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1	 Sets, set membership, and calibration

Easy reading guide

This book is based on the conviction that the tools of set theory allow for a distinct 
and fruitful perspective on social science data. In order to develop the argument and 
to show how the analysis of empirical data works when focusing on set relations, we 
first clarify how sets refer to concepts (1.1). Then we discuss how set membership 
scores are derived from empirical and conceptual knowledge. This process is called 
calibration (1.2). Through calibration of sets, qualitative – and also quantitative, with 
fuzzy sets – differences between cases are established and expressed by set mem-
bership scores that vary between 0 and 1. The usefulness of set-theoretic methods 
depends on the proper calibration of sets. Beginners should read through the whole 
chapter with careful attention, while more advanced users might wish to skim through 
the text if they feel that they are well aware of the principles and practices of good 
set calibration.

In the Introduction, we have already mentioned that there are two major variants of QCA, 
namely crisp-set QCA (csQCA, where a case is either a member of a set or it is not) and 
fuzzy-set QCA (fsQCA, where differences in the degree of set membership can be cap-
tured). Both these variants share one fundamental feature: they establish qualitative differ-
ences between those cases that are (more) in the set and those that are (more) out of the 
set. Beyond this, both QCA variants have much more in common than is sometimes insinu-
ated in some of the literature. In this book, we therefore emphasize their commonalities. 
They both aim at identifying subset relations, which, in turn, rest on qualitative differences 
between cases. Indeed, a crisp set should be seen as the most restrictive form of fuzzy set, 
one that allows only full membership and full non-membership. Because crisp sets are a 
special case of fuzzy sets, most of the set operations equally apply to both variants. For all 
these reasons, we introduce both variants together. Admittedly, crisp sets correspond more 
to everyday thinking: this is why we introduce all important notions and operations by first 
explaining their meaning based on crisp sets. The main emphasis of this chapter is on fuzzy 
sets, though, because they are less intuitive and therefore require more explanation.
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1.1  The notion of sets

1.1.1  Sets and concepts

The use of the term “set” is not very broadly diffused in social science method-
ology. However, a good part of our conceptual reasoning, as Mahoney (2010) 
shows, is at least based on an implicit idea of sets. According to Mahoney, 
there are two basic modes of looking at concepts: if we define concepts “as 
a mental representation of an empirical property” (Mahoney 2010: 2), then 
we will measure cases “according to whether or the extent to which they are 
in possession of the represented property” (Mahoney 2010: 2). Measurement 
theory provides us with many useful techniques for doing this. This ultimately 
results in the use of variables when defining a concept (Mahoney 2010: 13). 
If, however, we refer to concepts as sets, defined in terms of “boundaries that 
define zones of inclusion and exclusion” (Mahoney 2010: 7), then “[c]ases 
are measured according to their fit within the boundaries of a set” (Mahoney 
2010: 2). Sets work as “data containers” (Sartori 1970: 1039). Although this 
seems to be a subtle and often overlooked differentiation, these two views 
of concepts are fundamentally different. When we measure a concept by 
means of traditional measurement theory, it represents a property or a group 
of properties. The set-theoretic view, instead, uses set membership in order 
to define whether a case can be described by a concept or not. Therefore, in 
the framework of set-theoretic methods, issues of concept formation have a 
somewhat different connotation than in traditional measurement theory, by 
focussing on whether a case belongs to a concept (i.e., a set) or not. This pro-
cess of assigning set membership is also called “calibration” (see section 1.2).

1.1.2  The pros and cons of crisp sets

When QCA was first discussed in the 1980s and 1990s, it was limited to crisp 
sets. This required a decision whether a case is a member of a set or not. 
As such, this also corresponds to how sets are generally perceived, namely 
as boxes into which cases can be sorted or not. However, as argued in the 
Introduction, it is not always easy to make such clear-cut decisions, above 
all when dealing with more fine-grained social science concepts for which 
detailed and nuanced information is available. Not surprisingly, the need 
for “dichotomization” has triggered some serious criticism of crisp-set QCA 
(Bollen, Entwisle, and Alderson 1993; Goldthorpe 1997; for an overview and 
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a response, see De Meur, Rihoux, and Yamasaki 2009). This requirement cer-
tainly affected the usability and the acceptance of QCA in its early stages. The 
two major reservations with dichotomies seemed (and still seem) to be that 
(a) they represent a loss of empirical information and (b) they reduce the 
robustness of results due to the sensitivity of QCA findings to decisions on 
where to put the threshold for dichotomization, as the latter is often subject 
to a relatively large degree of discretion.

At the core of the argument against dichotomization is the belief that the 
world and large parts of social science phenomena simply do not come in a 
binary form. Let us take, for example, the notion of democracy again: if we 
think of cases such as the UK or the USA on the one hand, and North Korea 
or Zimbabwe on the other, then this might at first glance suggest that a clear-
cut dichotomy is appropriate. The former countries are members of the set of 
democracies, whereas the latter two are clearly not. However, cases often fall 
in-between these two qualitatively different endpoints. Just think of all the 
so-called “electoral democracies” or any of the numerous “democracies with 
adjectives” (Collier and Levitsky 1997) identified in the literature. A closer 
look at the unquestionably democratic cases in North America and Western 
Europe also reveals the existence of interesting and analytically relevant dif-
ferences – both across time and across countries – that defy a straightforward 
classification as democracies versus non-democracies (for instance, declining 
trust in the political class or the rise of far-right movements might be said to 
undermine democracy). We would probably not want to claim that any of 
these countries has become undemocratic. Despite sometimes even strong 
deviations from perfect democracy, they are still qualitatively different from 
non-democracy. As we shall see, fuzzy sets provide the possibility to take both 
qualitative and quantitative differences into account.

The fact that we emphasize qualitative differences and not only quantita-
tive variations is quite important here. In statistics, interval-scale variables 
are usually considered superior to dichotomous (and ordinal) variables, 
since their high level of measurement captures more precise quantitative 
differences. However, the previously mentioned limitations of dichotomous 
variables should not lead to the conclusion that interval-scale measurements 
automatically imply a greater level of validity. This is above all doubtful when 
the underlying concept establishes explicit qualitative distinctions between 
cases, such as, for instance, the concept of “democracy.” This implies that, 
despite the general concerns about the use of dichotomies, not using them 
at all would go too far. In fact, even in applied quantitative research, where 
most critiques of the use of dichotomies originate, techniques like logistic 
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regression, which requires a dichotomous dependent variable, remain widely 
popular. What is more, the recent shift in the statistical literature towards 
the experimental design as the gold standard for causal inference has led to 
a renewed appreciation of dichotomies even among proponents of advanced 
quantitative methodology.1

The second type of critique aimed at using dichotomous data may seem 
to be a rather technical issue, but it refers back to the critique just men-
tioned. It is often argued that the decision on where to put the threshold is 
not only to a considerable extent arbitrary, but also crucially influences the 
results obtained. What seems to be true is that in research practice, scholars 
have all too often been using unconvincing criteria as to where to put the 
threshold for turning their raw data into crisp-set membership scores. As 
we will explain in section 1.2.2, a very common mistake is to use character-
istics of the data at hand, such as the mean or median, as a guide to where 
to put the threshold.

A central critique says that arbitrariness, or simply a definition that is not 
perfectly accurate, could cause a case to be on the “wrong” side of the thresh-
old, and that research results could be significantly altered through different 
case assignments. While true, claims about the manipulability of set-theoretic 
results through purposeful threshold setting (aka cheating) are largely exag-
gerated. First, for each concept there is only a certain, often small range where 
the threshold can plausibly be put. Usually, no huge differences in the results 
occur due to minor adjustments to the threshold.2 If the criteria for setting the 
thresholds are both transparent and plausible, then hardly any chance exists 
for potential cheating. Finally, the effects of different thresholds on the results 
obtained are often so intricate that setting thresholds in order to create desired 
results would be a time-consuming and futile exercise for the researcher.

In sum, working with crisp sets does create some issues. At the same time, 
when trying to investigate relations between sets, we must establish qualita-
tive differences between cases that are more in a set and those that are more 
out of the set. So what can we do in order to effectively work with concepts 
where there is some interesting variation between the qualitative endpoints of 
implicitly dichotomous social phenomena? In these situations, neither inter-
val scale variables nor dichotomous crisp sets are ideal. The former lack the 
capacity to establish qualitative differences, and the latter to make differences 
in degree between cases of the same kind. Thus, an instrument is needed that 
overcomes the starkly limiting characteristics of dichotomies but which at the 

1	 We thank John Gerring for making this point (personal communication, Spring 2010).
2	 See section 11.2 on robustness tests in QCA.
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same time continues to possess the potential to show qualitative differences. 
To this end, Ragin proposed the use of fuzzy sets (Ragin 2000).

1.1.3  Properties of fuzzy sets

The term “fuzzy set” goes back to the writings of Lotfi Zadeh (1965, 1968). The 
notion of fuzzy sets has triggered volumes of books in disciplines as diverse as 
mathematics, engineering, and philosophy. Only recently has the tool of fuzzy sets 
been introduced in the social sciences (Smithson 1987, 2005; Ragin 2000, 2008a, 
2008b; Smithson and Verkuilen 2006). Thus, fuzzy-set theory was not invented by 
social scientists, and the level of complexity of this theoretical and mathematical 
framework goes well beyond that currently applied in fuzzy-set social sciences.

Because fuzzy-set theory refers to an established body of literature, we stick 
to the use of the term “fuzzy set” despite its potentially misleading interpret-
ation and negative connotation in everyday language. One could perhaps 
come up with a less stigmatized adjective for sets that are not crisp, but the use 
of any other term would contribute to disconnecting the use of fuzzy sets in 
social sciences from their mathematical and epistemological background. As 
the extant literature makes clear, “fuzzy” does not mean “unclear” or “wishy-
washy.” The statement that a given case has a fuzzy-set membership score of, 
say, 0.8 reflects precise empirical information about that case. The fuzziness 
stems from imprecise conceptual boundaries. For instance, when we invoke 
the concept of a “bald person,” we all agree that somebody with no hair at all 
is definitely bald. If, however, we took a person with a lot of hair and started 
pulling it out one strand after another, it would be difficult to point to a pre-
cise and quantifiable amount of remaining hair at which this person would 
have to suddenly be considered a member of the set of bald people. At the 
same time, we do see a qualitative difference in terms of baldness between 
somebody with a lot of hair and somebody with only few hairs. The problem 
of identifying where exactly the difference is between a bald and a non-bald 
person is not resolved by knowing the precise number of hairs remaining. 
Fuzziness, in other words, is due to conceptual boundaries that are not sharply 
defined rather than imprecise empirical measurement.

Fuzzy sets preserve the capability of establishing difference-in-kind between 
cases (qualitative difference) and add to this the ability to establish difference-
in-degree (quantitative difference) between qualitatively identical cases. The 
term fuzzy set implies a different usage of the term “set” than we are used to 
from traditional set theory, which defines sets through strict membership cri-
teria (Klir, Clair, and Yuan 1997: 48). Individual members either clearly belong 
to sets, or else they do not. Fuzzy sets, by contrast, allow for cases to have 
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partial membership in the set (Klir et al. 1997: 73ff.). Cases can be more in 
than out of a set without being full members of the set, and they can be more 
out than in the set without being full non-members of the set. For instance, 
two countries might have a fuzzy-set membership score of 0.7 and 0.8 in the 
fuzzy set of democracies, respectively. This indicates that both are rather more 
democratic than non-democratic (a qualitative property), but also that one of 
the two countries is slightly more democratic than the other one (a quantita-
tive difference). Fuzzy sets are thus characterized by the fact that the boundar-
ies between membership and non-membership are blurred. This also implies 
that a case – unless it has full (non-)membership in the set – is actually a par-
tial member of both the set and its negation. In our example, each state is not 
only a member to some degree in the fuzzy set of democracies, but also of the 
opposite fuzzy set, that of non-democracies. The principle of the “excluded 
middle” whereby an element can be only a member of a set or of its comple-
mentary set (a fundamental rule of crisp sets) does not hold for fuzzy sets.

Fuzzy sets allow for degrees of membership, thus differentiating between dif-
ferent levels of belonging anchored by two extreme membership scores at 1 and 
0 (Ragin 2000: 154; Ragin 2008b). In addition, a membership score at 0.5 locates 
the so-called point of indifference where we do not know whether a case should 
be considered more a member or a non-member of the set (Ragin 2000: 157). It 
constitutes the threshold between membership and non-membership in a set – 
the qualitative distinction that is maintained in fuzzy sets – and represents the 
point of maximum ambiguity with regard to a case’s membership in the concept. 
Fuzzy sets explicitly require that the definition of set-membership values is based 
on three qualitative anchors: full set membership (1), full non-membership (0), 
and indifference (0.5). In crisp sets, these three anchors are all collapsed into 
one – the distinction between full membership and full non-membership.

Defining the precise location of the 0.5 qualitative anchor is crucial. 
Assigning cases a 0.5 fuzzy set membership score, however, should be avoided. 
It means that we are unable to say for an individual case whether it is more a 
member of the set or more a non-member. Because we avoid a decision on the 
qualitative status of the case in question, assigning the 0.5 score has import-
ant consequences for the analysis of fuzzy data that we explain in detail in 
Chapters 4 and 7. For all other degrees of membership and non-membership 
so-called fuzzy values are used to quantify the levels of membership of a case 
in a set. As Table 1.1 exemplifies, for each fuzzy value, linguistic qualifiers can 
be assigned (Ragin 2000: 156).

It is not necessary for there to be actual empirical elements corresponding 
to every fuzzy value, i.e., even if a fuzzy set allows for a membership of, say, 
0.8 it might well be that it is not assigned to any empirical case. In particular, 
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this also applies to the membership values of 1 and 0. Also, different intervals 
between the fuzzy-set membership scores are possible: it is perfectly fine if a 
fuzzy set shows membership scores of, say, 0.1, 0.4, 0.6, and 1, if theoretical 
considerations warrant it.

We can also imagine fuzzy scales that are differentiated even further than 
this. However, with increasing levels of differentiation it becomes ever more 
difficult to come up with theory-based and empirically observed distinctions 
between the values, not to mention the need to assign verbal descriptions 
to each value. Any such representation suggests a level of precision that is 
unlikely to be grounded in empirical information or theory. One should 
therefore not over-interpret the substantive meaning of marginal differences 
in set-membership scores, such as the difference between 0.62 and 0.63. Such 
small differences also have only a negligible impact on the analytic results.

Note that frequently some of the variation in the raw data is conceptually 
irrelevant. When translating raw data into corresponding fuzzy-set membership 
scores, this must be taken into account. Imagine that we want to assign member-
ship scores of all countries in the fuzzy set “rich countries.” If we take GDP per 
capita as an indicator for richness, then we find a large variation among the four 
countries with the highest GDP per capita (IMF data for 2010): Qatar ($88,500), 
Luxembourg ($81,400), Singapore ($56,500), and Norway ($52,000). Under 
many (if not most) definitions of “rich country,” all four would be considered 
rich and would thus receive a membership score of 1 in the set of rich coun-
tries. The fact that Qatar is quantitatively about 1.7 times richer than Norway is 
deemed qualitatively irrelevant for research purposes (Ragin 2008a: 77ff.).

Fuzzy scales, with their well-defined starting- and end-points, the cross-over 
point, and the combination of both qualitative and quantitative differentiations, 
seem to defy standard classifications of measurement levels (Ragin 2008b). Both 

Table 1.1 Verbal description of fuzzy-set membership scores

Fuzzy value The element is …

1 Fully in
0.9 Almost fully in
0.8 Mostly in
0.6 More in than out
0.5 Crossover: neither in nor out
0.4 More out than in
0.2 Mostly out
0.1 Almost fully out
0 Fully out

Adapted from Ragin (2000: 156)
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the idea of seeing them as continuous scales (since every possible grading between 
0 and 1 can be obtained) and seeing them as ordinal scales (since they display an 
ordered list of empirical representations of a given concept) could seem reason-
able. However, the argument against interpreting fuzzy sets as continuous scales is 
that it downplays the establishment of qualitative differences between cases above 
and below the 0.5 anchor, which remains the essential principle of fuzzy sets. The 
step from a fuzzy value of 0.4 to 0.6 is something different from the step from 0.1 
and 0.3. Although the quantitative difference in the degree of membership is 0.2 
in both situations, there is a qualitatively different situation: in moving from 0.4 
to 0.6, the qualitative anchor of 0.5 is crossed. While 0.6 indicates that the case 
is more like a member of the set, 0.4 tells us that it is more of a non-member of 
the set. The fuzzy values 0.1 and 0.3 indicate, instead, that both cases are on the 
same side of the point of indifference and thus both indicate non-membership, 
although to different degrees. This distinction does not, however, also mean that 
a fuzzy set will be reinterpreted as a dichotomy in the analysis: although the quali-
tative difference is maintained, the quantitative gradings also count. A fuzzy value 
of 0.3 describes something different from the fuzzy value of 0.1, although both 
values indicate the absence of the concept rather than its presence. Hence, fuzzy 
scales are neither continuous nor ordinal, since their “continuity” and their “rank 
order,” respectively, are interrupted at the point of indifference, and since the 
inherent qualitative difference is dominant in the definition of the values.

Ragin (2008b) points out that this combination of qualitative anchors and 
quantitative gradings, which sits uneasily with mainstream social science 
classifications of measurement levels, is standard in disciplines that are usu-
ally regarded as more “scientific” than the social sciences, such as physics, 
chemistry, and astronomy. Ragin gives the example of “temperature” and the 
measurement “degrees Celsius.” There are senses in which a temperature can 
be qualitatively interpreted. When falling below 0° or rising above 100°, the 
state of water qualitatively changes: it turns into ice and vapor, respectively. 
Hence, a 10-degree change from 95° to 105° implies a qualitative difference, 
whereas a change from 30° to 40° does not. Just using temperature at face 
value, without anchors that establish qualitative differences, one would miss 
this important information about the state of water. So far, in the social sci-
ences it is rare to use knowledge (“the temperature at which water freezes or 
boils”) that is external to the raw data (“mercury expanding and contracting 
with heat”) to decide how to calibrate a scale.

1.1.4  What fuzzy sets are not

Fuzzy sets express a specific kind of uncertainty and take on values between 0 
and 1. It is perhaps because of these two characteristics that fuzzy set membership 
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scores are sometimes interpreted as probabilities (e.g., Altman and Perez-Linan 
2002: 91; Eliason and Stryker 2009). We side with those scholars who reject that 
view, among them Zadeh (1995) himself, whose article’s title captures the essence 
of the argument: “Probability Theory and Fuzzy Logic are Complementary 
Rather than Competitive.” A similar point is made by McNeill and Freiberger 
(1993: 185ff.), who argue that uncertainty has various aspects and that probabil-
ity and fuzziness capture different forms of uncertainty. The following example 
helps to illustrate the difference between probability and fuzzy values.

Imagine two water glasses, each containing a different liquid, and about 
which the following is known. Glass A contains a liquid that has a 1 percent 
probability (0.01) of being poisonous. Glass B, on the other hand, contains a 
liquid that has a fuzzy-set membership score of 0.01 in the set of poisonous 
liquids. When forced to choose between the two (and assuming that we do 
not have suicidal tendencies), which glass is safer to drink? The answer is glass 
B. We know exactly what is in this glass – a liquid that is all but fully out of the 
set of poisonous drinks. This applies, for example, to energy drinks of the kind 
that are popular among college students; they are certainly not poisonous, but 
also not completely free of toxins as is, say, a glass of pure spring water. In 
contrast, we do not know what is in glass A. It is either extremely poisonous 
or completely non-toxic. All we know is that it comes from a population of 
other glasses, of which 1 out of 100 is deadly poisonous. There is a 99 percent 
chance that drinking from glass A is completely safe, but a 1 percent chance 
it will turn out to be lethal. In contrast, glass B will cause us to feel, at best, 
slightly bloated and a little twitchy but does not present any risk of dying.

At-a-glance: the notion of sets

The use of set theory in the social sciences requires a different perspective on concepts: 
cases are assessed with regard to their membership in previously defined sets.

Crisp sets are restricted to the membership values 1 (full membership of a case in a 
set) and 0 (full non-membership). This ultimately requires the definition of all concepts as 
dichotomies.

Fuzzy scales possess three qualitative anchors – the complete presence of a concept 
(1), its complete absence (0), and the point of indifference (0.5) – with quantitative gradings 
representing the degree of presence of the concept. Verbal descriptions (“linguistic quali-
fiers”) help to connect the quantitative assessment to natural language.

Crisp sets can be seen as special cases of fuzzy sets. Thus, the rules for fuzzy sets are 
more general and subsume those for crisp sets.

A fuzzy-set membership score does not express the probability of a case’s membership in 
a set. Fuzzy scores and probabilities express different aspects of uncertainty. The uncertainty 
expressed in fuzzy sets stems from conceptual rather than empirical imprecision, which, in 
turn, is inherent to most verbally defined concepts – especially those in the social sciences.
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1.2  The calibration of set membership

Assigning set membership scores to cases is crucial for any set-theoretic 
method. The process of using empirical information on cases for assigning set 
membership to them is called “calibration.” In order to be analytically fruitful, 
calibration requires the following: (a) a careful definition of the relevant popu-
lation of cases; (b) a precise definition of the meaning of all concepts (both the 
conditions and the outcome) used in the analysis; (c) a decision on where the 
point of maximum indifference about membership versus non-membership 
is located (signified by the 0.5 anchor in fuzzy sets and the threshold in crisp 
sets); (d) a decision on the definition of full membership (1) and full non-
membership (0); (e) a decision about the graded membership in between the 
qualitative anchors.

1.2.1  Principles of calibration

The first (and very simple) answer to the question of how to assign set-
membership values is to base the calibration on the combination of theoretical 
knowledge and empirical evidence (Ragin 2000: 150). It is the responsibil-
ity of the researcher to find valid rules for assigning set-membership values 
to cases. The top priorities of this process are to make the calibration pro-
cess transparent and to make it lead to a set that has high content valid-
ity for the concept of interest. When turning raw data into set-membership 
scores, researchers make use of knowledge that is external to the data at 
hand (Ragin 2008a, 2008b). Such knowledge comes in different forms and 
from different sources. There are, for instance, obvious facts. For example, 
it is generally true that completing the twelfth grade in the United States 
leads to receiving a high school diploma. If we are trying to calibrate the 
set “high school-educated citizens,” there is a qualitative difference between 
completing the eleventh grade and completing the twelfth grade. There are 
also some generally accepted notions in the social sciences. In addition, there 
is the knowledge of the researcher accumulated in a specific field of study or 
specific cases. This requires extensive fieldwork and a very careful analysis of 
primary and secondary sources before proceeding to the actual calibration. 
As such, interviews, questionnaires, data obtained with participant observa-
tion or focus groups, and organizational analysis, quantitative and qualita-
tive content analysis, etc., can all provide useful information sources in the 
process of set calibration.
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1.2.2  The use of quantitative scales for calibration

Multiple non-quantitative data sources are often used for calibration. 
Sometimes, however, we do have one data source and it is an interval-scale 
measure. For instance, if we want to calibrate the set “rich countries,” then a 
GDP per capita indicator might provide a reasonably good source of informa-
tion.3 When interval-scale data are at hand, researchers have several calibra-
tion options. In this section, we first describe what one should not do when 
calibrating sets based on interval scales. We then provide a good example of 
how to combine case knowledge and empirical distribution for meaningful 
set calibration. Then, in a separate section, we describe the direct and indirect 
methods of calibration (Ragin 2008a, 2008b).

When calibrating fuzzy sets, it might be tempting to simply transform the 
GDP per capita scale into the 0–1 interval while preserving each case’s relative 
distances to each other.4 When calibrating a crisp set, we might even simply 
want to use the arithmetic mean or the median and to define all cases above the 
mean or median as “in the set” and the others as “out of the set.” Such purely 
data-driven calibration strategies are fundamentally flawed, though. Measures 
like the mean or median are properties of the data at hand and, as such, void of 
any substantive meaning vis-à-vis the concept that one aims to capture with a 
set. Just dropping or adding a case with an extreme value on the GDP per cap-
ita scale will change the mean. Using parameters such as the mean therefore 
implies that the classification of a case does not only depend on its own absolute 
value, but on its relative value with regard to other cases. Why, however, should 
the presence or absence of specific cases in the data influence the set-member-
ship score of other cases in the set of rich countries? It should not.

This is why calibration must also make use of criteria for set membership 
that are external to the data. Certainly this does not mean that the distribu-
tion of cases on our raw data should be disregarded. It is simply another piece 
of evidence, but certainly not the sole guidance when calibrating. Along these 
lines, also consider that depending on the research context, one and the same 
raw data translate into different set-membership scores. This is so because the 
meaning of concepts, and therefore their respective sets, is highly depend-
ent on the research context (Ragin 2008a: 72ff.). For example, in research on 
EU member states, a GDP per capita of, say, $19,000 (roughly the value for 

3	 Here we sidestep the substantive arguments against using GDP as a proxy for “richness” (see, e.g., 
Dogan 1994).

4	 The easiest method here would be to simply divide the GDP of each state by the highest value of GDP 
in the sample.
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Hungary) would not translate into full membership in the set of rich coun-
tries. In the context of a global study, in contrast, Hungary would be a mem-
ber of the set of rich countries. Set-membership values are intrinsic to the 
research in which they are used. They are not universal indicators of a concept 
(Collier 1998: 5), but directly depend on the definition of a concept, which in 
turn is closely linked to the research context.

A good example to illustrate the calibration of fuzzy sets based on quantita-
tive data is Emmenegger’s (2011) work on job security regulations in selected 
OECD countries. One of his conditions is the fuzzy set “many institutional 
veto points.” The raw data consists of an additive index based on Lijphart’s 
(1999) data on federalism and bicameralism (Table 1.2). Emmenegger opts for 
a four-value fuzzy scale (0, 0.33, 0.67, and 1). The location of the qualitative 

Table 1.2 Calibration of condition “many institutional veto points”

  
  
Country

  
Federalism, 
1945–96

  
Bicameralism, 
1945–96 

  
Combined 
indicator

Fuzzy-set membership 
in “many institutional 
veto points”

Australia 5 4 10.00 1.00
Austria 4.5 2 7.00 0.67
Belgium 3.1 3 6.85 0.67
Canada 5 3 8.75 1.00
Denmark 2 1.3 3.63 0.00
Finland 2 1 3.25 0.00
France 1.2 3 4.95 0.33
Germany 5 4 10.00 1.00
Ireland 1 2 3.50 0.00
Italy 1.3 3 5.05 0.33
Netherlands 3 3 6.75 0.67
New Zealand 1 1.1 2.38 0.00
Norway 2 1.5 3.88 0.00
Portugal 1 1 2.25 0.00
Spain 3 3 6.75 0.67
Sweden 2 2 4.50 0.33
Switzerland 5 4 10.00 1.00
UK 1 2.5 4.13 0.00
USA 5 4 10.00 1.00

Source: Emmenegger (2011)
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anchors – the most important decisions to be made when calibrating sets – is 
derived in the following manner. All countries achieving a score lower than or 
equal to that of the UK (4.13 in Emmenegger’s combined indicator) receive a 
fuzzy membership score of 0 in the set of “many institutional veto points.”

Case knowledge is used in an exemplary manner in order to identify and 
justify meaningful qualitative anchors on the composite index that separates 
cases with full non-membership and partial non-membership. A prominent 
gap in the combined indicator between the raw values of 5.05 and 6.75 is then 
used to establish the point of indifference. All countries below that gap, but 
above the UK, are assigned a fuzzy value of 0.33. Finally, another gap in the 
combined indicator between 7.00 and 8.75 is used to define full set member-
ship: countries higher than 8.75 are deemed full members of the set of “many 
institutional veto points.”

While there might be room for debate about specific decisions in 
Emmenegger’s strategy (e.g., the choice of the indicators or the way of aggre-
gating them), the level of transparency and the combined use of conceptual 
and case knowledge for imposing qualitative anchors represent a good stand-
ard of calibration practice. It allows readers to follow the reasoning behind 
calibration decisions and to either agree or to disagree and, if the latter, to 
make specific suggestions for change in the calibration.

1.2.3  The “direct” and “indirect” methods of calibration

Ragin (2008a: 85–105) proposes the so-called “direct” and “indirect” methods 
of calibration. Both apply only to fuzzy and not crisp sets. Unlike in the pre-
vious calibration example, these two techniques are more formalized and rely 
partially on statistical models. The direct method uses a logistic function to fit 
the raw data in-between the three qualitative anchors at 1 (full membership), 
0.5 (point of indifference), and 0 (full non-membership).5 The location of 
these qualitative anchors is established by the researcher using criteria exter-
nal to the data at hand. The “indirect method,” by contrast, requires an initial 
grouping of cases into set-membership scores. The researcher has to indicate 
which cases could be roughly classified with, say, a 0.8 membership in the set; 
with 0.6; 0.4; and 0.2 and so on. Using a fractional logit model, these prelimin-
ary set-membership scores are then regressed on the raw data. The predicted 

5	 Because a logistic function is used, the actual anchors are at 0.95, 0.5, and 0.05.
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values of this model are then used as the fuzzy-set membership scores. Thus, 
if interval-scale data are at hand, the direct and indirect method of calibration 
can be fruitfully applied and represent progress in one of the core issues of set-
theoretic methods: the creating and calibration of sets. The technical details 
are explained in detail by Ragin (2008a, 2008b). Conceptually, the important 
message is, however, that despite the complexity of the underlying statistical 
model, the calibration and thus set-membership scores of cases is predom-
inantly driven by the location of the qualitative anchors. These locations, in 
turn, are determined by the researcher, who uses external knowledge rather 
than properties of the data at hand.

Freitag and Schlicht (2009) provide an example of the direct method 
of calibration. In their comparative work on the differences in schooling 
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Figure 1.1	 Membership in fuzzy set of Länder with underdeveloped all-day schools plotted against percentage 
of pupils enrolled in all-day schools
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systems in the 16 German Länder, they calibrate the set “Länder with 
underdeveloped all-day school system.” The raw data for calibration con-
sist of the percentage of pupils enrolled in all-day schools in a Land. These 
values vary between 2.4% (Bavaria) and 26.6% (Thuringia). Because the 
fuzzy set is labeled underdevelopment, high values in the raw data convert 
into low fuzzy-set membership scores and vice versa. The 0.5 qualitative 
anchors is located at 8.3%, which is exactly the middle of a notable gap in 
the raw data between 6.8% (Lower Saxony) and 9.8% (Saxony-Anhalt); the 
1 anchor is located at 3% (leaving only Bavaria with full membership); and 
the 0 anchor at 20% (assigning 0 to Berlin, Saxony, and Thuringia).

If we plot the fuzzy-set membership scores that result from applying the dir-
ect method of calibration (for details, see Ragin 2008a: 84–94) with the quali-
tative anchors just described against the raw data, we clearly see the logistic 
nature of the transformation (Figure 1.1). We also see that despite the use of 
a (complex) mathematical procedure in the background, the qualitative dif-
ferences between cases’ set membership is clearly driven by decisions that the 
researcher makes based on theoretical considerations and knowledge that exist 
outside the raw data.

Some critiques of the direct and indirect methods of calibration have 
been formulated. First, partly because these calibration techniques can be 
performed by using the relevant software packages (fsQCA 2.5, Stata, or R), 
the temptation might be high to apply them in a mechanistic manner and to 
thus under-appreciate the importance of standards for imposing thresholds 
external to the data. Second, both procedures lead to very fine-grained fuzzy 
scales, thus suggesting a level of precision that usually goes well beyond the 
available empirical information and the conceptual level of differentiation 
that is possible. Put differently, these calibration techniques might create an 
impression of false precision. Another issue is the use of the logistic func-
tion for assigning set-membership scores, a choice that is not sufficiently jus-
tified. Calibration procedures using different functional forms are equally 
plausible and, as Thiem (2010) shows, do have a measurable impact on the 
set-membership scores. In other words, to some degree, the set membership 
of cases depends on the arbitrary choice of the functional form employed in 
the calibration procedure. We agree that the logistic function is arbitrary and 
that other functions are equally (im)plausible. Yet, as long as the 0.5 anchor 
remains unchanged – and its location should be determined by theoretical 
arguments and never by the functional form  – then the effect of different 
functional forms on the set-membership scores remains only marginal in 
virtually all scenarios. The only empirical situation in which differences in 
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the functional form of calibration can produce differences in set membership 
even if the qualitative anchor remains the same is when set membership is 
highly skewed, i.e., when most cases are located either above or below the 0.5 
qualitative anchor.

1.2.4  Does the choice of calibration strategy matter much?

Both Emmenegger and Freitag and Schlicht have (quasi-)interval-level data 
at hand. Yet, the first opts for a qualitative calibration while the latter apply 
the direct method of calibration. Does the choice of calibration strategy 
lead to substantively different membership scores? The general answer to 
this question is this: as long as the locations of the qualitative anchors are 
carefully chosen and thus not subject to changes in the calibration strat-
egy (theory-guided, direct, indirect, etc.) or the functional form used in 
the semi-automated procedures (logistic, quadratic, linear, etc.), then the 
differences in set-membership scores will not be of major substantive 
importance.

In order to illustrate this, let us compare Emmenegger’s qualitative cali-
bration of the set of many institutional veto points with the fuzzy scores that 
result from applying the direct calibration method to the same data. In both 
procedures, we use the same qualitative anchors for full non-membership 
(values below 4.13) and full membership (values above 8.75). For the quali-
tative anchor at 0.5, it is impossible to choose the same value, though. In the 
qualitative calibration, Emmenegger locates it anywhere between the values 
of 5.05 and 6.75. The direct method of calibration, however, requires a pre-
cise location for the 0.5 cut-off. Here we encounter a major difference in cali-
bration strategies: while in qualitative calibration no precise location for the 
0.5 anchor is required, in the direct method a precise value is required. What 
is perhaps even more problematic is that different choices about that precise 
location influence the set membership scores of all cases, even those far above 
and below the point of indifference. Graphically speaking, the exact shape of 
the S-curve as shown in Figure 1.1 crucially depends on the location of the 0.5 
anchor. Because some discretion is often exercised on the exact location of this 
anchor, this introduces at least some level of arbitrariness that is not found in 
the qualitative calibration strategy.

Table 1.3 compares Emmenegger’s original fuzzy set scores with the ones 
obtained by such a use of the direct method of calibration. As the values in 
the last column indicate, the majority of cases display identical membership 
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scores. This is true for those located at the two extreme ends of the fuzzy scale. 
In addition, no case crosses the crucial qualitative anchor at 0.5 from one cali-
bration strategy to the other. Only the cases with fuzzy set membership scores 
of 0.33 or 0.67 in Emmenegger’s original calibration see a change in mem-
bership score when using the direct calibration approach. However, the diffe-
rence in membership is usually too small to warrant a meaningful substantive 
distinction. The biggest difference occurs for Sweden, which according to the 
direct method of calibration is almost fully out of the set of “many institu-
tional veto points,” whereas the qualitative calibration assigns it a fuzzy value 
of 0.33. The reason for this is simple: Sweden’s value in the raw data is just 
slightly higher than the UK’s. This results in a marginal difference using the 

Table 1.3 QUALITATIVE versus direct method of calibration for set “many institutional veto points”

Membership in set “many institutional  
veto points”

    
Raw data

Qualitative  
calibration

Direct method  
of calibration

  
Difference

Australia 10 1 1 0
Austria 7 0.67 0.76 −0.09
Belgium 6.85 0.67 0.73 −0.06
Canada 8.75 1 1 0
Denmark 3.63 0 0 0
Finland 3.25 0 0 0
France 4.95 0.33 0.17 0.16
Germany 10 1 1 0
Ireland 3.5 0 0 0
Italy 5.05 0.33 0.19 0.14
Netherlands 6.75 0.67 −0.04
New Zealand 2.38 0 0 0
Norway 3.88 0 0 0
Portugal 2.25 0 0 0
Spain 6.75 0.67 0.71 −0.04
Sweden 4.5 0.33 0.09 0.24
Switzerland 10 1 1 0
UK 4.13 0 0 0
USA 10 1 1 0

Adapted from Emmenegger (2011)
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direct method. However, if we just use four categories, such as Emmenegger 
does, then Sweden is part of the next higher category, which is described by 
the fuzzy value of 0.33.

When discussing the usefulness of a purely qualitative approach and of 
semi-automatic procedures such as the direct method, we should not forget 
that Emmenegger’s original data (i.e., Lijphart’s raw data) are not perfectly 
quantitative, whereas Freitag and Schlicht, for example, work with empirical 
quantities. Emmenegger’s values are close to qualitative assessments them-
selves so that a complicated mathematical transformation, such as a logit 
function, might be a less appropriate way of reflecting the (partial) presence 
of a concept in given cases.

1.2.5  Assessing calibration

We have presented different ways of data calibration: starting off from 
theory-based, or qualitative, calibration strategies, we discussed the use 
of quantitative underlying scales, arriving finally at the semi-automatic 
direct and indirect methods. Of course, we might feel tempted to auto-
matically resort to the latter strategies as soon as underlying quantitative 
measures exist. The hope of higher reliability and validity might motiv-
ate such a choice. By contrast, qualitative forms of calibration are often 
disregarded as being less transparent and less “scientific.” However, this 
criticism is put in a different light if we consider that comparative research 
often relies on indicators generated from quantitative data of questionable 
quality due to issues such as low intercoder reliability; opaque aggrega-
tion strategies; or unclear content validity. For illustration, just think of 
the Freedom House Index as one of the most frequently used indicators of 
democracy used in research (see Munck and Verkuilen 2002 for a detailed 
critique).

Yet another reason why the critique against more theory-guided methods of 
calibration is somewhat misleading lies in the fact that, in practice, analytical 
results derived from QCA are generally robust to slight changes in the calibra-
tion method. That is to say, most results rarely vary in important ways if a case’s 
membership value is altered slightly. We will come back to this in Chapter 11 
(section 2).

In sum, it is not the principles underlying the assignment of fuzzy values 
which are problematic, but rather it is the temptation to disregard the central 
principles of calibration that causes trouble.
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At-a-glance: the calibration of set membership

The calibration of fuzzy-set membership scores has to be based on theoretical know-
ledge and empirical evidence. Obvious facts, accepted social scientific knowledge, and the 
researchers’ own data collection process all inform the calibration process.

Statistical distributions and parameters of underlying quantitative data can provide use-
ful information for calibration. However, an automatic transformation of quantitative scales 
or the default use of statistical parameters in the calibration process is strongly discour-
aged, as this does not fulfill the requirement of using calibration criteria that are external 
to the data and is thus unlikely to lead to set-membership scores that reflect the meaning 
of the concept that is meant to be captured. A number of mathematical problems further 
discourage such procedures.

The direct and indirect methods of calibration can be applied when interval-scale 
data are at hand and when fuzzy sets (as opposed to crisp sets) are calibrated. These 
semi-automatic ways of transposing quantitative data into set-membership values are a 
valuable addition to the set-theoretic method toolset. Set-membership scores hinge upon 
the definition of the precise location of the qualitative anchors, which, in turn, are deter-
mined based on knowledge outside of the data. Thus, conceptual and theoretical knowledge 
remains the most important feature in these semi-automated calibration techniques.

 


