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Figure 6.1
I don’t have 
a photo from 
Christmas 1981, 
but this was taken 
about that time at 
my grandparents’ 
house. I’m trying 
to play an E by 
the looks of it, no 
doubt because 
it’s in ‘Take on the 
world’

6.1. What will this chapter tell me? 1

When I was 8 years old, my parents bought me a guitar for Christmas. Even then, I’d 
desperately wanted to play the guitar for years. I could not contain my excitement at get-
ting this gift (had it been an electric guitar I think I would have actually exploded with 
excitement). The guitar came with a ‘learn to play’ book and after a little while of trying 
to play what was on page 1 of this book, I readied myself to unleash a riff of universe-
crushing power onto the world (well, ‘skip to my Lou’ actually). But, I couldn’t do it.  
I burst into tears and ran upstairs to hide.1 My dad sat with me and said ‘Don’t worry, 
Andy, everything is hard to begin with, but the more you practise the easier it gets.’  

1 This is not a dissimilar reaction to the one I have when publishers ask me for new editions of statistics textbooks.

6 Correlation



145CHAPTER 6   Correlat ion

In his comforting words, my dad was inadvertently teaching me about the relation-
ship, or correlation, between two variables. These two variables could be related  
in three ways: (1) positively related, meaning that the more I practised my guitar, 
the better a guitar player I would become (i.e. my dad was telling me the truth);  
(2) not related at all, meaning that as I practise the guitar my playing ability remains 
completely constant (i.e. my dad has fathered a cretin); or (3) negatively related, 
which would mean that the more I practised my guitar the worse a guitar player 
I became (i.e. my dad has fathered an indescribably strange child). This chapter 
looks first at how we can express the relationships between variables statistically 
by looking at two measures: covariance and the correlation coefficient. We then 
discover how to carry out and interpret correlations in SAS. The chapter ends by looking 
at more complex measures of relationships; in doing so it acts as a precursor to the chapter 
on multiple regression.

6.2. Looking at relationships 1

In Chapter 4 I stressed the importance of looking at your data graphically before running 
any other analysis on them. I just want to begin by reminding you that our first starting 
point with a correlation analysis should be to look at some scatterplots of the variables 
we have measured. I am not going to repeat how to get SAS to produce these graphs, but  
I am going to urge you (if you haven’t done so already) to read section 4.7 before embark-
ing on the rest of this chapter.

6.3. How do we measure relationships? 1

6.3.1.  A detour into the murky world of covariance 1

The simplest way to look at whether two variables are associated is to look at whether they 
covary. To understand what covariance is, we first need to think back to the concept of var-
iance that we met in Chapter 2. Remember that the variance of a single variable represents 
the average amount that the data vary from the mean. Numerically, it is described by: 

varianceðs2Þ=
P

ðxi − xÞ2

N − 1
=

P
ðxi − xÞðxi − xÞ

N −1
(6.1)

The mean of the sample is represented by x–, xi is the data point in question and N is the 
number of observations (see section 2.4.1). If we are interested in whether two variables 
are related, then we are interested in whether changes in one variable are met with similar 
changes in the other variable. Therefore, when one variable deviates from its mean we 
would expect the other variable to deviate from its mean in a similar way. To illustrate what 
I mean, imagine we took five people and subjected them to a certain number of advertise-
ments promoting toffee sweets, and then measured how many packets of those sweets each 
person bought during the next week. The data are in Table 6.1 as well as the mean and 
standard deviation (s) of each variable.

What is a
correlation?
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Table 6.1

Subject: 1 2 3 4 5 Mean s

Adverts Watched 5 4  4  6  8  5.4 1.67

Packets Bought 8 9 10 13 15 11.0 2.92

If there were a relationship between these two variables, then as one variable deviates 
from its mean, the other variable should deviate from its mean in the same or the directly 
opposite way. Figure 6.2 shows the data for each participant (hollow circles represent the 
number of packets bought and solid circles represent the number of adverts watched); 
the dashed line is the average number of packets bought and the solid line is the average 
number of adverts watched. The vertical lines represent the differences (remember that 
these differences are called deviations) between the observed values and the mean of the 
relevant variable. The first thing to notice about Figure 6.2 is that there is a very similar 
pattern of deviations for both variables. For the first three participants the observed values 
are below the mean for both variables, for the last two people the observed values are 
above the mean for both variables. This pattern is indicative of a potential relationship 
between the two variables (because it seems that if a person’s score is below the mean for 
one variable then their score for the other will also be below the mean).

So, how do we calculate the exact similarity between the pattern of differences of the 
two variables displayed in Figure 6.2? One possibility is to calculate the total amount of 
deviation, but we would have the same problem as in the single-variable case: the positive 
and negative deviations would cancel out (see section 2.4.1). Also, by simply adding the 
deviations, we would gain little insight into the relationship between the variables. Now, in 
the single-variable case, we squared the deviations to eliminate the problem of positive and 
negative deviations cancelling out each other. When there are two variables, rather than 
squaring each deviation, we can multiply the deviation for one variable by the correspond-
ing deviation for the second variable. If both deviations are positive or negative then this 
will give us a positive value (indicative of the deviations being in the same direction), but 
if one deviation is positive and one negative then the resulting product will be negative 

Figure 6.2
Graphical display 
of the differences 
between the 
observed data and 
the means of two 
variables
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(indicative of the deviations being opposite in direction). When we multiply the deviations 
of one variable by the corresponding deviations of a second variable, we get what is known 
as the cross-product deviations. As with the variance, if we want an average value of the 
combined deviations for the two variables, we must divide by the number of observations 
(we actually divide by N − 1 for reasons explained in Jane Superbrain Box 2.2). This aver-
aged sum of combined deviations is known as the covariance. We can write the covariance 
in equation form as in equation (6.2) – you will notice that the equation is the same as the 
equation for variance, except that instead of squaring the differences, we multiply them by 
the corresponding difference of the second variable:

covðx, yÞ=
P

ðxi − xÞðyi − yÞ
N − 1 (6.2)

For the data in Table 6.1 and Figure 6.2 we reach the following value:

covðx, yÞ=
P

ðxi − xÞðyi − yÞ
N − 1

= ð−0:4Þð−3Þ+ ð−1:4Þð−2Þ+ ð−1:4Þð−1Þ+ ð0:6Þð2Þ+ ð2:6Þð4Þ
4

= 1:2+ 2:8+ 1:4+1:2+ 10:4
4

= 17
4

=4:25

Calculating the covariance is a good way to assess whether two variables are related to each 
other. A positive covariance indicates that as one variable deviates from the mean, the other 
variable deviates in the same direction. On the other hand, a negative covariance indicates 
that as one variable deviates from the mean (e.g. increases), the other deviates from the 
mean in the opposite direction (e.g. decreases).

There is, however, one problem with covariance as a measure of the relationship 
between variables and that is that it depends upon the scales of measurement used. So, 
covariance is not a standardized measure. For example, if we use the data above and 
assume that they represented two variables measured in miles then the covariance is 4.25 
(as calculated above). If we then convert these data into kilometres (by multiplying all 
values by 1.609) and calculate the covariance again then we should find that it increases 
to 11. This dependence on the scale of measurement is a problem because it means that 
we cannot compare covariances in an objective way – so, we cannot say whether a covari-
ance is particularly large or small relative to another data set unless both data sets were 
measured in the same units.

6.3.2.  Standardization and the correlation coefficient 1

To overcome the problem of dependence on the measurement scale, we need to convert 
the covariance into a standard set of units. This process is known as standardization. 
A very basic form of standardization would be to insist that all experiments use the 
same units of measurement, say metres – that way, all results could be easily compared. 
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However, what happens if you want to measure attitudes – you’d be hard pushed to 
measure them in metres! Therefore, we need a unit of measurement into which any 
scale of measurement can be converted. The unit of measurement we use is the standard 
deviation. We came across this measure in section 2.4.1 and saw that, like the variance, 
it is a measure of the average deviation from the mean. If we divide any distance from 
the mean by the standard deviation, it gives us that distance in standard deviation units. 
For example, for the data in Table 6.1, the standard deviation for the number of packets 
bought is approximately 3.0 (the exact value is 2.92). In Figure 6.2 we can see that the 
observed value for participant 1 was 3 packets less than the mean (so there was an error 
of −3 packets of sweets). If we divide this deviation, −3, by the standard deviation, which 
is approximately 3, then we get a value of −1. This tells us that the difference between 
participant 1’s score and the mean was −1 standard deviation. So, we can express the 
deviation from the mean for a participant in standard units by dividing the observed 
deviation by the standard deviation.

It follows from this logic that if we want to express the covariance in a standard unit of 
measurement we can simply divide by the standard deviation. However, there are two vari-
ables and, hence, two standard deviations. Now, when we calculate the covariance we actu-
ally calculate two deviations (one for each variable) and then multiply them. Therefore, we 
do the same for the standard deviations: we multiply them and divide by the product of 
this multiplication. The standardized covariance is known as a correlation coefficient and 
is defined by equation (6.3) in which sx is the standard deviation of the first variable and 
sy is the standard deviation of the second variable (all other letters are the same as in the 
equation defining covariance):

r= covxy

sxsy
=

P
ðxi − xÞðyi − yÞ
ðN − 1Þsxsy

(6.3)

The coefficient in equation (6.3) is known as the Pearson product-moment correlation coef-
ficient or Pearson correlation coefficient (for a really nice explanation of why it was originally 
called the ‘product-moment’ correlation see Miles & Banyard, 2007) and was invented by 
Karl Pearson (see Jane Superbrain Box 6.1).2 If we look back at Table 6.1 we see that the 
standard deviation for the number of adverts watched (sx) was 1.67, and for the number of 
packets of crisps bought (sy) was 2.92. If we multiply these together we get 1.67 × 2.92 = 
4.88. Now, all we need to do is take the covariance, which we calculated a few pages ago  
as being 4.25, and divide by these multiplied standard deviations. This gives us r = 4.25/ 
4.88 = .87.

By standardizing the covariance we end up with a value that has to lie between −1 and 
+1 (if you find a correlation coefficient less than −1 or more than +1 you can be sure that 
something has gone hideously wrong!). A coefficient of +1 indicates that the two vari-
ables are perfectly positively correlated, so as one variable increases, the other increases 
by a proportionate amount. Conversely, a coefficient of −1 indicates a perfect negative 
relationship: if one variable increases, the other decreases by a proportionate amount. A 
coefficient of zero indicates no linear relationship at all. We also saw in section 2.6.4 that 
because the correlation coefficient is a standardized measure of an observed effect, it is a 
commonly used measure of the size of an effect and that values of ± .1 represent a small 

2 You will find Pearson’s product-moment correlation coefficient denoted by both r and R. Typically, the upper-
case form is used in the context of regression because it represents the multiple correlation coefficient; however, 
for some reason, when we square r (as in section 6.5.2.3) an upper case R is used. Don’t ask me why – it’s just to 
confuse me, I suspect.
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effect, ± .3 a medium effect and ± .5 a large effect (although I re-emphasize my caveat that 
these canned effect sizes are no substitute for interpreting the effect size within the context 
of the research literature). 

6.3.3.  The significance of the correlation coefficient 3

Although we can directly interpret the size of a correlation coefficient, we have seen in 
Chapter 2 that scientists like to test hypotheses using probabilities. In the case of a correlation 
coefficient we can test the hypothesis that the correlation is different from zero (i.e. different 
from ‘no relationship’). If we find that our observed coefficient was very unlikely to happen 
if there was no effect in the population then we can gain confidence that the relationship that 
we have observed is statistically meaningful.

There are two ways that we can go about testing this hypothesis. The first is to use 
our trusty z-scores that keep cropping up in this book. As we have seen, z-scores are use-
ful because we know the probability of a given value of z occurring, if the distribution 
from which it comes is normal. There is one problem with Pearson’s r, which is that it 
is known to have a sampling distribution that is not normally distributed. This is a bit 

Another prominent statistician, Jerzy Neyman, criticized 
some of Fisher’s most important work in a paper deliv-
ered to the Royal Statistical Society on 28 March 1935 
at which Fisher was present. Fisher’s discussion of 
the paper at that meeting directly attacked Neyman. 
Fisher more or less said that Neyman didn’t know 
what he was talking about and didn’t understand the 
background material on which his work was based. 
Relations soured so much that while they both worked 
at University College London, Neyman openly attacked 
many of Fisher’s ideas in lectures to his students. The 
two feuding groups even took afternoon tea (a com-
mon practice in the British academic community of the 
time) in the same room but at different times! The truth 
behind who fuelled these feuds is, perhaps, lost in the 
mists of time, but Zabell (1992) makes a sterling effort 
to unearth it.

Basically, then, the founders of modern statistical 
methods were a bunch of squabbling children. 
Nevertheless, these three men were astonishingly gifted 
individuals. Fisher, in particular, was a world leader in 
genetics, biology and medicine as well as possibly the 
most original mathematical thinker ever (Barnard, 1963; 
Field, 2005d; Savage, 1976).

Students often think that statistics is dull, but back in the 
early 1900s it was anything but dull with various prominent 
figures entering into feuds on a soap opera scale. One of 
the most famous was between Karl Pearson and Ronald 
Fisher (whom we met in Chapter 2). It began when Pearson 
published a paper of Fisher’s in his journal but made com-
ments in his editorial that, to the casual reader, belittled 
Fisher’s work. Two years later Pearson’s group published 
work following on from Fisher’s paper without consulting 
him. The antagonism persisted, with Fisher turning down 
a job to work in Pearson’s, group and publishing ‘improve-
ments’ on Pearson’s ideas. Pearson for his part wrote in 
his own journal about apparent errors made by Fisher.

JANE SUPERBRAIN 6.1

Who said statistics was dull? 1
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of a nuisance, but luckily thanks to our friend Fisher we can adjust r so that its sampling 
distribution is normal as follows (Fisher, 1921):

zr =
1
2

loge
1+ r
1− r

 
(6.4)

The resulting zr has a standard error of:

SEzr =
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N − 3
p (6.5)

For our advert example, our r = .87 becomes 1.33 with a standard error of 0.71.
We can then transform this adjusted r into a z-score just as we have done for raw scores, 

and for skewness and kurtosis values in previous chapters. If we want a z-score that rep-
resents the size of the correlation relative to a particular value, then we simply compute 
a z-score using the value that we want to test against and the standard error. Normally 
we want to see whether the correlation is different from 0, in which case we can subtract 
0 from the observed value of r and divide by the standard error (in other words, we just 
divide zr by its standard error):

z= zr

SEzr
(6.6)

For our advert data this gives us 1.33/0.71 = 1.87. We can look up this value of z (1.87) 
in the table for the normal distribution in the Appendix and get the one-tailed probability 
from the column labelled ‘Smaller Portion’. In this case the value is .0307. To get the two-
tailed probability we simply multiply the one-tailed probability value by 2, which gives us 
.0614. As such the correlation is significant, p < .05 one-tailed, but not two-tailed.

In fact, the hypothesis that the correlation coefficient is different from 0 is usually (SAS, 
for example, does this) tested not using a z-score, but using a t-statistic with N − 2 degrees 
of freedom, which can be directly obtained from r:

tr =
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N − 2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1− r2

p (6.7)

So, you might wonder then why I told you about z-scores. Partly it was to keep the discussion 
framed in concepts with which you are already familiar (we don’t encounter the t-test properly 
for a few chapters), but also it is useful background information for the next section.

6.3.4.  Confidence intervals for r 3

I was moaning on earlier about how SAS doesn’t make tea for you. Another thing that 
it doesn’t do is compute confidence intervals for r. This is a shame because as we have 
seen in Chapter 2 these intervals tell us something about the likely value (in this case of 
the correlation) in the population. However, we can calculate these manually (or if you 
search the web you will also find SAS macros that will do this). To do this we need to 
take advantage of what we learnt in the previous section about converting r to zr (to make 
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the sampling distribution normal), and using the associated standard errors. We can then 
construct a confidence interval in the usual way. For a 95% confidence interval we have 
(see section 2.5.2.1):

lower boundary of confidence interval=X− ð1:96× SEÞ
upper boundary of confidence interval=X+ ð1:96× SEÞ

In the case of our transformed correlation coefficients these equations become:

lower boundary of confidence interval= zr − ð1:96× SEzrÞ

upper boundary of confidence interval= zr + ð1:96× SEzrÞ

For our advert data this gives us 1.33 − (1.96 × 0.71) = −0.062, and 1.33 + (1.96 × 0.71) 
= 2.72. Remember that these values are in the zr metric and so we have to convert back to 
correlation coefficients using:

r= eð2zrÞ − 1
eð2zrÞ + 1

(6.8)

This gives us an upper bound of r = .991 and a lower bound of −.062 (because this value 
is so close to zero the transformation to z has no impact).

            CRAMMING SAM’S TIPS  

 A crude measure of the relationship between variables is the covariance.

 If we standardize this value we get Pearson’s correlation coefficient, r.

 The correlation coefficient has to lie between −1 and +1.

 A coefficient of +1 indicates a perfect positive relationship, a coefficient of −1 indicates a perfect negative relationship, a 
coefficient of 0 indicates no linear relationship at all.

 The correlation coefficient is a commonly used measure of the size of an effect: values of ± .1 represent a small effect, 
± .3 is a medium effect and ± .5 is a large effect.

6.3.5.  A word of warning about interpretation: causality 1

Considerable caution must be taken when interpreting correlation coefficients because 
they give no indication of the direction of causality. So, in our example, although we can 

X
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conclude that as the number of adverts watched increases, the number of packets of toffees 
bought increases also, we cannot say that watching adverts causes you to buy packets of 
toffees. This caution is for two reasons: 

The third-variableM  problem: We came across this problem in section 1.6.2. To recap, 
in any correlation, causality between two variables cannot be assumed because there 
may be other measured or unmeasured variables affecting the results. This is known as 
the third-variable problem or the tertium quid (see section 1.6.2 and Jane Superbrain 
Box 1.1).

Direction of causalityM : Correlation coefficients say nothing about which variable causes 
the other to change. Even if we could ignore the third-variable problem described 
above, and we could assume that the two correlated variables were the only important 
ones, the correlation coefficient doesn’t indicate in which direction causality operates. 
So, although it is intuitively appealing to conclude that watching adverts causes us to 
buy packets of toffees, there is no statistical reason why buying packets of toffees can-
not cause us to watch more adverts. Although the latter conclusion makes less intuitive 
sense, the correlation coefficient does not tell us that it isn’t true. 

6.4. Data entry for correlation analysis  
using SAS 1

Data entry for correlation, regression and multiple regression is straightforward because 
each variable is entered in a separate column. So, for each variable you have measured, 
create a variable in the data editor with an appropriate name, and enter a participant’s 
scores across one row of the data editor. There may be occasions on which you have 
one or more categorical variables (such as gender). As an example, if we wanted to 
calculate the correlation between the two variables in Table 6.1 we would enter each 
variable in a separate column, and each row represents a single individual’s data (so the 
first consumer saw 5 adverts and bought 8 packets).

SELF-TEST Enter the advert data (you might want 
to look at a dATA step, in SAS Syntax 3-1 to remind 
yourself how to do this) and use the gplot to produce 
a scatterplot (number of packets bought on the y-axis, 
and adverts watched on the x-axis) of the data.

6.5. Bivariate correlation 1

6.5.1.  General procedure for running correlations on SAS 1

There are two types of correlation: bivariate and partial. A bivariate correlation is a cor-
relation between two variables (as described at the beginning of this chapter) whereas a 
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partial correlation looks at the relationship between two variables while ‘controlling’ the 
effect of one or more additional variables. Pearson’s product-moment correlation coef-
ficient (described earlier) and Spearman’s rho (see section 6.5.3) are examples of bivariate 
correlation coefficients.

Let’s return to the example from Chapter 4 about exam scores. Remember that a psy-
chologist was interested in the effects of exam stress and revision on exam performance. 
She had devised and validated a questionnaire to assess state anxiety relating to exams 
(called the Exam Anxiety Questionnaire, or EAQ). This scale produced a measure of 
anxiety scored out of 100. Anxiety was measured before an exam, and the percentage 
mark of each student on the exam was used to assess the exam performance. She also 
measured the number of hours spent revising. These data are in ExamAnxiety.sas7bdat 
on the companion website. We have already created scatterplots for these data (section 
4.7) so we don’t need to do that again.

To conduct bivariate correlations we use PROC CORR. In the first line we list the data 
set, and then on the vAR line we list the variables that we want to correlate. SAS Syntax 
6.1 shows how PROC CORR is used.

PROC CORR data=chapter6.examanxiety;
 VAR revise exam anxiety;
 RUN;
SAS Syntax 6.1

The default setting is Pearson’s product-moment correlation, but you can also calculate 
Spearman’s correlation and Kendall’s correlation—we will see the differences between 
these correlation coefficients in due course.

6.5.2.  Pearson’s correlation coefficient 1

6.5.2.1. assumptions of Pearson’s r 3

Pearson’s (Figure 6.3) correlation coefficient was described in full at the beginning 
of this chapter. Pearson’s correlation requires only that data are interval (see section 
1.5.1.2) for it to be an accurate measure of the linear relationship between two vari-
ables. However, if you want to establish whether the correlation coefficient is signifi-
cant, then more assumptions are required: for the test statistic to be valid the sampling 
distribution has to be normally distributed and, as we saw in Chapter 5, we assume 
that it is if our sample data are normally distributed (or if we have a large sample). 
Although, typically, to assume that the sampling distribution is normal, we would want 
both variables to be normally distributed, there is one exception to this rule: one of the 
variables can be a categorical variable provided there are only two categories (this is 
the same as doing a t-test, but I’m jumping the gun a bit). In any case, if your data are 
non-normal (see Chapter 5) or are not measured at the interval level then you should 
not use a Pearson correlation.
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6.5.2.2. running Pearson’s r on SaS 1

We have already seen the syntax for PROC CORR (in SAS Syntax 6.1). SAS produces 
Pearson’s correlation coefficient by default. Our researcher predicted that (1) as anxiety 
increases, exam performance will decrease, and (2) as the time spent revising increases, 
exam performance will increase. 

SAS Output 6.1 first provides descriptive statistics – mean, standard deviation, sum, mini-
mum and maximum – and then provides a matrix of the correlation coefficients for the three 

         SAS T IP  6 .1   P    Pairwise or listwise? 1

As we run through the various analyses in this book, many of them have additional options. One common option 
is to choose whether you do ‘pairwise’, ‘analysis by analysis’ or ‘listwise’. First, we can exclude cases listwise, 
which means that if a case has a missing value for any variable, then they are excluded from the whole analysis. 
So, for example, in our exam anxiety data if one of our students had reported their anxiety and we knew their exam 
performance but we didn’t have data about their revision time, then their data would not be used to calculate any 
of the correlations: they would be completely excluded from the analysis. Another option is to excluded cases on 
a pairwise or analysis-by-analysis basis, which means that if a participant has a score missing for a particular vari-
able or analysis, then their data are excluded only from calculations involving the variable for which they have no 
score. For our student about whom we don’t have any revision data, this means that their data would be excluded 
when calculating the correlation between exam scores and revision time, and when calculating the correlation 
between exam anxiety and revision time; however, the student’s scores would be included when calculating the 
correlation between exam anxiety and exam performance because for this pair of variables we have both of their 
scores.

SAS PROC CORR does pairwise deletion by default – that is, a person is included wherever possible. If 
you want to exclude people who have missing data for one variable, use the nomiss option on the PROC 
CORR line. You would write:

PROC CORR dATA=chapter6.examanxiety nomiss;

Oliver is so excited to get onto analysing his data that he doesn’t want 
me to spend pages waffling on about options that you will probably 
never use. ‘Stop writing, you waffling fool,’ he says. ‘I want to analyse 
my data.’ Well, he’s got a point. If you want to find out more about what 
other options are available in SAS PROC CORR, then the additional 
material for this chapter on the companion website will tell you. 

OLIVER TWISTED

Please, Sir, can I 
have some more … 
options?
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Figure 6.3
Karl Pearson

variables. Underneath each correlation coefficient the significance value of the correlation 
is displayed (if there were missing data, it would also show the sample size for each 
correlation – as there are no missing data, the sample size is always the same and it 
tells us in the title to the table). Each variable is perfectly correlated with itself (obvi-
ously) and so r = 1 along the diagonal of the table. Exam performance is negatively 
related to exam anxiety with a Pearson correlation coefficient of r = −.441 and the 
significance value is a less than .0001. This significance value tells us that the prob-
ability of getting a correlation coefficient this big in a sample of 103 people if the null 
hypothesis were true (there was no relationship between these variables) is very low 
(close to zero in fact). Hence, we can gain confidence that there is a genuine rela-
tionship between exam performance and anxiety. (Remember that our criterion for 
statistical significance is usually less than 0.05.) The output also shows that exam per-
formance is positively related to the amount of time spent revising, with a coefficient 
of r = .397, which is also significant at p < .0001. Finally, exam anxiety appears to be 
negatively related to the time spent revising, r = −.709, p < .0001.

In psychological terms, this all means that people who have higher anxiety about an exam 
obtain a lower percentage mark in that exam. Conversely, people who spend more time 
revising obtain higher marks in the exam. Finally, people who spend more time revising, 
have lower anxiety about the exam. So there is a complex interrelationship between the three 
variables.

6.5.2.3. using r2 for interpretation 3

Although we cannot make direct conclusions about causality from a correlation, there 
is still more that it can tell us. The square of the correlation coefficient (known as the 
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coefficient of determination, R2) is a measure of the amount of variability in one variable 
that is shared by the other. For example, we may look at the relationship between exam 
anxiety and exam performance. Exam performances vary from person to person because 
of any number of factors (different ability, different levels of preparation and so on). If we 
add up all of this variability (rather like when we calculated the sum of squares in section 
2.4.1) then we would have an estimate of how much variability exists in exam perform-
ances. We can then use R2 to tell us how much of this variability is shared by exam anxiety. 
These two variables had a correlation of −0.4410 and so the value of R2 will be (−0.4410)2 = 
0.194. This value tells us how much of the variability in exam performance is shared by 
exam anxiety.

If we convert this value into a percentage (multiply by 100) we can say that exam 
anxiety shares 19.4% of the variability in exam performance. So, although exam anxiety 
was highly correlated with exam performance, it can account for only 19.4% of variation 
in exam scores. To put this value into perspective, this leaves 80.6% of the variability 
still to be accounted for by other variables. I should note at this point that although R2 
is an extremely useful measure of the substantive importance of an effect, it cannot be 
used to infer causal relationships. Although we usually talk in terms of ‘the variance in y 
accounted for by x’, or even the variation in one variable explained by the other, this still 
says nothing about which way causality runs. So, although exam anxiety can account for 
19.4% of the variation in exam scores, it does not necessarily cause this variation – it may 
be that people who do well feel anxious because they are under pressure to do well. If 
Andy released a CD tomorrow he would be under less pressure to sell one million copies 
than if Metallica released a CD tomorrow.

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum Label

REVISE 103 19.85437 18.15910 2045 0 98.00000 Time Spent Revising

EXAM 103 56.57282 25.94058 5827 2.00000 100.00000 Exam Performance (%)

ANXIETY 103 74.34367 17.18186 7657 0.05600 97.58200 Exam Anxiety

Pearson Correlation Coefficients, N = 103 
Prob > |r| under H0: Rho=0

REVISE EXAM ANXIETY

REVISE 
Time Spent Revising

1.00000 0.39672 
<.0001

–0.70925 
<.0001

EXAM 
Exam Performance (%)

0.39672 
<.0001

1.00000 –0.44099 
<.0001

ANXIETY 
Exam Anxiety

–0.70925 
<.0001

–0.44099 
<.0001

1.00000

SaS OuTPuT 6.1 
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6.5.3.  Spearman’s correlation coefficient 1

Spearman’s correlation coefficient (Spearman, 1910; Figure 6.4), rs, is a non-parametric sta-
tistic and so can be used when the data have violated parametric assumptions such as non-
normally distributed data (see Chapter 5). You’ll sometimes hear the test referred to as 
Spearman’s rho (pronounced ‘row’, as in ‘row your boat gently down the stream’), which 
does make it difficult for some people to distinguish from the London lap-dancing club 
Spearmint Rhino.3 Spearman’s test works by first ranking the data (see section 15.3.1), and 
then applying Pearson’s equation (6.3) to those ranks.

I was born in England, which has some bizarre traditions. One such 
oddity is the World’s Biggest Liar Competition held annually at the 
Santon Bridge Inn in Wasdale (in the Lake District). The contest hon-
ours a local publican, ‘Auld Will Ritson’, who in the nineteenth century 
was famous in the area for his far-fetched stories (one such tale being 
that Wasdale turnips were big enough to be hollowed out and used as 
garden sheds). Each year locals are encouraged to attempt to tell the 
biggest lie in the world (lawyers and politicians are apparently banned 
from the competition). Over the years there have been tales of mermaid 
farms, giant moles, and farting sheep blowing holes in the ozone layer. 
(I am thinking of entering next year and reading out some sections of 
this book.)

Imagine I wanted to test a theory that more creative people will be able to create taller 
tales. I gathered together 68 past contestants from this competition and asked them where 
they were placed in the competition (first, second, third, etc.) and also gave them a crea-
tivity questionnaire (maximum score 60). The position in the competition is an ordinal 
variable (see section 1.5.1.2) because the places are categories but have a meaningful order 
(first place is better than second place and so on). Therefore, Spearman’s correlation coeffi-
cient should be used (Pearson’s r requires interval or ratio data). The data for this study are 
in the file TheBiggestLiar.sas7bdat. The data are in two columns: one labelled Creativity 
and one labelled Position (there’s actually a third variable in there but we will ignore it for 
the time being). For the Position variable, each of the categories described above has been 
coded with a numerical value. First place has been coded with the value 1, with positions 
being labelled 2, 3 and so on. Note that for each numeric code I have provided a value label 
(just like we did for coding variables). 

The procedure for doing a Spearman correlation is the same as for a Pearson corre-
lation except on the options line we add the word SPEARMAN. This is shown in SAS 
Syntax 6.2.

PROC CORR data=chapter6.thebiggestliar SPEARMAN;
 VAR creativity position;
 RUN;
SAS Syntax 6.2

SAS Output 6.2 shows the output for a Spearman correlation on the variables Creativity 
and Position. The output is very similar to that of the Pearson correlation: a matrix is 

3Seriously, a colleague of mine asked a student what analysis she was thinking of doing and she responded ‘a 
Spearman’s Rhino’. 

What if my data are
not parametric?
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displayed giving the correlation coefficient between the two variables (−.373), under-
neath is the significance value of this coefficient (.0017). The significance value for this 
correlation coefficient is less than .05; therefore, it can be concluded that there is a sig-
nificant relationship between creativity scores and how well someone did in the World’s 
Biggest Liar Competition. Note that the relationship is negative: as creativity increased, 
position decreased. This might seem contrary to what we predicted until you remember 

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum Label

CREATIVITY 68 39.98529 8.11759 39.00000 21.00000 56.00000 Creativity

POSITION 68 2.22059 1.38052 2.00000 1.00000 6.00000 Position in Best 
Liar Competition

Spearman Correlation Coefficients, N = 68
Prob > |r| under H0: Rho=0

CREATIVITY POSITION

CREATIVITY
Creativity

1.00000 –0.30022
0.0017

POSITION 
Position in Best Liar Competition

–0.37322
0.0017

1.00000

SaS OuTPuT 6.2 

Figure 6.4 
Charles 
Spearman, 
ranking furiously 
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You’ll notice from SAS Output 6.3 that the actual value of the correlation coefficient 
is closer to zero than the Spearman correlation (it has increased from −.373 to −.300). 
Despite the difference in the correlation coefficients we can still interpret this result as 
being a highly significant relationship (because the significance value of .001 is less than 
.05). However, Kendall’s value is a more accurate gauge of what the correlation in the 
population would be. As with the Pearson correlation, we cannot assume that creativity 
caused success in the World’s Best Liar Competition.

Kendall Tau b Correlation Coefficients, N = 68
Prob > |tau| under H0: Tau=0

CREATIVITY POSITION

CREATIVITY
Creativity

1.00000 –0.30024
0.0013

POSITION 
Position in Best Liar Competition

–0.30024
0.0013

1.00000

that a low number means that you did well in the competition (a low number such as 1 
means you came first, and a high number like 4 means you came fourth). Therefore, our 
hypothesis is supported: as creativity increased, so did success in the competition. 

SELF-TEST did creativity cause success in the World’s 
Biggest Liar Competition?

6.5.4.  Kendall’s tau (non-parametric) 2

Kendall’s tau, τ, is another non-parametric correlation and it should be used rather 
than Spearman’s coefficient when you have a small data set with a large number of 
tied ranks. This means that if you rank all of the scores and many scores have the 
same rank, then Kendall’s tau should be used. Although Spearman’s statistic is the 
more popular of the two coefficients, there is much to suggest that Kendall’s statistic 
is actually a better estimate of the correlation in the population (see Howell, 1997, 
p. 293). As such, we can draw more accurate generalizations from Kendall’s statistic 
than from Spearman’s. To carry out Kendall’s correlation on the world’s biggest liar 
data simply follow the same steps as for Pearson and Spearman correlations but write 
KENDALL on the PROC CORR line, instead of SPEARMAN. The output is much the 
same as for Spearman’s correlation.

SaS OuTPuT 6.3 
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SELF-TEST Conduct a Pearson correlation analysis of 
the advert data from the beginning of the chapter.

            CRAMMING SAM’S TIPS  

 We can measure the relationship between two variables using correlation coefficients.

 These coefficients lie between −1 and +1.

 Pearson’s correlation coefficient, r, is a parametric statistic and requires interval data for both variables. To test its signifi-
cance we assume normality too.

 Spearman’s correlation coefficient, rs, is a non-parametric statistic and requires only ordinal data for both variables.

 Kendall’s correlation coefficient, t, is like Spearman’s rs but probably better for small samples.

6.6. Partial correlation 2

6.6.1.  The theory behind part and partial correlation 2

I mentioned earlier that there is a type of correlation that can be done that allows you to 
look at the relationship between two variables when the effects of a third variable are held 
constant. For example, analyses of the exam anxiety data (in the file ExamAnxiety.sas 
7bdat) showed that exam performance was negatively related to exam anxiety, but posi-
tively related to revision time, and revision time itself was negatively related to exam anxi-
ety. This scenario is complex, but given that we know that revision time is related to both 
exam anxiety and exam performance, then if we want a pure measure of the relationship 
between exam anxiety and exam performance we need to take account of the influence of 
revision time. Using the values of R2 for these relationships, we know that exam anxiety 
accounts for 19.4% of the variance in exam performance, that revision time accounts for 
15.7% of the variance in exam performance, and that revision time accounts for 50.2% 
of the variance in exam anxiety. If revision time accounts for half of the variance in exam 
anxiety, then it seems feasible that at least some of the 19.4% of variance in exam perform-
ance that is accounted for by anxiety is the same variance that is accounted for by revision 
time. As such, some of the variance in exam performance explained by exam anxiety is not 
unique and can be accounted for by revision time. A correlation between two variables in 
which the effects of other variables are held constant is known as a partial correlation.
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Figure 6.7 illustrates the principle behind partial correlation. In part 1 of the dia-
gram there is a box for exam performance that represents the total variation in exam 
scores (this value would be the variance of exam performance). There is also a box 
that represents the variation in exam anxiety (again, this is the variance of that vari-
able). We know already that exam anxiety and exam performance share 19.4% of their 
variation (this value is the correlation coefficient squared). Therefore, the variations 
of these two variables overlap (because they share variance) creating a third box (the 
one with diagonal lines). The overlap of the boxes representing exam performance and 
exam anxiety is the common variance. Likewise, in part 2 of the diagram the shared 
variation between exam performance and revision time is illustrated. Revision time 
shares 15.7% of the variation in exam scores. This shared variation is represented by 
the area of overlap (filled with diagonal lines). We know that revision time and exam 
anxiety also share 50% of their variation; therefore, it is very probable that some of 

Exam Performance 

Exam
Anxiety

Exam Performance 

Revision
Time

Exam Performance 

Revision
Time

Exam Anxiety

Variance Accounted
for by Exam Anxiety (19.4%)

Variance Accounted for by
Revision Time (15.7%) 

Unique Variance
Explained by
Exam Anxiety

Unique Variance Explained
by Revision Time 

Variance Explained
by both Exam Anxiety

and Revision Time 

3

2

1

Figure 6.5
Diagram showing 
the principle of 
partial correlation



162 D iSCoVer inG Stat iSt iCS  US inG SaS

Pearson Partial Correlation Coefficients, N = 103
Prob > |r| under H0: Partial Rho=0

EXAM ANXIETY

EXAM
Exam Performance (%)

1.00000 –0.24667
0.0124

ANXIETY
Exam Anxiety

–0.24667
0.0124

1.00000

SaS OuTPuT 6.4 

the variation in exam performance shared by exam anxiety is the same as the variance 
shared by revision time.

Part 3 of the diagram shows the complete picture. The first thing to note is that the 
boxes representing exam anxiety and revision time have a large overlap (this is because 
they share 50% of their variation). More important, when we look at how revision time 
and anxiety contribute to exam performance we see that there is a portion of exam per-
formance that is shared by both anxiety and revision time (the dotted area). However, 
there are still small chunks of the variance in exam performance that are unique to the 
other two variables. So, although in part 1 exam anxiety shared a large chunk of vari-
ation in exam performance, some of this overlap is also shared by revision time. If we 
remove the portion of variation that is also shared by revision time, we get a measure 
of the unique relationship between exam performance and exam anxiety. We use partial 
correlations to find out the size of the unique portion of variance. Therefore, we could 
conduct a partial correlation between exam anxiety and exam performance while ‘con-
trolling’ for the effect of revision time. Likewise, we could carry out a partial correlation 
between revision time and exam performance while ‘controlling’ for the effects of exam 
anxiety.

6.6.2.  Partial correlation Using SAS 2

Let’s use the ExamAnxiety.sas7bdat file so that, as I suggested above, we can conduct a 
partial correlation between exam anxiety and exam performance while ‘controlling’ for the 
effect of revision time. 

We calculate partial correlations very similarly to correlations, using PROC CORR. 
variables that we want to control for (partial out) are added in a line called (you might 
guess) PARTIAL. So to examine the relationship between test scores and test anxiety, con-
trolling for revision time, we use the syntax shown in SAS Syntax 6.3.

PROC CORR data=chapter6.examanxiety;
  VAR exam anxiety;
  PARTIAL revise;
  RUN;
SAS Syntax 6.3

SAS Output 6.4 shows the output for the partial correlation of exam anxiety and exam 
performance controlling for revision time. There is a matrix of correlations for the variables 
anxiety and exam but controlling for the effect of revision. In this instance we have control-
led for one variable and so this is known as a first-order partial correlation. It is possible to 
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control for the effects of two variables at the same time (a second-order partial correlation) 
or control three variables (a third-order partial correlation) and so on. First, notice that the 
partial correlation between exam performance and exam anxiety is −.247, which is consider-
ably less than the correlation when the effect of revision time is not controlled for (r = −.441). 
In fact, the correlation coefficient is only about half what it was before. Although this correla-
tion is still statistically significant (its p-value is still below .05), the relationship is diminished. 
In terms of variance, the value of R2 for the partial correlation is .06, which means that exam 
anxiety can now account for only 6% of the variance in exam performance. When the effects 
of revision time were not controlled for, exam anxiety shared 19.4% of the variation in exam 
scores and so the inclusion of revision time has severely diminished the amount of variation 
in exam scores shared by anxiety. As such, a truer measure of the role of exam anxiety has 
been obtained. Running this analysis has shown us that exam anxiety alone does explain 
some of the variation in exam scores, but there is a complex relationship between anxiety, 
revision and exam performance that might otherwise have been ignored. Although causality 
is still not certain, because relevant variables are being included, the third-variable problem 
is, at least, being addressed in some form.

These partial correlations can be done when variables are dichotomous (including the ‘third’ 
variable). So, for example, we could look at the relationship between bladder relaxation (did the 
person wet themselves or not?) and the number of large tarantulas crawling up your leg, control-
ling for fear of spiders (the first variable is dichotomous, but the second variable and ‘controlled 
for’ variables are continuous). Also, to use an earlier example, we could examine the relation-
ship between creativity and success in the World’s Greater Liar Contest controlling for whether 
someone had previous experience in the competition (and therefore had some idea of the type 
of tale that would win) or not. In this latter case the ‘controlled for’ variable is dichotomous.4

6.6.3.  Semi-partial (or part) correlations 2

In the next chapter, we will come across another form of correlation known as a semi-partial 
correlation (also referred to as a part correlation). While I’m babbling on about partial cor-
relations it is worth my explaining the difference between this type of correlation and a semi-
partial correlation. When we do a partial correlation between two variables, we control for 
the effects of a third variable. Specifically, the effect that the third variable has on both vari-
ables in the correlation is controlled. In a semi-partial correlation we control for the effect 
that the third variable has on only one of the variables in the correlation. Figure 6.6 illustrates 
this principle for the exam performance data. The partial correlation that we calculated 
took account not only of the effect of revision on exam performance, but also of the effect 
of revision on anxiety. If we were to calculate the semi-partial correlation for the same data, 
then this would control for only the effect of revision on exam performance (the effect of 
revision on exam anxiety is ignored). Partial correlations are most useful for looking at the 
unique relationship between two variables when other variables are ruled out. Semi-partial 
correlations are, therefore, useful when trying to explain the variance in one particular 

4 Both these examples are, in fact, simple cases of hierarchical regression (see the next chapter) and the first example is 
also an example of analysis of covariance. This may be confusing now, but as we progress through the book I hope it’ll 
become clearer that virtually all of the statistics that you use are actually the same things dressed up in different names.

Partial Correlation Semi-Partial Correlation 

Revision

AnxietyAnxiety ExamExam

Revision Figure 6.6
The difference 
between a partial 
and a semi-partial 
correlation
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variable (an outcome) from a set of predictor variables. (Bear this in mind when you read 
Chapter 7.)

6.7. Comparing correlations 3

6.7.1.  Comparing independent rs 3

Sometimes we want to know whether one correlation coefficient is bigger than another. 
For example, when we looked at the effect of exam anxiety on exam performance, we 
might have been interested to know whether this correlation was different in men and 
women. We could compute the correlation in these two samples, but then how would we 
assess whether the difference was meaningful?

SELF-TEST Use the BY command to compute the 
correlation coefficient between exam anxiety and exam 
performance in men and women. (Remember to sort by 
gender with PROC SORT, and then add: BY gender;
to the PROC CORR command.

If we did this, we would find that the correlations were rMale = −.506 and rFemale = −.381. 
These two samples are independent; that is, they contain different entities. To compare 
these correlations we can again use what we discovered in section 6.3.3 to convert these 
coefficients to zr (just to remind you, we do this because it makes the sampling distribution 
normal and we know the standard error). If you do the conversion, then we get zr (males) = 
−.557 and zr (females) = −.401. We can calculate a z-score of the differences between these 
correlations as:

zDifference =
zr1 − zr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N1 − 3 + 1
N2 + 3

q
(6.9)

            CRAMMING SAM’S TIPS  

 A partial correlation quantifies the relationship between two variables while controlling for the effects of a third variable on 
both variables in the original correlation.

 A semi-partial correlation quantifies the relationship between two variables while controlling for the effects of a third variable 
on only one of the variables in the original correlation.
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We had 52 men and 51 women so we would get:

zDifference =
− :557− ð− :401Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
49 + 1

48

q = − :156
0:203

= − 0:768

We can look up this value of z (0.768, we can ignore the minus sign) in the table for the 
normal distribution in the Appendix and get the one-tailed probability from the column 
labelled ‘Smaller Portion’. In this case the value is .221. To get the two-tailed probability 
we simply multiply the one-tailed probability value by 2, which gives us .442. As such the 
correlation between exam anxiety and exam performance is not significantly different in 
men and women. 

6.7.2.  Comparing dependent rs 2

If you want to compare correlation coefficients that come from the same entities then things 
are a little more complicated. You can use a t-statistic to test whether a difference between two 
dependent correlations from the same sample is significant. For example, in our exam anxi-
ety data we might want to see whether the relationship between exam anxiety (x) and exam 
performance (y) is stronger than the relationship between revision (z) and exam performance. 
To calculate this, all we need are the three rs that quantify the relationships between these 
variables: rxy, the relationship between exam anxiety and exam performance (−.441); rzy, the 
relationship between revision and exam performance (.397); and rxz, the relationship between 
exam anxiety and revision (−.709). The t-statistic is computed as (Chen & Popovich, 2002):

tDifference = rxy − rzy
 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−3Þð1+ rxzÞ

2 1− r2
xy − r2

xz − r2
zy + 2rxyrxzrzy

 
vuut

(6.10)

Admittedly that equation looks hideous, but really it’s not too bad: it just uses the three 
correlation coefficients and the sample size N. Place the numbers from the exam anxiety 
example in it (N was 103) and you should end up with:

tDifference = ð−:838Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29:1

2ð1− :194− :503− :158+0:248

s

=−5:09

This value can be checked against the appropriate critical value in the Appendix with N − 3 
degrees of freedom (in this case 100). The critical values in the table are 1.98 (p < .05) 
and 2.63 (p < .01), two-tailed. As such we can say that the correlation between exam anxi-
ety and exam performance was significantly higher (more towards the positive) than the 
correlation between revision time and exam performance (this isn’t a massive surprise 
given that these relationships went in the opposite directions to each other).
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6.8. Calculating the effect size 1

Calculating effect sizes for correlation coefficients couldn’t be easier because, as we saw 
earlier in the book, correlation coefficients are effect sizes! So, no calculations (other than 

those you have already done) necessary! However, I do want 
to point out one caveat when using non-parametric correlation 
coefficients as effect sizes. Although the Spearman and Kendall 
correlations are comparable in many respects (their power, for 
example, is similar under parametric conditions), there are two 
important differences (Strahan, 1982).

First, we saw for Pearson’s r that we can square this value to 
get the proportion of shared variance, R2. For Spearman’s rs we 
can do this too because it uses the same equation as Pearson’s r. 
However, the resulting Rs

2 needs to be interpreted slightly dif-
ferently: it is the proportion of variance in the ranks that two 
variables share. Having said this, Rs

2 is usually a good approxi-
mation of R2 (especially in conditions of near-normal distribu-

tions). Kendall’s τ, however, is not numerically similar to either r or rs and so τ2 does not 
tell us about the proportion of variance shared by two variables (or the ranks of those two 
variables).

Second, Kendall’s τ is 66–75% smaller than both Spearman’s rs and Pearson’s r, but 
r and rs are generally similar sizes (Strahan, 1982). As such, if τ is used as an effect 
size it should be borne in mind that it is not comparable to r and rs and should not be 
squared. More generally, when using correlations as effect sizes you should remember 
(both when reporting your own analysis and when interpreting others) that the choice 
of correlation coefficient can make a substantial difference to the apparent size of the 
effect. 

6.9. How to report correlation coefficents 1

Reporting correlation coefficients is pretty easy: you just have to say how big they are 
and what their significance value was (although the significance value isn’t that important 
because the correlation coefficient is an effect size in its own right!). Four things to note are 
that: (1) coefficients are reported to 2 decimal places; (2) if you are quoting a one-tailed 
probability, you should say so; (3) each correlation coefficient is represented by a different 
letter (and some of them are Greek!); and (4) there are standard criteria of probabilities 
that we use (.05, .01 and .001). Let’s take a few examples from this chapter:

	There was a significant relationship between the number of adverts watched and the 
number of packets of sweets purchased, r = .87, p (one-tailed) < .05.

	Exam performance was significantly correlated with exam anxiety, r = −.44, and time 
spent revising, r = .40; the time spent revising was also correlated with exam anxiety, 
r = −.71 (all ps < .001).

	Creativity was significantly related to how well people did in the World’s Biggest Liar 
Competition, rs = –.37, p < .001. 

Can I use r2

for non-parametric
correlations?
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	Creativity was significantly related to how well people did in the World’s Biggest Liar 
Competition, τ = −.30, p < .001. (Note that I’ve quoted Kendall’s τ here.)

Scientists, rightly or wrongly, tend to use several standard levels of statistical signifi-
cance. Primarily, the most important criterion is that the significance value is less than 
.05; however, if the exact significance value is much lower then we can be much more 
confident about the strength of the experimental effect. In these circumstances we like 
to make a big song and dance about the fact that our result isn’t just significant at .05, 
but is significant at a much lower level as well (hooray!). The values we use are .05, 
.01, and .001. 

Table 6.2 An example of reporting a table of correlations

Exam 
Performance Exam Anxiety Revision Time

Exam Performance   1    −.44*** .40***

Exam Anxiety 103   1 −.71***

Revision Time 103 103 1

Ns = not significant (p > .05), *p < .05, ** p < .01, *** p < .001

When we have lots of correlations we sometimes put them into a table. For example, 
our exam anxiety correlations could be reported as in Table 6.2. Note that above the 
diagonal I have reported the correlation coefficients and used symbols to represent 
different levels of significance. Under the table there is a legend to tell readers what 
symbols represent. (Actually, none of the correlations were non-significant or had p 
bigger than .001 so most of these are here simply to give you a reference point – you 
would normally include symbols that you had actually used in the table in your legend.) 
Finally, in the lower part of the table I have reported the sample sizes. These are all the 
same (103) but sometimes when you have missing data it is useful to report the sample 
sizes in this way because different values of the correlation will be based on different 
sample sizes. For some more ideas on how to report correlations have a look at Labcoat 
Leni’s Real Research 6.1. 
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What have I discovered about statistics? 1   

This chapter has looked at ways to study relationships between variables. We began 
by looking at how we might measure relationships statistically by developing what we 
already know about variance (from Chapter 1) to look at variance shared between vari-
ables. This shared variance is known as covariance. We then discovered that when data 
are parametric we can measure the strength of a relationship using Pearson’s correla-
tion coefficient, r. When data violate the assumptions of parametric tests we can use 
Spearman’s rs, or for small data sets Kendall’s τ may be more accurate. We also saw 
that correlations can be calculated between two variables when one of those variables 
is a dichotomy (i.e. composed of two categories). Finally, we looked at the difference 
between partial correlations, in which the relationship between two variables is meas-
ured controlling for the effect that one or more variables has on both of those variables, 
and semi-partial correlations, in which the relationship between two variables is meas-
ured controlling for the effect that one or more variables has on only one of those vari-
ables. We also discovered that I had a guitar and, like my favourite record of the time, I 
was ready to ‘Take on the world’. Well, Wales at any rate …

As students you probably have to rate your lecturers at 
the end of the course. There will be some lecturers you 
like and others that you hate. As a lecturer I find this pro-
cess horribly depressing (although this has a lot to do 
with the fact that I tend focus on negative feedback and 
ignore the good stuff). There is some evidence that stu-
dents tend to pick courses of lecturers who they perceive 
to be enthusastic and good communicators. In a fascinat-
ing study, Tomas Chamorro-Premuzic and his colleagues 
(Chamorro-Premuzic, Furnham, Christopher, Garwood, & 
Martin, 2008) tested a slightly different hypothesis, which 
was that students tend to like lecturers who are like them-
selves. (This hypothesis will have the students on my 
course who like my lectures screaming in horror.)

First of all the authors measured students’ own per-
sonalities using a very well-established measure (the 
NEO-FFI) which gives rise to scores on five fundamental 
personality traits: Neuroticism, Extroversion, Openness to 
experience, Agreeableness and Conscientiousness. They 

also gave students a questionnaire that asked them to 
rate how much they wanted their lecturer to have each of 
a list of characteristics. For example, they would be given 
the description ‘warm: friendly, warm, sociable, cheerful, 
affectionate, outgoing’ and asked to rate how much they 
wanted to see this in a lecturer from −5 (they don’t want 
this characteristic at all) through 0 (the characteristic is 
not important) to +5 (I really want this characteristic in 
my lecturer). The characteristics on the questionnaire 
all related to personality characteristics measured by the 
NEO-FFI. As such, the authors had a measure of how 
much a student had each of the five core personality char-
acteristics, but also a measure of how much they wanted 
to see those same characteristics in their lecturer. 

In doing so, Tomas and his colleagues could test whether, 
for instance, extroverted students want extrovert lecturers. 
The data from this study (well, for the variables that I’ve 
mentioned) are in the file Chamorro Premuzic.sas7bdat. 
Run some Pearson correlations on these variables to see if 

students with certain personality characteristics 
want to see those characteristics in their lectur-
ers. What conclusions can you draw?

Answers are in the additional material on 
the companion website (or look at Table 3 in 

the original article, which will also show you how to report 
a large number of correlations).

LABCOAT LENI’S
REAL RESEARCH 6.1
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Key terms that I’ve discovered
Bivariate correlation
Coefficient of determination
Covariance
Cross-product deviations
Kendall’s tau

Partial correlation
Pearson correlation coefficient
Semi-partial correlation
Spearman’s correlation coefficient
Standardization

Smart Alex’s tasks

Task 1M : A student was interested in whether there was a positive relationship between 
the time spent doing an essay and the mark received. He got 45 of his friends and 
timed how long they spent writing an essay (hours) and the percentage they got 
in the essay (essay). He also translated these grades into their degree classifications 
(grade): first, upper second, lower second and third class. Using the data in the file 
EssayMarks.sas7bdat find out what the relationship was between the time spent 
doing an essay and the eventual mark in terms of percentage and degree class (draw 
a scatterplot too!). 1

Task 2M : Using the ChickFlick.sas7bdat. data from Chapter 3, is there a relationship 
between gender and arousal? Using the same data, is there a relationship between the 
film watched and arousal? 1

Task 3M : As a statistics lecturer I am always interested in the factors that determine 
whether a student will do well on a statistics course. One potentially important 
factor is their previous expertise with mathematics. Imagine I took 25 students and 
looked at their degree grades for my statistics course at the end of their first year 
at university. In the UK, a student can get a first-class mark (the best), an upper-
second-class mark, a lower second, a third, a pass or a fail (the worst). I also asked 
these students what grade they got in their GCSE maths exams. In the UK GCSEs 
are school exams taken at age 16 that are graded A, B, C, D, E or F (an A grade is 
better than all of the lower grades). The data for this study are in the file grades.
sas7bdat. Carry out the appropriate analysis to see if GCSE maths grades correlate 
with first-year statistics grades. 1

Answers can be found on the companion website. 

Further reading
Chen, P. Y., & Popovich, P. M. (2002). Correlation: Parametric and nonparametric measures. Thousand 

Oaks, CA: Sage. 
Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you 

might prefer his Fundamental statistics for the behavioral sciences, also in its 6th edition, 2007. 
Both are excellent texts that are a bit more technical than this book so they are a useful next 
step.)

Miles, J. N. v., & Banyard, P. (2007). Understanding and using statistics in psychology: a practical 
introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)
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Wright, D. B., & London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book is a 
very gentle introduction to statistical theory.)

Interesting real research
Chamorro-Premuzic, T., Furnham, A., Christopher, A. N., Garwood, J., & Martin, N. (2008). Birds 

of a feather: Students’ preferences for lecturers’ personalities as predicted by their own personal-
ity and learning approaches. Personality and Individual Differences, 44, 965–976.
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Figure 7.1
Me playing 
with my ding-
a-ling in the 
Holimarine Talent 
Show. Note the 
groupies queuing 
up at the front

7.1. What will this chapter tell me? 1

Although none of us can know the future, predicting it is so important that organisms are 
hard wired to learn about predictable events in their environment. We saw in the previ-
ous chapter that I received a guitar for Christmas when I was 8. My first foray into public 
performance was a weekly talent show at a holiday camp called ‘Holimarine’ in Wales (it 
doesn’t exist anymore because I am old and this was 1981). I sang a Chuck Berry song called 
‘My ding-a-ling’1 and to my absolute amazement I won the competition.2 Suddenly other 8 
year olds across the land (well, a ballroom in Wales) worshipped me (I made lots of friends 
after the competition). I had tasted success, it tasted like praline chocolate, and so I wanted 
to enter the competition in the second week of our holiday. To ensure success, I needed to 
know why I had won in the first week. One way to do this would have been to collect data 
and to use these data to predict people’s evaluations of children’s performances in the contest 

1 It appears that even then I had a passion for lowering the tone of things that should be taken seriously.
2 I have a very grainy video of this performance recorded by my dad’s friend on a video camera the size of a 
medium-sized dog that had to be accompanied at all times by a ‘battery pack’ the size and weight of a tank. Maybe 
I’ll put it up on the companion website …

7Regression
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from certain variables: the age of the performer, what type of performance they gave (sing-
ing, telling a joke, magic tricks), and maybe how cute they looked. A regression analysis on 
these data would enable us to predict future evaluations (success in next week’s competition) 
based on values of the predictor variables. If, for example, singing was an important factor 
in getting a good audience evaluation, then I could sing again the following week; however, 
if jokers tended to do better then I could switch to a comedy routine. When I was 8 I wasn’t 
the sad geek that I am today, so I didn’t know about regression analysis (nor did I wish to 
know); however, my dad thought that success was due to the winning combination of a 
cherub-looking 8 year old singing songs that can be interpreted in a filthy way. He wrote me 
a song to sing in the competition about the keyboard player in the Holimarine Band ‘messing 
about with his organ’, and first place was mine again. There’s no accounting for taste.

7.2. An introduction to regression 1

In the previous chapter we looked at how to measure relationships between two variables. 
These correlations can be very useful but we can take this process a step further and predict 
one variable from another. A simple example might be to try to predict levels of stress from 
the amount of time until you have to give a talk. You’d expect this to be a negative relation-
ship (the smaller the amount of time until the talk, the larger the anxiety). We could then 
extend this basic relationship to answer a question such as ‘if there’s 10 minutes to go until 
someone has to give a talk, how anxious will they be?’ This is the essence of regression 
analysis: we fit a model to our data and use it to predict values of the dependent variable 
from one or more independent variables.3 Regression analysis is a way of predicting an out-
come variable from one predictor variable (simple regression) or several predictor variables 
(multiple regression). This tool is incredibly useful because it allows us to go a step beyond 
the data that we collected.

In section 2.4.3 I introduced you to the idea that we can predict any data using the fol-
lowing general equation:

outcomei = ðmodelÞ+ errori (7.1)

This just means that the outcome we’re interested in for a particular person can be pre-
dicted by whatever model we fit to the data plus some kind of error. In regression, the 

model we fit is linear, which means that we summarize a data set with a 
straight line (think back to Jane Superbrain Box 2.1). As such, the word 
‘model’ in the equation above simply gets replaced by ‘things that define 
the line that we fit to the data’ (see the next section).

With any data set there are several lines that could be used to summa-
rize the general trend and so we need a way to decide which of many pos-
sible lines to chose. For the sake of making accurate predictions we want 
to fit a model that best describes the data. The simplest way to do this 
would be to use your eye to gauge a line that looks as though it summa-
rizes the data well. You don’t need to be a genius to realize that the ‘eye-
ball’ method is very subjective and so offers no assurance that the model 

is the best one that could have been chosen. Instead, we use a mathematical technique called 
the method of least squares to establish the line that best describes the data collected.

3 I want to remind you here of something I discussed in Chapter 1: SAS refers to regression variables as dependent 
and independent variables (as in controlled experiments). However, correlational research by its nature seldom 
controls the independent variables to measure the effect on a dependent variable and so I will talk about ‘inde-
pendent variables’ as predictors, and the ‘dependent variable’ as the outcome.

How do I fit a straight
line to my data?
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7.2.1.  Some important information about straight lines 1

I mentioned above that in our general equation the word ‘model’ gets replaced by ‘things 
that define the line that we fit to the data’. In fact, any straight line can be defined by two 
things: (1) the slope (or gradient) of the line (usually denoted by b1); and (2) the point at 
which the line crosses the vertical axis of the graph (known as the intercept of the line, b0). 
In fact, our general model becomes equation (7.2) below in which Yi is the outcome that 
we want to predict and Xi is the ith participant’s score on the predictor variable.4 Here b1 is 
the gradient of the straight line fitted to the data and b0 is the intercept of that line. These 
parameters b1 and b0 are known as the regression coefficients and will crop up time and 
time again in this book, where you may see them referred to generally as b (without any 
subscript) or bi (meaning the b associated with variable i). There is a residual term, εi, which 
represents the difference between the score predicted by the line for participant i and the 
score that participant i actually obtained. The equation is often conceptualized without this 
residual term (so ignore it if it’s upsetting you); however, it is worth knowing that this term 
represents the fact that our model will not fit the data collected perfectly:

Yi = ðb0 + b1XiÞ+ εi (7.2)

A particular line has a specific intercept and gradient. Figure 7.2 shows a set of lines that 
have the same intercept but different gradients, and a set of lines that have the same gradi-
ent but different intercepts. Figure 7.2 also illustrates another useful point: the gradient of 
the line tells us something about the nature of the relationship being described. In Chapter 
6 we saw how relationships can be either positive or negative (and I don’t mean the dif-
ference between getting on well with your girlfriend and arguing all the time!). A line that 
has a gradient with a positive value describes a positive relationship, whereas a line with a 
negative gradient describes a negative relationship. So, if you look at the graph in Figure 7.2

4 You’ll sometimes see this equation written as:

Yi = (β0 + β1Xi) + εi

The only difference is that this equation has got βs in it instead of bs and in fact both versions are the same thing, 
they just use different letters to represent the coefficients. 

Figure 7.2
Lines with the 
same gradients 
but different 
intercepts, 
and lines that 
share the same 
intercept but 
have different 
gradients
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in which the gradients differ but the intercepts are the same, then the dashed line describes a 
positive relationship whereas the solid line describes a negative relationship. Basically, then, 
the gradient (b1) tells us what the model looks like (its shape) and the intercept (b0) tells us 
where the model is (its location in geometric space).

If it is possible to describe a line knowing only the gradient and the intercept of that line, 
then we can use these values to describe our model (because in linear regression the model 
we use is a straight line). So, the model that we fit to our data in linear regression can be 
conceptualized as a straight line that can be described mathematically by equation (7.2). With 
regression we strive to find the line that best describes the data collected, then estimate the 
gradient and intercept of that line. Having defined these values, we can insert different values 
of our predictor variable into the model to estimate the value of the outcome variable.

7.2.2.  The method of least squares 1

I have already mentioned that the method of least squares is a way of finding the line that 
best fits the data (i.e. finding a line that goes through, or as close to, as many of the data 
points as possible). This ‘line of best fit’ is found by ascertaining which line, of all of the 
possible lines that could be drawn, results in the least amount of difference between the 
observed data points and the line. Figure 7.3 shows that when any line is fitted to a set of 
data, there will be small differences between the values predicted by the line and the data 
that were actually observed. 

Back in Chapter 2 we saw that we could assess the fit of a model (the example we used 
was the mean) by looking at the deviations between the model and the actual data col-
lected. These deviations were the vertical distances between what the model predicted and 
each data point that was actually observed. We can do exactly the same to assess the fit of 
a regression line (which, like the mean, is a statistical model). So, again we are interested 
in the vertical differences between the line and the actual data because the line is our 
model: we use it to predict values of Y from values of the X variable. In regression these 
differences are usually called residuals rather than deviations, but they are the same thing. 
As with the mean, data points fall both above (the model underestimates their value) and 

Figure 7.3
This graph 
shows a 
scatterplot of 
some data with a 
line representing 
the general trend. 
The vertical 
lines (dotted) 
represent the 
differences 
(or residuals) 
between the 
line and the 
actual data
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below (the model overestimates their value) the line, yielding both positive and negative 
differences. In the discussion of variance in section 2.4.2 I explained that if we sum posi-
tive and negative differences then they cancel each other out and that to circumvent this 
problem we square the differences before adding them up. We do the same thing here. The 
resulting squared differences provide a gauge of how well a particular line fits the data: if 
the squared differences are large, the line is not representative of the data; if the squared 
differences are small, the line is representative.

You could, if you were particularly bored, calculate the sum of squared differences (or 
SS for short) for every possible line that is fitted to your data and then compare these 
‘goodness-of-fit’ measures. The one with the lowest SS is the line of best fit. Fortunately 
we don’t have to do this because the method of least squares does it for us: it selects the 
line that has the lowest sum of squared differences (i.e. the line that best represents the 
observed data). How exactly it does this is by using a mathematical technique for finding 
maxima and minima and this technique is used to find the line that minimizes the sum of 
squared differences. I don’t really know much more about it than that, to be honest, so I 
tend to think of the process as a little bearded wizard called Nephwick the Line Finder who 
just magically finds lines of best fit. Yes, he lives inside your computer. The end result is that 
Nephwick estimates the value of the slope and intercept of the ‘line of best fit’ for you. We 
tend to call this line of best fit a regression line.

7.2.3.   Assessing the goodness of fit: sums of squares,  

R and R 2 1

Once Nephwick the Line Finder has found the line of best fit it is important that we assess 
how well this line fits the actual data (we assess the goodness of fit of the model). We do this 
because even though this line is the best one available, it can still be a lousy fit to the data! 
In section 2.4.2 we saw that one measure of the adequacy of a model is the sum of squared 
differences (or more generally we assess models using equation (7.3) below). If we want to 
assess the line of best fit, we need to compare it against something, and the thing we choose 
is the most basic model we can find. So we use equation (7.3) to calculate the fit of the most 
basic model, and then the fit of the best model (the line of best fit), and basically if the best 
model is any good then it should fit the data significantly better than our basic model:

deviation=
X

ðobserved−modelÞ2 (7.3)

This is all quite abstract so let’s look at an example. Imagine that I was 
interested in predicting record sales (Y) from the amount of money spent 
advertising that record (X). One day my boss came into my office and said 
‘Andy, I know you wanted to be a rock star and you’ve ended up work-
ing as my stats-monkey, but how many records will we sell if we spend 
£100,000 on advertising?’ If I didn’t have an accurate model of the rela-
tionship between record sales and advertising, what would my best guess 
be? Well, probably the best answer I could give would be the mean number 
of record sales (say, 200,000) because on average that’s how many records 
we expect to sell. This response might well satisfy a brainless record com-
pany executive (who didn’t offer my band a record contract). However, 
what if he had asked ‘How many records will we sell if we spend £1 on advertising?’ Again, in 
the absence of any accurate information, my best guess would be to give the average number 
of sales (200,000). There is a problem: whatever amount of money is spent on advertising I 

How do I tell if my
model is good?
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always predict the same level of sales. As such, the mean is a model of ‘no relationship’ at all 
between the variables. It should be pretty clear then that the mean is fairly useless as a model 
of a relationship between two variables – but it is the simplest model available. 

So, as a basic strategy for predicting the outcome, we might choose to use the mean, because 
on average it will be a fairly good guess of an outcome, but that’s all. Using the mean as a model, 
we can calculate the difference between the observed values, and the values predicted by the 
mean (equation (7.3)). We saw in section 2.4.1 that we square all of these differences to give 
us the sum of squared differences. This sum of squared differences is known as the total sum of 
squares (denoted SST) because it is the total amount of differences present when the most basic 
model is applied to the data. This value represents how good the mean is as a model of the 
observed data. Now, if we fit the more sophisticated model to the data, such as a line of best fit, 
we can again work out the differences between this new model and the observed data (again 
using equation (7.3)). In the previous section we saw that the method of least squares finds 
the best possible line to describe a set of data by minimizing the difference between the model 
fitted to the data and the data themselves. However, even with this optimal model there is still 
some inaccuracy, which is represented by the differences between each observed data point and 
the value predicted by the regression line. As before, these differences are squared before they 
are added up so that the directions of the differences do not cancel out. The result is known as 
the sum of squared residuals or residual sum of squares (SSR). This value represents the degree 
of inaccuracy when the best model is fitted to the data. We can use these two values to calculate 
how much better the regression line (the line of best fit) is than just using the mean as a model 
(i.e. how much better is the best possible model than the worst model?). The improvement 
in prediction resulting from using the regression model rather than the mean is calculated by 
calculating the difference between SST and SSR. This difference shows us the reduction in the 
inaccuracy of the model resulting from fitting the regression model to the data. This improve-
ment is the model sum of squares (SSM). Figure 7.4 shows each sum of squares graphically.

If the value of SSM is large then the regression model is very different from using the 
mean to predict the outcome variable. This implies that the regression model has made a big 
improvement to how well the outcome variable can be predicted. However, if SSM is small 
then using the regression model is little better than using the mean (i.e. the regression model 
is no better than taking our ‘best guess’). A useful measure arising from these sums of squares 
is the proportion of improvement due to the model. This is easily calculated by dividing the 
sum of squares for the model by the total sum of squares. The resulting value is called R2 and 
to express this value as a percentage you should multiply it by 100. R2 represents the amount 
of variance in the outcome explained by the model (SSM) relative to how much variation 
there was to explain in the first place (SST). Therefore, as a percentage, it represents the per-
centage of the variation in the outcome that can be explained by the model:

R2 = SSM

SST
(7.4)

This R2 is the same as the one we met in Chapter 6 (section 6.5.2.3) and you might have 
noticed that it is interpreted in the same way. Therefore, in simple regression we can take 
the square root of this value to obtain Pearson’s correlation coefficient. As such, the cor-
relation coefficient provides us with a good estimate of the overall fit of the regression 
model, and R2 provides us with a good gauge of the substantive size of the relationship.

A second use of the sums of squares in assessing the model is through the F-test. 
I mentioned way back in Chapter 2 that test statistics (like F) are usually the amount of 
systematic variance divided by the amount of unsystematic variance, or, put another way, 
the model compared against the error in the model. This is true here: F is based upon the 
ratio of the improvement due to the model (SSM) and the difference between the model 
and the observed data (SSR). Actually, because the sums of squares depend on the number 
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of differences that we have added up, we use the average sums of squares (referred to as 
the mean squares or MS). To work out the mean sums of squares we divide by the degrees 
of freedom (this is comparable to calculating the variance from the sums of squares – see 
section 2.4.2). For SSM the degrees of freedom are simply the number of variables in the 
model, and for SSR they are the number of observations minus the number of parameters 
being estimated (i.e. the number of beta coefficients including the constant). The result is 
the mean squares for the model (MSM) and the residual mean squares (MSR). At this stage 
it isn’t essential that you understand how the mean squares are derived (it is explained in 
Chapter 10). However, it is important that you understand that the F-ratio (equation (7.5)) 
is a measure of how much the model has improved the prediction of the outcome com-
pared to the level of inaccuracy of the model:

F = MSM

MSR
(7.5)

Figure 7.4
Diagram showing 
from where the 
regression sums 
of squares derive
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If a model is good, then we expect the improvement in prediction due to the model to be 
large (so MSM will be large) and the difference between the model and the observed data to 
be small (so MSR will be small). In short, a good model should have a large F-ratio (greater 
than 1 at least) because the top of equation (7.5) will be bigger than the bottom. The exact 
magnitude of this F-ratio can be assessed using critical values for the corresponding degrees 
of freedom (as in the Appendix).

7.2.4.  Assessing individual predictors 1

We’ve seen that the predictor in a regression model has a coefficient (b1), which in sim-
ple regression represents the gradient of the regression line. The value of b represents 
the change in the outcome resulting from a unit change in the predictor. If the model 
was useless at predicting the outcome, then if the value of the predictor changes, what 
might we expect the change in the outcome to be? Well, if the model is very bad then 
we would expect the change in the outcome to be zero. Think back to Figure 7.4 (see 
the panel representing SST) in which we saw that using the mean was a very bad way of 
predicting the outcome. In fact, the line representing the mean is flat, which means that 
as the predictor variable changes, the value of the outcome does not change (because 
for each level of the predictor variable, we predict that the outcome will equal the 
mean value). The important point here is that a bad model (such as the mean) will have 
regression coefficients of 0 for the predictors. A regression coefficient of 0 means: (1) 
a unit change in the predictor variable results in no change in the predicted value of 
the outcome (the predicted value of the outcome does not change at all); and (2) the 
gradient of the regression line is 0, meaning that the regression line is flat. Hopefully, 
you’ll see that it logically follows that if a variable significantly predicts an outcome, 
then it should have a b-value significantly different from zero. This hypothesis is tested 
using a t-test (see Chapter 9). The t-statistic tests the null hypothesis that the value of b 
is 0: therefore, if it is significant we gain confidence in the hypothesis that the b-value 
is significantly different from 0 and that the predictor variable contributes significantly 
to our ability to estimate values of the outcome.

Like F, the t-statistic is also based on the ratio of explained variance to unexplained 
variance or error. Well, actually, what we’re interested in here is not so much variance but 
whether the b we have is big compared to the amount of error in that estimate. To estimate 
how much error we could expect to find in b we use the standard error. The standard error 
tells us something about how different b-values would be across different samples. We 
could take lots and lots of samples of data regarding record sales and advertising budgets 
and calculate the b-values for each sample. We could plot a frequency distribution of these 
samples to discover whether the b-values from all samples would be relatively similar, or 
whether they would be very different (think back to section 2.5.1). We can use the standard 
deviation of this distribution (known as the standard error) as a measure of the similarity 
of b-values across samples. If the standard error is very small, then it means that most 
samples are likely to have a b-value similar to the one in our sample (because there is little 
variation across samples). The t-test tells us whether the b-value is different from 0 relative 
to the variation in b-values across samples. When the standard error is small even a small 
deviation from zero can reflect a meaningful difference because b is representative of the 
majority of possible samples.

Equation (7.6) shows how the t-test is calculated and you’ll find a general version of 
this equation in Chapter 9 (equation (9.1)). The bexpected is simply the value of b that we 
would expect to obtain if the null hypothesis were true. I mentioned earlier that the null 
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hypothesis is that b is 0 and so this value can be replaced by 0. The equation simplifies to 
become the observed value of b divided by the standard error with which it is associated:

t=
bobserved − bexpected

SEb

= bobserved

SEb

(7.6)

The values of t have a special distribution that differs according to the degrees of freedom 
for the test. In regression, the degrees of freedom are N − p − 1, where N is the total sample 
size and p is the number of predictors. In simple regression when we have only one predic-
tor, this reduces down to N − 2. Having established which t-distribution needs to be used, 
the observed value of t can then be compared to the values that we would expect to find if 
there was no effect (i.e. b = 0): if t is very large then it is unlikely to have occurred when 
there is no effect (these values can be found in the Appendix). SAS provides the exact prob-
ability that the observed value (or a larger one) of t would occur if the value of b was, in 
fact, 0. As a general rule, if this observed significance is less than .05, then scientists assume 
that b is significantly different from 0; put another way, the predictor makes a significant 
contribution to predicting the outcome. 

7.3. Doing simple regression on SAS 1

So far, we have seen a little of the theory behind regression, albeit restricted to the situ-
ation in which there is only one predictor. To help clarify what we have learnt so far, 
we will go through an example of a simple regression on SAS. Earlier on I asked you 
to imagine that I worked for a record company and that my boss was interested in pre-
dicting record sales from advertising. There are some data for this example in the file 
Record1.sas7bdat. This data file has 200 rows, each one representing a different record. 
There are also two columns, one representing the sales of each record in the week after 
release and the other representing the amount (in pounds) spent promoting the record 
before release. This is the format for entering regression data: the outcome variable and 
any predictors should be entered in different columns, and each row should represent 
independent values of those variables.

The pattern of the data is shown in Figure 7.5 and it should be clear that a positive 
relationship exists: so, the more money spent advertising the record, the more it is likely 
to sell. Of course there are some records that sell well regardless of advertising (top left 
of scatterplot), but there are none that sell badly when advertising levels are high (bottom 
right of scatterplot). The scatterplot also shows the line of best fit for these data: bearing in 
mind that the mean would be represented by a flat line at around the 200,000 sales mark, 
the regression line is noticeably different.

To find out the parameters that describe the regression line, and to see whether this line 
is a useful model, we need to run a regression analysis. To do the analysis you need to use 
PROC REG. 

PROC REG syntax is very straightforward, and is shown in SAS Syntax 7.1. The MOdEL 
statement is written in the form of the equation: we think that sales are a function of adverts, 
so we write sales = adverts. Notice that PROC REG is slightly different to other procedures, 
because we need to write qUIT; after the RUN statement.
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PROC REG DATA=chapter6.record1;
 MODEL sales = adverts;
 RUN; 
QUIT;
SAS Syntax 7.1

7.4. Interpreting a simple regression 1

7.4.1.  Overall fit of the model 1

The output from the regression is shown in SAS Output 7.1. The first part of the output 
reports an analysis of variance (ANOVA – see Chapter 10). The summary table shows the 
various sums of squares described in Figure 7.4 and the degrees of freedom associated with 
each. From these two values, the average sums of squares (the mean squares) can be calculated 
by dividing the sums of squares by the associated degrees of freedom. The most important 
part of the table is the F-ratio, which is calculated using equation (7.5), and the associated 
significance value of that F-ratio. For these data, F is 99.59, which is significant at p < .001 
(because the value in the column labelled Sig. is less than .001). Researchers usually dont 
report p-values below 0.001 though. This result tells us that there is less than a 0.1% chance 
that an F-ratio at least this large would happen if the null hypothesis were true. Therefore, 
we can conclude that our regression model results in significantly better prediction of record 
sales than if we used the mean value of record sales. In short, the regression model overall 
predicts record sales significantly well.

The second part of the output is a summary of the model. This summary table provides 
the value of R and R2 for the model that has been derived (as well as some other things we 
are not going to worry about for now). For these data, R has a value of .578 and because 
there is only one predictor, this value represents the simple correlation between advertising 
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and record sales (you can confirm this by running a correlation using what you were taught 
in Chapter 6). The value of R2 is .335, which tells us that advertising expenditure can 
account for 33.5% of the variation in record sales. In other words, if we are trying to 
explain why some records sell more than others, we can look at the variation in sales of dif-
ferent records. There might be many factors that can explain this variation, but our model, 
which includes only advertising expenditure, can explain approximately 33% of it. This 
means that 67% of the variation in record sales cannot be explained by advertising alone. 
Therefore, there must be other variables that have an influence also.

7.4.2.  Model parameters 1

The ANOVA tells us whether the model, overall, results in a significantly 
good degree of prediction of the outcome variable. However, the ANOVA 
doesn’t tell us about the individual contribution of variables in the model 
(although in this simple case there is only one variable in the model and 
so we can infer that this variable is a good predictor. The third part of 
the output provides details of the model parameter estimates (the beta 
values) and the significance of these values. We saw in equation (7.2) 
that b0 was the Y intercept and this value is the value labelled Parameter 
Estimate (in the SAS output) for the constant. So, from the table, we 

SAS Output 7.1

How do I interpret
b values?

The REG Procedure
Model: MODEL1

Dependent Variable: SALES Record Sales (thousands)

Number of Observations Read 200

Number of Observations Used 200

Analysis of Variance

 
Source

 
DF

Sum of 
Squares

Mean 
Square

 
F Value

 
Pr > F

Model 1 433688 433688 99.59 <.0001

Error 198 862264 4354.86953

Corrected Total 199 1295952

Root MSE 65.99144 R-Square 0.3346

Dependent Mean 193.20000 Adj R-Sq 0.3313

Coeff Var 34.15706

Parameter Estimates

 
Variable

 
Label DF

Parameter
Estimate

Standard 
Error t Value Pr > |t|

Intercept Intercept 1 134.13994 7.53657 17.80 <.0001

ADVERTS Advertsing Budget (thousands of 
pounds)

1 0.09612 0.00963 9.98 <.0001
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can say that b0 is 134.14, and this can be interpreted as meaning that when no money is 
spent on advertising (when X = 0), the model predicts that 134,140 records will be sold 
(remember that our unit of measurement was thousands of records). We can also read off 
the value of b1 from the table and this value represents the gradient of the regression line. 
It is 0.096. Although this value is the slope of the regression line, it is more useful to think 
of this value as representing the change in the outcome associated with a unit change in the 
predictor. Therefore, if our predictor variable is increased by one unit (if the advertising 
budget is increased by 1), then our model predicts that 0.096 extra records will be sold. 
Our units of measurement were thousands of pounds and thousands of records sold, so 
we can say that for an increase in advertising of £1000 the model predicts 96 (0.096 × 
1000 = 96) extra record sales. As you might imagine, this investment is pretty bad for the 
record company: it invests £1000 and gets only 96 extra sales! Fortunately, as we already 
know, advertising accounts for only one-third of record sales.

We saw earlier that, in general, values of the regression coefficient b represent the change 
in the outcome resulting from a unit change in the predictor and that if a predictor is hav-
ing a significant impact on our ability to predict the outcome then this b should be different 
from 0 (and big relative to its standard error). We also saw that the t-test tells us whether 
the b-value is different from 0. SAS provides the exact probability that the observed value of 
t would occur if the value of b in the population were 0. If this observed significance is less 
than .05, then scientists agree that the result reflects a genuine effect (see Chapter 2). For 
these two values, the probabilities are <.0001 and so we can say that the probability of these 
t values (or larger) occurring if the values of b in the population were 0 is less than .0001. 
Therefore, the bs are different from 0 and we can conclude that the advertising budget 
makes a significant contribution (p < .0001) to predicting record sales.

SELF-TEST How is the t in SAS Output 7.1 calculated? 
Use the values in the table to see if you can get the 
same value as SAS.

7.4.3.  Using the model 1

So far, we have discovered that we have a useful model, one that significantly improves 
our ability to predict record sales. However, the next stage is often to use that model to 
make some predictions. The first stage is to define the model by replacing the b-values in 
equation (7.2) with the values from SAS Output 7.1. In addition, we can replace the X and 
Y with the variable names so that the model becomes:

record salesi = b0 + b1advertising budgeti

= 134:14+ ð0:096× advertising budgetiÞ
(7.7)

It is now possible to make a prediction about record sales, by replacing the advertising 
budget with a value of interest. For example, imagine a record executive wanted to spend 
£100,000 on advertising a new record. Remembering that our units are already in thou-
sands of pounds; we can simply replace the advertising budget with 100. He would dis-
cover that record sales should be around 144,000 for the first week of sales:
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record salesi = 134:14+ ð0:096× advertising budgetiÞ
= 134:14+ ð0:096× 100Þ
= 143:74

(7.8)

SELF-TEST How many records would be sold if we 
spent £666,000 on advertising the latest CD by black 
metal band Abgott?

  CRAMMING SAM’S TIPS    Simple regression

 Simple regression is a way of predicting values of one variable from another.

 We do this by fitting a statistical model to the data in the form of a straight line.

 This line is the line that best summarizes the pattern of the data.

 We have to assess how well the line fits the data using:

 R2 which tells us how much variance is explained by the model compared to how much variance there is to explain in 
the first place. It is the proportion of variance in the outcome variable that is shared by the predictor variable.

 F, which tells us how much variability the model can explain relative to how much it can’t explain (i.e. it’s the ratio of 
how good the model is compared to how bad it is).

 The b-value tells us the gradient of the regression line and the strength of the relationship between a predictor and the 
outcome variable. If it is significant (Sig. < .05 in the SAS table) then the predictor variable significantly predicts the 
outcome variable.

7.5. Multiple regression: the basics 1

To summarize what we have learnt so far, in simple linear regression 
the outcome variable Y is predicted using the equation of a straight line 
(equation (7.2)). Given that we have collected several values of Y and 
X, the unknown parameters in the equation can be calculated. They 
are calculated by fitting a model to the data (in this case a straight line) 
for which the sum of the squared differences between the line and the 
actual data points is minimized. This method is called the method of 
least squares. Multiple regression is a logical extension of these princi-
ples to situations in which there are several predictors. Again, we still 
use our basic equation of:

outcomei = (model) + errori

but this time the model is slightly more complex. It is basically the same as for simple 
regression except that for every extra predictor you include, you have to add a coefficient; 

What is the difference
between simple and
multiple regression?


