

Mgr et. Mgr Pavlína Hlavatá Brno FSS MU 5. 10. 2018

Syllabus

- What is impulsivity?
- Impulsivity in clinical context, motivation
- Subtypes of impulsive behaviour
- Impulsivity as a personal dimension
- Behavioural models of impulsivity
- Behavioural tasks
- Neurobiology of impulsivity
- Treatment

What is impulsivity?

What is impulsivity?

- Heterogenous concept consists of several dimensions?
- A tendency to act without thinking
- Acting without evaluation of consequences
- Inability to suppress irrelevant or unfavourable behaviour
- Impulsivity manifests in personality traits, cognitive and emotional processes or behaviour control
- Personality traits: high sensation seeking, lack of perseverance, positive and negative urgency, high reward sensitivity

Impulsivity in clinical context

- Disruptive forms of behaviour
- Aggressive behaviour, self-destructive behaviour, binge eating, suicide, drug abuse, alcoholism, gambling, risk sexual behaviour, property destruction
- High negative impact on life
- ADHD, borderline personality disorder, mania, substance use disorders, kleptomania, Parkinson disease, bulimia
- Inhibitory control deficit present in the close relatives of patients ? Inheritable

"This is tempting, but it may come back to bite us."

Motivation for research

- Impulsivity is present in many neuropsychiatric disorders,
- Significant negative influence on patient's life,
- No effective treatment,
- Inconsistent terminology.
- After subjective distress, impulsivity is the most common diagnostic criteria in the DSM-IV.
- → Prevention, prediction (addiction) identification of the risk factors,
- \rightarrow Treatment,
- \rightarrow Improving the quality of life,
- \rightarrow Better diagnostics,
- \rightarrow Better description, improving of terminology,...

- Impulsivity as a personality dimension
- Impulsivity as a consequence of some neurobiological impairment

Impulsivity as a personality dimension

- Buss and Plomin (1975): temperament dimension (impulsivity, emotionality, activity, sociability)
- inhibitory control, decision time, persistence, sensation seeking
- Eysenck venturesomeness (aware risky behaviour)
- Cloninger (1991) impulsivity as an aspect of novelty seeking (terms related to thrill seeking and acting on feelings of the moment without regard for rules and regulations.)
- Zuckerman (1991) impulsive sensation seeking (a lack of planning and the tendency to act impulsively, experience seeking, or willingness to take risks for the sake of excitement or novel experiences)

Impulsivity as a personality dimension

Measured by self-assessment questionnaires

Barrat scale (Patton, Stanford and Barrat, 1995) -

3 factors - attentional impulsiveness, motor impulsiveness, nonplanning impulsiveness

- UPPS-P (Whiteside and Lynam, 2001, Cyders and Smith, 2007) negative and positive urgency, lack of premeditation, lack of perseverance, sensation seeking
 - based on previous questionnaires and concepts
 - Includes aspect of **emotional impulsivity**

Behavioural impulsivity models

- Impulsivity as a consequence of abnormal functions of neural system
- Measured by behavioural tasks
- Motor impulsivity
- waiting impulsivity
- stopping impulsivity
- Impulsive decision making
- Nigg's taxonomy (2000)
- Behavioural inhibition: prepotent response inhibition, interference control (distractibility)

Behavioural impulsivity models

Motor impulsivity

- Ability to inhibit preplanned, dominant or unwanted action (waiting impulsivity).
- Ability to stop ongoing action (Stopping impulsivity)
- Measured by choice reaction time tasks
- Tasks: Go/No-Go task, Stop signal task, Continuous performance task

Impulsive decision making

- Impreference for smaller, more immediate rewards over larger, more delayed rewards
- The value of delayed reward is discounted in inverse proportion to its delay.
- Tasks: delay discounting, probability discounting, Iowa gambling task

Interference control

- …ability to ignore irrelevant information while processing the target stimulus.
- In the interference control tasks, a person has to react quickly to the stimulus ignoring distractors presented at the same time.
- Tasks: Stroop Color-Word test, Flanker task, Simon test, the Opposite World task,...

Go/No-Go task

Measures the ability to inhibit preplanned, dominant or unwanted action.

Go stimulus - target \rightarrow react No-Go stimulus - inhibition \rightarrow don't react Go: No-Go ratio 50:50 or less No-Go stimuli

Variables - reaction time, accuracy - commission errors, omission errors

Slow reaction time + more commission errors - impulsivity vs. Fast RT + more omission errors - attention problems

Continuous performance task

The GNG task with a predominance of No-Go stimuli - sustained attention

Impulsivity tasks - Go/No-Go task

Simple GNG tasks

Complex GNG tasks (more types of No-Go stimuli, variable No-Go stimuli,..)

Modifications: Stimuli - letters, pictures, symbols,...
Emotional GNG tasks

Impulsivity tasks - Go/No-Go task

- Behavioural version low frequency of No-Go stimuli high inhibitory load
- fMRI low cognitive load, low working memory demands
 - equal Go:No-Go ratio is better. Unequal Go:No-Go ratio makes interpretation difficult

Stop signal task

Ability to stop an ongoing action

Go-stimulus

No-Go signal (visual or acoustic) - after this signal Go stimulus turns to No-Go, subject has to cancel his reaction

Variables - SST reaction time - time needed to stop reaction

Longer SSRT = inhibitory problems

- accuracy, reaction time

Impulsivity tasks - Stop signal task

- Stop signal delay = delay between the onset of Go stimulus and the stop signal
 - Fixed or variable delay
 - Variable delay \rightarrow high inhibitory load
- Stop signal reaction time can not be measured directly
- Estimated from reaction time and stop signal delay and probability of making error after the stop signal

Stroop Color-Word test

- Variables Interference score, number of items made in time, number of errors, time needed to complete condition
- Variants picture, wrapped words, emotional

Stroop Effect

YELLOW BLUE ORANGE BLACK RED GREEN PURPLE YELLOW RED ORANGE GREEN BLUE BLUE RED PURPLE YELLOW RED GREEN

Flanker task

- Target stimulus arrow pointing to the left or right
- Incongruent stimuli
- Congruent stimuli
- Neutral stimuli
- Variables number of errors, reaction time

Simon task

- Central fixation point
- Target stimulus in some position from the central fixation point
- React according to the type of stimulus, ignore the position of the stimulus

Delay discounting

- Choice two options smaller immediate reward or bigger but delayed reward
- How fast declines the worth of money in time?
- As the delay of a reward increases, the subjective value of this delayed reward decreases.

Impulsivity tasks - Delay discounting

indifference points - subjective value for immediate and delayed reward is the same.

value = $A/(1 + k^*D)$

- A is the amount of the reward, D is the delay to reward, and k is a free parameter (discounting parameter).
- ► Larger values of k indicate steeper decline of subjective value (=steeper curve in graph) → greater impulsivity.

Impulsivity tasks - Delay discounting

- ► Variants: different time delays (days →decades), commodity (money, drugs, alcohol,..), immediate rewards decline (regular, random).
- Value of money is more stable than other commodities
- Good marker for addiction risk

Probability discounting task

Immediate reward x bigger probabilistic reward

As the probability of receiving a specific gain decreases, the subjective value of that gain decreases.

The value of a probabilistic reward decreases as its probability decreases, so it becomes less likely that the probabilistic gain will be chosen from among alternatives

Indifference points $\rightarrow k$

A lower degree of probability discounting (higher subjective values) is associated with risk-seeking choices. When the degree of discounting is steeper than the expected value, data points fall below the EV line. A higher degree of probability discounting (lower subjective values) \rightarrow risk-averse choices.

Probabilistic looses: Someone who is risk-seeking is more likely to choose the possibility of losing nothing, while taking the risk of possibly losing the entire larger amount, rather than incur a smaller, certain loss.

Iowa gambling task

- 4 decks of cards containing winning and loosing cards
- Good decks and bad decks
- IGT involves probabilistic learning via monetary rewards and punishments, where advantageous task performance requires subjects to forego potential large immediate rewards for small longer-term rewards to avoid larger losses.
- A bad deck, high immediate rewards, frequent looses
- B bad deck, high immediate rewards, infrequent but very high looses
- C good deck, small immediate rewards, frequent but low looses
- D good deck, small immediate rewards, infrequent looses

Impulsivity tasks - Iowa gambling task

- Impulsive people prefer large immediate rewards with risk of large looses in the future
- or prefer low probable but large looses over certain but small looses.
- Brain activity ventromedial prefrontal cortex, orbitofrontal cortex dysfunctions

Neural substrates of impulsivity

Neurotransmitter systems

Dopaminergic, serotoninergic and noradrenergic systems

Specific reactions during tasks - for example gamblers dopamine IGT

Treatment

Bari and Robbins (2013):

- Prefrontal noradrenergic neurotransmission important for stopping impulsivity
- Dopamine motor readiness for inhibition and activation in striatum
- Norepinephrine and dopamine error monitoring
- 5HT more affective forms of inhibition and waiting inhibition

Treatment

- SSRI (Lieb et al., 2010)
- Mood stabilizers (Huband et al., 2010)
- Olanzapine (Lieb et al., 2010), quetiapine 5HT2A receptor (Van de Eynde et al., 2008), aripiprazole and lamotrigine (Lieb at al., 2010).
- ADHD stimulants (Moeller et al., 2010)
- Mechanism is not well understood yet.
- Different drugs improve performance in different impulsivity tasks.
- Different groups of patients/patients have problems in different tasks.

Brain structures involved in inhibition

ACC, insula, preSMA, SMA, pre-motor cortex, parietal cortex, inferior frontal gyrus, subcortical structures

Most important - prefrontal and pre-motor areas

Brain structures involved in ihibition

- Inferior frontal gyrus (IGG) most important for response inhibition
- Pre-motor region controls motor excitability
- SMA stopping response, more active in people with fast SSRT
 - response initiation, selection
- Parietal cortex visuospatial attention?
- DLPFC working memory, task rules maintaining, executive control in motivational and emotional behaviours
- ACC response selection, conflict monitoring, error detection, working memory

Brain structures involved in inhibition

- Subcortical structures: Thalamus,
 Basal ganglia
- Fronto-striatal network indirect pathway
 - Proactive inhibition, selective inhibition

Hyperdirect pathway

Cortical regions (stop command) \rightarrow basal ganglia

pre-SMA and inferior frontal gyrus- subthalamic nucleus (STN)-Globus pallidus

- Fast inhibition of ongoing actions

a) Aron et al. 2007, b) P<mark>oldrack et al.</mark> 2011

Selective x non-selective inhibition in fMRI

Thank you for your attention

Literature

- Bari A, Robbins T. 2013. Inhibition and impulsivity: behavioral and neural basis of response control. *Prog Neurobiol*. 108:44-79.
- Brevers, D., Bechara, A., Cleeremans, A., & Noël, X. 2013. Iowa Gambling Task (IGT): twenty years after-gambling disorder and IGT. Frontiers in psychology. 4, 665.
- MacKillop, J., Amlung, M. T., Few, L. R., Ray, L. A., Sweet, L. H., & Munafò, M. R. 2011. Delayed reward discounting and addictive behavior: a metaanalysis. *Psychopharmacology*. 216(3): 305-321.
- Nieuwenhuis S, Yeung N, Van Den Wildenberg W, et al. 2003. Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. *Cogn Affect Behav Neurosci.* 3(1): 17-26.
- Stahl C, Voss A, Schmitz F, et al. 2014. Behavioral components of impulsivity. J Exp Psychol Gen. 143(2): 850.