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Set-theoretic methods: the basics

These aspects also enable us to analyze INUS and SUIN conditions with the help of
QCA. INUS conditions are defined as insufficient but necessary parts of a condition which
is itself unnecessary but sufficient for the result; SUIN conditions refer fo sufficient, but
unnecessary, parts of a factor that by itself is insufficient, but necessary, for the resuft.

Causally complex results produced by set-theoretic methods differ from those produced
by standard statistical (regression-based) approaches. While more advanced quantitative
techniques can mimic some aspects of causal complexity, achieving all of them simultan-
eously is a challenging and still unresolved task. However, no form of causality induced
by the choice of method can be considered superior per se. Instead, researchers should
choose the method that rests on assumptions which are most in line with their research
question. If hunches about necessary and sufficient conditions exist (and there are many
research fields for which this is the case, as Goertz and Starr 2003 and Seawright 2002b:
180f., show), then set-theoretic methods are a plausible choice.

Note that, in this chapter, we have only labeled those conditions as suf-
ficient or necessary for which all empirical evidence was in line with these
respective set relations. However, some of the examples have already alluded
to the fact that there can be different degrees of deviation from perfect sub-
set relations. In fact, when applying set-theoretic methods to social science
data, such observations are the norm. We will discuss this in more detail in
Chapter 5.

Truth tables

Easy reading guide

in this chapter, we introduce a concept that is at the core of QCA, both in the understanding
of it as an approach and as a technique: truth tables. QCA understood as an approach can
be perceived as a research phase that aims to construct a truth table. Truth tables contain
the empirical information gathered by the researcher, often through years of painstak-
ing work. QCA as a technique, then, consists of the formal analysis of truth tables — the
so-called logical minimization — with the aim of identifying sufficient (and necessary) con-
ditions. As such, truth tables become fhe indispensable tool for any QCA, no matter whether
we are working with crisp or fuzzy sets. This is one of the primary bases for the argument
that crisp-set QCA and fuzzy-set QCA are not fundamentally that different. It also means
that most of what we say in this book about truth tables, and their analysis, applies both
to ¢sQCA and to fsQCA.!

We deem it important to reiterate that, in this and other chapters, we mostly focus on
issues related to QCA as a technique for pedagogical reasons, and we therefore take for
granted the existence of empirical information upon which the truth table is constructed.
However, one integral part of set-theoretic approaches — and the key to their success —
consists precisely in the process of collecting this information and constructing truth tables
in an iterative process, a process sometimes described as the “back and forth between
ideas and evidence” (Ragin 1987). The analysis of the truth table only represents a short
“analytic moment” (Ragin 2000) in the process of performing set-theoretic analysis.

In Chapter 3, we engaged in the analysis of necessity and sufficiency without making
use of truth tables. One might therefore wonder why we would need truth tables if neces-
sity and sufficiency can also be analyzed simply by screening a standard data matrix,
As this chapter will show, truth tables are a much more adequate device for detecting
set relations, mainly because they shift the focus from empirical cases to configurations
of conditions. This leads to a radically different — and more efficient — approach to the
analysis of sufficiency. The analysis of sufficiency based on a data matrix proceeds in a

There are only a few analytically relevant differences in the analysis of a truth table that follow from
the difference between crisp and fuzzy sets, such as, for instance, the possibility in fuzzy sets that a
given truth table row is a subset of outcome Y but also of its complement ~Y. We will discuss this in
section 9.2.2.




4.1 What is a truth table?
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bottom-up manner by first focusing on simple sets and then proceeding to more complex
sets. In contrast, the analysis of sufficiency based on a truth table proceeds top-down, by |
first screening all logically possible combinations of conditions and then logically minimiz-
ing those conjunctions that have passed the test of sufficiency. Notice, however, that while
for sufficiency the truth table approach is (and should be) the dominant strategy, for the
analysis of necessity, the bottom-up approach is instead clearly preferable and the top-
down approach is meaningless. The reason is simple: a logical AND conjunction of two or “
more conditions can only be necessary for Y if, and only if, all single conditions involved in
the conjunction are necessary on their own.
The organization of this chapter is straightforward: after clarifying what a truth table
is (4.1), we show how truth tables are constructed based on empirical information about
cases (4.2). In section 4.3 we explain, step by step, how truth tables are analyzed with the
help of Boolean algebra. Clearly, this chapter is central to the whole book, simply because
truth tables are the sine qua non technique for QCA. The chapter should be read in detail
and with care. This chapter also provides important information which will supply the main
ingredients for the Truth Table Algorithm, the currently accepted minimum standard for a
QCA, as it will be introduced in Chapter 7.

The concept of a truth table originates in formal logic. At first glance it might
look a lot like a standard data matrix. Just like conventional data matrices,
each truth table column denotes a different variable or, better, set. The diffe-
rence consists in the meaning of rows. In a standard data matrix, each row
denotes a different case (or unit of observation). In a truth table, each row
instead represents one of the logically possible AND combinations between
the conditions. Since each single condition can occur either in its presence or
its absence, the total number of truth table rows is calculated by the expres-
sion 2%, The letter k represents the number of conditions used and the number
2 the two different states (presence or absence) in which these conditions can
occur. Each row denotes a qualitatively different combination of conditions,
i.e, the difference between cases in different rows is a difference in kind rather
than a difference in degree,

The formula 2* yields the number of logically possible combinations or
truth table rows o, slightly misleadingly, logically possible cases. The num-
ber of truth table rows increases exponentially with the number of condi-
tions. With three conditions, we end up with eight configurations. With 4
conditions, we already have 16 configurations, with 5 we have 32, and with

Truth tables

10 we have no fewer than 1,024 logically possible cases. In social reality and
therefore also in social science research practice, not all of these potential
cases materialize empirically. The whole of Chapter 6 is dedicated to the
phenomenon of limited diversity and provides strategies on how to handle
logical remainders (Ragin 1987: 104ff.). For the time being, and in order to
properly introduce the meaning and analysis of truth tables, in the current
chapter we only deal with truth table rows that do not show any such logical
remainders.

Venn diagrams are another way to intuitively visualize that k number of
conditions produce 2* logically possible combinations. Figure 4.1 displays
three conditions (A, B, C). They all overlap in various ways, creating eight
different areas. Each area in the Venn diagram corresponds to one row in a
truth table, and each area can be described in the form of a Boolean expres-
sion. For example, the area in the middle of the diagram where A, B, and C
overlap is the one that contains all the cases where A, B, and C are present.
This can be written as A*B*C, or simply ABC (Chapter 2). The upper area of
set A is where condition A can be observed (A = 1) and B and C cannot (B =
0, C = 0). This area thus denotes the set A*~B*~C or simply A~B~C. The area
outside all three of the circles, but within the rectangle, denotes cases where
none of the three conditions is present and can be written as ~A*~B*~C or
~A~B~C, and so on.

While Venn diagrams are generally a very useful tool for the graphical
representation of set-theoretic statements, two caveats need to be made. First,
as the number of conditions grows beyond four or five, it becomes difficult
to draw and interpret Venn diagrams. Second, note that Venn diagrams such
as the one displayed in Figure 4.1 display only sets and their intersections.
In Chapter 3, however, we used Venn diagrams to visualize subset relations
of sufficiency and necessity between conditions and an outcome. Of course,
Venn diagrams can do both simultaneously, i.e., show the subset relation of an
intersection of conditions and an outcome.

4.2 How to get from a data matrix to a truth table

421 Crisp sets

In order to show how to construct a truth table based on information on cases
stored in a data matrix, let us go back to our data matrix from section 3.1.1.2.
How do we get from here to a truth table? While most of the relevant software
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Table 4.1 Data matrix with ten cases, three conditions, and outcome

Conditions Outcome
Row Cases A B C Y
1 ARG 1 1 1 0
2 PER 1 0 0 0
3 BOL 1 1 0 0
4 CHI 0 1 0 1
5 ECU 1 0 0 0
6 BRZ 0 1 1 1
7 URU 1 0 1 1
8 PAR 0 0 1 1
9 COL 0 0 0 1
10 VEN 1 1 1 0

Y = set of countries with stable democracies
A = set of countries with violent upheavals in the past
B = set of countries with ethnically homogeneous population

packages are able to produce a truth table based on a data matrix representing
set-membership scores, it is worth spelling out the three simple steps that are
needed.

First, we write down all 2% logically possible combinations of the k condi-
tions, leaving the column for the outcome value empty. Second, we assign
each case from our data matrix to the truth table row that corresponds with
its values in the k conditions. Each case can belong to only one truth table
row, but individual truth table rows might contain more than one case. In our
example, we observe that Argentina and Venezuela display identical values on
all three conditions — they had a violent upheaval, have an ethnically homo-
geneous population and a pluralistic party system. They therefore belong to
the same truth table row labeled A*B*C. The same holds true for Peru and
Ecuador, which are both assigned to the truth table row A*~B*~C (violent
upheaval, no ethnically homogeneous population, no pluralistic party sys-
tem). In this way, we assign each case to one of the eight logically possible
truth table rows,

Third, an outcome value has to be attributed to every truth table row. It
is determined by the outcome values of the empirical cases that fall into the
respective row. For instance, Colombia falls into row ~A*~B*~C and shows
outcome Y. No other case falls into this row. Hence, the outcome value of row
~A*~B*~CisY = 1. Likewise, neither Argentina nor Venezuela shows a stable

C = set of countries with pluralistic party system

democracy, and the outcome value of truth table row A*B*Cis Y = 0.> Based
on this procedure, the data matrix in Table 3.2 yields the truth table displayed
in Table 4.2.

The truth table consists of 2> = 8 rows. Strictly speaking, the columns “Row;’
“~Y; and “Cases” do not belong to the truth table but are included for illus-
trative purposes. It is important to understand the information contained in
the “Outcome” column. From a case perspective, the value of 1 indicates that
cases with the given characteristics also show the outcome of interest. For
instance, from row 1 in Table 4.2 we learn that cases that did not have a vio-
lent upheaval and have no ethnically homogeneous population and have no
pluralistic party system are stable democracies. If we shift perspective from
cases to configurations, we can say that conjunction ~A~B~C (row 1) is suf-
ficient for Y. A truth table row with outcome Y = 1 is explicitly linked (Ragin
and Rihoux 2004) to this outcome. In essence, each truth table row is a state-
ment of sufficiency (Ragin 2008a).

2 Of course, when applied to real data, it is common that cases attributed to the same truth table row
display different membership scores in the outcome, Such rows are called contradictory rows (Ragin
2000). Chapter 5 is dedicated to discussing this crucially important issue., For the time being, in order
to present the logic of truth tables and their analysis, we present examples of truth tables that are
contradiction-free.
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Table 4.2 Hypothetical truth table with three conditions

Conditions Outcome
Row A B C Y ~Y Cases
1 0 0 0 1 0 COL
2 0 0 1 1 0 PAR
3 0 1 0 1 0 CHI
4 0 1 1 1 0 BRZ
5 1 0 0 0 1 PER, EC
6 1 0 1 1 0 URU
7 1 1 0 0 1 BOL
8 1 1 1 0 1 AR, VEN
See Table 3.2

~Y = set of countries with non-stable democracies

The three steps for converting a data matrix into a truth table also apply when
the underlying data are not crisp but fuzzy sets. We first create the truth
table, then assign each case to one of these rows, and then determine the out-
come value for each row. Since fuzzy sets allow for any set-membership score
between 0 and 1, whereas truth tables consists of only 0s and 1s, this might
seem puzzling.

The creation of the truth table is the least problematic step. Just as with
crisp sets, the number of truth table rows based on fuzzy sets is given by the
formula 2. This is because, just like crisp sets, fuzzy sets establish a qualitative
difference between cases above the 0.5 qualitative anchor (more in than out
of the set) vis-a-vis cases below that anchor (more out than in). This is why k
fuzzy-set conditions yield 2* truth table rows.?

The attribution of cases to specific truth table rows, a rather straightfor-
ward exercise based on crisp sets, requires more explanation when dealing
with fuzzy sets. With crisp sets, in order to identify the truth table row to
which a case belongs, we simply need to find the exact match between the
case’s crisp-set membership scores and the truth table rows. With fuzzy sets,
however, cases with fuzzy-set membership scores in the k conditions do not

* The situation is different in multi-value QCA (mvQCA). In section 10.2, we discuss the conse-
quences of the fact that with k-number of multi-value “sets]” the number of truth table rows is
(much) higher than 2%,

Truth tables

Table 4.3 Hypothetical data matrix with fuzzy-set membership scores

Row Cases A B C
1 ARG 0.8 0.9 1
2 PER 0.7 0 0
3 BOL 0.6 1 0.1
4 CHI 0.3 0.9 0.2
5 ECU 0.9 0.1 0.3
6 BRZ .02 0.8 0.9
7 URU 0.9 0.2 0.8
8 PAR 0.2 0.3 0.7
9 COL 0.2 0.4 0.4
10 VEN 0.9 0.7 0.6

A = set of countries with violent upheavals in the past
B = set of countries with ethnically homogeneous population
C = set of countries with pluralistic party system

exactly match any of the truth table rows. For instance, to which truth table
row does Chile in row 4 of Table 4.3 belong, with its set membership scores of
A=03,B=0.9,and C=0.2?

In order to shed light on this, Ragin (2008a: ch. 7) refers to the concept
of a property space, going back to Paul Lazarsfeld’s (1937) initial ideas. Each
set constitutes one dimension of the property space (Barton 1955). The three
fuzzy-set conditions in our example thus yield a three-dimensional space as
displayed in Figure 4.2. There are several important features of this property
space.

First, regardless of a case’s membership in conditions A, B, and C, it falls,
by definition, inside the property space. This is because both set membership
and the dimensions of the property space have their minimum at 0 and their
maximum at 1. Second, based on the set membership in A, B, and C, each
case has one precise location inside the cube. Third, each corner of the prop-
erty space directly corresponds to a specific combination of values in A, B,
and C. More precisely, each corner represents one specific combination of the
two extreme values that are possible in fuzzy sets — full membership (1) and
full non-membership (0). For example, the corner in the bottom left front of
Figure 4.2 denotes the situation in which all three fuzzy sets take on the value
of 0. This corner can therefore be labeled the “0,0,0” or the ~A~B~C corner.
Following this logic, we can describe the lower right corner in the front as
“1,0,0, the top right rear corner as “1,1,1,” and so on. Fourth, because each
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corner denotes a specific combination of extreme membership scores in the
conditions, we can perceive of these corners as ideal-typical situations (Weber
1906). Cases that fall exactly in one of the corners are empirical instances of the
ideal type denoted by that corner. Unless a case has full (non-)membership in
all conditions that constitute the property space, in other words, unless a case
exclusively displays crisp-set membership scores, it will not be located directly
in one of the corners. Thus, most of the time in fuzzy-set analyses, many, if not
all, cases get close to these ideal types only to some (varying) degree. Below, we
will explain how the distance to the ideal types can be calculated.

Fifth, a property space with three dimensions has eight corners. This num-
ber should ring a bell. A truth table based on three conditions has eight rows.
This is no coincidence, but directly follows from the fact that the corners of
a property space, spanned by fuzzy sets, are equivalent to the rows of a truth
table.* This equivalence exists because the corners of a property space defined
by fuzzy sets denote the situation where the values of these fuzzy conditions
take on the extreme values 0 or 1. In other words, the corners are where the
fuzzy sets show crisp-set membership scores.

* The metaphor of the cube only works for three conditions. Other geometrical objects would be needed
for the representation of other numbers of conditions. However, the basic principle remains the same.

Truth tables

We can summarize the insights gained so far in the following manner. With
k number of conditions, we create a property space with 2% corners and these
corners correspond to one of the 2 (a) ideal types; (b) truth table rows; (c)
logical AND conjunctions between the k conditions.

As mentioned, with fuzzy sets cases usually have membership values
between 0 and 1. Consequently, they can be located anywhere in the property
space, as Figure 4.2 indicates. Some might be closer to one of the corners than
to the others. We therefore have to find a way to establish two things: first, to
which corner a given case most belongs, and second, how far this case is a
member of this ideal type (aka truth table row).

In order to explain the principle by which the membership of cases in each
corner is calculated, let us focus on two cases from Table 4.3, Venezuela and
Ecuador, reproduced in Table 4.4.%

Looking at Venezuela, we see that its membership in all three conditions is
above the qualitative anchor 0.5. If asked which of the 2% ideal types this coun-
try resembles most, it is plausible to say that this country is more of an ethnic-
ally relatively homogenous state with a pluralistic party system that experienced
a violent upheaval than any other logically possible type. In other words,
intuitively, we would locate Venezuela closest to the ABC row of a truth table
or the “1,1,1” corner of a property space, an intuition visually supported by
Venezuela’s location in Figure 4.2. The same logic of locating a case applies to
Ecuador. It is more in than out of set A and more out than in sets B and C,
respectively. This makes Ecuador closer to the “1,0,0” corner than any other
and an instance of an ethnically heterogeneous population without a pluralistic
party system and without a violent upheaval (row A~B~C).

Beyond this intuitive attribution of cases to property space corners, aka
ideal types, is there a standardized way to precisely define the membership of
cases in truth table rows? Yes, there is. Remember that each of the 2% corners
corresponds to one of the 2* logically possible AND combination of condi-
tions. Remember also (see section 2.1) that the membership of cases in an
intersection is determined by their minimum set membership across the sin-

gle conditions. It is therefore easy to calculate a case’s membership in all logic-
ally possible combinations of conditions, aka corners of the property space.
Table 4.5 contains this information for our two cases displayed in Table 4.4.

Venezuela has a fuzzy-set membership of 0.6 in ideal type ABC. This is
the minimum across conditions A (0.9), B (0.7), and C (0.6). Ecuador has

5 We do not report each case’s membership in outcome Y, because it is irrelevant for identifying the truth
table row a case belongs to. When performing the three steps of converting a data matrix into a truth
table, the outcome is added only in the third step.
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Table 4.4 Fuzzy-set data matrix with two cases

k able 4.5 Fuzzy-set membership in ideal types for hypothetical data matrix

Conditions ‘/ Property space corners/Ideal types/Truth table rows
Case A B C Conditions (logically possible combinations of conditions)
VEN 09 07 0.6 A B C ABC AB~C A~BC A~B~C ~ABC ~AB~C ~A~BC ~A~B~C
ECU 0.9 0.1 0.3 0.9 0.7 0.6 0.6 0.4 0.3 0.3 0.1 0.1 0.1 0.1
See Table 4.3 0.9 0.1 0.3 0.1 0.1 0.3 0.7 0.1 0.1 0.1 0.1

Tahle 4.6 Fuzzy-set ideal types for hypothetical data matrix

a membership value of 0.7 in the ideal type A~B~C, which is the minimum
across A (0.9), ~B (0.9), and ~C (0.7). Both cases are not full instances of their B Property space cornets/Ideal types/Truth table rows
respective ideal types, as indicated by their membership score of less than 1. Conditions (logically possible combinations of conditions)

As Table 4.5 also shows, each case has a partial membership not only in A B C  ABC AB~C A~BC A~B~C ~ABC ~AB~C ~A~BC ~A~B~C
its own ideal type, but also in all of the other corners of the property space. 09 07 06 06 04 03 03 01 o0l 0.1 01
These membership scores are, however, quite low, a direct consequence of the 09 01 03 01 01 0.3 0.7 0.1 0.1 0.1 0.1

0.8 0.1 0.5 0.1 0.1 0.5 0.5 0.1 0.1 0.2 0.2

minimum scoring rule that governs the calculation of set membership scores

for conjunctions (section 2.1). The crucial point is that, while each case has a
partial membership in all rows, there is only one row in which its member-
ship exceeds the qualitative anchor of 0.5. This is a golden rule for fuzzy set
no matter how many fuzzy sets are combined, any given case has a mem-
bership of higher than 0.5 in one and only one of the 2* logically possible
combinations.

This important mathematical property of fuzzy sets is crucial for our task
at hand - identifying the truth table row to which a case best belongs, which
turns out to be that truth table row in which its partial set membership is
higher than 0.5.

There is one exception to the rule that each case is more in than out of one
and only one logically possible combination. Whenever a case holds a mem-
bership of exactly 0.5 in one or more of the constitutive conditions, then its
membership will not exceed 0.5 in any of the truth table rows. To demon-
strate this, we add a third hypothetical case to our data matrix, which has a
set membership of 0.5 in condition C. Since both C and ~C take on the value
of 0.5, no single ideal type out of the eight possibilities can arrive at a value
of greater than 0.5. No minimum from the three single conditions and their
complements can be greater than 0.5. Furthermore, there are two ideal types
for which the minimum is exactly 0.5. The 0.5 anchor is sometimes referred to
as the point of maximum ambiguity (Ragin 2000). It expresses the fact that a
case’s empirical attributes are such that it cannot be decided whether the case

is more a member of the set being studied or more a member of the comple-
ment of that set. It is because of this ambiguous status that such a case cannot
be attributed to any of the 2* logically possible ideal types that involve this set
or its complement.

One practical lesson from this is to be careful about assigning the fuzzy-set
membership score of 0.5 to cases. Doing so not only prevents the attribution
of such a case to any of the truth table rows, but also represents the weakest
possible conceptual statement about that case.

Getting back to our task of representing fuzzy-set data in a truth table, we
now know that such a truth table has 2* rows and that each case is more in
than out of one, and only one, of these rows while holding partial member-
ship scores in most, if not all, other rows as well. What remains to be resolved
is to determine the outcome value with which each of the 2* rows is con-
nected. In order to answer this question, remember that each truth table row
is a statement of sufficiency. This means that each truth table row should be
considered a sufficient conjunction for the outcome if each case’s membership
in this row is smaller than or equal to its membership in the outcome (see
section 3.1.2.1).
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Conditions Truth table rows Outcom
T

Cases A B C ABC AB~C A~BC A~B~C ~ABC ~AB~C ~A~BC ~A~B~C Y
ARG 08 09 1 08 0 01 0 0.2 0 0.1 0 0.1
PER 07 0 0 0 0 0 0.7 0 0 0 0.3 0.4
BOL 06 1 01 01 0.6 0 0 0.1 0.4 0 0 0.3
CHI 03 09 02 02 03 0.1 0.1 0.2 0.7 0.1 0.1 0.6
ECU 09 01 03 0.1 0.1 0.3 0.7 0.1 0.1 0.1 0.1 0.4
BRZ 02 08 09 02 o1 0.2 0.1 0.8 0.1 0.2 0.1 0.7
URU 09 02 08 02 02 0.8 0.2 0.1 0.1 0.1 0.1 0.8
PAR 02 03 07 02 02 0.2 0.2 0.3 0.3 0.7 0.3 0.9
COL 02 04 04 02 02 0.2 0.2 0.4 0.4 0.4 0.6 1
VEN 09 07 06 06 04 0.3 0.3 0.1 0.1 0.1 0.1 0.3
Membership inrows< 0 0 1 0 0 0 1 1
Membership in Y

Table 4.7 displays the fuzzy-set membership scores of our ten hypothet- k
ical cases in the three conditions, the eight truth table rows, and the outcome k
stable democracy (Y). For each truth table row, we asses whether each case’s
membership in it is smaller than or equal to its membership in Y. If so, the
respective row is a subset of the outcome, thus fulfills the criterion of a suffi-
cient condition and therefore receives a score of 1. If, however, one or more
case’s membership in the row exceeds that in the outcome, then the respect-
ive row is not a perfect subset of Y and receives a score of 0. As the last row
of Table 4.7 shows, three conjunctions - A~BC, ~A~BC, and ~A~B~C - are
perfect subsets of Y. For all other truth table rows, one or more cases deviate
from the subset pattern of sufficiency and these rows are therefore not con-
sidered as sufficient for Y.

We now have all the relevant information at hand to represent a fuzzy-set
data matrix in a standard crisp truth table format. For each row, we know
which cases belong to it and whether it is a subset of the outcome. The truth
table that results from our hypothetical fuzzy-set data is shown in Table 4.8.

Before we continue and explain how a truth table is analyzed using the
tools of formal logic, several important points should be underlined. First,
regardless of whether crisp or fuzzy sets are used, a truth table is at the core

¢ As mentioned, in Chapter 5 we will deal with the question of how much deviation one can or should
allow for before dismissing a subset relation.

of QCA. Second, when representing fuzzy sets in a crisp truth table, the more
fine-grained information contained in fuzzy sets is crucial and remains avail-
able at all times. In other words, the procedure that leads to a truth table like
that in Table 4.8 does not involve any conversion of fuzzy sets into crisp sets.
The information conveyed by fuzzy-set membership scores is used both when
assigning cases to rows and when assessing whether a row is a subset of the
outcome. Third, when producing a truth table based on fuzzy sets, the value
(1 or 0) in the outcome column does not mean that all cases in that row have a
membership of 1 or 0, respectively, in the outcome. Instead, the outcome col-
umn values express that the row can be considered a sufficient condition for
the outcome. This is why in Table 4.8 we label the outcome column “Sufficient
for Y Fourth, when assessing the subset relation between a row and the out-
come set, all cases are taken into account, not just those that are good instances
of the particular row (i.e., those with a membership score above 0.5). The 0.5
qualitative anchor is thus crucial for attributing a case to a row but inconse-
quential when assessing the subset relation between two fuzzy sets.’”

At-a-glance: what is a truth table? How to get from a data matrix to
a truth table

Truth tables are an important tool in QCA. Although they look similar to crisp-set data
matrices, they express a different type of information. While the single rows in data matri-
ces correspond to actual cases (or units of observation), in truth tables, single rows denote
logically possible configurations of conditions.

Three steps are needed in order to construct a truth table: First, all 2¢ logically possible
AND combinations of conditions are written down, with k being the number of conditions.
Second, each case is assigned to the truth table row in which it has the highest member-
ship. This is straightforward in crisp-set QCA because each case is a full member of one
row and a full non-member of all the other rows. In fuzzy-set QCA, cases usually have
partial membership in all rows but they can have a membership of higher than 0.5 in only
one row. Cases are therefore attributed to this one row to which they fit best. (Exception:
if one or more conditions are given a fuzzy value of 0.5, then the case will not have a
membership value of greater than 0.5 in any ideal type.) Third, for each row the outcome
value has to be defined. It is 1 for all rows that are a subset of, and thus sufficient for, the
outcome and 0 otherwise.

These three steps yield a truth table that can be subjected to analysis, regardless of
whether the underlying data consist of crisp or fuzzy sets.

~

In section 5.2, we qualify this statement and argue that researchers should pay attention to whether the
cases that contradict the statement of sufficiency (or necessity) are located on different sides of the 0.5
qualitative anchor in the condition and the outcome, respectively. We will label these cases “logically
contradictory cases”
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Table 4.8 Truth table derived from hypothetical fuzzy-set data \
Conditions Sufficient for Cases with

Row A B C Y membership < 0.5 in row*

1 0 0 0 1 COL (0.6)

2 0 0 1 1 PAR (0.7)

3 0 1 0 0 CHI (0.7)

4 0 1 1 0 BRZ (0.8)

5 1 0 0 0 PER (0.7), ECU (0.7)

6 1 0 1 1 URU (0.8)

7 1 1 0 0 BOL (0.6)

8 1 1 1 0 AR (0.8), VEN (0.6)

* Numbers in parentheses = fuzzy-set membership of case in row

Truth tables can be created from both crisp-set data and from fuzzy-set data,
The outcome column indicates whether the specific truth table row, or conjunc
tion of conditions, is sufficient for the outcome of interest. If so, this is indicated
by the value of 1 in the outcome column.® Hence, if we started our research
asking which conditions are sufficient for our outcome of interest, the truth
table provides a first answer: all rows that are linked to the outcome value of
1 are the sufficient conditions. This answer, however, is often not very inform-
ative and difficult to handle, simply because there might be many such rows
in a truth table. Almost always, we would like to obtain a more succinct and
parsimonious answer. For this, in QCA we apply the rules of Boolean algebra.
The so-called Quine-McCluskey algorithm is used for logically minimizing the
various sufficiency statements contained in a truth table (Klir et al. 1997: 61). It
is important to point out that this form of truth table analysis is applicable only
to the analysis of sufficiency. For the analysis of necessity, the bottom-up pro-
cedure presented in sections 3.2.1.2 and 3.2.2.2 has to be used. In fact, in sec-
tion 9.1 we show that any inference about the presence or absence of necessary

% Only in csQCA and only if there are no contradictory truth table rows (see Chapter 5), does the value
of 1 in the outcome column indicate that all cases in that row are, in fact, members of the outcome.
In all other scenarios - i.e., in SQCA and/or when there are contradictory rows — a value of 1 in the
outcome column of a truth table does not necessarily mean that all cases in that row are members of
the outcome of interest.

Truth tables

conditions based on the top-down logical minimization of truth tables is prone
to produce flawed results. A truth table, thus, does not play an important role in
the analysis of necessity. In the following, we present the steps involved in the
Quine-McCluskey algorithm (see also Ragin 1987: ch. 6).

.31 Matching similar conjunctions

We return to the truth table already used in the section on crisp sets (4.2.1).
Note that such a truth table could also be the result of converting a fuzzy-set
data matrix into a truth table. Therefore, although we are now working with
the example derived from the demonstration for crisp sets, truth table ana-
lysis is identical regardless of whether the underlying data consists of crisp or
fuzzy sets.

The first step is to create a Boolean expression of all those truth table rows
that are connected to the outcome to be explained. In our case, these are the
rows with Y = 1 (rows 1, 2, 3, 4, and 6). Row 1 can be written as ~A~B~C,
row 2 as ~A~BC, and so on. Conjunctions representing a truth table row are
also called primitive expressions. The information contained in Table 4.9 can
be expressed as follows:

row 1l +row2 +row3 +row4d+row6
~A~B~C + ~A~BC + ~AB~C + ~ABC + A~BC — Y.

Each of these five primitive expressions has been defined as a sufficient con-
dition for Y in the process of creating the truth table. This formula is the
most complex way in which we can express the information about sufficiency
contained in the truth table. The task now consists in reformulating the same
logical truth in a less complex manner.

This process is called logical minimization. It is guided by the following
first principle of logical minimization: if two truth table rows, which are both
linked to the outcome, differ in only one condition — with that condition
being present in one row and absent in the other - then this condition can be
considered logically redundant and irrelevant for producing the outcome in
the presence of the remaining conditions involved in these rows. The logically
redundant condition can be omitted, and the two rows can be merged into a
simpler sufficient conjunction of conditions.

Let us apply this principle to our example. Row 1 (~A~B~C) and row 2
(~A~BC) are identical except for the value condition C takes on: it is absent in
row 1 and present in row 2. Thus, this information can be summarized in the
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Table 4.9 Example of hypothetical truth table

Conditions Outcome

Row A
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See Table 4.2

logically identical expression ~A~B. In other words, we can write the infor-
mation about sufficiency in Table 4.9 like this:

rows land 2 +row3 +row4d +rowé6
~A~B +~AB~C +~ABC + A~BC —Y.

With reference to our example, this means that the absence of a violent
upheaval in the past combined with an ethnically non-homogenous soci-
ety (~A~B) is a sufficient condition for a stable democracy (Y), regardless of
whether a pluralistic party system is in place (C) or not (~C).

Let us apply the same logical minimization principle to the primitive
expressions ~AB~C (row 3) and ~ABC (row 4). They differ only with regard
to the value of condition C, which therefore can be dropped with the two rows
rewritten as ~AB. Together with the previous minimization of rows 1 and 2,
we can now write:

rowsland2 +rows3and4 +rowé
~A~B + ~AB +A~BC —Y.

The same principle of logical minimization, matching a pair of primitive
expressions that differ in the value of only one condition, can be equally applied
to any two conjunctions that lead to the same outcome. In our example, con-
junctions ~A~B and ~AB differ only in the value of condition B, which can
be dropped, and the two expressions can be simplified to ~A. This means that
condition ~A is sufficient for Y regardless of the values conditions B or C take.
Our simplified solution formula now looks like this:

Truth tables

rows1to4 +rowb
~A +A~BC —Y.
This formula is logically equivalent to the most complex formula and to all
intermediate formulas.

Since it is based on the same data as our example in section 3.1.1.2, we
note a difference in the solution term. In section 3.1.1.2, the very same data
resulted in the solution:

~A+~BC—Y.

The difference consists of the role attributed to condition A when it is com-
bined with ~BC. The question is whether the inclusion of condition A is
required when our aim is to find the most parsimonious solution term for
the information contained in Table 4.9. The answer is that it is not required.
Why? Conjunction ~BC includes both primitive expressions A~BC (row 6)
and ~A~BC (row 2), i.e., by saying that ~BC is sufficient for Y, we also say that
both A~BC and ~A~BC are sufficient for Y. Since these two primitive expres-
sions differ only in the value of A, condition A can be dropped. Notice that the
process of logical minimization allows for using the same primitive expression
for more than one logical minimization. In our example, the primitive expres-
sion ~A~BC in row 2 can be matched with both the primitive expression in
row 1 (~A~B~C, leading to ~A~B) and the one in row 6 (A~BC, leading to
~BC). This simply means that this primitive expression of row 2 is covered by
more than one prime implicant, an issue that we address in more detail in sec-
tion 4.3.2. For the moment, we can confirm the solution term:

~A+~BC—Y

We reiterate that this formula is one of several ways of summarizing the infor-
mation on sufficiency contained in Table 4.9. All of the different solution for-
mulas that we have reported here, as well as the intermediate steps of the
minimization process, (a) are logically equivalent; (b) express the same infor-
mation contained in the truth table; (c) do not contradict each other, nor
do they contradict the information contained in the truth table; and (d) are
acceptable summaries of the empirical information at hand.

The principle that more than one solution term is an acceptable and logic-
ally correct representation of the data in the truth table is a general feature
of QCA. The decision on which solution formula to choose as the basis for
the substantive interpretation of the available information depends on many
research-specific issues that have nothing to do with formal logic. There are
several potential reasons that we might prefer the formula
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~A+A~BC—-Y

over

~A+~BC—Y

Imagine, for instance, that the literature on the emergence of stable democra-
cies (Y) makes a strong point that a democracy cannot stabilize in the pres-
ence of violent upheavals (A). However, as solution term A~BC (i.e., row 6 in
Table 4.9) demonstrates, there is empirical evidence that warrants a qualifica-
tion of this claim: if combined with ~BC, A can indeed be a causally relevant
INUS condition for Y. Following our hypothetical example, and contrary to
the hypothetical claim in the literature, stable democracies occur in the pres-
ence of violent upheavals — but only when these countries additionally have
an ethnically non-homogeneous population (~B) and a pluralistic party sys-
tem (C).° While it is true that the formula

~A+~BC—-Y
also contains this information, the role of condition A remains less visible,
The formula that includes the term A~BC is simply more helpful in connect-
ing the empirical findings with pre-existing theoretical knowledge and expec-
tations on this particular topic.

A related argument to this is that more complex solution formulas help to
direct attention to hitherto unexplained cases. Imagine that the literature on
the stability of democracy has thus far failed to find an explanation for why a
certain country, which we will call X, is a stable democracy. Further assume
that country X can best be described by conjunction A~BC. By preferring
the solution term that explicitly includes this conjunction as a sufficient path
towards Y, we are able to demonstrate why country X displays a stable dem-
ocracy in a more straightforward manner than with the more parsimonious
solution term.

The Quine-McCluskey algorithm consists of more than the elimination of
single conditions from a pairwise matching of similar conjunctions. There
are situations in which this procedure yields a solution formula that can be

® Cautjon: this should be read to mean that an upheaval can be violent in such circumstances but does
not necessarily have to be. Remember that the component ~A~BC is also implicitly contained in the
solution. In the scenario of a heterogeneous society with a pluralistic party system, this allows for the
absence of a violent upheaval.

further minimized, but not by using the rule we have used so far. Another
minimization principle is therefore needed (Ragin 1987: 95-98).

Logical equivalence can often be detected quite easily, such as in one
example presented in section 4.3.1, where we show that ~A + ~BC—> Y £ ~A
+ A~BC — Y. However, logical equivalence is not always so easy to detect. For
this reason, we introduce a more general procedure for arriving at solution
formulas that cannot be further minimized.

In order to understand this further step in the minimization proced-
ure, we introduce the notion of prime implicants. Prime implicants can be
defined as the end products of the logical minimization process through
pairwise comparisons of conjunctions introduced in section 4.3.1. In other
words, the solution term that we achieve through the pairwise comparison
of conjunctions consists of prime implicants that are combined through
logical OR. Under certain circumstances, .though, it happens that one
or more of those prime implicants are logically redundant. They can be
dropped from the solution term in order to obtain the most parsimonious
formula.

How can we identify logically redundant prime implicants? In order to

_ answer this, we introduce some new hypothetical data. Suppose that the out-

come to be explained is the presence of a consolidated democracy (C). As
potential conditions, we choose whether a country is rich (R), is ethnically
homogeneous (E), and has a parliamentary government (P). Suppose the
empirical information contained in a truth table can be written using the fol-
lowing primitive expressions, aka truth table rows:

REP + RE~P 4+ ~REP + ~R~EP — C,

Figure 4.3 shows the prime implicants obtained by applying the minimization
strategy just introduced.

The complexity of the logical statement has been reduced from four paths
(each composed of three individual conditions) to three paths (each com-
posed of two individual conditions). These three new paths (RE, EP, and ~RP)
are the prime implicants. They logically contain all the primitive expressions
and cannot be further minimized with the minimization procedure we have
described up to now.

It is nevertheless possible that this solution term contains logically redun-
dant prime implicants. Therefore, we introduce a second rule for the mini-
mization of solution formula: a prime implicant is logically redundant if
all of the primitive expressions are covered without it being included in the
solution formula. Hence, a solution formula without such a prime implicant
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Logical minimization of primitive expressions to prime implicants

Prime implicants:

does not violate the truth value of the information contained in the truth
table. Remember, the guiding principle of logical minimization is to expres
the same logical statement in a more parsimonious manner. The overarchin
requirement is that the truth value contained in the original truth table i
not violated. The same logical statement can be expressed without the prim
implicant in question and still adhere to this requirement.
We present the identification of logically redundant prime implicants in
two different ways. First, we use the tool of a prime implicant chart, and
then we use a Venn diagram. A prime implicant chart displays the primitive
expressions in the columns and the prime implicants in the rows. Table 4.10
displays the prime implicant chart for our example on consolidated democ-
racies (C). Crosses in the cells indicate which primitive expression is covered
by which prime implicant(s). Each prime implicant covers at least one, but
usually more, primitive expressions. In order to preserve the truth value con- -
tained in the truth table, each primitive expression must be covered by at least
one prime implicant. Sometimes, there are primitive expressions that are cov-
ered by more than one prime implicant. It is here where the key to logically
redundant prime implicant lies: a prime implicant is logically redundant if,
and only if, all primitive expressions are covered even without it. ;
Take the situation displayed in Table 4.10. This table can be read as follows:
the prime implicant RE covers the primitive expressions REP and RE~P, since
RE is the result of the logical minimization of REP and RE~P by dropping
condition P. This is indicated by the two crosses in the row for RE. The other
two prime implicants, EP and ~RP, also both cover two prime implicants
each, as can be seen by the two Xs in their rows.
For the truth value to be preserved, there must be at least one X per column
in a prime implicant chart like that in Table 4.10. RE cannot be dropped, for it
would leave primitive expression RE~P uncovered. It is therefore not logically
redundant. ~RP cannot be dropped and is thus not logically redundant either,
for it would leave primitive expression ~R~EP uncovered. Prime implicant
EP, however, is logically redundant. It can be removed from the table without

Truth tables

Table 4.10 Prime implicant chart

Primitive expressions/Truth table rows

Prime implicants ~ REP RE~P ~REP ~R~EP
RE X X

~RP X X

EP X . X

any of the four primitive expressions remaining uncovered. REP is already
covered by the prime implicant RE and ~REP by ~RP. Therefore, we can min-

imize our solution to:

RE+~RP— C.

The notion oflogically redundant prime implicants can also be explained by
invoking the notion of intersecting sets displayed in a Venn diagram. Figure
4.4 displays the Venn diagram of our hypothetical example. In addition to
the eight (2%) different areas, which correspond to the logically possible com-
binations (aka truth table rows) between R, E, and P, the Venn diagram also
indicates the location of the prime implicants (RE, RP, ~RP).

What Figure 4.4 demonstrates is this: the two prime implicants RE and ~RP
jointly cover the entire area that is also covered by the third prime implicant
EP (highlighted by the dark-gray area). Put differently, EP is logically implied,
or is a subset of, the expression RE + ~RP. For this reason, EP is logically
redundant and can be removed from the solution term. We say that it can
be removed, because logically redundant prime implicants might well be of
substantive interest. If so, they can and should be left in the solution formula.
In these circumstances, such a formula is simply not the most parsimonious
expression of the empirical information at hand.

Note that in the above example, there is only one logically redundant prime
implicant (EP). This leaves no discretion to the researcher as to which prime
implicant needs to be dropped in order to produce the most parsimoni-
ous solution. Very often in applied QCA, though, there are several logically
redundant prime implicants and some of them are tied. Two logically redun-
dant prime implicants are tied if either one or the other, but not both, can be
dropped without violating the truth value of the solution term. This implies
that in the presence of tied logically redundant prime implicants, there can be
more than one most parsimonious solution term.
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Figure 44  Venn diagram with logically redundant prime implicant

4.3.3 Issues related to the analysis of the non-occurrence of the outcome

Set relations are asymmetric (see section 3.3.3). One implication of th
asymmetry is that the occurrence and the non-occurrence of an outcome
interest require separate analyses. All the analytic steps described so far th
lead from a data matrix to a truth table and the logical minimization of th
latter equally apply when the non-occurrence of the outcome is analyze
Thus, continuing from our example displayed in Table 4.2 above, we no
select ~Y (the set of countries with non-stable democracies) as the outcome
of interest. ‘

Starting with the analysis of necessity, we see that whenever ~Y is present,
A is also present (see also section 3.2.1.2):

A — ~Y,
Having experienced a violent upheaval in the past turns out to be a necessary
condition for having an unstable democratic system.
For the analysis of sufficiency, we apply the Quine-McCluskey algorithm
based on all rows with ~Y = 1. This yields the following result:
A~C+AB— ~Y.
This can be rewritten by factoring out condition A (section 2.4.1) as:
A@B+~C)— ~Y.

Non-stable democracies occur in societies that have experienced a violent
upheaval in the past and, at the same time, have an ethnically homogeneous

population and/or do not have a pluralistic party system. Again, this account
of outcome ~Y is different from that for Y.

Three important remarks need to be made. One is of a general nature
and the second and third stem from the particular simplicity of the example
we have chosen. First, if, indeed, as we claim, the occurrence and the non-
occurrence of a phenomenon, such as the stability of democracy and the
non-stability, constitute two qualitatively different events that warrant separ-
ate explanations, then it often makes sense to resort to different theories and
hypotheses to explain those outcomes. In other words, rather than just chan-
ging the outcome value from Y to ~Y in the same truth table, one might have
to choose different conditions and thus construct an entirely new truth table.
This directly follows from conceptual asymmetry, i.e., the fact that the neg-
ation of a concept often contains various qualitatively different notions. For
instance, the set of non-democracies denotes military regimes, theocracies,
and one-party regimes, to mention just a few. Likewise, for example, the set
of non-married people comprises singles, widows, etc. In short, asymmetry
might not only require different conditions for explaining Y and ~Y respect-
ively. It also might require different conditions for the qualitatively different
outcomes captured within ~Y.

The second and third caveats need to be made because our simple example
produces two features in the solution term that usually do not hold when set-
theoretic methods are applied to observational data. Discussing these features
generates some general insights, though, and should help to avoid two mis-
takes often found in the applied QCA literature.

The second caveat is the following: in the analysis of necessity, we have
identified condition A as necessary. At the same time, the analysis of suffi-
ciency has revealed two paths, both of which involve condition A. It therefore
seems that whenever a single condition is part of all sufficient paths, then
this condition must be necessary for the outcome. Likewise, it might seem
that that if no single condition appears in all sufficient paths, then there is
no necessary condition. Both conclusions are likely to be wrong in applied
QCA. They hold only if the sufficiency analysis is performed on a fully spe-
cified truth table, i.e., a truth table in which the outcome value for each of
the 2* logically possible combinations of conditions is either 1 or 0.° As we
show in detail in sections 5.1, 6.1, and 6.2, this is hardly ever the case when
formal logic meets noisy social science data. In applied QCA, truth tables

1 In fsQCA, even then the conclusions about necessary conditions might be erroneous for reasons that
we discuss in detail in section 9.1.
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almost invariably contain rows that are contradictory or logical remainder
Whenever these types of rows are present, the sufficiency analysis of a try
table runs the risk of not correctly revealing the presence or absence of nece
sary conditions. In Chapter 9, we spell out the detailed circumstances und
which false necessary conditions appear and when true necessary conditio
disappear. For the time being, it suffices to state that it is always recommende
that analyses of necessity and sufficiency be kept separate and that statemen
of necessity and sufficiency, respectively, be based only on analyses of nece
sity and sufficiency, respectively.

The third caveat has similar roots to the second. Due to the simplicity
our example, it provides an exceptional instance in which it would be possible
to derive the sufficiency solution formula for ~Y based on the formula for Y,
without performing a separate analysis. Making use of DeMorgan’s law!! we,
can convert the sufficiency solution term for Y

~A+~B*C—>Y
into

A*(B+~C)—~
This is identical to the formula derived through empirical analysis of outcome
~Y based on Table 4.2.
However, as mentioned, in social science research practice this procedure
is problematic. It works properly only in a fully specified truth table, i.e., when
there are no contradictions (section 5.1) or logical remainders (sections 6.1
and 6.2). Otherwise, the results produced by an application of DeMorgans
law imply claims about some truth table rows that either go unnoticed or are
untenable, or both (Chapter 8 and section 9.1). Since fully specified truth
tables are rare in practice, the meaningful use of the procedure described here
and thus of DeMorgan’s law is very limited.
For all these reasons, the standard of good practice (section 11.1) should
be to always perform separate analyses of the occurrence and the non-occur-
rence of the outcome and to always analyze necessity and sufficiency in sep-
arate steps, not the least, since causal asymmetry also refers to the fact that
substantial reasons might require us to use different causal factors for the
explanation of the occurrence and the different types of non-occurrence of
an outcome, respectively.
' In section 3.3.3, we have described how, if we have fully specified truth tables (as in the case under
examination), the arrow in the statement of sufficiency can be replaced by an equals sign (=).

Consequently, it is possible to negate (e.g., through the application of DeMorgan’s law, see section 2.3)
both sides of the equation without altering the truth value of the statement.

Truth tables

At-a-glance: analyzing truth tables

The Quine-McCluskey algorithm uses the simplification rules of Boolean expressions
on the truth table. It starts out by listing all configurations of conditions for which suf-
ficiency has been confirmed. Subsequently, the logical expression is minimized, with the
help of the rules of Boolean algebra. Examining prime implicants often makes possible
further simplifications that are not apparent at a first glance.

Factoring out those INUS conditions that appear in all sufficient paths does not show
that a condition is necessary for the outcome. Because of this, necessary and sufficient
conditions must be examined separately. It is recommended that analyses of necessary
conditions be performed before analyses of sufficient conditions.

The non-occurrence of the outcome has to be analyzed separately. Only when there
are neither configurations lacking any empirical cases nor contradictory truth table rows
can DeMorgan’s law be applied.

Note that the information contained in any given truth table can be expressed through
different solution terms. The principles of logical minimization ensure that these formu-
las are logically equivalent and differ only in the degree of complexity. The decision about
which of these solution terms to put at the center of the substantive interpretation needs to
be guided by theoretical and substantive considerations.




