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Easy reading guide

In Chapter 4, we introduced the use of truth tables in the analysis of sufficient conditions. A
central point of our previous chapter was to assess for every single truth table row whether
it represents a sufficient condition for the outcome. If yes, then such a row has been
included in the logical minimization. If not, then it has not been included.

So far, we have assumed an ideal world that presents itself in clear and neat patterns.
In reality, social science research based on observational data is characterized by noisy
data. The coming chapters deal with issues that derive from this fact and describe strat-
egies for how set-theoretic methods need to react to this. One fruitful way of looking at
the discrepancy between neat set theory and the underlying empirical evidence is to frame
this in terms of incomplete truth tables. A truth table is incomplete if it shows one or both
of the following features. First, it might consist of rows that contain cases whose mem-
bership scores in that row and the outcome contradict the statement of sufficiency. These
are contradictory or inconsistent rows. Second, a fruth table might contain rows for which
no (ot, at least, not enough) empirical evidence is available. These rows are called Jogical
remainders, and the presence of such rows is referred to as the phenomenon of /imited
diversity. The analytic problem caused by both forms of incomplete truth tables is that it
becomes impossible to decide whether certain truth table rows represent sufficient condi-
tions for a given outcome. This means that for some truth table rows it is not a straightfor-
ward business to establish whether they are sufficient for the outcome. Put differently, it is
difficult to decide whether fo include a given row in the Boolean minimization process. This
represents an analytic problem, since the solution formula greatly depends on the decision
of which rows are included in the minimization.

This chapter discusses the phenomenon of less-than-perfect subset relations, while
Chapter 6 will deal with limited diversity. We start by introducing the notion of logically
contradictory truth table rows and outline strategies of dealing with them (5.1). We intro-
duce the consistency measure as one important strategy, and one which exists hoth for
sufficient and for necessary conditions. After this, we also introduce the parameter of cover-
age, which expresses the empirical importance (sufficiency) and relevance (necessity) of
a condition. We first introduce consistency and coverage formulas for sufficient conditions
(5.2 and 5.3, respectively) and then for necessary conditions (5.4 and 5.5, respectively). As




5.1 Defining and dealing with contradictory truth table rows
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in previous chapters, we introduce each argument by starting from crisp sets and by then |
extending it to fuzzy sets. .

The notion of consistency is indispensable for understanding the logic of the Truth Table
Algorithm (Chapter 7), which is at the core of QCA. A solid knowledge of the meaning and
measure of the parameters of fit is therefore indispensable. More advanced readers might
want to consult the At-a-glance boxes in order to assess whether they are familiar enough
with these issues and, if so, simply skim through this chapter.

The notion of a contradictory truth table row is easier to understand with
crisp sets. It describes a situation in which those cases that are members in a
truth table row do not share the same membership in the outcome. Put differ-
ently, the same row leads to both the occurrence and the non-occurrence of
the outcome. Since truth table rows are, in essence, statements of sufficiency,
such an empirical situation suggests a logical contradiction, for it would mean
that the very same combination of conditions (aka truth table row) produces
both Y and ~Y. The analytic problem is that, based on the empirical evidence,
it is not straightforward to decide whether this row is sufficient for Y, ~Y,
or neither and, consequently, whether it should be included in the logical
minimization for outcome Y, outcome ~Y, or neither. It cannot, however, be
included in both minimization procedures.

There are several, mutually non-exclusive strategies for dissolving logic-
ally contradictory truth table rows in either csQCA or fsSQCA prior to the
logical minimization, and there is another set of strategies for handling such
contradictory rows during the minimization procedure (Ragin 1987: 113-18;
Rihoux and De Meur 2009). Let us first turn to the strategies for dissolving
the contradiction.

The first strategy consists in adding a condition to the truth table. If those
cases in the contradictory row that display qualitatively different outcome
membership scores also show qualitatively different membership scores in
the new condition, then the contradiction is resolved. This is because by add-
ing a new condition, the contradictory row is split in two rows, separating the
cases with different outcome membership scores in these two new rows. Of
course, the downside of this strategy is that not only the contradictory row,
but also all the other rows are split in two, thus doubling the number of truth
table rows. Remember, the number of truth table rows is a direct function
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of the number of conditions (k), as expressed in the formula 2% (Chapter 4).
This, in turn, increases the problem of limited diversity (Chapter 6).

A second strategy is to respecify the definition of the population of interest. By
virtue of this, some cases might be excluded and/or new ones included. Such
a change of the set of cases via a redefinition of the scope conditions (Walker
and Cohen 1985) must be based in theoretical arguments. Cases cannot be
excluded in an ad hoc manner simply because they contradict a statement
of sufficiency. Instead, theoretical and substantive arguments must be expli-
citly brought forward as to why such cases are of a qualitatively different kind
and therefore fall outside the scope of the analysis (Ragin and Becker 1992).
The difficulty of this strategy might consist in the lack of plausible theoretical
arguments. Even if these do exist, such a redefinition of the scope conditions
might have to be accompanied by a change in the relevant theories. This, in
turn, would have to have an influence on the choice of conditions and the
outcome and their respective calibration functions, which could create new
contradictory rows.

Third, one can respecify the definition, conceptualization, and/or meas-
urement of the outcome or condition(s). A closer look at the similarities and
differences in the contradictory cases in a given row might reveal that the
specification of the outcome or a condition was too vague, imprecise, or just
plain wrong. If so, a respecification may contribute to solving inconsistencies.
Just as in the case of redefining the scope conditions, a change of the meaning
and thus calibration of concepts must also be based on theoretical arguments,
without which such a recalibration strategy would degenerate into a blunt
data-fitting exercise.

Any of these approaches can help solving contradictions. These strategies
belong to the standards of good QCA practice and they represent part of
what is meant by the phrase “going back and forth between ideas and evi-
dence” (Ragin 2000), i.e., the process of updating theoretical, conceptual,
and research design decisions based on preliminary empirical insights. At
the same time; all strategies come at a cost and none can promise to always
solve every logical contradiction. Thus, in applied QCA, it usually happens
that researchers enter the process of logical minimization with truth tables
that contain some logically contradictory truth table rows. There are several,
mutually exclusive treatments of logically contradictory rows during the pro-
cess of logical minimization.

First, one can exclude all contradictory rows from the logical minimiza-
tion process. By doing this, one allows only perfect subset relations to qual-
ify as sufficient conditions. As a consequence, any case that is a member of
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the outcome but which falls into a contradictory truth table row will
be explained, or covered, by the solution term obtained with this strat
Second, one can include all contradictory rows in the logical minimizat
process. This strategy is based on the argument that a contradictory ro
least makes the occurrence of the outcome possible. The solution formy]
obtained thus represents the conjunctions of conditions that make the
come possible. All cases that are members of the outcome will be explaine
or covered, by that solution term. The downside, however, is that the solutig
term will also cover some cases that are not members of the outcome. Thir
one can make all inconsistent rows available for computer-generated assump
tions about their outcome value. It is then up to the computer to decide whic
of the contradictory rows to include in the process of logical minimizatio
and which ones not to include. The only rationale for selecting some contr
dictory rows is whether their inclusion makes the resulting solution ter
more parsimonious. Although all three strategies for handling contradictor
rows come at a price, the third strategy is usually least justifiable and is hardl
ever encountered in applied QCA.

In the remainder of this chapter and, in fact, throughout the book, w
advocate yet another way of dealing with contradictory rows and inconsisten
truth table rows and set relations. This strategy takes into account how much,
or to what degree, a given row deviates from a perfect set relation. Consider,
for example, the following two scenarios. In one truth table row, nine out of
ten cases share the same qualitative membership score in the outcome. Hence,
one case deviates from the general pattern, or 90 percent of the evidence is
in line with a subset relation. In another truth table row, six out of ten cases
agree on their membership score in the outcome. Hence, only 60 percent of
the empirical evidence is in line with the subset relation of sufficiency. This
type of percentage can be seen as an important measure of how consistent a
particular configuration is with the assertion that it is a sufficient condition
for the outcome. We introduce this parameter as the consistency value in the
remainder of the book.

In sum, strategies that aim at dissolving contradictions directly stem from
the anchoring of set-theoretic approaches in qualitative methods. They remind
us of the important fact that set-theoretic methods, in general, and QCA, in
particular, are not only data analysis techniques but also research approaches
with specific requirements for the research process before and after the actual
data analysis. They reflect, in other words, the double nature of QCA as both
a research approach and a data analysis technique (see the Introduction, sec-
tion on QCA as a set-theoretic approach) (Berg-Schlosser, De Meur, Rihoux,
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and Ragin 2008; Wagemann and Schneider 2010). Only if inconsistent rows
still exist after these time- and energy-consuming countermeasures should
one resort to those strategies that handle such rows during the process of
logical minimization. Here, of greatest importance for applied QCA is the use
of the consistency measure as a yardstick for guiding the decision on whether
or not to include a truth table row into the logical minimization procedure.

At-a-glance: defining and dealing with contradictory truth table
rows

In dealing with contradictory truth table rows, a decision must be made before any
logical minimization of the truth table is undertaken on how to approach these contra-
dictory rows. Some of the strategies for resolving contradictions include approaches that
better specify the conditions in the explanatory model or the case selection with regard to
the reference population.

Consistency measures will be of additional help in making decisions about contradict-
ory rows. Consistency scores should not replace, but rather complement, the qualitative

strategies for dissolving contradictions.

2 Cdnsistency of sufficient conditions

Starting off with csQCA, perhaps the most intuitive way of graphically dis-
playing the notion of consistency of a sufficient condition is by means of a
Venn diagram (Ragin 2006). Figure 5.1 displays Venn diagrams for three dif-
ferent conditions (X,, X,, X;) and an outcome Y. In all three scenarios, the
size of sets X and Y remains identical; only their relative location changes.
Condition X, (Venn diagram on the left) is a perfect subset of outcome set Y,
whereas both conditions X, and X, are not. Conditions X, and X differ in the
degree to which they violate the subset relation with Y. The share of set X, that
is outside Y (area d) in relation to the overall size of X; (areas b and d) is larger
than for condition X,. Therefore, X, is more consistent than X as a sufficient
condition for Y.

While Venn diagrams are good for grasping the basic notion of set-the-
oretic consistency, two-by-two tables are more powerful when trying to
explain how to calculate this parameter of fit. Table 5.1 displays the same
three conditions and outcome as Figure 5.1, and the cells (a-d) correspond
to the areas (a—d) in the Venn diagrams. The numbers in the cells indicate
the number of cases that show the respective membership scores in the con-

dition and outcome.



Figure 5.1

Study material.

Neat formal logic meets noisy social science data

Table 5.1 Two-by-two tables - consistent and inconsistent sufficient conditions

80 | 100 80 | 90 80 |8
1
a b a b a b
Outcome Y 15 [0 15 | 10 15 | 92
0
c d c d c d
0 1 0 1 0 1
Xl Xz X3
Y
a
C Cc c

Venn diagrams — consistent and inconsistent sufficient conditions

As we can see, the difference between condition X,, on the one hand, and
X, and X;, on the other, is that with the fully consistent condition X, all mem-
bers of X, are located in cell b and none in cell d. This is why there is no area d
in the first Venn diagram in Figure 5.1. Some cases in X, and many cases in X,
fall into cell d rather than cell b. Recall from Chapter 3 that for statements of
sufficiency, only those cases matter that are members of the alleged sufficient
conditions (X = 1). Perfectly consistent sufficiency requires that all cases with
X =1 are also members of outcome (Y = 1). Therefore, no case should be in
cell d. The more cases fall into cell d, the more consistency decreases.

Ragin (2006) suggests that the consistency of a sufficient condition X for
outcome Y be mathematically expressed by dividing the number of cases in
cell b by all the cases that matter to measure sufficiency, i.e., the number of
cases in cells b and d. In csQCA, the consistency of X as a sufficient condition
for Y can therefore be calculated as follows:

Consistency of X as a

Number = -
sufficient condition for Y = of cases where X =land Y =1

Number of cases where X =1

The same can be expressed by making reference to the cells in the two-by-two
table:
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XY plot — consistent and inconsistent sufficient conditions

Consistency of X as a

Number of cases cell b
sufficient condition for Y =

Number of cases cells b+d

The consistency value is 1 if a condition is fully consistent and decreases as
inconsistency becomes stronger. Applied to our example in Table 5.1, the con-
sistency values are as follows:

X, =100/100 =1
X, =90/100 = 0.9
X, = 8/ 100 = 0.08.

When shifting to fuzzy sets, the notion of subset relations is graphically best rep-
resented in the form of XY plots (section 3.1.2.1). Figure 5.2 shows three such XY
plots, which, along the lines of Figure 5.1 and Table 5.1, display three different
sufficient conditions with increasing inconsistency from left (X,) to right (X;).

When trying to calculate consistency, one approach could be to proceed
analogously to the calculation in crisp sets by simply counting the number
of cases that are in line with the statement of sufficiency (i.e., those above or
on the main diagonal) and then dividing this number by the number of cases
that are relevant for the test (i.e., those with membership in X of higher than
0). The plot for X, shows no case below the main diagonal. Hence, consistency
would be 1. For X, there are 10 out of 195 cases with X > 0 below the main
diagonal. Hence, consistency for X, would be 185/195 = 0.95. For X,, consist-
ency would be 145/195 = 0.74.

This crisp approach to calculating consistency is deficient, though. Notice
that it gives equal weight to all cases below the diagonal. This is not plaus-
ible. The distance between cases and the diagonal is clearly of interest because
cases that are far below the main diagonal obviously deviate more strongly
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from the alleged subset relation. For instance, case A in Figure 5.2 has a hig
degree of membership in the supposedly sufficient condition X, but a re],
tively low value of Y. It therefore contradicts the sufficiency statement mg
than cases that fall only slightly below the main diagonal and/or have on
weak membership in condition X and outcome Y. ;

The remedy for these pitfalls is to make use of the more fine-grained info
mation conveyed by each case’s fuzzy-set membership in X and Y when calg
lating consistency (and coverage, see 5.3). This is precisely what Ragin (200
2008a: 44-68) suggests with his formula for the consistency of a fuzzy suffy
cient condition. For each case, the minimum values across the membersh;
scores in X and Y are added up and then divided by the sum of the membe
ship values in X across all cases.

I
2, min(X;, ¥,)
i=1

i=1

If all cases have smaller or equal membership in X than in Y (as is requir
for fully consistent sufficiency), then the numerator simply becomes the su
of all X, and this formula returns a value of 1. For cases below the main dia
onal, their membership in Y provides the minimum. The farther they fal
below the diagonal, the bigger the difference between their membership in
X and Y and the smaller the sum in the numerator becomes in relation to
the sum of X; in the denominator. Thus, this consistency measure takes into
account how far a case falls below the main diagonal, or how far the member-
ship in X exceeds that in Y.

Notice, as well, that this formula is a generalization of the crisp-set consist-
ency formulas above and yields identical consistency values to them (Ragin
2008b: 108n. 5). In case of crisp sets, the X| in the denominator can only be 0
or 1. Therefore, the sum of all X| is equal to the number of cases where X =1.In
crisp sets, the numerator denotes the number of cases in cell b of our two-by-
two table (Table 5.1). This is the only cell where the minimum across X; and
is 1, since both the X and Y values are 1. In all other cells, the minimum of X,
and Y, is 0, and the cases contained therein are not added to the numerator.

While being a plausible way of numerically expressing the degree of a sub-
set relation, the consistency formula has one particular shortcoming when
applied to fuzzy sets. It does not take into account whether an inconsistent
case is above or below the qualitative anchor of 0.5 in X and/or Y. Take, for
instance, cases A, B, and C in the XY plot for X,. Their distances to the main

Conswtency&{ﬁicient Conditions (X;<Y;) =
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diagonal are identical. Thus, they equally contribute to the inconsistency of
X, as a sufficient condition for Y. There is, however, a qualitative difference
between cases B and C, on the one hand, and case A, on the other, which is
important for evaluating whether X, can be interpreted as a sufficient condi-
tion for Y. The former two cases display set membership scores in X and Y
that are on the same side of the 0.5 qualitative anchor - they are either more
in than out of both X and Y (case C) or more out than in of both X and Y (case
B). Case A, in contrast, has qualitatively different membership scores in X
and Y. Its membership in X, is above 0.5, making it a good empirical instance
of this condition. Yet, its membership in Y is below 0.5. Hence, case A is a
true logically contradictory case while cases B and C are simply inconsist-
ent cases. To summarize this shortcoming, contradictory truth table rows can
and do occur both in csQCA and fsQCA and they are, by definition, incon-
sistent rows. With fuzzy sets, however, not all inconsistent rows are automat-
ically truly logically contradictory.! Analytically, inconsistent subset relations
that also contain a true logical contradiction are less in line with a statement
of sufficiency than simply inconsistent subset relations. They warrant more
actions by researchers in terms of the strategies for fixing contradictory rows
outlined in section 5.1 before proceeding with the logical minimization.

Which consistency level should researchers impose when identifying sin-
gle truth table rows as sufficient conditions? For obvious reasons, consistency
values close to, or even below, 0.5 should be ruled out, as this indicates that
(almost) half of the empirical evidence contradicts the subset relational state-
ment of sufficiency. Even values below 0.75 are often problematic as they have
consequences for the subsequent analysis, which we spell out in various places
in the remainder of this book (e.g., sections 5.6 and 9.1). As mentioned, with
fuzzy sets, not only the consistency score, but also the presence or absence of
true logically contradictory cases should be taken into account.? In the pres-
ence of such cases, researchers should be more reluctant to declare that row as
a sufficient condition, independently of its consistency value.

Beyond these rough indications, we would like to make a strong plea for the
notion that the exact location of the consistency threshold is heavily depend-
ent on the specific research context. In other words, researchers should not
justify their choice of the consistency threshold by making reference to some

! The notion of a true logical contradiction also extends to statements of necessity (see section 5.4).
Here, a true logically contradictory case is one with X < Yand X <0.5and Y > 0.5.

% Perhaps the easiest way to do so is by producing an XY plot and checking whether the lower right area
contains cases.
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sort of universally accepted consistency threshold, akin to the (largely ng
reflected) use of the 95 percent confidence interval in inferential statistj
Instead, researchers should guide their decision by making reference to vq
ous research-specific features.

The following guidelines should be used as some rough yardsticks. Th,
more precise and strong the theoretical expectations that can be derived from
the literature, the higher the consistency that should be used. The higher the
confidence in the precision and validity of the calibration procedure for the
conditions and the outcome, the higher the consistency. The lower the nu
ber of cases under investigation, the higher the consistency. The more logi
ally contradictory cases, the higher the consistency.? In addition, in applied
QCA a gap often exists between rows with relatively high and low consistency
values that can guide the decision of where to put the consistency threshold,
A less often used strategy is to employ the tools of probability theory. Ragin
(2000: 109-16) suggests a binomial probability test simple for smaller N (30
or below) and a z test when the N is larger than that. Other authors also com-
bine the assessment of set relations with tools from probability theory:* By
now, several of the software packages (R and Stata) available for set-theoretic
analyses allow for easy use of statistical tests not only of consistency, but also
of coverage (see 5.3). Clearly, no precise, universal consistency value can be
derived from these guidelines, often not even within a specific project. It is
therefore strongly recommended that separate analyses with different thresh-
olds of consistency be run in order to find out how sensitive the results are
to the choice of the consistency level. We discuss this issue in further detail
under the heading of robustness in section 11.2.

In sum, the consistency formula indicates the degree to which the state-
ment of sufficiency is in line with the empirical evidence at hand. The more |
cases that deviate from the subset pattern and the stronger their deviation,
the lower the consistency value. Of course, consistency can be calculated
for any statement of sufficiency of arbitrary complexity. Put differently, X in
the consistency formula is simply a placeholder for a set that might consist
of the logical AND and OR combination of several sets. Regardless of how

w

As explained, with fuzzy sets cases can be inconsistent with a postulated subset relation without, how-
ever, being logical contradictory cases. A further guideline for choosing the consistency threshold for X
as a sufficient condition for Y applies in fuzzy sets: with fuzzy sets, X can be a subset of both Y and ~Y.
Since declaring X as sufficient for both Y and ~Y amounts to a logical contradiction, only those rows
should be declared as sufficient for Y that display high consistency as sufficient conditions for Y and low
values for ~Y. We return in greater detail to the more general issue of simultaneous subset relations in
section 9.2.

See, for instance, Braumoeller and Goertz (2003); Dion (2003); Caramani (2009); Eliason and Stryker
(2009).

-~
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many sets are combined with different logical operators, each case has only
one set membership score in that complex set. This implies that consist-
ency values can be calculated for single truth table rows; single paths which
have been identified as sufficient; or even an entire solution formula. When
the consistency statement is on truth table rows, it is called “raw consist-
ency, while the consistency value for the entire solution is called “solution
consistency” ’

At-a-glance: consistency of sufficient conditions

Consistency provides a numerical expression for the degree to which the empirical infor-
mation deviates from a perfect subset relation. This information plays a crucial role when
deciding which truth table rows can be interpreted as sufficient conditions and can thus
be included in the logical minimization process.

With erisp sets, inconsistency by default stems from logically contradictory cases.
With fuzzy sets, it does not have to. Therefore, researchers are advised to check for the
presence of true logically contradictory cases, in addition to the consistency value, before
attributing the status of a sufficient condition to a truth table row.

Consistency can be calculated for single conditions as well as for more complex
statements.

Researchers should justify their consistency threshold by making reference to research-
specific features, such as the strengths of theoretical expectation and the quality of the
data. The consistency value for sufficient conditions should preferably be higher than
0.75.

5.3 Coverage of sufficient conditions

Once a subset relation has been established via the use of the consistency par-
ameter, another question can be asked: what is the relation in size between the
subset (X) and the superset (Y)? The answer to this question expresses how
much of outcome Y is covered by condition X, thus expressing the empirical
importance of X for explaining Y.

Consider the three situations depicted in Figure 5.3. It displays three dif-
ferent conditions (X, to X;) for the same outcome Y. All three conditions are
identical with regard to their slight inconsistency as sufficient conditions (the
ratio of area d over areas b and d is equal in all three Venn diagrams). What
differs between the three is the size of the set of X in relation to the set of Y.
Condition X is larger than condition X, is larger than X;. Since the set of Y is
constant and the ratio between areas b and d remains the same, the varying
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Venn diagrams - different levels of coverage sufficiency

size of the set of X means a variation in the amount of cases with Y = 1 that
are covered by X,, X,,, and X;, respectively. In other words: X;, X,, and X, have
different coverages. The coverage measure expresses the degree to which the
consistent part of sufficient condition X overlaps with outcome Y.

For illustration, let Y be the set of pupils with high test scores, X be the set
of students who study hard, X, be the set of students who study hard and are
talented, and X, be the set of students who study hard, are talented, and cheat.
Of course, membership in X; is more difficult to obtain because we require
the joint presence of various characteristics of pupils. This is why less X, is
smaller than X, and X,. This also implies that fewer members of outcome Y
share the features denoted by set X,

Table 5.2 represents the same empirical information as the Venn diagrams
in Figure 5.3. In each of the three scenarios, the number of cases that are
members of the outcome (Y = 1) remains the same (210) and the consistency
scores are identical.®

What makes the three scenarios different is that as we move from condi-
tion X, to X, and then further to X,, the number of cases that have member-
ship in the respective condition X decreases. At the same time, the number of
cases with membership in Y is constant. In terms of cells in the two-by-two
tables, this means that, as more cases move from cell b into cell a, the ratio of
the consistent part of X over the total number of cases with Y decreases. The
consistent part of X accounts for an increasingly smaller portion of Y. The
formula for calculating the coverage of X for Y can then be written as follows
(Ragin 2006, 2008a: 44-68).

Coverage of Xas a
Number of cases where X =landY =1

Number of cases whereY =1

sufficient condition for Y =

# X, =200/208 =0.96; X, =120/ 125 = 0.96; X, = 24 / 25 = 0.96.

Parameters of fit

10 200 90 120 186 24
' a b a b a b
20 8 20 5 20 1
° c d c d c d
0 1 0 1 0 1
X, X, X

Or, in terms of our cells in the two-by-two table:

C X '
overage of Xas a Number of cases cell b

sufficient condition for Y = .
4 f Number of casescellsa+b

Based on these formulas, the coverage values for the three sufficient condi-
tions are as follows:

X, =200/210 = 0.95
X, =120/210 = 0.57
X,=24/210=0.11.

The graphical intuition gained by looking at the Venn diagrams in Figure 5.3
is corroborated by these coverage values: the coverage of X, is higher than that
of X, is higher than that of X,. With crisp sets, full coverage is achieved when
cell a is empty of cases.

With fuzzy sets, we have to use XY plots. Figure 5.4 displays three condi-
tions, all with identical consistency values (0.91), but different coverage. As
we go from X, to X, and further to X, we see that cases tend to fall closer and
closer to the Y-axis, i.e., where X is close to 0 — just as with the two-by-two
tables above.

Just as with consistency, so also the coverage formula for sufficient condi-
tions suggested by Ragin (2006, 2008a: ch. 3) makes use of the more fine-
grained information contained in fuzzy sets looks as follows:

21, min(X;, Y;)

i=1

CoverageSu[ﬁcient Conditions (X;<Y)) 1
Y,
=1

i
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Figure 5.4

_than X,, which, in turn, is empirically more important than X,.

——
0 0.1020.30.40506070809 1 0 0102030.40506070.8089 1
X, X, X

XY plot — different levels of coverage sufficiency

Applied to our three XY plots in Figure 5.3, the following coverage values are
obtained:

X, =0.81;X, = 0.6; X, = 0.19,

confirming our visual impression of X, being empirically more important

The more cases that are located in the upper left corner, and the farther
away from the main diagonal these cases are, the lower the coverage. Those
cases are good empirical instances of the outcome (high membership in Y)
for which we lack, however, an adequate explanation because they are weak
empirical instances of the sufficient condition (low membership in X).* The
coverage formula takes into account how far above the main diagonal cases
are located and, hence, how much of their fuzzy-set membership in Y is not
covered by their membership in X. Cases in the upper left corner contribute
little to the sum in the numerator (only their small X value) and much to the
denominator (their high Y value).

As can be seen, with fuzzy sets, the calculation of coverage also takes into
account that part of each inconsistent case’s membership in Y that is covered
by X.7 As a consequence, coverage also increases due to cases that are incon-
sistent with the statement of sufficiency. This is an unfortunate property of the
coverage parameter. It can be argued, though, that its effect is bound to be mar-
ginal and usually does not trigger substantive changes in the interpretation of

¢ 'The upper left corner corresponds to cell a of our Venn diagram (Figure 5.3) and our two-by-two table
(Table 5.2).

7 'The problem does not affect csQCA because each inconsistent case has a membership value of 0 in Y.
Thus, for each inconsistent case 0 is added to both the numerator and the denominator in the coverage
formula.
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the results.® Several features reduce the effect. First, it is not the entire incon-
sistent case that is counted into the coverage formula but only that part of its
membership in Y that is actually covered by X. Second, coverage is only calcu-
lated for conditions that have passed a threshold of consistency. This ensures
that the number of cases (far) below the main diagonal is small and therefore
their distorting effect on the coverage formula low. This, incidentally, provides
another argument against choosing too low levels of consistency, for it would
unduly boost the coverage values of (too inconsistent) sufficient conditions.
From all this follows a clear rule of thumb: the consistency of a sufficient con-
dition must always be calculated before its degree of coverage, and coverage
should only be calculated for conditions that passed the test of consistency
(Ragin 2006).° It makes no sense to calculate and interpret the coverage of a
condition that is not sufficient.

Recall that equifinality is an important part of the epistemological foun-
dation of set-theoretic methods, in general, and QCA, in particular (section
3.3). Different conditions (or combinations thereof) can lead to the same out-
come. As a consequence of this, we can and should calculate the coverage of
these different parts separately (Ragin 2006, 2008a: 54-68). It should be estab-
lished how much of the outcome is covered by each of these paths. This is
called raw coverage. We also might want to know how much of the outcome is
covered only by a specific path — the unique coverage. The distinction between
raw and unique coverage is important because different sufficient paths can
overlap, i.e., the same case can follow multiple paths toward the outcome.!
In these cases, the outcome occurs for more than one reason. Note that if no
logically redundant path (section 4.3.2) is included in the solution, then all
paths have a unique coverage higher than 0. We are also interested in finding
out how much of the outcome is covered by the entire solution term ~ the so-
called solution coverage. For instance, consider the equifinal and conjunctural
solution term ~A~C + ~BC + F~D — Y. We can calculate the raw coverage
and the unique coverage of sufficient paths ~A~C, ~BC, and F~D, respect-
ively. In addition, we can calculate the solution coverage of the term ~A~C +
~BC + F~D,

& In section 9.2.1, we demonstrate under which circumstances this feature of the coverage formula
produces misleading results and suggest alternative coverage formulas.

* This is analogous to that in multivariate regression, where beta-coefficients should be interpreted only
for significant variables.

1 Recall from section 2.2 that the logical OR operator used in QCA solution formulas is a non-
exclusionary logical OR. One and the same case is allowed to be a member of more than just one
sufficient condition or path.
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For all three types of coverage, the coverage formula for sufficiency reporte
above directly applies. All that needs to be changed is what the placehold,
X in this formula stands for: each case’s membership in the path of intereg
e.g., in the term ~A~C (raw coverage) or in the entire solution term (solutig
coverage). Unique coverage is calculated by subtracting from the solutio
coverage the amount of coverage that is obtained by all paths except the o
whose unique coverage we are interested in. For instance, the unique cove
age of path ~A~C would be calculated in the following way:

Unique coverage ~A~C = solution coverage — coverage (~BC + F~D).

A Venn diagram might help convey an intuitive representation of the different:
types of coverage. Figure 5.5 displays a Venn diagram for the solution term

X +X+X—Y
The rectangular box denotes all cases in the study. The largest set is out-
come Y and each circle represents one of the three sufficient paths X,-X,.
Needless to stay, X can stand for a conjunction of conditions. Furthermore,
since the circles for X,~X; are fully contained within the set of Y, we know that
each single path and the entire solution term are fully consistent as sufficient
conditions. What varies between paths is their raw and unique coverage.
The raw coverage of a single path is represented by the size of its set in rela-
tion to the size of set Y. We see that the raw coverage of X, is higher than that
of X,, which is higher than that of X, simply because area (IV) is bigger than
areas (I) and (II), which are bigger than areas (IT) and (IIT). The unique cover-
age is that area of a condition that does not overlap with another sufficient
condition. As Figure 5.5 shows, paths X, and X, partially overlap. Therefore,
the unique coverage of X, is equal to area (I) whereas that of X; is equal to
area (III). Since condition X, does not overlap with any of the other paths, its
unique coverage is the same as its raw coverage. Finally, the solution coverage
of the term X + X, + X; — Y is the sum of the areas (I)~(IV) in relation to the
area of Y. Since the three paths jointly do not fill the entire circle for outcome
Y, we can also see that the solution coverage is lower than 1.
Computationally, the calculation of coverage (and also of consistency) is
not very demanding. Although all relevant software packages except Tosmana
1.3.2 automatically provide these parameters of fit, it might be helpful to
demonstrate how coverage (and consistency) are calculated by hand. We do
this with an example from Vis (2009),!! who aims at explaining why some

! Tn the remainder of the book, we repeatedly refer to data from this and other published examples, and
we will introduce the study in further detail below (section 8.2).

Parameters of fit

Figure 5.5

\O)

Venn diagram — equifinal solution term and types of coverage

governments in Western Europe engage in unpopular reforms (U). She finds

- that a weak political position of the governments (P) combined with a weak

socio-economic situation (S) or a right-wing government (R) combined with
a weak socio-economic situation (S) are the sufficient conditions for unpopu-

lar reform. Formally:

P*S+R*S—U.

Table 5.3 contains the membership scores for the 25 cases, in both the solu-
tion and the outcome. In addition, the last column indicates for each case the
minimum membership score across the solution and the outcome. This is a
crucial quantity as it is used in the numerator for calculating both consistency
and coverage. Calculating the solution coverage is straightforward. We simply
add up the values in column “min(PS+RS,U)” and divide it by the sum of the
membership scores in the column for outcome U. This yields a coverage for
PS+RS of

Solution Coverage (PS+RS) = 10.96 / 12.74 = 0.86.

Each case with a higher membership in U than in PS+RS contributes to
less-than-perfect coverage. Among them, cases like Kok I or N. Rasmussen
IV are particularly striking, for they are more in than out of the outcome set
U but more out than in both sufficient paths and thus remain uncovered and
therefore unexplained by solution term PS+SR.
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Table 5.3 Fuzzy-set membership in solution and outcome (Vis 2009)

Solution OQutcome
Government PS + RS U min(PS+RS,U)
Lubbers I . 0.83 0.83 0.83
Lubbers IT 0.33 0.33 - 033
Lubbers III 0.60 0.67 0.60
Kok I 0.40 0.67 0.40
Kok IT 0.33 0.17 0.17
Balkenende II 0.67 0.83 0.67
Kohl I 0.33 0.33 0.33
Kohl II 0.17 0.17 0.17
Kohl I1I 0.33 0.33 0.33
Kohl IV 0.67 0.67 0.67
Schroder I ' 0.33 0.17 0.17
Schroder 1T 0.83 0.83 0.83
Schliiter I 0.33 0.33 0.33
Schliiter IT 0.60 0.67 0.60
Schliiter IV 0.67 0.17 0.17
Schliiter V 0.67 0.33 0.33
N. Rasmussen I 0.17 0.17 0.17
N. Rasmussen IT (& I1I) 0.60 0.83 0.60
N. Rasmussen IV 0.33 0.67 0.33
Thatcher I 0.83 0.83 0.83
Thatcher II 0.33 0.67 0.33
Thatcher III 0.67 0.67 0.67
Major I 0.60 0.67 0.60
Blair I 0.17 0.40 0.17
Blair IT 0.33 0.33 0.33
SUM fuzzy membership (a) 12.12 (b) 12.74 (c) 10.96

Coverage sufficiency (c/b) x 0.86 7
Consistency sufficiency (c/a) 0.90

As a matter of fact, the calculation of consistency for the solution PS+RS
is equally straightforward. Simply add up the scores in the last column once
again, but this time divide it by the sum of scores in the path PS+RS:

Solution Consistency = 10.96 / 12.12 = 0.90.

Less-than-perfect consistency is caused by cases whose membership in
PS+RS exceeds their membership in U such as, for instance, Kok II, Schroder
I, Schliiter IV and V.

: Parameters of fit

The calculation of raw and unique coverage is equally simple. We demon-
strate it for path PS. Table 5.4 displays each case’s fuzzy set membership scores
in path PS, outcome U, and the minimum score across these two sets.

By adding up the scores in the last column and dividing the total by the
sum of column PS, we obtain a consistency value of 7.94 / 8.69 = 0.91. The raw
coverage of PSis 7.94 / 12.74 = 0.62.

In order to calculate the unique coverage of path PS, we need to subtract
from the solution coverage all of what can be covered by any other path in the
solution except PS. Since, in our example, there is only one other path (RS),"2
we have to calculate the coverage of RS (0.71) and then subtract it from the
solution coverage (0.86) in order to obtain the unique coverage of path PS:

Unique coverage PS: 0.86 — 0.71 = 0.15.

The calculation of the unique coverage of path RS (not displayed in Table
5.4) is equally simple. From the solution coverage we subtract the raw cover-
age of path PS:

Unique coverage RS: 0.86 — 0.62 = 0.24.

The unique coverage scores reveal that each path has some unique contribu-
tions to covering the outcome. In general, marginal differences in the cover-
age level should not be over-interpreted. Of equal, if not more, interest should
be the cases that are uniquely covered. A case is uniquely covered if it holds a
membership value higher than 0.5 in only one sufficient path (Schneider and
Rohlfing in press and section 11.4, below). In our example, it turns out that
out of the five cases that are more in than out of path PS, only two - Schroder
II and Rasmussen II (&III) - are uniquely covered. The other three also have
a membership greater than 0.5 in path RS. Path RS, in turn, has ten cases with
membership greater than 0.5, and seven of them are uniquely covered by that
path. Path RS is therefore empirically more important than path PS to an
extent beyond what is reflected by comparing only their unique coverage for-
mulas. The practical suggestion is that researchers should not only calculate,
report, and interpret the raw and unique coverage scores, but also should go
back to the cases and identify the uniquely covered cases.

Notice that for consistency, we argued that a lower threshold exists in
principle, even if its precise location is subject to judgment (section 5.2). For

12 If the solution term consists of more than two paths, then we must calculate the joint coverage of all
paths except the one we are interested in. It is not correct to simply add up the raw coverage of all these
paths, because paths might partially overlap.
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Table 5.4 Fuzzy-set membership in path PS and outcome (Vis 2009)

Path Outcome

Government PS U min(PS,U)
Lubbers T ‘ 0.33 0.83 0.33
Lubbers 11 0.17 0.33 0.17
Lubbers IIT 0.33 0.67 0.33
Kok I 0.17 0.67 0.17
Kok IT 0.33 0.17 0.17
Balkenende II 0.67 0.83 0.67
Kohl I 0.17 0.33 0.17
Kohl IT 0.17 0.17 0.17
Kohl III 0.17 0.33 0.17
Kohl IV 0.67 0.67 0.67
Schréder I 0.33 0.17 0.17
Schréder 11 0.83 0.83 0.83
Schliiter I 0.33 0.33 0.33
Schliiter IT 0.33 0.67 0.33
Schliiter IV 0.33 0.17 0.17
Schliiter V 0.6 0.33 0.33
N. Rasmussen I 0.17 0.17 0.17
N. RasmussenlI (& III) 0.6 0.83 0.6
N, Rasmussen IV 0.33 0.67 0.33
Thatcher I 0.17 0.83 0.17
Thatcher II 0.33 0.67 0.33
Thatcher IIT 0.33 0.67 0.33
Major 1 0.33 0.67 0.33
Blair I 0.17 0.4 0.17
Blair IT 0.33 0.33 0.33
SUM fuzzy membership (a) 8.69 (b) 12.74 (c)7.94

Coverage sufficiency (c/b) \0.62
Consistency sufficiency (c/a) 0.91

coverage, no lower threshold exists. The reason for this is that consistency
establishes whether a subset relation exists, whereas coverage expresses how
empirically important a subset relation is. Conditions with low coverage cover
only a little of the outcome of interest, but that little might be of huge theoret-
ical or substantive importance. Of course, conditions with zero unique cover-
age should be either disregarded or interpreted with care. Such zero coverage
will always happen when logically redundant prime implicants (section 4.3.2)
are included in the solution term.

At-a-glance: coverage of sufficient conditions

Goverage sufficiency expresses how much of the outcome is covered (explained) by the
condition in question. The formula sums all minima of X and Y in the numerator and divides
it by the sum of all Y values.

Raw coverage indicates how much of the membership in the outcome is covered by
the membership in a single path; the unique coverage instead indicates how much a
single path uniquely covers. The solution coverage expresses how much is covered by
the entire solution term.

The empirical importance expressed by coverage is not the same as the theoretical or
substantive relevance of a sufficient condition. Thus, low-coverage paths might still be of
great substantive interest.

Uniquely covered cases are those that hold a membership value higher than 0.5 in only
one sufficient path. When substantively interpreting sufficient paths and assessing their
importance, researchers should make reference to these uniquely covered cases.

Unlike the case with consistency, there is no lower threshold for coverage.

5.4 Consistency of necessary conditions

The notions of consistency and, with some qualification, coverage can be
applied to necessary conditions. If X is necessary for Y, then X is a superset
of Y, whereas if X is sufficient for Y, then it is a subset of Y (Chapter 3). One
consequence of this mirror-image relation between necessity and sufficiency
is that the formulas for the parameter of fit are closely related. As a matter of
fact, as we will see now, the formula for consistency sufficiency is mathematic-
ally identical to the standard formula for coverage necessity, and the formula
for coverage sufficiency is mathematically identical to that for consistency
necessity. In the following, we explain the rationale for these formulas.

Let us start by having a look at the following three two-by-two tables. Each
of them displays the same outcome Y but three different conditions (X,, X,
and X). The numbers in the cells indicate the number of cases.

Ifa condition is necessary for the outcome, then no case may show the out-
come without the condition. This means that cell a of our two-by-two table
must be empty. When making a statement of necessity for outcome Y, then,
cases that do not show the outcome are irrelevant (section 3.2.1.1). In two-
by-two tables, this means that cells ¢ and d are irrelevant for the assessment
of necessity. The degree to which a condition is consistent with the statement
of necessity thus depends on the ratio of cases in cells a and b. If all of these
cases are located in cell b, the condition is fully consistent. The more of these
cases fall into cell a, the lower consistency becomes.
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Table 5.5 Two-by-two tables — consistent and inconsistent necessary conditions when dealing with necessity. With fuzzy sets, the consistency of a necessary

0 100 0 | 0 a0 | 20 condition is given by the degree to which each case’s membership in X is
1 equal to or greater than their membership in Y. When calculating consistency
a b a b a b necessity, we therefore relate each case’s membership in X that is consistent
Outcome Y 10 | 100 10 | 100 10 | 100 with the statement of necessity to the sum of each case’s membership in Y.
0 . d c d c d This logic can be expressed by the following formula (Ragin 2006):
’ I
0 1 0 1 0 1 2 min(X,,Y;)
Xy X Xs i—1

Consisten &y Necessary Conditions (X;2Y)) = I .

2T

i=1

For condition X,, cell a in Table 5.5 is empty. Thus it is a fully consi
ent necessary condition for Y. What about conditions X; and X4? For bo
conditions, cell a contains cases. Certainly, X and Xj are not fully consisten
necessary conditions for Y. X is less consistent with the statement of necessits
than X, because of those cases that matter (cells a and b) more cases (50)
located in the forbidden cell than for X, (10). Ragin (2006) suggests the f
lowing formula for calculating consistency of a necessary condition:

If for all cases the X values are equal to or greater than their Y values, then
they are all below or on the main diagonal and the formula takes on the con-
sistency value of 1, since the minimum of X and Y is in all cases the Y value.
The more cases that display a membership in Y that exceeds their member-
ship in X (and the greater the amount by which Y exceeds X in these cases),
the more cases lie above the diagonal (and the farther above the diagonal they
lie). In this scenario, the consistency value for the necessary condition devi-

- ates ever more from a value of 1, since smaller values go into the numerator
than into the denominator.

Let us briefly demonstrate this formula with an example. Schneider,
Schulze-Bentrop, and Paunescu (2010) are interested in, among other things,
the necessary conditions for the high share of high-tech sector exports in pro-
portion to all exports (EXPORT) in 19 OECD countries from 1990 to 2003
(N =76). They identify high unemployment protection (EMP); high coverage
of collective bargaining (BARGAIN); high share of university-trained citi-
zens (UNI); high share of occupation-trained citizens (OCCUP); high share
of stock market capitalized indigenous firms (STOCK); and high share of
cross-border mergers and acquisitions as a measure of institutional arbitrage
(MA).” The results of applying the formula to all conditions and their com-
plements, ordered by consistency values, are shown in Table 5.6,

The condition STOCK has the highest consistency value (0.89) and research-
ers might see good reasons to interpret it as a necessary condition. However,
an inspection of the XY plot (Figure 5.6) reveals that this is not so clear, in
the end. First, a considerable number of cases fall above the diagonal. Second,

Consistency of Xas a
v of Number of cases where X =land Y =1

Number of cases whereY =1

necessary condition for Y =

In the numerator we add up all cases that are members of both the outcome
and the necessary condition and in the denominator we add up all cases tha
are members of the outcome. Applied to Table 5.5, the formula can be rewr
ten as:

Consistency of X asa
Number of cases cell b

Number of casescellsa+b’

necessary condition for Y =

Plugging in the values for the conditions X,, X,, and X,, we obtain the follow-
ing consistency scores as necessary conditions:

X, = 100/(0 + 100) = 1

X5 =90/(10+90) =0.9
X, = 20/(20 + 80) = 0.2.
When discussing consistency and coverage for sufficiency, we have already

pointed out that with fuzzy sets, one should make use of the more fine-grained
information contained in fuzzy-set membership scores. The same holds true

** The data matrix can be found in the online appendix (www.cambridge.org/schneider-wagemann).
" See the online How-to section for Chapter 5 on using the software packages for calculating the
parameters of fit (www.cambridge.org/schneider-wagemann).
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Table 5.6 Analysis necessity, single conditions
(Schneider et al. 2010: 255)

Condition Consistency

STOCK . 0.89

UNI 0.81

MA 0.72

~QCCUP 0.71

BARGAIN 0.68

~EMP 0.64

OCCUP 0.58

~BARGAIN 0.50

~MA 0.50

~UNI 0.31

~STOCK 0.24
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among the inconsistent cases there are two true logical contradictory cases
(section 5.2; see footnote 1, above): France in 1995 (STOCK = 0.41; EXPORT
=0.62), and Germany in 2003 (STOCK = 0.49; EXPORT = 0.69). Both cases
are more out of than in the alleged necessary condition while being more in
than out of the outcome. Therefore, interpreting STOCK as a necessary con-
dition for EXPORT does not seem warranted.

More generally, just as with the assessment of sufficiency, so also with
necessity it is important that researchers not only use the consistency level,
but also check if true logical contradictory cases exist. For necessary condi-
tions, a consistency threshold of at least 0.9 seems advisable (Ragin 2006).
One obvious rationale behind this is that higher consistency values reduce
the likelihood of true logical contradictions. In section 9.1 we provide further
reasons for high consistency levels for necessary conditions.!®

The formula for the consistency of a necessary condition should look
familiar to the reader. In fact, it is mathematically identical to the formula
for calculating the coverage of a sufficient condition. However, the two have
very different substantive interpretations. The point of a consistency test for
a necessary condition is to determine the degree to which an outcome Y is
a subset of a condition X. We expect from the very beginning that many,
if not most, cases display membership values in Y that are smaller than
their respective membership in X. In contrast, the purpose of a test for the
coverage of a sufficient condition is to find out the portion of an outcome
Y that is covered by a consistent sufficient condition X. This means that we
will already know that Y is a consistent (enough) superset of X, such that
the majority of cases will have larger Y values than X values. One practical
implication for research is that the calculation of consistency must always
precede that of coverage. To start with, is it meaningless to interpret the
coverage of a non-consistent necessary or sufficient condition. Moreover,
this procedure avoids confusion when interpreting the results obtained
from the consistency and coverage formulas for necessity and sufficiency
(Ragin 2008a: 63).

At-a-glance: consistency of necessary conditions

The consistency measure for necessary conditions assesses the degree to which the
empirical information at hand is in line with the statement of necessity, i.e., how far the
outcome can be considered a subset of the condition. As in the case of sufficiency, with
fuzzy sets, the parameter takes into account both how many cases deviate from the pat-
tern of necessity and how strongly they deviate.

The formulas for consistency of necessity, on the one hand, and coverage of sufficiency,
on the other, are mathematically identical but have different substantive interpretations.

'> To anticipate the arguments: high consistency thresholds are also conducive to avoiding the pitfalls of
(2) necessary conditions disappearing from sufficiency solution terms (hidden necessary conditions)
and (b) false necessary conditions appearing in sufficiency solutions (false necessary conditions).
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The reader might already suspect that the mutual, formal equivalence
coverage and consisténcy between necessary and sufficient conditions migﬁ
also be extended to the coverage of necessary conditions. Following this rea
soning, the formula for the coverage of necessary conditions should be equa
to the formula for the consistency of sufficient conditions and should there
fore read for crisp sets:

Coverage of Xas a
geof Number of cases where X=1andY =1

Number of cases where X =1

necessary condition for Y =

and, applied to a two-by-two table, as:

Number of cases cell b
Number of cases cells b+d

Coverage of X as anecessary condition for Y =

and, for both fuzzy and crisp sets:

imin(X,-, Y)

" _ =l
Coverage of X as a necessary condition for Y = i

2

i=1
And, indeed, these are the formulas for the coverage of a necessary condition
as suggested by Ragin (2006a, 2008a: 61) and currently implemented in the
relevant software. W
The formula for the coverage of a necessary condition expresses how much
smaller the outcome set Y is in relation to set X. According to this formula, if
X and Y are of roughly equal size, then the coverage of X as a necessary condi-
tion is high. Put differently, the more the size of X exceeds that of Y, the lower
the coverage of X as a necessary condition.
The label coverage is misleading, though. If X has passed our consistency
test as a necessary condition, then, by definition, X is a superset of Y and
thus X fully covers Y. In other words, by virtue of being necessary, X always
fully covers all cases of membership in Y. Ragin (2008a: 60-63) and Goertz
(2006a) therefore point out that, next to consistency, the issue at stake when
dealing with necessary conditions, is that of relevance (Ragin) or trivialness

Parameters of fit

ure 5.7  Venn diagrams — trivial and non-trivial necessary conditions

(Goertz). Thus, despite all symmetry in these parameters, the interpretation
of the coverage value for necessity and that for sufficiency are fundamentally
different.

~ In order to understand what is meant with relevance and trivialness, con-
sider the two Venn diagrams in Figure 5.7. Let Y be the set of speeches in a
country’s parliament during which parliamentarians curse. X, is the set of
male members of parliament and X, the set of parliamentarians born in that
country. Clearly, both conditions are fully consistent supersets of the outcome
and thus pass the formal requirement as necessary conditions. The relation in
size of sets X; and Y is more in proportion than that between X, and Y. Hence,
if we applied the coverage formula to these two empirical scenarios, X, (male
persons) would receive a higher score and thus be deemed more relevant as
a necessary condition for cursing than X, (being born in the country). X, is
a trivially necessary condition for Y, simply because so many more members
in parliament are born in the country (X,) than curse during parliamentary
debate (Y). The coverage formula suggested by Ragin (2006) and described
here adequately captures this form of trivialness.

Let us apply Ragin’s coverage formula to the example by Schneider et al.
(2010). Calculating coverage only makes sense for those conditions that have
passed the consistency threshold. Schneider et al. (2010: 255) convincingly
argue that condition MA can be interpreted as a functional equivalent (see
section 3.2.1.2) to condition STOCK. As Table 5.7 shows, the consistency
value of the term MA+STOCK is above the 0.9 threshold.
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Table 5.7 Analysis necessity, functional equivalents (Schneider et al. 2010: 255)

Condition Consistency Coverage
STOCK 0.89 0.72
MA+STOCK . 0.92 0.68

The coverage value for the disjunction is 0.68. This is lower than the valy
of STOCK alone.'® This suggests that the size of the logical OR set, compare
to the outcome set, has increased, which should come as no surprise, becau
combining sets with the logical OR requires taking the maximum value
each case across the combined sets (see section 2.4). Since membership
outcome Y remains the same, the relation in size between sets Y and STOCK
on the one hand, and Y and MA+STOCK, on the other, increases. In an X
plot, this is graphically displayed by more cases falling further to the righi
hand side of the plot. Just compare the XY plots in Figure 5.6 and Figure 5,

Two points are worth mentioning about the coverage formula. First, valu
for coverage necessity tend to be rather high. Unlike coverage sufficiency,
research practice, values far below 0.5 are rare and those close to 0 hardly ev
seen. This suggests that when assessing the trivialness of necessary cond
tions, researchers should not be misled by seemingly high coverage value
In addition, the XY plot should always be carefully examined to ascertain
whether most cases are clustering close to the vertical right axis thus suggest-
ing trivialness.

The second issue related to the correct interpretation of the coverage for-
mula for assessing trivialness is this: a condition X can be trivially necessary
even when it is of roughly equal size to outcome Y. This happens when not
only X, but also Y are very big in size and thus close to being constants (Goertz
2006a). In such a scenario, the formula for coverage necessity will yield a high
value and researchers might be inclined to interpret X as a relevant neces-

sary condition. This seems odd, though. Because of their size, both X and Y
cover almost all cases and come thus very close to the universal set. Indeed,
there are two sources of trivialness of a necessary condition: first, X is much
bigger than Y; second, X and Y are close to being constants. Both sources
of trivialness need to be taken into account and no condition interpreted as
necessary in either of the two situations. The currently predominant formula .

' However, in both analyses, the same two true logical contradictory cases occur (France in 1995 and
Germany in 2003), thus providing further illustration that high consistency values alone are often not
enough for a definite statement on a set relation.
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for coverage necessity, however, which we have presented here handles only
the first source of trivialness well. In section 9.2.1, we provide a detailed dis-
cussion of this issue and suggest an alternative formula for calculating the
relevance of a necessary condition which also takes into account the second
source of trivialness.

At-a-glance: coverage of necessary conditions

The standard coverage measure for necessary conditions is better interpreted as a
measure of the relevance of a necessary condition.

High values indicate relevance, whereas low values indicate trivialness.

Conditions that pass the consistency test as a necessary condition should not be
deemed to be relevant necessary conditions unless they alse obtain a high value in the
relevance measure.

The coverage measure for necessity captures only one source of triviainess, though. It
detects whether the outcome set is much smaller than the condition set but is not capable
of capturing whether both the condition and the outcome are (close to) universal sets.
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5.6 Issues related to consistency and coverage

The concepts of consistency and coverage contribute in important ways ¢
making set-theoretic methods, in general, and QCA, in particular, a moy
adequate and useful tool for analyzing social science questions. They allow fo
the use of set theory and formal logic to find patterns in noisy social scienc
data. Despite ~ or perhaps precisely because of - their usefulness researc
ers employing QCA should resist the temptation to reduce this method to
simple hunt for high values of consistency and coverage. This would clear
be against the spirit of set-theoretic methods and would deprive them
their main strength: being grounded in the qualitative research practices
engaging in an iterative dialogue between ideas and evidence. Consistenc
and coverage are better thought of as numerical summaries that describe th
data patterns in the underlying dataset. QCA is above all a qualitative da
technique, and its primary purpose consists in interpreting and understan
ing the cases under study. Neither should specific consistency values obta
the status of universally applicable thresholds. Nor should individual cas
disappear behind, or be hidden by, consistency and coverage values. Instea
researchers must carefully judge and then explicitly argue which consisten
threshold is adequate for their specific research and then also perform sever
analyses with consistency values that vary within a reasonable range. Whe
using fuzzy sets, we also advise paying close attention to which cases are tr
logical contradictions (consistency), uniquely covered, and which ones are
not covered at all.
Consistency is the parameter which should always be assessed first. The rea-
son is straightforward. It only makes sense to calculate the coverage of a suffi-
cient (or necessary) condition if that condition has already been identified as
being consistently sufficient (or necessary). If the consistency value is too low
for the condition to be considered sufficient (or necessary), the calculation of
coverage is meaningless. Along these lines, while there are consistency levels
below which a condition cannot be considered as sufficient (or necessary),
such lower-bound thresholds do not exist for coverage. With sufficiency; very
low coverage values indicate that only a small portion of the outcome of inter-
est is explained by that condition. However, that little bit might still be of great
theoretical and substantive importance. With necessity, low levels of coverage
indicate trivialness whereas high levels might or might not indicate relevant
conditions, an issue we come back to in section 9.2.1.

Parameters of fit
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XY plot — the tension between consistency and coverage of sufficient conditions

Also note that, in research practice, higher consistency values often come
at the price of lower coverage values. In the analysis of sufficiency, this works
the following way. We can increase consistency by adding single conditions
through logical AND. For instance, we might enlarge conjunction A*B*C to
conjunction A*B*C*D*E. The more conditions that are combined, the more
difficult membership in it becomes (section 2.1). This makes the set ever
smaller, and thus makes it more likely to be a consistent subset of the out-
come. At the same time, however, and precisely because membership becomes
more and more difficult, long conjunctions cover less and less of the outcome
simply because so few cases are members of this conjunction. A similar logic
applies to the analysis of necessity. Here we increase consistency by adding
conditions through logical OR. For instance, we extend expression A+B+C to
A+B+C+D+E. The more conditions that are added, the easier membership in
it becomes. This makes the set ever bigger and thus more likely to be a consist-
ent superset of the outcome. But at the same time, and as with the process just
described for conjunctions, long OR expressions cover more and more cases
of the entire set of cases under study since membership becomes ever easier,
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and they thus risk becoming trivial necessary conditions (section 9,2.1),
inherent tradeoff between consistency and coverage is graphically depicte
the XY plot in Figure 5.9 for an analysis of sufficiency, but works in the sam
way in the analysis of necessity. '

At-a-glance: issues related to consistency and coverage

Consistency is the central measure for the assessment of set relations. Only if consistency
is satisfactory should coverage be calculated.

Often it is not possible to achieve high values for the consistency and coverage mea
ures at the same time. Indeed, there is a tradeoff between the two: to increase consistency
often means to decrease coverage and vice versa.

Parameters of fit are not an end in themselves. The main focus should always be on the
cases under study. Researchers should identify the cases that contribute to inconsistency
and to low coverage.

Limited diversity and logical remainders

Easy reading guide

As seen in Chapter 4, the analysis of truth tables is at the core of QCA. In Chapter 5 we pre-
sented, among other things, the consistency value as a parameter for assessing whether a
given truth table row could be considered a subset of, and thus sufficient for, the outcome.
What if, however, there is not enough empirical evidence for a given row in order to assess
whether it is sufficient? In other words, what if a row consists of a conjunction of proper-
ties that is logically possible but not empirically observed? Treating these so-called logical
remainder rows in a conscious manner is both crucial for, and an asset of, set-theoretic
methods. As this chapter shows, assumptions about remainders do have a direct impact on
the results obtained and some assumptions are more plausible than others.

The presence of logical remainders is called /imited diversity. This can be defined as the
set of all logically possible combinations of conditions for which either no or not enough
empirical evidence is at hand. It is a universal phenomenon in comparative social sci-
ence research. The effect that these logically possible, yet empirically unobserved, “cases”
have upon the possibilities for drawing evidence-based inferences is perhaps among the
most understudied topics in social science research methodology. This is why we dedicate
extensive space here fo the different strategies that researchers facing limited diversity
should be aware of. In Chapter 8, we add further strategies that go beyond the current best
practice approach.

In this chapter, we first explain how to detect logical remainders (6.1). Second, we dis-
cuss why virtually all social science data is limited in its diversity. We do so by differentiat-
ing between different sources, and thus different types, of logical remainders (6.2). Since
limited diversity afflicts the capacity for drawing inference, regardless of which specific
method is applied, be it statistical or not, we then delimit in section 6.3 the phenomenon of
logical remainders from other seemingly related notions in the social science methodology
literature (such as missing values). In the final, main section of this chapter, we spell out the
principles of the so-called Standard Analysis (Ragin 2008b) as the currently predominant
procedure in applied QCA for making plausible assumptions about logical remainders (6.4).
The aim of this chapter is to formulate set-theoretic strategies that help to keep the impact
of logical remainders on inferences under the conscious control of the researcher.

The proper handling of logical remainders is of central importance for QCA. This chapter

is certainly a must-read for beginners. Even experienced users will profit from studying




