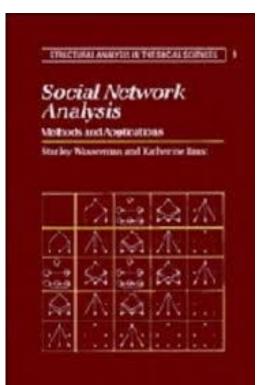
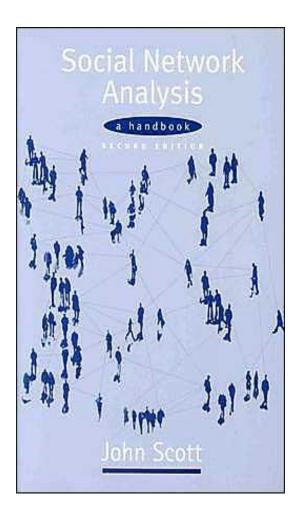
Social network analysis 3 + 4

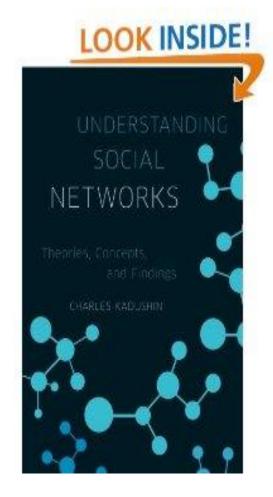
Petr Ocelík

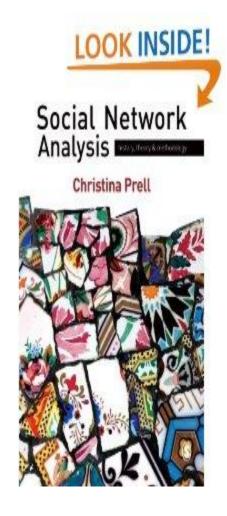
ESS418 Research Methods in Social Science


16th October 2015

Outline


- Centrality and centralization
- Dyads and reciprocity
- Triads and transitivity
- Segments
- R: SNA mini-case


"Red bible"


 Stanley Wasserman and Katherine Faust (1994): Social Network Analysis: Methods and Applications. Cambridge University Press.

Introductory sources

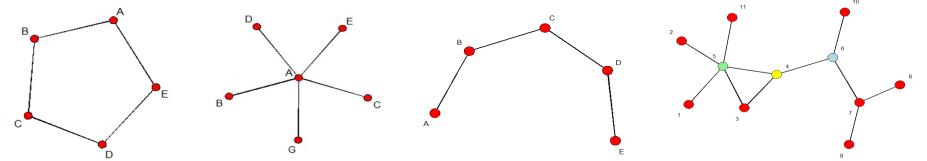
Graph theory

- Network topology is defined by two main concepts: connectivity and centrality.
- **Connectivity** describes interconnectedness of nodes in network (focus on **flows**).
- **Centrality** describes location of nodes in network (focus on **positions**).

Graph theory: notation

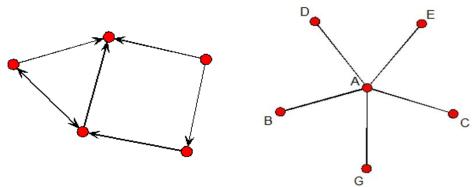
- G = graph/network
- N = # of nodes in network, n = individual node
- e = edge, g = geodesic
- i, j, ... = indices (labels for selected elements)
- gij = geodesic between nodes i and, ni = node i
- k = # of selected elements (typically nodes)
- Cd'(G) = ' indicates that the measured value is standardized
- Upper case: global measures
- Lower case: local measures
- cd(ni) = node i degree centrality
- Cd(G) = graph G degree centralization

Centrality


- Local measure: characterizes position of a particular node within a network.
- Different measures for different network classes! (e.g. bipartite networks, directed or weighted ties).
- Simplest case: undirected binary network.
- Different types of centralities:
 - Degree centrality
 - Closeness centrality
 - Betweenness centrality

Centralization

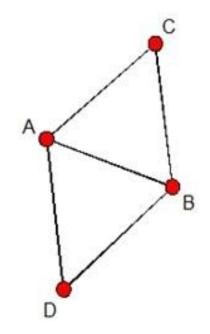
- **Global measure:** characterizes extent to which a certain local feature prevails in a network.
- **Centralization** is measured as a difference of all centrality values from the highest centrality value.
- Again, we need to consider the network class.
- Analogically, there are different types of centralizations.
- centralization =/= centrality


Degree centrality

- Nodes with most connections.
- Theoretical importance:
 - Most powerful actors in network.
 - Indication of prestige (in-degree centrality).
 - Indication of influence (out-degree centrality).
 - Depends on tie conceptualization.
 - Limited only to adjacent nodes (neighborhood)!

Degree centrality

- Undirected graph: # of connections of a node.
 c_D(n_i) = d(n_i)
- Standardization: division by # of all possible connections (# of all nodes 1).
 c_D′(n_i) = d(n_i) / (N − 1)
- **Directed graph:** # of connections from/to a node.
 - In-degree centrality
 - Out-degree centrality



Degree centrality

$$c_{D}(n_{i}) = d(n_{i})$$
$$c_{D}(n_{A}) = d(n_{A}) = 3$$
$$c_{D}(n_{C}) = d(n_{C}) / (N - M)$$

$$c_{D}(n_{i}) = d(n_{i}) / (N - 1)$$

 $c_{D}(n_{A}) = 3 / 3 = 1$

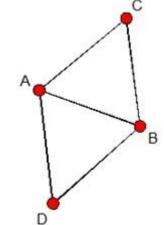
Degree centralization

- 1. # of connections of each node (degree centrality).
- 2. Differences of centralities from the highest centrality value.
- 3. Summation of differences.

 $C_D(G) = \sum (c_D(n_{MAX}) - c_D(n_i))$

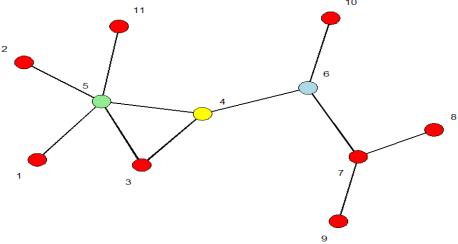
4. Standardization: division by (N - 1) * (N - 2)

 $C_{D}(G) = \sum (c_{D}(n_{MAX}) - c_{D}(n_{i})) / (N - 1) * (N - 2)$


Degree centralization

$$C_{D}(G) = \sum (c_{D}(n_{MAX}) - c_{D}(n_{i}))$$

$$C_{D}(G) = (0 + 0 + 1 + 1) = 2$$


$$C_{D}'(G) = \sum (c_{D}(n_{MAX}) - c_{D}(n_{i})) / (N - 1) * (N - 2)$$

$$C_{D}'(G) = 2 / (4 - 1) * (4 - 2) = 2 / 6 = 0.33$$

Closeness centrality

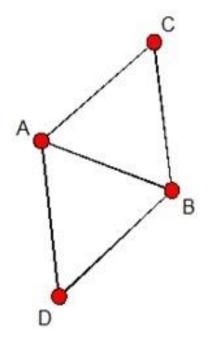
- Nodes with shortest average path length.
- Node is closer to more nodes than any other node.
- Theoretical importance:
 - Shorter path lengths = quicker and more efficient access to sources.

Closeness centrality

- **Distance:** ∑ geodesics of a node to all other nodes.
- **Closeness:** inverse concept $\rightarrow 1$ / distance:

$$c_{c}(n_{i}) = 1 / \sum g(n_{i}, n_{j}) = c_{c}(n_{i}) = [\sum g(n_{i}, n_{j})]^{-1}$$

• Standardization: multiplication by # of nodes - 1. $c_{C}(n_{i}) = \left[\sum g(n_{i}, n_{j}) * (N - 1)\right]^{-1}$


Closeness centrality

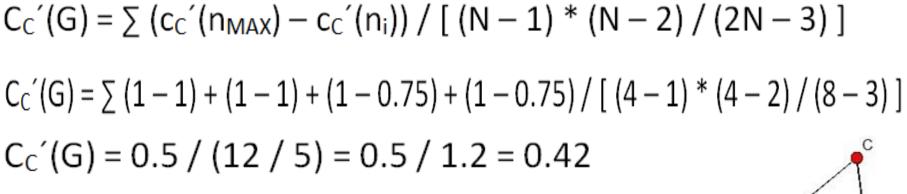
$$c_{C}(n_{i}) = \left[\sum_{i} g(n_{i}, n_{j})\right]^{-1}$$

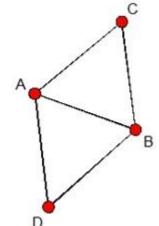
$$c_{C}(n_{A}) = \left[(1 + 1 + 1)\right]^{-1} = 0.33$$

$$c_{C}'(n_{i}) = \left[\sum_{i} g(n_{i}, n_{j}) * (N - 1)\right]^{-1}$$

$$c_{C}'(n_{A}) = 0.33 * (4 - 1) = 1$$

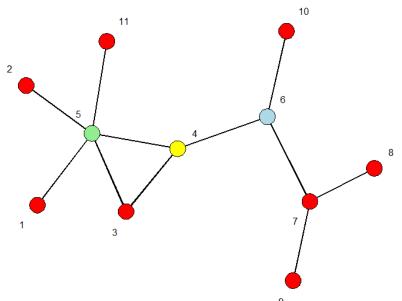
Closeness centralization


- **1. Standardized** closeness centrality values for each node.
- 2. Differences of centralities from the highest centrality value.
- 3. Summation of differences.


$$C_{C}'(G) = \sum (c_{C}'(n_{MAX}) - c_{C}'(n_{i}))$$

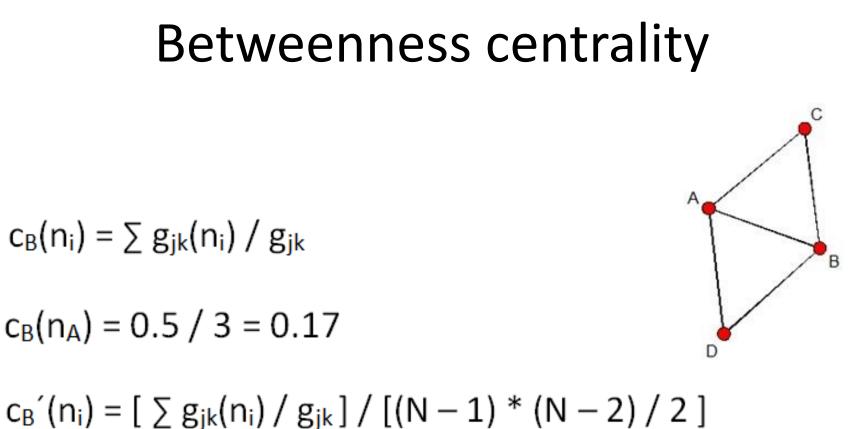
4. Standardization: (N - 1) * (N - 2) / (2N - 3) $C_{C}(G) = \sum (c_{C}(n_{MAX}) - c_{C}(n_{i})) / [(N - 1) * (N - 2) / (2N - 3)]$

Closeness centralization


 $C_{C}(G) = \sum (c_{C}(n_{MAX}) - c_{C}(n_{i}))$

Betweenness centrality

- Nodes which are most in-between other nodes.
- Theoretical importance:
 - Crucial for flow control (gatekeepers, brokers).
 - Bridges to otherwise weakly connected parts of network (access to sources).

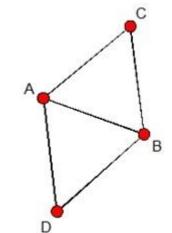

Betweenness centrality

 Betweenness: ratio of geodesics upon which a node lies to all geodesics between remaining nodes in network.

 $c_B(n_i) = \sum g_{jk}(n_i) / g_{jk}$

• Standardization: division by # of all possible geodesics upon which node can lie.

 $c_{B'}(n_i) = \left[\sum g_{jk}(n_i) / g_{jk}\right] / \left[(N-1) * (N-2) / 2\right]$

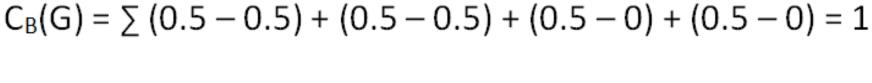


 $c_{B}(n_{A}) = 0.17 / [((4 - 1) * (4 - 2)) / 2] = 0.17 / 3 = 0.06$

Betweenness centralization

- 1. Betweenness centrality values for each node.
- 2. Differences of centralities from the highest centrality value.
- 3. Summation of differences.

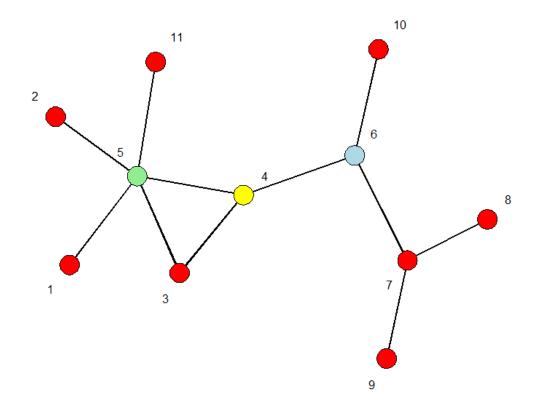
 $C_B'(G) = \sum \left(c_B(n_{MAX}) - c_B(n_i) \right)$



4. Standardization: $(N - 1)^2 * (N - 2) / 2$

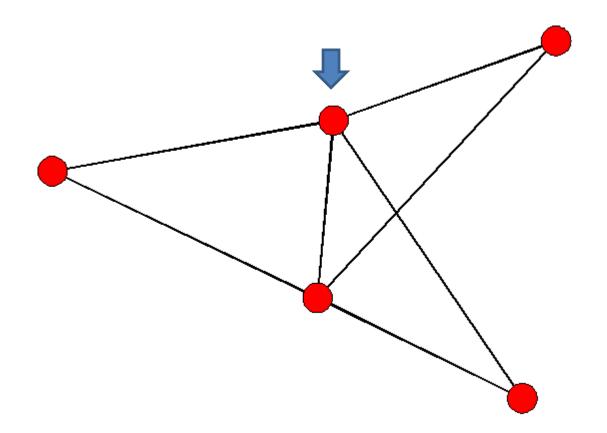
 $C_B'(G) = \sum (c_B(n_{MAX}) - c_B(n_i)) / [(N - 1)^2 * (N - 2) / 2]$

Betweenness centralization


 $C_{B}'(G) = \sum (c_{B}(n_{MAX}) - c_{B}(n_{i}))$

$$C_B'(G) = \sum (c_B(n_{MAX}) - c_B(n_i)) / [(N - 1)^2 * (N - 2) / 2]$$

 $C_B(G)' = 1 / [(4 - 1)^2 * (4 - 2) / 2] = 1 / 9 = 0.11$


Degree vs. closeness vs. betweenness

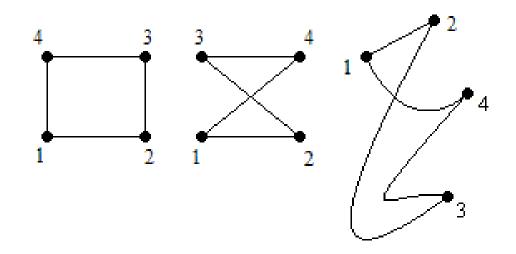
	1	2	3	4	5	6	7	8	9	10	11
degree	1	1	2	3	5	3	3	1	1	1	1
closeness	0.33	0.33	0.42	0.53	0.48	0.5	0.4	0.29	0.29	0.34	0.33
betweenness	0	0	0	50	48	54	34	0	0	0	0

Exercise

• Calculate degree and closeness centrality of a given node. What is degree centralization?

Dyads

- Dyad: a most basic relational unit.
- 2 dyads for undirected graphs:


• **Isomorphism:** structural interchangeability of nodes, edges or their configurations.

٠

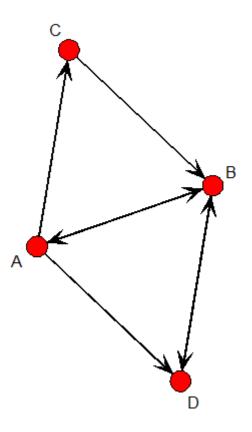
- 3 isomorphic dyads for directed graphs.
- MAN: M: mutual, A: asymmetric, N: null:

Isomorphism

 Isomorphic representations of graphs preserve adjacency.

stackexchange.com

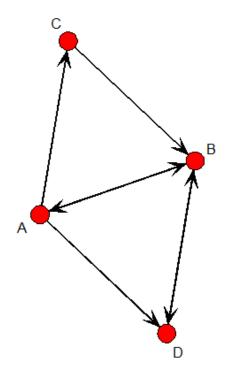
Reciprocity (Wasserman & Faust 2009)


• **Reciprocity:** there is a bidirectional (mutual) tie between two nodes.

 Reciprocity in graph is given as a ratio of reciprocal (mutual) dyads to total number of connections (mutual + asymmetrical dyads).

R(G) = 2M / (2M + A)

Reciprocity

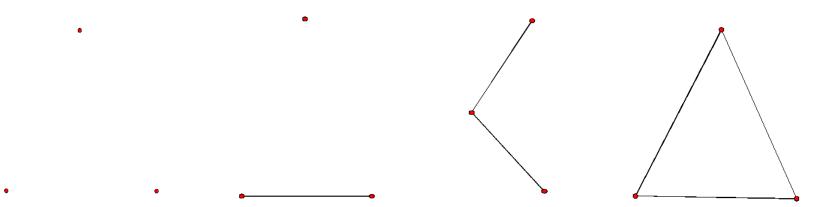

R(G) = 2M / (2M + A)

Reciprocity

R(G) = 2M / (2M + A)

R(G) = 2*2 / (2*2 + 3) = 4 / 7 = 0.57

• R default

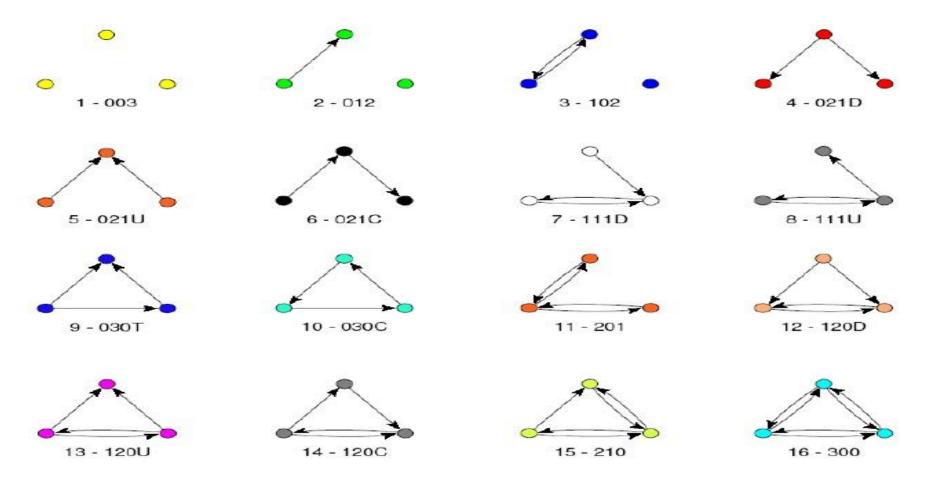

R(G) = M / (M + A + N) = (1 + 1) / ((1 + 1) + (1 + 1 + 1) + 1)) = 2 / 6 = 0.33

• R dyadic.nonnul

R(G) = M / (M + A) = (1 + 1) / ((1 + 1) + (1 + 1 + 1)) = 2 / 5 = 0.4

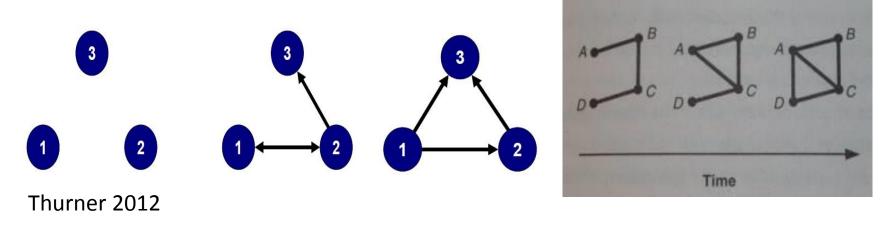
Triplets and triads in undirected graph

- Triad as a basic unit of social organization.
- triplet = empty triad
- In undirected graph: 2^3 = 8 combinations of triads with preserved identity (anisomorphic).
- 4 isomorphic triads:



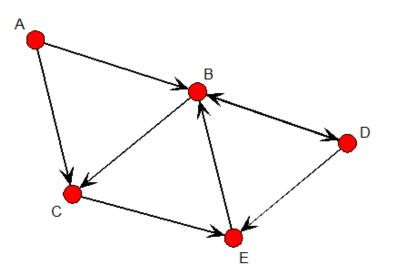
Triplets and triads in directed graph

- There is a 6 combinations of triplets: (a, b, c);
 (a, c, b); (b, a, c); (b, c, a); (c, a, b); (c, b, a).
- Thus: 2^6 = 64 combinations of anisomorphic triads.
- If we neglect node identities, we get 2^4 =
 16 isomorphic triads = triadic census.
- # of isomorphic triads in directed graph is given by:
 ∑ T_u = N! / (k! * (N − k)!)

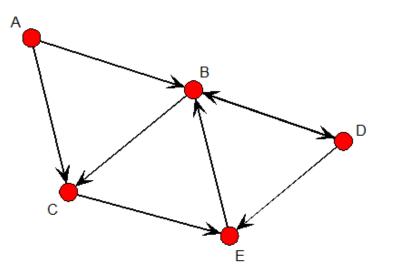

Triadic census

 MAN (Mutual-Asymmetric-Null), tie direction (Up/Down), transitivity (T) vs. cycle (C)

Transitivity

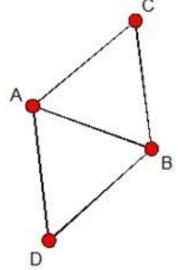

- Transitivity: *a friend of my friend is my friend*.
- Triadic closure:

 Measure: # of transitive triads over # of all triads. T(G) = ∑_{ijk} e_{ij}, e_{jk}, e_{ik} / (N! / (k! * (N − k)!)


Transitivity

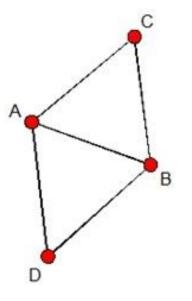
 $T(G) = \sum_{ijk} e_{ij}, e_{jk}, e_{ik} / (N! / (k! * (N - k)!))$

Transitivity


 $T(G) = \sum_{ijk} e_{ij}, e_{jk}, e_{ik} / (N! / (k! * (N - k)!))$ T(G) = 1 / (120 / 6 * 2) = 1 / 10 = 0.1

Local clustering coefficient

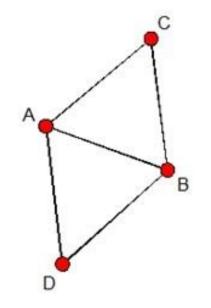
- Measures level of a given node's neighborhood's interconnectedness.
- Measure: # of interconnections of adjacent nodes over # of all possible interconnections of adjacent nodes.


$$cc_i = e_{jk} / (n_{jk}^*(n_{jk} - 1) / 2)$$

Local clustering coefficient

$$cc_i = e_{jk} / (n_{jk}^*(n_{jk} - 1) / 2)$$

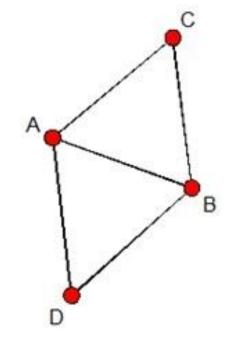
$$cc_A = 2 / ((3 * 2)/2) = 2 / 3 = 0.67$$


Clustering coefficient

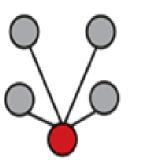
- Global measures:
- (1) global cluster coefficient (GCC):
 # of closed triads / # all connected triads

• (2) average cluster coefficient (ACC):

- Arithmetic mean of local cluster coefficient values.


 $ACC(G) = \sum cc_i / N$

Clustering coefficient

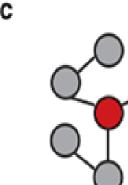

ACC(G) =
$$\sum cc_i / N$$

ACC(G) = $\sum (0.67 + 0.67 + 1 + 1) / 4 = 3.34 / 4 = 0.835$

GCC(G) = 2 / 4 = 0.5

Degree

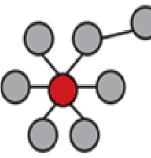
Bridging centrality


High-degree node

Low-degree node

High bridging centrality

Low bridging centrality

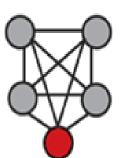


High betweenness centrality

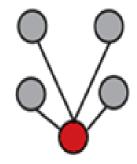
Betweenness centrality

Low betweenness centrality

Closeness centrality

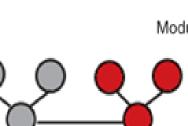


High closeness centrality

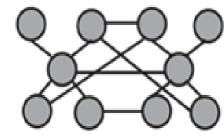

Low closeness centrality

е

d

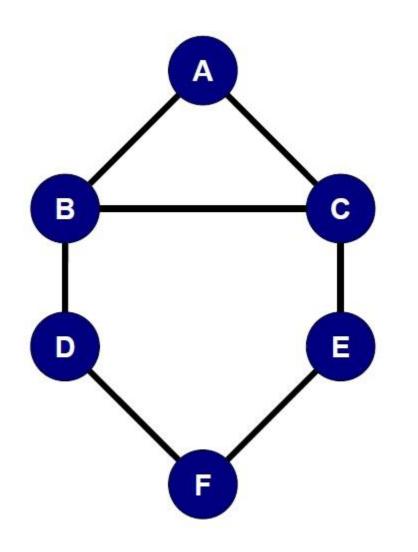


Clustering coefficient

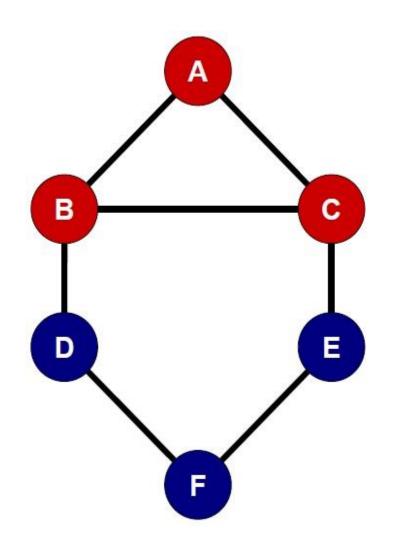


High clustering coefficient

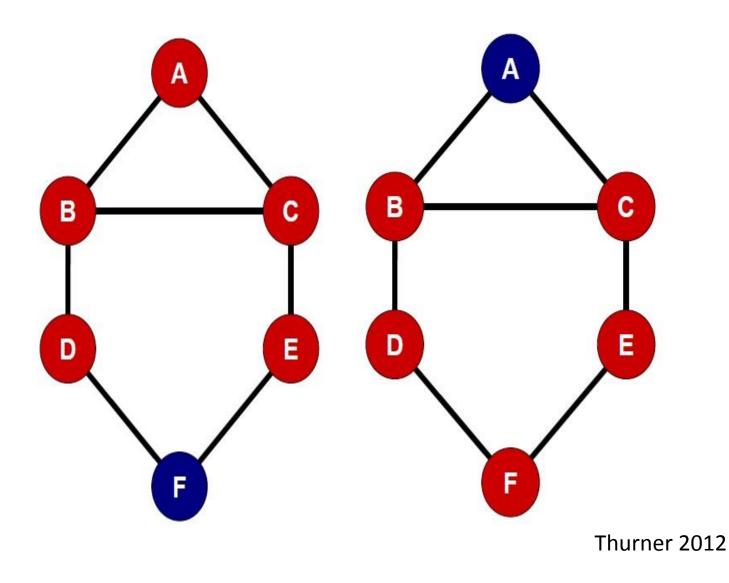
Low clustering coefficient


Highly modular network

Nonmodular network

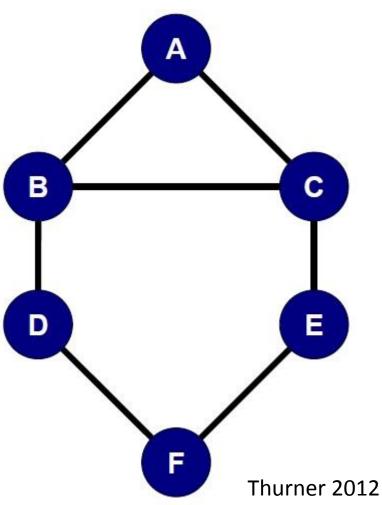

Segments

- SNA toolkit allows to describe larger parts of the graph than triads.
- The most used concepts for network segmentation measurement:
 - cliques / n-cliques
 - k-cores
 - ... and many others


- Clique is a maximal complete subgraph that consists from three and more nodes.
- → each member of the clique has to be connected to all other members of the clique.
- Strong assumption → n-clique.
- N-clique is a maximal subgraph where longest geodesic between any two members is not greater than n.
- Thus in 2-clique every members is connected to all other members in 1 or 2 steps.

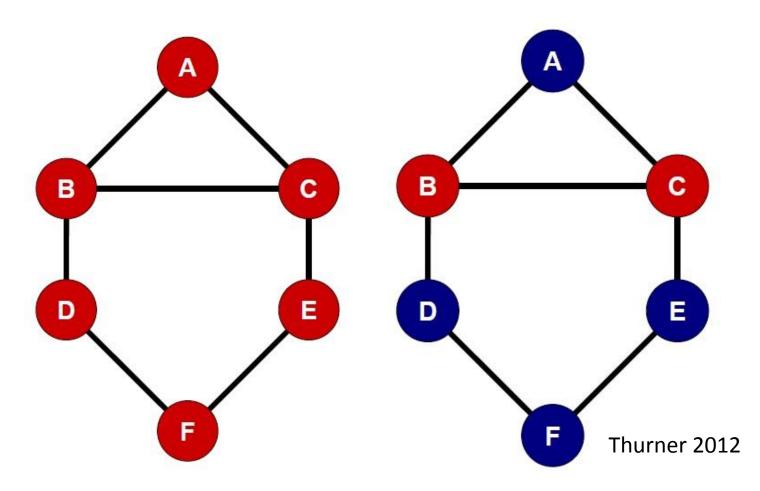
Thurner 2012

Thurner 2012

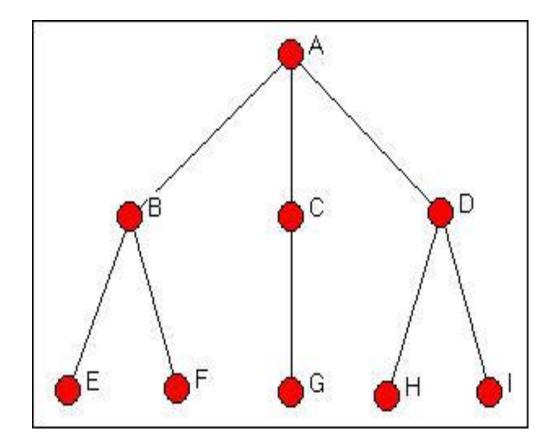


K-core

- K-core is maximal subgraph where all nodes are connected with specific (k) minimal # of nodes in the subgraph.
- Thus: k indicates how many connections each member of the subgraph has to have.
- Therefore: it is not important how many connections to other members is missing.


K-core

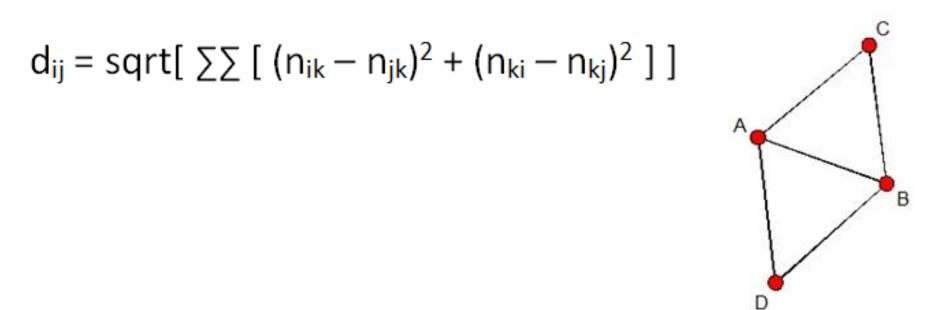
• Find 2-core and 3-core



K-core

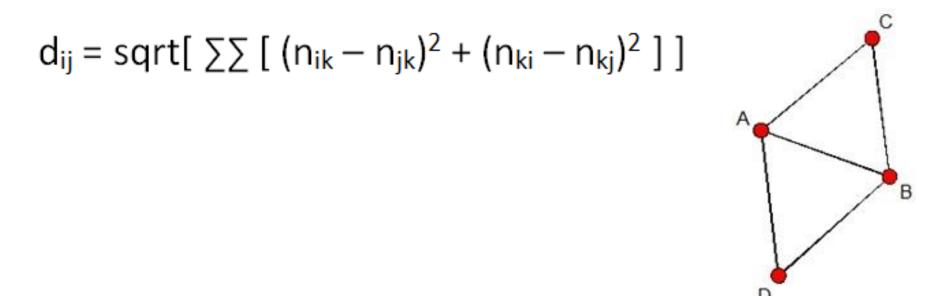
• Find 2-core and 3-core:

Structural equivalence


Hanneman & Riddle 2005

Structural equivalence

- Social position: similar ties to other nodes.
 - E.g. Ph.D. students at our department have similar ties to others (under/graduates, department members, supervisors, etc.) as Ph.D. students at other departments.
- Social role: pattern of ties to other positions.
 - E.g. professional ties with department members, competitive ties with other Ph.D., friendship ties with other students, etc.


Euclidean distance

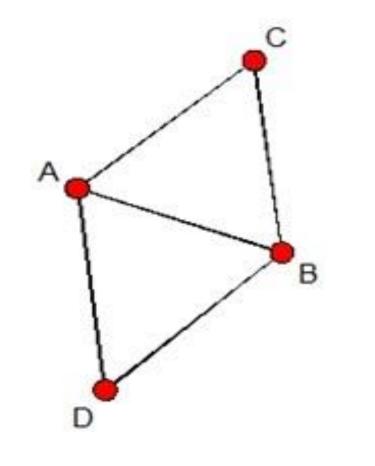
- Euclidean distance (ED): is a distance of nodes i and j in relation to all other nodes in graph.
- ED of structurally equivalent nodes = 0.
- It is possible to classify nodes based on their ED.

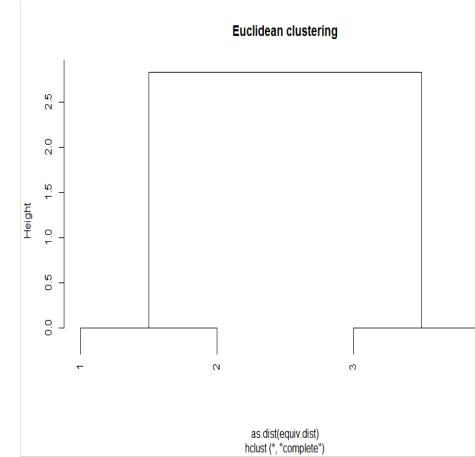
Euclidean distance

- (1): differences of distances of i and j to all other nodes.
- (2): sum of squares of the differences (SSD).
- (3): square root of the result (SSD).

Euclidean distance

 $d_{ij} = sqrt[\sum [(n_{ik} - n_{jk})^2 + (n_{ki} - n_{kj})^2]]$ $d_{ac} = sqrt[\sum [(n_{ak} - n_{ck})^2 + (n_{ka} - n_{kc})^2]]; k = \{b, d\}$ $d_{ac} = sqrt[((ab - cb)^2 + (ba - bc)^2) + ((ad - cd)^2 + (da - dc)^2)]$ $d_{ac} = sqrt[((1-1)^2 + (1-1)^2) + ((1-2)^2 + (1-2)^2)]$ $d_{ac} = sqrt(0 + 0 + 1 + 1) = sqrt(2) = 1.41$


0	1	1	1
1	0	1	1
1	1	0	0
1	1	0	0


0	0	1.41	1.41
0	0	1.41	1.41
1.41	1.41	0	0
1.41	1.41	0	0

B

0	1	1	1
1	0	1	1
1	1	0	0
1	1	0	0

0	0	1.41	1.41
0	0	1.41	1.41
1.41	1.41	0	0
1.41	1.41	0	0

Illustration: energy interdependence

- Research objective:
 - Mapping energy interdependence relations at the European natural gas market (exploratory objective).

Research question:

– What is the level of energy interdependence at the European market?

Research importance:

- Collection of data and exploration.
- Necessary step for explanatory research (liberal peace hypotheses).

Network border delineation

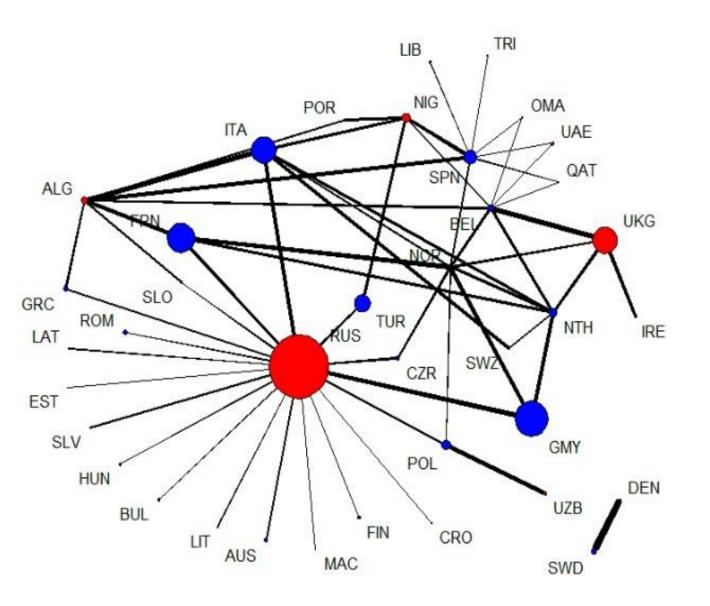
- positional strategy of border delineation:
 - European NG consumers and their suppliers.
- sample ~ population :
 - EU28 + Norway, FYROM, Ukraine, Belarus, Turkey and its suppliers.

Conceptualization / operationalization

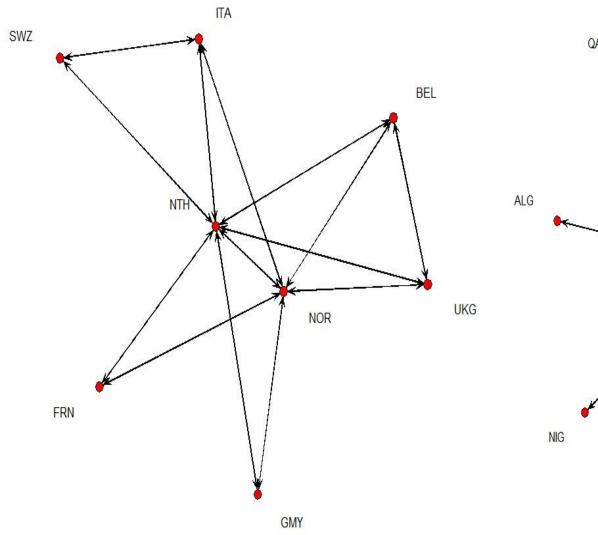
- Operationalization (Barbieri 1996):
 - Interdependence has two dimensions: saliency and symmetry.
 - Trade share (TS): bilateral trade flow over total trade flow
 - TS = tradeAB/tradeAW ; tradeBA/tradeBW
 - Saliency (S): trade shares product of A and B
 - S = sqrt(tradeAB/tradeAW * tradeBA/tradeBW)
 - Symmetry (Y): difference of trade shares of A and B
 - Y = 1 abs(tradeAB/tradeAW tradeBA/tradeBW)
 - Interdependence (I):
 - I = sqrt(V * S)
- Attribute variables:
 - exporter / importer
 - Composite Index of National Capability (CINC)

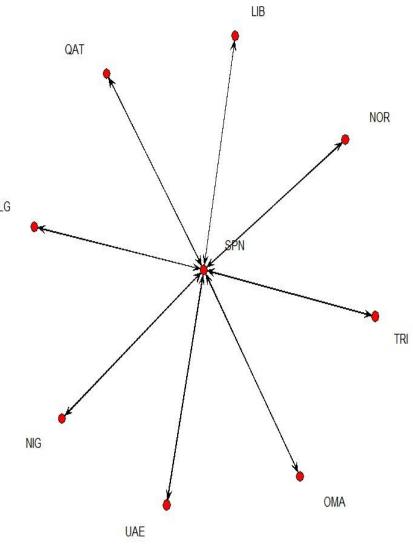
Interdependence: calculation

CZE-RUS	
share (bcm/y)	CZE: 7/9 = 0.77 (77 %); RUS: 7/150 = 0.05 (5 %)
saliency	sqrt(0.77*0.05) = 0.20 (20 %)
symmetry	1 – abs(0.05 - 0.77) = 1 – 0.72 = 0.28 (28 %)
interdependence	sqrt(0.20*0.28) = 0.24 (24 %)
weighted interdependence	sqrt(0.24*sqrt(0.20*0.04)) = 0.15 (15 %)

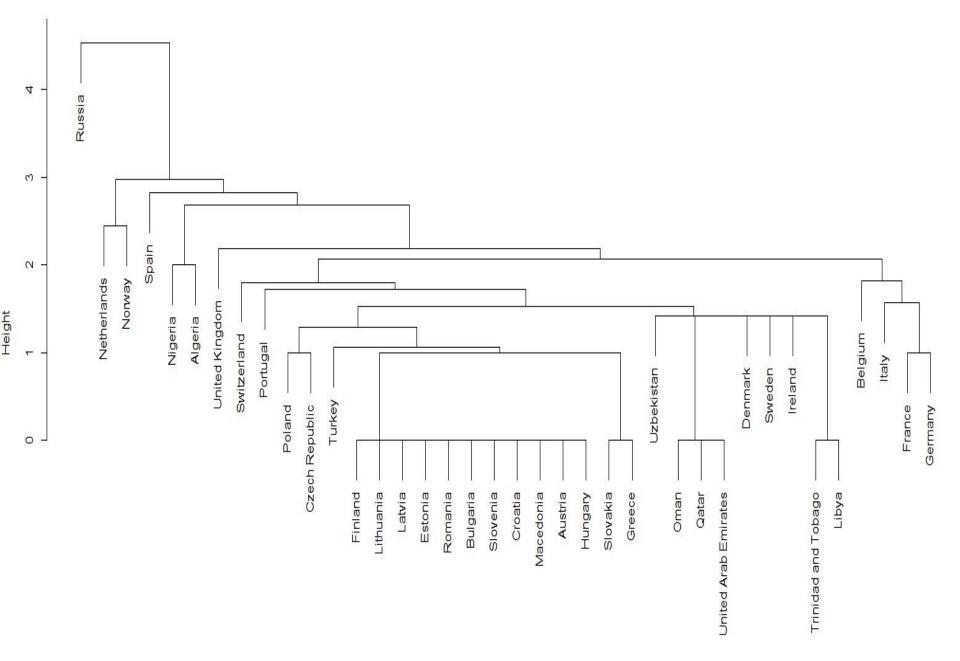

GER-RUS	
share (bcm/y)	GER: 40/85 = 0.47 (47 %); RUS: 40/150 = 0.27 (27 %)
saliency	sqrt(0.47*0.27) = 0.36 (36 %)
symmetry	1 – abs(0.47 - 0.27) = 1 – 0. 2 = 0.8 (80 %)
interdependence	sqrt(0.36*0.80) = 0.54 (54 %)
weighted	sqrt(0.54*sqrt(0.24*0.04)) = 0.23 (23 %)
interdependence	

Attribute variables


variable	operationalization (bcm/y)	CZE	GER
NG consumption /	NG consumption /	0.20 (20 %)	0.24 (24 %)
TPES	TPES		
import /	import NG /	98 %	90/95 = 0.95
consumption	consumption NG		(95 %)
diversification	HH = ∑shares^2	0.7^2 + 0.3^2	0.23^2 + 0.33^2
(concentration)		= 0.58 (58 %)	+ 0.40^2 = 0.32
			(32 %)
substitutability	N - 1	0.2 (20 %)	0.6 (60 %)
storage capacity /	storage capacity	3/9 = 0.3	24/95 = 0.25
total consumption	/ consumption NG	(30 %)	(25 %)
political regime	Freedom House	0.82 (82 %)	0.84 (84 %)
	Index		


- 24	А	В		С	D	E		F	G		Н		ľ.	J		K			М		N	0		р	C	2	R		S	T		U		٧	W		Х
1		TRI	ι	JKG	IRE	NTH	В	BEL	FRN	5	SWZ	SPN		POR	GI	ΛY	POL		AUS	HUI	N	CZR	SL	.0	ITA	1	MAC	CR	0	SLV	G	GRC	BUL		ROM	RU	5
2	TRI		0	0)	0	0	0	1	0		0 0.07	7603		0		0	0		0	0		0	1.00	0	0		0	0)	0		0	0		0	0
3 1	UKG		0	C	0.41479	0.358	292 0	.64829		0		0	0		0		0	0		0	0		0	(0	0		0	0)	0		0	0		0	0
4	IRE		0 0	0.414797		0	0	0	1	0		0	0		0	11	0	0		0	0		0	10	0	0		0	0)	0		0	0		0	0
5 1	NTH		0 0).358292		0	0 0	.520007	0.3559	99 (0.113207	7	0		0 0.	509085		0		0	0		0		0 0.378	856		0	0)	0		0	0		0	0
6	BEL		0 0	0.64829		0 0.463	071	0	1	0		0	0		0		0	0		0	0		0		0	0		0	0)	0		0	0		0	0
7	FRN		0	C)	0 0.355	999	0	1	0		0	0		0	1	0	0		0	0		0	(0	0		0	0)	0		0	0		0 0.3	49791
8 9	SWZ		0	C)	0 0.113	207	0	1	0		0	0		0		0	0		0	0		0		0 0.403	87		0	0)	0		0	0		0	0
9 9	SPN		0	C)	0	0	0	1	0		0	0		0	1	0	0		0	0		0		0	0		0	0)	0		0	0		0	0
10	POR		0	C)	0	0	0	1	0		0	0		0		0	0		0	0		0	(0	0		0	0)	0		0	0		0	0
11 (GMY		0	C)	0 0.509	085	0	1	0		0	0		0	1	0	0		0	0		0	(0	0		0	0)	0		0	0		0 0.5	22218
12	POL		0	C)	0	0	0	1	0		0	0		0		0	0		0	0		0		0	0		0	0)	0		0	0		0 0.2	01925
13	AUS		0	C)	0	0	0	1	0		0	0		0	1	0	0		0	0		0		0	0		0	0)	0		0	0		0 0.1	51874
14	HUN		0	C)	0	0	0	1	0		0	0		0		0	0		0	0		0	(0	0		0	0)	0		0	0		0 0.1	29971
15	CZR		0	C)	0	0	0	1	0		0	0		0	1	0	0		0	0		0		0	0		0	0)	0		0	0		0 0.2	54506
16	SLO		0	C)	0	0	0		0		0	0		0		0	0		0	0		0		0	0		0	0)	0		0	0		0 0.1	48157
17	ITA		0	C)	0 0.378	856	0)	0 0	0.40387		0		0	1	0	0		0	0		0		0	0		0	0)	0		0	0		0 0.4	32106
18	MAC		0	C)	0	0	0	1	0		0	0		0		0	0		0	0		0	(0	0		0	0)	0		0	0		0 0.0	04255
19	CRO		0	C)	0	0	0	1	0		0	0		0	1	0	0		0	0		0	(0	0		0	0)	0		0	0		0 0.0	27951
20	SLV		0	C)	0	0	0	1	0		0	0		0	10	0	0		0	0		0	10	0	0		0	0)	0		0	0		0 0.1	1251
21	GRC		0	C)	0	0	0		0		0	0		0	1	0	0		0	0		0	(0	0		0	0)	0		0	0		0 0.1	59568
22	BUL		0	C)	0	0	0	1	0		0	0		0		0	0		0	0		0		0	0		0	0)	0		0	0		0 0.1	
23	ROM		0	C		0	0	0		0		0	0		0	1	0	0		0	0		0	(0	0		0	0)	0		0	0		0 0.0	57377
24			0	C		0	0		0.3497			0	0									0.25450															0
TP		JKG	IRE	NTHE	BELFF	RNSWZ	SPN	POR	GMYF	POL	AUSI	IUN	CZR	SLO	ITA	MAC	CRO	SLV	GRC	BUL	ROM	RUSE	ST	LAT	LIT	FIN	SWD	NOR	DEN	NIG	ALG	LIB	TUR	QAT	UAE	OMA	UZB
UK	G	JKG			10																														1 1		
IRE		-	IRE	NTH			-		-					-	-					-	_				-	-					-	-	-	-	-	-	
BE	L		8 8		BEL		1						((f												2 3	3		3						8		1	
FR					FF	SWZ	-										-		-		-				-	1						-					-
SP	N						SPN							- 1																							
PO	IY I							POR	GMY																											15	
PO					_	-			F	POL				_			_	_		-					_	Ļ				_				-			
AU	N		8 8	2		9					AUS	IUN													3 - 8	3							2	2	5 8	- 8	
CZ	RI I	-											CZR	0.12						2 i				-	a 3												
ITA	4		i i											SLO	ITA					-		0			-									22			
MA	C I		8 8			3	-	+			T		5 15			MAC	CRO								8 8	2	3						-				
SL	v III																	SLV							i i	ĺ									i i		
GR	C	-			-		-	+								-	-		GRC	BUL						- 0						-					-
RORU	M									_											ROM														1 1		
RU	S		4 4		-	-	-	+ -								-						RUS	ST			-						-		-			
LA	i 🗖					1) (j			1							-01	LAT										1	0		
FIN							-		-		-	-		-	-				;			-		-	LIT	FIN			-		-	-	-				-
	D									_																	SWD										
NO	R N			3		1									3		-											NOR	DEN								
NIC	G																									Ľ.				NIG							
AL	G	-	9 11						-														-			-					ALG	LIB					_
TUI	R					-																			_								TUR	0.17			
QA UA OM				+		_		+ +	-						-	-					_		-								-	-		QAT	UAE		
OM	A		<u>(</u>)									5						-		į					S 0									ŝ.	ST IL	OMA	
UZ	в	_					1	1 1	-			_																_	I				1			U.	UZB

Interdependence network (European natural gas market (2001))



edge width: interdependence node size: national capabilities exporter (red), importer (blue)

Cluster Dendrogram

Assignment 2

- Create a new script.
- Generate a random graph with 5 nodes.
- Calculate degree, closeness, and betweenness centrality.
- Calculate degree centralization.
- Visualize graph and report the centrality / centralization results.
- Bonus: display node size as a function of its degree centrality.