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Surveying a suite of algorithms that offer a 
solution to managing large document archives.

By DaviD m. Blei

Probabilistic 
topic models

as OUr COLLeCTive  knowledge continues to be 
digitized and stored—in the form of news, blogs, Web 
pages, scientific articles, books, images, sound, video, 
and social networks—it becomes more difficult to 
find and discover what we are looking for. We need 
new computational tools to help organize, search, and 
understand these vast amounts of information.

Right now, we work with online information using 
two main tools—search and links. We type keywords 
into a search engine and find a set of documents 
related to them. We look at the documents in that 
set, possibly navigating to other linked documents. 
This is a powerful way of interacting with our online 
archive, but something is missing.

Imagine searching and exploring documents 
based on the themes that run through them. We might 
“zoom in” and “zoom out” to find specific or broader 
themes; we might look at how those themes changed 
through time or how they are connected to each other. 
Rather than finding documents through keyword 
search alone, we might first find the theme that we 
are interested in, and then examine the documents 
related to that theme.

For example, consider using themes 
to explore the complete history of the 
New York Times. At a broad level, some 
of the themes might correspond to 
the sections of the newspaper—for-
eign policy, national affairs, sports. 
We could zoom in on a theme of in-
terest, such as foreign policy, to reveal 
various aspects of it—Chinese foreign 
policy, the conflict in the Middle East, 
the U.S.’s relationship with Russia. We 
could then navigate through time to 
reveal how these specific themes have 
changed, tracking, for example, the 
changes in the conflict in the Middle 
East over the last 50 years. And, in all of 
this exploration, we would be pointed 
to the original articles relevant to the 
themes. The thematic structure would 
be a new kind of window through which 
to explore and digest the collection.

But we do not interact with elec-
tronic archives in this way. While more 
and more texts are available online, we 
simply do not have the human power 
to read and study them to provide the 
kind of browsing experience described 
above. To this end, machine learning 
researchers have developed probabilis-
tic topic modeling, a suite of algorithms 
that aim to discover and annotate large 
archives of documents with thematic 
information. Topic modeling algo-
rithms are statistical methods that ana-
lyze the words of the original texts to 
discover the themes that run through 
them, how those themes are connected 
to each other, and how they change over 

 key insights
  topic models are algorithms for 

discovering the main themes that 
pervade a large and otherwise 
unstructured collection of documents. 
topic models can organize the collection 
according to the discovered themes.

  topic modeling algorithms can be applied 
to massive collections of documents.  
Recent advances in this field allow us to 
analyze streaming collections, like you 
might find from a Web aPi.

  topic modeling algorithms can be 
adapted to many kinds of data. among 
other applications, they have been used 
to find patterns in genetic data, images, 
and social networks.
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time. (See, for example, Figure 3 for 
topics found by analyzing the Yale Law 
Journal.) Topic modeling algorithms 
do not require any prior annotations or 
labeling of the documents—the topics 
emerge from the analysis of the origi-
nal texts. Topic modeling enables us 
to organize and summarize electronic 
archives at a scale that would be impos-
sible by human annotation.

latent Dirichlet allocation
We first describe the basic ideas behind 
latent Dirichlet allocation (LDA), which 
is the simplest topic model.8 The intu-
ition behind LDA is that documents 
exhibit multiple topics. For example, 
consider the article in Figure 1. This 
article, entitled “Seeking Life’s Bare 
(Genetic) Necessities,” is about using 
data analysis to determine the number 
of genes an organism needs to survive 
(in an evolutionary sense).

By hand, we have highlighted differ-
ent words that are used in the article. 
Words about data analysis, such as 
“computer” and “prediction,” are high-
lighted in blue; words about evolutionary 
biology, such as “life” and “organism,” 
are highlighted in pink; words about 
genetics, such as “sequenced” and 

“genes,” are highlighted in yellow. If we 
took the time to highlight every word in 
the article, you would see that this arti-
cle blends genetics, data analysis, and 
evolutionary biology in different pro-
portions. (We exclude words, such as 
“and” “but” or “if,” which contain little 
topical content.) Furthermore, know-
ing that this article blends those topics 
would help you situate it in a collection 
of scientific articles.

LDA is a statistical model of docu-
ment collections that tries to capture 
this intuition. It is most easily described 
by its generative process, the imaginary 
random process by which the model 
assumes the documents arose. (The 
interpretation of LDA as a probabilistic 
model is fleshed out later.)

We formally define a topic to be a 
distribution over a fixed vocabulary. For 
example, the genetics topic has words 
about genetics with high probability 
and the evolutionary biology topic has 
words about evolutionary biology with 
high probability. We assume that these 
topics are specified before any data 
has been generated.a Now for each 

a Technically, the model assumes that the top-
ics are generated first, before the documents.

document in the collection, we gener-
ate the words in a two-stage process.

 ˲ Randomly choose a distribution 
over topics.

 ˲ For each word in the document
a.  Randomly choose a topic from 

the distribution over topics in 
step #1.

b.  Randomly choose a word from the 
corresponding distribution over 
the vocabulary.

This statistical model reflects the 
intuition that documents exhibit mul-
tiple topics. Each document exhib-
its the topics in different proportion 
(step #1); each word in each docu-
ment is drawn from one of the topics 
(step #2b), where the selected topic is 
chosen from the per-document distri-
bution over topics (step #2a).b

In the example article, the distri-
bution over topics would place prob-
ability on genetics, data analysis, and 

b We should explain the mysterious name, “latent 
Dirichlet allocation.” The distribution that is 
used to draw the per-document topic distribu-
tions in step #1 (the cartoon histogram in Figure 
1) is called a Dirichlet distribution. In the genera-
tive process for LDA, the result of the Dirichlet 
is used to allocate the words of the document to 
different topics. Why latent? Keep reading.

figure 1. the intuitions behind latent Dirichlet allocation. We assume that some number of “topics,” which are distributions over words,  
exist for the whole collection (far left). each document is assumed to be generated as follows. first choose a distribution over the topics (the 
histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic. 
the topics and topic assignments in this figure are illustrative—they are not fit from real data. See figure 2 for topics fit from data.
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evolutionary biology, and each word 
is drawn from one of those three top-
ics. Notice that the next article in 
the collection might be about data 
analysis and neuroscience; its distri-
bution over topics would place prob-
ability on those two topics. This is 
the distinguishing characteristic of 
latent Dirichlet  allocation—all the 
documents in the collection share 
the same set of topics, but each docu-
ment exhibits those topics in differ-
ent proportion.

As we described in the introduc-
tion, the goal of topic modeling is 
to automatically discover the topics 
from a collection of documents. The 
documents themselves are observed, 
while the topic structure—the topics, 
per-document topic distributions, 
and the per-document per-word topic 
 assignments—is hidden structure. The 
central computational problem for 
topic modeling is to use the observed 
documents to infer the hidden topic 
structure. This can be thought of as 
“reversing” the generative process—
what is the hidden structure that likely 
generated the observed collection?

Figure 2 illustrates example infer-
ence using the same example docu-
ment from Figure 1. Here, we took 
17,000 articles from Science magazine 
and used a topic modeling algorithm to 
infer the hidden topic structure. (The 

algorithm assumed that there were 100 
topics.) We then computed the inferred 
topic distribution for the example 
article (Figure 2, left), the distribution 
over topics that best describes its par-
ticular collection of words. Notice that 
this topic distribution, though it can 
use any of the topics, has only “acti-
vated” a handful of them. Further, we 
can examine the most probable terms 
from each of the most probable topics 
(Figure 2, right). On examination, we 
see that these terms are recognizable 
as terms about genetics, survival, and 
data analysis, the topics that are com-
bined in the example article.

We emphasize that the algorithms 
have no information about these sub-
jects and the articles are not labeled 
with topics or keywords. The inter-
pretable topic distributions arise by 
computing the hidden structure that 
likely generated the observed col-
lection of documents.c For example, 
Figure 3 illustrates topics discovered 
from Yale Law Journal. (Here the num-
ber of topics was set to be 20.) Topics 

c Indeed calling these models “topic models” 
is retrospective—the topics that emerge from 
the inference algorithm are interpretable for 
almost any collection that is analyzed. The fact 
that these look like topics has to do with the 
statistical structure of observed language and 
how it interacts with the specific probabilistic 
assumptions of LDA.

about subjects like genetics and data 
analysis are replaced by topics about 
discrimination and contract law.

The utility of topic models stems 
from the property that the inferred hid-
den structure resembles the thematic 
structure of the collection. This inter-
pretable hidden structure annotates 
each document in the collection—a 
task that is painstaking to perform 
by hand—and these annotations can 
be used to aid tasks like information 
retrieval, classification, and corpus 
exploration.d In this way, topic model-
ing provides an algorithmic solution to 
managing, organizing, and annotating 
large archives of texts.

Lda and probabilistic models. LDA 
and other topic models are part of the 
larger field of probabilistic modeling. 
In generative probabilistic modeling, 
we treat our data as arising from a 
generative process that includes hid-
den variables. This generative process 
defines a joint probability distribution 
over both the observed and hidden 
random variables. We perform data 
analysis by using that joint distribu-
tion to compute the conditional distri-
bution of the hidden variables given the 

d See, for example, the browser of Wikipedia 
built with a topic model at http://www.sccs.
swarthmore.edu/users/08/ajb/tmve/wiki100k/
browse/topic-list.html.

figure 2. Real inference with lDa. We fit a 100-topic lDa model to 17,000 articles from the journal Science. at left are the inferred  
topic proportions for the example article in figure 1. at right are the top 15 most frequent words from the most frequent topics found  
in this article.
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where q d,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for Lda. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

figure 3. a topic model fit to the Yale Law Journal. here, there are 20 topics (the top eight are plotted). each topic is illustrated with its top-
most frequent words. each word’s position along the x-axis denotes its specificity to the documents. for example “estate” in the first topic 
is more specific than “tax.”
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problem, computing the conditional 
distribution of the topic structure 
given the observed documents. (As we 
mentioned, this is called the posterior.) 
Using our notation, the posterior is

  (2)

The numerator is the joint distribution 
of all the random variables, which can 
be easily computed for any setting of 
the hidden variables. The denomina-
tor is the marginal probability of the 
observations, which is the probability 
of seeing the observed corpus under 
any topic model. In theory, it can be 
computed by summing the joint distri-
bution over every possible instantiation 
of the hidden topic structure.

That number of possible topic 
structures, however, is exponentially 
large; this sum is intractable to com-
pute.f As for many modern probabilis-
tic models of interest—and for much 
of modern Bayesian statistics—we 
cannot compute the posterior because 
of the denominator, which is known 
as the evidence. A central research 
goal of modern probabilistic model-
ing is to develop efficient methods 
for approximating it. Topic modeling 
algorithms—like the algorithms used 
to create Figures 1 and 3—are often 
adaptations of general-purpose meth-
ods for approximating the posterior 
distribution.

Topic modeling algorithms form 
an approximation of Equation 2 by 
adapting an alternative distribution 
over the latent topic structure to be 
close to the true posterior. Topic mod-
eling algorithms generally fall into 
two categories—sampling-based algo-
rithms and variational algorithms.

Sampling-based algorithms 
attempt to collect samples from the 
posterior to approximate it with an 
empirical distribution. The most 
commonly used sampling algorithm 
for topic modeling is Gibbs sampling, 
where we construct a Markov chain—
a sequence of random variables, each 
dependent on the  previous—whose 

f More technically, the sum is over all possible 
ways of assigning each observed word of the 
collection to one of the topics. Document col-
lections usually contain observed words at 
least on the order of millions.

limiting distribution is the posterior. 
The Markov chain is defined on the 
hidden topic variables for a particular 
corpus, and the algorithm is to run the 
chain for a long time, collect samples 

from the limiting distribution, and 
then approximate the distribution 
with the collected samples. (Often, just 
one sample is collected as an approxi-
mation of the topic structure with 

figure 4. the graphical model for latent Dirichlet allocation. each node is a random variable 
and is labeled according to its role in the generative process (see figure 1). the hidden 
nodes—the topic proportions, assignments, and topics—are unshaded. the observed 
nodes—the words of the documents—are shaded. the rectangles are “plate” notation,  
which denotes replication. the N plate denotes the collection words within documents;  
the D plate denotes the collection of documents within the collection.
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figure 5. two topics from a dynamic topic model. this model was fit to Science from 1880  
to 2002. We have illustrated the top words at each decade.
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maximal probability.) See Steyvers and 
Griffiths33 for a good description of 
Gibbs sampling for LDA, and see http://
CRAN.R-project.org/package=lda for a 
fast open-source implementation.

Variational methods are a deter-
ministic alternative to sampling-based 
algorithms.22,35 Rather than approxi-
mating the posterior with samples, 
variational methods posit a param-
eterized family of distributions over 
the hidden structure and then find the 
member of that family that is closest 
to the posterior.g Thus, the inference 
problem is transformed to an opti-
mization problem. Variational meth-
ods open the door for innovations in 
optimization to have practical impact 
in probabilistic modeling. See Blei 
et al.8 for a coordinate ascent varia-
tional inference algorithm for LDA; 
see Hoffman et al.20 for a much faster 
online algorithm (and open-source 
software) that easily handles millions 
of documents and can accommodate 
streaming collections of text.

Loosely speaking, both types of 
algorithms perform a search over the 
topic structure. A collection of docu-
ments (the observed random variables 
in the model) are held fixed and serve 
as a guide toward where to search. 
Which approach is better depends 
on the particular topic model being 
used—we have so far focused on LDA, 
but see below for other topic models—
and is a source of academic debate. For 
a good discussion of the merits and 
drawbacks of both, see Asuncion et al.1

Research in topic modeling
The simple LDA model provides a pow-
erful tool for discovering and exploit-
ing the hidden thematic structure in 
large archives of text. However, one of 
the main advantages of formulating 
LDA as a probabilistic model is that it 
can easily be used as a module in more 
complicated models for more com-
plicated goals. Since its introduction, 
LDA has been extended and adapted 
in many ways.

relaxing the assumptions of 
Lda. LDA is defined by the statisti-
cal assumptions it makes about the 

g Closeness is measured with Kullback–Leibler 
divergence, an information theoretic measure-
ment of the distance between two probability 
distributions.

corpus. One active area of topic model-
ing research is how to relax and extend 
these assumptions to uncover more 
sophisticated structure in the texts.

One assumption that LDA makes is 
the “bag of words” assumption, that 
the order of the words in the document 
does not matter. (To see this, note that 
the joint distribution of Equation 1 
remains invariant to permutation of 
the words of the documents.) While 
this assumption is unrealistic, it is rea-
sonable if our only goal is to uncover 
the course semantic structure of the 
texts.h For more sophisticated goals—
such as language generation—it is 
patently not appropriate. There have 
been a number of extensions to LDA 
that model words nonexchangeably. 
For example, Wallach36 developed a 
topic model that relaxes the bag of 
words assumption by assuming that 
the topics generate words conditional 
on the previous word; Griffiths et al.18 
developed a topic model that switches 
between LDA and a standard HMM. 
These models expand the parameter 
space significantly but show improved 
language modeling performance.

Another assumption is that the 
order of documents does not matter. 
Again, this can be seen by noticing 
that Equation 1 remains invariant 
to permutations of the ordering of 
documents in the collection. This 
assumption may be unrealistic when 
analyzing long-running collections 
that span years or centuries. In such 
collections, we may want to assume 
that the  topics change over time. 
One approach to this problem is the 
dynamic topic model5—a model that 
respects the ordering of the docu-
ments and gives a richer posterior 
topical structure than LDA. Figure 5 
shows a topic that results from analyz-
ing all of Science magazine under the 
dynamic topic model. Rather than a 
single distribution over words, a topic 
is now a sequence of distributions 
over words. We can find an underlying 
theme of the collection and track how 
it has changed over time.

A third assumption about LDA is 
that the number of topics is assumed 

h As a thought experiment, imagine shuffling 
the words of the article in Figure 1. Even when 
shuffled, you would be able to glean that the 
article has something to do with genetics.

one direction for 
topic modeling  
is to develop 
evaluation methods 
that match how  
the algorithms  
are used.  
how can we 
compare topic 
models based on 
how interpretable 
they are?
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known and fixed. The Bayesian non-
parametric topic model34 provides an 
elegant solution: the number of topics 
is determined by the collection during 
posterior inference, and furthermore, 
new documents can exhibit previously 
unseen topics. Bayesian nonparamet-
ric topic models have been extended to 
hierarchies of topics, which find a tree 
of topics, moving from more general to 
more concrete, whose particular struc-
ture is inferred from the data.3

There are still other extensions of 
LDA that relax various assumptions 
made by the model. The correlated 
topic model6 and pachinko alloca-
tion machine24 allow the occurrence 
of topics to exhibit correlation (for 
example, a document about geology 
is more likely to also be about chem-
istry than it is to be about sports); the 
spherical topic model28 allows words 
to be unlikely in a topic (for example, 
“wrench” will be particularly unlikely 
in a topic about cats); sparse topic 
models enforce further structure in 
the topic distributions;37 and “bursty” 
topic models provide a more realistic 
model of word counts.15

incorporating metadata. In many 
text analysis settings, the documents 
contain additional information—
such as author, title, geographic loca-
tion, links, and others—that we might 
want to account for when fitting a 
topic model. There has been a flurry of 
research on adapting topic models to 
include metadata.

The author-topic model29 is an early 
success story for this kind of research. 
The topic proportions are attached to 
authors; papers with multiple authors 
are assumed to attach each word to 
an author, drawn from a topic drawn 
from his or her topic proportions. The 
author-topic model allows for infer-
ences about authors as well as docu-
ments. Rosen-Zvi et al. show examples 
of author similarity based on their 
topic proportions—such computa-
tions are not possible with LDA.

Many document collections are 
linked—for example, scientific papers 
are linked by citation or Web pages are 
linked by hyperlink—and several topic 
models have been developed to account 
for those links when estimating the top-
ics. The relational topic model of Chang 
and Blei13 assumes that each document 
is modeled as in LDA and that the links 

between documents depend on the dis-
tance between their topic proportions. 
This is both a new topic model and a 
new network model. Unlike traditional 
statistical models of networks, the rela-
tional topic model takes into account 
node attributes (here, the words of the 
documents) in modeling the links.

Other work that incorporates meta-
data into topic models includes mod-
els of linguistic structure,10 models that 
account for distances between corpora,38 
and models of named entities.26 General 
-purpose methods for incorporating 
metadata into topic models include 
Dirichlet-multinomial regression mod-
els25 and supervised topic models.7

Other kinds of data. In LDA, the top-
ics are distributions over words and this 
discrete distribution generates observa-
tions (words in documents). One advan-
tage of LDA is that these choices for the 
topic parameter and data-generating 
distribution can be adapted to other 
kinds of observations with only small 
changes to the corresponding inference 
algorithms. As a class of models, LDA 
can be thought of as a mixed-membership 
model of grouped data—rather than 
associating each group of observa-
tions (document) with one component 
(topic), each group exhibits multiple 
components in different proportions. 
LDA-like models have been adapted 
to many kinds of data, including sur-
vey data, user preferences, audio and 
music, computer code, network logs, 
and social networks. We describe two 
areas where mixed-membership mod-
els have been particularly successful.

In population genetics, the same 
probabilistic model was independently 
invented to find ancestral populations 
(for example, originating from Africa, 
Europe, the Middle East, among others) 
in the genetic ancestry of a sample of 
individuals.27 The idea is that each indi-
vidual’s genotype descends from one or 
more of the ancestral populations. Using 
a model much like LDA, biologists can 
both characterize the genetic patterns 
in those populations (the “topics”) and 
identify how each individual expresses 
them (the “topic proportions”). This 
model is powerful because the genetic 
patterns in ancestral populations can be 
hypothesized, even when “pure” sam-
ples from them are not available.

LDA has been widely used and 
adapted in computer vision, where the 

inference algorithms are applied to 
natural images in the service of image 
retrieval, classification, and organiza-
tion. Computer vision researchers have 
made a direct analogy from images to 
documents. In document analysis, we 
assume that documents exhibit mul-
tiple topics and the collection of docu-
ments exhibits the same set of topics. 
In image analysis, we assume that each 
image exhibits a combination of visual 
patterns and that the same visual pat-
terns recur throughout a collection of 
images. (In a preprocessing step, the 
images are analyzed to form collec-
tions of “visual words.”) Topic model-
ing for computer vision has been used 
to classify images,16 connect images 
and captions,4 build image hierar-
chies,2,23,31 and other applications.

future Directions
Topic modeling is an emerging field in 
machine learning, and there are many 
exciting new directions for research.

evaluation and model checking. 
There is a disconnect between how 
topic models are evaluated and why 
we expect topic models to be useful. 
Typically, topic models are evaluated in 
the following way. First, hold out a sub-
set of your corpus as the test set. Then, 
fit a variety of topic models to the rest of 
the corpus and approximate a measure 
of model fit (for example, probability) 
for each trained model on the test set. 
Finally, choose the model that achieves 
the best held-out performance.

But topic models are often used to 
organize, summarize, and help users 
explore large corpora, and there is no 
technical reason to suppose that held-
out accuracy corresponds to better 
organization or easier interpretation. 
One open direction for topic modeling 
is to develop evaluation methods that 
match how the algorithms are used. 
How can we compare topic models 
based on how interpretable they are?

This is the model checking problem. 
When confronted with a new corpus 
and a new task, which topic model 
should I use? How can I decide which 
of the many modeling assumptions are 
important for my goals? How should I 
move between the many kinds of topic 
models that have been developed? 
These questions have been given some 
attention by statisticians,9,30 but they 
have been scrutinized less for the scale 
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difficult task for unsupervised learning 
that must be carefully validated.

In general, this problem is best 
addressed by teaming computer sci-
entists with other scholars to use topic 
models to help explore, visualize, and 
draw hypotheses from their data. In 
addition to scientific applications, such 
as genetics and neuroscience, one can 
imagine topic models coming to the 
service of history, sociology, linguistics, 
political science, legal studies, compar-
ative literature, and other fields, where 
texts are a primary object of study. By 
working with scholars in diverse fields, 
we can begin to develop a new interdis-
ciplinary computational methodology 
for working with and drawing conclu-
sions from archives of texts.

Summary
We have surveyed probabilistic topic 
 models, a suite of algorithms that 
provide a statistical solution to the 
problem of managing large archives 
of documents. With recent scientific 
advances in  support of unsupervised 
machine  learning—flexible compo-
nents for modeling, scalable algo-
rithms for posterior inference, and 
increased access to massive datasets—
topic models promise to be an impor-
tant component for summarizing and 
understanding our growing digitized 
archive of information. 
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