The Common Factor
Model

PSY544 — Introduction to Factor Analysis

Week 4



Homework!

* Homework assignment 1 will be out this week

* I’ll send you an email, along with the deadline



The data model in factor analysis

* Recall the way we formulated the Common Factor Model earlier —we
expressed the MVs as a linear function of the common factors and the
unique factors:

xij = ﬂj + ).jizil + Ajzziz + -+ /‘ljmzim ~+ 111.117
Mean+ Common factor part + Unique factor part

Xij =Wy + ket AjrZix T Uij



The data model in factor analysis
X5 = pj + Y=t AjrZue + Uy

Where:
X;; is the score of person / on manifest variable j
H; is the mean of manifest variable j
Zj;, is the common factor score of person i on factor k
Ay is the factor loading of manifest variable j on factor k
Uy is the unique factor score of person / on unique factor j; and uy; = s + ey
sij is the factor score of person i on specific factor j
ey; is the error term for person / on manifest variable j



The data model in factor analysis

* We will consider the model as operating in a population, and thus we will
consider the data model for a random individual by omitting the subscript i:

xj —_ [.lj + /1}'121 + Ajzzz + Ajmzm + 1uj
Xy =y + Xkeq Az +

* Here we actually have p equations, one for each manifest variable x;, ..., x,, but
we can express it all as a single equation using matrix notation:

x=pu+ Az+u



The data model in factor analysis

x=u+ Az+u

Where:

X is a p x 1 vector of a random person’s scores on the p manifest variables
fis a p x 1 vector of population means of the p manifest variables

A is a p x m matrix of factor loadings, where p > m (rectangular matrix)

Z is a m x 1 vector of (unobservable) common factor scores

u is a p x 1 vector of (unobservable) unique factor scores



The data model in factor analysis

x=pu+ Az+u

* For illustration, let’s extract the equation for the third manifest variable. Let’s
assume that m = 3 (there are three common factors):

F4

— - Zy

+
X3 H3 Az1 Azz  Aaz Zq

Uz

X3 = iz + A31Zy + 3275 + A3373 + U3



The data model in factor analysis

The data model represents a random observation in the population. It is intended
to explain the structure of the raw data (i.e., the scores on manifest variables)

However, it contains a LOT of unknowns

While we observe the manifest variables x and we can at least estimate the
population means u, the remaining terms in the equation are unknown to us

We do not know the latent scores z and u, in fact we cannot know them, since
latent variables are unobservable

Similarly, we do not know A, the matrix of factor loadings — we are unaware of
how the unobservable latent variables affect the (observable) manifest variables



The data model in factor analysis

Well, that’s kind of a pickle.

So, do we just, like, go home now?

Maybe. Or we can help ourselves with some tricks.

We have already established that the latent variable scores are unobservable, so
we might want to give up on trying to solve for them in the data model equation

* Maybe if we turn the problem around, we can get rid of zand u completely and
focuson A



The data model in factor analysis

* We could use the data model, along with some assumptions, to derive a
covariance structure model

* The data model is accompanied by assumptions about the joint distribution of
the elements in zand u and implies a model for the population covariance matrix.
The model for the covariance matrix is known as the covariance structure and is
intended to explain the variances and covariances of the manifest variables, not
the raw data.

* Before we proceed to derive the covariance structure model, we’ll talk about the
important distributional assumptions and lay down some notational rules.



Assumptions

* We will make the following assumptions about the common factors z and unique
factors u:

1. The common factors and the unique factors are independently distributed.

As such, the common factors are uncorrelated with the unique factors. In
otherwords, Z,,=0=2',,,

2. The unique factors are mutually independent. As such, the unique factors
for different MVs are uncorrelated with each other. This implies that the
covariance matrix X, is diagonal,

3. The common factors and the unique factors are standardized to have means
of zero.

4. The common factors are also standardized to have unit variances (variances
of 1).



Deriving the mean and covariance
structures

* The mean and covariance structures are derived from the data model:

x=pu+ Az+u

* Let’s derive the mean structure first. We want an equation that represents the
mean vector ¢ of the manifest variables. If we take the expectation of both sides
of the equation above, we get:

Ex= pu+ AEz+ Eu

* Given the assumptions we previously talked about, this follows:
=4+ A0+ 0

=R



Deriving the mean and covariance
structures

* This implies that the means of the MVs are not restricted by the model.

* Alright. Let’s consider the derivation of the covariance structure. What we want is to
obtain an equation for Z,.,, the covariance matrix of the MVs.

* |Let us subtract the mean vector from both sides of the data model:
x=p+ Az+u

x—pu=Az+u

...this equation expresses deviations of individual scores from population means as
functions of factor scores, factor loadings and unique factor scores.



Deriving the mean and covariance
structures

* Now, we will post-multiply both sides of the equation by a transpose:
(x—p)(x—p)'=(Az+u) (Az + u)’
..hecause the transpose of a sum equals the sum of the transposes:
(x— p(x—p) = (Az + u) (Az)" +u)

...because the transpose of a product is equal to the product of the transposes in
reverse order:

x—wx—w=MAz+u) (ZA +u)
..expanding, we get:
(x—p)(x—p) = Azz’A' + Azu' + uz'A’ + unt’



Deriving the mean and covariance
structures

(x —p@)(x— p) = Azz’'A + Azu' + uz'A’ + unt’
...then, we take the expectations of both sides:
E[(x—u)(x—p)'] = AE[zZ'|A’ + AE[zu'] + E[uz']A’ + E[uu’]

We can simplify, because all the expectations represent a covariance matrix of
some sort:



Deriving the mean and covariance
structures

Tox =AZ A+ A, +2,,A+2,,

* However, we assumed that both X,,, and Z,,; are zero — the common factors are
not correlated with the unique factors:

ey =AZ A +A0+0A + 32,
* Simplifying further:

Ty =AZ A+ 3,



Notation

* We will use the following notation:

The manifest variable covariance matrix: Z = Z,.,
The common factor covariance matrix: ® = %,
The unique factor covariance matrix: Dy, = Xy,

* Note that (because of the assumptions we made), the diagonal elements of ®@
are required to be equal to 1. Thus, @ is a factor correlation matrix.



Deriving the mean and covariance
structures

Zxx —_ A.zzzAr + zuu

 Becomes this:

= A®A + Dy,



Deriving the mean and covariance
structures

X = A®A' + Dy

* Ta-daaaaah! The equation above is the factor analysis covariance structure. It
represents the factor structure of the population covariance matrix of the
manifest variables. The variances and covariances in X are functions of the
common factor loadings {A), common factor correlations (@) and unique factor
variances {D). This equation is super-important.

* We have just derived a model that explains the variances and covariances of the
MVs. Note that this model does not contain any factor scores, common or
unique. We don’t need them — the variances and covariances of manifest

variables do not depend on them.



Deriving the mean and covariance
structures

¥ = A®DA + Dy

...yes, the equation is so important that | have included it again in a separate slide,
just so you can admire it.



Deriving the mean and covariance
structures

X =AdPA + Dy

* As you can see, the model equation assumes the common factors can be
potentially correlated {®). In unrestricted (exploratory) factor analysis it is
sometimes (at least initially) assumed that they are uncorrelated, sothat ® =1/. In
that case, the covariance structure becomes:

E=AA +Dy



Deriving the mean and covariance
structures

I =A®A +Dy
or

E=M’+D¢

« We now know what is the covariance structure in the common factor model (see
above ;) ) and how is it formally represented using a matrix equation

» Let’s take a look inside the matrices to see what does the equation really
represent

* For simplicity's sake, we will assume for the time being that the common factors
are uncorrelated (® =), thusZ = AA" + Dy,



Covariance structure

» Consider the covariance structure for uncorrelated {orthogonal) factors to better
understand the relationship between elements of X and the elements of A andD,. An
example:

J11 A1 A2 P11

y— |01 02 _ 221 Azz|[A1 A1 Az /141] + Y22
031 O3y Oaa Az1 szl A2 A3z Ay Y33
Og1 Ouz 043 Oy 41 A42 P

* This shows us that g7 = 431 + A3, + P44
* Also, 031 = 1441 + A22A12

» The covariance between two MVs is the sum of the products of their loadings on the
common factors

* The variance of an MV is the sum of its squared loadings and its unique factor variance



An example

e Remember the example correlation matrix | have shown earlier?

(4 performance measures: paragraph comprehension, vocabulary, arithmetic skills, and
mathematical problem solving)

* Don’t forget — correlation matrix is just a special kind of covariance matrix!

PC VO AR MPS
PC 1
VO 49 1
AR 14 .07 1
MPS 48 42 48 1




An example

* The factor loading matrix is:

Factor 1 | Factor 2
PC .70 .10
VO .70 .00
AR .10 .70
MPS .60 .60

* The covariance between PC and VO:
Opq1 = 1213.11 -+ 2.222.12 = 0.7 0.7 + 0.0x0.1=0.49

* Let’s compute the communality and the unique variance of PC by hand



Communality

* The j-th diagonal element ¢; of Dy, is the j-th unique variance. The jth
communality (proportion of variance of MV j due to common factors) can be
written as:

_ARX); LYy
%j 9j

Ji

* |f the factors are uncorrelated, then:

[AAT];; T
hyj = =1-—"
Ojj Ojj

...thatis, the sum of squares of row j of A divided by the variance of the j-th MV.



Correlation structure

* In the covariance structure, factor loadings are regression coefficients (weights)
that represent the linear effect of an LV on a particular MV. The latent factor acts
like an independent variable, and the MV acts like a dependent variable.

* We have seen that the common factor covariance matrix () is standardized to
have units on the diagonals (= the variance of the LVs is set to 1). As such, the
common factor covariances {(off-diagonal elements) are, in fact, correlations.

* Sometimes {well, a LOT of times) it is useful to standardize the manifest variables
as well - so that the factor loadings are standardized regression coefficients, and
that we are working with a correlation matrix of MVs rather than a covariance

matrix.



Correlation structure

* How do we convert a covariance matrix (say, X) into a correlation matrix {say, P)?

* Let’s create a diagonal matrix D, which contains the diagonal elements of 2:

D, = Diag[Z]

..the diagonal elements of D, are the variances of the manifest variables.



Correlation structure

* |f we would want to transform these into standard deviations of the MVs, we
would have to take the square root of each element. We'll go a little further and
define a new diagonal matrix D, /2 which contains the reciprocals of standard
deviations of the elements in D,

 The manifest variable covariance matrix £ can be transformed into a manifest
variable correlation matrix P in the following way:

pP= D;UZEDEUZ



* For example:

\O11
0

[y

o

Correlation structure

s g~ =
N

= = o
b !

P =

1
P21
P31

P12
1

P32

P13
P23
1
1
011
O13
0'23] 0
033
0



Correlation structure

711 di2 013
JVO11y011 0114022 /0114033

_ 021 G22 023
V0224011 J0224/022 +/022+/033

J31 d32 033
V033011 /0334022 +/0334/033

* Remember - pre-multiplication by a diagonal matrix scales rows,
post-multiplication scales columns. Can you see it in there?



Correlation structure

011 012 013
VO11VO11  VO11V022 011V 033
021 022 023
V02240011 0224022 /0224033
031 032 033
V033011 /0334022 +/033+/033

* In this matrix, the diagonal entries will be 1 and the off-diagonal entries will be
correlation coefficients {covariance divided by the standard deviations of both
variables)



Correlation structure

* So, what we have now is the covariance structure:
Z=APA + D,

* ...and a way of transforming the covariance matrix X into a correlation matrix P:
P = D;UZED;LIZ

* We can substitute:
P = D;/*(A®A’ + Dy)D; >
P= A*®OAY + D,";.,



Correlation structure

P = D;2(A®A + DD,/
P= A*®A” + D},

* Where:
A* =D;%A
Dy =D D, D;Y? =Dzl Dy



Correlation structure

* -1/2 -1/2 -
Dy =D;? Dy D;/? =D;1 Dy

* The factor loadings for the correlation structure are equal to the factor loadings
for the covariance structure divided by the standard deviation of the given MV

* The unique variances for the correlation structure are equal to the unique
variances for the covariance structure divided by the variance of the given MV.
This means that the unigue variances for the correlation structure are really the
proportions of variance of the particular MV that is not explained by the common
factors



Correlation structure

* The communalities (proportion of variance of MV j due to common factors),
then, can be written as:
hjj = [A"®A"]j;=1—-1j;

* |f the factors are uncorrelated, then:

m
k=1



