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ABSTRACT
The Internet and online social networks have greatly facili-
tated and accelerated information diffusion processes, but at
the same time they provide fertile ground for the spread of
misinformation, rumors and hoaxes. The goal of this work
is to introduce a simple modeling framework to study the
diffusion of hoaxes and in particular how the availability of
debunking information may contain their diffusion. As tra-
ditionally done in the mathematical modeling of information
diffusion processes, we regard hoaxes as viruses: users can
become infected if they are exposed to them, and turn into
spreaders as a consequence. Upon verification, users can also
turn into non-believers and spread the same attitude with a
mechanism analogous to that of the hoax-spreaders. Both
believers and non-believers, as time passes, can return to a
susceptible state. Our model is characterized by four pa-
rameters: spreading rate, gullibility, probability to verify a
hoax, and that to forget one’s current belief. Simulations on
homogeneous, heterogeneous, and real networks for a wide
range of parameters values reveal a threshold for the fact-
checking probability that guarantees the complete removal
of the hoax from the network. Via a mean field approxima-
tion, we establish that the threshold value does not depend
on the spreading rate but only on the gullibility and for-
getting probability. Our approach allows to quantitatively
gauge the minimal reaction necessary to eradicate a hoax.
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gies]: Modeling and simulation

Keywords
Misinformation spread; fact-checking; viral hoaxes; epidemi-
ology; information diffusion models

∗Contact author. Email: tambuscio@di.unito.it

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742572.

1. INTRODUCTION
In a hyper-connected world where information spreads in-

creasingly fast, online social networks and new media play
a crucial role in the diffusion of misinformation, i.e., false
claims that are mostly spread unintentionally. Few people
seem to check the reliability of news before sharing them
with their friends and potentially with millions of others.
This is mainly due to the fact that the Internet, in par-
ticular social networking services, provide a complete de-
centralization of information on a large scale: every user is
potentially a news source, and often it is not trivial to es-
tablish the truth. In the last few years there has been a
growing interest in this topic, with different approaches and
techniques. Several publications have focused on studying
characteristics of rumor propagation, analyzing features [5,
11, 18, 7] and proposing diffusion models [4, 12, 21, 20, 1].
Great effort has been devoted to the creation of effective
classifiers to detect false content or fake accounts, highlight-
ing recurrent patterns [10, 6, 14, 18]. On the other hand,
several theories have been proposed to limit the diffusion of
hoaxes, identifying the most influential users or working on
prejudices and personal beliefs, from a psychological point
of view [3, 9].

Here we focus on analyzing how long a hoax survives in a
network, i.e., the duration of time in which there are users
who believe it true. Intuitively, hoaxes are very similar to
common viruses: people, as nodes in the social networks,
can become “infected” and believe fake news upon coming
into contact with other infected nodes, or “recover” with
a simple fact-checking action. The virus spread problem
has been studied extensively and many epidemic models
were proposed since the 1920s. Later scientists realized that
those mathematical models could describe a large range of
other phenomena like social contagion, information spread,
and computer virus attacks [7, 21, 13]. We consider com-
partmental epidemic models, like SIR (Susceptible-Infected-
Recovered) and SIS (Susceptible-Infected-Susceptible) [2], in
which nodes are characterized by different behaviors repre-
sented by states, and the dynamical evolution of the system
is ruled by transition rates among the states.

We propose a stochastic epidemic model to describe the
simultaneous diffusion of a hoax and its relative debunking:
it can be seen as a SIS model in which the Infected sta-
tus is split in two sub-compartments, believers (B) and fact
checkers (F), and the transition I→ S can be interpreted as a
forgetting process. Moreover we have the transition B → F
with a fixed probability pverify that indicates the fraction
of infected users that check the reliability of the informa-
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tion received, revealing the hoax. Empirical observations
suggest that some hoaxes seem to become endemic in so-
cial networks, since periodically same false news re-emerge
and “infect” other users, even many years after their first
appearance. We are interested in comparing our model with
SIS for what concerns the absence of an epidemic threshold
(infection can become endemic) in scale-free networks [17].
Furthermore we analyze the role of a fact-checking activity:
can we find a threshold for pverify, i.e., a value that assures
the complete removal of the hoax from the network?

2. THE MODEL
We want to simulate the spread of a hoax and its debunk-

ing at the same time, assuming that some users believe the
fake news and some others do not, because they decide to
verify the information or because they already know it is
not true. Therefore we build upon a model for the compet-
itive spread of two rumors [19] to describe the competition
among believers and fact-checkers. We extend the model by
introducing verifying and forgetting processes.

We consider a network represented by a graph G = (V,E).
Each node i is associated to a triple of binary indicators,
representing its state at time t, that can assume one of three
possible values:

∀i ∈ V si(t) = [sBi (t), sFi (t), sSi (t)] =


[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

(1)

corresponding to the three possible behaviors for agent i:

• sBi (t)=1 (Believer): i believes the fact is true,

• sFi (t)=1 (Fact checker): i believes the fact is false,

• sSi (t)=1 (Susceptible): i is neutral.

We represent the following three phenomena:

• spreading [S → B,S → F ]: each agent modifies
with some probability its state considering the points
of view (states) of its neighbors;

• verifying [B → F ]: each agent can fact-check the
hoax with a fixed probability pverify;

• forgetting [B → S, F → S]: each agent, regardless of
belief state, forgets the news with a fixed probability
pforget.

Let pi(t) be the probability mass function of i at time t:

pi(t) = [pBi (t), pFi (t), pSi (t)] (2)

representing the probability of assuming each of the possible
behaviors (B,F, S) at time t. The dynamics of the system
are given by a random realization for pi(t+ 1):

si(t+ 1) = MultiRealize[pi(t+ 1)]. (3)

The probability mass function pi(t+ 1) is defined by:

pBi (t+ 1) = fis
S
i (t) + (1− pforget − pverify)sBi (t)

pFi (t+ 1) = gis
S
i (t) + pverifys

B
i (t) + (1− pforget)s

F
i (t)

pSi (t+ 1) = pforget(s
B
i (t) + sFi (t)) + (1− fi − gi)sSi (t)

(4)

Figure 1: States and transitions of the model

where pforget, pverify are constant probabilities and fi, gi
are the “spreading” functions that provide the network ef-
fect, describing how the hoax (fi) and its debunking (gi)
disseminate among the immediate neighborhood of a ver-
tex. These “spreading” functions are given by:

fi(t) = β
nB
i (t) · (1 + α)

nB
i (t) · (1 + α) + nF

i (t) · (1− α)

gi(t) = β
nF
i (t) · (1− α)

nB
i (t) · (1 + α) + nF

i (t) · (1− α)

(5)

where β ∈ [0, 1] is a constant parameter for the spreading
rate, α ∈ [0, 1) is a constant parameter for the credibility of
the hoax (or agents gullibility), and nB

i , nF
i are the number

of neighbors of i that are believers or fact checkers at time t,
respectively. Notice that fi(t) + gi(t) = β, i.e., the infection
rate, as in the SIS model: indeed, if we consider the two
states Believer and Fact checker as a unique state Infected,
we recover the SIS model exactly, where pforget is the recov-
ery probability usually denoted by µ. In summary, we have
four parameters: the spreading rate β, the gullibility α, the
probability pverify to fact-check a hoax, and the probabil-
ity pforget to forget one’s current belief. We consider here
values of pforget and pverify such that pforget + pverify < 1.
The model is illustrated in Figure 1.

3. RESULTS
To explore whether the network topology plays a role in

the persistence of infections, as it happens in SIR/SIS cases
[17, 16], we tested our model on different types of networks:
random, scale-free, and a real social network from Facebook.
In the rest of the paper we will denote with B∞, F∞ and
S∞ the densities of believers, fact checkers and susceptible
nodes in the infinite-time (equilibrium) limit.

3.1 Scale-free and random networks
Let us consider Barabasi-Albert (BA) and Erdos-Renyi

(ER) networks with the same size (N = 1000) and same
mean degree (〈k〉 = 6). To understand the influence of
fact-checking activity, in these simulations we fix the val-
ues of the spreading rate (β = 0.5) and forgetting probabil-
ity (pforget = 0.1), varying only pverify and the gullibility
parameter α. In Figure 2 we show results obtained with
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BA network

BELIEVER FACT CHECKER SUSCEPTIBLE

ER network

Figure 2: Model behavior in BA and ER networks
with N = 1000 and 〈k〉 = 6. Each line represents
number of nodes of same compartment, averaged
on 30 iterations, fixing β = 0.5 and pforget = 0.1.

α = 0.3 and α = 0.8, pverify = 0.05 in BA and ER net-
works. The obtained behaviors are similar to those of known
epidemic models. We find that:

• S∞ does not depend on topology, pverify or spreading
rate β, as we will prove with mean-field equations;

• α and pverify rule the dynamics of believers and fact
checkers, determining the victory of one of the two
behaviors;

• increased fact-checking (pverify) has the power to re-

move the hoax (B∞ = 0), however the total infection
(intended as the sum B∞ +F∞) remains active in the
network.

Let us focus on the last point: even with an high gullibility
(α ≈ 1), it seems always possible to find a value of pverify
such that B∞ = 0. Let us build a phase diagram in which
we vary only α ∈ [0, 1) and pverify ∈ [0, 0.3] (the other pa-

rameters remain fixed as before). For each point (α, pverify)
in the diagram we indicate the value of B∞, using a color
palette to show the density of believers. Figure 4 illustrates
two phase diagrams for BA and ER networks. They confirm
that a relatively small fact-checking activity can cancel the
hoax, even when users tend to believe it with high proba-
bility. We will derive analytically a theoretical threshold for
pverify to guarantee the disappearance of fake content.

We tested the model also on real networks, and results
confirm the behaviors we obtained with the synthetic net-
works. In Figure 3 we show results of simulations on a real
Facebook network with N ≈ 4000 [8] and BA/ER networks
of the same size, with fixed parameters as in Figure 2. When
the hoax is more credible, or the agents are more gullible,
the population of believers is larger, as expected.

FB network BA network ER network

Figure 3: Comparison of simulation results on dif-
ferent network types with same size. Parameters:
β = 0.5, pforget = 0.1, pverify = 0.05, α = 0.3 (top) and

0.8 (bottom).

BA network ER network

Figure 4: Phase diagram showing B∞, varying α
(hoax credibility or agent gullibility) and pverify.
Each point is the averaged result on 30 simulations.

3.2 Comparison with SIS/SIR
As explained earlier, our model can be interpreted as an

SIS model in which the Infected status is split in two sub-
compartments, therefore we can investigate analogies be-
tween the two models. In Figure 2 and Figure 4 it is im-
mediately evident that the model has basically the same
behavior in BA and ER networks. In particular, even when
the hoax is removed, its debunking keeps spreading in the
network: this means that the “infection” (believers and fact
checkers) is still active. This is not surprising: a classic re-
sult in epidemic theory [16] says that there is no difference of
behavior in heterogeneous and homogeneous networks when
the reproduction number

R0 =
β · 〈k〉
pforget

is greater than 1, as in our configuration (R0 = 30 � 1).
But when R0 < 1, traditional SIR and SIS models perform
differently depending on the network topology: in a random
network, the virus expires; in a scale-free networks, under
the right assumptions, the epidemic threshold goes to zero
and the infection can reach an endemic level — although
with a very small number of infected individuals. In our
model we confirm the absence of an epidemic threshold in
scale-free networks, as shown by the example in Figure 5.
We set the parameters so that R0 = 0.85 < 1. While only
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BA network ER network

Figure 5: As in SIS/SIR models, under the right
assumptions, our model has a different behavior in
BA or ER networks. In this example the param-
eter values are β = 0.1, pforget = 0.7, α = 0.8, and
pverify = 0.05. Considering the infection as the sum
of believers and fact checkers, we observe two dif-
ferent behaviors: in the ER network the infection
is removed, while in the BA network the infection
reaches an endemic level (with only fact checkers).

susceptible users survive in ER networks, a few fact checkers
survive in BA networks.

3.3 Analytical results
In previous sections we show several simulation results:

now we want to prove some of these with a mathematical
analysis of the model. We derive mean-field equations for
our model, in the hypothesis that all vertices have the same
number of neighbors 〈k〉 and these neighbors are chosen ran-
domly, therefore the values pi(t) do not depend on i. With
some calculations, we obtain:

pS(∞) =
pforget

β + pforget
(6)

pB(∞) =


0

β(2α · pforget − (1− α) · pverify)

2α(β + pforget)(pforget + pverify)

(7)

pF (∞) = 1− pB(∞)− pS(∞). (8)

We can read these three values as S∞, B∞ and F∞; they
match with the simulations results in the previous section.
First, the density of susceptible individuals at the infinite-
time limit depends only on the spreading rate β and the
forgetting probability: Eq. 6 fits very well with numerical
results. Second, from Eq. 7 we can obtain a sufficient con-
dition for the hoax to be removed from the network:

pB(∞) =
β(2α · pforget − (1− α) · pverify)

2α(β + pforget)(pforget + pverify)
> 0

⇒ pverify <
2α

1− α · pforget

and therefore

pverify ≥
2α

1− α · pforget ⇒ pB(∞) = 0. (9)

The threshold is plotted in Figure 6 for some value of pforget.
This result is consistent with simulations and phase dia-
grams illustrated in Figure 4.

Figure 6: Analytical values of pverify, as a function

of α (with pforget = 0.1), such that the hoax is com-
pletely removed from the network.

4. CONCLUSIONS
In this work we proposed a stochastic epidemic model

to describe the propagation of a hoax in a social network.
This model can be interpreted as a SIS model in which the
compartment I of infected users has two sub-compartments:
believers and fact-checkers. We implemented and tested
the model on heterogeneous (scale-free), homogeneous (ran-
dom), and real networks, varying parameters and topology.
We focused on analyzing the crucial role of fact-checking
activity, ruled by a verifying probability. Analytically, we
found a threshold for this probability, a sufficient condition
that assures the hoax will be removed. This is interesting
because it provides an idea of how many fact-checkers would
be sufficient to guarantee the complete removal of fake news.

We analyzed the results of several simulations, discussing
the role of each parameter in the dynamic evolution of the
system, and confirming similarities of behaviors with tradi-
tional SIS and SIR epidemic models. On the basis of the
results presented here, work on this point is continuing to
explore if there are regions of the network in which it is
easier that the hoax infection becomes endemic.

Future work could also involve some extensions to the
model: we could insert a “memory effect” or delay the de-
bunking diffusion, as realistically the two propagations may
not be simultaneous. Moreover, this model does not take
into account the heterogeneity of agents — all have the same
gullibility and verification probability, for example. In real
life, people may have different tendencies to believe claims
that are consistent with their world views and selectively
discard factual evidence that is not consistent [15]. Addi-
tionally we began to explore how the dynamics respond to
a periodical re-injection of the hoax: a spiky behavior ap-
pears, with periodic bursts of spreading. Recent work on
detection of rumors and fake content identified such bursts
as features with high predictive power [6, 10], so they de-
serve further study. We are studying a more sophisticated
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model in which we consider different gullibility values in two
communities (skeptic and gullible), observing the role of seg-
regation level among the groups, and the polarization of the
hoax in the gullible group, a fact that has been empirically
observed in [11]. Finally, the model need to be validated
with empirical data, analyzing the diffusion of real hoaxes
in social networks.
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APPENDIX
A. MEAN-FIELD ANALYSIS

We can approximate the infinite-time behavior of the sys-
tem with mean-field theory. First we simplify Eq. 4 substi-
tuting si(t) with pi(t) and considering that pi(t+ 1) = pi(t)
when t → ∞. Then, in the hypothesis that all vertices
have the same number of neighbors 〈k〉 and these neighbors
are chosen randomly, we substitute nB

i (t) with pB(∞) and
nF
i (t) with pF (∞) in the spreading functions, Eq.5. We ob-

tain equations only in terms of pB(∞), pF (∞) and pS(∞):

p
B
(∞) =f · pS(∞) + (1− pforget − pverify) · p

B
(∞) (10)

p
F
(∞) =g · pS(∞) + pverify · p

B
(∞) + (1− pforget) · p

F
(∞) (11)

p
S
(∞) =pforget · (p

B
(∞) + p

F
(∞)) + (1− f − g) · pS(∞). (12)

Moreover, we know that pSi (t) = 1−pBi (t)−pFi (t), therefore
we can substitute

pS(∞) = 1− pB(∞)− pF (∞) = 1− β
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in 12 and trivially obtain the solution for the susceptible
rate at stationary state:

pS(∞) =
pforget

β + pforget
. (13)

Similarly, we can re-write:

pF (∞) =1− pB(∞)− pS(∞)

=1− pB(∞)−
pforget

β + pforget

(14)

and, substituting it in 10, we obtain an equation only in
terms of pB(∞):

pB(∞) = f ·
pforget

β + pforget
+(1−pforget−pverify)·pB(∞) (15)

where

f =
β · pB(∞) · (1 + α)

pB(∞) · (1 + α) + (1− pB(∞)−
pforget

β + pforget
) · (1− α)

.

We can observe that pB(∞) = 0 is solution of 15, i.e. the
situation in which the hoax is defeated. To find the rate
of believers at the stationary state when the hoax survives,
with a little algebra on 15, it is easy to obtain

pB(∞) =
β(2α · pforget − (1− α) · pverify)

2α(β + pforget)(pforget + pverify)
. (16)

For fact-checkers we also have two solutions (hoax survives
or not) and we can trivially find them substituting the values
for believers and susceptible users in

pF (∞) = 1− pB(∞)− pS(∞).
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