INTRODUCTION TO
CORRELATION AND
REGRESSION (ORDINARY
LEAST SQUARES)

WHAT THIS CHAPTER IS ABOUT

So far we have been dealing with procedures for analyzing categorical data. We now turn
t0 a powerful body of techniques that can be applied when the dependent variable is an
interval or ratio variable: ordinary least-squares regression and correlation analysis. In
this chapter we deal with the two-variable case, where we have a dependent variable and
single independent variable, to illustrate the logic. In the following two chapters we
with multiple regression, which is used when we want to explore the effects of sev-

I independent variables on a dependent variable, the typical case in social science
search.
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INTRODUCTION
Suppose we have a set of data arrayed like this:
Father’s Years of Schooling Respondent’s Years of Schooling
2 4
12 10
4 8
13 13
6 9
6 4
8 13
4 6
8 6
10 11

What can we say about the relationship between father’s education and respondent’s
education? Not much. Visual inspection of the two arrays is quite uninformative. However,
if we plot the two variables in two-dimensional space, the nature of the relationship is
revealed. When you inspect the plot (Figure 5.1), it is immediately evident that the chil-
dren of highly educated fathers tend to be highly educated themselves. In this situation,
we say that the father’s and the respondent’s education are positively correlated.

Although we can see that the father’s and respondent’s education are positively cor-
related, we want to quantify the relationship in two respects. First, we want a way to
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describe the character of the relationship between the father’s and respondent’s years of
schooling. How large a difference in the dependent variable, years of schooling, would we
expect on average for a person whose father’s schooling (the independent variable) differs by
one unit (one year)? What level of schooling would we expect, or predict, on average for
each person, given that we know how much schooling his or her father has? Second, we want
a way to characterize the strength of the co-relation, or correlation, between the respondent’s
and father’s years of schooling. Can we get a precise prediction of the respondent’s level of
education from the father’s level of education or only an approximate one?

QUANTIFYING THE SIZE OF A RELATIONSHIP:
REGRESSION ANALYSIS

The conventional and simplest way to describe the character of the relationship between
two variables is to put a straight line through the points that “best” summarizes the average
relationship between the two variables. Recall from school algebra that straight lines are
represented by an equation of the form

Y=a+ b(X) (6.1

where a is the intercept (the value of Y when the value of X is zero) and b is the slope (the
change in Y for each unit change in X). Figure 5.2 shows the coefficients a and b for our
example involving years of education (Y) and father’s years of education (X). The figure
is a graphic representation of the equation:

E=338+.687(E,) (5.2)
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FIGURE 5.2. Least-Squares Regression Line of the Relation Between Years

of Schooling and Father’s Years of Schooling.
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Here E indicates the expected number of years of school completed by people with
each level of father’s years of schooling (E,) on the assumption that the relationship is lin-
ear, that is, that each increase in the father’s education produces a given increase in the
respondent’s education regardless of the initial level; 3.38 is the intercept, that is, the ex-
pected years of schooling for people whose fathers had no schooling at all; and .687 is the
slope, that is, the expected increase in years of schooling for each one-year increase in the
father’s schooling. From this equation, we would predict that those whose fathers have 10
years of schooling would have 10.25 years of schooling because 3.38 + 10*.687 = 10.25.
Similarly, we would predict that the children of university graduates would have 2.75 more
years of schooling, on average, than the children of high school graduates because .687*(16 —
12) = 2.75. Estimating the value of the dependent variable in a regression equation for given
values of the independent variable is known as evaluating the equation.

So far we have said nothing about how we derive the values for the coefficients
shown in Equation 5.2. The criterion for putting a line through a set of points is that we
minimize the sum of the squared'errors of prediction—that is, we minimize the sum of
the squared differences between the observed and predicted values. Lines derived in this
way are known as ordinary least-squares regression lines. Figure 5.3 illustrates this crite-
rion. The term ¢, (= E, — E,, or the actual number of years of schooling for the ith person
minus the expected number of years of schooling for that person given his or her father’s
years of schooling) shown in the figure is the error of prediction between the specified
point and the regression line. If we square each of these errors of prediction (which are
also called residuals) and sum them, there is one and only one line for which this sum of
squares is smallest. This is the ordinary least-squares (OLS) regression line.
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of Schooling and Father’s Years of Schooling, Showing How the “Error of
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DETERMINE THE BEST-FITTING LINE? note that “least

squares” is not the only plausible criterion of “best fit.” An intuitively more appealing crite-
rion is to minimize the sum of the absolute deviations of observed values from expected val-
ues. Absolute values are mathematically intractable, however, whereas sums of squares have
convenient algebraic properties, which is probably why the inventors of regression analysis
hit upon the criterion of minimizing the sum of squared errors. The consequence is that ob-
servations with unusually large deviations from the typical pattern of association can strongly
affect regression estimates; because the deviations are squared, such observations have the
greatest weight. The presence of atypical observations, known in this context as high lever-
age points, can therefore produce quite misleading results. We will discuss this point further
in the upcoming paragraphs and in Chapter Ten.

WHY USE THE “LEAST SQUARES” CRITERION TO O

%

It can be shown, via algebra or calculus, that the following formulas for the slope and
intercept satisfy the least squares criterion:

po VXY > XX -7) Ny xy -Gy

_ 5.3
var(X) > (X —-X)? NY X -O"x?) G

and

a=?—b(§)=ZY—b;§ (5.4)

ASSESSING THE STRENGTH OF A RELATIONSHIP:
CORRELATION ANALYSIS

Now that we have seen how regression lines are derived and how they are interpreted, we
need to assess how good the prediction is. Our criterion for goodness of prediction or
goodness of fit is the fraction or proportion of the variance in the dependent variable that
can be attributed to variance in the independent variable. We define

v\
r2=1_L’_’)2/N (5.5)
> (Y -Y)Y/IN

That is, 2, which is just the square of the Pearson correlation coefficient, is equal to 1
minus the ratio of the variance around the regression line to the variance around the mean
qf the dependent variable. (The Pearson correlation coefficient is, of course, the correla-
tion coefficient you have encountered in introductory statistics courses. It has the
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advantage of ranging from —1 to +1 depending on whether two variables move together
or in opposite directions. But it is not as readily interpretable as its square.) When
the variance around the regression line is just as large as the variance around the mean of the
dependent variable—that is, when knowing the value of the independent variable does
not help us predict the value of the dependent variable (in which case, the mean of the
dependent variable is the least squares prediction of each value)—the ratio is 1 and 7 = 0;
this case is illustrated in (a) of Figure 5.4. When knowledge of the value of the indepen-
dent variable allows perfect prediction of the value of the dependent variable, the ratio is 0,
and hence 7* = 1; this case is illustrated in (b) of Figure 5.4.

Note that OLS regression finds the best linear relationship between two variables,
even when the actual functional form of the relationship is nonlinear. For example, the
correlation between X and Y in (c) of Figure 5.4 is zero, even though it is obvious that
the two variables are perfectly (curvilinearly) related. See also Figure 10.1, which repro-
duces a set of graphs constructed by Anscombe (1973) to show that a given correlation
may be associated with very different relationships between two variables. Linear regres-
sion provides an adequate summary of a relationship only when it correctly represents the
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(1857-1936) established the discipline of mathematical statistics
and was the principal developer of linear regression and correlation; in recognition of this, the
product moment, or ordinary least squares, correlation coefficient, r, is also known as Pearson’s r.
Pearson’s work on classifying probability distributions forms the basis for classical (frequentist)
statistical theory and underlies the general linear model. But his contributions are very extensive—
for example, he invented the standard deviation and the x2 test. He founded the journal
Biometrika in 1901 and edited it until his death; he also founded the journal Annals of Eugenics
(now Annals of Human Genetics) in 1925. Pearson was born in London to a family of religious
dissenters. He studied mathematics at Cambridge but then studied medieval and sixteenth-
century German literature at the Universities of Berlin and Heidelberg and became enough of an
expert to be offered a Germanics post at Kings College, Cambridge, which he declined. Instead,
he read law (his father was a barrister) but never practiced, returning to mathematics. In his
youth he also became a feminist and a socialist (the transformation of his birth name, Carl, to
Karl, was said to have resulted initially from the way his name was spelled by a clerk when
he enrolled at Heidelberg but supposedly was adopted by him in tribute to Karl Marx, whom he
apparently had met). He eventually became universally known as KP. In 1884 he was appointed
to the Goldsmid Chair of Applied Mathematics and Mechanics at University College, London,
and, in 1891, to the chair in Geometry. There he met W.FR. Weldon, a zoologist interested in
evolutionary theory who posed a number of research problems that stimulated Pearson to think
about statistical distributions; their collaboration lasted until Weldon's untimely death in 1906.

character of the relationship. When it fails to do so, additional variables need to be
included in the model. You will see how to do this in the next chapter.

Returning to our example about intergenerational continuity in educational attain-
ment, we note that > = .536, which tells us that the variance around the regression line is
about half the size of variance around the mean of the dependent variable, and therefore
that about half of the variance in educational attainment is explained by the correspond-
ing variability in father’s education. As social science results go, this is a very high
correlation.

A USEFUL COMPUTATIONAL FORMULA FOR r  thefo-

lowing is a useful computational formula for the correlation coefficient, r, which comes in
handy when you have to do hand calculations:

L couxy) NEXY = (EX)EY)
NarX)var(Y)  NSX? — X NSY? — 3V Y
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THE RELATIONSHIP BETWEEN CORRELATION AND
REGRESSION COEFFICIENTS

Suppose we were to standardize our variables before computing the regression of ¥ on X,
by, for each variable, subtracting the mean from the value of each observation and divid-
ing by the standard deviation. Doing this produces new variables with mean = 0 and
standard deviation = 1. Then we would have a regression equation of the form

¥ = Bx) (5.6)

(The convention adopted here, which is widely but not universally used, is to represent
standardized variables by lowercase Latin symbols and the coefficients of standardized
variables by Greek rather than Latin symbols.) There is no intercept because the regres-
sion line must necessarily pass through the mean of each variable, which for standardized
variables is the (0,0) point. We interpret (3 as indicating the number of standard deviations
by which we would expect two observations to differ on Y that differ by one standard devi-
ation on X. (This follows directly from the fact that for standardized variables, the standard
deviation is one. Thus, one standard deviation on X is one unit on x; and the same for ¥ and
y.) It can be shown, through a simple manipulation of the algebraic computational formu-
las for the coefficients, that in the two-variable case, r = (. It is also true that r is invariant
under linear transformations. (A linear transformation is one in which a variable is multi-
plied [or divided] by a constant and/or a constant is added [or subtracted] . Consider two
variables, Yand Y’, with Y’ = a + b(Y). In this case, E= rxy’.) So the correlation between
standardized variables and unstandardized variables is necessarily perfect.

A convenient pair of formulas for moving between » and 3 (which also holds for
multiple regression coefficients) is

B= b(s—X> = b= ﬂ(fi) (5.7)

Sy

a=Y —bX) (5.8)

where s, and s, are the the standard deviations of X and Y, respectively.

FACTORS AFFECTING THE SIZE OF CORRELATION
(AND REGRESSION) COEFFICIENTS

Now that we see how to interpret correlation and regression coefficients, we need to con-
sider potential troubles—factors that affect the size of coefficients in ways that may lead
to incorrect interpretation and false inferences by the unwary.

Outliers and Leverage Points

As noted, correlation and regression statistics are very sensitive to observations that devi-
ate substantially from the typical pattern. This is a consequence of the least squares
criterion—because “errors” (differences between observed and predicted values on the
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dependent variable) are squared, the larger the error, the more it will contribute to the
sum of squared errors relative to its absolute size. Thus, correlation coefficients can be
substantially affected by a few deviant observations, with regression slopes pulled
strongly toward them, producing misleading results. To see this, consider the following
example, illustrated in Figure 5.5. Suppose that in our example about intergenerational
educational transmission, the fourth case had values ( 13,0) (shown as a solid circle sur-
rounded by an open circle) instead of (13,13) (shown as an open circle). That is, suppose
tpat in the fourth case the child of a man with thirteen years of schooling had no educa-
FlOIl instead of thirteen years of schooling—perhaps because the child was mentally
impaired. The alteration of just one point, from (13,13) to (13,0), dramatically changes
the regression line and misrepresents the typical relationship between the father’s and
rf.:spondent’s education, making it appear that there is no relationship at all (the regres-
f;on e(c)](l)lg;[ion for the ten points with (13,0) as the fourth value is £ = 6.74 + 0491(E));
. This example illustrates the condition under which deviant cases are influential—that
is, have high “leverage.” This is when points are far away from the center of the multivar-
iate distribution. Outliers close to the center of the distribution, for example, the (8,13)
point in Figure 5.5, have less influence because, although they can pull the regression line
up or down, they have relatively little effect on the slope. We will consider this distinc-
tion further in Chapter Ten.

The most straightforward solution is to omit the offending case. When this is done,
the regression line through the remaining nine points is very close to the regression line
through ten points with (13,13). However, this generally is an undesirable practice
because it creates the temptation to start “cleaning up” the data by omitting whatever
cases tend to fall far from the regression surface. Two better strategies, which will be
elaborated in Chapters Seven and Ten, are (1) to think carefully about whether the outliers
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might have been generated by a different process from the remainder of the data and,
when you suspect that possibility, to explicitly model the process; or (2) to use a robust
regression procedure that downweights large outliers. Fortunately, the damage done by
outliers diminishes as sample sizes increase. However, even with large samples extreme out-
liers can be distorting—for example, incomes in the millions of dollars. One simple way
to deal with extreme values on univariate distributions is to truncate the distribution, for
example, in the United States in 2006 by specifying $150,000 for incomes of $150,000 or
above (this is what the GSS does; in 2006, just over 2 percent of the GSS sample had
incomes this high); but this creates its own problems, as we will see next. A better way,
which you will see in Chapter Fourteen, is to use interval regression (an elaboration of
tobit regression) to correctly specify the category values.

Truncation

Analysts are sometimes tempted to divide their study population into subgroups on the
basis of values on the independent or dependent variable or on variables substantially
correlated with the independent or dependent variable. For example, an analyst who sus-
pects that income depends more heavily on education among those with nonmanual
occupations than among those with manual occupations might attempt to test this hypoth-
esis by correlating income with education separately for nonmanual and manual workers.
This is a bad idea because income is correlated with occupational status; thus, dividing
the population on the basis of occupational status will truncate the distribution of the
dependent variable, which, all else equal, will reduce the size of the correlation. More-
over, if one subgroup, say manual workers, has a smaller variance with respect to income
than does the other subgroup, say nonmanual workers (and this is likely to be true in most
societies), the size of the correlation will be more substantially reduced for manual than
for nonmanual workers, thus leading the analyst to—mistakenly—believe that the
hypothesis is confirmed.

To see this, consider a highly stylized example, shown as Figure 5.6. To keep the
example simple, imagine that all manual workers in the sample have less than seven
years of schooling and that all nonmanual workers have more than seven years of school-
ing. Note that in the example, there is exactly the same income return to an additional
year of education for nonmanual and manual workers. Note further that each point is an
equal distance from the regression line. Now, suppose the correlation between income
and education were computed separately for manual and nonmanual workers. The corre-
lation for both groups would be smaller than the correlation computed over the total sam-
ple, and the correlation would be smaller for manual than for nonmanual workers. This
follows directly from Equation 5.5 because, from the way the example was constructed,
the variance around the regression line is identical in all three cases, but the variance
around the mean of the dependent variable is smaller for nonmanual workers than for the
total sample and smaller for manual workers than for nonmanual workers. Although, for
the sake of clarity, the example is highly stylized, the principle holds generally: when dis-
tributions are truncated the correlation tends to be reduced. This, by the way, is the main
reason GRE scores are weak predictors of grades in graduate school courses: graduate
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departments do not admit people with low GREs, thereby truncating the distribution of
GRE scores. But this does not imply that GRE scores should be ignored in the admissions
process, as statistically illiterate professors argue from time to time.

A "REAL DATA” EXAMPLE OF THE EFFECT OF TRUN-
CATING THE DlSTRIBUTION Analyzing the U.S. sample for the Politi-

cal Action: An Eight Nation Study, 1973-1976 (Barnes and Kaase 1979) some years ago, | was
puzzled to discover an extremely low correlation between education and income (less than
.1, whereas in U.S. surveys the typical correlation between these two variables is on the order
of .3). Further investigation revealed that the low end of both the education and income distri-
butions were severely truncated, presumably as a result of inadequacies in either the sampling
or the field work procedures. When the data were weighted to reproduce the bivariate distri-
bution of education and income observed in the U.S. census for 1980 (the year closest to
the survey), the estimated correlation approximated that typically found in U.S. surveys.

Regression Toward the Mean

The consequences of truncation actually are worse than just suggested, because of a phe-
nomenon known as “regression toward the mean.” When two measurements are made at
different points in time, for example, pre-test and post-test measurements in a random-
ized experiment or scores on the GRE, it is typical to observe that those cases with high
values on the first observation tend, on average, to have lower values on the second obser-
vation, and that those cases with low values on the first observation tend to have higher
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values on the second observation. That is, both the high and the low values move toward
(or “regress toward”) the mean. This is true even when there is no change in the true
value between the two measurements.

The reason for this is that observed measurements consist of two components: a true
score and a component representing error in measurement of the underlying true score,
For example, consider the GRE. The observed score for each individual can be thought of
as consisting of a component measuring the candidate’s “true” (or underlying or constant)
ability to do the kind of work measured by the test and a random component comprised of
variations in the exact questions asked in that administration of the test, the candidate’s
level of energy and mental acuity, level of confidence (Steele 1997), and so on. It then fol-
lows that those who have high scores in any given administration of the test will dispro-
portionately include those who have high positive random components, and those who
have low scores will disproportionately include those who have low random components.
But because the second component is random, those who have high random components
on the first test will tend, on average, to have lower random components on the second
test and those who have low random components on the first test, will tend, on average, to
have higher random components on the second test. The result is that the correlation
between the two tests will be less than perfect and also that the regression coefficient
relating the second to the first test will be less than 1.0. This is true even if the means and
standard deviations of the two tests are identical.

An important implication of this result is that a researcher who targets for special
intervention a low-scoring group (those who did poorly on a practice GRE, those with
low grade point averages, and so on) will be bound to conclude, incorrectly, that the inter-
vention was successful. Of course, if that same researcher chose the high-scoring group
for the same intervention, he or she would be forced to conclude that the intervention was
completely unsuccessful—indeed, that it was counterproductive. All of this is a simple
consequence of analyzing a nonrandom subset of the original sample.

Exactly the same phenomenon—measurement error—has the effect of lowering the
correlation between separate phenomena, for example, education and income, the heights
of fathers and sons, and so on. This kind of observation is what led Francis Galton, one of
the founders of correlation and regression analysis, to conclude in the late nineteenth cen-
tury that a natural phenomenon of intergenerational transmission was a “reversion” (or
“regression”) toward “mediocrity”—hence the term “regression analysis” to describe
the linear prediction procedure discussed here. But what Galton failed to notice is that
there is also, and for exactly the same reason, a tendency for values near the mean to
move away from the mean. The result is that the variance of the predicted (but not the
observed) values and the slope of the regression line are reduced in proportion to the com-
plement of the correlation between the variables. (For a book-length treatment of this
topic, see Campbell and Kenney [1999].)

Aggregation

Students who have spent some time studying the behavior of populations of individuals
usually conclude that we live in a stochastic world in which nothing is very strongly
related to anything else. For example, in the United States, typically about 10 percent of
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the variance in income can be attributed to variance in education (r = .3 = 72 = .09).
Students are then puzzled when they discover that seemingly comparable correlations
computed over aggregates, for example, the correlation between mean education and
mean income for the detailed occupational categories used by the U.S. Bureau of the
Census, tend to be far larger (in the present example, r = .7 = r? =~ .49). Why is this s0?
The explanation is simple. When correlations are computed over averages or other sum-
mary measures, a great deal of individual variability tends to “average out.” In the extreme
case, where there are only two aggregate categories, the correlation between the means
for the two categories will necessarily be 1.0, as you can see in Figure 5.7 (where the
large circle represents the mean height and weight for women, and the large triangle rep-
resents the mean height and weight for men); but the principle holds for more than two
categories as well.

CORRELATION RATIOS

So far we have been discussing cases where we have two interval or ratio variables.
Sometimes, however, we want to assess the strength of the association between a cate-
gorical variable and an interval or ratio variable. For example, we might be interested in
whether religious groups differ in their acceptance of abortion. Or we might be interested
in whether ethnic groups differ in their average income. The obvious way to answer these
questions is to compute the mean score on an abortion attitudes index for each religious
group or the mean income for each ethnic group. But if we discover that the means differ
substantially enough to be of interest, we still are left with the question of how strong the
relationship is. To determine this we can compute an analog to the (squared) correlation
coefficient, known as the (squared) correlation ratio, 7? (eta squared). 7? is defined as
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Variance around the subgroup means

2
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7 Variance around the grand mean
. Within group sum of squares
Total sum of squares (5.9)
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where Y is the dependent variable, there are j groups, and i cases within each group. Thus,
I—/.j is the mean of Y for group j, and Y _is the grand mean of Y. From Equation 5.9, it is evi-
dent that if all the groups have the same mean on the dependent variable, knowing which
group a case falls into explains nothing; the variance around the subgroup means equals
the variance around the grand mean, and n* = 0. At the other extreme, if the groups differ
in their means, and if all cases within each group have the same value on the dependent
variable—that is, there is no within-group variance—then the ratio of the within-group
sum of squares to the total sum of squares is 0, and n*> = 1. From this we see that n? like
%, is a proportional reduction in variance measure.

Let us explore the religion and abortion acceptance example with some actual data.
In 2006 (and for most years since 1972) the GSS asked seven questions about the accept-
ability of abortion under various circumstances:

... should [it] be possible for a woman to obtain a legal abortion . . .

w  if there is a strong chance of serious defect in the baby?
if she is married and does not want any more children?

i

-if the woman’s own health is seriously endangered by the pregnancy?
w if the family has a very low income and cannot afford any more children?
if she became pregnant as a result of rape?

=  if she is not married and does not want to matry the man?
»  if the woman wants it for any reason?

From these items I constructed a scale by counting the positive responses, excluding
all cases with any missing data. The scale thus ranges from O to 7. Table 5.1 shows the
mean number of positive responses by religion. All those who specified religions other
than Protestant, Catholic, or Jewish or said they had no religion were included in the
“Other and None” category. From the table, it is evident that Jews and other non-Christians
are much more accepting of abortion than are Christians (Protestants and Catholics). But
how important is religion in accounting for acceptance of abortion? To see this, we com-
pute 17> = .070. (The Stata computations to create Table 5.1 and to obtain 7> are shown in
the downloadable -do- and -1 og- files for the chapter.)
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TA ELE 5.7. Mean Number of Positive Responses to an Acceptance
of Abortion Scale (Range: 0-7), by Religion, U.S. Adults, 2006.

Mean Number of

Religion Positive Responses  Standard Deviation N
 Protestants 3.7 2.5 (923)
Catholics 3.8 25 (420)
;s Jews 5.6 : 25 (26)
Other or none 5.3 2.2 (395)
Total 4.1 2.5 (1,764)

Clearly, religious affiliation does not explain much of the variance in abortion atti-
tudes. How can this be, given the substantial size of the mean differences? The answer is
simple. Jews and “Others” differ substantially from Protestants and, especially, Catholics
in their acceptance of abortion. But these groups are quite small, especially Jews. Hence,
no matter how deviant they are from the overall average, they are unlikely to have much
impact; when more than half of the population is included in one group, as is the case
here with Protestants, a large fraction of the variance in abortion acceptance is bound to
be within-group variance rather than between-group variance.

A second use of the correlation ratio is to test assumptions of linearity. We will take
this up in Chapter Seven.

A USEFUL COMPUTATIONAL FORMULA FOR 7? A good

formula to compute n? by hand from frequency or percentage distributions is

(=)
2

7 =S EfX _ur )
Jo )N/
o

where there are j groups and / categories of the dependent variable, which in this case is desig-
nated by X. So X; is the score for the ith category (of the jth group, although the category scores
are the same for all groups), and f/.j is the number of cases in the ith category among members
of the jth group. Notice the difference from Equation 5.9, where the i refers to individuals rather
than to categories of the dependent variable.
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WHAT THIS CHAPTER HAS SHOWN

In this chapter we have considered simple (two-variable) ordinary least-squares (OLS)
correlation and regression, as a way of seeing the conceptual basis of OLS regression, the
workhorse of modern statistical analysis. We also considered how the size of correlation
and regression coefficients is affected by the bivariate distribution of cases—specifically,
how results are affected by high-leverage outliers, by truncation, by regression to the
mean, and by aggregation. It is important that you understand these effects thoroughly
because many confused claims are made by those who fail to understand them. We then
considered a variant on correlation coefficients, the squared correlation ratio, which is an
analog to correlation when we have an interval or continuous dependent variable but a
categorical independent variable. In the next chapter we extend our discussion to multiple
correlation and regression, the analogous OLS technique when we have two or more
independent variables.

INTRODUCTION TO
MULTIPLE CORRELATION
AND REGRESSION
(ORDINARY LEAST
SQUARES)

WHAT THIS CHAPTER IS ABOUT

In this chapter we consider the central technique for dealing with the most typical social
science problem—understanding how some outcome is affected by several determining
variables that are correlated with each other. We begin with a conceptual overview of mul-
tiple correlation and regression, and then continue with a worked example to illustrate
how to interpret regression coefficients. We then turn to consideration of the special prop-
erties of categorical independent variables, which can be included in multiple regression
equations as a set of dichotomous (“dummy”) variables, one for each category of the origi-
nal variable (except that to enable estimation of the equation, one category must be repre-
sented only implicitly). In the course of our discussion of dummy variables, we develop a
strategy for comparing groups that enables us to determine whether whatever social pro-
cess we are investigating operates in the same way for two or more subsegments of the
population—males and females, ethnic categories, and so on. We conclude with an alter-
native way of choosing a preferred model, the Bayesian Information Coefficient (BIC).



