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Unrestricted FA

• The model:
𝜮 = 𝜦𝝓𝜦’ + 𝑫𝜳

• The goal:
Find the best solution to reproduce 𝜮 given pre-specified number of factors
(i.e., order of 𝜦 and 𝝓)

• Restrictions:
None, we just need to select one solution out of the infinite possibilities due to 
rotational indeterminancy



Restricted FA

• The model:
𝜮 = 𝜦𝝓𝜦’ + 𝑫𝜳

• The goal:
Find the best solution to reproduce 𝜮 given pre-specified 𝜦,𝝓,𝑫𝜳

• Restrictions:
At least enough to achieve model identification (i.e., one unique solution)
At most pre-specifying all of the parameters!



Unrestricted vs. restricted

• The underlying model is the same
• The difference is only in the way we restrict the values in the model 

matrices



Technical specifics of unrestricted FA

• Restrictions
• Correlated errors (residual covariances)
• Estimation
• Identification



Restrictions in restricted FA

• Elements in model matrices 𝜦,𝝓,𝑫𝜳 can be:
• Free = freely estimated, unconstrained
• Fixed = pre-specified to a specific value (i.e., two factors are 

correlated r = .2)
• Constrained = e.g., an equality constraint (i.e., all the factor loadings

must be equal)
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Restrictions in restricted FA

• Now you can model scenarios like:
• All items have the same loading (tau equivalence)
• A precisly hypothesized latent structure (we know the sizes of lambdas in 

advance)
• Invariance (same factor loadings between two groups)



Residual covariances

• Since we can play around with the elements of any model matrix, we
can free up the off-diagonal elements of 𝑫𝜳!
• Thanks to that, you can model the covariances between unique

factors
• In other words, you can ask for a model that assumes that:

After controlling for the effect of the common factor, there is still
some association left between a pair of items



Residual covariances

• Now you can model scenarios like:
• Some items have similar format while others don‘t
• Passing one item helps you pass another because you learn something other

don‘t
• Some items measure a specific facet of a construct
• Some items overlap contextually



Estimation in restricted FA

• We need to estimate all parameters at once, so we can no longer rely
on the eigen-decomposition of the reduced correlation matrix
• Hence, we can‘t use the principal factors approach but rather

something from the LS or ML family
• But you already know these well!



Model identification

• Fancy term for one unique solution
• Model is not identified if you can find multiple solutions

• You already know this problem from high school maths when you
were solving equations that had infinitely many solutions



Model identification rules

1. Latent variables must be scaled (either one loading per factor needs
to be fixed to 1, or the variance of each factor needs to be fixed to 
1)

2. At least zero degrees of freedom
3. At least 3 MVs per factor

2. and 3. assume the simplest possible model, i.e., no residual
covariances and/or crossloadings



Model identification vs. convergence

• Models that are not identified do not converge
• Recall the n-dimensional mountain you are climbing to find the

parameter estimates
• If there are multiple peaks of the same height, the algorithm would

just keep moving from one to the other, unable to decide when to 
stop



Differences between the two FAs

• …are only technical!
• Your goal determines whether you call it exploratory or confirmatory
• You use exploration when you want to use the data to generate

hypotheses
• „What latent structure might be behind these data?“

• You use confirmation when you want to test a hypothesis
• „Which of these latent structures might be the closest to the data-generating

process?“



Surprising uses of FAs

• You might want to model a complex latent structure full o cross-
loadings –> restricted FA would fail -> do confirmatory unrestricted
FA!

• You might want to tune a model to inform your theory-building, e.g., 
through residual associations -> you can‘t use unrestricted FA -> do 
exploratory restricted FA!



2 FAs, 2 approaches

Restricted FA Unrestricted FA

Confirmatory
approach

Testing a hypothesized
model Target rotation

Exploratory
approach

Tuning a model using
modification indices / 

residual matrix
Blind rotation



Model fit



Model fit in one slide

• We observed some correlations between items
• Our model implies some correlations between items
• The difference = the misfit
• You can either look at all the differences (= local fit) or aggregate the

differences in some way (= global fit)
• Fit indices like RMSEA are global fit measures
• Local fit is severly underused in papers
• Report both, use both



Model fit – a tutorial paper

• Assessing model fit is like building a court case for / against your
model. You get some evidence and need to interpret it in relation to 
each other.

• All this is summarized in Anna‘s and mine upcoming tutorial paper
• Its almost done version shall be posted into Study Materials

• It‘s called: Abandon All Thumbs Ye Who Model



Observed vs. expected

• Remember that we are doing all this to reproduce a variance-
covariance matrix:

𝜮 = 𝜦𝝓𝜦’ + 𝑫𝜳

• But the relationship is imperfect as we don‘t know the true values of
anything:

𝜮 ≈ *𝜦*𝝓*𝜦’ + +𝑫𝜳



Observed vs. expected

• But if we reconstruct the variance-covariance matrix from our
estimates:

*𝜮 = *𝜦*𝝓*𝜦’ + +𝑫𝜳

• We get the model-implied variance-covariance matrix



Observed vs. expected

• …and the distance between the observed 𝜮 and the model-implied *𝜮
variance-covariance matrix is model fit

• All the fit indices you know are simply different takes on this distance

• Henceforth, we shall cover some of them



Residual matrix

• Not to be confused with +𝑫𝜳, the residual matrix is simply *𝜮 − 𝜮
• In other words, for each item pair it tells you how off the model is

from the observed variance-covariance matrix

• So we can start right here!
• Looking at the residual matrix to assess model fit is called local fit 

testing



Residual matrix – how to find it

• In R, use 
lavaan::lavResiduals(model)
• In JASP, tick „Misfit plot“ in the

Plots menu



Residual matrix – how to interpret it

• Most software gives you correlations in the residual matrix (although
you can ask for covariances as well)
• But these correlations should be interpreted as partial correlations
• Partial correlations are generally smaller than standard ones
• So you should consider residuals around ca .25 to be noteworthy

while .40 and more are huge
• A good model should have some local misfit distributed evenly



Local fit testing – recap

• Residual matrix shows how much the model misrepresents the
relationship of each item pair
• Residuals imply dependence of the item pair that remains even after

controlling for their common cause
• ALWAYS consider and report the residual matrix
• The elements of the residual matrix are partial correlations
• You want some misfit that is distributed evenly



SRMR

• The residual matrix can be easily summarized into one number
• That‘s the Standardized Root Mean Residual (SRMR)
• In other words, SRMR is the average correlation residual of your

model:

𝑆𝑅𝑀𝑅 =
∑ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 –𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 "

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠



SRMR

• Upsides: 
• Easy to interpret
• Not influenced by anything but the residuals

• Downsides:
• May be inflated in small samples due to sampling error
• Not influenced by anything but the residuals
• Like all averages, inflated by one huge residual

Bottom line: Always report, use along with others



Chi squared

• Where do these come from? The discrepancy function!

• Remember when we covered estimation and said that it‘s basically
about defining some quantity and trying to minimize it

• That‘s called the discrepancy function



Chi squared

• Each estimation technique defines „discrepancy“ differently, hence
you get different expressions for the discrepancy function you are 
trying to minimize

• For ML, it‘s:



Chi squared

• This function has a certain value that doesn‘t have much meaning
• But!



Chi squared

• This function has a certain value that doesn‘t have much meaning
• But! 
• If you multiply the ML version by N-1 you get a statistic that‘s

approximately chi-squared distributed with the degrees of freedom of
your model



Test of perfect fit

• Testing (i.e., getting the p-value) of this chi-square gets you the test of
perfect fit
• The null hypothesis tested is that the model fits perfectly in 

population so you want a high p-value

• Unfortunately, this is basically just a test of the sample size

• Bottom line: Report, but do not rely on, unless p-value high.



Degrees of freedom

1. Measure of your courage
2. The expected value of a chi-squared distribution
3. The difference between the number of observed pieces of

information and the number of parameters



Degrees of freedom

• In FA, we model the variance-covariance matrix so we have the
information from the diagonal (the variances) and from one of the
triangles (the covariances)

• So the number of pieces of information is:

𝑑𝑓!"# = 𝑘(𝑘 + 1)/2

where k is the number of MVs



Degrees of freedom

• Each freely estimated parameter costs us one degree of freedom, so:

𝑑𝑓 =  𝑑𝑓"#$ − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

• Every freely estimated factor loading, factor correlation or unique
(co)variance costs one df



Degrees of freedom

• Why are they a measure of your courage?

• Because each freely estimated parameter brings your model closer to 
the data

• Maximum parameters freely estimated => df = 0
• No parameters freely estimated => the most stringent test of your

theory



Degrees of freedom

• Dfs represent the potential for misfit
• If you have high df model that fits well, the model is great!
• If you have low df model that fits well, meh!



Degrees of freedom

• Imagine there are two persons and you know one of their IQ scores:

X1 = 105

What values can X2 (the IQ scores of the second person) have?



Degrees of freedom

• Imagine there are two persons and you know one of their IQ scores:

X1 = 105

What values can X2 (the IQ scores of the second person) have?

Any value!



Degrees of freedom

• Now, imagine there are, again, two persons and you know one of
their IQ scores:

X1 = 105

And the mean of their IQs: 
M = 95

What values can X2 (the IQ scores of the second person) have?



Degrees of freedom

• Now, imagine there are, again, two persons and you know one of their IQ 
scores:

X1 = 105

And the mean of their IQs: 
M = 100

What values can X2 (the IQ scores of the second person) have?

Only X2 = 95! Otherwise, their mean cannot be 100 or X1 cannot be 105



Degrees of freedom

• One could say that with N = 2, we only have one degree of freedom
after we compute the mean because we lose one piece of
information by estimating the mean

• That‘s why we do the N-1 correction so often (e.g., when computing
variance), because since we already use the information from the
mean, one of the data points is determined by it



Parsimony ratio

• Dividing the number of dfs of your model with the maximum number
of dfs gives you the parsimony ratio
• It tells you the percentage of dfs you retained

𝑃𝑅 =
𝑑𝑓

𝑑𝑓"#$



RMSEA

• Root Mean Square Error of Approximation

𝑅𝑀𝑆𝐸𝐴 =
𝜒% − 𝑑𝑓
𝑑𝑓 𝑁 − 1

• Basically, you look at how far the chi-squared is from its expected
value and standardize the difference
• Consequently, RMSEA cares about misfit, parsimony and sample size



RMSEA



RMSEA



RMSEA



RMSEA – recap

• Consolidates more information about the model into one number
• Can compute confidence intervals!
• Gold standard of the industry
• May fail when df and N too low

• Bottom line: Always report (with a CI) but interpret in relation to df
and N



TLI

• “Incremental“ index of fit
• Compares your model to the best possible model and places it on a 

scale from the worst to the best model

𝑇𝐿𝐼 =

𝜒$%&&'

𝑑𝑓$%&&
− 𝜒'
𝑑𝑓

𝜒$%&&'

𝑑𝑓$%&&
− 1



TLI

• Or figuratively:

𝑇𝐿𝐼 =
𝑤𝑜𝑟𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑜𝑑𝑒𝑙 − 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

𝑤𝑜𝑟𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑜𝑑𝑒𝑙 − 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑜𝑑𝑒𝑙



TLI

• But when the null model is alright, TLI is unreliable
• That‘s why it‘s a good idea to calculate the RMSEA for the null model 

and checking if it‘s high enough (= the null is bad)
• Kenny says that null RMSEA = .158 implies that TLI can never by high



TLI – recap

• TLI tells you how close your model is to the perfect model
• It doesn‘t work if the scale from worst to best is broken, i.e., when the

null model fits well
• You should report RMSEA of the null model to make sure this isn‘t the

case

• Bottom line: Use TLI and report it. But be wary of the null model.



Model comparison

• Your model is only good if it beats its alternatives
• For example: If you want to support a unidimensional model, you

need to show it‘s not too bad compared to the three-dimensional
model

• It‘s always going to be worse (because of dfs!) but maybe not by a lot



Model comparison

• When comparing models against each other, you can:

1. Judge their absolute fit, i.e., everything we covered so far, and
2. Compare them directly using AIC or LRT



Likelihood Ratio Test

• Gives you a significance test of the chi-square difference between to 
models
• In other words: Is the reduction in misfit (chisquare) worth this loss of

dfs?

• In R, it‘s the anova function



AIC

• An „information criterion“ that considers chi-square along with
parsimony (degrees of freedom)
• Interpretation makes sense only when comparing models with same

variables and data
• It‘s better to use the corrected version AICc



Other checks

• Are the estimates within reasonable bounds? (variances, correlations)
• Do the estimates make sense? (negative loading on a reverse coded

item)
• Are standard errors low? High? Or a mixed bag?



Model fit workflow

1. Note the degrees of freedom
2. Glance over the estimates to detect weird values (e.g., negative 

variances)
3. Check out SRMR to get an idea of the residual matrix
4. Compare SRMR to RMSEA and TLI – do they tell the same story?
5. Inspect the residual matrix
6. Pit the model against alternatives
7. Make your judgement!



Advanced confirmatory techniques





Blind rotations

• Taking advantage of the rotational indeterminancy is called rotation
• Algebraically, it means choosing an orthogonal transformation matrix 

T that satisfies certain criteria that help achieve simple structure
• These can be general (or blind):
• Maximize the sum of the variances of squared loadings (that‘s varimax!)
• Like varimax but correlated factors (that‘s oblimin!)



Target rotations

• …or you can tailor them specifically for your dataset
• Then they are called target or, poetically, Procrustean
• As I understand it, you can either:
• rotate to a pre-specified simple structure or
• rotate to another loading matrix (so you can compare them)

• So you can actually do a confirmatory analysis with the „exploratory“ 
factor analysis, wow!



GPArotation package



GORIC



Seven Deadly Sins of FA



Sin I: Misreporting

• Many papers omit or even wrongly report:
• Chi-squared statistics
• Degrees of freedom
• Residual matrix
• Alternative model comparison
• Confidence intervals for RMSEA
• Estimation method
• Missing data treatment
• Model specification
• Estimates (i.e., the contents of the model matrices)



Sin I: Misreporting

• How to overcome this sin?
• When you read a paper, get into the habit of checking degrees of freedom by 

hand (it‘s easy!)
• Doubt papers that omit important information, especially multiple pieces are 

missing
• In your own work, be as transparent as possible
• But on the other hand, identify what‘s important so that you don‘t flood the

reader with technical jargon



Sin I example – my diploma thesis



Sin II: Skipping model fit assessment

• Many practitioners don‘t spend enough time assessing model fit in 
the manner we discussed before
• You should really look at all the evidence including the residual matrix 

and reconcile discrepancies between them before you declare your
model well-fitting



Sin III: Messing up the theory

• This sin includes:
• Doing PCA instead of FA
• Doing FA instead of formative models
• Doing FA instead of network models
• Correctly choosing FA but omitting any reasoning for that

• All this stems from insufficient attention paid to the data-generating
process
• And partly from the lack of statistical education
• If all you know is FA, you will always use FA
• If you don‘t understand FA, you will use default options (like PCA in SPSS)



Sin IV: Abusing modification indices



Sin V: Exploring and confirming the same data



Sin VI: Not doing sensitivity analyses



Reporting standards

• Unrestricted FA: 
https://journals.sagepub.com/doi/full/10.1177/0095798418771807

• Restricted FA: https://www.researchgate.net/profile/Rebecca-Purc-
Stephenson/publication/24187223_Reporting_Practices_in_Confirma
tory_Factor_Analysis_An_Overview_and_Some_Recommendations/li
nks/02e7e524c2d7dda3f1000000/Reporting-Practices-in-
Confirmatory-Factor-Analysis-A

https://journals.sagepub.com/doi/full/10.1177/0095798418771807
https://www.researchgate.net/profile/Rebecca-Purc-Stephenson/publication/24187223_Reporting_Practices_in_Confirmatory_Factor_Analysis_An_Overview_and_Some_Recommendations/links/02e7e524c2d7dda3f1000000/Reporting-Practices-in-Confirmatory-Factor-Analysis-A

