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TABLE 13-5

Row Percentages Are Not the Same as Column

identify as “leaning Democrat” (18.6%) .
and so forth down through all the response

Percentages categories equals 100 percent. The same is true
— for women: the total of column percentages

sums to 100 percent. It is this arrangement of

Party |dentification Response Category ~ Male ~ Female  Total percentages that allows us to compare the rela-

Strong Democrat

Weak Democrat

Independent-leaning Democrat

35.0%  65.0% 100% tive frequencies of responses between men and

(69) (128)  (197) women.
46.8%  53.2% 100% Suppose you asked a computer to give you
(87) (99)  (186) percentages by row totals or obtain row per-
(1{5);-)7% (13%3% (;gg;/° centages. Table 13-5 suggests what might
result and the possible difficulties of interpre-

Independent 50.9% 491% 100% .
(59) 57 (116) tation. If you were not careful, you might
Independent-leaning Republican 60.0%  40.0% 100% conclude that there was a huge gender differ-
{84) (56)  (140) ence on “strong Democrat,” 35 percent ver-
Weak Republican 54.4%  456% 100% sus 65 percent. But this is not what the
(81) (68)  (149) numbers mean. There are 197 strong Demo-

Strong Republican

47.2%  52.8% 100% crats in the sample (look in the last column]},
(93) (104)  (197) of which 35 percent are men and 65 percent

Source: 2004 National Election Study.

Note: Numbers in parentheses are frequencies.

women. It would be reasonable to say that
strong Democrats tend to be composed over-
whelmingly of women whereas independents
are about half male and half female. Still, if
in your mind one variable (e.g., party identification) depends on another vari-
able (e.g., gender) and you want to measure the effect of the latter on the for-
mer, make sure the percentages are based on the independent variable
category totals.

MEASURING STRENGTH OF RELATIONSHIPS IN TABLES

Do the data in table 13-4 support the hypothesis of a “gender gap”? As we just
indicated, a careful examination of the column percentages suggests that the
hypothesis has only minimal support. Why? Because a scrutiny of the partisan-
ship distributions by gender does not show much difference. Yet it would be
desirable to have a more succinct summary, one that would reveal the strength
of the relationship between gender and party identification.

The strength of an association refers to how different the observed values of
the dependent variable are in the categories of the independent variable. In the
case of cross-classified variables, the strongest relationship possible between
two variables is one in which the value of the dependent variable for every

Investigating Relationships between Two Variables

case in one category of the independent variable differs from that of every case
in another category of the independent variable. We might call such a connec-
tion a perfect relationship, because the dependent variable is perfectly associ-
ated with the independent variable; that is, there are no exceptions to the
pattern. If the results can be applied to future observations, a perfect relation-
ship between the independent and dependent variables enables a researcher to
predict accurately a case’s value on the dependent variable given a known
value of X.

A weak relationship would be one in which the differences in the observed
values of the dependent variable for different categories of the independent vari-
able are slight. In fact, the weakest observed relationship is one in which the
distribution is identical for all categories of the independent variable—in other
words, one in which no relationship appears to exist.

To get a better handle on strong versus weak relationships as measured by a
cross-tabulation, consider the hypothetical data in tables 13-6 and 13-7. Assume
we want to know if a connection exists between people’s region of residency and
attitudes about continuing the war in Iraq. (The hypothesis might be that south-
erners and westerners are more favorable than citizens in other parts of the
country.) The frequencies and percentages in table 13-6 show no relationship
between the independent and dependent variables. The relative frequencies (that
is, percentages) are identical across all categories of the independent variable.
Another way of thinking about nil relationships is to consider that knowledge of
someone’s value on the independent variable does not help predict his or her
score on the dependent variable. In table 13-6, 48 percent of the easterners pick

TABLE 13-6
Example of a Nil Relationship between Region and Opinions about Keeping
Troops in Iraq

Region
Opinion East Midwest South West
Favor keeping troops in Iraq 48% 48% 48% 48%
(101) (103) (145) (97)
Favor bringing troops home 52% 52% 52% 52%
(109) (111) (158) (1086)
Total 100% 100% 100% 100%
=930 (210) (214) (303) (203)

Note: Hypothetical responses to the question, “Do you favor keeping a large number of US troops in Irag until there is a
stable government there OR do you favor bringing most of our troops home in the next year?”
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TABLE 13-7
Example of a Perfect Relationship between Region and Opinions about
Keeping Troops in Irag

Region
Opinion East Midwest South West
Favor keeping troops in Irag 0% 0% 100% 100%
0 (0) (303) (203)
Favor bringing troops home 100% 100% 0% 0%
(210) (214) (0) (0)
Total 100% 100% 100% 100%
=930 (210) (214) (303) (203)

Note: Hypothetical responses to the question, “Do you favor keeping a large numbar of US troops in Iraq until there is a
stable government there OR do you favor bringing most of our troops home in the next year?”

“keeping,” but so do 48 percent of the westerners, and for that matter, so do
48 percent of the inhabitants of the other regions. The conclusions are that
(1) slightly more than half of the respondents in the survey want American
troops brought home and (2) that there is no difference among the regions on
this point. Consequently, the hypothesis that region affects opinions would not
be supported by this evidence.

Now look at table 13-7, in which there is a strong—one might say nearly
perfect—relationship between region and opinion. Notice, for instance, that 100
percent of the easterners and Midwesterners favor bringing the troops home,
whereas 100 percent of the southerners and westerners have the opposite view.
Or, stating the situation differently, knowing a person’s region of residence lets
us predict his or her response.

Most observed contingency tables, like table 13-5, fall between these
extremes. That is, there may be a slight (but not nil) relaticnship, a strong (but
not perfect) relationship, or a “moderate” relationship between two variables.
Deciding which is the case requires the analyst to examine carefully the relative
frequencies and determine if there is a substantively important pattern. When
asked, “Is there a relationship between X and Y?” the answer will usually not be
an unequivocal yes or no. Instead, the reply rests on judgment. If you think yes
is right, then make the case by describing differences among percentages
between categories of the independent variable. If, however, your answer is no,
then explain why you think any observed differences are more or less trivial. A
little later in the chapter, we present some additional methods and tools that
help measure the strength of relationships.

Investigating Relationships between Two Variables

Direction of a Relationship

In addition to assessing the strength of a relationship, one can also examine its
“direction.” The direction of a relationship shows which values of the indepen-
dent variable are associated with which values of the dependent variable. This is an
especially important consideration when the variables are ordinal or have ordered
categories such as “high,” “medium,” and “low” or “strongly agree” to “strongly
disagree” or the categories can reasonably be interpreted as having an underlying
categorical spectrum, such as “least” to “most” liberal.

Table 13-8 displays the relationship between a scale of political liberalism
(call it X) and a measure of opinions about gun control (Y). Both variables have
an inherent order. The ideology variable can be thought of as running from low-
est to highest liberalism, while responses to the question about firearms might be
considered as going from least to most restrictive control.’

Take a moment to study the numbers in the table; we guarantee it will pay off
in the long run. Start with the “most” liberal category. About two-thirds of
respondents in this category (65.4%) are also “most” supportive of restricting
gun purchases. That is, there is a tendency for “high” values of ideology to be
associated with a “high value” of gun control. Now look in the last column, the
“most conservative.” You should see that a clear majority of these respondents
(63.8%) are in the “least” enthusiastic category of Y, the dependent variable.
Here, we have a case of “low” values tending to be linked to “low” values. The
middle group (independent thinkers maybe) are more or less split between being
for and against making it more difficult for people to buy firearms.

TABLE 13-8
Attitudes toward Gun Control by Liberalism

Liberalism Scale (X)

Least Medium (middle Most

Make It Easier or Harder to Buy a Gun (¥) conservative  of the road) conservative  Total
Least favorable to guns 65.4% 43.5% 28.2% 43.2%
(make it much harder to buy) (72) (226) (50) (348)
Medium 14.5% 17.0% 7.9% 14.6%
(make it harder) (16) (88) (14) (118)
Most favorable to guns 20.0% 39.5% 63.8% 42.2%
(make it easier to buy plus “same as now”) (22) (205) (113) (340)
Total 100% 100% 100% 100%

(110) (519) (177) (806)

Source: 2004 National Election Study.
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Sometimes it helps to draw a sketch of the results. Consider the top row.
The percentages decline as the one moves from “least” (66.5%) to “most”
(28.2%) conservative. If you plot these numbers on a simple X-Y graph with
equally spaced intervals for the X variable, you can see that the line decreases
almost linearly, which can be interpreted simply as “The more conservative a
person, the less favorable he or she feels toward stricter gun laws.” (The per-
centage of each category saying “stricter” declines precipitously as one
moves from liberals to independents to conservatives.) The upward-sloping
line (positive slope) can be interpreted similarly. It shows the percentages in
the third row, “make laws easier or keep the same,” are plotted on the line
that slants upward from left to right, which can be read as “The more conser-
vative (the less liberal) an individual, the less favorable to controls” (see fig-
ure 13-3.) In both instances, we see at least monotonic correlation. (If you
were to plot the middle row percentages, what would the line look like on the
graph?)

This figure is merely a heuristic device for understanding the data’s practical
meaning. A more formal method, suitable for presentations and papers, is the
“stacked bar chart.” Generally speaking, it is better to leave bivariate frequency
distributions in tabular form so long as they contain the necessary numbers of
cases and information about coding decisions. Interestingly, there are actually
quite a few sophisticated graphical tools for summarizing cross-tabulations, even
those with more than two variables.

We should add that the association between these two variables, although
not perfect by the standards set forth earlier, is quite strong. Why this conclu-
sion? As a preview of things to come, try this thought experiment. Suppose
you were asked to predict how Americans would respond to a question about
making gun control tougher. In the absence of any other information, you
might take the “marginal” distribution of responses to tlie question in table
13-8 as a first approximation. (The marginal totals are in the rightmost col-
umn of the table.) Thus, you could reply, “Well most citizens are either for
stricter controls (43.2%) or for leaving things as they are (42.2%) with a smat-
tering of people (14.6%) in between.” But suppose that you also knew
people’s political leanings. This knowledge would help you improve your pre-
dictions, because the least conservative (most liberal) individuals are apt to
want stronger controls while conversely the most conservative (least liberal)
respondents by and large favor leaving matters as they stand. So knowing a
person’s ideology enhances your predictive power. This idea—the proportional
reduction in error—underlies several measures of association we will discuss
shortly.

Assessing both the strength and type (direction) of a relationship in cross-
classification tables requires looking at relative frequencies (percentages) cell by

Investigating Relationships between Two Variables

FIGURE 13-3
Simple Interpretation of Table Percentages: Liberalism and Gun Control

100+ % Favoring stricter
- % Favoring same or easier

80+

Percentage

204 &

T T 1

Most Middle Least
Liberalism Scale

Source: Table 13-8.

cell. That is not at all a bad practice. But statisticians have developed sophisticated
methods for distilling the frequencies down to single numbers or “modeling” them
in such a way that hard-to-see features become apparent. We next introduce a few
of the ideas.

Coefficients for Ordinal Variables

So far we have examined the relationship between two categorical variables by
inspecting percentages in the categories of the independent variable. To fathom
their messages, we have used rough sketches and visual inspection of the tables
themselves. However, if the analysis involves many tables or tables that have
many cells, another way of summarizing the information is needed. Here we
introduce four correlation coefficients for ordinal variables.

445
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These statistics, much like the descriptive statistics given in where p means probability. They differ only in whether the probabilities are

TABLE 13-9
Table with Concordant, Discordant, and chapter 11, represent the data in a table with a single sum- conditional on the presence or absence of ties. Gamma, for example, is defined as
Tied Pairs mary number that measures the strength and direction of an
association. (You might want to review the introductory sec- Y = Pcjno ties ~ PDjno ties

Variable X tion that lists the properties of these indicators.) Among the
Variable ¥ High Medium Low most common statistics are Kendall’s tau-b, Kendall’s tau-c, In plain language, it is the probability that a randomly drawn pair will be con-
High Alex Dawn Gus Somers’ D (two versions), and Goodman and Kruskal’s cordant on Y and X, given that it is not tied, minus the corresponding probability
Medium Emesto Hera gamma—named after the individuals who developed them. of discordance. An “excess” of concordant pairs over discordant pairs suggests a
Low Carl Fay ke Most computer programs calculate these and other coeffi- positive relationship; if discordant pairs are more likely, then the correlation will

Jasmine  ionts as well, They are similar, but not identical, in how they be negative.

In samples, the basic comparison made is between the number of concordant
and discordant pairs. If both types of pairs are equally numerous, the statistic
will be zero, indicating no relationship. If concordant pairs are more numerous,
the coefficient will be positive; if discordant pairs are outnumber concordant
pairs, the statistic will be negative. The degree to which concordant or discor-
dant pairs predominate, or one kind of pair is more frequent than the other,

summarize the contents of a two-way frequency table.

We will not go into the details of their calculation, partly because software
makes them so readily available, but instead concentrate on their numerical
meaning. Nevertheless, a bit of background won’t hurt. Each coefficient com-
pares pairs of cases by determining whether those pairs are “concordant,” “dis-
cordant,” or “tied.” These can be slippery concepts, 0 look at table 13-9. It

contains nine individuals (cases).

B A concordant pair is a pair in which one individual is higher on both
variables than the other case. Alex and Ernesto are concordant because
Alex is higher on Y and X. Alex is also concordant with Fay, Hera, Ike,
and Jasmine. There are other concordant pairs such as Dawn-Hera and
Ernesto-Tke.

m A discordant pair is one in which one case is lower on one of the variables

affects the magnitude of the statistic. Hence, if only the main diagonal were
filled with observations, all the pairs would be concordant, and the statistic
would be +1—a perfect, positive relationship (see table 13-10a). If only the
minor (opposite) diagonal were filled with observations, all the pairs would be
discordant, and the statistic would be -1—a perfect, negative relationship (see
table 13-10b).

Gamma can attain its maximum (1 or —-1) even if not all of the observations are
on the main diagonal because it ignores all tied pairs. The others measures (tau-b,

but higher on the other. Gus, for example, has a higher score on Y buta
lower score on X compared to either Ernesto, Fay, or Carl. Therefore, these

pairs “violate” the expectation that as one variable increases, so does the TABLE 13-10
Perfect Positive and Negative Relationships

other.

m A tied pair is a pair in which both observations have the same value on one

or both variables. There are lots of tied pairs in this table: Alex and Dawn a. Bvery Pair Concordant (Perfect Positive Relationship)

are tied on Y (they both are in the “high” category”), Alex and Carl are tied Variable X
on X (but not Y), and Ike and Jasmine are tied on both X and Y. (There are Variable ¥ High Medium Low
several others in the table.). High i
: . . Medium Candy
All of the ordinal coefficients of association (tau-b, tau-c, Somers’ D, and Low -

gamma) use the probability or number of pairs of different kinds to summarize

the relationship in a table. In a population, they measure the probability of a 0. Every Pair Discordant (Perfect Negative Relationship)

randomly drawn pair of observations being concordant minus the probability of Variable X
being discordant with respect to ¥ and X: Variable ¥ High Medium Low
High 3
_ : Faith
Measure = Dioneordance ~ Pdiscordance’ Medium Guy

Low Hilary
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TABLE 13-11

Perfect Monotonic Relationship

Variable X
Variable Y Very High Medium High Medium Low Very Low
Very High Abe
Medium High Bertha _
Medium Low Claudio
Very Low Darby
Gamma (y) = 1.0.

Computing Ordinal Measures of
Association

Let C = number of concordant pairs,

D = the number of discordant pairs,

T, = the number of pairs tied only on X,
v = the number of pairs tied only on ¥,
Tyy = the number of pairs tied on both X and ¥, and

m = the minimum of I or J, where I and J are
the numbers of categories of ¥ and X, respectively.

. (C-D)
Gamma: Y= (C+D)

s B (C-D)
Taub: T = e D+ T,) JIC+ D+ Ty)
5 3 {C-D)

au-c: Te = —FrThT
NZ|——
=
cC-D
Somers’ D: DYX =C—(+ﬁ
Y
C-D
Somers’ D Dyy = C—iﬁ
X

for example) “discount the strength of the relation-
ship by the number of ties in the table.”® Hence, in
table 13-11, gamma would be 1.0, whereas the
other coefficients would be slightly less.

In a “real” contingency table, there will be
many pairs of all sorts, and counting them can be
a nuisance. So we leave their computation to the
computer. The formulas for these measures have
the same form: one quantity divided by another.
The numerator is always the number of concor-
dant minus discordant pairs (C - D). The denom-
inators differ, however, in how they handle ties.
Gamma ignores tied pairs altogether, whereas the
others incorporate them in different ways.” To
help you understand them, we list a few of their
properties.

B Theoretically, all vary between -1 and 1,
with 1 indicating a perfect positive (mono-
tonic) correlation and -1 a perfect negative
(monotonic) correlation.

® In practice, you will most likely never see
one of these coefficients attain these bounds.
Indeed, even for strongly related variables,
the numerical values will usually be far from
1 or -1. If any of them reaches, say, .4 or .5
in absolute value, there is an association
worth investigating.

[nvestigating Relationships between Two Variables

W Since zero means no correlation, values in the range of -.1 to .1 suggest a
weak relationship.

All will have the same sign.

The absolute value of gamma (y) will always be greater than or equal to that
of any of the others. The relationships among tau-b, tau-c, and Somers’ D)
are harder to generalize because they are affected differently by the cross-
classification’s structure (i.e., number of rows and columns).

B Somers’ [ is an “asymmetric” measure because its value depends on which
variable is considered dependent. Therefore, there are really two possible
versions: one, D, has Y as the dependent variable, while the other,
treats X as dependent.

I?XY

B By themselves, the measures are not sufficient to assess how and how
strongly one variable is related to another. You should ask the software to
calculate all the coefficients and spend time visually inspecting the relative
frequencies in the table.8

The last point is worth emphasizing. None of the coefficients is appropriate if
the relationship “curves,” in the sense that as X increases so does Y up to a cer-
tain point when an increase in X is accompanied by a decrease in Y. Consider
table 13-12, which contains four observations. There is a “perfect” association:
you tell me a person’s value on X, and I will predict exactly her score on V. Yet
the number of concordant pairs (3) equals the number of discordant ones (3), so
their difference is zero. This difference (C — D) appears in the numerator of all
the coefficients, so they would all be nil, implying no relationship. But there is an
association; it’s just not a correlation.

THE IMPORTANCE OF SCRUTINY. A well-known psychologist and statistician, Rob-
ert Abelson, titled a book Statistics as Principled Argument. His point was that
statistics (either the numbers or the methods) do not speak for themselves. It is

TABLE 13-12
Perfect but Not Monotonic Relationship

Variable X
Variable ¥ Very High Medium High Medium Low Very Low
Very High Doris
Medium High Adele
Medium Low Barbara
Very Low Connie
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TABLE 13-13
Cross-classification of ¥ by
X with Majority of Cases in

One Row
X

Y 1 2 Total
A 550 608 1,158
B 20 7 27
c 12 4 16
Total 582 619 1,201
TABLE 13-14

Comparison of Concordant, Discordant,
and Tied Pairs

Type of Pair Number Proportion

Concordant 6,130 .01

Discordant 19,540 02

Tied (on Y, on X, and 694,930 .96
Yand X)

Total 720,600 .99

Somers' Dy, =—.04; Tau-b=~10; gamma = —.52.

Source: Table 13-13.

Note: Proportions do not add to 1.00 due to rounding
error.

always necessary to make a case for point of view. Here is an
example.

Gamma is one of the most widely reported ordinal coeffi-
cients. Its numerical value is always greater than or equal to the
tau and Somers’ measures, which raises the possibility that an
investigator wanting to find large relationship might think
gamma gives “the most association for the money.” One diffi-
culty, however, is that its computation only uses concordant
and discordant pairs and ignores all tied pairs. Yet in some
tables, the tied pairs greatly outnumber the concordant and dis-
cordant ones. Look at the simple tabulation cross-classification
of ¥ by X in table 13-13.

By looking carefully at the row totals, you will see that that
the vast majority of observations are in the first row. Stated dif-
ferently, the marginal total is heavily skewed or concentrated in
one category. As a consequence, there are not many concordant
or discordant pairs compared to ties (see table 13-14).

If someone reported just gamma (-.52), the conclusion
might be that a strong Y-X relationship exists. But we see that
about 96 percent of the data have been “thrown out” and that
the other coefficients show virtually no relationship.

There are a couple important lessons here. First, always pay
attention to the shape of each variable’s distribution, a point
made emphatically in chapter 11. Social science data sets
almost always contain skewed marginal totals on at least a few
variables. (The data in this example come from a table ana-

lyzed later in the chapter.) Second, try not to rely on just one method, such as
ordinal coefficients, to make a substantive claim. In other words, don’t rely
solely on a coefficient, no matter how convenient and interpretable it is.

Two Exampies. Hypothetical data help establish the basic ideas of these ordinal
measures of association, but when push comes to shove they do not give much
practice understanding actual survey results. Therefore we provide two more
tables that explore questions touched on earlier. The first is a cross-tabulation
of vote in the 2008 presidential election by self-placement on a seven-point lib-
eralism conservatism scale. The voting variable has only two categories (Barack
Obama, Democrat, and John McCain, Republican), but any dichotomous vari-
able (a variable with two categories) can be considered ordinal. You can construe
the other variable as measuring the “degree” of conservatism. Since there are
7 x 2 = 14 relative frequencies to scrutinize, measures of (monotonic) correlation

Investigating Relationships between Two Variables
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TABLE 13-15
2008 Presidential Vote by Party
Political Ideclogy
1
Least 4 MZst
conservative 2 3 Middle 5 6 conservative
Obama 98.80% 94.83% 80.58% 61.44% 30.70% 10.89% 10.17%
. (56) (167) (118) (203) (60) (34) (55
McCain } 20 517 19.42 38.56 69.30 89.11 89.83
. ( ‘)’ (9) (28) (127) (134) (275) (46)
otals 100% 100% 100% 100% 100% 100% 100%
(57) (1786) (146) (330) (194) (309) (51)

Question: “Whera would you place yourself on this (liberalism-conservatism) scale, or haven't you thought much about this?”

Chi square = 517.99; 6 df; gamma = 0.818; tau-b = .564; Somers’ Dy, = 719, & = .575.

Source: The American National Election Studies (ANES; www.electionstudies.org). The ANES 2008 Time Series Study, Stanford University and the University

of Michigan [producers].

may help us decide how closely ideology predicts candidate preference. This
table is interpreted exactly like all the others: compare categories of ideology by
the percentage in each who voted for, say, Obama.?

You should be able to detect a clear-cut pattern: as conservatism increases
across the table, the propensity to vote for McCain also increases. Examine the
percentages. (Notice, by the way, that the “Least” and “Most” conservative cat-
egories have relatively few cases in them. We might have combined those cases
with the adjacent categories to improve the precision or reliability of the cell
proportion estimates.)

All the measures are “large” by the standards of categorical data analysis.
Gamma is 0.82, which indicates a strong positive correlation. Why positive? Con-
sider the two variables as having an order: ideology runs from low to high con-
servatism. It is also legitimate to think of vote as having a numerical dimension,
with Obama arbitrarily used as a low value and McCain as high. Consequently,
I‘{lOVng along the columns from left to right, we see “low” values of conserva-
tism associated with “low” values of vote (Obama) and high conservatism scores
associated with “high” on voting (McCain). It may seem strange, but a dichoto-
glous or two-category variable can often be interpreted this way. As we men-
tioned earlier, these numbers seldom get close to their maximums (|1.0]), and
values over .4 to .5 indicate a strong correlation. So taken together, these suggest
that ideology is highly correlated with voting. Overall, the conclusion is that
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position on the liberalism-conservatism spectrum predif:ts voting. Note, how-
ever, that since the data show only covariance and not time grder or the opera-
tion of other variables, we cannot say this is a causal connection. -

To wrap up this section, let us look at the second example, Wh-ICh returnshto
the idea of a gender gap: Are women more liberal than men.and, if so, on w fat
issues? Here the response variable is attitudes toward allowing gays tg serveblln
the military. (These data too come from the 2008 ANES study usea.:i ea?her.] Ta Te
13-16 shows how gender relates to preferences abo.ut gays serving in the mili-
tary. Conventional wisdom might say the women will be somewhat more open

i men will.

N t’?ljelieaittel;ralnhere might be a bit harder to detect. Step back for a second an.d
look at the column totals, as usual. In raw frequencieé, there are morfe women in
the sample than men, a common result in public opin%on research. 'Snll, ;heﬁet;z
enough of each gender to make meaningful comparisons. Note first of a 1

the vast majority of these respondents (55% + 23% = 78 %) favor strong ;, or
favor allowing gays to enlist in the military (the last colump contains t ?e
totals). So right away we sense that there will not be huge sex dlfferenc':es onft ;s
issue. But when we look in the body of the table, we set.e that two-thirds -0. t g
women strongly favor lifting the ban on gay military service, and they are Il?lllnf'
by 19 percent more who said simply “favor” (rmfvs 4 and 5 of the tabl?] .73 a :
83 percent in favor! By contrast, the corresponding sum among men zfs ! pe
cent, a 10 percentage point difference. Note also that fewer thgn half of t T- ;?en
strongly favor lifting the ban whereas more than a quarter simply favor lifting

TABLE 13-16
Gays in the Military: A Gender Gap?

Male Female e
0
(Gays serve in military? (0) ) /
9 1%
18.0% 10.8 % 14.
(1) Strongly opposed a5 o 1) (31?)40/
9.3% 5.8% A%
i Qpposes (94) (71) (166) ;
3) Favor 28.5% 18.8% 23.2%
= (289) (231) (520)40/
4) Strongly favor 44.2% 64.6% 55.4%
{4) aly (449) (794) (1,2441/
Totals 100% 100% 102 o
(1,015) (1,229) (2,245)

) By b X H
Summary statistics: gamma = .33, tau-b = .19, tau-c = .21, Somers’ D= .21, A= 0, x2 = 94.29 with 3 df

Investigating Relationships between Two Variables

the ban. So there is a difference in the distribution of men and women in the two
categories on the favor side. If you look at the bottom of the table, a similar con-
clusion emerges. The ordinal coefficients help a bit. They show first a modest to
weak correlation—as we saw from the percentages—and second that the rela-
tionship is positive.

In this instance, you can think of the variables as having an underlying order.
Attitudes toward gays in the military runs from low to high support. Gender can
be treated as if it were a numeric variable by letting men be 0 and women 1.1° So
as you move across and down the table, going in effect from low values on X and
Y to high values, a slight positive correlation appears. (We place index numbers
in parentheses in the table to illustrate the idea, but of course the measures of
correlation introduced here do not in any way depend on numerical scale
scores.) Beyond saying that there is a limited correlation which the percentages
also reveal, these ordinal statistics do not have a common-sense or easily grasped
interpretation. The situation improves slightly with the next coefficient.

A Coefficient for Nominal Dala

When one or both of the variables in a cross-tabulation are nominal, ordinal
coefficients are not appropriate because the identification of concordant and dis-
cordant pairs requires that the variables possess an underlying ordering (one
value being higher than another). For these tables, different measures of associa-
tion are employed. Some of the most useful rest on a proportional-reduction-in-
error interpretation of association. The basic idea is this: you are asked to predict
a randomly selected person’s category or response level on a variable following
two rules. Rule 1 requires you to make the guess in the absence of any other
prior information (e.g., predict the individual’s position on gun control). The
other rule lets you know the person’s score on a second variable, which you now
take into account in making the prediction (e.g., you now know the individual’s
gender). Since you are guessing in both situations, you can expect to make some
errors, but if the two variables are associated, then the using the second rule
should lead to fewer errors than following the first.

How many fewer errors depends on how closely the variables are related. If
there is no association at all, the expected number of errors should be roughly
the same, and the reduction will be minimal. If, on the other hand, the variables
are perfectly connected, in the sense that there is a one-to-one connection
between the categories of the two variables, you would expect no errors by fol-
lowing rule 2. A “PRE measure” gives the proportionate reduction in errors:

pRE:M,

1
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where E, is the number of errors made using rule 1 and E, is the number made
under rule 2.

Suppose for a particular group of subjects the number of rule 1 errors (E,)
predicting variable scores on Y is 500. Now, think about these possibilities.

1. X has no association with Y. Then even using the individuals” X scores, the
expected number of errors will still be 500, and the proportional reduction in
errors will be (500 — 500)/500 = 0. This is the lower limit of a proportion,
and it indicates no association.

2. Suppose the categories of X are uniquely associated with those of Y so that
if you know X, you can predict Y exactly. The expected number of errors
under rule 2 (E,) will be zero. Consequently, PRE = (500 — 0)/500 = 1.0,
the upper boundary for the measure. This means perfect association
(according to this definition). In the third and last situation

3. Assume that Y and X have a moderate relationship. The expected number
of errors following rule 2 might be, say, 200. Now we have

(500-200) 300

PRE =00 “s00~ %

There is then a 60 percent reduction in prediction errors from knowing the
value of X, a result that suggests a modest but not complete association.

LAMBDA. Many coefficients of association (e.g., gamma) can be defined in such
a way as to lead to a PRE interpretation. We describe only one, however: Good-
man and Kruskal’s lambda. Lambda is a proportional-reduction-in-error coef-
ficient. As we did earlier, imagine predicting a person’s score on a variable in
the absence of any other information (“rule 1”), What exactly would be the best
strategy? If you did not know anything, you might ask what proportion of the
population had characteristic A, what proportion characteristic B, and so forth
for all of the categories of the dependent variable of interest. Let’s say B was the
most common (modal) category. Then, without other information, guessing that
each individual was a B would produce fewer prediction errors than if you picked
any other category. Why? Well, suppose there were 10 As, 60 Bs, and 30 Cs in a
population of 100. Select a person at random and guess his or her category. If you
picked, say, A, you would on average be wrong 60 + 30 = 90 times out of 190
guesses (90% incorrect). If, on the other hand, you chose C, you would be mis-
taken 10 + 60 = 70 times (70% errors). Finally, if you guessed the modal (most
frequent) category, B, your errors would be on average 10 + 30 = 40. By choosing B
(the mode), you do indeed make some incorrect predictions but many fewer than
if you picked any other category. In sum, rule 1 states that, lacking any other
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data, your best long-run strategy for predicting an individual’s class is to choose
the modal one, the one with the most observations.

Now suppose you knew each case’s score or value on a second variable, X.
Say you realized a person fell in (or had property) M of the second variable. Rule
2 directs you to look only at the members of M and find the modal category.,
Assume that category C is most common among those who are M’s. Given that
the observation is an M, guessing C would (over the long haul) lead to the fewest
mistakes. So rule 2 simply involves using rule 1 within each level of X.

The key to understanding lambda, a proportional-reduction-in-error type mea-
sure of association, lies in this fact: if ¥ and X are associated, then the probability
of making an error of prediction using rule 1 will be greater than the probability
of making an error with rule 2. How much greater? The measure of association,
lambda (1), gives the proportional reduction in error:

A:M

permr 1

where p,..., is the probability of making a prediction error with the first rule
and similarly p, . is the likelihood of an error knowing X. If the values of X are
systematically connected to those of ¥, the errors under the second rule will be
less probable than those made under rule 1. In this case, lambda will be greater
than zero. In fact, if no prediction errors result from rule 2, the probability p,_
will be zero, and

%= (perrorl - 0) _ Derror1

Perror1 Perror1

=1.0.

But of course if X and Y are unrelated, then knowing the value of X will tell
you nothing about Y, and in the long run the probability of errors under both
rules will be the same. So Boion 17— Pugryg 201

A= (perrorl = permrl) _ (0) -0

D, error 1 Perror1

The upshot is that lambda lies between 0 (no association) and 1.0 (“perfect”
association as defined by the prediction rules.) A value of .5 would indicate a 50
percent reduction in errors, which in most situations would be quite a drop
and hence suggest a strong relationship. A value of, say, .10—a 10 percent
reduction—might signal a weak to nonexistent association. Note that correlation
is not an issue here, If there is an X-Y link of whatever kind, lambda should pick

it up. Yet, also remember that lambda does not take into account the ordering of
the categories.
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Again, we emphasize the importance of looking at the whole forest (the over-
all relationship) and not obsessing over a single tree (a measure of association).
These kinds of statistics usually depend to a greater or lesser extent on the mar-
ginal distributions of the variables. Take care when a preponderance of observa-
tions are piled up in one or two categories.!! For example, the lambda in table
13-15 is .575, which means knowing a person’s ideology allows us to predict
vote preference reasonably well; we cut prediction errors by more than 50 per-
cent. This result, of course, agrees with our previous conclusion that voting is
closely tied to ideology. (If you want to check another of lambda’s characteris-
tics, try scrambling the order of the columns in table 13-15. You should get the
same result, .575.)

Testing a Cross-tabulation for Statistical Significance

Before taking up methods for describing relationships between other types of
variables, we need to pause to think about on this problem. Apart from the hypo-
thetical data, all of the examples presented so far use sample surveys. As samples
go, most are quite large with slightly more than 1,000 cases. Nevertheless, since

FIGURE 13-4
Calculate Lambda

Frequency Table for Computing Lambda

Region (independent or X variable)

Decriminalize
marijuana
(dependent, Y)
For

No opinion

Against

Column
margin totals

Response (dependent or Y variable)

Row Maximum marginal frequency
marginal (Modal response category)
East North South West totals
50 20 10 160
170
@) ~—
540 - T(?EI

£, =540 - 210 = 330
£, = 540 - 330 = 210

Maximum column (Y) frequencies
(80 +90 + 100 + 60 = 330)

(330 - 210)
330

= = .364

Source: Hypothetical data.
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the totals represent only a tiny fraction of the
population, one can always ask, “Do observed
relationships reflect true patterns, or did they
arise from chance or what is called sampling
error?” Chapter 12 introduced concepts for
answering that sort of question. Here we apply
them to cross-classifications.

STATISTICAL INDEPENDENCE. At this point it is
useful to introduce a technical term that plays
a large role in data analysis and that provides
another way to view the strength of a rela-
tionship. Suppose we have two nominal or
categorical variables, X and Y. For the sake of
convenience, we can label the categories of the
firsta, b, ¢, . . . and those of the second 7, s, ¢,
... Let P(X = a) stand for the probability that
a randomly selected case has property or value
a on variable X, and let P(Y = r) stand for the
probability that a randomly selected case has
property or value r on Y. These two probabili-
ties are called marginal probabilities and refer
simply to the chance that an observation has a
particular value (a, for instance) irrespective of
its value on another. And, finally, P(X = a, Y = 1)
stands for the joint probability that a randomly
selected observation has both property a and
property r simultaneously. The two variables
are statistically independent if and only if the
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Calculating Lambda

O IT

To calculate lambda, follow these steps. (For an example
using hypothetical data, see figure 13-4.)

1. Look at the cross-tabulation with both sets of
marginal frequency (not percent) totals displayed.

2. Decide which variable is dependent.

3. Find the maximum marginal total for the dependent
variable.

4. Subtract this total from table total, N, to get errors by
method 1: N - (maximum frequency) = E,, the
number of predictions errors not knowing the
independent variable.

5. In the body of the table, find the maximum frequency
within each category of the independent variable.

6. Sum the maximums and subtract total from N. Call
the result E,, the number of prediction errors after
using knowledge of the independent variable.

7. Calculate lambda:

- E -E
i :( 1 z).
E
Note, the numerical value of lambda depends on the
choice of independent and dependent variables. Revers-
ing them will usually change A.

chances of observing a combination of categories is equal to the marginal prob-
ability of one category times the marginal probability of the other:

PX=aY=r1)=[PX=allP(Y=r)]forallgandr

If, for instance, men are as likely to vote as women, then the two variables—
gender and voter turnout—are statistically independent, because, for example,
the probability of observing a male nonvoter in a sample is equal to the probabil-
ity of observing a male times the probability of picking a nonvoter.

In table 13-17, we see that 100 out of 300 respondents are men and that 210
out of the 300 respondents said they voted. Hence, the marginal probabilities are
P(X = m) = 100/300 = .33 and P(Y = v) = 210/300 = .7. The product of these
marginal probabilities is (.33)(.7) = .23. Also, note that because 70 voters are
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TABLE 1317
Voter Turnout by Gender

Gender (X)
Turnout (Y) Male (m) Female (1) Total
Voted (v) 70 140 210
Did not vote (V) 30 60 90
Total 100 200 300

Note: Hypothetical data. Cell entries are frequencies.

TABLE 13-18 )
Voter Turnout by Social Class

Social Class (X)

Turnout (Y) Upper () Lower (1)  Total
Voted (V) 100 50 150
Did not vote (nv) 50 100 150
Total 150 150 300

Note: Hypothetical data. Cell entries are frequencies.

male, the joint probability of being male and vot-
ing is 70/300 = .23, the same as the product of 'the
marginal probabilities. Since the same relation
holds for all other combinations in this data set,
we infer that the two variables in table 13-17 are
statistically independent.

Now suppose we had the data shown in table
13-18. There the sample consists of 300 respon-
dents, half of whom voted and half of whom did
not. The marginal probabilities of voting and not
voting are both 150/300 = .5. It is also clear that
the marginal probabilities of being upper- and
lower-class equal .5. If the two variables were sta-
tistically independent, the probability that an
upper-class respondent voted would be (.5)(.5) =
.25. Similarly, the predicted probability (from these
marginal totals) that a lower-class individual did
not vote would be (.5)(.5) = .25. But we can see
from observed cell frequencies that actual propor-
tions of upper- and lower-class voters are .33 and
.17, respectively. Since the observed joint probabil-
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TABLE 13-19
Opinion on Civil Liberties: Tolerance of Dissent
Educational Attainment
Do not put up with Less than high High school Some post-high College graduate Totals
extreme differences school graduate schoo! education or post graduate
Agree 45.58% 41.12% 23.17% 20.45% 31.7%
(312)
Uncertain 7.65% 9.24% 6.80% 7.30% 7.8%
(77)
Disagree 46.77% 49.63% 70.03% 72.25% 60.5%
(596)
Totals 100% 100% 100% 100% 100%
(154) (312) (270) (249) (985)

Chi square = 56.15 with 6 df

Gamma = .32, tau-b = .20, tau-c = .19, Somers’ Dy, = .24, lambda = 0, g = 0.24,

Question: “Now | would like to ask about public affairs. Please indicate whether you agree. Society shouldn't have to put up with those who have

political ideas that are extremely different from the majority.” {
categories.)

Source: Citizen, Involvement, Democracy Survey, 2008,

ities do not equal the product of the marginal prob-
abilities, the variables are not statistically independent. Upper-class respondents
are more likely to vote than are lower-class individuals. .
In this context, a test for statistical significance is really a test- tlvlat twq vari-
ables in a population are statistically independent. The hypothesis is thatt) in thg
population, the variables are statistically independent, a.md we u=t;e- thg 0 ser;e
joint frequencies in a table to decide whether or not this pro_posn{or} is tenable.
Generally speaking, the stronger a relationship is, the more. likely it is to b‘? s{;a—
tistically significant, because it is unlikely to arise if the variables are real.ly _m 1]e-
pendent. However, even weak relationships may turn ‘out to be stau:e,tlca.. y
significant in some situations. In the case of cross-tabulat-m'ns, the deterltmnatlon
of statistical significance requires the calculation of a statistic called a chi-square,
a procedure we discuss next.

CHI-SQUARE TEST FOR INDEPENDENCE. Table 13-19 pertains to civill libe'rties. If
shows by levels of education attainment the degree of agreement .vxlnth Fhls stiiet
ment: “Society shouldn’t have to put up with those who hjs\ve political 1‘de.as tha
are extremely different from the majority.” The underlying hypothesis is .that
tolerance of dissent increases with education. By examining the cell proploruor'ls
and the measures of association, you can surmise that a modest relationship

exists between the two variables. (You might reinforce your understanding of the
coefficients by interpreting them to yourself.) But is the relationship statistically
significant? In the population is there really a relationship between tolerance and
education?

Whether or not a relationship is statistically significant usually cannot be
determined just by inspecting a cross-tabulation alone; instead, a statistic called
chi square (%?) must be calculated. This statistic essentially compares an
observed result—the table produced by sample data—with a “hypothetical”
table that would occur if, in the population, the variables were statistically inde-
pendent. Stated differently, the chi square measures the discrepancy between
frequencies actually observed and those we would expect to see if there was no
population association between the variables. When each observed cell fre-
quency in a table equals the frequency expected under the null hypothesis of
independence, chi square will equal zero. Chi square increases as the departures
of observed and expected frequencies grow. There is no upper limit to how big
the difference can become, but if it passes a certain point—a critical value—there
will be reason to reject the hypothesis that the variables are independent.

How is chi square calculated? The observed frequencies are shown in the
cross-tabulation in table 13-19.) Expected frequencies in each cell of the table
are found by multiplying the row and column marginal totals and dividing by the
sample size. As an example, consider the first cell in table 13-19.That cell is in

“Agree strongly” and “agree” responses have been combined as have the disagree



460

POLITICAL SCIENCE RESEARCH METHODS

the first row, first column of the table, so multiply the row total, 312, by the col-
umn total, 154, and then divide by 985, the total sample size in this table. The
result is (312 x 154)/985 = 48.78. This is the expected frequency in the first cell
of the table: it is what we would expect to get in a sample of 985 (with 312
“agrees” and 154 less than high school graduates) if there is statistical indepen-
dence in the population. This is substantially less than the number we actually
have, 70, so there is a difference. What about the other cells?

Let’s do another example. If there were no association, how many college
graduates would we expect to find in the “Disagree” category? Again, find the
corresponding marginal totals (here 596 and 249), multiply them, and divide by
985 to get 150.66, the expected number under the null hypothesis. Notice, we
keep repeating the phrase “under the . . .” We want 1o stress that this proce-
dure can be interpreted as measuring the adequacy of a simple model (the
model of no association) to these observed data. If the adequacy or fit is good,
we say the model partially explains the data, which in turn is a manifestation of
the real world. If the assumption of independence is not supported, we
wouldn’t anticipate that the expected frequencies would equal the observed
ones except by chance.

Table 13-20 contains all of the expected frequencies for table 13-19. The
overall measure of fit—the observed test statistic—is found by, in effect, compar-
ing observed and expected frequencies. If the sum of differences is relatively
small, do not reject the hypothesis of no association. But, if in the aggregate the
discrepancy between observed and expected numbers is large, then the model
upon which the expected frequencies are calculated is not a summary of the
data, and the decision will be to reject the null hypothesis. So what is a large
departure from the expected? The statistic is found by subtracting each expected
frequency from its observed counterpart, squaring the difference (no minus sign

TABLE 13-20
Observed and Expected Values under Hypothesis of Independence

Level of Education

Do not put up with Lessthan  High school ~ Some post-high  College graduate

extreme differences high school graduate school education or postgraduate  Totals

Agree 70 128 63 51 312
48.78 98.8 85.5 78.9

Uncertain 12 29 18 18 17
12.0 244 21.1 19.5

Disagree 72 155 189 180 596
93.2 188.8 163.4 150.7

Totals 154 312 270 249 985

Note: Numbers in boldface font are observed frequencies; those in italics are expected frequencies under the hypothesis
of statistical independence.
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will be left), dividing the quotient by the expected frequency, and then adding
the results over all the cells of the table. Hence, for table 13-20 we have

70-49) (128-99)° —85)? T
oio A0 ] ), (63-85"  (180-150)
70 128 63 180

=56.15."

This is the observed chi square, which we compare to a critical value to help
decide whether or not to reject the null hypothesis.

Recall that a statistical hypothesis test entails several steps: specify the null
and alternative hypothesis, specify a sample statistic and an appropriate sampling
distribution, set the level of significance, find critical values, calculate the
observed test statistic, and make a decision. A chi-square test of the statistical
independence of Y and X has the same general form.

1. Null hypothesis: X and Y are statistically independent.

2. Alternative hypothesis: X and Y are not independent. The nature of the
relationship is left unspecified.

3. Sampling distribution: Choose chi square. This distribution is a family each
of which depends on degrees of freedom (df). The degrees of freedom
equals the number of rows (I) minus 1 times the number of columns (J)
minus 1 or (I-1)(J-1).

4. Level of significance: Choose the probability (a;) of incorrectly rejecting a
true null hypothesis.

5. Critical value: The chi-square test is always one-tailed. Choose the critical
value of chi square from a tabulation to make the critical region (the region
of rejection) equal to o.

6. The observed chi square is the sum of the squared differences between
observed and expected frequencies, divided by the expected frequency.

7. Reject the null hypothesis if the observed chi square equals or exceeds the
critical chi square; that is, reject if x2, ¢ 2 % iyica- Otherwise, do not reject.

For the tolerance and education example, the null hypothesis is simply that
the two variables are independent. The alternative is that they are not. (Yes, this
is an uninformative alternative in that it does not specify how education and
political tolerance might be related. This lack of specificity is a major criticism of
the common chi-square test. But this is nevertheless a first step in categorical
data analysis.) For this test, we will use . = .01 level of significance. To find a
critical value, it is necessary to first find the degrees of freedom, which in this
caseis (4-1)(3-1), or 6.

*results subject to rounding errors.
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Then we look in a chi-square table to find
t (the

Lok o the value that marks the upper 1 percen.
Relationship between Xand ¥ Based on Sample of 30 U R of e AR (6 S enie €,
Variable X Read down the first column (df) until you find the
degrees of freedom (6 in this case) and then go

Variabla ¥ A B c_Tom across to the column for the desired level of sig-
A 30 30 %0 9  ificance. With 6 degrees of freedom, the critica.ll
B 50 4 . 93 value for the .01 level is 16.81. This means that if
G 4 . 1?)3 13210 our observed chi square is greater than or equal to
L o o 16.81, we reject the hypothesis of statistical inde-

¥2=138,4 df;¢=.07. pendence. Otherwise, we do not reject it.

ot ypothstioa i The observed chi square for table 13-20 is 56.1_5
with 6 degrees of freedom. (Always report the degrees of freedom..} glearil};etrlllclz
greatly exceeds the critical value (16.81), so we woulfi reject thle 1T1b efsn o
hypothesis at the .01 level. Indeed, if you look at the chi-square distribu hl - hes;
you will see that (for 6 degrees of freedom) 56.15 is much larger the-m t 1e . g -
listed critical value, 22.46, which defines the .001 level. So really tiuct; re. ?Ho;::' tICJ,
is “significant” at the .001 level. We place quote marks a¥ound h51gn1 Lctaneces_
reemphasize that all we have done is reject a null hypothesis. We have ?Ooim
sarily produced a momentous finding. This statement leads to ourlneﬁ p : h.ave
The sample size, N, and the distribution of cases across the table alway: doms
to be taken into account. Large values of chi square occur Whgn the obserhviih "
expected tables are quite different and when the sample size upon w ko
tables are based is large. A weak relationship in a large. sample may attlam sa i
cal significance, whereas a strong relationship f.ouncli in a small samp'f I(Tile 3; f thé
Keep this point in mind. If N (the total sample size) is large, the.mag.m tl e
chi-square statistic will usually be large as well, -and .we wﬂlbre]eznb o
hypothesis even if the association is quite weak. This point can be s€ fy N
ing at tables 13-21 and 13-22. In table ‘13 21, the
chi square of 1.38 suggest that there is virtually no

TABLE 13-22 relationship between the categories X and Y. IIn
Relationship between X and Y Based on table 13-22, which involves a larger sample size

Sample of 3,000 but no other difference, the chi-square statistic

Variable X {(13.8) is now statistically significant (at The .QS

level). However, the strength of the relationship

Variable ¥ 4 ° ‘ stlor between X and Y is still the same as before, namely,
A 300 300 300 900 quite syl .

B 4 wbl gl 20 The lesson to be drawn here is that when' dealing

C 400 400 340 1,140 with large samples (say, N > 1,500), sms%ll, }I}COHS';
T 1.000 1,400 130 aRoy quential relationships can be statistically significant.

As a result, we must take care to distinguish between

x*=138 4dfi¢=07. statistical and substantive importance. The fact that

Note: Hypothetical data.
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chi square rapidly inflates with increases in the sam-
ple size has led statisticians to propose measures that

try to take N into account. A simple one, phi (¢),
adjusts the observed chi-square statistic by dividing it
by N and taking the square root of the quotient.
(Because of the division by N, the statistic is some- Although most software calculates phi as a matter
times referred to as the “mean square contingency | ©f course, it can be calculated quickly by hand if the
coefficient.”) Yet, like chi square, phi does not have a | ©Pserved chi square is available:

readily interpretable meaning, so it is mostly used for 5
comparison. (In ideal situations, phi varies between 0 ¢= \/XOTT
and 1, but in many bivariate distributions, it can
exceed 1.) We see in tables 13-21 and 13-22 that phi | Where N is the sample size.
does not change even though the chi-square statistic

The phi Coefficient

HOW IT°S DONE

does. So even though we do not use it much in this book, it comes in handy on occa-
sion. If you look back to table 13-19, you will see that phi = .24, indicating once
more the weak to moderate relationship between education and political tolerance.
Generally speaking, the chi-square test is only reliable for relatively large Ns.
Stating exactly how large is difficult because the answer depends on the table’s
number of rows and columns (or, more formally, its degrees of freedom). Many
times, as in a table with many cells (see table 13-20), a sample will be large but
the table will contain at least some cells with small frequencies. Very few respon-
dents in the CID study seemed “uncertain,” so frequencies in that row are small
compared to the others. A rule of thumb directs analysts to be cautious if any cell
contains expected frequencies of 5 or fewer, and many cross-classification pro-
grams flag these “sparse cells.” If you run across this situation, the interpretation
of the chi-square value remains the same but should be perhaps advanced with
less certainty. Moreover, if the total sample size is less than 20 to 25, alternative
procedures are preferable for testing for significance.!3
Remember: the chi-square statistic in and by itself is not a very good indicator
of the strength of an association; rather, it tests the statistical significance of any
association that does appear. Assessing relationships is thus a two-step process:
(1) measure the strength of the association with percentages, proportions, and
coefficients and (2) test to see if the observed results could might have arisen by

chance. The first step is the crucial one: make sure the relationship is “worth
talking about” and then test its significance.

DIFFERENCE-OF-MEANS TESTS

Linear Models

Cross-tabulation is the appropriate analysis technique when both variables are
nominal- or ordinal-level measures. When the independent variable is nominal



