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procedures have been suggested for the measurement of centraliza-
“tion, confributing further to the confusion that besets this area,
- Implicit in the idea of centralization is that of the structural ‘centre’
-of the graph, the point or set of points around which a centralized
~graph is organized. There have been relatively few attempts to
“define the idea of the structural centre of a graph, and it will be
- pecessary to give some consideration to this.

5
Centrality and Centralization

The idea of the centrality of individuals and organizations in their..
social networks was one of the earliest to be pursued by socia
network analysts. The immediate origins of this idea are to be found
in the sociometric concept of the ‘star’ — that person who is the most:
‘popular’ in his or her group or who stands at the centre o
attention. The formal properties of centrality were initially investi-
gated by Bavelas (1950), and, since his pioneering work, a number
of competing concepts of centrality have been proposed. As a result .
of this proliferation of formal measures of centrality, there is .
considerable confusion in the area. What unites the majority of the’
approaches to centrality is a concern for the relative centrality of the
various points in the graph — the question of so-called ‘point
centrality’. But from this common concern they diverge sharply. In
this chapter I will review a number of measures of point centrality, -
focusing on the important distinction between ‘local’ and ‘global’ -
point centrality. A point is locally central if it has a large number of
connections with the other points in its immediate environment — if,
for example, it has a large neighbourhood of direct contacts. A point -
is globally central, on the other hand, when it has a position of -
strategic significance in the overall structure of the network. Local
centrality is concerned with the relative prominence of a focal point
in its neighbourhood, while global centrality concerns prominence
within the whole network. '
Related to the measurement of point centrality is the idea of the -
overall ‘centralization’ of a graph, and these two ideas have
sometimes been confused by the use of the same term to describe
them both. Freeman’s important and influential study (1979), for
example, talks of both ‘point centrality’ and ‘graph centrality’.
Confusion is most likely to be avoided if the term ‘centrality” is
restricted to the idea of point centrality, while the term ‘centraliza-
tion” is used to refer to particular properties of the graph structure
as a whole. Centralization, therefore, refers not to the relative
prominence of points, but to the overall cohesion or integration of
the graph. Graphs may, for example, be more or less centralized
around particular points or sets of points. A number of different

. Centrality: Local and Global

" The concept of point centrality, I have argued, originated in the
* sociometric concept of the ‘star’. A central point was one which was
© ‘at the centre’ of a number of connections, a point with a great many
-~ direct contacts with other points. The simplest and most straight-
forward way to measure point centrality, therefore, is by the
degrees of the various points in the graph. The degree, it will be
‘ recalled, is simply the number of other points to which a point is
adjacent. A point is central, then, if it has a high degree; the
- corresponding agent is central in the sense of being ‘well-connected’
or ‘in the thick of things’. A degree-based measure of point centrality,
therefore, corresponds to the intuitive notion of how well connected
a point is within its local environment. Because this is calculated
simply in terms of the number of points to which a particular point is
adjacent, ignoring any indirect connections it may have, the degree
can be regarded as a measure of lecal centrality. The most system-
atic elaboration of this concept is to be found in Nieminen (1974).
Degree-based measures of local centrality can also be compqted ff)r
points in directed graphs, though in these situations each point W'l]]
have iwo measures of its local centrality, one corresponding to its
indegree and the other to its outdegree. In directed graphs, then, it
makes sense to distinguish between the *in-centrality’ and the ‘out-
centrality’ of the various points (Knoke and Burt, 1983).

A degree-based measure of point centrality can be extendefi
beyond direct connections to those at various path distances. In this
case, the relevant neighbourhood is widened to include the more
distant connections of the points. A point may, then, be assessed for
its local centrality in terms of both direct (distance 1) and distance 2
connections — or, indeed, whatever cut-off path distance is chosen,
The principal problem with extending this measure of point centra-
lity beyond distance 2 connections is that, in graphs with even a very
modest density, the majority of the points fend to be linked through
indirect connections at relatively short path distances. Thus, com-
parisons of local centrality scores at distance 4, for example, are
unlikely to be informative if most of the points are connected to
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most other points at this distance. Clearly, the cut-off threshold -
which is to be used is a matter for the informed judgement of the
researcher who is undertaking the investigation, but distance | and
distance 2 connections are likely to be the most informative in the
majority of studies, '

A C B G.M [JKL “é‘&h’%:’
Local { Absolute 5 5 2 1 1
centrality | Rglative 033 | 033 | 013 | o007 0.07
Global centrality 43 33 37 48 57

Figure 5.1 Local and global centrality

It is important to recognize that the measurement of local
centrality does not involve the idea that there will be any unique
‘central” point in the network. In Figure 5.1, for example, points A,
B and C can each be seen as local centres: they each have a degree
of 5, compared with degrees of 1 or 2 for all other points. Even if
point A had many more direct connections than points B and C it
would not be ‘the’ centre of the network: it lies physically towards
one ‘side’ of the chain of points, and its centrality is a purely ‘local’
ghenomenon. The degree, therefore, is a measure of local centra-
lity, and a comparison of the degrees of the various points in a graph
can show how well connected the points are with their local
environments,

This measure of local centrality has, however, one major limi-
tation. This is that comparisons of centrality scores can only
meaningfully be made among the members of the same graph or
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between graphs that are the same size. The degree of a point
depends on, among other things, the size of the graph, and so
measures of local centrality cannot be compared when graphs differ
significantly in size. The use of the raw degree score may, therefore,
he misleading. A central point with a degree of 25 in a graph of 100
points, for example, is not as central as one with a degree of 25 in
a graph of 30 points, and neither can be easily compared with a
central point with a degree of 6 in a graph of 10 points. In an
attempt to overcome this problem, Freeman (1979) has proposed a
relative measure of local centrality in which the actual number of
connections is related to the maximum number that it could
sustain. A degree of 25 in a graph of 100 points, therefore, indicates
a relative local centrality of 0.25, while a degree of 25 in a graph of
30 points indicates a relative centrality of 0.86, and a degree of 6 in
a graph of 10 points indicates a relative centrality of 0.66." Figure
5.1 shows that relative centrality can also be used to compare points
within the same network. It should also be clear that this idea can be
extended to directed graphs. A relative measure, therefore, gives a
far more standardized approach to the measurement of local
centrality.

The problem of comparison that arises with raw degree measures
of centrality is related to the problem of comparing densities
between different graphs, which was discussed in the previous
chapter. Both are limited by the question of the size of the graphs.
It will be recalled, however, that the density level also depends on
the type of relation that is being analysed. The density of an
‘awareness’ network, I suggested, would tend to be higher than that
of a ‘loving’ network. Because both density and point centrality are
computed from degree measures, exactly the same considerations
apply to measures of point centrality. Centrality measured in a
loving network, for example, is likely to be lower, other things being
equal, than centrality in an awareness network. Relative measures of
point centrality do nothing to help with this problem. Even if local
centrality scores are calculated in Freeman’s relative terms, they
should be compared only for networks which involve similar types
of relations.

Local centrality is, however, only one conceptualization of point
centrality, and Freeman (1979, 1980) has proposed a measure of
global centrality based around what he terms the ‘closeness’ of the
points. Local centrality measures, whatever path distance is used,
are expressed in terms of the number or proportion of points to
which a point is connected. Freeman’s measure of global centrality
is expressed in terms of the distances among the various points. It
will be recalled that two points are connected by a path if there is a
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sequence of distinct lines connecting them, and the length of a path
is measured by the number of lines that make it up. In graph

theory, the length of the shortest path between two poinis is a

measure of the distance between them. The shortest distance

between two points on the surface of the earth lies along the
geodesic that connects them, and, by analogy, the shortest path

between any particular pair of points in a graph is termed a

‘geodesic’. A point is globally central if it lies at shori distances

from many other points. Such a point is ‘close’ to many of the other:

points in the graph, :
The simplest notion of closeness is, perhaps, that calculated from
the ‘sum distance’, the sum of the geodesic distances to all other
points in the graph (Sabidussi, 1966). If the matrix of distances
between points in an undirected graph is calculated, the sum distance
of a point is its column or row sum in this matrix (the two values are
the same). A point with a low sum distance is ‘close’ to a large

number of other points, and so closeness can be seen as the

reciprocal of the sum distance. In a directed graph, of course, paths
must be measured through lines that run in the same direction;
and, for this reason, calculations based on row and column sums will
differ. Giobal centrality in a directed graph, then, can be seen in
terms of what might be termed ‘in-closeness’ and ‘out-closeness’.

The table in Figure 5.1 compares a sum distance measure of
global centrality with degree-based measures of absolute and =
relative local centrality. It can be seen that A, B and C are equally -
central in local terms, but that B is more globally central than either
A or C. In global terms, G and M are less central than B, but more

central than the locally central points A and C. These distinctions

made on the basis of the sum distances measure, therefore, confirm
the. impression gained from a visual inspection of the graph, This is .
also apparent in the measures for the less central points, All the

remaining poiats have a degree of 1, indicating low local centrality,

yet the sum distance measure clearly brings out the fact that J, K and -
L. are. more central in global terms than are the other points with -

degree 1.

- Freeman (1979) adds yet a further concept of point centrality,
which he terms the betweenness. This concept measures the extent
to which a particular point lies ‘between’ the various other points in
the graph: a point of relatively low degree may play an important
‘interrnediary” role and so be very central to the network. Points G
and M in Figure 5.1, for example, lie between a great many pairs of
points. The betweenness of a point measures the extent to which an
agent can play the part of a ‘broker’ or ‘gatekeeper’ with a potential
for control over others? G could, therefore, be interpreted. as an

4
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intermediary between the set of agents centred around B and that
centred around A, while M might play the same role for the sets of
B and C.

Freeman’s approach to betweenness is built around the concept of
‘local dependency’. A point is dependent upon another if the paths

- which connect it to the other points pass through this point. Burt

{(1992) has described this in terms of ‘structural holes’. A structural
hole exists where two points are connected at distance 2, but not at

- distance 1. The existence of a structural hole allows the third point

to act as a broker or intermediary. In Figure 5.1, for example, point
E is dependent on point A for access to all other parts of the graph,
and it is also dependent, though to a lesser extent, on points G, B, M
and C.

Betweenness is, perhaps, the most complex of the measures of
point centrality to calculate. The ‘betweenness proportion’ of a
point Y for a particular pair of points X and Z is defined as the
proportion of geodesics connecting that pair which passes through Y

" - it measures the extent to which Y is ‘between’ X and Z.* The ‘pair

dependency’ of point X on point Y is then defined as the sum of the
betweenness proportions of Y for all pairs that involve X. The ‘local
dependency matrix’ contains these pair dependency scores, the
entries in the matrix showing the dependence of each row element
on each column element. The overall ‘betweenness’ of a point is
calculated as half the sum of the values in the columns of this
matrix, i.e., half the sum of all pair dependency scores for the points
represented by the columns. Despite this rather complex calculation,
the measure is intuitively meaningtul, and it is easily computed with
the UCINET and GRADAP programs.

In Freeman's work, then, can be found the basis for a whole
family of point cenirality measures: local centrality (degree),
betweenness, and global centrality (closeness). I have shown how
comparability between different social networks can be furthered by
calculating local centrality in relative rather than absolute terms, and
Freeman has made similar proposals for his other measures of
centrality. He has produced his own relative measure of between-
ness, and he has used a formula of Beauchamp (1965) for a relative
closeness measure. All these measures, however, are based on raw
scores of degree and distance, and it is necessary to turn to Bonacich
(1972, 1987) for an alternative approach which uses weighted
scores.

Bonacich holds that the centrality of a particular point cannot be
assessed in isolation from the centrality of all the other points to
which it is connected. A point that is connected to central points
has its own centrality boosted, and this, in turn, boosts the centrality
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of the other points to which it is connected (Bonacich, 1972). There
is, therefore, an inherent circularity involved in the calculation of -
centrality. According to Bonacich, the local centrality of point / in a
where r;; is the value of -
the line connecting point i and point j and ¢; is the centrality of -
point j. That is to say, the centrality of / equals the sum of its "
connections to other points, weighted by the centrality of each of -

graph, ¢, is calculated by the formula Zrc

ij-jr

these other points.*

Bonacich (1987) has subsequently generalized his initial approach,
as did Freeman, to a whole family of local and global measures. The -

most general formula for centrality, he argued, is ¢; = Z.r.(a + Bep

. 4 .. I, .
In this formula, the centrality weighting is itself modlﬁled by the
two parameters o and B. o is introduced simply as an arbitrary:
standardizing constant which ensures that the final centrality meas-

ures will vary around a mean value of 1. B, on the other hand, is of

more substantive significance. It is a positive or negative value
which allows the researcher to set the path distances that are to be

used in the calculation of centrality.” Where 8 is set as equal to zero

no indirect links are taken into account, and the measure of.

centrality is a simple degree-based measure of local centrality

Higher levels of § increase the path length, so allowing the

calculation to take account of progressively more distant connec-

tions. Bonacich claims that measures based on positive values of B

correlate highly with Freeman’s measure of closeness.
A major difficulty with Bonacich’s argument, however, is that the

values given to B are the results of arbitrary choices made by

researchers. It is difficult to know what theoretical reasons there
might be for using one B level rather than another. While the
original Bonacich measure may be intuitively comprehensible, the
generalized model is more difficult to interpret for values of B that

are greater than zero. On the other hand, the suggestion that the

value of § can be either positive or negative does provide a way
forward for the analysis of signed graphs. Bonacich himself suggests

that negative values correspond to ‘zero-sum’ relations, such as

those involved in the holding of money and other financial

resources. Positive values, on the other hand, correspond to ‘non-

zero-sum’ telations, such as those involving access to information.
I'have discussed centrality principally in terms of the most central
points in a graph, but it should be clear that centrality scores also
allow the least central points to be identified. Those points with the
lowest centrality, however this is measured, can be regarded as the
peripheral points of the graph. This is true, for example, for all the
points in Figure 5.1 that have degree 1. They are locally peri-
pheral in so far as they are loosely connected into the network. The
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global centrality scores in Figure 5.1, however, show that points_J,
K and L are not as globally peripheral as the other points with
degree 1.

- Centralization and Graph Centres

1 have concentrated, so far, on the question of the centrality of

particular points. But it is also possible to examine the extent to
which a whole graph has a centralized structure. The concepts of
density and centralization refer to differing aspects of the overall
‘compaciness’ of a graph. Density describes the general level of
cohesion in a graph; centralization describes the extent to which this
cohesion is organized around particular focal points. Centralization
and density, therefore, are important complementary measures.

Figure 5.2 A highly centralized graph

Figure 5.2 shows a simplified model of a highly centralized g‘raph:
the whole graph is organized, in important respects, around point A
as its focal point. How is this level of centralization to be measured?
Freeman (1979) has shown how measures of point centrality can be
converted into measures of the overall level of centralization that
is found in different graphs. A graph centralization measure is an
expression of how tightly the graph is organized around its most
central point. Freeman's measures of centralization are attempts io
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isolate the various aspects of the simplified notion of centralization

On this basis, he identifies threc types of graph centralization; :

rooted in the varying conceptions of point centrality that he ha
defined. .
The general procedure involved in any measure of graph central

ization is to look at the differences between the centrality scores of
the most central point and those of all other poinis. Centralization;

then, is the ratio of the actval sum of differences to the maximum
possible sum of differences. The three different ways of operational

izing this general measure that Freeman discusses follow from the:
use of one or other of the three concepts of point centrality."
Freeman (1979) shows that all three measures vary from 0 to 1 and
that a value of I is achieved on all three measures for graphs
structured in the form of & ‘star’ or ‘wheel’. He further shows that a-
value of 0 is obtained on all three measures for a ‘complete’ graph.
Between these two extremes lie the majority of graphs for real:

social networks, and it is in these cases that the choice of one ©

other of the measures will be important in illuminating specific
structural features of the graphs. A degree-based measure of graph
centralization, for example, seems to be particularly sensitive 1o the:
local dominance of points, while a betweenness-based measure is

rather more sensitive to the ‘chaining’ of points,

Assessing the centralization of a graph around a particular focal:

point is the starting point for a broader understanding of centraliza-
tion. Measures of centralization can tell us whether a graph is
organized around its most central points, but they do not tell us
whether these central points comprise a distinct set of points tha

cluster together in a particular part of the graph. The points in the
graph that are individually most central, for example, may be.
spread widely through the graph, and in such cases a measure of:
centralization might not be especially informative. It is necessary,-
therefore, to investigate whether there is an identifiable ‘structural :
centre’ to a graph. The structural centre of a graph is a single point.
or a cluster of points that, like the centre of a circle or a sphere, is.

the pivot of its organization. _
This approach to what might be called ‘nuclear centralization’ has

been. outlined in an unpublished work of Stokman and Snijders.®
Their approach is to define the set of points with the highest point -
centrality scores as the ‘centre’ of the graph. Having identified this-
set, researchers can then examine the structure of the relations:

between this set of points and all other points in the graph. A

schematic outline of the Stokman and Snijders approach is shown in :

Figure 5.3, . t
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High centrality
A

Centre

Margin

Periphery

v
Low centrality

“Figure 5.3 The structural centre of a graph

If all the points in a graph are listed in order of their point

centrality — Stokman and Snijders use Jocal centrality — then the set

T points with the highest centrality is the centre. The boundary
between the centre and the rest of the graph is drawn wherever there
appears to be a ‘natural break’ in the distribution of centrality scores,

The decrease in the centrality score of each successive point may,

for example, show a sharp jump at a particular point in the
distribution, and this is regarded as the boundary between the centre
and its ‘margin’. The margin is the set of points that clusters close

to the centre and that is, in turn, divided from the ‘peripheral’ points

by a further break in the distribution of centrality scores.

The Stokman and Snijders concept applies only to highly central-
ized graphs. In a graph such as that in Figure 5.2, which is
centralized around a particular set of central points, as measured by
one of Freeman’s indicators, it may be very informative to try to
identify the sets defined by Stokman and Snijders. There will be an
inevitable arbitrariness in identifying the boundaries between centre,
margin and periphery. A solution to both of these problems, though
not one pursued by Stokman and Snijders, is to use some kind of
clique or cluster analysis to identify the boundaries of the structural
centre: if the most central points, for example, constitute a clearly
defined and well-bounded ‘clique’, then it may make sense to regard
them as forming the nuclear centre of the graph.” But not all graphs

e
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will have such a hierarchical structure of concentric sets. Where th
central points do not cluster together as the nucleus of a centralized

£
graph, the Stokman and Snijders ‘centre’” will constitute simply a se ®
of locally central, though dispersed, points. In such circumstances, i
is not helpful to use the term ‘centre’.
1t is possible to extend the analysis of centralization a little furthe B
by considering the possibility that there might be an ‘absolue’ A® 4 ®C

cenire’ to a graph. The absolute centre of a graph corresponds -
closely to the idea of the centre of a circle or a sphere; it is the foca
point around which the graph is structured. The structural centre, a
a set of points, does not meet this criterion. The absolute centzf
must be a single point. The centre of a circle, for example, is tha
unique place which is equidistant from all points on its circum
ference. By sirict analogy, the absolute centre of a graph ought to be:
equidistant from all points in the graph. This idea is difficult to
operationalize for a graph, and a more sensible idea would be
relax the criterion of equidistance and to use, instead, the idea o
minimum distance. That is to say, the absolute centre is that poin
which is ‘closest’ to all the other points in terms of path distance
Christofides (1975: ch. 5) has suggested using the distance matrix
to conceptualize and compuie the absolute centre of a graph. The
first step in his argument follows a similar strategy to that used by
Freeman to measure ‘closeness’. Having constructed the distance
matrix, which shows the shortest path distances between each pair o
pomts he defines the eccentrlclty, or separanon of a point as its
maximum column (or row) entry in the matrix.® The eccentricity o
a point, therefore, is the length of the longest geodesic incident to it
Christofides’s first approximation to the idea of absolute centrality is:
to call the point with the lowest eccentricity the absolute centre,
Point B in sociogram (1) of Figure 5.4 has an eccentricity of 1, and -
all the other points in the graph have eccentncnty 2. In this
socnogram then, point B, with the lowest eccentricity, is the absolute
centre.” In other graphs, however, there may be no single point with-:
minimum eccentricity. There may be a number of points with
equally low eccentricity, and in these circumstances a second step is
needed. i
This second step in the identification of the absolute centre -
involves searching for an imaginary point that has the lowest
possible eccentricity for the particular graph. The crucial claim here
is that, while the absolute centre of a graph will be found on one of "
- its constituent paths, this place may not correspond to any actual__
point in the graph. Any graph will have an absolute centre, but in
some graphs this centre will be an imaginary rather than an actual :
point.

TG
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Go 9F
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Figure 5.4 The absolute centre of a graph
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. The radius of a circular or spherical object is the distance from its
‘centre 1o its circumference, on which are found its most distant
reachable points. Translating this into graph theoretical terms, the
‘eccentricity of the absolute centre of a graph can be regarded as the
‘radins’ of the graph. The ‘diameter” of a graph, as will be shown in
‘the following chapter, is defined as the greatest distance between
any pair of its points. In sociogram (iv) of Figure 5.4, for exampie,
the radius is 1.5 and the diameter is 3. In this case, then, the
diameter is equal to twice the radius, as would be the case in the
conventional geometry of a circle or a sphere. This will not,
however, be true for all graphs.

In geometry there is a definite relationship between the area and
‘the volume of a body, these relationships being generalizable to
objects located in more than three dimensions. The area of a circle
is wr’ and the volume of a sphere is 4mr'/3, where 7 is the ratio of
the circumference to the diameter. The general formula for the area
of a circle, therefore, is cr¥/d, and that for the volume of a sphere is
4cr’f3d, where c is the circumference, r is the radius and d is the
diameter. Applying this to the simple sociogram (iv) of Figure 5.4
would show that it has a volume of 4c(1.5)/9, or 1.5¢."* But what
value is to be given to ¢ in this formula? If the diameter of a graph
is taken to be the length of the geodesic between its most distant
points (the longest geodesic), the circumference might most natur-
ally be seen as the longest possible path in the graph. In sociogram
(iv), this is the path of length 5 that connects point G to point F.
Thus, the ‘volume’ of the example sociogram is 7.5.

Relatively simple geometry has, therefore, enabled us to move a
part of the way towards a measure of the absolute density of a graph
in three dimensions. Density in physics is defined as mass divided
by volume, and so to complete the calculation a measure of the
‘mass’ of a graph is required. Mass in physics is simply the amount
of matter that a body contains, and the most straightforward graph
theoretical concept of mass is simply the number of lines that a
graph contains. In sociogram (iv) there are eight lines, and s0 its
absolute density would be 8/7.5, or 1.06.

Generalizing from this case, it can be suggested that the absolute
density of a graph is given by the formula I/(4cr/3d), where [ is the
number of lines. Unlike the relative density measure discussed in the
previous chapter, this formula gives an absolute value that can be
compared for any and all graphs, regardless of their size. But one
important reservation must be entered: the value of the absolute
density measure is dependent on the number of dimensions in which
it is measured. The absolute density measure given here has been
calculated for graphs in three dimensions, The concept could be

This claim is not so strange as it might at first seem. All the points.
in sociogram (ii) in Figure 5.4 have eccentricity 2, and so all are
equally ‘central’. It is possible, however, to conceive of an imagin:
ary point, Z, which is mid-way between points A and B, as in
sociogram (iii). ‘Point’ Z is distance 0.5 from both A and B, and it
is distance 1.5 from points C, D and E. The artificial point Z is more.
central than any of the actual points, as its eccentricity is 1.5. But it
is still not possible to find a single absolute centre for this socio-.
gram. The imaginary point Z could, in fact, have been placed at the:
mid-point of any of the lines in the sociogram with the same results;
and there is no other location for the imaginary point that would not
increase its minimum eccentricity. The best that can be said for this:
graph, therefore, is that there are six possible locations for the
absolute centre, none of which corresponds to an actual point.
Moving to the second step of searching for an imaginary point as th
absolute centre, then, will reduce the number of graphs for which
there is no unique absolute centre, but it does not ensure that a
single absolute centre can be identified for all graphs.'® :
~ Thus, some graphs will have a unique absolute centre, whlle_
others will have a number of absolute centres. Christofides provid
an algorithm that would identify, through iteration, whether a graph
contains a mid-point or actual point that is its unique absolute
centre.!' In sociogram (iv) of Figure 5.4, for. example, there is a
unique absolute centre. Its ‘point’ Z has an eccentricity of 1.5,
compared with eccentricity scores of 2.5 for any other imaginary
mid-point, 2 for points A and B, and 3 for points C, D, E, F
and G.

A Digression on Absolute Density'?

The problem with the existing measures of density, as [ showed in
the previous chapter, is that they are size-dependent. Density is a
measure that is difficult to use in comparisons of graphs of radically.
different sizes. Density is relative to size. This raises the question of
whether it might not be possible to devise a measure of absolute
density that would be of more use in comparative studies. I cannot
give a comprehensive answer to that question here, but the idea of
the absolute centre of a graph does raise the possibility that other
concepts required for a measure of absolute density might be
formulated along similar lines. A concept of density modelled on
that used in physics for the study of solid bodies, for example,
would require measures of ‘radius’, *diameter’ and ‘circumference’,
all of which depend on the idea of the absolute centre,
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generalized to higher dimensions, by using established formulae for
‘hyper-volumes’, but such an approach would require some agree
ment about how to determine the dimensionality of a graph. Thj
issue will be approached again in Chapter 8, drawing on th
arguments of Freeman (1983)."4

nalysed the data using Granovetter’s (1973) conceptual distinction
etween strong and weak ties. The basis of their argument was that
hose interlocks that involved the full-time executive .ofﬁcers of
the enterprises could be regarded as the ‘strong’ ties of the
orporate network, while those that involved only the. part-time
on-executive directors were its ‘weak’ ties. The basis of this
~theoretical claim was that the interlocks that were carried by full-
- time executive officers were the most likely board-level links fo have
. strategic salience for the enterprises concemed. For this' reason,
hey tended to be associated with intercorporate shareholdings and
rading relations between the companies.” Interlocks created by
on-executive directors, on the other hand, involved less of a time
~‘commitment and so had less strategic significance for the enterprises
oncerned. . _
The top enterprises were examined for their centrality, using
< Bonacich’s (1972) measure. This, it will be recalled, is a measure in
~ which the centrality of a particular point could be measured by a
- combination of its degree, the value of each line incident to it, f'md
he centrality of the other points to which it is connected. This is a
recursive’, circular measure that, therefore, requires a considerable
“amount of computation. A network containing 750 enterprises., for
example, will reguire the solution of 750 simultaneous equations.
- The first step in Bearden et al.’s analysis was to decide on an
 appropriate measure for the value of the lines that connected the
" enterprises. For the weak, undirected lines, Bearden et al. he]q that
. the value of each should be simply the number of separate inter-
locks, weighted by the sizes of the two boards. This weighting rested
on the supposition that having a large number of inter[ock_s was less
significant for those enterprises with large boards than it was for
. those with small boards. The formula used in the calculation was
: bul\/dir{i, where b, is the number of inter!ocks betw;en the two
* companies / and j, and d, and d; are the sizes of their respective
boards. This formula allows Bonacich’s centrality measure to be
calculated on the basis of all the ‘weak ties’ in the graph. _
A more complex formula was required to measure centrality in
terms of the strong ties. In this case, the measure of the value of
each line needed to take some account of the direction that was
attached to the lines in the graph. For those companies that were
the ‘senders’ of lines (the ‘tails’, in the terminology of the GraDpap
program) the value of the lines was calculated by the numl?ef of
directors ‘sent’, weighted by the board size of the ‘receiving
company. The attempt in this procedure was to weight the line by
the salience of the interlock for the receiving board. Conversely, for
those companies that were the ‘receivers’ of interlocks (the ‘heads’),

Bank Centrality in Corporate Networks

Studies of interlocking directorships among corporate enterprises ar
far from new, but most of the studies that had been carried out prio;
to the 1970s had made little use of the formal techniques of socia
network analysis. Despite some limited use of density measures an
cluster analysis, most of these studies took a strictly quantitativi
approach, simply counting the numbers of directorships and inter
locks among the companies. Levine’s influential paper (1972
marked a shift in the direction of this research while, at about th
same time, Mokken and his associates in the Netherlands began’
pioneering study in the systematic use of graph theory to explore
corporate interlocks (Helmers et al., 1975). The major turning point
however, occurred in 1975, when Michael Schwartz and his student
presented their major conference paper that applied the concept o
centrality to corporate networks (Bearden et al., 1975). This long
paper circulated widely in cyclostyled form and, despite the fact tha _
it remains unpublished, it has been enormously influential. The work
of Schwartz’s group, and that which it has stimulated, provides -
compelling illustration of the conceptual power of the idea of point
centrality. -
Michael Schwartz and Peter Mariolis had begun to build a
database of top American companies during the early 1970s, and
their efforts provided a pool of data for many subsequent studies
(see, for example, Mariolis, 1975; Sonquist and Koenig, 1975):
They gradually extended the database to include the top 500
industrial and the top 250 commercial and financial companies
operating in the United States in 1962, together with all new entrants -
to this ‘top 750" for each successive year from 1963 to 1973. The
final database included the names of all the directors of the 1131
largest American companies in business during the period 1962-73:
a total of 13,574 directors. This database is, by any standard, that for
a large social network. As such, it lends itself to the selection of
substantial sub-sets of data for particular years. One such sub-set is
the group of the 797 top enterprises of 1969 that were studied by
Mariolis (1973). : R
«. The path-breaking paper of Schwartz and his colleagues (Bearden
et al, 1975) drew on the Schwartz-Mariolis database, and it
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‘cluster’ as comprising all the direct contacts of a peak, except for
those that have a similar distance | connection to another peak.
Thus, peaks lie at the hearts of their clusters.”’

The results that were arrived at through the use of these tech-
ques for the measurement of point cenirality have become widely
accepled as indicating some of the most fundamental features of
intercorporate networks. In summary, Bearden et al. argued that the
American intercorporate network showed an overail pattern of *bank
ntrality”: banks were the most central enterprises in the network,
whether measured by the strong or the weak ties. Bank centrality
was manifest in the co-existence of an extensive national interlock
network {structured predominantly by weak ties) and intensive
gional groupings (structured by the strong ties). Strong ties had a
definite regional base to them. The intensive regional clusters were
- created by the strong ties of both the financial and the non-financial
. enterprises, but the strong ties of the banks were the focal centres of
the network of strong ties. The intercorporate network of 1962, for
gxample, consisted of one very large connected component,'
two small groupings each of four or five enterprises, and a large
“pumber of pairs and isolated enterprises. Within the large connected
~component, there were five peaks and their associated clusters. The
~ dominant element in' the network of strong ties was a regional
~ cluster around the Continental Illinois peak, which, with two other
~Chicago banks, was connected with a group of 11 mid-Western
- enterprises with extensive connections to a larger grouping of 132
. enterprises. The remaining four peaks in the network of strong ties
" were Mellon National Bank, J.P. Morgan, Bankers Trust and United
California Bank, their clusters varying in size from four to ten
. enterprises. '
Overlying this highly clustered network of strong, regional ties
* was an extensive national network created by the weak ties that
linked the separate clusters together. This national network, Bearden
et al. argued, reflected the common orientation to business affairs
and a similarity of interests that all large companies shared. Inter-
locks among the non-executive directors expressed this commonality
and produced integration, unity and interdependence at the national
level (see also Useem, 1984). The great majority of the enterprises
were tied into a single large component in this network, most of the
remainder being isolates. Banks were, once more, the most central
enterprises, especially those New York banks that played a ‘national’
rather than a ‘regional’ role. It was the non-executive directors of the
banks who cemented together the overall national network.™

the number of directors received was weighted by the sender’s bdar‘d
size.'® For the final calculation of centrality scores, Bearden et aj
introduced a further weighting. Instead of taking simply the raw
weighted scores for the tails and the heads, they took 90 per cent
the score for the senders and 10 per cent of the score for
recipients. The reasoning behind this weighting of the scores was the
theoretical judgement that, in the world of corporate interlocking, i
is ‘more important to give than to receive’: the sending of a directo
was more likely to be a sign of corporate power than was the
receiving of a directorship. Thus, the arbitrary adjustment to the
centrality scores was introduced as a way of embodying thi
judgement in the final results. It should be noted, however, tha
centrality will not always be a sign of power. In some situations
the prominent and most visible actors may be among the weakest
(Mizruchi, 1994: 331-2). 2
The Bonacich measure of centrality which was calculated fi
the companies in the study correlated very highly, at 0.91, with the
degrees of the companies. Bearden et al. held, however, that t
more complex Bonacich measure was preferable because it had
the potential to highlight those enterprises that had a low degree b
which were, nevertheless, connected to highly central compani
Such a position, they argued, may be of great importance in determi
ing the structural significance of the companies in the economy.
Schwartz and his colleagues also used a further approach to:
centrality, which they termed ‘peak analysis’. This was later elabor:
ated by Mizruchi (1982) as the basis for an interpretation of the
development of the American corporate network during the twen-
tieth century. A point is a peak, it was argued, if it is more ceniral -
than any other point to which it is connected. Mintz and Schwartz -
(1985} extend this idea by defining a bridge as a central point that
connects two or more peaks (see Figure 5.5). They further see a

Peak 1 Peak 2

Cluster 1 Cluster 2

Figute 5.5 Peaks and bridges



