

Central European Institute of Technology BRNO | CZECH REPUBLIC

Meta-analysis of neuroimaging data

Martin Jáni Selected Topics in Contemporary Neuroscience

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

year

[[]Stelzer et al., 2014]

need for comprehensive summary

- meta-analysis = quantitative review
- 1 study represents 1 subject
- units of measurement = summary statistics (effect sizes)
- standard IMRaD structure

C = C

symptom dimensions, with the psychomotor poverty group performing worse than disorganisation subjects and reality distor-

aries (a false belief about the belief of another cha

mes. As for se

 $\bar{x} = \frac{\sum x}{N}$ $\sum x =$ the sum of x N = number of data

t-statistic p value

$\mathbf{C}^{\mathbf{S}} = \mathbf{C}$

The use of Effect sizes

- difference in means / pooled standard deviation
 - Cohen's d
 - Glass'∆
 - Hedges' g
- comparable with other studies
- unit of measure is lost
- less straightforward

Hedges'
$$g = \frac{M_1 - M_2}{SD_{pooled}^*}$$

Publication bias

[Radua and Mataix-Cols, 2012]

Region of interest-based meta-analyses

Voxel-based metaanalyses

Region of interest-based meta-analyses

- set of different meta-analyses for every ROI
- selective = some regions more studied than others
- a priori hypotheses influence selection of ROI
- strong publication bias

Label-based reviews

[Radua and Mataix-Cols, 2012]

peak of a cluster plotted as a dot number of dots count in each region

- increase
- decrease
- borders of conventional regions

drawbacks: no weighting, loss of information, selective

Voxel-based meta-analyses

- Image-based meta-analyses
- Coordinate-based meta-analyses
- Mixed image- and coordinate-based meta-analyses

- Image-based meta-analyses
- Coordinate-based meta-analyses
- Mixed image- and coordinate-based meta-analyses

Image-based meta-analyses

- use of parametric maps
- meta-analysis for each voxel
- multiple-comparisons problem
- hard to find (contacting authors)

Voxel-based meta-analyses

- Image-based meta-analyses
- Coordinate-based meta-analyses
- Mixed image- and coordinate-based meta-analyses

Coordinate-based meta-analyses

	Н	BA	MNI coordinates			Cs	Z-value	T-value
			x	У	z			
Rel > Con: reappraisal-view emotional								
Amygdala	L		-21	-7	- 14	20	3.06	3.32
	R		33	5	- 20	26	2.87	3.09
Ventral ACC	L	10	- 12	50	- 2	108	4.20	4.90
Insula	L	48	- 39	2	- 11	69	3.36	3.71
	R	48	36	- 16	1	161	3.84	4.37
BD > Con: reappraisal-view emotional								
Amygdala	L		- 15	-4	- 17	18	2.99	3.18
Amygdala/parahippocampal	R		21	5	- 26	60	4.31	4.87
BD>Con: PPI L-amygdala seed								
Orbitofrontal	L	47	- 42	35	- 8	53	4.94	5.79
BD>Con: PPI R-amygdala seed								
Orbitofrontal	L	47	- 12	50	- 5	23	4.41	5.01
Rel>Con: PPI L-amygdala seed								
Orbitofrontal	L	47	- 39	29	- 14	60	4.45	5.29
	R	47	36	56	- 8	15	4.59	5.52
Rel>Con: PPI R-amygdala seed								
Orbitofrontal	R	47	39	56	-5	49	5.06	6.33

Abbreviations: BA, Brodmann area of the peak activation; Con, control; CS, cluster size in number of activated voxels; H, hemisphere; L, left; MNI, Montreal Neurological Institute; PPI, psychophysiological interaction analysis; R, right; Rel, relative.

Kanske et al. 2015

Kernel density analysis (KDA)

[Radua and Mataix-Cols, 2012]

peak as a sphere number of spheres surrounding each voxel are counted

- increase
- decrease

Multilevel kernel density (MKDA)

similar to KDA

voxel close to two spheres from one study counts as one

avoids false high values at intersections weighted by sample size

robustness analysis

WWW Peaks True signal -

[Radua and Mataix-Cols, 2012]

Activation likelihood estimation (ALE)

[Radua and Mataix-Cols, 2012]

peak as a smoothed sphere (Gaussian Kernel at FWHM)

higher value for voxels closer to the center of the sphere (peak)

- increase
- decrease

Signed differential mapping (SDM)

smoothed spheres like in ALE weighted by sample size, robustness analysis like MKDA

combines positive and negative values

adds heterogeneity analysis

[Radua and Mataix-Cols, 2012]

Effect size-Signed differential mapping (ES-SDM)

[Radua and Mataix-Cols, 2012] similar to SDM, but values are effect sizes weighted by variance (right)

random effects model

combination of peaks and statistical parametric maps

WWW Peaks ----- True signal ----- ES-SDM

Voxel-based meta-analyses

[Radua et al., 2012]

Voxel-based meta-analyses

- Image-based meta-analyses
- Coordinate-based meta-analyses
- Mixed image- and coordinate-based meta-analyses

Mixed image- and coordinate-based metaanalyses

[Radua et al., 2012]

- Meta-analysis is a quantitative systematic review
- Pretty accessible and valuable research to do
- Different approaches and methods
- ROI based and Voxel based

www.sdmproject.com

🖬 Apps 🎦 Under Byen Lyrics 🙆 🕽	lákladní • Mapy.cz 🧐 Hourly forecast for Br N Peter Mikšík - Denník 🔲 Vnímání sociálních sit 🛛 Ruský lekár vám pred 🚺 Trinásť dezertov, ktor 🎂 Fantastický mandľový
Seed-based d Mapping formerly "Signed Differentia	
SDM Project web	
> Home	SDM
> Download software	
Linux	Neuroimaging software library including meta-analytic methods
Mac OSX	for fMRI, VBM, DTI and PET and other tools
Windows	Download software Meta-analysis Tutorial Meta-analysis Manual SDM tools manual
SPM	New Anisotropic ES-SDM version 5.141 (Dec 2016) available
Meta-analysis tutorial	Please replace older versions of SDM software by Anisotropic ES-SDM version 5.141, which includes the following new features:
> Meta-analysis manual	New improved graphical user interface (GUI), now for Windows, Linux and Mac OSX
Introduction	 Possibility to combine repeated measures (e.g. from several contrasts of the same sample).
Preparation	 Fossibility to combine repeated measures (e.g. non several contrasts of the same sample). Easy automatic creation of funnel plots and Egger tests.
Globals	and some other improvements ;-)
Calculations	• and some other improvements ,-)
Results	Please feel free to download the new software
Batch processing	
Settings	Introduction
SPM extension	Seed-based d Mapping (formerly "Signed Differential Mapping") is a statistical technique for meta-analyzing studies on differences in brain activity or structure which
How to cite	used neuroimaging techniques such as fMRI, VBM, DTI or PET. The methods have been fully validated in several studies (see references below), and meta-
	analyses using this methis site may bee cookies to improve your browsing experience of to conduct analyses of web accesss of General Psychiatry / JAMA Psychiatry @ @ @ @, the

www.sdmproject.com

1. research question

- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation

6. results

	Neuro\META\regression		- 0
Meta-analyses S	tatistics <u>T</u> ools <u>H</u> elp		icron.exe - D:\Neuro\sdm/share/sdm_template — 🛛 🛛 🗙
	2 4	🔄 🔍 🔚 🛷 🔛 File Ea	dit Overlay Draw View Window Help
Change meta-anal	lysis SDM table editor Convert to t values Conv	t images Globals Save batch Run batch SDM help Quit X 32 🖨	🖥 Y 81 📮 Z 58 🗣 to fit 🧹 🎪 井
Preprocessing Mean S Linear model C Threshold Multimodal	00:17:20 - (imgcalc) [MyRegression_1_z_p_0.00 00:17:20 - (imgcalc) [MyRegression_1_z_p_0.00 00:17:21 - (imgcalc) [MyRegression_1_z_p_neg] 00:17:21 - (imgcalc) [MyRegression_1_z_p_0.00 00:17:21 - (imgcalc) [MyRegression_1_z_p_0.00 00:17:21 - Calling web browser to display the re 00:17:21 - Calling MRICron to display 3D results. 00:17:21 - Calling MRICron to display 3D results. 00:17:21 - Calling MRICron to display 3D results. 00:17:21 - DONE threshold "MyRegression_0_z", p, 0.00500, 1.000 00:17:40 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:40 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:40 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:41 - (imgcalc) [MyRegression_0_z_p_0.00]	SDM imgcalc - Blob report □ SDM imgcalc - Blob report □ SDM imgc Backgre ← → ひ file;///D:/Neuro/META/regression/MyRegression_0_z 34 SDM imgcalc - Bloc Imgcalc - Bloc Imgcalc - Bloc MyRegression_0_z_p_0.00500 Threshold parameters 42 Blobs of ≥ 85 voxels with all voxels SDM-Z ≥ 1.278 and all pr 1.763	
	00:17:41 - (imgcalc) [MyRegression_0_z_p_0.00 00:17:41 - (imgcalc) Getting SDM blobs informati		F. W
Create a mask	00:17:41 - Calling web browser to display the re 00:17:41 - Calling MRICron to display 3D results. 00:17:41 - DONE	MNI SDM-Z P Voxels Des coordinate	L (1) Z
/ Extract	<pre># Threshold 'MyRegression_1m0_z' with p 0.005 threshold "MyRegression 1m0 z", p, 0.00500, 1.</pre>	34,26,26 2.063 0.000190735 253 Соп	
	# Threshold 'MyRegression_1_z' with p 0.00500, threshold "MyRegression_1_z", p, 0.00500, 1.000	-46,-48,34 1.837 0.000483990 99 Left segi	
	# Threshold 'MyRegression_0_z' with p 0.00500, threshold "MyRegression_0_z", p, 0.00500, 1.000	-30,-28,50 1.763 0.000657678 85 Left _{-28×34×42}	2= 0.32441, 1.75468, 0.00000 Show 7 Hide additional cluster information
	Type a command:		

- **1. research question**
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

- consistent task/process
- choose contrasts

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

- similar to systematic review
- search in databases
- selection of papers
- 1 study as 1 subject
- contact authors for missing data

- 1. research question ^(*) SDMGU Meta-analy
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

 \mathbf{z}

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

	📝 Edit table									?	×
ta-analysis	🖪 Save	Table	Û	Add study	🤤 Delete	e study	당 Add va	riable	🤤 Delete v	/ariable	
	study	n1	n2	threshold	template	illness	PANSS_p	PANSS_n	СРZ		
Proc	DerntlER	15	15	corr	MNI	07.3	12.3	14.6	329.9		
9	Fakra	14	14	corr	MNI	NA	24	71	13.14		
	Gur_2007	16	17	uncorr	Tal	09.6	11.55078	7.55666	NA		
	Gur_2002	14	14	uncorr	Tal	NA	11.31795	7.65752	NA		
1	Habel	17	17	uncorr	MNI	09.9	18	19.9	NA		A d
	Choudhary	21	20	uncorr	MNI	0.39	19.8	16.3	0		d
	Johnston	10	10	corr	Tal	NA	NA	NA	NA		v
-	Mier_2010ER	16	16	uncorr	MNI	NA	11.57665	9.789028	901.59		a r
	Mier_2014	11	16	corr	MNI	10.18	11.566302	9.335158	472.56		i a
_	Pinkham	35	37	corr	Tal	15.21	11.457648	7.597004	378.19		b I
c	Reske	18	18	uncorr	MNI	NA	8	13.61	NA		е
•	Satterthwaite	12	21	uncorr	Tal	NA	NA	NA	290		

 $\operatorname{sigma} = \operatorname{sigma}$

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

nalyses Statistic	🥫 Edit table							?	×	
E	Save Table	<table-cell-rows> Add study</table-cell-rows>	🥃 Delete study		당 Add va	riable	😑 Delete va	ariable		
ge meta-analysis	study n1	n? threshold	template illness		PANSS_p	PANSS_n	CPZ			-
Proc	DerntlER 15 🖉 Fal	ra.spm_mni – Poznámkový	blok — 🗆	\times	12.3	14.6	329.9			
cessing	Fakra 14 Soubor	Úpravy Formát Zobra	zení Nápověda		24	71	13.14			9
$\overline{\mathcal{V}}$,-16,-5.40		^	11.55078	7.55666	NA			
an	Gur_2002 14 -16, -	2,-16,-4.76 ,26,-3.86			11.31795	7.65752	NA			
X		,20,-3.00 ,14,-3.73			18	19.9	NA		А	
model		2,10,-4.32			19.8	16.3	0		d d	
₽	Johnston 10 - 30, 2	,30,-5.02			NA	NA	NA		v	
shold	Mier_2010ER 16 48 20	,32,-3.49			11.57665	9.789028	901.59		a r	
₿	40,20	,18,-3.74 ,-12,-3.36			11.566302	9.335158	472.56		i a	
odal		,-3,-3.67			11.457648	7.597004	378.19		b	
9		40,-16,-3.39			8	13.61	NA		e	
e mask		44,56,4.40			NA	NA	290			
9 .		31,46,4.34 44,61,4.16								
ract		6,52,4.05								
el Plot	25,-4	40,56,3.57								-
	< <			>				>		
			Add study		, I					

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

- convert coordinate peaks to estimate parametric maps
- optionally include original parametric maps
- creates
 - a) parametric maps of **effect sizes**
 - b) heterogeneity maps

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

Note that these parameters are automatically set according to the modality you select. However, you can still change them for special purposes. The effects of isotropic FWHM are negligible with full anisotropy.

- modality: VBM, fMRI, PET, DTI
- template: GM, WM, FA, CSF

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

- estimate mean
- linear model
 - a) compare groups
 - b) meta-regression
- multimodal meta-analysis

- 1. research question
- 2. data collection
- 3. formatting
- 4. preprocessing
- 5. model estimation
- 6. results

- threshold results
- extract peaks (seed)
- funnel plot

2.

3.

4

5.

6.

1 SDM imgcalc - Blob report for 'MyMean_z_p_0.00500_1.000_10'

f ≥ 14 voxels with all voxels SD	S				
MNI coordinate	SDM-Z	P	Voxels	Description	
-46,-32,48	1.702	0.000060380	1280	Left postcentral gyrus, BA 2	Show / Hide additional cluster
44,-4,56	1.289	0.001252234	75	Right middle frontal gyrus, BA 6	Show / Hide additional cluster
-28,-88,22	1.121	0.003381133	15	Left middle occipital gyrus, BA 19	Show / Hide additional cluster
-10,-58,40	1.112	0.003565371	14	Left median network, cingulum	Show / Hide additional cluster

Blobs of ≥ 580 voxels with all voxels SDM-Z \leq -1.634 and all peaks SDM-Z \leq -1.976

Show / Hide

MNI coordinate	SDM-Z	P	Voxels	Description	
48,34,-6	-3.336	~0	5651	Right inferior frontal gyrus, orbital part, BA 47	Show / Hide additional cluster information
2,26,30	-1.976	0.000938237	580	Right median cingulate / paracingulate gyri, BA 24	Show / Hide additional cluster information

Databases

- sets of original data (eg raw scanned images)
 BRAINNet (<u>http://www.brainnet.net</u>)
 fMRI Data Center (<u>http://www.fmridc.org</u>)
 OpenfMRI (http://www.openfmri.org)
- summary statistics from the studies included in one meta-analysis (mean and SD of ROI volumes)

Bipolar Disorder Neuroimaging Database (<u>http://www.bipolardatabase.org</u>) Major Depressive Disorder Neuroimaging Database (<u>http://www.depressiondatabase.org</u>) Peak-coordinate databases from SDM meta-analyses (<u>http://www.sdmproject.com/database</u>)

• sets of summary statistics of virtually all published studies

BrainMap (<u>http://www.brainmap.org</u>) NeuroSynth (<u>http://www.neurosynth.org</u>)

Thank you for your attention

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

Development for Innovation

literature

Kanske P, Schönfelder S, Forneck J, Wessa M (2015): Impaired regulation of emotion: neural correlates of reappraisal and distraction in bipolar disorder and unaffected relatives. Transl Psychiatry 5:e497. http://www.nature.com/doifinder/10.1038/tp.2014.137.

Radua J, Mataix-Cols D, Phillips ML, El-Hage W, Kronhaus DM, Cardoner N, Surguladze S (2012): A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur Psychiatry 27:605–11. http://www.sciencedirect.com/science/article/pii/S0924933811000733.

- Radua J, Mataix-Cols D (2009): Voxel-wise meta-analysis of grey matter changes in obsessive–compulsive disorder. Br J Psychiatry 195:393–402. http://bjp.rcpsych.org/content/195/5/393.abstract.
- Radua J, Mataix-Cols D (2012): Meta-analytic methods for neuroimaging data explained. Biol Mood Anxiety Disord 2:6. http://biolmoodanxietydisord.biomedcentral.com/articles/10.1186/2045-5380-2-6.
- Stelzer J, Lohmann G, Mueller K, Buschmann T, Turner R (2014): Deficient approaches to human neuroimaging. Front Hum Neurosci 8:1–16. http://journal.frontiersin.org/article/10.3389/fnhum.2014.00462/abstract.