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likely to correspond to a meaningful social group. A more useful
approach to the identification of sub-graphs might be to divide the
members of a network by, say, gender and to investigate the
separate sub-graphs of men and women. Any such choice will
depend on the theoretical and empirical concerns of the researcher.
: The general aim would simply be to define a meaningful category of

6
Components, Cores and Cliques

One of the most enduring concerns of those who have turned o'
social network analysis has been the attempt to discover the various:
‘cliques’ and cohesive sub-groups into which a network can bs.
divided. The early researchers of the Hawthorne and Yankee Cit
studies, I have shown, saw the idea of the ‘clique’ as being thei
central theoretical discovery. The argument was that people’s’
informal social relations tied them into cohesive sub-groupings that::
had their own norms, values, orientations and sub-cultures, and
that-may run counter to the ‘official’ or formal social structure. The
cliques were, they held, among the most important sources of:
person’s identity and sense of belonging, and their existence was
widely. recognized in the everyday terms — such as ‘our set’ and.
‘the group in the back’ - that people used to describe their socia
world. o
+. Once analysts began to try to formalize the idea of the clique and’
to devise mathematical measures of the number and cohesion o
cliques, it was appreciated that the idea was not limited to informal”
relations. There were also political cliques and factions, economic::
cliques and interest groups, and so on. It was also recognized that
there: were a number of different ways of operationalizing the
apparently simple idea of the ‘clique’: for example, cliques could be
seen as groups of mutually connected individuals or as pockets of
high- density. Thus, a number of different theoretical models of sub.
groups emerged, variously described as ‘cliques’, ‘clusters’, ‘com
.ponents’, ‘cores’ and ‘circles’. Apart from beginning with the letter.
‘c’; these concepts have very little in common with one another. In
this chapter 1 shall discuss their varying theoretical bases, though I
will leave the issue of "cluster analysis’ until the following chapter.. -
- The starting point for all of these measures of group structure i$ |
the idea of a ‘sub-graph’. A sub-graph is any collection of points -
selected from the whole graph of a network, together with the lines |
connecting those points. Any aspect of the graph can be chosen for
identifying its sub-graphs, though not all of these criteria will be .
substantively useful in research. A random sample of points, for -
example, could be treated as a sub-graph and its structural proper-
ties. could be examined. But a random sub-graph is not, in general,

_"'agenls and to explore their distinct patterns of network formation.
From this point of view, therefore, the identification of sub-graphs

is no different from the initial identification of the graphs them-
selves. All the considerations of boundaries and sampling that

""have been considered in earlier chapters will be equally relevant

here and no new issues are involved (see, for example, Frank,

1978h).
Clique and similar analyses normally adopt an alternative

: approach to the study of sub-graphs. Their aim has been to
. investigate the structural properties of the whole graph itself in order

to discover the ‘naturally existing’ sub-graphs into which it can be
divided. From this point of view, a sub-graph must have some

- defining characteristic drawn from the mathematical principles of
graph theory: the connectedness of its points, the intensity of their

connection, and so on. It is a sub-graph that is maximal in relation

. to a particular defining characteristic: it is the largest sub-graph that
~ can be formed in the graph without this defining quality disappear-
ing. The choice of a particular characteristic depends on the
. researcher’s decision that a particular mathematical criterion can be
. given a meaningful and useful sociological interpretation. Unfortu-
" nately, this is rarely made explicit, and far too many researchers
" assume that whatever mathematical procedures are available in

social network analysis programs must, almost by definition, be
useful sociological measures. My aim in this chapter is to uncover
the mathematical assumptions of the various available procedures so
that researchers can make an informed decision about those that
might be relevant to their particular investigations.

Components, Cycles and Knots

The simplest of the various sub-graph concepts is that of the
component, which is formally defined as a ‘maximal connected sub-
graph’. A sub-graph, like a graph, is ‘connected’ when all of its
points are linked to one another through paths: all points in a
connected sub-graph can ‘reach’ one another through one or more
paths, but they have no connections outside the sub-graph. Within a
component, all points are connected through paths, but no paths
run to points outside the component. When the connected sub-
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graph is maximal, it is impossible to add any new members without
destroying the quality of connectedness, Isolated points, for exam-
ple, cannot be joined with an existing component, as they have no
connections to any of its members. The boundary of a component;’
therefore, is identified by tracing through the paths from its potential.
members to test for their connectedness. :

A compuler algorithm for identifying components might start:
from a randomly chosen point and trace all the other points to whick’
it is directly connected. This same procedure can then be repeated.
for each of these points in turn, and so the component gradually
increases in size through a ‘snowballing’ method. When no furthe
points can be added to the component, its full membership has been

identified. If any points remain outside the component, the same ® o0 0309e

Key
procedure can be repeated for them, so as to see what other: A
components can be identified in the graph. p L Connected
) : components
Components, then, are sets of points that are linked to one anothe C

through continuous chains of connection. The paths connectin
points are traced through until the boundaries of the component are
discovered. A ‘connected graph’, of course, simply comprises 3
single component. Other graphs typically consist of one or mor
separate components, together with a number of isolated points (see
Figure 6.1). This idea is readily interpretable in sociological terms.
The members of a component can, in principle, communicate with
one another, either directly or through chains of intermediaries..
Isolates, on the other hand, have no such opportunities. The pattern
of components found in a graph — their number and size — can, there-
fore, be taken as an indication of the opportunities and obstacles to
communication or the transfer of resources in the associated net-
work. To this extent, then, they embody the ideas behind the
‘topological regions’ of the early field theorists. A basic step in
the structural description of a network, therefore, is to identify the
number and size of its components.

. The simplest of algorithms to detect components in a graph wou!d '
search all possible paths in order to discover the geodesics between
points. The lengths of these gecdesics will vary from a minimum of
1 (direct connection) to a maximum of n—1. In a graph of size 100,
for example, the maximum possible path length would be 99. In
large graphs, however, the longest geodesic in a component ~ its
‘diameter’ — is generally much shorter than this.! However, the
diameter of a component will not generally be known before the
boundaries of the component have been identified, and so such an
algorithm must search all paths up to the maximum level of n—1 in
the search for components. :

e Isolated points

 Figure 6.1 Components in a network

Because such a procedure is very time-consuming and inefficient,
it is not practicable for most computing purposes. For this reason,
social network packages generally use an alternative procedure.
Components are discovered by building up ‘spanning trees’, using a
back-tracking method from chosen points. The algorithm looks for
any point that is connected to a starting point, and it then looks
for any point that is connected to this additional point. This is
repeated until no further connections can be found. The algorithm
then back tracks along the chain that it has discovered umtil it is
able to make a connection to a new point. It continues in the same
way until it again comes to a halt. By repeated back-tracking of this
kind, the boundaries of a component are discovered very efficiently
and the procedure can search the remaining points for other
components.

Components can be searched for in both undirected and directed
graphs, but there are important differences between the two
situations. In the case of directed graphs, two distinct types of
component can be identified: ‘strong components’ and ‘weak
components’. A strong component is one in which the lines that
make up the paths are aligned in a continuous chain without any
change of direction. Any paths that do not meet this criterion are
disregarded. The justification for this restriction is that the direction
of a line is assumed to indicate the possible flow of some resource
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or facility, such as money, power, or information. It is only when th
lines in a path run in a constant direction that this flow can continue’
without interruption. A strong component, then, represents a set of
agents among whom such resources can easily and freely flow. :

An alternative, weaker interpretation can also be placed on:
directed lines. Tt can be assumed that the mere presence of a
relationship, regardless of its direction, allows some possibility for:
communication. From this point of view, components can be
identified from the semi-paths in the graph. Components in. a:
directed graph that are identified in this way, disregarding the
direction of the lines that make up the paths and taking account
simply of the presence or absence of a connection, are termed weak
components.

The distinction between strong and weak components does not,
of course, exist in undirected graphs. In these situations the
researcher is dealing with what might be called ‘simple com-
ponents’: as no directions are attached to the lines, all paths
constitute acceptable connections. Computer algorlthms for identi-
fying simple components in an undirected graph are, in principle;
identical to those for identifying weak components in a directed
graph. It is only when the question of direction has to be expllcnly
dealt with that the algorithms differ.

The result of a component analysis is a view of the graph as
composed of one or more components (simple, weak or strong
components) and a number of isolated points. Dense graphs are
tikely to show the dominance of a single large component, especially
where the analysis is concerned with simple or weak components. In
order to achieve a more fine-grained analysis, it is generally neces-
sary o attempt to probe the internal structure of components.

Everett has proposed an extension of the component idea that
aims to achieve such a fine-grained view of the texture of dense
networks. His approach (1982, 1983a, b, 1984) is based on a graph
theoretical concept that he terms the ‘block’. There is a great deal of
confusion over the word ‘block’, as it has been used in a number of
radically different ways in social network analysis. To try to avoid
some of this confusion, I propose to make some terminological .
innovations. For reasons that will soon become apparent, I shall
refer to Everett s concept not as the ‘block’, but as the cychc'
component’.?

The concept of the cyclic component depends on that of the cycle
A cycle is a path that returns to its own starting point, and, like a.
path; a cycle can be of any length. The cycles in a graph can be
described by their length as 3-cycles, 4-cycles and so on. Putting
this in its most general form, graph theorists can identify what-

0 )

Figure 6.2 Cyclic components

Everett terms k-cycles, where k is any specified cycle length A
useful first step in the analysis of cycles is to decide on a maximum
cycle length for consideration. Any cycle of greater length than this
is ignored. If a maximum cycle length of 4 is chosen, for example,
sociogram (i) in Figure 6.2 contains four cycles of length 4
(ABCDA, BCDAB, CDABC and DABCD) and six cycles of
tength 3 (ABDA, BDAB, DABD, BCDB, CDBC and DBCD).? At a
miaximum cycle length of 3, only the shorter cycles remain and
points A and C are not connected by any cycle. Everett goes on to
define a bridge as a line that does not itself lie on a cycle but that
fiiay connect two or more cycles.* Sociogram (ii) in Figure 6.2, for
éxample, contains, at maximum cycle length 4, the bridge BE.

' A cyclic component can be defined as a set of intersecting cycles
connected by those lines or points that they have in common. The
separate cyclic components of a graph, therefore, do not overlap
with one another, though they may be connected by one or more
bridges. Sociogram (ii) in Figure 6.2, for example, is not itself a
cyclic component, it does, however, contain the cyclic components
4AB,CD} and {EF.GHLJ]. The latter set of points contains
the line FI, which is common to the cycles EFIHE and FGIJIF. It can
be seen, therefore, that a cyclic component consists of a chain of
intersecting cycles, where the intersections are lines or points
common to the overlapping cycles.* The cyclic components of a
graph are identified by removing from a graph all those lines that are
bridges at the specified cycle length (termed the ‘k-bridges’). The
sets of points that remain are the cyclic components.

. Where an analysis of simple, weak or strong components results
simply in the identification of components and isolates, an analysis
of cyclic components generally produces more complex results. This
is because the cyclic components will be connected to various points
that are not themselves members of cyclic components. Everett
(1982) has shown that the connected elements will fall into one of
five categories:
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Cyclic components.

2 Hangers. These are points that are connected to a member of
cyclic component, but which do not themselves lie on a cycla
Hangers simply ‘hang’ on to a cyclic component.

3 Bridgers. The points that are ‘intermediaries’ or ‘waverer
between two or more cyclic components, but which are:
members of any of them. A bridger, then, ‘hangs’ on to two op
more cyclic components.

4 Isolated trees. These are chains of points (including dyads) thag
are not connected to any cyclic component. The members g
these ‘“trees’ are linked to one another in a non-cyclic way.®

5 Isolates. Those points that have no connections at all, i.e., the

which have a degree of 0.

D

Figure 6.3 Cycles and semi-cycles

It can sometimes be difficult to give a substantive sociologica
interpretation to long paths of connection. This is a particular
problem where long cycles tie large numbers of points togel
There is, for example, a tendency for connected graphs to compri
a single, large cyclic component. Everett holds that, for
purposes, it is realistic to limit an analysis to relatively short cycles
of length 3 or 4. At cycle length 3, for example, an analysis would
be concerned simply with cyclic components built out of triads, to
which a number of substantive interpretations can be given.. At
cycle length 4, an analysis would be concerned with those eyclic
components that are built from either triads or ‘rectangles’.
researcher intends to use cycle lengths greater than 4, it is particu-
larly important that the substantive sociological interpretation that is
to be given to the mathematical structures should be both clear and
meaningful. s
. An analysis of cyclic components can also be undertaken: fi
directed graphs. The simplest way of doing this would be 0
disregard the directions that are attached to the lines. Such an
analysis, based on the semi-paths in the graph, would identify ‘sem
cycles’. These are cycles in which no account is taken of. the
direction of the lines. This does, of course, involve some loss: o
information, but the procedure allows the identification of what caii
be termed weak cyclic components. In order to analyse strong
cyclic components, the information on directionality mustbe
retained. Everett has recommended that this kind of analysis should
in fact, also include some of the semi-cycles. In a directed cycle the
direction runs consistently through ali the constituent lines. In
Figure 6.3, for example, ABCA is a directed cycle. The path
ABDA, on the other hand, involves a reversal of direction betwee
‘A and D, and so is merely a semi-cycle. Everett defines a semi-cycle

as being an ‘acceptable semi-cycle’ if points that do not lie on a
directed cycle are, nevertheless, connected by two or more distinct
directed paths. Thus, points A and D are not connected through a
rected cycle, but they are connected through the directed paths
ABD and AD. For this reason, ABDA is an acceptable semi-cycle.
In the identification of strong cyclic components, therefore, a
omputer algorithm must search for both the directed cycles and the
acceptable semi-cycles of a graph. Using this procedure, all the
¢ycles in a directed graph will be identifiable as directed, acceptable,
unacceptable, and an analysis of strong components would take
account only of cycles of the first two types. Using these cycles
alone, the strong cyclic components of the graph can be identified,
and it will also be possible to distinguish between ‘hangers-on” and
angers-off’, according to the direction of the lines that connect
hem. The hangers-on are those hangers that direct a line towards a
member of a strong cyclic component, while the hangers-off are
hose hangers to whom a member of the component directs a line.”
An alternative way to probe the internal structure of components
“1s: to sec whether there are particular points that have a pivotal
“significance in holding components together. Hage and Harary
‘(1983) have approached this, like Everett, through a concept that
. they designate as a ‘block’. In their case, however, this term refers
_to those sub-graphs within simple components (or within the weak
 components of a directed graph) that have no ‘cut-point’.* A cut-
~point is one whose removal would increase the number of com-
“ponents by dividing the sub-graph into two or more separate
" sub-sets between which there are no connections. In the graph
© component (i) shown in Figure 6.4, for example, point B is a cut-
 point, as its removal would create the two disconnected components
~shown in sociogram (ii). None of the other points is a cut-point.
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Thus, cut-points are pivotal points of articulation between the
elenpents that make up a component. These elements, together with
their cut-points, are what Hage and Harary described as the ‘blocks’:
Once again, T wish to avoid the conceptual confusion which results
from the varying usages given to the word ‘block’ and so, in wha
fOllov_vs, I shall use the more descriptive term ‘knot’. The componeni
in Figure 6.4, then, comprises the two knots {A,B,C} and
{B,D,EF}. The various cut-points in a graph, therefore, will
members of a number of knots, with the cut-points being the points
of overlap between the knots.’

analysing the elements that make up these components (the knots
and cut-points) and those which lie outside the components (the
hangers, bridgers, trees and isolates). In this and in the following
section 1 will pursue the question of the internal structure of
components more systematically. In this section I will assess how
he ‘contours’ of components can be charted by identifying their
‘cores’, and in the following section I will look at the *cliques’ and
‘circles’ from which componenis are buiit.
I showed in Chapter 2 that the work of the Yankee City
researchers involved an attempt to identify the core and peripheral
members of what they called ‘cliques’. This procedure can more
usefully be applied to the internal structure of components. The
contours of components can be disclosed by a procedure that is
~usually termed the ‘nesting’ of components, and that was briefly
" discussed in Chapter 3.'° Nesting successive analyses of components
involves using progressively stronger cut-off criteria for drawing the
boundaries of components at each step of the analysis. When
combined into a single picture, the result of such a procedure is a
“series of concentric bounded sets of points. The basic image in a
“nested analysis is that of a contour map or of a set of Russian dolls,
each component being ‘nested’ within a larger component. A
component is visualized as having a core of especially cohesive or
intensely connected points, with the boundaries of the core being
gradually extended to include more and more points as the cut-off
" level of cohesion or intensity is weakened. At the weakest level
of connection, all connected points are included in a single
component.

Figure 6.5 illustrates a simple case of nesting. The points in set A
are the most tightly connected, and they comprise the core of their
component. The boundary of set B is drawn with a weaker criterion

{ (i}
A

F

Figure 6.4 Knots and cut-points

.It is relatively easy to give a substantive sociological interpre-
tation to the idea of a cut-point. It can, for example, be séen as :
indicating some kind of local centrality for the corresponding agent.
Hagff- and Harary (1983) have argued that knots (‘blocks’ in their
terminology} can be seen as being, for example, the most effective
systems of communication or exchange in a network (see also Hage
and Harary_, 1991 and 1998 for applications of this view). Because
they contain no cut-points, acts of communication and exchange
among the members of a knot are not dependent upon any one
member. There are always alternative paths of communication :
between all the points in a knot, and so the network that it forms is
both flexible and unstratified.

The Contours of Components

I have looked so far at procedures for the identification of various °

kinds of components, and I have reviewed some proposals for Figure 6.5 Nested components
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of connection and so includes all the points of set A together w

the additional points that are connected at this weaker level. Finally
set C has its boundary determined by the very weakest criterion of

connectedness and so includes all connected points. Sets D, E and
in the second component can be interpreted in the same way. Thus

elements and a contour diagram of the graph can be drawn.

Component detection algorithms treat all connections as binary.
data, as indicaling simply the presence or absence of a relation. A
valued graph, therefore, must be analysed by converting its actual’

values into binary, 1 or 0, values. This is done by comparing entries

in the matrix for the valued graph with a ‘slicing’ or ‘dichotomizing”
threshold.!! Entries above or below the specified threshold are
dichotomized into binary values: those above it are given the value:
1, and those below it are given the value 0. These binary values can’

then be used in the search for components. A valued adjacenc
matrix might, for example, contain entries that show the multi

plicities of the lines, and this matrix could be ‘sliced” by choosing:

progressively stronger levels of intensity. By studying the com

ponents that are identified at each threshold level, the researcher can:
construct a contour diagram of nested components such as that
shown in Figure 6.5. The boundaries of the components are drawn:
as concentric loops, and the diagram shows the ‘peaks’ of hlgh'-

intensity and the ‘plains’ of low intensity.

Two alternative methods of nesting have been proposed: on¢
based on the use of the degrees of the points as a measure of

cohesion, and the other based on the use of the multiplicities of th
lines as a measure of intensity. The degree-based measure results i

the identification of ‘k-cores’, while the multiplicity-based measure-

s+ |2

results in the identification of ‘m-cores’.

- Seidman (1983) has proposed that the structure of component:

can be studied by using a criterion of minimum degree to identify

areas of high and low cohesion. An analysis of the resulting k-core:

structure of a graph, he argues, is an essential complement to th

measurement of density, which I have shown fails to grasp many of"

the global features of graph structure. A k-core is a maximal sub-
graph in which each point is adjacent to at least k other points: all
the points within the k-core have a degree greater than or equal to

k.'* Thus, a simple component is a ‘lk-core’. All its points are

connected to one another and so have a degree of at least 1. To
identify a 2k-core, ail points with degree 1 are ignored and the

structure of connections among the remaining points is examined.

The 2k-core consists of those remaining connected points that have
a degree of 2. A 3k-core is identified by deleting all points with a

each of the components in a graph can be de-composed into its core
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Figure 6.6 A 3k-core

degree of 2 or less, and so on. Figure 6.6 illustrates a 3k-core, In this
sub-graph, all points have a degree of at least 3. Although there are
two points with degree 4 (points B and J), there would be no 4k-core
in this graph, as a k-core must have at least k+ 1 members.

A k-core, then, is an area of relatively high cohesion within the

. whole graph. But it is not necessarily a maximally cohesive sub-
graph — there may be areas of very high cohesion that are connected
 to one another rather loosely. In Figure 6.6, for example, the
cohesive areas {E,F,GH,JK,L} and {A,B,C,D,E.I} are connected
through the weaker links CE and 1J. K-cores, then, constitute areas
of the component within which cohesive sub-groups, if they exist,
will be found.'

Seidman also shows how the overall fragmentation of a network

can be assessed by leoking at what he calls the core coltapse
sequence. The points in a k-core can be divided into two sets: those

that are in a k+1 core and those that are not. The latter group
Seidman terms the k-remainder. The remainder in any core com-
prises those points that will ‘disappear’ from the analysis when k is
increased by 1. It is the disappearance of these less well-connected
points that causes the core to ‘collapse’ as k is increased. Seidman
proposes that the proportion of points that disappear from a core at
each increase in k can be arranged in a vector (a simple row of
figures) that describes the structure of local density within the
component. '’ :
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‘?

Value of K Remainder Remainder as proportion .

B
0 1] 0
1 2 0.3
2 0 ¢
3 4 0.6
£ b )
4 No points left

@
F
Figure 6.7 Collapse of a k-core

This can be illustrated through the sociogram in Figure 6.7. All
six points are connected, and so the increase in & from 0 to |

involves no loss of points. At k=1 all points are contained in a

core, but there is a remainder of 2 (points A and F) that will

disappear when k is increased to 2. At k = 2, points B, C, D and E g
remain, each with a degree greater than or equal to 2. As these -
points are, in fact, mutually connected at degree 3, there is no .
remainder at k=2, When k is increased to 3, however, the-

remainder is 4, as all points will disappear when k is increased to

four. Arranging the sequence of remainders from & = 0 in a vector -

gives the following core collapse sequence: (0, 0.3, 0, 0.6).
The core collapse sequence gives a summary of the ‘clumpiness’

of the component. A slow and gradual collapse in the core, argues. -

Seidman, indicates an overall uniformity in the texture of the

network. An irregular sequence of values, as shown in Figure 6.6,

shows that there are relatively dense areas surrounded by more
peripheral points. The persistence of zero values in the vector up to
high..levels of k indicates a uniformity of structure within the
component; the appearance and persistence of zero values after low
levels of k indicates the existence of clumps of high density,

By contrast with k-cores, which are based around the degrees of
the points, ‘m-cores’ are based around the muitiplicities of the lines.
The notion of an m-core describes the original nested components
discussed by the GrADAP group.'® An m-core can be defined as a
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~ maximal sub-graph in which each line has a multiplicity greater than
- or equal to m. An m-core is a chain of points connected by lines of
- the specified multiplicity. As in the case of a k-core, a 51mpie
- component is a lm-core, as all of its poi_nts are connchefi with a
. multiplicity of at least 1. In a 2m-core, lines of m_ui.nphc.lty 1 are
. ignored, and components are identified on the remaining lines. In a

3m-core, lings of multiplicity ! and 2 are ignored, and so on. Figure

© 6.8 shows a simple 3m-core. All the points are connected through
- paths of multiplicity greater than or equal to 3, the weaker connec-

tions of the points to those outside the core being disregarded. As

5 poinis B and C are connected by a line of multiplicity 4, they form

a two-member 4m-core. Tt is the nesting of cores within one another
that discloses the overall shape of the network.”’

b F

Figure 6.8 A 3m-core

Seidman’s idea of the core collapse sequence can be extenc}ed to
m-cores: indeed, the idea is far simpler to apply to them. This can
be illustrated with the sociogram in Figure 6.9. Lines are progress-
ively removed as the value of m is increased, and the remainder at
each level of m is the number of points that wiil disappear_ when m
is increased to m+ 1. Two points disappear when m is increased
from 1 to 2, but no further points disappear until m reaches 4 _If_m
is increased to 5, all points will disappear, as the highest multlphctt'y
in the graph is 4. Thus, the m-core collapse sequence for this
component is: (0, 0.28, 0, 0.28, 0.43). . .

To complete this section it is necessary {0 cgnsnder the analysis of
nesting in relation to cyclic components, Cyclic components can, of
course, be identified in valued graphs by using an appropriate
‘slicing’ value. By varying the slicing criterion it is possible to arrive

_at an analysis of nested components — in this case, of nested cyclic

components.'® _ o

Taken together, the various extensions of the basic idea of .the
simple component provide a powerful set of concepts for analysing
the level of fragmentation in a network. They supplement the
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Value of m m-cores Remainder  Remainders as proportiori

0 {A.B,C,D.E F, G} 0 0

1 {AB.C,DEF G} 2 0.28
2 {A.B.C,D,E! 0 0

3 {A,B,C,DE) 2 0.28
4 {A B C} 3 043
5 No points left

Figure 6.9  Collapse of an m-core

measurement of density and help to overcome many of its limita.
tions by highlighting the overall shape of the network. A full outlin

comparison of the global structures of networks of comparable size::
would involve measures of the overall density of the networks and::
their inclusiveness, the number and sizes of their components and
their densities, and the nested structures of the components and their -

core collapse sequences,

Cliques and their Intersections

The concepts discussed so far in this chapter have gone some way

towards formalizing the ideas of those early writers on social
networks who talked about the ‘cliques’ discovered in the Haw-
tha_rne works and in Yankee City. But I have not yet considered the
sociometric concept of the clique itself, which has arisen in discus- -
sions of the sociological applications of graph theory. There are a:
number of competing usages of the word ‘clique’, but the most
widely held view is that its essential meaning is that of the ‘maximal
complete sub-graph’ (Harary, 1969; Luce and Perry, 1949). That is -
to say, a cligue is a sub-set of points in which every possible pair of

points is directly connected by a line and the clique is not contained

in any other clique.” As Figure 6.10 shows, a three member clique
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- Figure 6.10 Cligues of varying sizes

contains three lines, a four member clique contains six lines, a five
member clique has ten lines, and so on.* While a ‘component’ is
- maximal and connected (all points are connected to one another
" through paths), a ‘clique’ is maximal and complete (all points are

adjacent to one another).
Doreian (1979: 51-2) has spelled out some of the formal proper-

ties of cliques. The basic consideration is that all cliques are

maximal sub-sets of points in which each point is in a direct and
reciprocal reiation with all others. In an undirected graph all lines
are, by definition, reciprocal relations, and so a cligue detection
procedure will consider all the lines in the graph. In directed graphs,
however, this is not the case: its matrix is asymmetrical, and only
the reciprocated lines should be considered. In directed graphs,
therefore, network analysis identifies what might be called strong
cligues. On the other hand, if the direction of the lines is dis-
regarded and simply the presence or absence of a relation is
considered, the analysis treats all lines as if they were reciprocated
and results in the identification of weak cliques.*

This concept of the maximal complete sub-graph is rather restric-
tive for real social networks, as such tightly knit groups are very
uncommon. For this reason, a number of extensions to the basic idea
have been proposed.” The earliest of these extensions was the
concept of the n-clique, which, it was claimed, is much closer to
people’s everyday understanding of the word ‘cligue’. In this
concept, # is the maximum path length at which members of the
clique will be regarded as connected. Thus, a l-cligue is the
maximal complete sub-graph itself, the set in which all pairs of
points are directly connected at distance 1. A 2-clique, on the other
hand, is one in which the members are connected either directly (at
distance 1) or indirectly through a common neighbour (distance 2).
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1-clique 2-clique 3-clique

Figure 6,11 n-cliques of size 4

The value of » which is to be used in an analysis is chosen by the
researcher, and a progressive increase in the value of n results in a*
gradual relaxation of the criterion for clique membership (see Figure |

6.11). A 3-clique, for example, is a looser grouping than a 2-clique.

The maximum value that can be given to # is one less than the total

number of points in the graph. In practice, however, most large

connected graphs are joined into a single n-clique at much shorter .

path lengths than this.

N-cliques can be identified through the relatively simple matrix .
multiplication methods that are available in many spreadsheet pro--
grams or in specialist network analysis programs. Multiplying the -
adjacency matrix by itself, for example, produces a matrix of path
distances. The square of the matrix shows all distance 2 connections,

the cube of the matrix shows distance 3 connections, and so on.

Matrix multiplication is, however, a rather inefficient method of
clique detection, and most specialist network analysis programs use

a variant of the back-tracking procedure used for component detec-

tion. Because of the ease with which this can be done, clique
detection for undirected graphs is a feature that is built into most
social network analysis programs.>® It is possible to analyse n-'
cliques in a valued graph by applying a slicing criterion of the same
kind as was discussed in the previous section. Such an analysis -
would generate a set of nested cliques for each level of n: nested -

2:cliques, nested 3-cliques and so on. -
- There are two important limitations on the use of the n-clique

idea. The first and most important is that values of n greater than 2 -

can be difficult to interpret sociologically. Distance 2 relations can

be straightforwardly interpreted as those which involve a common

neighbour who, for example, may act as an intermediary or a

broker. Path lengths greater than 2, however, involve rather more °

distant and weak links. While long, weak chains of connection may

be -very important for the overall structure of the network, as :
Granovetter and the ‘small world’ analysts have argued, it is not at

I
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+ ali clear that they are appropriate for the definition of cliques. The
_ very idea of a clique seems to demand relatively close linkages. It is,
: therefore, difficult to justify the identification of n-cliques with
¢ values of n other than 1 or 2.

(i1} A (i) A

{0 A
: a G B@C Bﬁc
. D =3 S E D E
F ' .

Figure 6.12  Sub-graphs and 2-cliques

The second hmitation on the use of the n-clique concept is the
fact that intermediary points on the paths of the n-clique may not
themselves be members of the clique. For example, points A, B, C,
D and E in graph (i) of Figure 6.12 form a 2-clique, but the distance
2 path that connects D and E runs through the non-member F. The
‘diameter’ of the clique — the path distance between its most distant
members - may, then, be greater than the value of n that is used to
define the clique. Thus, the set {A,B,C,D.E} comprises a 2-clique,
but it has a diameter of 3. Both Alba (1973, 1982) and Mokken
(1974) have taken up this problem and proposed some further
extensions to the idea of the n-clique. Mokken has proposed that a
more useful concept is one that would limit the diameter of the n-
clique to #. That is to say, the researcher accepts, for example,
distance 2 paths for the identification of clique members, but also
requires that the diameter of the clique be no greater than 2. This
concept he terms the n-clan. Graphs (ii) and (iii) in Figure 6.12 are,
unlike graph (i), 2-clans.*

A different extension of the basic clique idea is that of the k-plex,
proposed by Seidman and Foster (1978). Whereas the concept of
the n-clique involves increasing the permissible path lengths that
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® A W " a k-plex can be extended to valued graphs by using a slicing
9 . criterion to analyse ‘nested k-plexes’. ‘

In any but the smallest graphs, there will be a considerable
: amount of overlap among the various n-cliques and k-plexes of
. which the graph is composed. Cligue-analyses (of both n-cliques
- and k-plexes) will tend to produce long lists of overlapping cliques,
. and these results may be difficult to interpret. A relatively dense
. petwork will tend to comprise a large number of overlapping
© cligues, with many points being members of numerous different
-~ cliques. A graph with 20 points and a high density, for example,
~ could contain approaching 2000 overlapping cliques. In these cir-
~ cumstances, the density of the overlap among cliques may be more
significant than the composition of the cliques themselves. Alba
(1982) has, therefore, proposed that social network analysts should
use concepts that explicitly recognize this fact of overlap. Drawing
on work undertaken with Kadushin and Moore (Alba and Kadushin,
1976: Alba and Moore, 1978; Kadushin, 1966, 1968}, he argued that
- the concept of the ‘social circle’ can be used to grasp significant
structural features of social networks.

This idea was devised by Kadushin from the initial insights of
Simmel (1908), who tirst outlined the importance of the ‘intersection
of social circles’. The cohesion of a social circle is not founded on
the direct ‘face-to-face’ contacts of its members, but on the existence
of short chains of indirect connections that weld them together.
Circles ‘emerge’ from interaction and may not be visible to their
participants, as their boundaries are only loosely defined by the
ramification of these indirect connections.

Alba’s contribution was to formatize the idea of the circle in
sociometric terms by relating it to other graph theoretical concepts.
His basic argument is that overlapping cliques can be aggregated
into cireles if they have more than a certain proportion of their
members in common. Alba suggests that the most appropriate
procedure is to use a kind of ‘snowballing” method in which cliques
are aggregated into progressively larger, and looser, circles. The
first step in an analysis of circles is to identify 1-cliques of size 3
(triads) and then to merge into a circle all of those cliques that
differ by only one member. Put in a slightly different way, the
criterion for identifying circles in the first step is that cliques are
merged into a circle if two-thirds of their members are identical.
The result of this first step, then, might be one or more circles,
together with a number of separate cliques and isolated points. At
the second step the remaining cliques might be merged with those
circles with which there is a lower level of overlap. Alba suggests

E F

Figure 6.13 A 3-cligue and a 3-plex

define the clique, the concept of the k-plex involves reducing the:
number of other points to which each point must be connected..
Thus, the points in a k-plex are connected at distance 1, but not ajl
points will be connected to one another, A k-plex is a set of points -
in which each point is adjacent to all except & of the other points.2®
Thus, if k=1, a l-plex is equivalent to a I-clique, and so it is a -
maximal complete sub-graph. Each member of the l-plex is con-
nected to n— 1 other points. When k is equal to 2, all members in the
2-plex are connected to at least n-2 of the other members, but the -
2-plex may not be a 2-clique. In Figure 6.13, graph (i) is a 3-cligue, -
as all pairs of points are connected at distance 3 or less. It is. not,
however, a 3-plex, as A, C, E and F are each connected to fewer
than three other members. Graph (ii) is both a 3-cliqgue and a
3-plex.?®

¥y An_ir_nportant consideration in the analysis of k-plexes is that of
the mimimum size which the researcher will regard as acceptable for
a plex. In particular, higher values of k ought to lead to a higher cut-
off threshold for the size of acceptable k-plexes. When k takes a low
value, k-plexes can be relatively small, but higher levels of k will
produce trivial results unless the minimum size of the acceptable k-
p!exes_ is increased. The reason for this is that small sub-graphs at
high !§vels of k will be only minimally cohesive. As a rule of thumb,
the minimum size for an acceptable k-plex should be k+2. Never-
theless, the concept of the k-plex, considered as a generalization of
the basic clique idea, seems to grasp more of the idea of cohesion
than does the n-clique, especially when values of n higher than 2 are
used.”’” As in the case of n-cliques and components, the basic idea of
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Components and Cisation Circles

The sociology of science is one of the principle research areas in
which a number of studies have invoked the idea of the social
network. Crane’s study (1972) of the ‘invisible college’ was one of
the earliest pieces of research to use the idea of networks of
mmunication among scientists as a way of explaining the growth
of scientific knowledge. Crane’s study involved the use of question-
‘naires to obtain information on patterns of communication and
influence among rural sociologists, and she analysed such pheno-
mena as co-publication and advice on areas of research specializa-
tion. Her concern was to outline the size and significance of the
invisible college of collaborators in the research specialism, but few
sociometric concepts were used to uncover its internal structure.
Mutlins (1973) adopted a different strategy. He looked at work in
-~ theoretical sociology and wied to discover the sub-groups of
specialists that existed. Using material on education and career
appointments as well as co-publication, he constructed sociograms
for structural functionalist theory, small group theory, causal theory
and a number of other areas.” Unfortunately, the boundaries of the
research specialisms were not themselves derived from sociometric
analyses, and so Mullins’s work gives little idea of the overall
structure of components and cligues in theoretical sociology.
Gattrell’s work, however, is one of the few studies in this arca to
have adopted a rigorous sociometric approach to the discovery of
network structure. Gattrell (1984a, b) has used the techniques of Q-
analysis (see n. 17 above) to disclose the structure of components in
research groups. It is unnecessary to discuss the details of this
complex procedure, as Gattrel! used it simply in order to construct a
nested mode! of components, and his ideas can readily be translated
into the terminology of this chapter.”® Gattrell identified a set of
geographical papers published between 1960 and 1978, which he
regarded as the key clements in the literature on spatial modelling.
Taking these papers as his population for study, he constructed a
network of citation relations from their bibliographics and foot-
notes. Where the anthor of paper A cites the author of paper B, for
example, a citation relation is directed from A to B. These citations
can, therefore, be compiled into a binary matrix of directed lines. As
the rows and columns of the matrix were ordered chronologically,
by the date of publication, it was easy to assess any obvious shifts in
citation patterns. If, for example, authors cited only relatively recent
papers, the ‘1" entries in the matrix would lie close to the diagonal.
The more scattered are the ‘1’ entries, the more widespread in time
are citations. Any clustering around the diagonal would show
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1-cliques: {A.B.C} {B.C.D} {B.D.E} {B.F.G! {B,G,E}
tst step circles: {AB,C.D.E} {BF,GE!}
2nd step circles: {AB.C.D.EFG)

Figure 6.14 Intersecting social circles

that a one-third overlap in membership might be appropriate in this
second step. The result of this aggregation will be a large circle or
a set of smaller circles surrounded by a periphery of less well-
connected cliques and points. Figure 6.14 shows a simplified

analysis of social circles. Two citcles are identified at step I, but
they are merged into a single circle at step 2. As in so many graph
theoretical procedures, it is important to note that the fevel of
overlap that is chosen for aggregation is arbitrary. The levels
suggested by Alba were chosen on common-sense mathematical
g_rounds, and it will be necessary for researchers to decide whether
his suggestions make sense in specific applications. '

=.'The measurement of circles, therefore, takes the extent of thé
overlap between cliques as a measure of the distance between them.
Tl_1e particular way in which the cliques have been identified (as n-
cliques or k-plexes, for example) hardly matters in this procedure, as
the subtle differences in the procedures rapidly disappear during ,the
process of aggregation. In practice, the end result of an aggregation

into circles is barely affected by the initial clique detection method
that is used.”



122 Social nerwork analysis

support for Price’s hypothesis (1965) of the ‘immediacy effect’
citation, but Gattrell found little support for this idea.

The main aim of Gattrell’s paper was to examine the component:

structure of the citation data, and from his initial matrix he com:

piled two analyses. First, he analysed the structure of the network -:

of papers cited (the rows), and, second, he analysed the structure o
the citing papers (the columns). Two cited papers are regarded a

being connected to one another if they are each cited in the same:

source, and a component comprises a set of papers that are con
nected through a continuous chain of such connections.’! Whery
two cited papers have more than one of their citers in common
they are connected at a higher level of multiplicity, and it is possible
to investigate the nesting of components at various levels o
multipkcity.

Gattrell found that, at the lowest level, 49 of the papers wer

formed into a single large component. But at a multiplicity level of:
6, this had shrunk to seven members. The seven papers in this
component formed the core of the network. At the heart of this:
group were two highly cited papers by Hudson (1969) and Pedersen::
(1970). Hudson received 17 citations and Pedersen received 157
citations, but only eight of their citations were common to orie:
another. Thus, Hudson and Pedersen formed a component of size 2

at multiplicity 8 (calculated from Gattrell, 1984b: 447). Gattrell
concludes that: o

The general picture . . . is of a small group of highly cited papers, to
which other literature is connected at lower . . . [muldplicity] levels.”

A small component of papers concerned with ‘hierarchical diffusion

emerges, and other papers are added to this nucleus as a result of their
being cited by some of the sources that cite the seminal papers, (Gattrell,

1984b: 448)

The analysis of components and their cores, then, allows the’
investigation of the structure of influence in scientific research, such -
investigations poinling to the important role played by scientific
cliques and circles in the promotion of particular ideas and’

approaches. The analysis of nested components in citation patterns
highlights the ‘star’ cited papers and the extent to which there is any-
consensus over their star rating.

7

Positions, Roles and Clusters

The network concepts that have been discussed so far in this book

have mainly been concerned with the particular patterns of direct
and indirect contacts that agents are able to maintain with one
another. They have been concerned with such things as the abilities
of agents to join with one another in cohesive social groupings, their
abilities to influence the actions of those particular others to whom
they are connected, and so on, However, I have, at a number of
points, alluded to the analysis of ‘positions’ rather than individual
agents and their connections. Warner and Lunt (1942), for example,
attempted to investigate the formation of distinct social positions,
and Nadel (1957) argued that social roles were the central elements
in social network analysis. The key concept in recent discussions of
this problem is the idea of ‘structural equivalence’. This involves a

- concern for the general rypes of social relations that are maintained

by particular categories of agents. While two people may have direct
connections to totally different individuals, the type of relations that
they have with these others may, nevertheless, be similar. Two
fathers, for example, will have different sets of children to whom
they relate, but they might be expected to behave, in certain respects,
in similar ‘fatherly’ ways towards them. The two men, that is to say,
are ‘structurally equivalent’ to one another. They occupy the same
social position — that of ‘father’ — and so are interchangeable so
tfar as the sociological analysis of fathers is concerned. The idea
behind siructural equivalence, therefore, is that of identifying those
uniformities of action that define social pesitions. Once the positions
have been identified, the networks of relations that exist between the
positions can be explored.

Social positions are occupied by agents who are ‘substitutable’
one for another, with respect to their relational ties (Burt, 1982,
Sailer, 1978). They are, in certain important respects, interchange-
able. Although social positions are manifest only in the particular
relations that link specific agents, they cannot be reduced to these
concrete connections. They involve more enduring relations that
are reproduced over lime. These enduring relations among social
positions constitute a distinct area of structural analysis.





