

Central European Institute of Technology BRNO | CZECH REPUBLIC

Meta-analysis of neuroimaging data

Martin Jáni Selected Topics in Contemporary Neuroscience

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

year

[[]Stelzer et al., 2014]

need for comprehensive summary

- meta-analysis = quantitative review
- 1 study represents 1 subject
- units of measurement = summary statistics (effect sizes)
- standard IMRaD structure

$\mathbf{C}^{\mathbf{S}} = \mathbf{C}$

symptom dimensions, with the psychomotor poverty group performing worse than disorganisation subjects and reality distor-

aries (a false belief about the belief of another cha

mes. As for se

 $\bar{x} = \frac{\sum x}{N}$ $\sum x =$ the sum of x N = number of data

t-statistic p value

$\mathbf{C}^{\mathbf{S}} = \mathbf{C}$

The use of Effect sizes

- difference in means / pooled standard deviation
 - Cohen's d
 - Glass'∆
 - Hedges' g
- comparable with other studies
- unit of measure is lost
- less straightforward

Hedges'
$$g = \frac{M_1 - M_2}{SD_{pooled}^*}$$

Publication bias

[Radua and Mataix-Cols, 2012]

Region of interest-based meta-analyses

Voxel-based metaanalyses

Region of interest-based meta-analyses

- set of different meta-analyses for every ROI
- selective = some regions more studied than others
- a priori hypotheses influence selection of ROI
- strong publication bias

Label-based reviews

[Radua and Mataix-Cols, 2012]

peak of a cluster plotted as a dot number of dots count in each region

- increase
- decrease
- borders of conventional regions

drawbacks: no weighting, loss of information, selective

Voxel-based meta-analyses

- Image-based meta-analyses
- Coordinate-based meta-analyses
- Mixed image- and coordinate-based meta-analyses

- Image-based meta-analyses
- Coordinate-based meta-analyses
- Mixed image- and coordinate-based meta-analyses

Image-based meta-analyses

- use of parametric maps
- meta-analysis for each voxel
- multiple-comparisons problem
- hard to find (contacting authors)

Voxel-based meta-analyses

- Image-based meta-analyses
- Coordinate-based meta-analyses
- Mixed image- and coordinate-based meta-analyses

Coordinate-based meta-analyses

Table 2. Activation differences between BD patients, relatives and their respective controls and PPI results										
	Н	BA		MNI coordinate	s	Cs	Z-value	T-value		
			×	У	z					
Rel > Con: reappraisal-view emotional										
Amygdala	L		-21	- 7	- 14	20	3.06	3.32		
	R		33	5	- 20	26	2.87	3.09		
Ventral ACC	L	10	- 12	50	- 2	108	4.20	4.90		
Insula	L	48	- 39	2	- 11	69	3.36	3.71		
	R	48	36	- 16	1	161	3.84	4.37		
BD>Con: reappraisal-view emotional Amygdala Amygdala/parahippocampal	L R		- 15 21	-4 5	- 17 - 26	18 60	2.99 4.31	3.18 4.87		
BD>Con: PPI L-amygdala seed Orbitofrontal	L	47	- 42	35	-8	53	4.94	5.79		
BD > Con: PPI R-amygdala seed Orbitofrontal	L	47	- 12	50	- 5	23	4.41	5.01		
Rel > Con: PPI L-amygdala seed Orbitofrontal	L R	47 47	- 39 36	29 56	- 14 - 8	60 15	4.45 4.59	5.29 5.52		
Rel > Con: PPI R-amygdala seed Orbitofrontal	R	47	39	56	-5	49	5.06	6.33		

Abbreviations: BA, Brodmann area of the peak activation; Con, control; CS, cluster size in number of activated voxels; H, hemisphere; L, left; MNI, Montreal Neurological Institute; PPI, psychophysiological interaction analysis; R, right; Rel, relative.

Kanske et al. 2015

Kernel density analysis (KDA)

[Radua and Mataix-Cols, 2012]

peak as a sphere number of spheres surrounding each voxel are counted

- increase
- decrease

Multilevel kernel density (MKDA)

similar to KDA

voxel close to two spheres from one study counts as one

avoids false high values at intersections weighted by sample size

robustness analysis

WWW Peaks True signal -

[Radua and Mataix-Cols, 2012]

Activation likelihood estimation (ALE)

[Radua and Mataix-Cols, 2012]

peak as a smoothed sphere (Gaussian Kernel at FWHM)

higher value for voxels closer to the center of the sphere (peak)

- increase
- decrease

Signed differential mapping (SDM)

smoothed spheres like in ALE weighted by sample size, robustness analysis like MKDA

combines positive and negative values

adds heterogeneity analysis

[Radua and Mataix-Cols, 2012]

Effect size-Signed differential mapping (ES-SDM)

[Radua and Mataix-Cols, 2012] similar to SDM, but values are effect sizes weighted by variance (right)

random effects model

combination of peaks and statistical parametric maps

-ES-SCM

////// Peaks ······ True signal —

Voxel-based meta-analyses

[Radua et al., 2012]

Voxel-based meta-analyses

- Image-based meta-analyses
- Coordinate-based meta-analyses
- Mixed image- and coordinate-based meta-analyses

Mixed image- and coordinate-based metaanalyses

[Radua et al., 2012]

- Meta-analysis is a quantitative systematic review
- Pretty accessible and valuable research to do
- Different approaches and methods
- ROI based and Voxel based

www.sdmproject.com

← → C 🔒 Secure https://w	ww.sdmproject.com 🔂 🕐 🐨 🔤 🖧 🕄 🎘
🗰 Apps 🗋 Under Byen Lyrics 🙆	Základní • Mapy.cz 🐵 Hourly forecast for Br 🔃 Peter Mikšík - Denník 🔲 Vnímání sociálních sit 🦳 Ruský lekár vám pred 🚺 Trinásť dezertov, ktor 📥 Fantastický mandľový 💦
Seed-based d Mapping formerly "Signed Differentia	Search
SDM Project web > Home > Download software	SDM
Linux Mac OSX Windows	Neuroimaging software library including meta-analytic methods for fMRI, VBM, DTI and PET and other tools Download software Meta-analysis Tutorial Meta-analysis Manual SDM tools manual
SPM > Meta-analysis tutorial	New Anisotropic ES-SDM version 5.141 (Dec 2016) available + Please replace older versions of SDM software by Anisotropic ES-SDM version 5.141, which includes the following new features: +
> Meta-analysis manual Introduction Preparation Globals Calculations	 New improved graphical user interface (GUI), now for Windows, Linux and Mac OSX Possibility to combine repeated measures (e.g. from several contrasts of the same sample). Easy automatic creation of funnel plots and Egger tests. and some other improvements ;-)
Results Batch processing Settings	Please feel free to <u>download the new software</u> Introduction
SPM extension How to cite > SDM Tools manual	Seed-based <i>d</i> Mapping (formerly "Signed Differential Mapping") is a statistical technique for meta-analyzing studies on differences in brain activity or structure which used neuroimaging techniques such as fMRI, VBM, DTI or PET. The methods have been fully validated in several studies (see references below), and meta-analyses using this on This site may use contract provide the conduct analyses of web access of General Psychiatry (JAMA Psychiatry 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2
	By continuing to use this site, you agree to accept these cookies. Click this banner to hide this message.

www.sdmproject.com

1. research question

- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation

6. results

Change meta-ana	Ilysis SDM table editor Convert to t values Conve	rt images Globals S	ave batch Run batch	SDM help Q	Quit X 32 + Y 81 + Z 58 + to fit V
Preprocessing Mean @ Linear model C Threshold	00:17:20 - (imgcalc) [MyRegression_1_z_p_0.00] 00:17:20 - (imgcalc) [MyRegression_1_z_p_0.00] 00:17:21 - (imgcalc) [MyRegression_1_z_p_neg] 00:17:21 - (imgcalc) [MyRegression_1_z_p_0.00] 00:17:21 - (imgcalc) Getting SDM blobs informati 00:17:21 - Calling web browser to display the re 00:17:21 - Calling MRICron to display 3D results. 00:17:21 - Content of the test of	■ SDM imgcalc - Blob repor ← → ひ f SDM 'MyRegres Threshold parame	ile:///D:/Neuro/META/rec ile:///D:/Neuro/META/rec imgcalc ssion_0_2	ob report SD ression/MyRegressi	DM imgc Background V 0 0.0078 0.9805 Grayscale V P Sion_0_z 34 S -28 S Bic 12 A
Multimodal	00:17:41 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:41 - (imgcalc) [MyRegression_0_z_p_neg] 00:17:41 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:41 - (imgcalc) Getting SDM blobs informat	Blobs of ≥ 85 voxe 1.763	els with all voxels SE	M-Z ≥ 1.278 an	
Multimodal	00:17:41 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:41 - (imgcalc) [MyRegression_0_z_p_neg] 00:17:41 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:41 - (imgcalc) Getting SDM blobs informati 00:17:41 - Calling web browser to display the re 00:17:41 - Calling MRICron to display 3D results. 00:17:41 - DONE	Blobs of ≥ 85 voxe 1.763 MNI coordinate	els with all voxels SE	M-Z ≥ 1.278 an	ad all provide a second s
Multimodal Create a mask	00:17:41 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:41 - (imgcalc) [MyRegression_0_z_p_neg] 00:17:41 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:41 - (imgcalc) Getting SDM blobs informati 00:17:41 - Calling web browser to display the re 00:17:41 - Calling MRICron to display 3D results. 00:17:41 - DONE # Threshold 'MyRegression_1m0_z' with p 0.005	Blobs of ≥ 85 voxe 1.763 <u>MNI</u> <u>coordinate</u> 34,26,26	SDM-Z P 2.063 0.00015	M-Z ≥ 1.278 an Voxels 90735 253	ad all porter and a line of the second secon
Multimodal Multimodal Create a mask Extract	00:17:41 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:41 - (imgcalc) [MyRegression_0_z_p_neg] 00:17:41 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:41 - (imgcalc) Getting SDM blobs informati 00:17:41 - Calling web browser to display the re 00:17:41 - Calling MRICron to display 3D results. 00:17:41 - DONE # Threshold 'MyRegression_1m0_z' with p 0.0050 threshold "MyRegression_1_z' with p 0.00500, 1. # Threshold 'MyRegression_1_z' with p 0.00500, threshold "MyRegression_1_z", p, 0.00500, 1.000	Blobs of ≥ 85 voxe 1.763 MNI coordinate 34,26,26 -46,-48,34	SDM-Z P 2.063 0.00011 1.837 0.00044	M-Z ≥ 1.278 an Voxels 90735 253 33990 99	a dal po Des L Corp Left segn

- **1. research question**
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

- consistent task/process
- choose contrasts

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

- similar to systematic review
- search in databases
- selection of papers
- 1 study as 1 subject
- contact authors for missing data

| z > z = | z = z |

- 1. research question ^(*) SDMGU Meta-analy
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

 \mathbf{z}

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

Statistic	🥫 Edit table									? ×
analysis	Save 🔤	Table	Û	Add study	😑 Delete	e study	당 Add va	riable	😑 Delete va	riable
	study	n1	n2	threshold	template	illness	PANSS_p	PANSS_n	CPZ	
Proc	DerntlER	15	15	corr	MNI	07.3	12.3	14.6	329.9	
	Fakra	14	14	corr	MNI	NA	24	71	13.14	
	Gur_2007	16	17	uncorr	Tal	09.6	11.55078	7.55666	NA	
	Gur_2002	14	14	uncorr	Tal	NA	11.31795	7.65752	NA	
	Habel	17	17	uncorr	MNI	09.9	18	19.9	NA	A
	Choudhary	21	20	uncorr	MNI	0.39	19.8	16.3	0	d
	Johnston	10	10	corr	Tal	NA	NA	NA	NA	v
	Mier_2010ER	16	16	uncorr	MNI	NA	11.57665	9.789028	901.59	a r
	Mier_2014	11	16	corr	MNI	10.18	11.566302	9.335158	472.56	i a
	Pinkham	35	37	corr	Tal	15.21	11.457648	7.597004	378.19	b
	Reske	18	18	uncorr	MNI	NA	8	13.61	NA	e
	Satterthwaite	12	21	uncorr	Tal	NA	NA	NA	290	
Log:										
	<									>
					Add st	udv				

 $\operatorname{sigma} = \operatorname{sigma}$

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

🚯 SDMGUI - D:/	Neuro/AES	-meta/meanER											- 0	I X
Meta-analyses	Statistic	📝 Edit table											?	×
Change meta-a	analysis	Save	Table	G	Add study		😑 Delete	study		당 Add va	riable	😑 Delete '	variable	
: 45		study	n <u>1</u>	n2	thr	eshold	template	illness		PANSS_p	PANSS_n	CPZ		
Broprocessing	Proc	DerntlER	15 🥘 Fak	ra.spm_mr	ni – Pozná	mkový blok	—		×	12.3	14.6	329.9		
		Fakra	14 Soubor	Úpravy	Formát	Zobrazení	Nápověd	a		24	71	13.14		g o
<i>y</i>		Gur_2007	16 20,-4,	-16,-5	.40				^	11.55078	7.55666	NA		
Mean		Gur_2002	¹⁴ -16, -2	2,-16,-4	4.76					11.31795	7.65752	NA		
βX		Habel	¹⁷ 252	.143.7	50 73					18	19.9	NA	A	
Linear model		Choudhary	21 52, -42	2,10,-4	.32					19.8	16.3	0	d d	
Hrachald		Johnston	10 -30,2	,30,-5.0	92					NA	NA	NA	v	
All		Mier_2010ER	16 48 20	,32,-3.4	49 74					11.57665	9.789028	901.59	a	
\$ ®		Mier_2014	¹¹ 38,40	-123.	.36					11.566302	9.335158	472.56	i	
Multimodal		Pinkham	³⁵ -4, -3	-3,-3.6	57					11.457648	7.597004	378.19	b	
T		Reske	18 -42, -4	40,-16,	-3.39					8	13.61	NA	e	
Create mask		Satterthwaite	12 -36,-4	14,56,4	.40					NA	NA	290		
			-26 -/	11,40,4. 11 61 1	. 54 16									
Extract			42 - 36	5 52 4 6	.10 25									
	Log:		2544	40.56.3	.57									
Funnel Plot			, ,						\checkmark					
		<	<						>				>	
							Add stu	ıdy						
	Current v	working directory:	D:/Neuro/AES	5-meta/mean	ER									

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

- convert coordinate peaks to estimate parametric maps
- optionally include original parametric maps
- creates
 - a) parametric maps of **effect sizes**
 - b) heterogeneity maps

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

Note that these parameters are automatically set according to the modality you select. However, you can still change them for special purposes. The effects of isotropic FWHM are negligible with full anisotropy.

- modality: VBM, fMRI, PET, DTI
- template: GM, WM, FA, CSF

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

- estimate mean
- linear model
 - a) compare groups
 - b) meta-regression
- multimodal meta-analysis

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

- threshold results
- extract peaks (seed)
- funnel plot

2.

3.

4

5.

6.

1 SDM imgcalc - Blob report for 'MyMean_z_p_0.00500_1.000_10'

of ≥ 14 voxels with all voxels SE	$M-Z \ge 1.048$ and all peak	s SDM-Z ≥ 1.112			S
MNI coordinate	SDM-Z	Р	Voxels	Description	
-46,-32,48	1.702	0.000060380	1280	Left postcentral gyrus, BA 2	Show / Hide additional cluste
44,-4,56	1.289	0.001252234	75	Right middle frontal gyrus, BA 6	Show / Hide additional cluste
-28,-88,22	1.121	0.003381133	15	Left middle occipital gyrus, BA 19	Show / Hide additional cluste
-10,-58,40	1.112	0.003565371	14	Left median network, cingulum	

Blobs of ≥ 580 voxels with all voxels SDM-Z \leq -1.634 and all peaks SDM-Z \leq -1.976

Show / Hide

MNI coordinate	SDM-Z	P	Voxels	Description	
48,34,-6	-3.336	~0	5651	Right inferior frontal gyrus, orbital part, BA 47	Show / Hide additional cluster information
2,26,30	-1.976	0.000938237	580	Right median cingulate / paracingulate gyri, BA 24	Show / Hide additional cluster information

Databases

- sets of original data (eg raw scanned images)
 BRAINNet (<u>http://www.brainnet.net</u>)
 fMRI Data Center (<u>http://www.fmridc.org</u>)
 OpenfMRI (http://www.openfmri.org)
- summary statistics from the studies included in one meta-analysis (mean and SD of ROI volumes)

Bipolar Disorder Neuroimaging Database (<u>http://www.bipolardatabase.org</u>) Major Depressive Disorder Neuroimaging Database (<u>http://www.depressiondatabase.org</u>) Peak-coordinate databases from SDM meta-analyses (<u>http://www.sdmproject.com/database</u>)

• sets of summary statistics of virtually all published studies

BrainMap (<u>http://www.brainmap.org</u>) NeuroSynth (<u>http://www.neurosynth.org</u>)

Thank you for your attention

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

DP Research and Development for Innovation

literature

Kanske P, Schönfelder S, Forneck J, Wessa M (2015): Impaired regulation of emotion: neural correlates of reappraisal and distraction in bipolar disorder and unaffected relatives. Transl Psychiatry 5:e497. http://www.nature.com/doifinder/10.1038/tp.2014.137.

Radua J, Mataix-Cols D, Phillips ML, El-Hage W, Kronhaus DM, Cardoner N, Surguladze S (2012): A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur Psychiatry 27:605–11. http://www.sciencedirect.com/science/article/pii/S0924933811000733.

- Radua J, Mataix-Cols D (2009): Voxel-wise meta-analysis of grey matter changes in obsessive–compulsive disorder. Br J Psychiatry 195:393–402. http://bjp.rcpsych.org/content/195/5/393.abstract.
- Radua J, Mataix-Cols D (2012): Meta-analytic methods for neuroimaging data explained. Biol Mood Anxiety Disord 2:6. http://biolmoodanxietydisord.biomedcentral.com/articles/10.1186/2045-5380-2-6.
- Stelzer J, Lohmann G, Mueller K, Buschmann T, Turner R (2014): Deficient approaches to human neuroimaging. Front Hum Neurosci 8:1–16. http://journal.frontiersin.org/article/10.3389/fnhum.2014.00462/abstract.