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PELE MEETS JOHN VON NEUMANN IN
THE PENALTY AREA

ool

I thought there was nothing worth publishing until the

Minimax Theorem was proved. As far as I can see, there

could be no theory of games without that theorem.
—Joun voN NEUMANN 1953

Much real-world strategic interaction cannot be fully understood

with current tools. To make further progress, the field needs

to gain more experience in applications to the real world.
—Game Turory SocieTy 2006

Tur HUNGARIAN NATIONAL SOCCER TEAM OF THE 19508 WAS ONE OF THE
greatest soccer teams in the history of the 20th century. It played against
England at Empire Wembley Stadium on November 25, 1953, in front
of 105,000 people, in what was termed “the match of the century.”
Hungary was the world’s number one ranked team and on a run of 24
unbeaten games. England was the world’s number three ranked team,
and unbeaten at Wembley for 90 years against teams from outside the
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British Isles. In what was then considered a shocking result, Hungary
beat England 6-3.

As a preparation for the 1954 World Cup in Switzerland, on May 23,
1954, England visited Budapest in the hope of avenging the 6-3 defeat.
Instead, Hungary gave another master class, beating England 7-1. This
score still ranks as England’s worst defeat.

In those years, soccer was already the world’s most popular sport, and
Hungary was the best soccer team in the world—often considered one
of the four or five best teams in history. As Olympic champion in 1952,
not surprisingly, Hungary was the favorite to win the upcoming World
Cup. Consistent with these expectations, Hungary easily beat Korea 9-0
and West Germany 8-3 in the first round. Then, it beat Brazil 4-2 in the
quarterfinals and Uruguay, which had never been beaten in World Cup
games, 4-2 in the semifinals. Its opponent in the final was West Ger
many, which surprisingly had managed to win all of its games after its
initial defeat in the first round to Hungary. In the Wankdorf Stadium in
Bern, 60,000 people saw Germany beat Hungary 3-2 in what was called
“the Miracle of Bern.” The sports announcer shouted in the background
of the final scene of Rainer Werner Fassbinder’s film The Marriage of Maria
Braun, featuring this event, “Deutschland ist wieder was!” (Germany is
something again!). This victory represented a powerful symbol of Ger-
many’s recovery from the ravages of the Second World War.

It is probably safe to assume that there were few Hungarians in the
world in the 1950s who were not proudly aware of the accomplishments
of their national team in the world’s most popular sport. Indeed, Neu-
mann Janos, born on December 28, 1903, in Budapest, a superb scientist
who had migrated to the United States and was then known as John von
Neumann, could not have been completely ignorant of the team’s success.

John von Neumann is considered a scientific genius of the 20th cen-
tury. A brilliant mathematician and physicist, he left a profound mark,
with fundamental contributions in theoretical physics, applied physics,
decision theory, meteorology, biology, economics, and nuclear deter-

rence; he became, more than any other individual, the creator of the -

modern digital computer:

“He was a genius, the fastest mind I have ever encountered. . . . He
darted briefly into our domain, and it has never been the same since.”
Paul Samuelson (Nobel laureate in Economics, 1970, quoted in Mac-
rae 1992) is referring here to the three fundamental contributions von
Neumann made in economics: first, his 1928 paper “Zur Theorie der
Gesellschaftsspiele,” published in Mathematische Annalen, which estab-
lished von Neumann as the father of game theory; second, his 1937
paper “A Model of General Equilibrium” (translated and published in
1945-46 in the Review of Economic Studies); and third, his classic book
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Theory of Games and Economic Behavior, coauthored with Oskar Morgen-
stern in 1944 (Macrae 1992).

As a mathematician, von Neumann’s own philosophical views
induced him to choose to work in a variety of fields, and his selection of
research questions and the resulting measure of his success were largely
influenced by aesthetic v«alues (von Neumann 1947) However, he also
warned that mathematics loses much of its creative drive when too
far removed from empirical sources. And yet, despite the place in the

‘world of soccer thtit Hungary occupied, and despite soccer’s place as the

world’s most popular game, everything indicates that he was not par-
ticularly interested in sports as an empirical source, or in the empirical
verification of game theory theorems with sports data or with any data:

The truth is that, to the best of my knowledge, my father had abso-
lutely no interest in soccer or any other team sport, even as a specta-
tor or news-follower. Ironically, he wasn’t much on games in general
(though he loved children’s toys, which he could often persuade to
yield up some principle of mathematics or physics); but his game-
playing didn’t go much beyond an occasional game of Chinese
checkers at my request. I don’t believe he even played poker.

Warmest regards, Marina von Neumann Whitman
(Private email correspondence, October 13, 2010)

As Kreps (1991) notes, “the point of game theory is to help economists
understand and predict what will happen in economic, social and politi-
cal contexts.” But if von Neumann considered, as the initial quotation
suggests, that there could be no theory of games without proving the
minimax theorem, then it seems appropriate to think that he would have
considered that there could be no empirical applicability of the theory of
games without first having verified empirically that theorem. As noted
below, the minimax theorem was not empirically verified until 2003.

The empirical verification of strategic models of behavior is often
difficult and problematic. In fact, testing the implications of any game
theoretical model in a real-life setting has proven extremely difficult in
the economics literature for a number of reasons. The primary reason is
that many predictions often hinge on properties of the utility functions
and the values of the rewards used. Furthermore, even when predictions
are invariant over classes of preferences, data on rewards are seldom
available in natural settings. Moreover, there is often great difficulty in
determining the actual strategies available to the individuals involved,
as well as in measuring these individuals’ choices, effort levels, and the

1 Not everyone agrees that this is the point. See Rubinstein (2012).
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incentive structures they face. As a result, even the most fundamental
predictions of game-theoretical models have not yet been supported
empirically in real situations.

Von Neumann published the minimax theorem in his 1928 article
“Zur Theorie der Gesellschaftsspiele.” The theorem essentially says,

For every two-person, zero-sum game with finitely many strategies,
there exists a value V and a mixed strategy for each player, such that:

(a) Given player 2’s strategy, the best payoff possible for player 1 is
V, and

(b) Given player 1’s strategy, the best payoff possible for player 2
is = V.

Equivalently, Player 1’s strategy guarantees him a payoff of V
regardless of Player 2’s strategy, and similarly Player 2 can guarantee
himself a payoff of —7V.

A mixed strategy is a strategy consisting of possible moves and a prob-
ability distribution (collection of weights) that corresponds to how fre-
quently each move is to be played. Interestingly, there are a number of
interpretations of mixed strategy equilibrium, and economists often dis-
agree as to which one is the most appropriate. See, for example, the inter-
esting discussion in the classic graduate textbook by Martin Osborne
and Ariel Rubinstein, 4 Course on Game Theory (1994, Section 3.2).

A game is called zero-sum or, more generally, constant-sum, if the
two players’ payoffs always sum to a constant, the idea being that the
payoff of one player is always exactly the negative of that of the other
player. The name “minimax” arises because each player minimizes the
maximum payoff possible for the other. Since the game is zero-sum, he
or she also minimizes his or her own maximum loss (i.e., maximizes his
or her minimum payoff).

Most games or strategic situations in reality involve a mixture of
conflict and common interest. Sometimes everyone wins, such as when
players engage in voluntary trade for mutual benefit. In other situations,
everyone can lose, as the well-known prisoner’s dilemma situations illus-
trate. Thus, the case of pure conflict (or zero-sum or constant-sum or strictly
competitive) games represents the extreme case of conflict situations
that involve no common interest. As such, and as Aumann (1987) puts
it, zero-sum games are a “vital cornerstone of game theory.” It is not a
surprise that they were the first to be studied theoretically.

The minimax theorem can be regarded as a special case of the more
general theory of Nash (1950, 1951). It applies only to two-person, zero-
sum or constant-sum games, whereas the Nash equilibrium concept can
be used with any number of players and any mixture of conflict and
common interest in the game.
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Before undertaking a formal analysis, let us take a brief detour and
look at the following play in soccer: a penalty kick. A penalty kick is
awarded against a team that commits one of the 10 punishable offenses
inside its own penalty area while the ball is in play. The world govern-
ing body of soccer, the Fédération Internationale de Football Associa-
tion (FIFA), describes thesimple rules that govern this play in the offi-
cial Laws of the Game (FfT"A 2012). First, the position of the ball and the
players are determined as follows:

e “The ball is fjlaced on the penalty mark in the penalty area.

» The player taking the penalty kick is properly identified.

o The defending goalkeeper remains on the goal line, facing the
kicker, between the goalposts, until the ball has been kicked.

o The players other than the kicker are located inside the field of
play, outside the penalty area, behind the penalty mark, and at
least 10 yards (9.15 meters) from the penalty mark.”

Then,

o “The player taking the penalty kicks the ball forward.
» He does not play the ball a second time until it has touched another

player.
o A goal may be scored directly from a penalty kick.”

The credit of inventing this play belongs to William McCrum.
McCrum was a wealthy linen manufacturer, raconteur, cricketer, and
the goalkeeper of Milford Everton, a small club in County Armagh,
which played the inaugural season of the Irish Championship in 1890-
91. History does not fully record how good a keeper he was, but he was
certainly kept busy during that first Irish League season. Milford Ever-
ton finished at the bottom of the league with no points, a record of 10
goals scored, and 62 conceded, and the team was promptly relegated.
McCrum may not have been one of the world’s greatest goalkeepers, but
he was a gentleman and justly proud of his reputation for good sports-
manship. His obituary in 1932 paints a picture of a man of honor who
was frustrated and angry at the “win-atall-costs” attitude that was poi-
soning his beloved soccer (Miller 1998).

McCrum believed that anyone who failed to abide by the spirit of
the game should face a sanction that would punish not just the indi-
vidual offender but also the whole team. Holding an influential posi-
tion in the Irish Football Association, he submitted his proposal for a
“penalty kick” to the association in 1890. Jack Reid, general secretary
of the association, then formally forwarded McCrum’s proposal to the
international board for consideration at the board meeting to be held on
June 2, 1890, and, he hoped, its subsequent incorporation into the laws.
It immediately ran into a storm of protest. The reception was ferocious.
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Press, administrators, and players publicly derided the idea. Some com-
mentators even nicknamed the proposal the “death penalty,” implying
that it would be the death of the game as they knew it. Many people did
not want to introduce a rule that effectively conceded that teams and
players often resorted to unsporting methods. It was in this atmosphere
that the Irish Football Association decided to withdraw the proposal.
The international board, however, agreed to discuss the issue at the next
meeting one year later. On June 2, 1891, somewhat surprisingly, the
atmosphere was quite different and the proposal passed unanimously.
The penalty kick was born, albeit not in the form that we know it today.
The new law came into force immediately, and, to be fair, it was not a
huge success. There were obvious flaws in the first draft, and players—
particularly goalkeepers—were quick to take advantage. Furthermore,
gentlemen did not commit fouls. It took almost 40 years, until 1929,
before the penalty law finally became what William McCrum intended
it to be—an effective punishment for foul play. He lived to see his idea
reach fruition but then died, a year later, after a long illness. (Trivia

alert: On September 14, 1891, the Wolverhampton Wanderers were

awarded the first penalty kick in a football league in a game against
Accrington Stanley. The penalty was taken and scored by “Billy” Heath
as the Wolves went on to win the game 5-0.)

McCrum’s legacy is enormous, considering the worldwide impor-
tance of soccer today and the significance of the penalty kick within the
game. He would have, no doubt, been proud to see how central his idea
became to the overall development of the game. However, not even in
his wildest dreams could he have anticipated that his penalty kick could
also provide the data necessary to verify for the first time a mathemati-
cal theorem that was fundamental in economics: the minimax theorem.
This is the objective of this chapter.

A formal model of the penalty kick may be written as follows. Let
the player’s payoffs be the probabilities of success (“score” for the kicker
and “no score” for the goalkeeper) in the penalty kick. The kicker wishes
to maximize the expected probability of scoring, and the goalkeeper
wishes to minimize it. Consider, for example, a simple 2X2 game-
theoretical model of player’s actions for the penalty kick and let, denote
the kicker’s probablhtles of scoring, where i = {L,R} denotes the kicker’s
choice and j= {L,R} the goalkeeper’s choice, with L=left, R = right:

L R
L 7, .
R nRL ﬂRR

Each penalty kick involves two players: a kicker and a goalkeeper. In
the typical kick in professional leagues, the ball takes about 0.3 seconds
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to travel the distance between the penalty mark and the goal line. This
is less time than it takes for the goalkeeper to react and move to the pos-
sible paths of the ball. Hence, both kicker and goalkeeper must move
simultaneously. Players have few strategies available, and their actions
are observable. There are no second penalties in the event that a goal
is not scored. The initial Jocations of both the ball and the goalkeeper
are always the same: “he ball is placed on the penalty mark, and the
goalkeeper positions himself on the goal line, equidistant from the goal-
posts. The outconie is decided, in effect, 1mmed1ately (roughly within
0.3 seconds) after players choose their strategies.

The clarity of the rules and the detailed structure of this simultane-
ous one-shot play capture the theoretical setting of a zero-sum game
extremely well. In this sense, it presents notable advantages over other
plays in professional sports and other real-world settings. In baseball,
pitchers and batters have many actions available, and there are numer-
ous possible outcomes. In cricket and tennis, possible outcomes are
limited, but players also have many strategic choices available. Even in
these sports, the direction of the serve or the pitch, its spin, and the
initial location of the opponent are all important strategic choices that
are hard to quantify. For instance, the position of the player returning a
tennis serve or attempting to hit a baseball affects the choice of strategy
by the server or the pitcher. A key additional difficulty is that a serve or
a pitch is not a simultaneous (static) but a sequential (dynamic) game, in
that the outcome of the play is typically not decided immediately. Aftera
player serves or a pitcher throws, often there is subsequent strategic play
that plays a crucial role in determining the final outcome. Each point
in these situations is more like part of a dynamic game with learning,
where each player plays what in economics is known as a multi-armed
bandit problem at the start of the match.? As such, these situations devi-
ate substantially from the theoretical postulates put forward here, and
notable difficulties arise both in modeling nonsimultaneous situations
theoretically and in observing all strategic choices in a given play.

The penalty kick game has a unique Nash equilibrium in mixed strat-
egies when

2 In a dynamic game, there probably are spillovers from point to point, whereas in
a standard repeated zero-sum game, especially if repeated infrequently, there are no such
payoff spillovers. For instance, in tennis, having served to the left on the first serve (and
say, faulted) may effectively be “practice” in a way that makes the server momentarily bet-
ter than average at serving to the left again. If this effect is important, the probability that
the next serve should be inside the line should increase. In other words, there should be
negative serial correlation in the choice of serve strategies rather than, as will be shown
later, the random play (no serial correlation) that is predicted by minimax. Consistent
with this hypothesis, the results in Walker and Wooders (2001) confirm that tennis players
switch serving strategies too often to be consistent with random play.
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g = %y < gy
Trr = Tpr < g

If the play in a penalty kick can be represented by this model, then equi-

librium play requires each player to use a mixed strategy. In this case,
the equilibrium yields two sharp testable predictions about the behavior
of kickers and goalkeepers:

1. Success probabilities—the probability that a goal will be scored
(not scored) for the kicker (goalkeeper)—should be the same across
strategies for each player.

Formally, let g, denote the goalkeeper’s probability of choosing
left. This probability should be chosen so as to make the kicker’s
probability of success identical across strategies. That is, g, should
satisty pk, = pkg, where

th,=g m,+1-g)- rp
phy=g mpy + (1-g) - Top

Similarly, the kicker’s probability of choosing left, £,, should be

3 L?
chosen so as to make the goalkeeper’s success probabilities identi-
cal across strategies, Pg, = pg,, where

pg =k (A=) + (1-k)  (1—my)
=k (L=mp) + (1—k) - (1—my,)

2. Each player’s choices must be serially independent given constant
payoffs across games (penalty kicks). That is, individuals must
be concerned only with instantancous payoffs, and intertempo-
ral links between penalty kicks must be absent. Hence, players’
choices must be independent draws from a random process. There-
fore, they should not depend on one’s own previous play, on the
oPponent’s previous play, on their interaction, or on any other pre-
Vvious actions.

The intuition for these two testable hypotheses is the following. In a
game of pure conflict (zero-sum), if it would be disadvantageous for you
to let your opponent see your actual choice in advance, then you benefit
by choosing at random from your available pure strategies. The propor-
tions in your mix should be such that the opponent cannot exploit your
choice by pursuing any particular pure strategy out of those available
to him or her—that is, each player should get the same average payoff
when he or she plays any of his or her pure strategies against his or her
opponent’s mixture.

In what follows, we test whether these two hypotheses can be rejected
using classical hypothesis testing and real data. Incidentally, this reject-no
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reject dichotomy may be quite rigid in situations where the theory makes
precise point predictions, as in the zero-sum game that we study.®

Data were collected on 9,017 penalty kicks during the period Septem-
ber 1995-June 2012 from professional games in Spain, Italy, England,
and other countries. The data come from a number of TV programs, such
as the English Soccer Leaguein the United States, Estudio Estadio and Canal+

Fithol in Spain, Novantesimo Minuto in Italy, Sky Sports Football in the United
Kingdom, and others. These programs review all of the best plays in

 the professional games played every week, including all penalty kicks
that take place in each game. The data include the names of the teams

involved in the match, the date of the match, the names of the kicker and
the goalkeeper for each penalty kick, the choices they take (left, center,
or right), the time at which the penalty kick is shot, the score at that time,
and the final score in the match. They also include the kicker’s kicking
leg (left or right) and the outcome of the shot (goal or no goal).* Around
80% of all observations come from league matches in England, Spain,
and Italy’ Together with Germany, these leagues are considered to be
the most important in the world.

There are two types of kickers, depending on their kicking legs: left-
footed and right-footed. Most kickers in the sample are right-footed, as
is the case in the population of soccer players and in the general popu-
lation. These two types have different strong sides. Left-footed kickers
shoot more often to the lefthand side of the goalkeeper than to the right-
hand side, whereas right-footed kickers shoot more often to the right
hand side. Basic anatomical reasons explain these different strengths.

To deal with this difference, it makes sense to “normalize” the game
and rename choices according to their “natural sides.” In other words,
given that the roles are reversed for right-footed kickers and left-footed
kickers, it would be erroneous to treat the games associated with these
different types of kickers as equal. For this reason, in the remainder
of the chapter, players’ choices are renamed according to the kickers’
natural sides. Whatever the kicker’s strong foot actually is, R denotes
“kicker’s natural side” and L denotes “kicker’s nonnatural side.” When
the kicker is right-footed, the natural side R is the righthand side of the
goalkeeper, and when the kicker is left-footed, it is the left-hand side
of the goalkeeper. This notation means, for instance, that a left-footed

3 O'Neill (1991) suggests for these cases an alternative that is much less rigid than
the reject-no reject dichotomy: a Bayesian approach to hypothesis testing combined with
a measure of closeness of the results to the predictions.

4 The outcome “no goal” includes saves made by the goalkeeper and penalties shot
wide, to the goalpost, or to the crosshar by the kicker, each in separate categories.

5 The rest come from cup competitions (elimination tournaments that are simulta-
neously played during the annual leagues) and from international games.
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kicker kicking to the goalkeeper’s right is the same as a right-footed
kicker kicking to the goalkeeper’s left. Thus, the goalkeeper plays the
same game when he or she faces a left-footed or a right-footed kicker, but
the actions are simply identified differently. All that matters is whether
the kicker and goalkeeper pick the kicker’s strong side R or the kicker’s
weak side L. Payoffs are the same for the two kicker types up to the
renaming of the actions. The same argument goes for goalkeepers. They
tend to choose right more often than left when facing a rightfooted
kicker and left more often than right when facing a left-footed kicker, but
the scoring rates are statistically identical when they face the two player
types after the renaming of the actions.

Table 1.1 shows the relative proportions of the different choices made
by the kicker and the goalkeeper (Left (L), Center (C), or Right (R)), with
the total number of observations in the second leftmost column. The first
letter refers to the choice made by the kicker and the second to the choice
made by the goalkeeper, both from the viewpoint of the goalkeeper. For
instance, “RL” means that the kicker chooses to kick to the righthand side
of the goalkeeper and the goalkeeper chooses to jump to his or her left.
The right-most column shows the scoring rate for a given score difference.
The term “score difference” is defined as the number of goals scored by
the kicker’s team minus the number of goals scored by the goalkeeper’s
team at the time the penalty is shot. For instance, a ~1 means that the
kicker’s team was behind by one goal at the time of the penalty kick.

The strategy chosen by goalkeepers coincides with the strategy fol-
lowed by kickers in about half of all penalty kicks in the data set. Most
are RR (30.5%); 16.7% are LL, and 0.9% are CC. Kickers kick to the cen-
ter relatively rarely (6.8% of all kicks), whereas goalkeepers appear to
choose Ceven less often (3.5%), perhaps because they already cover part
of the center with their legs when they choose R or L. The percentage of
kicks where players’ strategies do not coincide with each other is almost
equally divided between LR (21.6%) and RL (21.7%).

A goal is scored in 80.07% of all penalty kicks. The scoring rate is
close to 100% when the goalkeeper’s choice does not coincide with the
kicker’s, and it is over 60% when it coincides. The average number of
goals per match in the sample is 2.59. It is thus no surprise to observe
that in most penalty kicks the score difference is 0, 1, or ~1 at the time of
the shot. For these score differences, the scoring rate is slightly greater in

6 See Palacios-Huerta (2003). This statistical identity can be shown using a regres-
sion framework. The null hypothesis that kicker’s types are perfectly symmetric corre-
sponds to a finding that kicker-type fixed effects are jointly insignificantly different from
zero in explaining whether a goal was scored, including variables that describe the state
of the soccer match at the time the penalty is shot as controls. The same holds for goal-
keepers facing the different types.

Table 1.1. Distribution of Strategies and Scoring Rates in Percentage Terms
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tied matches (81.5%), followed by the rate in matches where the kicker’s
team is behind by one goal (80.3%), and then by the rate in matches
where his or her team is ahead by one goal (78.1%).

Before we begin any formal test, it is worth examining the extent
to which observed behavior appears to be close to the Nash equilib-
rium predictions. Players in the sample choose either R or L 96.3% of
the time, kickers 93.2% of the time, and goalkeepers, 96.5%.” In what
follows, we consider the choice C as if it was the same as the natural
choices.? The typical penalty kick may then be described by the sim-
ple 2 X 2 model outlined earlier. Thus a penalty kick has a unigue Nash
equilibrium, and the equilibrium requires each player to use a mixed
strategy. As mentioned already, equilibrium theory makes two testable
predictions about the behavior of kickers and goalkeepers: (1) Winning
probabilities should be the same across strategies for both players, and

(2) each player’s strategic choices must be serially independent.

For all players in the sample, the empirical scoring probabilities are

the following:

& 1 &
/CL 59.11 94.10
1- kL 93.10 71.22

where, as indicated above, £, and g, denote the nonnatural sides. We can
now compute the mixed strategy Nash equilibrium in this game (mini-
max frequencies) and compare it with the actual mixing probabilities
observed in the sample (see figures 1.1 and 1.2). Interestingly, we find
that observed aggregate behavior is virtually identical to the theoretical

predictions:

& 1 —& kL - kL
Nash Predicted Frequencies 40.23% 59.77% 38.47% 61.53%
Actual Frequencies 41.17% 58.83% 38.97% 61.03%

7 Chiappori et al. (2002) study the aggregate predictions of a zero-sum game, rather
than individual player choices and pay close attention to the possibility that Cis an avail-
able pure strategy. They conclude that the availability of C as an action is not an issue.
‘Their findings are also substantiated in the data set used in this chapter. This evidence

means that a penalty kick may be described as a two-action game.

8  Professional players basically consider strategy € and the strategy of playing their
natural side as equivalent. The reason is that they typically kick with the interior side of
their foot, which allows for greater control of the kick, by approaching the ball running
from their nonnatural side. This phenomenon makes choosing C or their natural side

equally difficult.
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Figure 1.1. Nash and actual frequencies for goalkeepers.
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Figure 1.2. Nash and actual frequencies for kickers.
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This is, at the very least, encouraging for the model. We turn next to
testing the implications of the minimax theorem.

IMPLICATION NUMBER 1: TESTS OF
EQUAL SCORING PROBABILITIES

The tests of the null hypothesis that the scoring probabilities for a player
(kicker or goalkeeper) are identical across strategies can be implemented
with the standard proportions tests, that is, using Pearson’s x* goodness-
of-it test of equality of two distributions.

Let p, denote the probability that player i will be successful when
Choosmg strategy j € {L,R}, n, the number of times that i chooses j Js and
Nysand N the number of times in which player i chooses strategy j and
is successful (S) or fails () in the pcna}ty kick. Success for a kicker is to
score a goal, and for a goalkeeper is that a goal is not scored. Hence, we
want to test the null hypothesrs Pe=px=0; Statisticians tell us that to
do this, the Pearson statistic for player

P ( is ypt) ( gr zj(l - Pi))g
r= ZJE{L’R} np; * nij(l - p)

is distributed asymptotically as a ¥* with 1 degree of freedom.

Quick statistical detour. In this and other statistical tests in this book,
we will report p-values, so it is important to have a sense of what they
are. Under the assumption that the hypothesis of interest (called the null
hypothesis) is true, the p-value is the probability of obtaining a test sta-
tistic at least as extreme as the one that is actually observed. Thus, one
often “rejects the null hypothesis” when the p-value is less than a pre-
determined significance level, often 0.05 (5%) or 0.01 (1%), indicating
that the observed result would be highly unlikely under the null hypoth-
esis. Many common statistical tests in this book, such as ¥? tests or Stu-
dent’s #test, produce test statistics that will be interpreted using p-values.

It is also possible to study whether behavior at the aggregate level
is consistent with equilibrium play by testing the joint hypothesis that
each individual case is simultancously generated by equilibrium play. The
test statistic for the Pearson joint test in this case is the sum of all the
N individual test statistics, and under the null hypothesis this test is
distributed as a x* with N degrees of freedom. Note that this joint test
allows for differences in probabilities p, across players.

IMPLICATION NUMBER 2: TESTS OF
RANDOMMNESS OR SERIAL INDEPENDENCE

The second testable implication is that a player’s mixed strategy is the
same at each penalty kick. This notion implies that players’ strategies are
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random or serially independent. Their play is not serially independent
if, for instance, they choose not to switch their actions often enough or
if they switch actions too often.

The work on randomization is extensive in the experimental econom-
ics and psychological literatures. Interestingly, this hypothesis has never
found support i any Cmpmcal (natural and experimental) tests of the
minimax hypothesis, and it is rarely supported in other tests. In par-
ticular, when subjects are asked to generate random sequences, their
sequences typically have negative autocorrelation, that is, individu-
als exhibit a bias against repeating the same choice.’ This phenomenon
is often referred to as the “law of small numbers” (subjects may try to
reproduce, in short sequences, what they know are the properties of long
sequences). The only possible exception is Neuringer (1986), who explic-
itly taught subjects to choose randomly after hours of training by pro-
viding them with detailed feedback from previous blocks of responses in
an experiment. These training data are interesting in that they suggest
that experienced subjects might be able to learn to generate random-
ness. As Camerer (1995) remarks, “whether they do in other settings,
under natural conditions, is an empirical question.”

A simple way to test for randomness is to use the standard “runs test.”
Consider the sequence of strategies chosen by a player in the order in
which they occurred s={s,s,,...,s,} where s €{L,R}, x€[l,n], and
n=mn,+n, are the number of natural side and nonnatural side choices
made by the player. Let r denote the total number of runs in the sequence
5. A run is defined as a succession of one or more identical symbols that
are followed and preceded by a different symbol or no symbol at all. Let

[, 5) denote the probability that there are exactly 7 runs in the sequence
s. Let @[, s]=%, | flk,5) denote the probability of obtammg 7 or
fewer runs. Glbbons and Chakraborti (1992) show that by using the
exact mean and variance of the number of runs in an ordered sequence,
then, under the null hypothesis that strategies are serially independent,
the critical values for the rejection of the hypothesis can be found from
the Normal distribution approximation to the null distribution.

More precisely, the variable

77— 0.5~ 2<nLnR)
W n,—n\I'

2 L'°R

{ (<~ 1>>}

9 See Bar-Hillel and Wagenaar (1991), Rapoport and Budescu (1992), Rapoport
and Boebel (1992), and Mookherjee and Sopher (1994). Neuringer (2002), Rabin (2002)
and Camerer (1995) review the literature. See also Tversky and Kahneman (1971).
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is distributed as a standardized Normal probability distribution N(0,1).
The null hypothesis will then be rejected at the 5% confidence level if the
probability of r or fewer runs is less than 0.025 or if the probability of r
or more runs is less than 0.025, that is, if ®[r, 5] <0.025 or if 1 = ®[r—1, 4]
< 0.025. Similarly, at the 10% level, the hypothesis is rejected if they are
less than 0.05.1°

The results in table 1.2 show the results of the Pearson test and the runs
test for 40 world-class soccer players, half kickers, and half goalkeepers.

The null hypothesis of equality of payoffs cannot be rejected for the
majority of players. It is rejected for just two players (David Villa and
Frank Lampard) at the 5% significance level and four players at the 10%
significance level (in addition to Villa and Lampard, Iker Casillas and
Morgan De Sanctis). Note that we should expect some rejections, just
as if we flip 40 coins 10 times each we should expect some coins, but not
many, to yield by pure chance proportions that are far from 50-50, such
as 9 heads and 1 tail, or 8 heads and 2 tails. The confidence levels we are
willing to adopt (typically no greater than 5% or 10%) tell us how many
rejections we should expect. In our case, with 40 players the expected
number of rejections at the 5% level is 0.05 x40=2, and at the 10%
level, it is 0.10 X 40 = 4.

Thus, the evidence indicates that the hypothesis that scoring proba-
bilities are identical across strategies cannot be rejected at the individual
level for most players at conventional significance levels. The number of
rejections is, in fact, identical to the theoretical predictions.

Furthermore, behavior at the aggregate level also appears to be con-
sistent with equilibrium play. As already indicated, the joint hypoth-
esis that each case is simultaneously generated by equilibrium play can
be tested by computing the aggregate Pearson statistic (summing up
the individual Pearson statistics) and checking if it is distributed as a y*
with NV degrees of freedom. The results show that the Pearson statistic is
36.535 and its associated p-value is 0.627 for all 40 players. Hence, the
hypothesis of equality of winning probabilities cannot be rejected at the
aggregate level. Focusing only on kickers, the relevant statistic is 20.96
with a p-value of 0.399, and for goalkeepers it is 15.58 with a p-value of
0.742. Hence, the hypothesis of equality of winning probabilities cannot
be rejected for either subgroup.

With respect to the null hypothesis of randomness, the runs tests
show that this hypothesis cannot be rejected for the majority of players.
They neither appear to switch strategies too often or too infrequently,

10 Aggregate level tests may also be implemented by checking if the values in columns

@fr, 5] and D[r~1, 5] tend to be uniformly distributed in the interval [0, 1], which is what -

should happen under the null hypothesis of randomization. See Palacios-Huerta (2003).

PELE MEETS JOHN VON NEUMANN | 25

but just about the right amount. This hypothesis is in fact rejected for
just three players (David Villa, Alvaro Negredo, and Edwin Van der
Sar), and four players (in addition, Jens Lehman) at the 5% and 10% sig-
nificance levels. For the same reasons as in the previous test, we should
be expecting two and four rejections.

The runs test is sxmp}e and intuitive. However, it is a test that has low
power to identify a lack’of randomness. Put differently, current choices
may be explained, at least in part, by past variables such as past choices
or past outcomes, or past choices of the opponent, or interactions with
these variables, and still the number of runs in the series of choices
may appear to be neither too high nor too low. As such, many potential
sources of dynamic dependence cannot be detected with a runs test. For
this reason, some researchers on randomization have studied whether
past choices or outcomes have any role in determining current choices
by estimating a logit equation for each player. For instance, in Brown
and Rosenthal (1990), the dependent variable is a dichotomous indi-
cator of the current choice of strategy, and the independent variables
are first and second lagged indicators for both players’ past choices, the
products of their first and second lagged choices, and an indicator for
the opponent’s current choices. The results show that in fact it is possible
to detect a number of dynamic dependences with this logit equation
that are not possible to detect with the runs test."

Unfortunately, the standard logit equation is still problematic in that
the way this procedure is typically implemented generates biased esti-
mates. We will take a quick technical detour to explain why. The choice
of strategy in a penalty kick may depend on certain observed charac-
teristics of the player and his or her opponent, the specific sequence of
past choices and past outcomes, and perhaps other variables. It may
also depend on unobserved characteristics. Thus, the basic econometric
problem is to estimate a binary choice model with lagged endogenous
variables and unobserved heterogeneity where the effect of state depen-
dence needs to be controlled for appropriately. The econometric esti-
mation of these models is subject to a number of technical difficulties.
For example, parameter estimates jointly estimated with individual
fixed effects can be seriously biased and inconsistent. Arellano and Honoré
(2001) offer an excellent review.

To establish the idea that past choices have no significant role in
determining current choices, we estimate a logit equation for each

11 Compare table IV in Brown and Rosenthal (1990) with table 4 in Walker and
Wooders (2001). There are many subjects that pass the runs test but still exhibit serial
dependence in that a number of lagged endogenous variables (choices and outcomes)
help predict their subsequent choices.



“Appanoadsal ‘SPAd] 9401 PUE %G 913 18 STOTIO(21 910U , PUR ., 220N

THL0 8G'G1 8610 6610 1660  Z0VO 7SSl v
1000 0000 92 eL0 @10 8FT0 1610 L850 ZIF0 08 TeG 19 UBA WIMPY
5Lz 0 910 g€ 1580 7500 2860 Vg0 S09°0  ¥6E0  IL SIP[EA JOPIA
£8L°0 1890 L% 8970 651 6950 9510 I¥S0  8SF0  8F OUNUILIOG OUTIAG
060 9%8°0 16 580 8500 ¥95°0 8650 8190 1860 S DZIEMYDG IR
7680 8LLO 18 1680 910°0 (870 §L10 1850  8I¥0 S euroy adog
1660 g6v0 8 070 7690 1660 900 0950  6§¥°0 99 dofeg sprpuy
930°0 ¥100 8% 6760 $00°0 w0 810 SS§0  PHRO oL uewyay suaf
AR 6110 1€ 180 182°0 050 €850 ILS0  8GF0 0L oydoyy searpuy
8260 1880 €6 - 18€°0 LFLO 8T0  L5Z0 0890  6LE0 8 uyEy] A0
560 Y60 oF £09°0 0L30 8650 G810 8090 1650 69 soure[ puse(y
LET0 9010 3¢ 598°0 820°0 ZPT0 6310 GLG0  FGEO 6L zoz1ea] B0
0590 1v50 €8 6880 140°0 ZLE0 0S50 LP9O  BSE0 89 12u8[I opog
1420 eoffo  og 8160 0000 Gr0  5eE0  L6S0  ZO¥0 L9 PIEMOR] WL,
€810 00L0 . ¥§ 80°0 810°E Z¥e0  8YI0  ¥9S0  GEF0 29 spoueg o] ueSiopy
00670 0P80 BE 9510 00T 9010 8520 1690 8080 89 Tesy)y o[
8630 R 0650 9,20 1810 530 $8S0  ¥IF0 78 12 19d
0250 PP 78 0L0°0 8L7°S 880°0  0ST0  ©S90  L¥EO 69 sepiseD) 1]
590 %550 60 G610 7191 0S50 S600 0990 0960 09 oI3[[EqED MIM
8160 0ero < 162°0 Il 0 THZO 1650 80V0 1L uogng Simuer
860°0 7900 63 60L°0 8810 6810  S5T0 BRSO GSH0 89 eiqnzuEry e
:s10doox[eOD)

6650 96°03 580 S6L'0  S190 9850 296 v
610 9510 9z 5L0 6600 CI80  78L0  7EY0  LLSO 19 oueprz Surpaurz
#0500 0100 81 wF10°0 8L6'S 6060  1€9°0 €90 G980 &S e[IIA PIAEQ
6110 0200 0% 8990 610 €680 78L0  0ISO  68V0 Ly 1107, 00820TRL
£99°0 6550 1% 9510 L88C 0SL0  LS60 0090  00V0  OF opepjog 011990y
8550 Tre0 Vg 180 800'T 81L0  o¥80 1390  GLE0 1S Op[EuOY ouENSLYY
0850 0970 0 68¢°0 £6L°0 0880  GS60 €S0 9S¥0  9F oyuIpeuoy
796°0 0860 6z z0L0 L0 90 68,0 0050 0050 8§ Arpqry ouelg
%650 9550 91 1690 1ST°0 0880 €680  S/90 W0 LS o1 1qeX
6£9°0 5050 0% 1570 99¢°0 €680  €6L0 G190  ¥8E0 68 opig waIpUy
8510 860°0 €z 5980 820°0 G6L0  FILO 8190 180 S ouno[ed UpIEH
9660 %9860 9% 0230 108°T 9060 690  IIL0 8820 G opaifaN orealy
7950 9170 4A 6550 031 8260 0007 2390 LLEO G 1SSOJ [PUOIT
868°0 16L°0 L1 wGH0°0 STy €60 9990  89L0 9550 8§ predurery el
9620 ¥81°0 L1 8120 PLT'T 8SL°0 690 0690 6080 & duea)f A1qqoy
0 980°0 61 80 8%0°0 G8L0 6080  5TG0  LLVO Aruapy Auoryy,
2050 7880 €z LLE0 LLLO 6060 €280 0990  O0¥E0 0§ PIRLIDE) U2ANG
LT¥0 130 0 85L°0 051°0 080 69,0 0860  6IFO 59 ugpiog 08a1q
6830 5910 8% 82L°0 0610 €080 69,0 080  61F0 &9 001 g [Pnueg
68670 L850 ¥ LS50 950 G080 980 FSY0  S¥EO0 G o131 [2(] OTPUESSIY
165°0 6550 J1 659°0 8120 €68°0  78L0 9950  §SV0 €S ey [N

uwhvvﬂUmVH

e [f1-4de 4 onpes-d nsnElg ¥ 7 a 7 sqO% owreN

mumm.rwx mﬁﬂﬁw 81837, ﬁOmumvﬁm wu.mﬂm mwuuuﬂm mCOm_COﬁMOhﬁM

$1S9], SUNY] PUE UOSIEd] '2'T 910eL



28 | CHAPTER 1

Table 1.3. Results of Significance Tests (Logit) for the Choice of the
Natural Side

Players Whose Behavior Allows
Rejection of the Null Hypothesis at the:

Null Hypothesis 5% Level 10% Level
A a=a,=by=b=b= o= Kicker — David Villa, Frank
¢,=0 Lampard

Goalkeeper — ITker Casillas

B.a=a,=0 Kicker — David Villa
Goalkeeper - Andreas Kopke

C. b,=5,=0 Kicker — —
Goalkeeper - Jens Lehman

D. ¢=¢,=0 Kicker - Martin Palermo
Goalkeeper - -

E. 4,=0 Kicker o Ronaldinho
Goalkeeper - Jalio César, Edwin

van der Sar

Here is the estimating equation:
R=Glay+ alag(R) + aJag2(R) + bR* + b Jag(R*) + b, lag2(R*) + ¢ lag(R)lag(R*)
+elag2(R)lag2(R*)]

Notes: The asterisk * denotes the choice of the opponent. The terms “lag” and “lag2” denote the choic-
es previously followed in the ordered sequence of penalty kicks. The function G[x] denotes exp(x)/
[1 +exp(x)].

player based on the Arellano and Carrasco (2003) method using the
same specification as Brown and Rosenthal (1990). The model generates
unbiased and consistent estimates and it allows for unobserved heterogene-
ity and for individual effects to be correlated with the explanatory vari-
ables (see table 1.3).

The main finding is that the null hypothesis of randomization (impli-
cation number 2), that all the explanatory variables are jointly statisti-
cally insignificant (hypothesis A), cannot be rejected for any player at
the 5% level and is rejected for only three players (David Villa, Frank
Lampard, and Iker Casillas) at the 10% level.

The table also reports the tests of different subhypotheses concerning
whether one’s past choices alone, or past opponent’s choices alone, or
successful past plays alone may determine current choices. No evidence
that any player made choices in a serially dependent fashion in any
respect is found at the 5% level, and at the 10% level, none of the hypoth-
eses are rejected for more than two players. These results indicate that
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the choices of most players are unrelated to their own previous choices
and outcomes and to their opponents’ previous choices and outcomes,
exactly as in a random series.

A number of extensions of this investigation are possible. From a
more technical perspective, for instance, the statistical power of the tests
in various ways, as well ag the ability of the tests to detect deviations
from minimax play, can be studied using Monte Carlo simulations.
From a more empirical perspective, we may consider more strategies
such as Cand otheys, and then test the implications in a 3 X 3 game orin
an N X N game rather than in a 2X 2 game."?

The main finding in this chapter is that the results of the tests are
remarkably consistent with equilibrium play in every respect: (1) Win-
ning probabilities are statistically identical across strategies for players,
and (2) players generate serially independent sequences and ignore pos-
sible strategic links between subsequent penalty kicks. These results,
which extend Palacios-Huerta (2003), represent the first time that both
implications of von Neumann’s (1928) minimax theorem are supported
in real life.

&

In recent years, the tests in this chapter have been used to advise a num-
ber of teams participating in some of the main club tournaments in the
world (e.g., UEFA Champions League and the Football Association
Challenge Cup in England, known as the FA Cup), as well as some
national teams participating in the top event in the world taking place
every four years: the World Cup (Kuper 2011).

In particular, these tests were first used in the UEFA Champions
League final on May 21, 2008, in Moscow, to advise Chelsea in its pen-
alty shoot-out versus Manchester United. At the time, no one in the
media noticed a pattern in the behavior of the players in the shoot-out,
not even a number of small but critical incidents. No one understood
what the players were doing and why they were doing it. There was no
model to make sense of any behavior. The story is described in great
detail in Soccernomics (2012) by Simon Kuper and Stefan Szymanski, and
this is not the place to repeat it entirely. But it is perhaps worth quoting
a few sentences:

So far, the advice [of the tests] had worked very well for Chelsea (The
right-footed penalty-takers had obeyed it to the letter, Manchester
United’s goalkeeper Van der Sar had not saved a single penalty, and

12  See the appendix in Palacios-Huerta (2003) with some evidence on the 3 X 3 game.
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Chelsea’s keeper had saved Cristiano Ronaldo’s) . . . As Anelka pre-
pared to take Chelsea’s seventh penalty, the gangling keeper, stand-
ing on the goal-line, extended his arms to either side of him. Then, in
what must have been a chilling moment for Anelka, the Dutchman
[Van der Sar| pointed with his left hand to the left corner. “That’s
where you’re all putting it, isn’t it?” he seemed to be saying. Now
Anelka had a terrible dilemma. This was game theory in its rawest
form. ... So Anelka knew that Van der Sar knew that Anelka knew
that Van der Sar tended to dive right against right-footers. What was
Anelka to do?

You may perhaps know the end. If you do not, this is the authors’
summary: “Anelka’s decision to ignore the advice [of these tests| prob-
ably cost Chelsea the Champions League.”

VERNON SMITH MEETS MESSI
IN THE LABORATORY

© TAWNG/STOCKFRESH

When the exact question being asked and the population
being studied are mirrored in a laboratory experiment, the

information from the experiment can be clear and informative.
—~ArMIN FALK AND Jamzs Heckman 2009

A FEW YEARS AGO, A MATCH IN THE ARGENTINE PROVINCES HAD TO BE ABAN-
doned just seconds before the finish when the referee, who had just
awarded a penalty, was knocked out by an irate player. The league
court decided that the last 20 seconds of the game—the penalty kick, in
effect—should be played the next Sunday. That gave everyone a week to
prepare for the penalty.

At dinner a few nights before the penalty, the goalkeeper, El Gato
Dfaz, mused about the kicker: “Messi kicks to the right.”

“Always,” said the president of the club.

“But Messi knows that I know.”

“Then, we are fucked.”

“Yeah, but I know that he knows,” said El Gato.

“Then dive to the left and be ready,” said someone at the table.



