sociability and consideration. We can, therefore, construct an
equation that describes each factor in terms of the variables that have been measured. The
equations are as follows:

Y, =bX;; +b,X,; +...+ b, X, +¢;

Sociability; = b, Talkl; + b,Social Skills; + b;Interest;
+b,Talk2; + bSelfish; + bsLiar,; +¢;

Consideration; = b Talkl; + b,Social Skills; + b;Interest;

+b,Talk2; + bgSelfish; + b Liar; +¢;

world dimcnsions,
. » € sam

dimensions of the psy e factor, So,

(17.2) sociologists might belj

derived from factor analys

Notice that the equations are identical in form: they both include all of the variables that
were measured. However, the values of b in the two equations will be different (depend
ing on the relative importance of each variable to the particular factor). In fact, we ca
replace each value of b with the coordinate of that variable on the graph in Figure 17
(i.e., replace the values of b with the factor loading). The resulting equations are as follow

Y, =b,X;; +b, X5, +...+ b,X,; +¢,

Sociability; = 0.87Talk1; +0.96Social Skills; + 0.92Interest;
+0.00Talk2; — 0.10Selfish; + 0.09Liar; +¢;

Consideration; = 0.01Talk1; — 0.03Social Skills; + 0.04Interest;
+0.82Talk2, +0.75Selfish, +0.70Liar, +e,

2

r
‘ |
|
’ /

JANE SUPERBRAIN 17.1

at'’s the difference betw,

€en a pattern
and a Structure matrix? @)

Observe that, for the sociability factor, the values of b are high for Talk1, Social Sk&
Interest. For the remaining variables (Talk2, Selfish and Liar) the values of b are |
(close to 0). This tells us that three of the variables are very important for that faé
ones with high values of ) and three are very unimportant (the ones with low v
We saw that this point is true because of the way that three variables clustered
factor plot. The point to take on board here is that the factor plot and these equa
resent the same thing: the factor loadings in the plot are simply the b-values in th
tions (but see Jane Superbrain Box 17.1). For the second factor, inconsideration
the opposite pattern can be seen in that Talk2, Selfish and Liar all have high3
whereas the remaining three variables have b-values close to 0. In an ideal worl
would have very high b-values for one factor and very low b-values for all 0 by
These factor loadings can be placed in a matrix in which the columns repre

Vague
F 9 : terms (the best termg for my brain)

)
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Factor Scores @
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factors exist, and estimated the equation that describes them, it should be possible to also
estimate a person’s score on a factor, based on their scores for the constituent variables,
These scores are known as factor scores. As such, if we wanted to derive a score of socia-
bility for a particular person, we could place their scores on the various measures into

=(0.01x4)—(0.03%x9)+(0.04 x 8)+(0.82 x 6)
+(0.75%8)+(0.70 x 6)
=15.21

The resulting scores of 19.22 and 15.21 reflect the degree to which this person is SOCig
and their inconsideration to others, respectively. This person scores higher on sociak
than inconsideration. However, the scales of measurement used will influence the res
scores, and if different variables use different measurement scales, then factor scoreé
different factors cannot be compared. As such, this method of calculating factor sc@
poor and more sophisticated methods are usually used.

17.3.3.1. The regression method ®

There are several sophisticated techniques for calculating factor scores that use fact
coefficients as weights in equation (17.1) rather than using the factor loadings.
of the equation remains the same, but the bs in the equation are replaced with th
score coefficients. Factor score coefficients can be calculated in several ways.
way is the regression method. In this method the factor loadings are adjusté
account of the initial correlations between variables; in doing so, differences
measurement and variable variances are stabilized. p

To obtain the matrix of factor score coefficients (B) we multiply the matrix @
ings by the inverse (R™") of the original correlation or R-matrix. You might rem
the previous chapter that matrices cannot be divided (see section 16.4.4-;
if we want to divide by a matrix it cannot be done directly and instead
its inverse. Therefore, by multiplying the matrix of factor loadings by thf‘ ]
correlation matrix we are, conceptually speaking, dividing the factor load ;
relation coefficients. The resulting factor score matrix, therefore, represeii
ship between each variable and each factor, taking into account the origiié
between pairs of variables. As such, this matrix represents a purer measuts
relationship between variables and factors. ; 3

The matrices for the popularity data are shown below. The resultmlg
coefficients, B, comes from the R (the program) output. The matrices R~ ané4

CHAPTER 17 £

Ider ati ] =

—

XPLORATORY FACTOR ANALYS|S

equation (17.3). This method is known as a weighted average. In fact, this method is overly B=RI4 ecimal places
simplistic and rarely used, but it is probably the easiest way to explain the principle. For
example, imagine the six scales all range from 1 to 10 and that someone scored the follow- 4.76  —7.46 3.91
ing: Talk1 (4), Social Skills (9), Interest (8), Talk2 (6), Selfish (8), and Liar (6). We could ~7.46  18.49 . -2.35 247 -0.49)( 0.87
put these values into equation (17.3) to get a score for this person’s sociability and thejr 3.61 12'42 —1242 545 _s 54 1.2 0.9 6 0.01
consideration to others: = ) T 10.07 - ) ‘ -0.03
=235 545 _34s 23-9675 ;-79 096 0.92 (.04
’ . -2.16 ’
Sociability = 0.87Talk1+ 0.96Social Skills + 0.92Interest 2% =554 3.79 <21 2.98 0.02 1 0.00 0.82
| +0.00Talk2 — 0.10Selfish +0.09Liar 049122 096 007 g ~0.56|(-0.10 .75
\ . —0.
[ = (0.87 x 4)+(0.96 X 9) +(0.92 x 8) + (0.00 x 6) 0343 0.006 127)00.09 079
1 —(0.10x8) +(0.09 x 6) 0.376  -0.020
| =19.22 g-| 0362 0.020
1 Consideration = 0.01Talk1 - 0.03Social Skills + 0.04Interest (17.4 0.000  0.473
+0.82Talk2 +0.75Selfish + 0.70Liar —0.037  0.437
0.039  0.405

‘+ 0.000Talk2 — 0.037Selfish
=(0.343x 4)+(0.376 x 9+(0

=(0.037 x 8)+(0.039 x 6)
=7.59

+0.039Liar
362X8) +(0.000 x 6)

0.006Talk1 — 0.020Social
‘+ 0.473Talk2 + 0.437Selfis
=(0.006 x 4)~(0.020 x 9)+

+(0.437x8)+ (0
405 x
=8.768 6)

Skills + 0.020Interest
h + 0.405Liar

(0.020x8)+(0.473 x )

(17.5)
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factor analysis) are advised to ,

: i, ead Ped .
OLIVER TWISTED ‘The Matrix ...", enthuses Oliver, ‘... that was a good film. | want to migi‘;if;on' Haenr 2 Schmelkin (1991, Chapter 23) for an
dress in black and glide through the air as though time has stoog & We want to explore our data, we th . ‘
Please Sir, can | have still. Maybe the matrix of factor scores is as cool as the film.’ | think 4 ply our fmdlngs to the sample collected (de en need to consider whether we wan¢ to 1
some more ... matrix you might be disappointed, Oliver, but we'll give it a shot. The matri geotoap OPUIQUQH (inferentia] methods) Wh: Crflptwe methqd) OI to generalize our find-
algebra? calculations of factor scores are detailed in the additional material for was assumed that it would e used to expiore dn @ovor analysis was originally developed jt
this chapter on the companion website. Be afraid, be very afraid .. 2 assumed that the technique would be apa;?ietg senerate future hypotheses, As such, |

icted to t -0). en these met
: he sample collected and ge ization of thehr(e)dslare usegi ;
sults can be

There are several uses of factor scores. First, if the purpose of the factor analysis is to
reduce a large set of data into a smaller subset of measurement variables, then the factor
scores tell us an individual’s score on this subset of measures. Therefore, any further anas
lysis can be carried out on the factor scores rather than the original data. For example, wi
could carry out a ¢-test to see whether females are significantly more sociable than male
using the factor scores for sociability. A second use is in overcoming collinearity problem
in regression. If, following a multiple regression analysis, we have identified sources @
multicollinearity then the interpretation of the analysis is questioned (see section 7.7.2.3
In this situation, we can carry out a principal components analysis on the predictor va
ables to reduce them down to a subset of uncorrelated factors. The variables causing ¢
multicollinearity will combine to form a factor. If we then rerun the regression but us
the factor scores as predictor variables then the problem of multicollinearity should vas
(because the variables are now combined into a single factor). X
By now, you should have some grasp of the concept of what a factor is, how it is e
sented graphically, how it is represented algebraically, and how we can calculate com ;
scores representing an individual’s ‘performance’ on a single factor. I have delibes: Hin an R-matrix. It i possible to 1YO;1 underStan.d some basic things aboyt the vari
restricted the discussion to a conceptual level, without delving into how we actua fl measure (or variable). You sh Caj(cjubate thf.: variability in scores (the Variance)V?rlance
these mythical beasts known as factors. This section will look at how we find fa fortable with hoy, it can be lOuI e f_amlhar with the idea of variance b o
Specifically, we will examine different types of method, look at the maths behin Eticular varisp)e will have o o ated (if not, see Chapter 2 L e
method (principal components), investigate the criteria for determining whether

£ 0r measy e (common varitavt:: jomg comme o e of it will b
. . . ; . ! . - e) an b @ o
are important, and discover how to improve the interpretation of a given solution. some of it will be specifi

17.3.5. Communality ®

#0I€ continuing, jt jg important that

). The total variance for
e shared with other varj-
¢ to that measure (unique

(VRN Choosing a method ®

The first thing you need to know is that there are several methods for uneai
tors in your data. The method you chose will depend on what you hope to @€
analysis. Tinsley and Tinsley (1987) give an excellent account of the differ,
available. There are two things to consider: whether you want to generalize &
from your sample to a population and whether you are exploring your data
a specific hypothesis. This chapter describes techniques for exploring da_ta
analysis. Testing hypotheses about the structures of latent variables and thelrv
to each other requires considerable complexity and can be done with packag
or Lavaan in R.? Those interested in hypothesis testing techniques (known @
I

2 The sem package is the more straightforward, but is slightly less capable of handling unus f"
Lavaan (sem was written by John Fox, who also wrote R Commander).
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| amount of common variance by estimating communality values for each variable. There
are various methods of estimating communalities, but the most widely used (including 17.3.7
| alpha factoring) is to use the squared multiple correlation (SMC) of each variable with all

others. So, for the popularity data, imagine you ran a multiple regression using one meag-

ure (Selfish) as the outcome and the other five measures as predictors: the resulting multj-
ple R? (see section 7.6.2)

aged fo
(VXKW Factor analysis vs. principal components analysis @

I have just explained that there are two approaches to locating underlying dimensiong
of a data set: factor analysis and principal components analysis. These techniques differ
in the communality estimates that are used. Simplistically, though, factor analysis derives
a mathematical model from which factors are estimated, whereas principal components
analysis merely decomposes the original data into a set of linear variates — see Dunteman,
(1989) and Widaman (2007) for more detail on the differences between the procedures
As such, only factor analysis can estimate the underlying factors, and it relies on variou

' Covariance mjy
Principa] Componentg

trices become Standar

In MANOVA
of experiments]
€omponents ang]

> We used sever
Variation

al SScp Mmatrices that re

ysis the coy

' : der lie: ,, (be.cause all data come fj;”l;ﬂtiee(so; correlation) rnar'ri_
assumptions for these estimates to be accurate. Principal components analysis is concerne ip looking 4t the variates or co M€ group of partic
only with establishing which linear components exist within the data and how a particu the model varjgpce to the er Mmponents of the SSC
variable might contribute to that component. In terms of theory, this chapter is dedicat 8roups tested andror variance. These ygp
to principal components analysis rather than factor analysis. The reasons are that princig omponents, Iy ’S hort we SlaW that the depen
components analysis is a psychometrically sound procedure, is conceptually less com dme linear combination of the d’ e ooked at whether
than factor analysis, and bears numerous similarities to discriminant analysis (describec ting the eigenve cbendent variapes, The
the previous chapter). (

ctors of the SSCp Th
'dependent Variables)

{the numbe, f
However, we should consider whether the techniques provide different solutions to '

same problem. Based on an extensive literature review, Guadagnoli and Velicer (1§
concluded that the solutions generated from principal components analysis differ |
from those derived from factor analysis techniques. In reality, there are some circumsts
for which this statement is untrue, Stevens (2002) summarizes the evidence and cone
that, with 30 or more variables and communalities greater than .7 for all variables, d
ent solutions are unlikely; however, with fewer than 20 variables and any low commi
ties (< .4), differences can occur.

The flip-side of this argument is eloquently described by Cliff ( 1987) who observe

proponents of factor analysis ‘insist that components analysis is at best a common
analysis with some error added and

at worst an unrecognizable hodgepodge qf !
which nothing can be determined’ (p. 349). Indeed, feeling is strong on this i

some arguing that when principal components analysis is used it should not be g
as a factor analysis and that you should not impute substantive meaning to the
components. However, to non-statisticians the difference between a principal o

and a factor may be difficult to conceptualize (they are both linear models), and tl
ences arise largely from the calculation.*

# For this reason I have used the terms components and factors interchangeably throughout this
this use of terms will reduce some statisticians (and psychologists) to tears, I'm banl'(ing on _ ‘
needing to read this book. I acknowledge the methodological differences, but I think it’s easier fof
dwell on the similarities between the techniques and not the differences.

aver rm (i .
at by dividing each e] (ie, takmg account of the

ement by the relevant Standard
zed.A The resylt Is a correla-

: resente i
(the mode] Variation and . P d dl.fferent Componentg
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| | (WK Factor extraction: eigenvalues and the scree plot @ b Ang

Not all factors are retained in an analysis, and there is debate over the
criterion used to decide whether a factor is statistically important, | °
mentioned above that the eigenvalues associated with a variate indicate a
the substantive importance of that factor. Therefore, it seems logical
that we should retain only factors with large eigenvalues. Retaining fac- 7
tors is known as factor extraction. How do we decide whether or not an
eigenvalue is large enough to represent a meaningful factor? Well, one
, “g‘ technique advocated by Cattell (1966Db) is to plot a graph of each eigen-
— value (Y-axis) against the factor with which it is associated (X-axis),
e = This graph is known as a scree plot (because it looks like a rock face
with a pile of debris, or scree, at the bottom). I mentioned earlier that
it is possible to obtain as many factors as there are variables and that each has an
associated eigenvalue. By graphing the eigenvalues, the relative importance of each
factor becomes apparent. Typically there will be a few factors with quite high eigen-
values, and many factors with relatively low eigenvalues, and so this graph has a very
characteristic shape: there is a sharp descent in the curve followed by a tailing
(see Figure 17.4). Cattell (1966b) argued that the cut-off point for selecting factors
should be at the point of inflexion of this curve. The point of inflexion is where hy .

slope of the line changes dramatically: so, in Figure 17.4, imagine drawing a straigl ;
line that summarizes the vertical part of the plot and another that summarizes th
horizontal part (the blue dashed lines); then the point of inflexion is the data poit
at which these two lines meet. In both examples in Figure 17.4 the point of infle
ion occurs at the third data point (factor); therefore, we would extract two fac
Thus, you retain (or extract) only factors to the left of the point of inflexion (an d
not include the factor at the point of inflexion itself).” With a sample of more l
200 participants, the scree plot provides a fairly reliable criterion for factor selee
(Stevens, 2002).
Although scree plots are very useful, factor selection should not be based on this
terion alone. Kaiser (1960) recommended retaining all factors with eigenvalues g
than 1. This criterion is based on the idea that the eigenvalues represent the amou
variation explained by a factor and that an eigenvalue of 1 represents a substantial am
of variation. Jolliffe (1972, 1986) reports that Kaiser’s criterion is too strict and st
the third option of retaining all factors with eigenvalues greater than .7. The d s
between how many factors are retained using Kaiser’s methods compared to Jolliff Rever, as is of

be dramatic. ¢

You might well wonder how the methods compare. Generally speaking, K
terion overestimates the number of factors to retain (see Jane Superbrain B@
but there is some evidence that it is accurate when the number of variables 1§
30 and the resulting communalities (after extraction) are all greater than .7

How many factors

Eigenvalue
@
|

Point of
3- o\ 4= Inflexion

Eigenvalue
L5
'

30 -

pAT

25 -
20 - \

Point of
Inflexion

\ 2.0 -

Eigenvalue
&
1

o
|

05 -

1 | ' | ; R
! I
’2345575512)'.,," 0.0 -
Com R O AT

'Ponent Number 12 g ‘; ! 1 | | ) ,
5 6 7 g !
S 10 11
Component Numb,
er

N
1213 14 45 4

e . ; transformed ¢

criterion can also be accurate when the sample size exceeds 250 and the averd g tiables we mygy decide Vf'ver’ to discover what common varjap e d?ta

munality is greater than or equal to .6. In any other circumstances you are bes vial to consider. Therefore w Wwhich factors are meaningful and discard : 76'411]131
€ any that

to use a scree plot provided the sample size is greater than 200 (see Stevenss: "XPlain a]] of .,
more detail).

| €S
3 Actually, in his original paper, Cattell advised including the factor at the point of inflexion as W= SSent in the data, If the commu
‘desirable to include at least one common error factor as a “garbage can””. The idea is that the
represents an error factor. However, in practice this garbage can factor is rarely retained; also
that it is better to retain too few than too many factors, so most people do not retain the fﬂCtQ
inflexion.

mmunaliti
alities are to 1, the better oyr factors are

urpber of factors retained,
dlscarded); therefore, the
€en retained. In fact, with
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i i ikeli ctor analysis you can
lized least-squares factor analysis and .maX1mum—hkehhf<i<iiOfla(See an r}IIeXt -
et a statist | measure of the goodness of fit of the factor solu e e e
| e StaltlStlcaloodness-of—fit tests). This basically measures tne proii)munalities .
fﬁf rfnore e lg tion explains (so can be thought of as comparing co
the ractor solu |
o i xtract will depend
after eXtFacltlon)rd of advice, your decision on how many factnrs tto eo e endl
o 5 . ’
o flfLa V(V)u’re doing the analysis; for example, if you’re trylré% NS
. ity pr ﬁlems in regression, then it might be better to extra
linearity pro
too few.

i explains as much variance as a variable, yvhioh rather
defeats the original intention of the analysrslto reducn
variables down to ‘more substantive’ underlylng fa‘ctor's
(Nunnally & Bernstein, 1994). Consequently, Kaiser's ;:]n-
terion often overestimates the number of factors, OnI t. r
basis Jolliffe’s criterion is even worse (a factor explaing
i iablel).
i less variance than a varial . ]
: There are other ways to determine how many fac-
! tors to retain, but they are more complex (which LS i}
I'm discussing them outside of the main text). Tne;' es
probably parallel analysis (Horn, j965). Essential ly .
eigenvalue (which represents the size of the fact(jnr) |sfc
i igenvalue for the corresponding fact
ioni i hat { pared against an eig -
i i raction in the text is somew P e ratod data st sa
o dIS'C;STIOfn (;I f?ﬁ;?;e:rte fundamental problems with ;i man¥ rérli(;r:z Stljﬁe wata bong anciveec.
e o ot i ; her i characteris . o
iteri in, 1994; Preac : . . i to e el
Kaiser’s criterion (Nunnally & Btirizztean eigenvalue of 1 | each eigenvalue is being c;zrrr'wy;ia:éefactors s
or one L " | :
& MacC{aIlUm' tztg%S)é ::1 different analyses: with 100 vari- a dgta ser: tthhaetrhoausr r; bservedt ftor s bisger
mean? e ! tg e g i TalGMhe valanes, as'klng g Factors that are bigger than their ‘rand
ables.lt means.tb? ait Mcens hat & facior explaine 10% Sy retained. Of parallel analysis, the 8
ot 1.0 vanaCl(j:rly {ooe o siations are vey dif COUme;pir;SS:;es criterionl Kaiser's criterion is, in gef
of the variance. ; sa & b pltan | ‘ o inge
i vers both is inapprop 5 * bt ok
gy S'r;gle rfu I1e ;:;aot r?woeans only that the factor ; worst and parallel analysis (
ate. An eigenvalue o

I
34
g

JANE SUPERBRAIN 17.2

How many factors do | retain? @

(VAR Improving interpretation: factor rotation ®

ree variab

f have been extracted, it is possible to cal.culate to Wiaﬁaiifr), ple

o et s i.e., calculate the loading of the variable on eac o

wi th'ese s (l.te"ariables have high loadings on the most 1mp(zion i

I’Vﬂi{_ﬁnd t}rlla:ﬁncc))tshe‘; factors. This characteristic makes interpreta :
oadings o

these variables will haye al
this idea is confusing, then
Coordinates before and aft.
Wien you look at the rotat,
» There are two types of
the left-hand side of Figur
€rm 0rthogonal means unrelated,
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technique called factor rotation i
classification axis along which v

only two factors.

Imagine that a sociologist wasg interested in classifying
graphic group. She discovered that two underlying dime
alcoholism and achievement (80 to any academic confere
drink heavily). The first fac

tor, alcoholism, has 5 ¢
blue circles), and these could be measures such g
i |

university lecturers ag a demo-
nsions best describe this group:
nce and you’ll see that academics

uster of

variables associated with it (dark
s the nu

mber of units drunk in 2 week,
achievement, also has a cluster of
uld be measures relating to salary,
Initially, the full Jines Iepresent the factors,

clear that the light blue circles have high
(they are a long way up this axis) and medium loadings for

very far up this axis). Conversely, the dark blue circles have

Do we have to
ings for factor 2. By rotating the axes
(dashed lines), we ensure that both clusters of variables are intersected by the fac-
tor to which they relate most. s i i i
maximized on one factor (the
on the remaining factor(s)

factor 1 (they are not

- If an axis passes thro
oading of approximat
look at Figure 175 a
er rotation (this is he
ed axes).

rotatio
e 17.5

Fot
|~
~4

, then R 3
. . [ | — A
ely zero on the Opposite axis. If ~5

nd think about the values of the e
st achieved by turning the book

: v
T\

n that can be done. The first is orthogonal rotation, and
fepresents this method. In Chapter 10 we saw that the

and in this context it means that we rotate factors while
eeping them independent, or unrelated. Before rotation, all factors are independent (ie.,
1ey do not correlate at a]

1) and orthogonal rotation ensures that the factors remain u
d. That is why in Figure 17.5 the axe i

ncor-
her form of rotation is oblj

que rotation is that the
hand diagram of Figure 17.5

). Specifically, if an orthogonal
i ly less successful

out on the right-hand dj
ngs than the oblique rotatj
oth types of rotation.

' .
S Means thye e axes are at right angles to one another,
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| ;L‘;gﬁgﬂ?-5 1 00— Onhogfi‘\ Therifor((;, Interpreting varigh|eg becomes easier Howeve

| ) ables loading highly on 4 single factor. Varimax i posite in that
representat.lons of 75 . mize the dlspf:rsmn of loadings within factors Therefore, it ¢ atit attempts to max;.
factor rotation, The of variables highly on each £ o ; r1€s to load a smaller number
left graph disp| ; ) actor, resulting in more Interpretable clyste f f.
et graph displays ~ g50- & first analysis, you should probably select varimay because jt j d et o rors. For o
orthogonal » simplifies the interpretatiop of factors > 800d general approach that
rotation whereas 0.25- :
the right graph e b

displays oblique )
rotation (see text i

Factor 2
o
o
o
’

d : ested in adjustme
be made to these rotations, other rotatjons and even hand rotations J nts that can
) -0.25- GPARotate() function found in the psych package ) You can consult the
e Gt In theory, the exact choice of rotatio will depend largely on wheth
o9h is the anglle ~0.50 - that the underlymg factors should be related. If You expect the fact er or I;)Ot you think
through which the . ent then you should choose one of the orthogonal rotations ([ OIS to be independ-
axes are rotated -0.75- y however, there are theoretical grounds for supposing th recommend varimax). If.
J / then direct oblimin sho g that y
-1.004 ) |

| 1 | I | 1 I | 1 1
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 -1.00 -0.75 -0.50 -0.25 0.00 025 050 075 orthogonal rotations
Factor 1

data involving humang

any case, an oblique rotation should be used only if there are
the underlying factors could be related in theoretical terms.
The mathematics behind factor rotati
tion). However, in oblique rotation, beca
amounts, a factor transformation matrix, A 1
is a square matrix and its size depends on
data. If two factors are extracted then it
are extracted then it becomes a 4 x 4 matr

good reasons to suppose that

on is complex (especially oblique rota-
use each factor can be rotated by different:
s needed. The factor transformation matrix
how many factors were extracted from the
will be a 2 x 2 matrix, but if four factors
ix. The values in the factor transformation
e angle of axis rotation (0). This matrix is
or loadings, A, to obtain a matrix of rotated

For the case of two factors the factor transformation matrix would be:
cosf —sinf

A=]
sinf  cosf

Therefore, you should think of this matrix as re

axes have been rotated, or the degree to which factors have been rotated. The angle

rotation necessary to optimize the factor solution is found in an iterative way (see R’s S0l
Tip 8.1) and different methods can be used.

presenting the angle through which'

The R function that we will use has four method
max, BentlerT and geominT) and five methods o
plimax, BentlerQ and geominQ). These methods
therefore, the resulting output depends on which

The most important orthogonal rotations are q
tion attempts to maximize the spread of factor |

s of orthogonal rotation (varimax, at
f oblique rotation (oblimin, proma
differ in how they rotate the factors
method you select. y
uartimax and varimax. Quartimax
oadings for a variable across all fa

of
: tllj'e Uses of factor anal
= Ability (. trait, yoy

YSis is to develop questionnaires: after all,

if you want to meas-
eed to ensure that the questions asked re]

ate to the construct
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FIGURE 17.6 SD = Strongly Disagree, D = Disagree, N = Neither, A = Agree, SA = Strongly Agree —m i

| | The R anxiety SD D N A SA o
' questionnaire o oL| o . .
RAQ 1 Statistics make me cry @) @) ) @) @) VER TWISTED I'm 90ing to design a questionnaire to me ' .
My friends will think I'm stupid for not being able to , to pick a pocket ’ i asure one's propensity
2 coyp:fv?tthW' MR TRE o-Relg ave Bl Gl g laen i Please Si; can I have doig m,py ,S or ;WO’ says Oliver, ‘but how would | go aboyt
some more . . £ Youa read the useful information abo
3  Standard deviations excite me © o} o ) o questionnaires? don'ts of questionnaire design in the additional ritatt:aldss and
| dream that Pearson is attacking me with correlation Qhapter on the companion website that's how. R A th1§
* cosfficients S I e sty Is on a Likert scale from 1 = not - nate how useful jt
. = Nnot useful at all, to 5 = very useful.
5 ldon’t understand statistics o O O O © m
6 | have little experience of computers o) o) e) o o : _
7  All computers hate me O O O (®] (0]
| 8 | have never been good at mathematics O O O O (0] 174.1 Samp[e SiZE @
| | 9 My friends are better at statistics than me @) ©) O @) (6]
|
| 10 Computers are useful only for playing games @) @) @) O [e] Correlation coefficients fluctnags from samiple o i
j 11 1did badly at mathematics at school o o o o o than in large. Therefore, the reliability of factor arfalrnp © mIUCh dmore s0 1n small samples
, 133 ; . alysis s also dependent i
People try to tell you that R makes statistics easier to Much has been written about . P on sample size,
12 ple try y o o o o a ut the necessary sample size for factor analysis, resulting in

understand but it doesn’t

€.
many ‘rules of thumb’. The common rule is to suggest that a r

participants per variable, Although I’ve heard this rule ban o carcher has at least 10-15

13 | worry that | will cause irreparable damage because of my o o o o o died ab
incompetence with computers sions, its empiri is i €d about on numerous occa-

p p ’ lons, 1t pirical .ba.1315 1s unclear (although Nunnally, 1978, did recommend havi oed

14 Computers have minds of their own and deliberately go ol times as many participants as variables). Kass and Tins] 1’97 end having 10
wrong whenever | use them J between 5 and 10 participants per v ey (1979) recommended having

ariable up to a total of 300 (beyond which test param-

15 Computers are out to get me eters tend to be stable regardless of

16 | weep openly at the mention of central tendency
17 I slip into a coma whenever | see an equation

18 R always crashes when | try to use it

19  Everybody looks at me when | use R

20 | can'’t sleep for thoughts of eigenvectors

| wake up under my duvet thinking that | am trapped under a

i normal distribution

22 My friends are better at R than | am

O.FOR O £61 O &N O B8 O N6
O JO§ O ' §@) © §10F O JGR O W6
O s8R O  §E8 O OB O IO O B
O B08. O HEE O @8 O O O O

23 If I am good at statistics people will think | am a nerd

that you intend to measure. I have noticed that a lot of students become very stressee
about R. Therefore I wanted to design a questionnaire to measure a trait that I termed
anxiety’. I decided to devise a questionnaire to measure various aspects of students’ anX dicated that as communalities be

ety towards learning R. I generated questions based on interviews with anxious and nol With al] Communalities above .6 relC
anxious students and came up with 23 possible questions to include. Each question was =S€qQuate. With communalities'in’ th
statement followed by a five-point Likert scale ranging from ‘strongly disagree’ thro _-. H0ugh proyvided there are relative]
‘neither agree nor disagree’ to ‘strongly agree’. The questionnaire is printed in Figure 17 :

The questionnaire was designed to predict how anxious a given individual wOllld' Umber of underlying factors the

about learning how to use R. What’s more, I wanted to know whether anxiety ab? = " e
could be broken down into specific forms of anxiety. In other words, what latent variab
contribute to anxiety about R? With a little help from a few lecturer friends I colle duately meagyre o) o ths Thowm e
2571 completed questionnaires (at this point it should become apparent that this exam £210ther alternative i -
is fictitious). The data are stored in the file RAQ.dat. Load this file into R and have a € €T, 1970). The KMO can be calcy] ‘Olkin (KMO) measure of sampling adequacy
at the data. We know that in R, cases (or people’s data) are typically stored in rows au i :
variables are stored in columns and so this layout is consistent with past chapters. The'
ond thing to notice is that there are 23 variables labelled Q01 to Q23.

atively small samples (less than 100) may be perfectly
€ .5 range, samples between 100 and 200 can be good

. mall number of indi-
10 of low communalities (well below .5) and ;) I;lgelr
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i lysis is likely to be inappropriate).
cir 5 f correlations (hence, factoi ana ' s
P ll o thte platitri:(iilce?tes that patterns of correlatlons.are relatively compzlgt(tjl jr;ccse o
A valuel ¢ _Ossh(;)uld yield distinct and reliable factors. Kaisei (19741)drlecodmr(r)iu s acccpiig]
toi s ymter than .5 as barely acceptable (values below th}is shou eeiue); o e
lect more d thi i i include). Furthermore, va .
hich variables to inclu
o moreddataieorvzeiititlsngewtwin .7 and .8 are good, values between .8 and .9 are great and
iocre, _
il7allzi1r:srerill§ove .9 are superb (Hutcheson & Sofroniou, 1999).

IVR:WH Correlations between variables ®

isti d to say ‘if you put garbage in,
tics lecturer always use :
n undergraduate, my statis ' ' ause R will usuall
When I Wai Z . out’ gfhis saying applies particularly to factor gnaiyms, lblezl o hve il a}i
iy ge%c gi(f)r s%)lution for a set of variables. However, the _soluti(?n is uri1 (1) (Wiflen condnii
find ’ ac'f the variables analysed are not sensible. The first thing to1 g
ineamng 1l sis or principal components analysis is to look at thehcorre a bk enoroe il
actor analy : blems: (1 lations that are no 3
i ems: (1) corre :
sentially two potential pro . : & be checked usif}
g)lereraigl?aiisons thaz are too high. The correlations between yarizfibﬁei :?iables I ot
"t lati atrix of a :
elation m .
i Chapter 6) to create a corr ' . blem io il
the cor() function (sce lysis. We will look at each pro 3
i i from the analysis. : . :
is to remove variables - WE'Y : ensions) thenil
thefreme(i;t uestions measure the same underlying dimension (or dgl; e Sar)ne thingl
I l?iur ect (tlhem to correlate with each other (because tney are meas:co ug1 e
Eve 'fexlﬁ,estions measure different aspects of the same .thlng§ (e.g};, w hes and physiolocl
o 'qt in terms of sub-components such as worry, intrusive t b(fugrelating e
. anxll)e Zhere should still be high correlations between the varia 61: reanng 1o et
aro'ltlssaW;e can test for this problem first by visually s;annilng th«; cog:lations e
- i iables have lots of co w
; i t.3: if any variable : |
ing for correlatlonT kiieiOW ibou It shoul}ci be immediately clear that this appéoach is very
i scligiug e, ’ ve to because every
thf)r'l Ct(i)x?:' (i’ve used fuzzy terms such as ‘about .3’ and ‘lots of’, b?; I&l;lwmg aredne bl
jiu tiiescet is.different Analysing data really is a sklll,lnqt a m(attera(il) Zre 100 small thou
a et h tions (over '
ther correla mas ‘
t an objective test of whe : . _ atrix did nofil
If Yotuf:;a; very ethrerne scenario. If the variables in our'correlat.lor(ii r: e ot
can tes orrelation matrix would be an identity matrix (i.e., ve ol
relate at all, then qur ¢ tion 16.4.2). Bartlett’s test examines Whether1 the B 4
s are zero — see sec ST : ion correlation matfi
C'Omp(())Irlziation matrix resembles an identity matrix. If thn gfpuliﬁates vory bacly il
tion Cbl an identity matrix then it means that every variable co i it e st
rTlSeHL re SVariables (i-e., all correlation coefficients are clos‘e to zeir(c)1 .nt Swere
By ( (
s ethen it would mean that all variables are perfectly inde;penlesters el
mami;tion coefficients are zero). Given that we are.looking’ or ¢ l;oblematict £ nol
meas re similar things, it should be obvious why this s?enario i]s 1131 whethet ol
Hll)(iasiorrelate then there are no clusters to find. Beirtlett s test ;‘1 Srefore £ in s signill
anies trix is significantly different from an 1dent1ty matrix. ell) 2 r;iﬁcantly e e
tilon r'Iiameans that the correlations between variables are (overil_I b egver s with il
; o 1zero So, if Bartlett’s test is significant the:n it is good rlieWS. e0t picaliy e v
r?m nce iest ’it depends on sample sizes and in facltor, analysis Wr | 1};1 s eanse for col
o : ignifi Bartlett’s test is ce !
-significant Ba . L to mall
. Therefore, although a non: : i ool '
sarflplffsicant test d(;es not necessarily mean thai correlations ari: Eave e low
a Slig;lsis meaningful. If you do identify any variﬁblesfthat Sﬁe?actor i)
ana ' i de them from the ) "
) . iables, then exclude ! b mild mul
tions with lots of other var 5 ! late too highly, Althoug mul
; : riables correlate too hig i Jlticol
osite problem is when va es cort L exireme i
li Thrﬁitori)sp nota ;I))roblem for factor analysis it is 1rnport_ant to -?VC()\I, e that
'ine(? e yvariables that are very highly correlated) and singularity
ity (i.e.,

The determinant of a ma
{00l in factor analysis, but the
€asy to answer because it hg
and I'm not g mathematician.
‘Understand the maths, all I'l|
tion of how the determinant |
p://mathworldiwolframioom
e maths ang think about the
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correlated). As with regression, multicollinearity causes problems in factor analysis because
it becomes impossible to determine the unique contribution to g factor of the variables that
are highly correlated (as was the case for multiple regression). Multicollinearity does not
cause a problem for principal components analysis. Therefore, as well a5 scanning the cor-

relations, we could also look out fo
.8). The problem with a heyristi

ur
with 7 =.9 might be less than i hat all correlate at = 6. In
other words, eliminating such hi ' i
of the multicollinearity (Rockwell, 1975 ).

Multicollinearity can be de
[R| (see Jane Superbrain Box 17.3). O

R-matrix should be greater than 0.00001.

If you have reason to believe that the ¢
could look through the correlation matrix for variables that correlate very highly (R > .8)
and consider eliminating one of the variab] i

The way that | think of the determina
i the ‘area’ of the data. In Jane
i saw the two diagrams below,

At the time | used these to describe eigenvectors and
eigenvalues (which describe the shape of the data). The
determinant is related to eigenvalues ang eigenvectors, byt
instead of describing the height and width of the data it
describes the overall area. So, in the left diagram below, the
determinant of those data would represent the area inside
! the dashed elipse. These variables have a low correlation
So the determinant (area) is big; the biggest value it can be
fis 1, In the right diagram, the variables are perfectly cor-
related or singular, and the elipse (dashed line) has been
Squashed down to basically a straight line. In other words,
the opposite sides of the ellipse have actually met each
other and there is no distance between them at all. Put
another way, the area, or determinant, is zero. Therefore,
the determinant tells us whether the correlation matrix is
singular (determinant is 0), orif all variables are completely
unrelated (determinant is 1), or somewnhere in between.

ntis as describing
Superbrain Box 16.2 we

JANE SUPERBRAIN 17.3
What is the determinant? @

trix is an important diagnostic
question of what it is is not
S a mathematical definition
Rather than pretending that
say is that a good explana-
§ derived can be found at
. However, we can bypass

determinant conceptually.
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p p g- y }/ Ch
]()l)]e]l I)Cl()]e ]()Ceedlll You ma lla\/e to try some ttlal a“d error to \NOIk out W])
[) y S I’l,
var |ab|es) are Crcatlng the rObleIIl (lt s not alWa S t}le two V\/lt}l t}le hlg]le ! C()t]elat[() ) 1
C()L]ld be a la]: (S l‘lumber ()f Varlables VVltll COIIelatl()IlS that are not ()bV l()uSly too la] ge E
g

WR%N The distribution of data ®

i i ensure that variables have roughly normal
poli i Jaslisg tap mtefizlj‘;ﬁ) :rsl’izl?;\tlolliil (which Likert sca}les are, pe;haps ergzﬁlz}z
distributions and are measu tion of normality is most important if you wis tlo 8 -
e et alssgmlg)e ond the sample collected. You can do factor zilga ys1:truCt od
e e B oot ley if you had dichotomous variables you shou 1colnt e
continugus data;_ fofr C;amglyéhoric correlation coefﬁcienFs (these can bz }(;a Ctl; ;\ 66) : g
C}? rrgla;tlcoglo:;;ai?;lrjfctir;n fl())und in the polycor package, which we used in Chap ;
the poly ;

is’ is that’s avail-
1l find lysis’. The factor analysis t :
the menus, you’ll find ‘factor ana : s thats
Ifb}IIOl'1 lolgkthl)lrilogiﬂder is a little limited: it doesdonlﬁr oni kl(r)li Sofi;:xotfrta;cr?(é1 Oe(sn’t e
likelihe is i d method when it works, work
i a good me t works,
o 'and, Eltl—;? lgli}ilnf? ifolik aid what to do about it is dlfflgult, t(alrelziotrlrlli:n Se(;};?:éi ;:
. ) ;
Ufn ders@n?tl?ge“; ci’ifferent sort of extraction). For this reason, we don
often to ju

analysis with R Commander.

xWARM Packages used in this chapter ©

i in thi You will need the packages co H;:’
e will use in this chapter. : , o
Tlll’zr . ? ff j szv(?(r)ar1 riiiﬁ?ge)s:rvld psych (for the factor analysis). If you don’t have
atio |
igesri(x)lstalled you’ll need to install them and load them.

s ]'l " "y . 3 t ‘l'l |: i A ] ™. 1nsta
& & ( G a )7
)J

" h II)
packages("psyc | N
Then you need to load the packages by executing these comman

. " h
library(corpcor); library(GPArotation); 1library(psych)

AWM Initial preparation and analysis ®

ith raw
I i1s you can r usé the |
inci lysis C eithe
i omponents ana
1S Or a pr1nc1pa1 C y y
oruna factor analys

I ] Tl h If ou ]]aVe a 77161551’1/8 nuimit
3 .
y trix al‘ld use that. y
Iate a Correlatlon ma )
(0] ou can calcu

horic correlationss

; ’ lating polyc
hat there is an h in the polychor function, that’s because we’re calculating p 1 by John Fox,
7 Note tha

ackage a i 7 i (¢} that it’s writte
k £ that calculates polvchorlc and pOl vserlal CcO relatlons. (AISO note
pse‘eta other packages we use 1n this bOO )
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cases (and by massive, I mean at |
better off calculating a correlation

, it doesn’t matter which you do.
this stage that sometimes the analysi

that you’re trying to analyse is weird (R’s Souls’ Tip 17.1)

First, we’ll load the data into a dataframe called raqData. Set
the location of the file (see section 3.4.4) and execute:

ragData<-read. delim("r‘aq .dat"

, usually because the correlation matrix

, header = TRUE)

We want to include all of the varia

bles in our data set in our factor analysis. We can cal-
culate the correlation matrix, using t

he cor() function (see Chapter 6):
ragMatrix<-cor(ragData)

Warning messag)es about non-positive
definite matrix

On rare occasions, you might have a non-
ings, such as:

Warning messages:
i In log(det(m‘inv.r))

: NaNs produced
2: In log(det(r))

: NaNs produced

What R is trying to tell you, in it's own
tive, and hence it cannot fing the log of th
IS usually described as a non-positive definite matrix.

What is a non-positive definite matrix? As we have
tion matrix. This matrix has to be ‘positive definite’ for the g
It means lots of horrible things mathematically (
positive) and about the best explanation I've g

friendly way, is that the determinant of the R

(correlation) matrix is nega-
e determinant (

‘NaN'isR’s way of saying “not a number”). This problem

seen, factor analysis works by looking at your correla-
nalysis to work. What does that mean in plain English?
e.g., the eigenvalues andg determinant of the matrix have to be
een is at http://www2.gsu.edu/~mkteer/npdmatri‘htmL In more

. When R decom

] Why have | got a non-positive definite matrix? The most likely answer is that you have too many variables
G oo few cases of data, which makes the correlation matrix a bit unstable. It could also be that you have
= many highly correlated items in your matrix (singularity, for example, tends to mess things up). In any case

” that your datg are bad, naughty data, and not to be trusted; if you let them loose then you have only
PHISelf to blame 1o the consequences.

at can | go? Other than cry, there's not that much

especially highly correlated ones)
hematical fudges you can do, but t

you can do. You could try to limit your items, or selec-
to see if that helps. Collecting more data can help too.
hey're not as tasty as vanilla fudge and they are hard to

—
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; Executing this command creates a matrix of correlation coefficients called ragMatrix. We 014 -0.12 0.25 0.3 vae
| can use this matrix in the analysis (although we don’t have to). It’s a good idea to have a 015 -0.19 0:30 . ~32 0.43 0.45 1.00 0.38 o. 42

look at the correlation matrix, for the reasons we discussed earlier. To make our eyes hurt 016 -0.19 0.29 0.37 8 ‘23 0.34 0.38 1.00 0.45

a little less, let’s use the round() function to display only 2 decimal places of the correlation Q17 -0.04 0.22 0.59 '3§ 0.36 0.42 0.45 1.90

matrix that we have just created: , 018 -0.15 0.29 0.37 o0.49 géi 8:(5) 0.37 0.41

round(ragMatrix, 2) g;g _giz 83; —8'52 ‘gig -0.23 -0.25 —ggi -833

The R-matrix (or correlation matrix) produced using the cor() function is displayed in : 0.20 0.23 0.21 .27

Output 17.1. You should be comfortable with the idea that to do a factor analysis we need 17 018 019 @20 g21

to have variables that correlate fairly well, but not perfectly. Also, any variables that cor- Q01 0.37 0.35 -0.19 0.21 ¢.33 —oQii 23

relate with no others should be eliminated. Therefore, we can use this correlation matrix ggi :8 . gi :8 16 0.20 -0.20 -0.20 o :23 8.;)8

to check the pattern of relationships. First, scan the matrix for correlations greater than Q04 0 g 0 ; g 0.34 -0.32 -0.42 0.20 o¢.15

.3, then look for variables that only have a small number of correlations greater than this 005 0.31 0 35 :8 : i? 8;3 8 41 -0.10 -0.03

- : .33 -0.13 -0.04

Q06 0.28 0.51 -0.17 0.10
Q07 0.39 0.50 -0.27 o0.22

Q08 0.59 0.28 -0.16 0.18 g:§§ —g-é; o on
Q09 -0.04 -0.15 0.25 -0.1¢6 -0.14 0.2 it
Q10 0.22 0.29 -0.13 .08 0.19 —O. s o e
Q11 0.59 0.37 -0.20 0.26 0135 —O‘13 ol oe
012 0.33 0.49 -0.27 o0.30 0‘44 ~O'16 o o
Q13 0.41 0.53 -0.23 0.20 0’37 —0.17 i
Q14 0.35 0.50 -0.25 0.23 0:40 —O.ig _8‘82

value. Then scan the correlation coefficients themselves and look for any greater than .9,
0.27 -0.17 -0.07

If any are found then you should be aware that a problem could arise because of multicol-
linearity in the data.

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08
Q01 1.00 -0.10 -0.34 0.44 0.40 0.22 0.31 0.33
Q02 -0.10 1.00 0.32 -0.11 -0.12 -0.07 -0.16 -0.05
Q03 -0.34 0.32 1.00 -0.38 -0.31 -0.23 -0.38 -0.26
Q04 0.44 -0.11 -0.38 1.00 0.40 0.28 0.41 0.35

005 0.40 -0.12 -0.31 0.40 1.00 0.26 0.34 0.27 015 0.37 0.34 -0
006 0.22 -0.07 -0.23 0.28 0.26 1.00 0.51 0.22 o oL ‘0-21 0.21 0.30 -0.17 -0.06
007 0.31 -0.16 -0.38 0.41 0.34 0.51 1.00 0.30 b7 1 00 oas "0-27 0.27 0.42 -0.16 -0.08
008 0.33 -0.05 -0.26 0.35 0.27 0.22 0.30 1.00 018 0.38 100 :0-16 0.21 0.36 -0.13 -0.09
009 -0.09 0.31 0.30 -0.12 -0.10 -0.11 -0.13 0.02 . ©260.24 0.43 -0.16 -0.038

26 1.00 -0.25 -0.27 0.23 .12

010 0.21 -0.08 -0.19 0.22 0.26 0.32 0.28 0.16 "
020 0.21 0.24 -0.25 1.q0 0.47 -0.10

011 0.36 -0.14 -0.35 0.37 0.30 0.33 0.34 0.63 021 o

0 .36 0.43 - -0.03

012 0.35 -0.19 -0.41 0.44 0.35 0.31 0.42 0.25 . _8 f3 0.27 0.47 1.00 -0.13 -0.07

013 0.35 -0.14 -0.32 0.34 0.30 0.47 0.44 0.31 B o'og 8-23 -0.10 -0.13 1.00 0.23
. P 0. .12 -0.03 -0.07 o. )

. 0.23 1.00

Q14 0.34 -0.16 -0.37 0.35 0.32 0.40 0.44 0.28
pl5 0.25 -0.16 -0.31 0.33 0.26 0.36 0.39 0.30
Q16 0.50 -0.17 -0.42 0.42 0.39 0.24 0.39 0.32

Jutput 17.:1

o T e o3 ooz os1 ols0 0.2s on the correlation macs matrix, we should run Bartlecc
Q . =0 -0. . 5 . . 3 Om the psych pack on matrix. Bartlett’s test is run usin th ¢tr’s test and the
1 ych package. We can run this test eith § the cortest.bartlett() function

Q19 -0.19 0.20 0.34 -0.19 -0.17 -0.17 -0.27 -0.16
020 0.21 -0.20 -0.32 0.24 0.20 0.10 0.22 0.18
021 0.33 -0.20 -0.42 0.41 0.33 0.27 0.48 0.30
Q22 -0.10 0.23 0.20 -0.10 -0.13 -0.17 -0.17 -0.08
023 0.00 0.10 0.15 -0.03 -0.04 -0.07 -0.07 -0.05

ol To run it from
0 the function:

r est.bartlett(r‘anata)

tun it from i i
. 1 the correlation matrix (in this case ragMatrix

HON matrix | . i
but also provide the sample size (in this case 2)’7;_“;;“ the name of the cor-

Q09 Q10 Q11 Q12 Q13 014 Q15 Q16

001 -0.09 0.21 0.36 0.35 0.35 0.34 0.25 0.50 .
002 0.31 -0.08 -0.14 -0.19 -0.14 -0.16 -0.16 -0.17 - -Partiett(ragMatrix, n = 2571)
003 0.30 -0.19 -0.35 -0.41 -0.32 -0.37 -0.31 -0.42
004 -0.12 0.22 0.37 0.44 0.34 0.35 0.33 0.42
005 -0.10 0.26 0.30 0.35 0.30 0.32 0.26 0.39
006 -0.11 0.32 0.33 0.31 0.47 0.40 0.36 0.24
007 -0.13 0.28 0.34 0.42 0.44 0.44 0.39 0.39
008 0.02 0.16 0.63 0.25 0.31 0.28 0.30 0.32
009 1.00 -0.13 -0.12 -0.17 -0.17 -0.12 -0.19 -0.19
010 -0.13 1.00 0.27 0.25 0.30 0.25 0.30 0.29
011 -0.12 0.27 1.00 0.34 0.42 0.33 0.36 0.37
012 -0.17 0.25 0.34 1.00 0.49 0.43 0.33 0.41
013 -0.17 0.30 0.42 0.49 1.00 0.45 0.34 0.36




; DISCOVERING STATISTICS USING R CHAPTER 17 EXPLORATORY FACTOR ANALYS|S

R was not square, finding R from data $overall

$chisg [1] 0.9302245

[1] 19334.49
Sreport

l but because it is not part of a package we have included it in our DSUR package so that 0.8784 0.7664

you can use it directly (assuming you have loaded the DSUR package). You can use the
function by simply entering the name of your dataframe into it and executing.

Output 17.3

we use the det() function, into whic
computed this matrix already for th

det(ragMatrix)

kmo(ragData)

The results of the KMO test are shown in Output 17.3. We came across the KMO € current data (

statistic in section 17.4.1 and saw that Kaiser (1974) recommends a bare minimum of .5
and that values between .5 and .7 are mediocre, values between .7 and .8 are good, val-
ues between .8 and .9 are great and values above .9 are superb (Hutcheson & Sofroniou,
1999). For these data the overall value is .93, which falls into the range of being superb (or
‘marvellous’ as the report puts it), so we should be confident that the sample size and the

data are adequate for factor analysis.

If we hadn’t al
ready created the i
§ matrix, we ¢ )
function for the raw data into the e ,f ould get the determinant

unction:
det(cor(ragData))

Either method produces the same value:

11] 0.0005271037

i

OLIVER TWISTED ‘Stop spanking my monkey!", cries an hysterical Oliver, 'it's neverdon term.inant does not seem problematic. Af (see section 1
' you any harm, and it's orange.” | was talking about the Kaiser-Meye 4Ly, eliminate variables that ou th kC. ter checking the determinant
Please Sir, can | have Olkin test, Oliver. ‘Oh, sorry’, he says with a sigh of relief, ‘1 thou the RAQ correlate reasoanl h;l are causing the prob
some more ... Kmo? KMO stood for Kill My Orang-utan’. Erm, OK, Oliver has finally | I€Nts are excessively large theri:,f(‘:;ee v‘:zvelth A Otlhers g
’ 5 won’t eliminate

the plot, which I'm fairly sure is what you'll do if you inspect the ki
function on the companion website. Although we have includeq
our DSUR package, you can also copy it and execute it mants

o

\ C ,
e value of KMO s RAMMING SAM’S TIPS Preliminary a

as well as oV

KMO can be calculated for multiple and individual variables. Th
be above the bare minimum of .5 for all variables (and preferably higher)
The KMO values for individual variables are produced by the kmo() function too. FOE

an the Correlation matrix

with and without that variable and note the difference). Removal of a variable a
KMO statistics, so if you do remove a variable be sure to rerun the kmo() function €

new data.

Cheg
k the k110 and Bartlett's test: the KMO

Gata. Bartlety
¢ o ;
k est of sphericity should be significant (the significance value should b

statistic should be greater than .5 asa

................

$p.value 1] "The )
(11 © ] FHO test yields a degree of common varianc
€ marvel "
$individual elous.
sdf
[1] 253 \
. QO]- Q02 003 004
output 17.2 0.9297 0.8748  0.9510 Q05 006 5
0.9553  0.9601  0.8913 1
. 0.9417
Next we’d also like the KMO. None of the packages in R currently have a straight- ' 802713 0 gO9 Q10 011 o
forward way to calculate the KMO. However, one of the nice things about R is that 1 -8337 0.9487 0.9059 0.9548 e QL4
' people can write programs to do anything that R doesn’t currently do, and G. Jay 015 i 0.9482 0.9672
Kerns, from Youngstown State University (see http://tolstoy.newcastle.edu.au/R/e2/ Roios 0.933¢ (;21973 Q18 019 026
‘ help/07/08/22816.html) has written one called kmo(), which calculates the KMO and a -9306 0.9479 0.9407 0.8891 o0 o
1 variety of other things. The function itself is easy to use manually (see Oliver Twisted), 022 023 <333

ion'matrix. We h
. s ave
ragMatrix) so we can execute:

by putting the cor()

nalysis

data all values are well above .5, which is good news. If you find any yariables with ¥ With o ; look for variables that don’ .
2 ) A With one o . on't correlate :
below .5 then you should consider excluding them from the analysis (or run the . ' more other variables. In factor analysis, check with any other variables, or correlate very highly (- =
multicollin o , check that the determi i Sy ghly (r=.9)
. earity isn't a problem. nant of this matrix is bigger than 0.00001: if it Is

bare minimum; if it isn’t
; collect
e less than .05) ey

——
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| IWHN Factor extraction using R @ ‘
many variables you have then you can chan

For our present purposes we will use principal components analysis, which strictly speak-
ing isn’t factor analysis; however, the two procedures may often yield similar results (see
section 17.3.6). Principal component analysis is carried out using the principal() function,
in the psych package. This function takes the general form:

pcModel<-principal(dataframe/R-matrix, nfactors = number of factors, rotate =

"method of rotation", scores = TRUE/FALSE)

This command creates a principal components model called pcModel, by specifying either
a dataframe of raw data or a correlation matrix. There are three main options:

Principal Componentg Analysis
Call: principal (r = rag, nfactors = 73

® nfactors allows you to specify how many factors/components you want to extract (see sec-
tion 17.3.8) as a number. If you don’t specify nfactors, then one component is extracted,

’ Iotate = none'
)
ed upon COIIelathIl HlatIlX

® rotate allows you to specify a method of factor rotation (see section 17.3.9) using a text PC1  PC2  pe3 PC4  PC5  pog
string. If you don’t declare a method of rotation, the default of varimax rotation is used. gg; g . ;3 g 0.18 -0.22 0.12 -g. 49 -0.11 - g C27 2 §C8
® scores allows you to obtain factor scores (TRUE) or not (FALSE). The default is FALSE. 003 -0 63 8 53 8 21? 8 ) 8; _8 . 83 -0.38 0.19 g :gs "
21 -0. 02 o0,

I mentioned earlier that when conducting principal components analysis we begin by 883 8;2 gié =0.15 0.15 -0.20 -g. (l)g —g:gé _8 ff l
establishing the linear variates within the data and then decide how many of these variates 006 6.56 0. 1 _8 07 0.14 -0.42 0,17 _q. 06 0.17.
to retain (or ‘extract’). Therefore, our starting point is to create a principal components 007 0.69 0:04 0 25; =0.05 0.17 0.01 ¢, 00 0.05
model that has the same number of factors as there are variables in the data: by doing this Qo8 0.55 0.40 -0.32 —8 ig o 12 T0-08 0.05 0.03
we are just reducing the data set down to its underlying factors. By extracting as many fa 009 -0.28 0.63 —g. 01 0.10 0.15 0.10 -0.07 —0.04
tors as there are variables we can inspect their eigenvalues and make decisions about which 010 44 0.03 0.36 -0.1¢ 8 -17°-0.27 -0.01 -0, 03
factors to extract. (Note that if you use factor analysis, rather than principal components 011 -650.25 -0.21 g, 40 i i ;‘f 922 0.44 -0.03 ]
analysis, you need to extract fewer factors than you have variables — so if you have 23 vari: Ri2 67 -0.05 0.05 gq.35 .-04 —(()J és :8 ' ;)41 (()) ‘ g;

66 0.02 0.20 g.14

ables, extracting 18, or so, factors should be OK.)

To create this model we execute one of these commands: 108 -0.03 ~0.10 o og

07 0.29 0.32 g 13
-32.0.00 0.12 -0.14

0
.67 0.08 o )
.28 -0.01 0.13 0.03 -0.21 0.905
0
0
0

68 0.01 -0.14 0.9g _

pcl <- principal(ragData, nfactors = 23, rotate = "none™")
pcl <- principal(ragMatrix, nfactors = 23, rotate = "none™)

.64 =
o 8.3; g.gé -0.34 0.10 0.05 -0.02 ¢ 03
: s s 0.13 0.15 —p 0 .
oy o o o 3 -09 -0.10 0.0¢
. -0.01 -0.15 ¢.q7
2 g i . 0.05 o
0 e gé g.fg 8.30 0.33 -0.01 0.34 0.03
; -0. -28 0.24 -0.1 -
o -15 0.18
e ig 8.47 -0.12 0.338 0.07 0.12 0.31 8 12
. -37 -0.02 o0.57 0.02 0.62 -0.28 —0.22

0

0

0

0

0

3.59 0.01 0.12 =-0.13 -~
0

0

0

0

The first command creates the model from the raw data and the second from the correl
tion matrix: both methods will give you identical results, but we will show both throug
out. These commands create a model called pc1, which extracts 23 factors — the sameé

CEIEMR T I WAVA A cure for lazy-itis @
C17 BC18 BC19 PC20 pea1  pegs PC23 h2

:8.05 -0.17 0.16 =0.01 -0.21 0.05
-08 0.00 0.01 -0.02 =0.02 0.03

u2
0.0e+00
-3.le-15

Sometimes, I'm too lazy to count the variables in my data set, in which case | can ask R to count them forl

0
. : : , : . : T 0. 0
using the fength() function, which counts the number of items in an object. Therefore, we can obtain the nuf 0 f; 8-08 0.09 0.05 ¢.01 0.00 0.05 1 -1
of variables in a dataframe using: ' ‘0-04 olgi’ —8.21 0.04 0.09 -0.02 0.0z 1 1'16€—i§
: 01 -0.04 0.00 -g.g ’ oo
length(dataFrame) . _8'14 0.05 0.09 -0.97 0 042 825 8 Si 1 -2.0e-15
) B -03 -0.15 ’ it -0. 1 0.0e+0
Similarly, we can apply this function to a matrix to find out the number of rows in a column of a matrix: 0.10 0. o7 g-fg 8.16 0.14 0.24 ¢.g9 1 1.1e 12
1 L : 12-0.15 0.06 0.16 - o
length(matrix[,1]) 833 -8-02 -0.08 -0.03 0.04 -p 01 (())g;f i —5'26_16
. | . ‘ . -0.01 0.00 o _ ’ : ~4.4e-16
Therefore, we can use these commands within the principal() function to automatically specify the nufis =0.05 0,97 0.07 —o.i);l 8.03 0.02 -0.04 1 -4.4e-16
factors as the number of variables in the dataframe/matrix by executing: "0.08 0.04 .36 o.oo 0-846 8'00 0.41 1 -8.9e-16
i) -0.06 - _ : Y -0.10 -0.02 1 - _
pcZ <- principal(raq, nfactors=length(ragData), rotate="none") 2 8. 34 _8-32 0.30 -0.06 0.156 0.08 -0.05 1 §.§e o
pc2 <- principal(ragmatrix, nfactors=length(ragMatrix[,1]), rotate="none") o _0-1(9) 0.06 0.02 0.03 -0.01 0.05 1 —4.4::%1)2
=0.03 ¢35 :8'04 ~0.07 -0.19 0.10 g¢.99 1 —4:4e—16
: 02 -0.04 0.35 .15 =0.01 1 -2.0e-15
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Q17 0.04 -0.04 -0.10 0.42 -0.15 -0.23 -0.01 1 -4.4e-16

Q18 ~0.06 0.45 -0.15 0.08 -0.18 0.23 0.01 1 -8.9e-16
Q19 -0.06 0.01 0.05 -0.02 0.02 0.04 -0.02 1 -6.7e-16 ‘
020 -0.09 0.00 0.04 0.18 0.10 0.06 -0.04 1 -8.9e-16 ‘

021 0.20 -0.03 -0.11 -0.31 -0.20 -0.13 -0.01 1 -2.0e-15

-0 1 0.0e+00

0 1 .0e+00

PC1 PC2 ©PC3 PC4 PC5 PC6 PC7 PC8 PCY
SS loadings 7.29 1.74 1.32 1.23 0.99 0.90 0.81 0.78 0.75
Proportion Var 0.32 0.08 0.06 0.05 0.04 0.04 0.04 0.03 0.03
Cumulative Var 0.32 0.39 0.45 0.50 0.55 0.59 0.62 0.65 0.69

PC10 PC1l1l PC12 PC13 PCl4
SS loadings 0.72 0.68 0.67 0.61 0.58 0.55 0.52 0.51 0.46
Proportion Var 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02
Cumulative Var 0.72 0.75 0.78 0.80 0.83

PC19 PC20 PC21 PC22 PC23
SS loadings 0.42 0.41 0.38 0.36 0.33
Proportion Var 0.02 0.02 0.02 0.02 0.01
Cumulative Var 0.94 0.95 0.97 0.99 1.00

Test of the hypothesis that 23 factors are sufficient.

The degrees of freedom for the null model are 253 and the objective
function was 7.55

The degrees of freedom for the model are -23
function was 0

The number of observations was 2571 with Chi Square =

and the objective

0 with prob <!

Fit based upon off diagonal values = 1

Output 17.4

'On the far right of the factor loading matrix are two columns, labelled /2 and #2.}
the communalities (which are sometimes called »?). These communalities are all equal
because we have extracted 23 items, the same as the number of variables: we’ve exp
all of the variance in every variable. When we extract fewer factors (or componen
have lower communalities. Next to the communality column is the uniqueness
labelled #2. This is the amount of unique variance for each variable, and it’s 1 m
communality; because all of the communalities are 1, all of the uniquenesses are 0

The next thing to look at after the factor loading matrix is the eigenvalues. Th
values associated with each factor represent the variance explained by that particul
component. R calls these SS loadings (sums of squared loadings), because they arét
of the squared loadings. (You can also find them in a variable associated with th
called values, so in our case we could access this variable using pcl$values). ‘

R also displays the eigenvalues in terms of the proportion of variance explained:
explains 7.29 units of variance out of a possible 23 (the number of factors) s0 454
tion this is 7.29/23 = 0.32; this is the value that R reports. We can convert these
tions to percentages by multiplying by 100; so, factor 1 explains 329 of the tota

a uniquen
(bec

8 Some of them are very, very slightly different from zero; for example, question 2 has
reported as —3.1e-15, which means .0000000000000031. This is caused by a rounding error

variables to only 15 decimal places).
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It should be clear tha :
; t th
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! Output 17.5 shows the second principal components model. Again, the output con- Q18 0.70 0.03 0.30 0.13
| tains the unrotated factor loadings, but only for the first four factors. Notice that these Q19 -0.43 0.39 0.10 -g '01 8.60 0eo
are unchanged from the previous factor loading matrix. Also notice that the eigenvalues 020 0.44 -0.21 -0.40 o. 30 0 Z ;l 0-o8
(SS loadings), proportions of variance explained and cumulative proportion of variance 021 0.66 -0.06 -0.19 0.28 o '55 (())'52
explained are also unchanged (except now there are only four of them, because we only 022 -0.30 0.47 -0.12 0.38 g ‘46 0. ;.
have four components). However, the communalities (the h2 column) and uniquenesses 023 -0.14 0.37 -0.02 0.51 0:41 0 ;;l
(the #2 column) are changed. Remember that the communality is the proportion of com- ’
mon variance within a variable (see section 17.3.4). Principal components analysis works B | oocings PC1 PC2 PpC3 pc4
on the initial assumption that all variance is common; therefore, before extraction the Proportiog var g-§9 1.74 1.32 1.23
communalities are all 1. In effect, all of the variance associated with a variable is assumed cumulative Var 0 '32 0.08 0.06 0.05
to be common variance. Once factors have been extracted, we have a better idea of how +32 0.39 0.45 0.50
much variance is, in reality, common. The communalities in the output reflect this common Test of the hypothesis that 4 f )
actors are sufficient.

variance. So, for example, we can say that 43% of the variance associated with question
. 1 is common, or shared, variance. Another way to look at these communalities is in terms
of the proportion of variance explained by the underlying factors. Before extraction, there
were as many factors as there are variables, so all variance is explained by the factors and
; communalities are all 1. However, after extraction some of the factors are discarded and
‘ so some information is lost. The retained factors cannot explain all of the variance present
in the data, but they can explain some. The amount of variance in each variable that can
be explained by the retained factors is represented by the communalities after extraction.
Now that we have the communalities, we can go back to Kaiser’s criterion to see whether
we still think that four factors should have been extracted. In section 17.3.8 we saw that
Kaiser’s criterion is accurate when there are fewer than 30 variables and communalities:
after extraction are greater than .7 or when the sample size exceeds 250 and the average
communality is greater than .6. Of the communalities in Output 17.5, only one exceeds
7. The average of these communalities can be found by adding them up and dividing
the number of communalities (11.573/23 = .503). So, on both grounds Kaiser’s rule may
not be accurate. However, in this instance we should consider the huge sample that we
have, because the research into Kaiser’s criterion gives recommendations for much smalle
samples. It’s also worth remembering that we have already inspected the scree plot, whidl 1
should be a good guide in a sample as large as ours. However, given the ambiguity in i the pc2 model). Therefo
scree plot (there was also a case for retaining only two factors) you might like to rerun tk
analysis specifying that R extract only two factors and compare the results.

The degrees of freedo
m fo
B ction was 7,55 r the null model are 253 and the objecti
ive

The degrees of freedom for the
function was 1.03

e number i =
<h i Chi Sq 2634 7 w
of Obset vations was 25 71 with hi uare .3 ith prob

model are 167 and the objective

Fit based upon off diagonal values = 0.9¢

Output 17.5

'€, we can get the reproduced
: cor
F ctor.model(chfEloadings)

Principal Components Analysis

Call: principal(r = raqg, nfactors = 4, rotate = "none")

Standardized loadings based upon correlation matrix
PC1 PC2 PC3 pC4 h2 u2

fx.)mpare e Lol itr : corrglation matrix to which you want
ain the residyalg by executing:

Q01 0.59 0.18 -0.22 0.12 0.43 0.57 E
Q02 -0.30 0.55 0.15 0.01 0.41 0.59 BEor. resiquals .

003 -0.63 0.29 0.21 -0.07 0.53 0.47 Q01 Qoéraqug§lx’ pgisloadings)

Q04 0.63 0.14 -0.15 0.15 0.47 0.53 2 0-435 0,112 _g.375 347 Q05 006 007 ' Qos oo
005 0.56 0.10 -0.07 0.14 0.34 0.66 B 0112 0.414 0.380 _g.134 0.376  0.218 0.366 0.412 -0.042
006 0.56 0.10 0.57 -0.05 0.65 0.35 0372 0.380 0.530 0. 399 ~0.122 -0.033 -0.148 0.002 0.430
007 0.69 0.04 0.25 0.10 0.55 0.45 , 8-447 -0.134 -0.399 (.469 ~0.345 -0.200 -0.373 -0.270 g 385
008 0.55 0.40 -0.32 -0.42 0.74 0.26 0'376 =0.122 -0.345 ¢.399 0.399 0.278 0.419 0.390 -0.g73
009 -0.28 0.63 -0.01 0.10 0.48 0.52 ‘ 0'218 =0.033 -0.200 0.27g 0.343 0.273 0.380 0.312 -0 0go
010 0.44 0.03 0.36 -0.10 0.33 0.67 51266 -0.148 _0.373 . 410 0.273  0.654 0.528 0.183 -0.10g
011 0.65 0.25 -0.21 -0.40 0.69 0.31 b o2 0.002 -0.270 g.390 0.380 0.528 0.545 0.267 —0.161
012 0.67 -0.05 0.05 0.25 0.51 0.49 8 22 0.430 0.352 _g.g73 0.312 0.183 0.267 0.739 0. 0ss
Q13 0.67 0.08 0.28 -0.01 0.54 0.46 0'272 =0.061 -0.181 0.212 ~0.080 -0.108 -0.161 0.055 o0.484
Ql4 0.66 0.02 0.20 0.14 0.49 0.51 0'423 =0.097 -0.357 0.419 0.205 0.461 0.382 0.180 -0.11¢
015 0.59 0.01 0.12 -0.11 0.38 0.62 0'322 =0.219 -0.440 0.443 8'348 0.290 0.363 0.691 -0.071
Ql6 0.68 0.01 -0.14 0.08 0.49 0.51 0'367 =0.122 -0, 345 0'395 -397 0.388 0.495 0.228 -0.195
017 0.64 0.33 -0.21 -0.34 0.68 0.32 %2 -0.155 _0.373 ¢.411 8'338 8'545 0.533  0.313 -0.147

: : 477 0.514 0.249 -0.159




; DISCOVERING STATISTICS USING R CHAPTER 17 EXPLORATORY FACTOR ANALYSIS
78

o15 G301 ~D.I98 =0.337 ©0.383 0.305 G.406 0455 0339 ~6.174 You should notice that this difference is the value

| 016 0.440 -0.217 -0.458 0.466 0.400 0.300 0.439 0.332 -gég: 1) and 2. Therefore, Output 17.7 contains the differ

| 017 0.439 -0.048 -0.331 0.434 0.359 0.290 0.362 8.250 0090 coefficients and the ones predicted from the mo
Q18 0.368 -0.149 -0.376 0.42i 8;23 _8?23 _8-;;4 g all be small. Ther.e are several ways we can define
Q19 -0.204 0.357 0.403 -8.§23 —0.292 0ol 0 919 0164 -0 218 Oneapproachlstoseehowlargetheresidualsar
020 0.342 -0.301 —o.jgg 0.480 0.412 0-244 e 388 b 1ol Theveryqutthemgdelcouldbe (if we extracted
Q21 0.4;12 —8,52431 _8.275 0490 S ED O 208 -0 178 6. 888 BE17 correlitlonsm the original data. Thus one approa
022 -0.0 . .275 -0.050 -0. . ' ith the size of ' '
023 0.045 0.246 0.158 0.042 0.028 -0.082 -0.037 -0.136 0.323 wit of the correlations. If the correlatio

Output 17.6

Output 17.6 shows an edited version of the 'reproduced coFrelation maFrix th.at was
requested using the factor.model() function in the flrsF table. The diagonal of this matrix con-
tains the communalities after extraction for each variable (you' can chefck the Value§ against
Output 17.5). Output 17.7 contains an extract from the matrix of r(?sm'iuals: th(le difference
between the fitted model and the real data. The diagonal of this matrix is the uniquenesses,

Fit based upon off diagonal values

= 0.96
Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09

001 0.565 0.013 0.035 -0.011 0.027 -0.001 -0.061 -0.081 -0.050 Yalges over 0.95 are often considered indicators of good fi, and as o valte i 096
Q02 0.013 0.586 -0.062 0.022 0.003 -0.041 -0.011 -0.052 -0.115 indicates that four factors are sufficient. ’
e ©0.085 B0 0.4 0.003 035 =000 =0,008 Ou0L. ~0.04) ThereafemaﬂYOtherwaysoflookingatresiduals,Whichwe’llnowexplore.Wecouldn’tfind
Q04 -0.011 0.022 0.019 0.531 0.002 0.000 -0.010 -0.041 —o.gil aanunctlontodotheseotherthings,butwewillwrite

005 0.027 0.003 0.035 0.002 0.657 -0.016 -0.041 -0.044 -0.016

. one as we go along.’ A simple approach
at we want the residuals to be small. In fact, we

. : work out how many residuals are large by this
in R. First, we need to extract the residuals into a new object. We need to
moment the matrix of residuals is symmetrical (

the diagonal of the matrix), and also the diagona
let’s create an object called residuals that contain

Q06 -0.001 -0.041 -0.027 0.000 -0.016 0.346 -0.014 0.040 -0.005
Q07 -0.061 -0.011 -0.009 -0.010 -0.041 -0.014 0.455 0.030 0.033
Q08 -0.081 -0.052 0.011 -0.041 -0.044 0.040 0.030 0.261 -0.039
Q09 -0.050 -0.115 -0.052 -0.051 -0.016 -0.005 0.033 -0.039 0.516
Q10 0.042 -0.023 -0.013 0.003 0.053 -0.139 -0.098 -0.021 -0.018
Qll -0.066 -0.046 0.006 -0.051 -0.050 0.038 -0.018 -0.061 -0.045

want most values to

criterion fairly easily
do this because at the
so the residuals are repeated above and below
1 of the matrix does not contain residuals. First
s the factor residuals by executing:

Q12 -0.057 0.024 0.030 -0.006 -0.050 -0.076 -0.072 885? 8831 r‘esiduals<—factor‘.r‘esiduals(r‘aqMatrix, pc2$loadings)
- - -0.078 -0.091 0. -0.
13 0.008 -0.021 0.024 -0.051 -0.058 -0.0 | ! .
314 -0.024 -0.009 0.002 -0.060 -0.055 -0.075 -0.074 0.032 0.038 tV}i’ecanthen extract the upper triangle of this matrix using the upperri() function. This has
Q15 -0.065 -0.007 0.025 -0.009 -0.045 -0.047 -0.033 -0.039 -0.012 e effect of

extracting only the elements above the
elements and the elements below the diagonal):

residuals<

.039 -0.050 -0.005 -0.056 -0.051 -0.068 -0.014
.003 -0.052 -0.049 -0.008 0.025 -0.105 -0.027
.001 -0.042 -0.066 -0.048 -0.069 0.030 0.018
.061 0.045 0.041 -0.020 -0.015 -0.056 -0.114
.115 -0.110 -0.092 0.122 0.002 0.011 0.060

Q16 0.059 0.050
017 -0.069 -0.039
Q18 -0.020 -0.015
Q19 0.015 -0.153
Q20 -0.128 0.099

diagonal (so we discard the diagonal

-as.matrix(residuals [upper. tri(residuals)])

This command re-creates the object residuals by using onl
nal matrix. The as.matrix() functi

1

OO OO0 O0O0O0OoOo

tion just makes sure that
021 -0.120 0.049 0.071 -0.070 -0.078 0.029 0.053 8-8;31 822? {they’re actually stored as a single coJlumn of data). We nvilvirhe:;ciu;llssgfezocr;? zsarp;trllx
- - -0.049 -0.072 0.043 0.010 O. 4 that i i i i s it enty 1o
Q22 —0.813 8123 88(7); e e 0.oTa —o.033 000t o contains the residuals stored mn a column. This is hand
023 -0. -0. -0. U e ' '

y because it makes it easy to

ow how many large residuals there
5) then we can execute:

Calculate varioyg things. F

- . or example, if we want to kn
8E€ (i.c., residuals with ab

solute values greater than 0.0
ﬂf‘ge.resid<—abs(residuals) > 0.05

Which
1 N ‘S

Output 17.7

The correlations in the reproduced matrix differ from those in the R-matrix bccz?lse 'i
stem from the model rather than the observed data. If the mgdel were a perfect fit :; 1
data then we would expect the reproduced correlation c0§ff1c1ents to be the Samelook
original correlation coefficients. Therefore, to assess the fit of the model we CELIIC o
the differences between the observed correlations and the correlations based on't :

Slises th§ abs() function to first compute the absolute value of the column of residuals
0 we ignore whether the residual is positive or negative). The > 0.05 in the com-

s ) .» § ! ( r ) 1 € reSIdual 1S greater than O. 5, and

it

. ' ome 1 and 2. the correlation baseds A : ss than or equal to 0.05. We end up with a column the same
For example, if we take the correlation between questions > o the 1l B8t as the marrix of factor residuals but containi 1 i i i
the observed data is —.099 (taken from Output 17.1). The correlation based on ,ge) or FALSE (if it is small). We can then use th sl fomtion to i gl s

is —.112, which is slightly higher. We can calculate the difference as follows :

: € sum() function to add up the number
responses in the matrix: ’

MClarge . resi g

residual =

Tobserved ~ Tfrom model

residualgl g = (=0.099)—-(-0.112)
=0.013

hag

R ﬁl?(‘i’er 3000 packages. For relatively simple thin
i Whether 5 function already exists. Or, you
€ we’re your friends.

gs, it’s often easier to write a small function yourself than

) can find a friend that i i i
¥ You hou, Sl can write a function for you. We will
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. p p 1duails
[he ICSlJ.lt 1S 91 If we want to kIl()V\/ thls as a pro ortion Of t}le tOtal l’lumbet ()f €S d ]

we can simply execute:

sum(large. resid)/nrow(residuals)

We saw (in R’s Souls’ Tip 6.2) that
analysis residual commands into a

[‘,Xecul ]lg t Il]S commat ld VVlll return tlle IluIIleI Of 13[ (& ICSlduals Sum ld? e 7€Sld le[
l)y 1][6 tota llllll)(:l ()i reSIduaIS. nr Ows() tells us }10 W\ IIlaIly items (1.6., ICSldualS) thC]( are
mn tOtal. [hls VVlll return a ‘/alue Of 0-3596, or 36 /0- Ihete are no lla[d aIld faSt Iules a])() 1t

you can write your own functions
function we can do this fairly easil
residual. stats<—Function(matrix){

in R. If we wanted to wrap all of the factor
y by executing:

5 f more thal‘l 50% are greatel‘
wha propor ion of re idua hould be below 0.0 ;, h()wever,l A
t r tl r f r Tl IS S 5 f r . r t ) 36 /0 S() VV e ] 1 (E
than 0.05 you p obab y have ground or concern. For our data, we have | d
d 1 an lookin t the
tAn rhr : ook a he residua is to look at their mean. Rather t ga ‘
other way to resi Is is t . h k . h
mean twer ulzl Slq a ti[t residuals, fll’ld the mean, and then flﬂd th sq I 18
. sho uare the € uare root. Th

residuals<-as .matr‘ix(matr‘ix[upper‘ -tri(matrix)])
large. r‘esid<-abs(r‘esiduals) > 0.05
number‘Lar'geResids<—sum(large .resid)

propLar'geResid<-number‘LargeResids/nrow(residuals)
rmsr<-sqrt(mean(residugl SA2))

q . y Ob]eC .
g >
18 tlle root-mean-square Iesldual Again thlS 1S €as to Calculate ‘1 om our TeSldualS 1

cat("Root means squared residual = ", rmsr, "\n")
cat("Number of absolute residuals > 0.05 = s numberLargeResids, "\n")
We can execute:

cat("Proportion of absolute residuals > 0.05 = ", propLargeResid, "\n")

hist(residuals)
sqrt(mean(residualsA2))

i i i iduals ™ 2), then uses the mean()
i g iten;; rtlht:seer:;il;:g ;)clt)s]fgljzgse.sifhe sqrt( ) function "15 then used
F O e miaf)lf that mean. The resulting value is 0.055, thgt s our me:ﬁ
rosidual A ‘the ower r(z)?lld have been nice, but this is not dreadful. If this were mu
r?SiduaL 2 08w 'Wht want to consider extracting more factors. e
hlther l(lsa};t?s.(\)zfgr?: llcl)l(l)iing at the distributions of the remdualsrzov:lz: Szﬁ?;ts oo
o apt istri — 1 are any se ; €1 e
e apypm’dmatﬁlyoré%mifilzhiffiﬁfii‘lbly‘ Look ot e tha, W can scainill o
?ilifiru‘:llsluoesj:zf ti) pglot a,quick histogram using the hist() function:

siduals from the matrix entered into the
function, compute the number (numberLargeRes/ds) and proportion (,oropLargeF?es/d) of absolute values greater
than 0.05, compute the root mean squared residual (rmsr), and plot a histogram. The commands using the cat()
function simply specify the text and values to appea

rin the output.
Having executed the function, we could use it on

culate the residual matrix using the factor.residuals() f i
matrix into the residual.stats() function:

resids <- factor. residuals

(ragMatrix, pc2$loadings)
residuul.stats(resids)

hist(residuals)

The second way is to combine th

: lculate the residuals matrix directly inside the residual.stats()
. tely normal ese steps and ca

17.8 shows the histogram of the residuals. They do seem approximately o
Figure 17.8 s

‘IIC e are no ot IC]S, WC((H['( wra I[e e comman up 1n ]|](e| ]]1(]]()1[(3]]6('1’651(1 |
S (o) a dS p a
p )
() use 1t agalll 1n ()thel faCtor analyses (RS SOulS Ilp 1; .3 .
Stﬂts SO tllat we can

Y
- residual

.Stats(factor. r‘esiduals(raqMatr‘ix, pc2$loadings))

The output would be as follows (and the histogram in Figure 17.8):

Root means Squared residual = 0.05549286

Number of absolute Festduadsts 005, = 91
IFroportion of absolute residuals > 0.05 = 0.3596838
FIGURE 17.8 f

Histogram of the

model residuals

Histogram of residuals

CRAMMING SAM’S TIPS

Factor extraction

Frequency

To decide how many factors to extract, look at the eigenvalues and the scree plot.

If YP}' have fewer than 30 variables then using eigenvalues greater than 1 is OK (Kaiser’s criterion)
Di?llt!es are all over .7, Likewise, if your sample size exceeds 250 and the average of the communal
IS s also fing. Alternatively, with 200 or more participants the scree plot can be used.

* e‘;k the residuals and make sure that fewer than 50% have absolute values greater than 0.05, and that the modl fit is
Si€ater than 0 90

as long as your commu-
ities is .6 or greater then

0- —

—020 —0115 —0i10 ~0.05 0.00 0.05 0.10 0.15
residuals
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WAX'W Rotation @

We have already seen that the interpretability of factors can be improved through rotation,
Rotation maximizes the loading of each variable on one of the extracted factors while mini-
mizing the loading on all other factors. This process makes it much clearer which variables
relate to which factors. Rotation works through changing the absolute values of the variables
while keeping their differential values constant. I've discussed the various rotation options in
section 17.3.9.1, but, to summarize, the exact choice of rotation will depend on whether or
not you think that the underlying factors should be related. If there are theoretical grounds
to think that the factors are independent (unrelated) then you should choose one of the
orthogonal rotations (I recommend varimax). However, if theory suggests that your factors
might correlate then one of the oblique rotations (oblimin or promax) should be selected.

17.6.4.1. Orthogonal rotation (varimax) @
To carry out a varimax rotation, we change the rotate option in the principal() function
from “none” to “varimax” (we could also exclude it altogether because varimax is the

default if the option is not specified):

pc3 <- principal(ragData, nfactors = 4, rotate = "varimax")
pc3 <- principal(ragMatrix, nfactors = 4, rotate = "varimax")

The first command is to run the analysis from the raw data and the second is if you’re using
the correlation matrix. In both cases the commands create a model called pc3 that is the
same as the previous model (pc2) except that we have used varimax rotation on the model:
We can look at this model by executing its name:

pc2

Output 17.8 shows the first part of the rotated component matrix (also called th
rotated factor matrix), which is a matrix of the factor loadings for each variable on ead
factor. This matrix contains the same information as the component matrix in Outpl
17.5, except that it is calculated after rotation. Notice that the loadings have changed, bt
the h2 (communality) and #2 (uniqueness) columns have not. Rotation changes factors:
distribute the variance differently, but it cannot account for more or less variance in t

variables than it could before rotation. Also notice that the eigenvalues (S5 loadings) ha
changed. One of the aims of rotation is to even up the eigenvalues; however, the sum of t
eigenvalues (and the proportion of variance accounted for) cannot change during rotati

Interpreting the factor loading matrix is a little complex, and we can make it easief
using the print.psych() function. This does two things: first, it removes loadings tha§
below a certain value that we specify (by using the cut option); and second, it reord
the items to try to put them into their factors, which we request using the sort OpH
Generally you should be very careful with the cut-off value - if you think that a loadil
4 will be interesting, you should use a lower cut-off (say, .3), because you don’t Wak

miss a loading that was .39. Execute this command:
print.psych(pc3, cut = 0.3, sort = TRUE)
This command prints the factor loading matrix associated with the model pc3, but dis

ing only loadings above .3 (cut = 0.3) and sorting items by the size of their loadiiS
=TRUE).

Principal Components Analysis o
Call: principal(r = ragData, nfactors = 4, residuals = TRUE, =8

"varimax")

crashes when I try to use j

computers hate m};), Qlj 22,02 et
only for games), and Q15 (
All these items seem to relat
Jear of computers.
VfLooking at factor 2, we have Q20
,e.0681,e tQZi (I wake up under my d
e Ige), rletg (tell you that R makes statistics

—
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Standardized loadings k)ased upon co
i
19} rrelatlon matrix

Q01 0.24 0.50 0.36 0.06 0.43 0 s
002 -0.01 -0.34 0.07 0.54 0.41 O‘57
003 -0.20 -0.57 -0.18 0.37 0.53 O.59
004 0.32 0.52 .31 0.04 0.47 O.47
Q05 0.32 0.43 0.24 0.01 0-34 0.23
Q06 0.80 -0.01 0.10 -0.07 0.65 0.36
Q07 0.64 0.33 0.16 -0.08 0:55 0‘45

RC3 RC1 RC4 RC2

SS loadings 3.73 3.34 2.55 1 95

output 17.8

The resulting matrix is in Outp
(Outpqt 17.5). Before rotation

us identify what the construct might be. Th

6 I have httle experlellce Of COIIlputeIs Wltll t}le 111 heSt loadul Of -80 ng I{ al “/a&s

y I will cause irre
‘ parable damage ...
Computers have minds of their own ...), Q10 (gCom;))’ugezs e
o u}:iurfers are out to get me) with the lowest loading of :26
g computers or R. Therefore we might label this faétor.

(Everybody looks at me when Iuse R)

with i
uvet ...), Q3 (Standard deviations exc 12 loading

' ite me),* Q12
I'weep openly at th ucs easter ...), Q4 (I dream that Pearson s attack

¥) and Q5 > Y ¢ mention of central tend A ack-

Q5 (I don’t understand statistics), with the lowest i)l;(}gl’ng ;f(S;;tISttl}cl.s makes ine
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Q03 3 -0.57 0.37 0.53 0.47
Q12 12 0.47 0.52 0.51 0.49
Q04 4 0.32 0.52 0.31 0.47 0.53
Q16 16 0.33 0.51 0.31 0.49 0.51
Q01 1 0.50 0.36 0.43 0.57
Q05 5 0.32 0.43 0.34 0.66
Q08 8 0.83 0.74 0.26
Q17 17 0.75 0.68 0.32
Q11 i 0.:75 0.69 0.31
Q09 9 0.65 0.48 0.52
Q22 22 0.65 0.46 0.54
Q23 23 0.59 0.41 0.59
Q02 2 -0.34 0.54 0.41 0.59
Q19 19 -0.37 0.43 0.34 0.66

RC3 RC1 RC4 RC2
SS loadings 3,73 3.34 2.55 1.95
Proportion Var 0.16 0.15 0.11 0.08
Cumulative Var 0.16 0.31 0.42 0.50

Test of the hypothesis that 4 factors are sufficient.

The degrees of freedom for the null model are 253 and the

objective function was 7.55
The degrees of freedom for the model are 167 and the objective

function was 1.03

The number of observations was 2571 with Chi Square = 2634.37

with prob < 0

Fit based upon off diagonal values = 0.96

Output 17.9

therefore, we might label this factor fear of mathematics.

Finally, the questions that load highly on factor 4 are Q9 (My friends are better at$
tics than me), Q22 (My friends are better at R), Q2 (My friends will think I’m stupid
Q19 (Everybody looks at me). All these items contain some component of social evalt

sed

from friends; therefore, we might label this factor peer evaluation.

This analysis seems to reveal that the initial questionnaire, in reality, is compo
subscales: fear of computers, fear of statistics, fear of maths and fear of negative peer
ation. There are two possibilities here. The first is that the RAQ failed to measuré
set out to (namely, R anxiety) but does measure some related constructs. The secone
these four constructs are sub-components of R anxiety; however, the factor analy

not indicate which of these possibilities is true.

17.6.4.2. Oblique rotation @
When we did the orthogonal rotation, we told R that we expected the comp®
we extracted to be uncorrelated. This was a bit of a strange thing to say- All of “
related to fear: fear of computers, fear of statistics, fear of negative peer eval:
feed of mathematics. It’s likely that these will be correlated: people with fear Of
might have fear of other things. If this is the case an oblique rotation is called "

Factor 3 has only three items loading on it. Q8 (I have never been good at mathemati
Q17 (I slip into a coma when I see an equation), and Q11 (I did badly at mathematic
school). The three questions that load highly on factor 3 all seem to relate to mathema
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The command for an ob

~ lique rotation j
at1 S
we just change the rotaze o OnU1s very similar to that for ap ort

ption, from “varimax” to “opfiy;
pc4 <- principal(mqData nfact ot
pc4 <- princi 2 ors. = 4, ot = "oblimin"
p c1pql(r‘aqMatr1x, nfactors = 4 r'cc)“tgte 0?1;211” )
, = “oblimin")

The first command is to run the ang]
the correlation matrix. In both case
same as the mode] pc2 except that w

previous model, we can look at the
format by executing:

print.psych(pc4, cut = 0.3, sort = TRUE)

have emerged although theyyzlrseli ShO(ViY ?fin Output 17.10. The same fo
¥ I a different ord

computers, fac order. Fac

k. Fac" ,4 tor 2 represents fear of peer evaluation, f. tor 1 seems t.
tor % represents fear of mathematics ©f, factor 3 represe

ur factors seem to
O represent fear of
nts fear of statistics

Pr1nc1pa1 COIllpOIlelltS Allalysls
Call: = ’ = rotate =
P 111(:lpa1 (I Ianata nfaCtOrS 4 t
’

Standardi i
e ized loadings based upon correlats
item TC1 TC4 TC3 TC2 h2e |

n Obllmln ")

06 6 0.87 35
018 18 0.70 b en oo
o 0.60 0.40
013 13 .44 8.55 1 g
0.5 .54 0.46
o o5 0.33 0.67
5 0.49 0.

b g.:g 0.43 0.51 0 :;
e - 0.38 0.62

k- -2 0.74 0.26

2 B-72 0.69 0.31

W . . 0.68 0.32

3 .71 0.48 0.52

3 _8.60 0.55 0.45

; O.51 0.53 0.47

15 o-ji 0.47 0.53

3 . 0.49 0.5

1 0.33 0.40 0.43 ¢ 5;

= 0.34 0.34 0.66

3 0.65 0.46 0.54

S 0.63 0.48 0.57

; 0.61 0.41 0.59

- -0.36 0.51 0.41 0.59

~0.35 0.38 0.34 0.6g

TC1 TC4 TC3 TC2
3.90 2.88 2.94 1.85
0.17 0.13 0.13 0.08
0.17 0.29 0.42 0.50

adings
e ion v,

jéitor Correlations of
# 0TC4 TC3  Tc2
k. 1.34 0.36 -0.18
- 0. 0 0.31 -0.10
; \0.31 1.00 ~0L. 1'7
sd.0 =0,17 1.00

hogonal rotation,
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that 4 factors are sufficient.

for the null model are 253 and the
7T.55

for the model are 167 and the objective

Test of the hypothesis
The degrees of freedom
objective function was
The degrees of freedom
function was 1.03

The number of observations was 2571 with Chi Square =
with prob < 0

2634.37

Fit based upon off diagonal values = 0.96

Output 17.10

Also in this output you’ll find a correlation matrix between the factors. This matrix
contains the correlation coefficients between factors — R didn’t bother to show this to us
when it did an orthogonal rotation, because the correlations were all zero. Factor 2 (TC2)
has little relationship with any other factors (the correlation coefficients are low), but all
other factors are interrelated to some degree (notably TC3 with both TC1 and TC4, and
TC4 with TC1). The fact that these correlations exist tell us that the constructs measured
can be interrelated. If the constructs were independent then we would expect oblique
rotation to provide an identical solution to an orthogonal rotation and the component
correlation matrix should be an identity matrix (i.e., all factors have correlation coef-
ficients of 0). Therefore, this final matrix gives us a guide to whether it is reasonable to
assume independence between factors: for these data it appears that we cannot assume
independence. Therefore, the results of the orthogonal rotation should not be trusted: the
obliquely rotated solution is probably more meaningful.

When an oblique rotation is conducted the factor matrix is split into two matrices: the
pattern matrix and the structure matrix (see Jane Superbrain Box 17.1). For orthogonal rota:
tion these matrices are the same. The pattern matrix contains the factor loadings and
comparable to the factor matrix that we interpreted for the orthogonal rotation. The s
ture matrix takes into account the relationship between factors (in fact it is a product of th
pattern matrix and the matrix containing the correlation coefficients between factors). Mot
researchers interpret the pattern matrix, because it is usually simpler; however, there aresif
ations in which values in the pattern matrix are suppressed because of relationships betwet
the factors. Therefore, the structure matrix is a useful double-check and Graham et al. (200
recommend reporting both (with some useful examples of why this can be important).

Getting the structure matrix out of Ris a little bit more complex than getting the patt
matrix. You need to multiply the factor loading matrix by the correlation matrix o
factors. We’ve come across the loadings, these are called pc4$loadings. The correlation
the factors are called the Phi (Greek letter ¢, which rhymes with pie) and so are storé
pc4$Phi. Given that we have these two matrices, we can get the structure matrix by il
plying them; however, this is not a regular multiplication, this is a matrix multiplicatiol

instead of writing * we write %*%. The structure matrix is therefore given by executt
pc4$loadings %*% pc4$Phi

The kind of people that write R think that this is straightforward, but we red iz
not, especially when you’re starting out. Also, doing this calculation produces @3
unfriendly looking structure matrix that isn’t sorted by the size of factor loading
we’ve written a function for you, called factor.structure(); you can source it from out
package. The function takes this general form:

2)

All you need to do is enter the name of the principal components model ipfo the
and execute. Just like the print.psych() function we have included an option (48
can specify a value below which you don’t want to see the loading (the default 15

factor.structure(pcModel, cut = 0.2, decimals =

CHAPTER 17 EXPLORATORY FACTOR ANALYSIS

also an option, decimals, that

(the default is 2). For o crr allows you to change the nu

| ent model we could execute:
factor.structure(pc4, cut = ¢ 3)

mber of decimal places you see

TC1 TC4 TC3 TC2
Q06 0.78
018 0.76 0.36 0.42
Q13 0.72 0.43 0.33
Q07 0.72 0.38 0.42
Q14 0.67 0.35 0.44
Q12 0.6 0.33 0.59
Q10 0.56
Q15 0.55 0.44 0.31
Q08 0.85
017 0.44 0.82 0.3
011 0.43 0.82
021 0.46 0.37 0.7
020 0.68
Q03 -0.39 -0.36 -0.64 0.41
016 0.5 0.5 0.58 -
0.47 0.49 0.56
0.4 0.5 0.53
0.44 0.4 0.47
0.66
0.66
0.58
-0.39 0.55
-0.44 0.45
itput 17.11
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T

VIV YR Interpretation TN i
~TEST

=

& NS ( v Can you thi
/‘\ ink of another way of obtaining the

o If you've conducted orthogonal rotation then look at the table labelled rotated component matrix. For each variable, note & ) structure matrix (the correlations bet
and i , €tween factor
ltems) now you've learned about factor scorses?

the component for which the variable has the highest loading. Also, for each component, note the variables that load highly
onto it (by ‘high’ | mean loadings should be above .4 when you ignore the plus or minus sign). Try to make sense of what
the factors represent by looking for common themes in the items that load onto them.

o Ifyou've conducted oblique rotation then calculate and look at the pattern matrix. For each variable, note the component for
which the variable has the highest loading. Also, for each component, note the variables that load highly onto it (by “high’ |
mean loadings should be above .4 when you ignore the plus or minus sign). Double-check what you find by doing the same
thing for the structure matrix. Try t0 make sense of what the factors represents by looking for common themes in the items

that load onto them.

17.6.6. Summary ®

To sum up, t
P, the analyses revealed four underlyi i
or may not, relate to genuine sub TPl

. :
use of factor analysis is purely
ses, or to inform researchers 3
to the re i

the researcher using factor analysis, and [

than basing decisi
cisions on th
whether or not . e QUtcomes you would like ¢t .
ot our scale is reliable © get. In section 17.9 we consid
: . er

By setting the scores option to TRUE the factor scores are added to the principal com-
ponent model in an object called scores; therefore, we can access these scores by using
pcS$scores (which translates as the scores object attached to the model pcS that we just
created). To view the factor scores, you could execute:

pcS$scores
However, there are rather a lot of them (2571 actually), so let’s look at the first 10 rows,
by using the head() function and executing:

head(pc5$scores, 10)

=y ) SELF-TEST should be very ]

k% ' «, e W musi’ aClS(;ar abcci)ut our criteria for extractin & factors datg As a bare minimum we
; 5 ( v Using what you learnt in Chapter 6, or Section B Jhics ab produce a table of the rotated factor | daﬂ the method of rotation

( ) 17.6.2, calculate the correlation matrix for the factor - > Jvove a criterion level (I would oadings of all items and f]
\ - sooreé Compare this to the correlations of the .%flrlous criteria you could use in secti 10; personally choose 40, but I di . tn

. of vari i on is
factors in Output 17.10. E, :;E;?;Cef lha; each factor explains and poilzlfl'}%)t'hYou Shoulld also report the ;;lrscsggtatllg]:
e of such a table for the RAQ e eigenvalue too, T

data; note th o. Table 17.1 sho

5 at I have WS an

. v
g )

1) ST LR Sy o s B oncone coud prodceyo sy hems
/ . . . . ‘ , g some information o . uld they want to). You Id
[(3,] 0.39712768 -0.1056263 -0.09333769 0.9249353 ¥Or this example we might wri " sample size adequacy. CouE alse
[4,] -0.78741595 0.2956628 -0.77703307 0.2605666 gt write something like this:

[(5,] 0.04425942 0.6815179 0.59786611 -0.6912687 A princi

[6,] -1.70018648 0.2091685 0.02784164 0.6653081 onal rotzzloilo?:};?ems afidlysis (PCA) was conducted on the 23 .

[7,] 0.66139239 0.4224096 1.52552021 -0.9805434 adequacy for g rn?x).. The Kaiser-Meyer—Olkin measy Items with orthog-
[8,] 0.59491329 0.4060248 1.06465956 -1.0932598 O values f analysis KMO = .93 (‘superb’ accord; re verified the sampling
[9,] -2.34971189 -3.6134797 -1.42999472 -0.5443773 Bic of 5 7 or m’dwldual items were > .77, which 1ng to Kaiser, 1974), and all
[10.] 0.93504597 0.2285419 0.96735727 -1.5712753 Correluri. . SATHIett’s test of sphericity, 2 (253) = 15 well above the acceptable

ations between items were : X )=19,334, p < -001, indicated that

sufficiently lar
ge for PCA.
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}’arlanCe_ The sc
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| r components had
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Output 17.12

Output 17.12 shows the factor scores for the first 10 participants. Factor scores can
in this way to assess the relative fear of one person compared to another. We can alsp
scores in regression when groups of predictors correlate so highly that there is multico

Before we can do any analysis with our factor scores, we need to add the factof
into our dataframe. To do this, we use the cbind() function, which we have used nuf

times before:

ragData <- cbind(ragData, pcS5$scores)
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Table 17.1 Summary of exploratory factor analysis results for the R anxiety questionnaire
(N =2571)

Varimax rotated factor loadings

Fear of Fear of Peer Fear of
computers statistics evaluation  maths

| have little experience of computers .80 -.01 -.07 10
R always crashes when [ try to use it .68 33 -.08 A8
| worry that | will cause irreparable damage .65 28 -10 23
because of my incompetence with

computers

All computers hate me .64 .33 -.08 16
Computers have minds of their own and .58 130 -.07 14

‘ deliberately go wrong whenever | use them

Computers are useful only for playing .55 .00 -12 13
games
Computers are out to get me .46 22 -19 .29 4

| can't sleep for thoughts of eigen vectors -.04 .68 -14 08
| wake up under my duvet thinking that | 20 .66 -.07 1638

am trapped under a normal distribution
Standard deviations excite me -20 -.57 ol -.18
People try to tell you that R makes statistics A7 .52 -.08 ‘10.

easier to understand but it doesn’t

| dream that Pearson is attacking me with 32 52 04 31
correlation coefficients

| weep openly at the mention of central 138 .51 -12
tendency

Statistics makes me cry 24 .50 .06
| don't understand statistics 82 43 .02
| have never been good at mathematics A3 T .01
| slip into a coma whenever | see an 2T 22 -.04
equation

| did badly at mathematics at school .26 21 -14
My friends are better at statistics than me -.09 -.20 .65
My friends are better at R than | am -19 03 .65
If 'm good at statistics my friends will think -.02 A7 .59
I'm a nerd

My friends will think I'm stupid for not being -.01 -.34 .54

able to cope with R

Everybody looks at me when | use R -15 — 37 .43
Eigenvalues 3.78 3.34 1.95
% of variance 14.52 8.48

o

Note: Factor loadings over .40 appear in bold.

O

T ——
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Finally, if you have u i
> sed oblique rotati
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Fions (see Jane § n matrix because the loadings in th reportmg.a table of both the
ne Superbrain Box 17.1) ese tables have different interpret.
. a_

Nichols, L. A., & Nicki
i, R. (2004). Psychology of Addictive Behaviors, 1 8(4), 381-384

The Internet is now a houshold tool. In 2007 it was

Internet (over 100 million of those were in the USA estimated that around 179 million

and Canada). people worldwide used the

Fri ' i
om the increasing popularity (and usefulness)

suffered because of

5-point
point scale (Never, Rarely, Sometimes, Frequently Always)

They coll
Yy collected data from 207 people to validate this measure
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items. They perform inci
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ompanion website (or look at the original article)

_”.__.8 Reliability analysis @
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OUr scale, Y validate a questionnaire, it is useful to check the reliab
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Thinking back to Chapter 1, what are relj
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Reliability means that a measure (or in this case questionnaire) should con-

sistently reflect the construct that it is measuring. One way to think of this is

that, other things being equal, a person should get the same score on a ques-

tionnaire if they complete it at two different points in time (we have already

discovered that this is called test—retest reliability). So, someone who is terrified

of statistics and who scores highly on our RAQ should score similarly highly

if we tested them a month later (assuming they hadn’t gone into some kind of

statistics-anxiety therapy in that month). Another way to look at reliability is to

say that two people who are the same in terms of the construct being measured

should get the same score. So, if we took two people who were equally statistics-phobic,

then they should get more or less identical scores on the RAQ. Likewise, if we took two

people who loved statistics, they should both get equally low scores. It should be appar-

ent that if we took someone who loved statistics and someone who was terrified of it, and

they got the same score on our questionnaire, then it wouldn’t be an accurate measure of

statistical anxiety. In statistical terms, the usual way to look at reliability is based on the idea

that individual items (or sets of items) should produce results consistent with the overall

questionnaire. So, if we take someone scared of statistics, then their overall score on the

RAQ will be high; if the RAQ is reliable then if we randomly select some items from it the
person’s score on those items should also be high.

The simplest way to do this in practice is to use split-half reliability. This method ran-

domly splits the data set into two. A score for each participant is then calculated based on

cach half of the scale. If a scale is very reliable a person’s score on one half of the scale *

should be the same (or similar) to their score on the other half: therefore, across several

participants, scores from the two halves of the questionnaire should correlate perfectly

(well, very highly). The correlation between the two halves is the statistic computed in th

split-half method, with large correlations being a sign of reliability. The problem with this

method is that there are several ways in which a set of data can be split into two and 0

the results could be a product of the way in which the data were split. To overcome his

problem, Cronbach (1951) came up with a measure that is loosely equivalent to splittin

data in two in every possible way and computing the correlation coefficient for each spli

The average of these values is equivalent to Cronbach’s alpha, «, which is the most comme

measure of scale reliability."!

Cronbach’s « is:

How do I tell if my
%uestionnaire is reliable?

N2Cov

o = 2
Y Sizem T 2 COVjter

which may look complicated, but actually isn’t. The first thing to note is that for €ac 1
on our scale we can calculate two things: the variance within the item, and the co8
ance between a particular item and any other item on the scale. Put another way, Wi
construct a variance—covariance matrix of all items. In this matrix the diagonal ele
will be the variance within a particular item, and the off-diagonal elements will be co
ances between pairs of items. The top half of the equation is simply the number of
(N) squared multiplied by the average covariance between items (the average of i
diagonal elements in the aforementioned variance—covariance matrix). The bottom

al to the
the §

11 Although this is the easiest way to conceptualize Cronbach’s &, whether or not it is exactly equ:
of all possible split-half reliabilities depends on exactly how you calculate the split-half reliability (see £
for computational details). If you use the Spearman-Brown formula, which takes no account of itents
deviations, then Cronbach’s & will be equal to the average split-half reliability only when the item Stances
tions are equal; otherwise o will be smaller than the average. However, if you use 2 formula for SPh
ability that does account for item standard deviations (such as Flanagan, 1937; Rulon, 1939) then &3
equal the average split-half reliability (see Cortina, 1993).

average correlation between items was a
ltems, with an average correlation betwe

T
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i ding).
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Commander to obtain reliability estimates.

. : R .
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i i ast
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WEEA Reliability analysis using R ®

i ber also that I said

ili ing the data in RAQ.dat. Remem -
e sl o2 talrfy subscales individually. If we use the res ‘
bk then we have four subscales:

Let’s te of ¢
lity

hould conduct rehabl'
\fZZr; (?llllr orthogonal rotation (look back at),

I ;] [] )scale I 1 ear ()] C( )ﬂlpute?s : 1tems (; ; l() l:; ].4 1; ]8
( ) 9 42 b 5 bJ b
2 ( ) s Yy 1Y ) b 5 b

C o 17
3 Subscale 3 (Fear of mathematics): items 8, 11,

ion): i 22,23
4 Subscale 4 (Peer evaluation): items 2, 9, 19,

al with that
‘ve sion: we’ o remember to de
: hat question 3 has a negarive ign; We'l Ii)eedlzs for the items. We don’t D€€
(Don’t fczrget tha f%ur new data sets, containing the subsca o e by i I8
ety vl grea}te s a lot of typing later on. We can create t

e
to do that, but it sav

1 i i 3- b
bed in section 9
iate columns of the full dataframe (ragData) as describe

ing the appropria

3, 14, 15, 18)]
omputerFear<-ragDatal, <6, 7, 12’ élt 5, 12, 16, 20, 21)]
gtatisticsFear‘ <- ragbatal, c(l,ﬂ)i » D5

mathFear <- ranata[,Dcii’[ 1&2 9, 19, 22, 23)] 10 €0
Pl ERGRER 5 BERE etains all of the rows (hence HO

om
ion after the CORE
; ¢() function a ol
d in the ¢() r that contains

d

This command takes the ragData datafmmeS a:dﬁre
mund ofre he cometd), 2cliny Colzsm alnnS ols)ject called computerFea

irst command crea ' (
Folr exam6p 1(;’ t1h(§: fllgs 1C4 15, and 18 of the da;afratme rc;q/]}?iccnl‘:zis o4 in che p ) »\
® Relishilivy analysisis d ith the alpha() function, s fol o3l

Reliabillql?n}?lzzlz 1;1rcc1>(‘t))llleemwliere, because there is also a function in ggP

age. You might ha

80 this probably indicates good r

D€ cal

# takm
,V‘dm we would have a variable with an overall mean of 3.4
S 8tandard deviation of 0.71.8

.ﬁends mi
St lamp, 3.
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and if you’ve loaded ggplot2 fir
Souls’ Tip 3.4, but to remind
the package, using:

psych::alpha()

st, that version will have priority. This was covered in R

s
you, if you get the wrong alpha() function, you can speci

ty

» or we can tell alpha() that it is ne
option is better because we leave the initial data unchanged (

which is useful because we
ns in which we save the data an

d then can’t recall at 2 later
iginal scores).

, which matches the number
m and a -1 for a negatively
ored items, we would use:

, using a 1 for a positively score ite
scored item. So for computerFear, which has only positively sc

keys = c(1, 1, 1, 1y 1, 1, 19

but for statisticsFear, which has item 3¢

the negatively scored item)
would use:

as its second item, we
s = (1, -1, 1, 1, 1, 1, 1, 1)

For three of our four subscales we d
positively scored, but for statisticsFeq
input the name of the dataframe for
option. Therefore, we could run the

on’t need to use the keys option because all items are
7 we need to. To use the alpha() function we simply

each subscale, and, where necessary, include the keys
reliability analysis for our fou

r subscales by executing:
alpha(computerFear)
alphq(statisticsFear, keys = c(1, 4, 1; 3, 1, 1, 1, 195
alpha(mathFear)

alpha(peerEvalua‘cion)

QRN Interpreting the output ®

Output 17.13 shows the results of this basic r
Subscale. First, and

@: the overal] relia

Similar though).

eliability analysis for the fear of computing
perhaps most important, the value of 4/

pha at the very top is Cronbach’s
bility of the scale (you should look at th

e raw alpha, they’re usually very
To reiterate, we’re looking for values in the range of .7 to .8 (or therea-

eliability.

pha, there is a measure labelled Ge,
culated from the squared multip
the average inter-

80 in this top s

ong with a short for Guttman’s lambda 6 ; this can
hence it’s labelled smc).'? The average r
e can calculate standardized alpha)
ristics. If we calculated someone’s score
items (which is the same as adding up the score and

le correlation (
item correlation (from which w
ection are some scale characte
8 the average of all of their
g by the number of items),

ght be interested to know that Guttman came up with Cronbach’s alpha before Cronbach, and

Ol can pegr this by running:

‘ r""be(Clpply((r‘aq [c

S gives yo, o mean of 3.42

6, 7, 10, 13, 14, 15, 18D, 1, mean))
and sd = 0.71.
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Next, we get a table giving the statistics for the scale if we deleted each item in turn. 010 0.02 0.10 0.18 0.57 0.14 .

> . .

The values in the column labelled raw alpha are the values of the overall « if that item Qi 8,03 0.12 0.25 0.48 0 19 0

isn’t included in the calculation. As such, they reflect the change in Cronbail S lot thgt 815 o 82 gis 0.38 0.31 0.06 0
i i i _The overall « is .82, and so all values in . .18 0.30 0.39 0.0

would be seen if a particular item were deleted. The , s oohs bam D-E0 W28 0.3y 8

at same value. What we’re actually looking for is values of

alpha greater than the overall a. If you think about it, if the deletion O.f ap‘item increases
Cronbach’s  then this means that the deletion of that item Improves reliability (remember-
ing that scales with more items are more reliable, so removing an item should always lower
alpha). Therefore, any items that have values of 1I‘1.thIS golgrpn greater than t.he ov;rall
o may need to be deleted from the scale to improve its reliability. Nope of t‘he items here
would substantially affect reliability if they were delet.ed. None qf the items increase alpha
by being deleted. This table also contains the standar.dlzed glpha. if the item is removed, the
Gé if the item is removed and the mean correlation if the item 1s I‘CmO\"Cd. .

The next table in the output is labelled item statistics. The values in the first column

labelled 7 are the correlations between each item and the total score frorq the qu§st10n-
m—total correlations. There’s a problem with this statistic, and

ded in the total. That is, if we correlate item 6 with the mean
he item with itself, so of course it will correlate. We can
correct this by correlating each item with all of the other iter,ns. Tyvo V'ersions of this are
presented, 7.cor and rdrop: r.coris alittle complex, so we won’t go 1nto it (but the help file

this column should be around th

naire — sometimes called ite
that is that the item is inclu
of all items, we’re correlating t
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Output 17.13

In a reliable scale all items should ¢
that don’t correlate with the overall s
are less than about .3 then we’ve got p
not correlate very well with the scale
dropped. For these data, all data have
encoqraging. The table also shows the
is omitted.

The final table in the alpha output is a table of f.
People gave each response to each of the items Tr}(:'

Cc:)r;:l;te with the total. So, we’re looking for items
core ron; the sca}le: if any of these values of r.drop
s, because it means that a particular item does

1s usually the case that an item where

everyone (or almost ever i
yone) gives the same response will almost certainly have
poor

reliability statistics.
As a final point, it’s worth notin

you should rerun your factor analy

not affected the factor structure.,

;gi st};at if l1ltems do need to be removed at this stage then
s well to make sure that the deletion of the item has

|

for alpha explains it), r.drop is the correlation of that item with the scale total. if that item

isn’t included in the scale total. Sometimes this is called the item-rest correlation (because
. . e

it's how the item correlates with the rest of the items) and sometimes it’s called the cor-

rected item—total correlation.

Reliability analysis
Call: alpha(x = statists
= SticsFear, keys = c(
’ = 1, <1, 1, 1, 1, 1
4o 41,1, 01, 1))
raw_alpha std.alpha G6 (smc) average_r mean sd

0.82 0.82 0.81 0.37 3.1 0.5

Reliability analysis
call: alpha(x = computerFear)

raw_alpha std.alpha G6 (smc) average_r mean sd . L e
oo . (one gor mean o R raw_aépgg std.alpha G6 (smc) avérage r
. 0.80 0.79 3
Reliability if an item is dropped: ggz /s olen 0.75 83;
raw_alpha std.alpha G6 (smc) average_ T QOS 0’1 o 51 0’50 0.3
- one s one) e - 0.81 0.81 0.80 0.38
» X 0'73 0.77 0-38 le 0.80 0.80 0.79 0.36
o .7 17 0.77 038 on 0.79 0.80 0.78 0.36
013 0.79 0.79  0.77 0.39 ' ! 078 050 bowe x
i . 0179 0.7 .88 J 0.79 0.80 0.78 0.36
0.81 0.79 0.41 7 |
giz 8:% 0.78  0.76 B8 L
ﬂ”_2572 L 6; récor r.drop mean sd
Ttem statistics 803 2571 0‘67 o -t
n r r.cor r.drop mean sd 04 257, O. ) o ooy T L8
006 2571 0.74 0.68 0.62 3.8 1.12 05 257 0.70 Gy TR 3.2 0.9
Q07 2571 0.73 0.68 0.62 3.1 1.10 - g 0'63 063 0157 20 003
010 2571 0.57 0.44 0.40 3.7 0.88 E R 0‘69 o e 0160 33 095
013 2571 0.73 0.67 0.61 3.6 0.95 . " 0-71 047 042 2.3 1 0s
014 2571 0.70 0.64 0.58 3.1 1.00 . F - 0'56 o 67 o5t 36 08
Q15 2571 0.64 0.54 0.49 3.2 1.01 O e e :
018 2571 0.76 0.72 0.65 3.4 1.05 - I
| ¥ g response frequency for each item
Non missing response frequency for each item ;‘1 0.02 Oi ; ; ) mes |
1 2 3 4 5 miss .03 0.17 oo oro& Ol ; I
Q06 0.06 0.10 0.13 0.44 0.27 0 - O' 036 037 o108 ;
.17 0.36 0.37 0.05 0]

Q07 0.09 0.24 0.26 0.34 0.07 0
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Q05 0.04 0.18 0.29 0.43 0.06 0
Q12 0.09 0.23 0.46 0.20 0.02 0
Q16 0.06 0.16 0.42 0.33 0.04 0
020 0.22 0.37 0.25 0.15 0.02 0
Q21 0.09 0.29 0.34 0.26 0.02 0

Output 17.14

OK, let’s move on to the fear of statistics subscale (items 1, 3, 4, 5, 12, 16, 20 and 21). 1
won’t go through the R output in detail again, but it is shown in Output 17.14. The over-
all « is .82, and none of the items here would increase the reliability if they were deleted.
The values in the column labelled 7.drop are again all above .3, which is good. In all, this
indicates that all items are positively contributing to the overall reliability. The overall a is
also excellent (.82) because it is above .8, and indicates good reliability.

Reliability analysis
Call: alpha(x = statisticsFear)

raw_alpha std.alpha G6(smc) average_r mean sd
0.61 0.64 0.71 0.18 3.1 0.5

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

Q01 0.52 0.56 0.64 0.15
Q03 0.80 0.80 079 0.37
Q04 0.50 0.55 0.64 0.15
Q05 0.52 0.57 0.66 0.16
Q12 0.52 0.56 0.65 0.15
Q16 0.51 0.55 0.63 0.15
Q20 0.56 0.60 0.68 0.18
021 0.50 0.55 0.63 0.15

Item statistics

n r r.cor r.drop mean sd
Q01 2571 0.68 0.62 0.51 3.6 0.83
003 2571 -0.37 -0.64 -0.55 3.4 1.08
Q04 2571 0.69 0.65 0.53 3.2 0.95
Q05 2571 Q.65 0.57 0.47 3.3 0.96
Q12 2571 0.67 0.62 0.50 2.8 0.92
Ql6 2571 0.70 0.66 0.53 3.1 0.92
Q20 2571 0.55 0.45 0.35 2.4 1.04
Q21 2571 0.70 0.66 0.54 2.8 0.98

Non missing response frequency for each item

1 2 3 4 5 miss
Q01 0.02 0.07 0.29 0.52 0.11 0
Q03 0.03 0.17 0.34 0.26 0.19 0
Q04 0.05 0.17 0.36 0.37 0.05 0
Q05 0.04 0.18 0.29 0.43 0.06 0
012 0.09 0.23 0.46 0.20 0.02 0
Q16 0.06 0.16 0.42 0.33 0.04 0
Q020 0.22 0.37 0.25 0.15 0.02 0
021 0.09 0.29 0.34 0.26 0.02 0

Output 17.15

Just to illustrate the importance of reverse-scoring items before running reh;l»
lysis, Output 17.15 shows the reliability analysis for the fear of statistics subscale £

g to reverse-score

« is around .8, which ind:
deleted indicate thgii;r;ilf;te}f good reliability, The values of alph
deleted because a]  Of the items here woyld ; of alpha
val . ould incr .
values of the COrrecte(ljle's In this column are less than chase the rehg ility if they were
B cood, ltem—total correlationg (rdrop) aOVeraH reliability of .85 The
’ re again al] '

- above , :
Reliability analysis 3, which

Call: alpha(x = mathFear)

raw_alpha Std.alpha gg

0.82 (smc) averas

- oo ge_r mean sd
| . 0.6 3.7 0.75
Rellability if an item

raw_alpha std.alpha 1s dropped:

B ) G6 (smc) average
E o 0.74 0.59 0 Er
. 0.77 0.74 0.59 O.Ss

. 0.77 0.63 0.6
: .63
Item Statisticg
n ¥ r.cor
. r.dro
‘%j 5571 0.86 0.7¢ 0.65 mjag o
Qj7 2;571 0.86 0.75 0.68 3'7 o
71 0.85 0.72 0.65 3'5 g.ss
ON missq
; ng ;esponse frequency for each j
‘el

08 0.03 0.0 ; . ;e -
o 6 0.19 0.58 0.15 0
3 0.03 0.06 0o 22 0.53 16 0

A 0.10 0.27 0.52 0.0g 0
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Reliability analysis o Th
! Ccall: alpha(x = peerEvaluation) € fffar of computers, fear of isti
1 had high reliahiliriee I of statistics and f
raw_alpha std.alpha G6 (smc) average_r mean sd 1 g fehdnhne& all Cronbach’ ear(ﬁlnathssubsaﬂeSofth
eva i Sa = e
0.57 0.57 0.53 0.21 3.4 0.65 uation subscale had relatively low reh’al;z';l'z' Féowever, the fear of HegatﬁéQ all
tity, Cronbach’s ¢ = .§ peer
=.57.

However, the most common wa

Reliability if an item is dropped:
analysis is to report the values ofyC

raw_alpha std.alpha G6(smc) average_r u)rePOItreﬁabﬂf
1

y analysi .
ronbach’s o as i ysis when it follows 3 factor

002 0.52 0.52 0.45 0.21 .
example, in Table 17 . t of
009 0.48 0.48 0.41 0.19 C 2 .1 notice that j of the table of f. ,
T ’ n the | actor lo
019 0.52 0.53 0.46 0.22 onbach’s o for each subscale jn turn ast row of the table I have quoted tidmgs' For
022 0.49 0.49 0.43 0.19 : e value of
023 0.56 0.57 0.50 0.25

Item statistics

ng‘
Illl S W lth Statlsn(-s 1S Iealllel that they are Sub €C
g
]

I suspect) create the impression that

! n r r.cor r.drop mean sd

002 2571 0.61 0.45 0.34 4.4 0.85

009 2571 0.66 0.53 0.39 3.2 1.26 .

019 2571 0.60 0.42 0.32 3.7 1.10 Whathave , dlscovered abOUt t o iy

19 257 060 042 032 27210 e S CG, DOUT statistics? @

| 023 2571 0.53 0.31 0.24 2.6 1.04 Th;ISChapterhasmadeustiptoeal() e T |
t i . s along the ¢ .
echnique for identifying clusters of ol lcersafhg;frrock face that is facror analysis. This i !

e Sa {

ate to each other, Ope i
i3 ; of the difficul
tive: many books (this one inc:luilceudt

Non missing response frequency for each item

iy 2 3 4 5 miss
Q02 0.01 0.04 0.08 0.31 0.56 0 mstructions vou’ ‘ statistics are like g ¢

009 0.08 0.28 0.23 0.20 0.20 0 R ()th?e;)l;elitget a nice tasty chocolate cake (yeu;in 700:; book and if you follow the
019 0.02 0.15 0.22 0.33 0.29 O B of 2rbicrs ~Im this book illustrates how incop - Factor analysis perhaps more

022 0.05 0.26 0.34 0.26 0.10 0 . Yfru es that we probably shouldn’t f, ﬁw this is. The world of statistics
023 0.12 0.42 0.27 0.12 0.06 O iy the time, whether ollow (.05 being the I i
scretion. So, if nothing else, I h you realize it or not we should assic example)

ope you've discoy ’ uld act upon our ow
n

Ooutput 17.17

INVIVINCRY \YERIS Reliability

Reliability is really the consistency of a measure.

o Reliability analysis can be used to measure the consistency of a questionnaire.

« Remember to deal with reverse-scored items. Use the keys option when you run the analysis.

o Run separate reliability analyses for all subscales of your questionnaire.

« Cronbach’s « indicates the overall reliability of a questionnaire and values around .8 are good (
like).

o The raw alpha when an item is dropped tells you whether removing an item will improve the overall reliability: values gred

than the overall reliability indicate that removing that item will improve the overall reliability of the scale. Look for items &

dramatically increase the value of «.
e If you do remove items, rerun your factor analysis to check that the factor structure still holds!

or .7 for ability tests and SU ppacted them down, and after about SO STET
rs | forced the smell

e form of a book. I was
ve to do that again’, | the

y brown remnants of

mentally exhaust
sught. sted at the

L

| o and remembering that D
o before the decimal p

You can report the reliabilities in the text using the symbo
Cronbach’s o can’t be larger than 1 then we drop the zer
are following APA format):

“Arotation
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Key terms that I've discovered

Alpha factoring
Bartlett's test of sphericity
Common variance
Communality

Component matrix
Confirmatory factor analysis (CFA)
Cronbach’s «

Direct oblimin

Extraction

Factor

Factor analysis

Factor loading

Factor matrix

Factor scores

Factor transformation matrix,

Kaiser's criterion

Smart Alex’s tasks

e Task 1: The University of Sussex is constantly seeking to emp
really, it is). Anyway, they wanted to revise
f research methods lecturers. This theo

possible as lecturers (no,
based on Bland’s theory o

research methods lecturers should have four character
an enthusiasm for experimental design;

of statistics; (2)

(4) a complete absence of normal interpersonal
be related (i.e., correlated). The “Teaching of S

Kaiser—Meyer-Olkin (KMO) measure of
sampling adequacy
Latent variable
Obligue rotation
Orthogonal rotation
Pattern matrix
Principal components analysis (PCA)
Promax

Quartimax

Random variance

Rotation

Scree plot

Singularity

Split-half reliability

Structure matrix

Unique variance

Varimax

loy the best
a questi€
ry predicts &
istics: (1) a profol
(3) a love of teaclt
skills. These characteristie
tatistics for Scientific EXPE
questionnaire and !

| enjoy sitting in the pa
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| calculate three ANOVAs in

: m
morning Y head before getting out of bed every

I co
uld spend all day explaining statisti

Ilike it when peo
rotation

Cs to people
ple tell *
me I've helped them to understand fact
or

People f;
P ' all asleep as Soon as | open my mouth
Designing experiments is fun s

thrills me

rk contemplating whether

experiment to use participant

observation in my next

Standing |
g in fro| .
T nt of 300 people in no way makes me lo
Se control of m
y

like to help students

Passin
.~ >°INg on know| :
Individa edge is the greatest gitt you can best
3 ow on an

king abo
ut B ;
i onferroni corrections gives me a tingly feel
eeling in my

| Quiver with .

R i excitement wh i
Xperiment When thinking aboyt desiani

. €signing my next
'en spend m

boredom Y spare time talking to the pigeons

-and even they die

“1€d 10 build m )
#80S ang iy - e Machi

( ; Fisher a Né so that I could go b
= 0N Which he'y found on my hands and kn?aes ?12:::; ttf;e
e

. just trodden
® teaching

end lot i
S of time helping Students

Ching beCaUSe stud

en
B ts have to preteng to like me or they’ll

(TOSSE) already existed, but the university revised this

the “Teaching of Statistics for Scientific Experiments — Atis my ony friong

Revised’ (TOSS 3
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® Task 2: Dr Sian Williams (University of Brighton) devised a questionnaire to measure Pedhazur, E .
o o . . : L o b L., & Schmelkin, 1, 1 {
organizational ability. She predicted five factors to do with organizational ability; (Chapter 22 is ap ex e (1991). Measurement, s
(1) preference for organization; (2) goal achievement; (3) planning approach; 4) Tabachnick, B. G, & Ficc?e;ni ntroduction to the theory O%fla::ld analysis. Hillsdale NJ: Eqgfp,
acceptance of delays; and (5) preference for routine. These dimensions are theoreti- Bacon. (Chapter 13 j a t’ech‘ns §2007). Using multivarias, sertzi??IYSIS / 3
cally independent. Williams’s questionnaire (Figure 17.10) contains 28 items using a 1cal but wonderfy] overview of factozrcz (ith'ed.). Boston; Allyn &
7-point Likert scale (1 = strongly disagree, 4 = neither, 7 = strongly agree). She gave nalyss,)

it to 239 people. Run a principal components analysis on the data in Williams.dat, @

Answers can be found on the companion website.

FIGURE 17.10
Williams’s
organizational
ability
questionnaire

| like to have a plan to work to in everyday life
| feel frustrated when things don't go to plan

| get most things done in a day that | want to
| stick to a plan once | have made it

| enjoy spontaneity and uncertainty

| feel frustrated if | can't find something | need

I find it difficult to follow a plan through

o N O g A~ WO N =

| am an organized person
9 | like to know what | have to do in a day

10 Disorganized people annoy me

il I leave things to the last minute

12 I have many different plans relating to the same goal
13 | like to have my documents filed and in order

14 | find it easy to work in a disorganized environment
15 | make ‘to do’ lists and achieve most of the things on it

16 My workspace is messy and disorganized

17 | like to be organized

18 Interruptions to my daily routine annoy me
19 | feel that | am wasting my time

20 | forget the plans | have made

21 | prioritize the things | have to do

22 | like to work in an organized environment

| feel relaxed when | don’t have a routine

| set deadlines for myself and achieve them

25 I change rather aimlessly from one activity to another during the day
26 | have trouble organizing the things | have to do
27 | put tasks off to another day

| feel restricted by schedules and plans

Further reading

Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications:/
of Applied Psychology, 78, 98—104. (A very readable paper on Cronbach’s o..) 3
Dunteman, G. E. (1989). Principal components analysis. Sage University Paper Series on Quj
Applications in the Social Sciences, 07-069. Newbury Park, CA: Sage. (This monograph’
high level but comprehensive.)



