Energy Resources: Past, Present, and Future

Energy is the ability to do work

1st Law of Thermodynamics: energy cannot be created or destroyed

2nd Law of Thermodynamics: energy goes from a high quality to a lower quality during each energy transformation; while energy is conserved, it's ability to do work decreases

Forms of energy: potential, kinetic, thermal, chemical, electrical, etc.

Energy is key to Sustaining system structure and complexity

Natural and human systems build and maintain order and organization by taking in high quality energy, using it, and passing degraded energy outside of the system boundary.

Our society is dependent on the energy flows that support it AND having a sink for the waste.

High quality Energy Input

System (human or natural) Low quality Energy output (waste heat)

Simplified Ecosystem

Renewable versus nonrenewable resources

Renewable energy resources – are continuously replenished at a rate useful for human consumption

Nonrenewable energy resources – are limited in supply or are replenished at a rate that is negligible compared to rate of human consumption.

Conventional Energy Sources

1. **Fossil fuels**---coal, petroleum, natural gas---have stored solar energy, that we draw on today for the activities of the modern life.

Alternative Energy Sources 2. Nuclear power began in US in 1957 in Shippingport, PA. Use varies greatly from country to country

3. **Renewable energy**---hydroelectric power; biomass such as wood, waste, and biofuels; geothermal; solar; and wind---is replenishable

World Energy Consumption by Fuel - BP

Figure 1. Energy mixes in the CEE region - gross energy consumption of primary sources in 2013

Source: Eurostat, Energy Community

U.S. energy consumption by energy source, 2015

Note: Sum of components may not equal 100% because of independent rounding.

Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1 (April 2016), preliminary data

Energy Consumption by Primary Energy Source

Energy Consumption by Source, 1635-2006

50 -

Energ What ses: Heat Transport Electricity

Energ Where: Residential/Commercial Industrial Transportation

Source: Energy Information Administration, 1998, Annual Energy Review, U.S. Department of Energy. Copyright 2000 John Wiley and Sons, Inc.

Biomass for heat an

Wind for windmills (pumping) and sailing

Water for watermills (milling)

Animal and human energy for labor

> Biomass for heat and cooking Wind for windmills (pumping) and sailing Water for watermills (milling) Solar for thermal regulation Animal and human energy for labor

These sources are renewable with little long term impact on the environment, but have a generally low energy density.

Energy density is the amount of energy stored in a given space per unit volume

Transition to fossil fuels
Coal – used as early as 13th century, extensive use by mid-19th century
Oil – used mid-late 19th century
Natural Gas – used late 19th century, big boom after WWII

Copyright 2000 John Wiley and Sons, Inc.

Fossil Fuels are derived from partially decomposed organic materials transformed in Earth's crust by pressure, heat and bacterial processes. It takes millions of years for these organisms to chemically change into fossil fuels.

P.G

Coal formation

WORLD COAL RESERVES

Proven recoverable coal reserves reported to the World Energy Council by the top-ten coal-producing countries at the end of 2008. Coal of higher quality (bituminous including anthracite) is being depleted most quickly.

Coal Consumption by Sector

Electricity Generation whether from fossil fuels, nuclear, renewable fuels, or other sources - is usually<u>*</u> based on the fact that:

"When copper wire is moving through a magnetic field, an electric current is generated in that wire."

www.hawaii.gov/dbedt/ert/electgen.html

* exceptions are electrochemistry (batteries) and photovoltaic effect

In the picture, the shaft and armature (with copper wire) spin around. The magnets are on the outside (they don't move). Electricity, at the "+" and "-" terminals, is shown in the picture as a lighting bolt.

So where do all the different energy sources come in? It's all a question of how to get (and keep) the system moving (i.e. how to keep the copper wire spinning around).

In a **steam power plant**, fuels (such as petroleum, coal, or biomass) are burned to heat water which turns into steam, which goes through a turbine, which spins...*turning the copper wire (armature) inside the generator and generating an electric current*.

Electric generators are essentially very large quantities of copper wire spinning around inside very large magnets at very high speeds.

A commercial utility electric generator -- for example, a 180megawatt generator is 20 ft in diameter, 50 ft long, and weighs >50 tons. The copper coils (called the "armature") spin at 3600 rpm. Although the principle is simple (copper wire and magnets), it's not necessarily easy! In a **nuclear** power plant, nuclear reactions create heat to heat water, which turns into steam, which goes through a turbine, which spins...*turning the copper armature inside the generator and generating an electric current*.

In a **wind turbine**, the wind pushes against the turbine blades, causing the rotor to spin...*turning the copper armature inside the generator and generating an electric current*.

In a **hydroelectric turbine**, flowing (or falling) water pushes against the turbine blades, causing the rotor to spin...*turning the copper armature inside the generator and generating an electric current*.

The different energy sources just provide energy to do the same basic thing...*turning the copper armature inside the generator and generating an electric current*.

Hamsters

Historical Net Electricity Generation (Electric Power Sector Only) 1949-2012

Source: Energy Information Administration; Online at: http://www.eia.gov/totalenergy/data/annual/pdf/sec8_9.pdf

Original Col. Drake Well, August 27, 1859 Titusville, Pa

Petroleum Consumption by Sector

Who has the oil?

Each country's size is proportional to the amount of oil it contains (oil reserves); Source: BP Statistical Review Year End 2004 & Energy Information Administration

\$	Country \$	Production (bbl/day) Top 10 countries updated 2016
1	Saudi Arabia (OPEC)	10,625,000
2	Russia	10,254,000
3	United States	8,744,000
4	Iraq (OPEC)	4,836,000
5	People's Republic of China	3,938,000
6	Iran (OPEC)	3,920,000
7	Canada	3,652,000
8	United Arab Emirates (OPEC)	3,188,000
9	Kuwait (OPEC)	3,000,000
10	Srazil	2,624,000

G (B (A))

a

a

Top Countries Total Oil Consumption 2017

World oil flow

Source: British Petroleum Company, 1995, BP Statistical Review of World Energy. Copyright 2000 John Wiley and Sons, Inc.

U.S. uses 19 Million barrels of petroleum per DAY. Most for transportation.

Light crude oil - Discoveries / Production

100

M.K. Hubbert's view of the oil age over the long-term

Natural gas is currently seen as a transition or "bridge" fuel: from coal to renewables

Pros: Lower carbon emissions than coal Prices are low (now) Supply is high (now)

Cons:

Methane emissions are more potent GHG than CO₂ Non-renewable resource

Environmental Impacts of Fossil Fuel Use

Photochemical smog

Oil spills

Acid mine drainage

Variations of the Earth's surface temperature for...

Climate Change

Environmental impacts of fossil fuel use Recovery – land disruption, loss of habitat, surface water pollution, air pollutants, land subsidence Off-shore oil drilling –oil seepages, aesthetic degradation Refining – spills leaks, soil and groundwater pollution Delivery – Spills Use CO_2 – emission, air pollution (smog), acid rain

BOTH SUPPLY AND USE ISSUES WITH FOSSIL FUEL RESOURCES

Renewable Energy

Hydroelectric Biomass Wind Geothermal Solar Tidal

U.S. energy consumption by energy source, 2015

Note: Sum of components may not equal 100% because of independent rounding.

Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1 (April 2016), preliminary data

eia

Share of energy from renewable sources in the EU Member States

(in % of gross final energy consumption)

Most renewables start with solar energy

Have specific end uses

Have lower energy density

Lower environmental impact

Copyright 2000 John Wiley and Sons, Inc.

Renewable Energy Consumption by Sector

Hydroelectric power (250BKw ~10% total in U.S.)

Wind Energy

Global wind energy capacity

SHARE OF CUMULATIVE INSTALLED CAPACITY - WORLDWIDE, AS OF DECEMBER 2012

USA 5%

Germany 10%

New Installed Capacity H1 2014 New Installed Capacity H1 2014: 17'613 MW

India 6%

© WWEA 2014

Spain <1%

Solar Energy

Passive solar uses building designs (i.e., walls, windows, floors, roofs, materials, and landscaping) to manage energy budget.

Daylighting optimizes the use of natural light.

Source: J. Huang and S. Winnett, 1992. Cooking Dur Communities: A Guidebook on Tree Planting and Lyth Colored Surfacing, U.S. EPA Office of Policy Analysis, U.S. Superintendent of Documents, Washington, DC. Copyright 2001.John Wiley and Sons, Inc.

Passive solar design uses overhangs or vegetation

Active solar uses mechanical equipment for heating, collecting, and electricity generation.

Photovoltaics Collectors

Solar hot water, NOT PV

Providing hot water for homes

Photovoltaic cell or solar cell

Solar panels on the rooftops of Barton and Douglass Houses.

Remote applications of PV where electric grid does not exist

West Bengal, India. Rooftop PV modules on a village health center provide power for refrigerators containing medicines and vaccines, for lights, and for other important needs. U.S.DOE

In 1997 "Sojourner" explored Mars using high-efficiency photovoltaic (PV) cells which generated 16 watts of power. **Biomass** Electricity/heat Wood/wood chips Waste

> Transport Ethanol corn cellulose Biodiesel

Complications of ethanol Fossil inputs to agriculture Fertilizer and pesticide inputs Low energy return on energy invested

Drives up price for food

2014 cost per kilowatt by energy source

Energy use in daily life (Ecological Footprint – measuring your impact)

Household consumptionTransportationDiet

Household consumption

most energy use is from the BIG/LONG-TERM appliances

(one time opportunity):

Furnace Air Conditioning Refrigerator Hot water heater

Lighting – use CFLs Electronics

Transportation

Increase fuel efficiency Alternative/hybrid technology

Reduce number of trips Reduce distance of trips

Use mass transit

LAND USE PLANNING

Diet

Locally grown food Less processed food Organic food (less fossil energy inputs) Eat lower on the food chain (less meat) Less food waste

Energy Future

Transition to Renewables (cleaner and sustainable)

Increased Efficiency and Conservation in all sectors

Reduce need for transportation through wise development decisions

Food, energy, water nexus

- It takes energy and water to grow food
- It takes water to produce energy
- It takes energy to move and clean water
- It takes food for the people provide food, water, and energy

Watershed is all area that drains to a common point

FEWshed Visualization

Food production and trade (YSSP Project by Nemi Vora, Univ. of Pittsburgh)

- Trade can in(de)crease environmental impact of food production depending on trading partners
- Physical food trade vs. virtual (embodied) resource trade

Example food trade matrix, flow in mass

Actual trade vs. maximal indeterminacy

A.) Actual trade B.) Maximal Indeterminacy (zero dependency) - flow structure evenly redistributed given network flow constraints. Each visualization represents only flows that are at least 1% of the maximum link weight

Trade dependencies for Texas

Understanding Texas's import dependencies

Texas largest out-of-state importer

Origin States	Food imports to Texas in (US tons)	Rank by trade flow	PMI	Rank by PMI
Lower PMI rank: Potential to increase trade				
Oklahoma	2.3E+06	3	1.39	4
Nebraska	1.4E+06	4	-2.34	12
Louisiana	9.9E+05	5	0.60	6
Missouri	5.7E+05	6	-1.63	7
Minnesota	4.4E+05	7	-3.79	22
Illinois	2.9E+05	8	-4.53	28
North Dakota	2.4E+05	9	-3.51	21
New Mexico	1.9E+05	10	1.45	3
California	1.6E+05	11	-2.68	15
Georgia	1.5E+05	12	-1.83	8
Arkansas	1.4E+05	13	-2.86	16
Trade dependencies for Texas

Understanding Texas's import dependencies

Texas largest out-of-state importer

Origin States	Food imports to Texas in (US tons)	Rank by trade flow	PMI	Rank by PMI
Texas	2.9E+07	1	3.74	1
Kansas	2.8E+07	2	2.24	2
Oklahoma	2.3E+06	3	1.39	4
Nebraska	1.4E+06	4	-2.34	12
Louisiana	9.9E+05	5	0.60	6
Higher PMI rank: More dependent than expected				
Illinois	2.9E+05	8	-4.53	28
North Dakota	2.4E+05	9	-3.51	21
New Mexico	1.9E+05	10	1.45	3
California	1.6E+05	11	-2.68	15
Georgia	1.5E+05	12	-1.83	8
Arkansas	1.4E+05	13	-2.86	16

PMI values for virtual water imports to Texas

PMI values for Imports to Texas

-10.35 - (-10) (-9.99) - (-5) (-4.99) - 0 0.01 - 3.04 Gravity model of trade $F_{ij} = G^{M_i \times M_j} / \frac{d_{ij}^2}{d_{ij}^2}$

 $F_{ij} = trade \ between \ i \ and \ j$ d = distance $M = economic \ mass \ of \ country$ G = constant

PMI for virtual water imports to Texas

The white states indicate no imports. Size of circles represent total water withdrawals for irrigation.

PMI virtual water imports for Texas and water withdrawals across states

Virtual water import vulnerability of Texas

[1] Groundwater stress index from Gleeson, Tom, et al. "Water balance of global aquifers revealed by groundwater footprint." Nature (2012), GIS layer from world resource institute, Aqueduct

PMI value for embodied GHG emissions

Conclusions:

Energy is the basis for all actions and activities Most of the energy we currently use is from nonrenewable resources (coal, oil, natural gas) Each energy source has a different target use Transition to renewables will address environmental problems but will be difficult to scale to our current rate of use

Oil for transportation will be the most difficult to replace We recognize better now the clear interdependencies between energy, food supply, and water use.

THANK YOU FOR YOUR ATTENTION