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Online
Supplement 1
Meta-analysis

This supplement draws primarily on Chapters 5, 7 and 9.

OS1.1 Combining effect sizes using meta-analysis

The literal meaning of meta-analysis is the analysis of other analyses. The term is sometimes
broadly applied to research synthesis: systematic reviews of research involving a large set of
studies.1 Meta-analysis, in a narrow sense, refers to a formal statistical model of research
findings. These findings can take different forms (e.g., p values), though most meta-analyses
combine findings in the form of effect size statistics. This requires taking into account the mag-
nitude and variability of each effect. There are many ways to do this. Arguably the best method is
to combine the raw data from each analysis in a pooled analysis (e.g., in the form of a multilevel
regression model – see Hox, 2010). Meta-analysis is particularly useful for combining findings
from many small studies in one large analysis. This often involves data from many different
studies (sometimes many years old), and it is rare that raw data is available for every study. For
this reason, most meta-analyses involve combining effect size statistics reported in published
work or derived from summary statistics. The best-known meta-analytic models employ odds
ratios or standardized effect size metrics such as r or g (Field and Gillett, 2010; Hunter and
Schmidt, 2004).

Shadish and Haddock (1994) provide an excellent overview of the statistical issues involved
in combining effect size statistics and consider how to combine several metrics, including
correlations (with and without the Fisher z transformation), standardized mean differences,
differences between proportions, odds ratios and log odds ratios. Rather than review these
methods, which are well known and widely used, this supplement will focus on a single metric,
with the aim of illustrating the statistical concepts underlying meta-analysis. This metric is the
simple mean difference (also called raw or unstandardized mean differences). As well illustrat-
ing the basics of meta-analysis, simple mean differences are among the most common effect
sizes reported in published work. This type of meta-analysis has also been somewhat neglected
in the literature. This neglect means that software for meta-analysis of simple mean differences
is not widely available. Fortunately, basic meta-analytic calculations are not particularly difficult
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for any of the common metrics (and most can be performed by hand or by using standard
spreadsheet software). It seems logical to illustrate hand calculations using a meta-analytic
method for which software is not widely available.

Although the emphasis here is on statistical issues, there are also many other important
issues to consider. These include how to select studies for inclusion in a meta-analysis and
how to deal with differences in the quality of the studies. Field and Gillett (2010) give a clear
introduction to these issues, while Cooper and Hedges (1994) is one of the most comprehensive
resources available for both the statistical and non-statistical issues involved in meta-analysis
(e.g., the selection of studies for inclusion).

OS1.1.1 The case for meta-analysis of simple mean differences

Many meta-analyses involve combing effect sizes from studies involving differences in means
(e.g., from paired or independent designs). If these studies all measure the outcome in exactly
the same way then the most appropriate form of meta-analysis is that of the simple mean (or
raw) differences. This has several advantages over using standardized metrics. Standardized
metrics can obscure the meaning of the original variable (Shadish and Haddock, 1994). In partic-
ular, anything that influences the sample standard deviations (e.g., reliability, range restriction,
differences in samples) will also influence standardized difference in means. This, in turn, can
distort the meta-analysis (Baguley, 2009; Bond et al., 2003). One solution is to correct for arti-
facts that distort standardized effect size (Hunter and Schmidt, 2004). Often the meta-analysis of
simple mean differences is a better approach – particularly if the treatment or grouping variable
is measured with little or no error. This happens to be the case for many meta-analyses involv-
ing experiments and quasi-experiments. The studies must also report a common measure, or
measures, that can be converted to a common scale without standardization (e.g., using POMP
scoring; Cohen et al., 1999).

Shadish and Haddock (1994) describe methods for fixed effect and random effects meta-
analysis assuming known variances. Such an approach works for standardized mean differ-
ences because these effects have σ2 = 1. Bond et al. (2003) argue against the known variance
approach (unless all studies have very large n). They demonstrate that the known variance
approach can substantially underestimate the between-study variability of the effect. Meth-
ods proposed by Hartung and Knapp (2001) and Bond et al. (2003) avoid these difficulties, and
illustrate many of the steps common to meta-analysis for standardized or simple effect size.

Most meta-analyses involve extensive work tracking down published and unpublished stud-
ies, deciding on inclusion criteria and calculating effect size estimates for each study. But
sometimes a meta-analysis is more straightforward. For instance, a researcher in a special-
ist field may want to combine all the results from their own published and unpublished studies,
or to combine effects in a multi-experiment paper (or from a PhD thesis). A major advantage
of this approach is that it can reduce the risk of publication bias (by limiting the scope of the
analysis to a known subset of studies in which no study has been excluded). The drawback is
that this reduced scope limits the generality of the conclusions.

This approach involves five basic steps: i) collating relevant information about each study,
ii) selecting the appropriate statistical model, iii) weighting the effect sizes, iv) estimating the
variability of the effect and v) obtaining interval estimates or tests. For simple mean differ-
ences the relevant information about each effect includes summary statistics (e.g., sample size,
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mean and variance of each sample) and contextual information to aid subsequent interpre-
tation (e.g., key differences between the studies). The contextual information can be used to
explore whether differences in study characteristics influence the size of an effect (known as a
moderator analysis).

The choice of model is a fundamental decision in any meta-analysis and determines how
the variability of the effect sizes is modeled (see Key Concept OS1). Weighting is a procedure
that allows a researcher to adjust the estimate of the overall ‘average’ effect size according
to the precision of each study (weighting more accurate estimates more heavily than less
accurate ones). Estimating the variability of the effects is the heart of a statistical model in meta-
analysis and makes it possible to obtain interval estimates and construct hypothesis tests. These
inferences also require information about the distribution of the effects. Most meta-analytic
methods assume samples from an independent, normal distribution. Further assumptions may
be required for the specific method used in the analysis (e.g., the known variance assumption
of the Shadish and Haddock equations).

KEY CONCEPT OS1

Fixed effect versus random effects analysis

The distinction between a fixed effect and random effects model is relevant to a number of statistical appli-
cations (see Hedges and Vevea, 1998; Shadish and Haddock, 1994). In a fixed effect model a single ‘true’
population parameter with a constant value is assumed (hence fixed effect, singular). When this popula-
tion is sampled, each observation can be represented in terms of the population parameter θ (‘theta’) plus
random error (usually assumed to be an independent, normal variable with μ= 0 and unknown, constant
variance σ2):

yj = θ + εj εj ∼ N
(
0,σ2

)
Equation OS1.1

If this looks familiar, it should. This is a very simple regression model (for a single parameter). The regression
models considered thus far assume that the values of the predictors are fixed. In a basic regression model,
only sampling error is treated as a random variable. For an independent measures design this means that
the sampling units (e.g., participants) are treated as a random variable. If you measure each person only
once, any individual differences are incorporated into the error term (and can’t be separated from it).

In a random effects model, the population parameter itself varies (hence random effects, plural). The
effect is no longer considered constant. Instead it is represented as a probability distribution (e.g., a normal
distribution). Thus the random effects are represented by two parameters (the mean and the variance of
the effects). This can be displayed as two separate equations. The first equation shows that the observed
values are a function of θ and random error (as per the fixed effect model):

yj = θj + εj εj ∼ N
(
0,σ2

)
Equation OS1.2

The second equation reveals that υ is also a random variable:

θj = θ0 + υj υj ∼ N
(
0, τ2

)

They can be combined into a single equation by substituting the second equation in place of θj :

Yj = θ0 + υj + εj Equation OS1.3
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In this kind of random effects model there are two random variables (or two ‘error’ terms). One represents
the sampling error εj and has variance σ2. The other, υj , is the variability of the effect itself and has variance
τ2. This is a simple form of multilevel model (Hox, 2010; see also Chapter 18).

In meta-analysis, υj represents the variation in effect size between studies (not sampling error). This
complicates the analysis, but is generally more plausible than a fixed effect model. In many meta-analyses
it is unlikely that the studies are sufficiently similar that the effects are identical. Instead, they can be
treated as a sample from a population of different effect sizes (sometimes termed a ‘super-population’ to
distinguish it from the population sampled by each study). If the studies are very similar, a fixed effect
model would still be a reasonable choice. However, the fixed effect model is limited in a very serious
way – it does not generalize outside the studies in the analysis. With a fixed effect model there is no
justification for inferences beyond the set of studies sampled, though there may be non-statistical grounds
to generalize the findings.

When in doubt, employing a random effects model is considered a safer option. A fixed effect model
assumes that the between-effect variance in the population is exactly zero. The random effects model
includes an extra variance parameter and typically produces more conservative tests and wider interval
estimates. Simulations suggest that it performs well even if the true population parameter is fixed (Hedges
and Vevea, 1998).

It is possible to construct a significance test of the hypothesis that the effects in a meta-analysis are
homogeneous (in which case a fixed effect model is appropriate) or heterogeneous (in which case a
random effects model is appropriate). This is rarely appropriate. It is better to select the model based on
a priori grounds, taking into account the context and aims of the research (Field and Gillett, 2010; Hedges
and Vevea, 1998).

One guideline for distinguishing fixed from random effects is to consider the idea of a ‘sampling frac-
tion’. What proportion of the population of interest has been sampled? If the samples exhaust – or at least
are a sizable fraction of – the population of interest (e.g., the studies include every type of situation you are
interested in) then a fixed effect model may be appropriate. If the samples only represent a tiny fraction of
the population of interest (e.g., if the studies only cover a few of the situations you are interested in) then
the random effects model is preferable.

OS1.1.2 Fixed effect meta-analysis of simple mean differences

The first step in a basic meta-analysis of raw or simple mean differences is to obtain essential
information for each effect. Assuming all the effects are computed between two independent
means, this information is the size of each sample (n1 and n2), the difference in sample means
(μ̂1 − μ̂2) and a standard error for each difference (σ̂μ̂1−μ̂2 ). These are readily calculated from raw
data or from summary data reported in most studies.

The population mean difference in the fixed effect model is estimated by the average indi-
vidual ‘study’ effect plus random error with an independent, normal distribution. The estimate
of the population mean difference (μ1 − μ2) can be denoted by θ and is usually computed as a
weighted mean.2 The fixed effect model described here is that proposed by Bond et al. (2003).
The symbol Gj denotes the simple difference in means (μ̂j1 − μ̂j2) for each of the j=1 to J studies.
The effect size estimate from a sample of J studies is:

Gj = θ + εj εj ∼ N
(
0,σ2

)
Equation OS1.4

If there are J studies with differences in means denoted as Gj, then Wj is the weight for jth study
and a weighted estimate of the population mean difference is:
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θ̂ =

J∑
j=1

ŴjGj

J∑
j=1

Ŵj

Equation OS1.5

Thus, each effect is multiplied by its weight, the weighted means are summed and then divided
by the sum of the weights. If this weighting scheme is not intuitively obvious, think about what
happens when all the weights are equal to one. In this case the numerator becomes the sum of
all the differences and the denominator becomes J (the number of studies). Thus if all Wj = 1,
the formula becomes the familiar arithmetic mean.

The same form of weighting can be applied to any form of effect size by replacing Gj with
the statistic of interest. The weighting scheme can also be extended to include other factors.
For instance, Shadish and Haddock (1994) provide a variant that also weights each study by
a quality index: q. There are several methods for estimating q. A common approach is to list
important features of a high-quality design and then set q equal to total number of features
scored for each study. Although there are other ways to take into account the quality of a study
(e.g., by excluding all low-quality studies) or treating quality as a moderator, weighting is one
of the more flexible ones. To incorporate quality into the weighting you’d simply multiply each
weight by the quality index for that study (i.e., replace Ŵj with q̂jŴj in both numerator and
denominator of Equation OS1.5).

The formula for the weighted aggregate effect is common to many meta-analytic methods.
A weighted estimate tends to be more accurate than an unweighted one if the effects are sam-
pled at random from the super-population of interest. In extreme cases (e.g., where one study
has a very large weight that overwhelms all others), an unweighted means analysis may out-
perform the weighted approach (Hunter and Schmidt, 2004). The correct weights to use depend
primarily on whether a fixed effect or random effects model is used. In the fixed effect model the
usual weight is the reciprocal of the variance of the sampling distribution of the effect (some-
times termed the precision of the effect). This variance is the square of the standard error of the
effect size statistic (e.g., σ̂μ̂j,1−μ̂j,2

= σ̂Gj for a simple mean difference). The weights are therefore
estimated from the standard error of the difference as:

Ŵj =
1

σ̂2
Gj

Equation OS1.6

The crucial quantity σ̂Gj is the denominator of the t statistic from an independent t test of the
difference in means. This is frequently reported in published studies. Even if not reported, it can
be readily calculated as Gj/tj and so Equation OS1.6 can be rewritten as:

Ŵj =
1(

Gj/tj
)2 Equation OS1.7

Equation OS1.7 allows paired t tests and independent t tests to be combined in a single anal-
ysis. The method can also be used to carry out meta-analysis of one sample t tests (though it
will not, as a rule, be reasonable to mix these with paired or independent mean differences).
The main caveats are that the simple mean difference must be comparable between studies,
and that the studies are independent of each other. The independence assumption would be
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violated if, for instance, the same sample (e.g., a control group) were used to calculate more
than one effect. If standardized effect size is used, then mixing paired and independent designs
is rather awkward. This is because the standardizer is involved in both the calculation of the
effect size statistic and the weights. Worse still, the standardizer for the weights must be differ-
ent from that for the effects in order to make standardized paired differences comparable with
independent differences (Hunter and Schmidt, 2004; Morris and DeShon, 2002).

Once a weighted mean has been computed, it is necessary to estimate its variance. Without
knowing this, it will be difficult to interpret the weighted mean and it would not be possible to
perform inference for the overall, aggregate effect. As the weights defined by Equation OS1.6
and Equation OS1.7 are formed from the sample variances, the weights can be used to estimate
the variance of θ :

σ̂2
θ̂

= 1
J∑

j=1
Ŵj

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + 4(
J∑

j=1
Ŵj

)2 ×
J∑

L=1

(J − 1)ŴL
J∑

j �=L
Ŵj

(J − 1)(νL) − 4(J − 2)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Equation OS1.8

The bracketed term on the right is not required for the known variance solution described by
Shadish and Haddock (1994). Bond et al. (2003) show that when the population variance is esti-
mated from the sample this additional term contributes a potentially large ‘upward adjustment’
to the estimate of σ̂2

θ̂
. The term outside the bracket is simply the reciprocal of the sum of all J

weights. Within the brackets the final term of the equation requires further explanation. Rather
than indexing the studies and weights using j, a new index L is introduced. Like j, the index L is
a set of numbers acting as labels for each of the J studies. The reason for the change in index is
that the equation involves a nested calculation. Looking at the top half of the right-hand fraction
you should see that it involves summing over all J studies except those where L = j. The nested

calculation ŴL
J∑

j �=L
Ŵj allows each study weight to be multiplied by the sum of all other study

weights excluding itself. Without distinct index terms it would be hard to denote this operation.
Tests and interval estimates for θ̂ are constructed with the t distribution. The chief hurdle is

determining the df (ν) for the fixed effect model. Bond et al. (2003) present the following formula,
where νj indicates the df of the jth study:

ν
θ̂
=

(
J∑

j=1
Ŵj

)2

J∑
j=1

Ŵ2
j

νj

Equation OS1.9

The standard error of the fixed effect estimate is σ̂
θ̂

=
√

σ̂2
θ̂

and so a test statistic of the null

hypothesis H0: θ = 0 is

t = θ̂

σ̂
θ̂

∼ t
(
ν
θ̂

)
Equation OS1.10
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and a CI for the fixed effect is:

θ̂ ± tν
θ̂
,1−α/2 × σ̂

θ̂
Equation OS1.11

Bond et al. (2003) argue that these estimates will be satisfactory provided νj ≥ 8 for each of the J
studies.

Example OS1.1 Baguley et al. (2006, Experiment 1) report a meta-analysis of standardized mean
differences comparing location memory between single anchor (SA) and paired single anchor (PSA)
conditions. Subsequent examples will refer to this data set as the fixed effect meta-analysis data.
In the SA conditions, participants had one opportunity to learn the location of an object, while in
the PSA conditions participants had a second opportunity to learn the location of each object (rel-
ative to a different anchor or reference point). Interest focuses on whether performance in the PSA
conditions is superior to that in the SA conditions. There are several possible choices of dependent
variable for the study, but this example uses a measure termed T that ranges from zero to one (see
Baguley et al., 2006) and characterizes the proportion of information acquired about the object’s
location. To simplify hand calculation this example pools some data and reduces the number effects
(‘studies’) from the first experiment to three. Summary data for these three studies are reported in
Table OS1.1. Studies 1 and 2 involve incidental learning instructions while study 3 involves inten-
tional learning (only in the latter are participants aware in advance that there is a memory test).
Studies 2 and 3 use color stimuli while study 1 uses black and white stimuli.

Table OS1.1 Summary data for three independent group comparisons of SA and
PSA conditions, for data adapted from Baguley et al. (2006)

SA condition PSA condition

j μ̂ σ̂ n μ̂ σ̂ n t

1 0.133 0.274 60 0.203 0.290 30 1.122
2 0.171 0.235 60 0.153 0.312 60 0.359
3 0.478 0.285 60 0.509 0.296 30 0.474

The first step is to obtain Gj and Wj for each of the J = 3 studies. As the summary data include t,
Equation OS1.7 can then be used to derive σ̂Gj , Ŵj , GjŴj and Ŵ2

j /νj . These values are reported in
Table OS1.2.

Table OS1.2 Effect size estimates and intermediate results for the studies in Table OS1.1

j Gj νj σ̂Gj Ŵ j GjŴ j Ŵ
2
j /νj

1 0.070 88 0.0624 256.8 17.98 749.4
2 −0.018 118 0.0501 398.4 −7.17 1345.1
3 0.031 88 0.0654 233.8 7.25 621.2

S 889.0 18.06 2715.7
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Getting the estimate of the fixed population effect involves plugging the effect sizes and weights
into Equation OS1.5:

θ̂ =

J∑
j=1

ŴjGj

J∑
j=1

Ŵj

= 18.06
889

≈ 0.020

This estimate illustrates the advantages of weighting. Study 2 has a larger sample and greater
precision. It therefore influences θ̂ most heavily. An equally weighted estimate would be slightly
larger. The weighted estimate of the difference is close to zero (given that the maximum range of a
difference in proportion is −1 to 1).

The variance of the fixed effect estimate σ̂2
θ̂

is harder to calculate. Table OS1.3 sets out interim
values for this calculation.

Table OS1.3 Interim values required to estimate the variance of the fixed effect estimate
for the studies in Table OS1.1

j
J∑

j �=L
Ŵ j (J − 1)ŴL

J∑

j �=L
Ŵ j (J − 1)(νL) − 4(J − 2)

(J − 1)ŴL

J∑

j �=L
Ŵ j

(J − 1)(νL) − 4(J − 2)

1 632.2 324697.9 172 1887.8
2 490.6 390910.1 232 1685.0
3 655.2 306371.5 172 1781.2


 5354.0

From Table OS1.2 the summed weights
∑

Ŵj are 889 and (from Table OS1.3) the right-hand
term sums to 5354. Plugging these values Equation OS1.8 produces

σ̂2
θ̂

= 1
889

×
{

1 + 4

(889)2 × 5354
}

≈ 0.00116

and (its square root) σ̂
θ̂
≈ 0.034. The df calculation requires the term

∑
Ŵj/νj , which Table OS1.2

reports as 2715.7. Together, these produce:

ν
θ̂
=

(
J∑

j=1
Ŵj

)2

J∑
j=1

Ŵ2
j

νj

= (889)2

2715.7
≈ 291.0

As t291,.975 is approximately 1.968, the 95% CI for the fixed effect is 0.02 ± .067 or:

θ̂ = .020,95% CI [−.047, .087]
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This result suggests an effect that is relatively small (compared to the full range of possible values)
and includes zero as a plausible estimate. Baguley et al. (2006) consider the predictions of several
theoretical models. One, an independence model (that assumes participants have access to two
memories and attempt to draw on the second memory if retrieval of the first fails), predicts an effect
of around .16. These data therefore exclude the independence model as a plausible explanation.

Pooling these studies into a single analysis assumes it is reasonable to lump them together. As all
the studies had near identical experimental designs and similar samples this seems justified. In a
strict sense, given that there are many potential variants of the experiment that have not been
sampled, the fixed effect model limits generalization to the J = 3 effects in the analysis. This may
not matter if the only goal is to combine experimental evidence from independent effects into a
single aggregate estimate. Pooling similar studies in this way provides more precise estimates of the
population effect size (and hence has greater statistical power).

OS1.1.3 Heterogeneity of effects

If a researcher is uncertain whether to apply a fixed effect or random effects model it is com-
mon to employ a test of homogeneity of effects (Shadish and Haddock, 1994). However, it is
better to determine the choice of model on theoretical grounds rather than on the basis of a
significance test (see Key Concept OS1). A homogeneity test is a test of the null hypothesis that
all the effects are sampled from a population with the same fixed effect size (and, by implica-
tion, that the observed variability is sampling error). For standardized effect size metrics such
tests usually take the form of a ratio of the deviations from the weighted mean effect size to
the weighted variance estimate (producing a test statistic Q with an approximate χ2 distribu-
tion). The ratio is small when the effect sizes are homogeneous (similar) and large when the
effect sizes are heterogeneous (dissimilar). Thus statistical significance implies heterogeneity of
effects. An obvious problem is lack of statistical power when J is small. For this reason it is prob-
ably safer to adopt a random effects model rather than rely on the outcome of a homogeneity
test if the choice of model is not clear a priori.

The Q test (which assumes the population variance is known) is inappropriate for meta-
analysis of simple mean differences. Bond et al. (2003) suggest using a statistic with an
approximate F distribution (first proposed by Welch and termed Fw). Like the Q statistic, Fw

is based on deviations from the weighted average effect:

Fw =
(J + 1)

J∑
j=1

Ŵj

(
Gj − θ̂

)2

J2 − 1 + 2(J − 2)u
Equation OS1.12

Here
(
Gj − θ̂

)2
is the squared deviation from the weighted mean effect for study j and u is:

u =
J∑

j=1

1
νj

⎛
⎜⎜⎜⎝1 − Ŵj

J∑
L=1

ŴL

⎞
⎟⎟⎟⎠

2

Equation OS1.13
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Again this formula involves one sum (indexed by L) nested within another (indexed by j). This
computation is not quite as complex, because the

∑
ŴL term is the sum of all J weights (with

no effects excluded). An F statistic is a ratio of two χ2 distributions, and has separate df for the
numerator and denominator. For Fw these are J − 1 and (J2 − 1)/3u respectively.

An alternative approach to assessing heterogeneity is the analysis of moderator effects. This
involves identifying potential predictors of variability in the population effect; attempting to
model the variation explicitly rather than treating it as random variation (see Bonett, 2009).
Bond et al. (2003) use the t distribution to construct CIs or tests of moderator effects by forming
contrasts of effect sizes (see Section 15.6.1).

Example OS1.2 A test of homogeneity for the data in Table OS1.1 is made easier by calculating
interim values required to determine u and Fw . These are set out in Table OS1.4.

Table OS1.4 Interim values to calculate Fw for the data in Table OS1.1

j
Ŵ j
J∑

L=1
ŴL

1
νj

⎛
⎜⎝1 − Ŵj

J∑

L=1
ŴL

⎞
⎟⎠

2

Gj − θ̂ Ŵ j(Gj − θ̂)2

1 0.2889 0.005746 0.050 0.642
2 0.4481 0.002581 −0.038 0.575
3 0.2630 0.006172 0.011 0.028

 0.014499 1.245

As u = 0.014499 and
∑

Ŵj

(
Gj − θ̂

)2 = 1.245 the test statistic is:

Fw =
(J + 1)

J∑
j=1

Ŵj

(
Gj − θ̂

)2

J2 − 1 + 2(J − 2)u
= 4 × 1.245

8 + 2 × 0.014499
≈ 0.62

Given that F < 1 the test of heterogeneity is non-significant (as it implies that the between-effect
variance is slightly less than expected under the null hypothesis of homogeneity). The df are J −1=2
and (J2 − 1)/3u = 184.9. Thus the test could be reported as: Fw (2,184.9) = 0.62, p = .54.

How should Fw be interpreted? There is little sign of heterogeneity, but with only three studies
the test lacks statistical power. The argument for employing a fixed effect model should not rely on
this test alone.

OS1.1.4 Random effects meta-analysis of simple mean differences

A random effects model assumes that the population effect size varies between studies rather
than being fixed. Thus, in addition to within-study sampling error, it is necessary to estimate
a second source of random variation. This is the between-study variation due to differences
in the population effect size (see Key Concept OS1). For simple mean differences Bond et al.
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(2003) adopt a random effects model proposed by Hartung and Knapp (2001). This estimates
the between-study variance as:

τ̂2 = σ̂2
G −

J∑
j=1

σ̂2
Gj

J
Equation OS1.14

Here σ̂2
G is the unbiased estimate of the variance of the observed effects and σ̂2

Gj
is the sampling

variance of the jth effect. Hence τ̂2 is the variance between effects not attributable to sampling
error.

If the studies are a random sample of an infinite population of different effect sizes it is
possible to estimate the weighted mean of this distribution as:

θ̃ =

J∑
j=1

W̃jGj

J∑
j=1

W̃j

Equation OS1.15

This formula is identical to that for θ̂ except that the weights – now denoted by W̃j – incorporate
between-effect variation:

W̃j =
1

σ̂2
Gj

+ τ̂2
= 1(

Gj/tj
)2 + τ̂2

Equation OS1.16

The sampling variance of θ̃ is estimated as:

σ̂2
θ̃

=

J∑
j=1

W̃j(Gj − θ̃)2

(J − 1)
J∑

j=1
W̃j

Equation OS1.17

The square root of this quantity is the standard error σ̂θ̃ . The ratio of θ̃ to σ̂θ̃ has a t distribution
with J − 1 df. This permits to the construction of significance tests and interval estimates for the
random effects model analogous to those in Equation OS1.10 and Equation OS1.11.

OS1.1.5 Selecting a meta-analytic model

Random effects models will, as a rule, produce wider CIs and more conservative tests than
the fixed effect model (Hartung and Knapp, 2001; Bond et al., 2003; Bonett, 2009). Despite this,
the random effects approach is usually preferred over the fixed effect model because it is more
robust to heterogeneity of effects (Hartung and Knapp, 2001; Field, 2005).

The random effects model does have its critics. Bonett (2008, 2009) has argued that the
random effects model is inappropriate if effects cannot be considered a random sample from
a super-population of effect sizes. He proposes an alternative fixed effect estimate of the
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unstandardized or standardized mean differences of the observed studies based on unweighted
means (Bonett, 2009). It employs a Welch-Satterthwaite correction and is robust with respect to
unequal variances within samples (relevant in the independent groups case). Simulations sug-
gest that this approach is also robust against heterogeneity of effect sizes. However, because a
fixed effect estimate is adopted, the parameter estimated is not the mean of a super-population
of effect sizes, but the unweighted mean of the set of studies included in the meta-analysis.
An attractive feature of Bonett’s approach is that heterogeneity of effects can be also be explored
via regression methods.

The fixed effect model is recommended when aggregating effects from a small number of
studies with very similar characteristics (e.g., from a multi-experiment paper). For studies with
dissimilar characteristics a random effects model is an option, provided they can be considered
a random sample from some super-population. If the studies are dissimilar, but not a random
sample, then Bonett’s robust fixed-effects approach should be explored.

OS1.2 Detecting potential problems in meta-analysis

Graphical methods can also be revealing about potential problems in meta-analysis, as well as
being useful for communicating the results of the meta-analysis. Bax et al. (2009) review graph-
ical tools and consider their effectiveness for detecting heterogeneity of effects and publication
bias using a range of metrics. With respect to meta-analysis of simple mean differences, decom-
position plots (Bond et al., 2003) can be used to explore the suitability of simple mean difference
and standardized mean difference metrics.

OS1.2.1 Decomposition plots

In its basic form, the decomposition plot is a scatter plot with mean differences on the y-axis
and σ̂pooled on the x-axis. Lines corresponding to the average difference between studies or the
average standardized difference can then be added. The average difference is depicted by a
horizontal line. Plotting the average standardized difference is trickier. Bond et al. (2003) point
out that:

μ1 − μ2 = δσpooled Equation OS1.18

As μ1 − μ is on the y-axis and σpooled on the x-axis this implies that the line Y = 0 + δX can be
added to represent the standardized mean difference (δ) on the decomposition plot.

Figure OS1.1 shows a decomposition plot for a meta-analysis of the effect of psychotherapy
on length of hospitalization in days (Shadish and Haddock, 1994; Bond et al., 2003). Also plotted
is the average simple mean difference between conditions (the dashed line) and the Hedges’ g
(the dotted line) as an estimate of δ. Unweighted averages are plotted (though weighted esti-
mates can be plotted if preferred). An important feature of the plot is that both x-axis and y-axis
use the same units (days of hospitalization). The scales of both axes must be constrained to be
equal (to avoid introducing arbitrary distortions).

Bond et al. argued that the greater variability of points on the horizontal axis of Figure OS1.1
suggests that the simple (rather than standardized) mean difference is the best metric for these
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Figure OS1.1 Decomposition plot for the Shadish and Haddock (1994) psychotherapy data

data. The horizontal variability implies a noisy estimate of σ . Several σ̂ values are also quite
small, and these exert high leverage on the line Y = 0 + gX. Estimates of g will be extremely
sensitive to low σ̂ values. In addition, very small values of σ̂ are likely to be underestimates of
σ , because the sampling distribution of σ2 is highly skewed (Browne, 1995; Vickers, 2003). The
decision to use simple mean or standardized mean differences should not, however, rest simply
on the decomposition plot. The decomposition plot may alert you to patterns among the sample
estimates of σ that could distort g, but the decision boils down to two questions. What is the
measure of most interest (theoretical or practical) and what is causing the variability in σ̂? For
instance, if the variability is caused by factors that are peripheral to the research question (e.g.,
reliability of the measures) then it should be treated as a nuisance variable to be removed from
the estimate of the size of effect. Meta-analysis of the simple difference in means is one way to
do this.

OS1.2.2 Detecting publication bias

The best-known method for detecting publication bias is the funnel plot (e.g., see Egger et al.,
1997). The original function of a funnel plot was to detect publication bias in meta-analysis
(though it does so only indirectly). The plot is constructed with the observed effect size of each
study on the x-axis and a measure of the precision of the studies on the y-axis. The measure of
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precision is not the same for all funnel plots, with n, σ̂ES, 1/σ̂ES or 1/σ̂2
ES being potential options

(where σ̂ES is the standard error of the effect size statistic used in the meta-analysis).
Effect size statistics will be scattered around the average effect size estimate (usually plotted

as a vertical line). Precisely measured effects should cluster more tightly round this average
estimate than less precise estimates. If no publication bias is present, the points should fall in
a roughly symmetrical pattern around the average effect. Assuming precision varies between
studies (which it almost invariably does), this should produce a characteristic funnel shape: wide
at the base and narrow at the top. Effects that are statistically non-significant are known to be
harder to publish. Some of these effects are likely to be missing from the meta-analytic sample
and will leave gaps in the plot. These gaps tend to appear where effects are most imprecise, at
the base of the funnel, but only on one side. This is the side corresponding to an effect in the
‘wrong’ direction (e.g., showing that a treatment is ineffective). Thus publication bias should
reveal itself as asymmetry in the plot.

It is important to emphasize that funnel plots and enhanced funnel plots do not assess pub-
lication bias directly – they detect asymmetry. Asymmetry can arise from sources other than
publication bias such as heterogeneity of effect size or because the effect really is larger in
small studies (e.g., because a treatment is easier to administer in small samples). Figure OS1.2a
shows a funnel plot of the psychotherapy meta-analysis. The effect size plotted here is the sim-
ple mean difference. Precision is plotted from high to low (thus placing more precise studies –
those with small standard errors – near the top). The vertical line shows weighted average
effect size. Also displayed are approximate 95% confidence bands for the effect, illustrating the
expected funnel shape. In this analysis, the small number of studies makes asymmetry in the
plot difficult to spot, but the pattern is consistent with publication bias.

Figure OS1.2b shows an enhanced funnel plot using the trim and fill method (Duval and
Tweedie, 2000). This estimates the number of ‘missing’ studies due to publication bias and uses
the funnel plot to impute plausible values for them. Although it is tempting to add in the ‘miss-
ing’ studies, it is better to use this technique as a form of sensitivity analysis. Adding in the

0.00
Observed outcome

Funnel plot
(a) (b)

Trim and fill enhanced funnel plot

−2.00−4.00

1.
89

2
1.

41
9

0.
94

6
S

ta
n

d
ar

d
 e

rr
o

r 0.
47

3
0.

00
0

1.
89

2
1.

41
9

0.
94

6
S

ta
n

d
ar

d
 e

rr
o

r 0.
47

3
0.

00
0

2.00 4.00 0.00
Observed outcome
−2.00−4.00 2.00 4.00

Figure OS1.2 Detecting asymmetry of effect size in the psychotherapy meta-analysis, using (a) a
funnel plot with 95% confidence bands, or (b) a trim-and-fill enhanced funnel plot
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studies might be appropriate if you were certain that publication bias was causing the asymme-
try, but in most meta-analyses it could also be due to heterogeneity of effect size. A sensitivity
analysis is preferred because it attempts to determine the impact on the conclusions of the
meta-analysis if those non-significant studies were added to the data set (Peters et al., 2008).
Thus it is a way of checking the robustness of the analysis.

OS1.2.3 Heterogeneity of effect size

Bax et al. (2009) compare several methods for detecting heterogeneity of effect size, of which
two will be described here. The first method is a normal probability plot of the residuals. This
is not the best method for detecting heterogeneity, but has other uses (e.g., detecting poten-
tial outliers, spotting influential effects or assessing the assumption that the study effects are
sampled from a normal distribution). The second method is a forest plot.

Forest plots are popular for reporting results. They depict the study effect sizes and the aggre-
gate effect size as horizontal interval estimates with polygons for each point estimate. This
produces a ‘forest’ of lines. A vertical line representing no effect can also be added. Thus the
plot shows the variability within and between effects (as well as supporting inference about the
overall average).

Figure OS1.3 shows a normal probability plot using the standardized residuals of a random
effects model of simple mean differences (Hartung and Knapp, 2001; Viechtbauer, 2010). This
plot suggests that the effects are within the expected range for the random effects model (all
effects being within the confidence bands around the average effect). Note that the average
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Figure OS1.3 Normal probability plot of standardized residuals, from a random effects
meta-analysis of simple mean differences for the psychotherapy data
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Figure OS1.4 Forest plot of the random effects meta-analysis of simple mean differences for the
psychotherapy data

effect plotted here is a weighted average, and the residuals do not sum to zero. Several studies
look to be quite influential, though this is almost inevitable with such a small set of studies.
Figure OS1.4 shows a forest plot for the same analysis. This plot does not suggest heterogeneity
of effects – all the effects lie within a fairly narrow range relative to the variability within studies.
Of the individual effects, only studies 2 and 7 are statistically significant and the aggregate effect
fails to reach statistical significance. Given the asymmetry in the funnel plot and the possibility
of bias, the evidence of a treatment effect for these data is inconclusive.

OS1.2.4 Contrasts of simple mean differences in meta-analysis

In meta-analysis you may wish to explore not only an overall effect, but also the possibility
that the effect is moderated by one or more other factors. Where the effects in question are
differences among means and the moderator variable is categorical this allows a researcher
to set up the hypothesis as a contrast. The contrast weights must, as usual, sum to zero and
include at least one non-zero coefficient. For the meta-analysis of simple, raw mean differences
Bond et al. (2003) proposed forming a test of the contrast with the formula:

tcontrast =

J∑
j=1

wjGj

√√√√ J∑
j=1

w2
j

Ŵj

Equation OS1.19
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The numerator in Equation OS1.19 is the weighted mean effect size for the Bond et al. (2003)
fixed effect model and J is the number of studies (i.e., mean differences in the meta-analysis).
There is potential for confusion over the sets of weights denoted by wj and Ŵj. The wj term

refers to the contrast weights and Ŵj to the precision of the studies in the meta-analysis (i.e.,
the reciprocal of the sampling variance of the studies). The contrast has df determined as:

dfcontrast =

(
J∑

j=1

w2
j

Ŵj

)2

J∑
j=1

w4
j

Ŵ2
j νj

Equation OS1.20

The squared correlation between effects and contrast weights can be used to give a sense
of the proportion of between-study effect variance accounted for by the contrast. This is not
a strict measure of the total variance (being unweighted by the precision of the effects), but
is perhaps a fairer interpretation of the moderator effect’s explanatory power than a weighted
squared correlation (for the same reason r2

alerting calculated in this way is preferred to the version
weighted by sample size in unbalanced designs).

Bonett (2009) favours moderator analysis as a way to explore between-study heterogeneity
of effect size. His robust fixed effect method allows moderator analyses (including contrasts)
to be defined as a general linear model. Baguley (2011) describes how to implement this
model in R.

Example OS1.3 In the fixed effects meta-analysis reported in Example OS1.1, the first two stud-
ies used incidental recall and the third study used intentional recall. Is it possible that the effect
size differs between intentional and incidental studies? This could be tested by a contrast using
the weights {−0.5,−0.5,+1}. Using weights that have an absolute sum of two keeps the outcome
scaled in terms of the original effect size metric. Combining these with the values from Table OS1.2,
the t statistic is:

tcontrast = (−0.5 × 0.07) + (−0.5 × −0.018) + (1 × 0.031)√(
0.25
256.8

+ 0.25
392.1

+ 1
239.8

) = 0.0047√
0.005781254

= 0.06

This contrast is not statistically significant (because t < 1), but df contrast (required for the CI) are:

dfcontrast =

(
J∑

j=1

w2
j

Ŵj

)2

J∑
j=1

w4
j

Ŵ2
j νj

= (0.005781254)2

0.000000211835
= 157.8.076

The df calculation is quite fiddly and hand calculation is best avoided.
The contrast reveals not even the barest hint of an effect. The CI for the contrast requires a critical

value of t for two-sided α = .05 and df = 157.8 (which is 1.975). The resulting 95% CI is [−0.15,
0.15]. This indicates at most a rather modest sized difference in means (given that the possible
range of differences is −1 to 1), with a difference close to zero being highly plausible.
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OS1.3 R code for Online Supplement 1

OS1.3.1 Meta-analysis of simple mean differences

Baguley (2011) provides R functions for the Bond et al. (2003) fixed effect method, the Hartung
and Knapp (2001) random effects method and Bonett’s (2009) method. The metafor pack-
age (Viechtbauer, 2010) also implements the Hartung and Knapp random effects method for
independent group designs. The following commands run a random effects meta-analysis
for the Shadish and Haddock length of hospitalization data (Shadish and Haddock, 1994,
p. 273) using a vector of simple mean differences and a vector of standard errors as
input:

m.e <- c(5, 4.9, 22.5, 12.5, 3.37, 4.9, 10.56, 6.5)

n.e <- c(13, 30, 35, 20, 10, 13, 9, 8)

sd.e <- c(4.7, 1.71, 3.44, 1.47, 0.92, 1.1, 1.13, 0.76)

m.c <- c(6.5, 6.1, 24.9, 12.3, 3.19, 5.5, 12.78, 7.38)

n.c <- c(13, 50, 35, 20, 10, 14, 9, 8)

sd.c <- c(3.8, 2.3, 10.65, 1.66, 0.79, 0.9, 2.05, 1.41)

diffs <- m.e - m.c

sd.pooled <- ((((n.c-1)∗sd.c∧2+(n.e-1)∗sd.e∧2)/(n.c+n.e-2)))∧.5
se.diffs <- sd.pooled ∗ sqrt(1/n.e + 1/n.c)

install.packages(’metafor’)

library(metafor)

rma.out <- rma(yi=diffs, sei=se.diffs, method=’HE’, knha=TRUE)

rma.out

This suggests that there is little heterogeneity in the population (the estimate of between-
study variance is zero). The estimate of the effect is −0.54, 95% CI [−1.18, 0.10]. This is
somewhat wider than the fixed effect meta-analysis of the same data reported by Bond
et al. (2003). They report the estimate as −0.54, 95% CI [−0.95, −0.13]. The metafor pack-
age implements meta-analysis for a number of other metrics (and has excellent graphics
output).

OS1.3.2 Diagnostic plots for meta-analysis

Figure OS1.1 provides a decomposition plot for the Shadish and Haddock (1994) psychotherapy
data set, constructed as set out below. Baguley (2011) provides a function for a decomposi-
tion plot in R. They are fairly easy to construct. The first few commands below read in the
raw data, extract simple mean differences and pooled standard deviations. The remaining
code plots data and adds the required lines. An essential property of a decomposition plot
is to match the scales of the two axes (because the simple mean differences and σ̂ are on
the same scale, the plot will be misleading if this relationship is not preserved). The graph-
ics parameter asp sets the aspect ratio of the plot, and fixing this to one will keep the scales
equal.
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m.e <- c(5, 4.9, 22.5, 12.5, 3.37, 4.9, 10.56, 6.5)

n.e <- c(13, 30, 35, 20, 10, 13, 9, 8)

sd.e <- c(4.7, 1.71, 3.44, 1.47, 0.92, 1.1, 1.13, 0.76)

m.c <- c(6.5, 6.1, 24.9, 12.3, 3.19, 5.5, 12.78, 7.38)

n.c <- c(13, 50, 35, 20, 10, 14, 9, 8)

sd.c <- c(3.8, 2.3, 10.65, 1.66, 0.79, 0.9, 2.05, 1.41)

diffs <- m.e - m.c

sd.pooled <- ((((n.c-1)∗sd.c∧2+(n.e-1)∗sd.e∧2)/(n.c+n.e-2)))∧0.5

plot(sd.pooled, diffs, xlab=’Standard deviation of treatment

effect (days)’, ylab =’Mean treatment effect (days)’, asp=1)

abline(mean(diffs), 0, lty=2)

abline(0, mean(diffs/sd.pooled), lty=3)

legend(4.5, 2.25, legend = c(’Unweighted mean difference’,

expression(paste(’Unweighted ’, italic(g)))),

lty=c(2,3),bty=’n’)

Several packages are available for meta-analysis, and a number provide funnel plots. Of these
metafor (Viechtbauer, 2010) is among the most versatile, though for simple mean differences
only the random effects model of Hartung and Knapp (2001) is recommended. The following
commands create a funnel plot with 95% confidence bands for the Hartung and Knapp random
effects model for simple mean differences from the psychotherapy data. The funnel() function
uses a meta-analysis model object as input (which in turn requires the standard errors).

library(metafor)

se.diffs <- sd.pooled ∗ sqrt(1/n.e + 1/n.c)

rma.out <- rma(yi=diffs, sei=se.diffs, method =’HE’,

knha=TRUE)

funnel(rma.out)

A trim and fill analysis can be obtained from the call trimfill(rma.out), which produces a
model object that can be used to create an enhanced funnel plot:

funnel(trimfill(rma.out))

The metafor package also includes a version of the qqnorm() function for meta-analysis model
objects. Thus, once metafor is loaded, the following command produces a normal probability
plot based on the standardized residuals of the meta-analysis:

qqnorm(rma.out)

The package also includes other plots, of which the forest plot is probably the most useful:

forest(rma.out)
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Baguley (2011) describes how to use these functions to obtain forest plots and normal probabil-
ity plots for the fixed effect and random effects meta-analysis methods proposed by Bond et al.
(2003) and Bonett (2009).

OS1.3.3 Contrasts in meta-analysis

Enter the study data (including the weights for the effect size) from Example OS1.1 and create
a vector of contrast weights:

Gj <- c(.07, -.018, .031)

Wj <- c(256.8, 392.1, 239.8)

nuj <- c(88, 118, 88)

wj <- c(-.5, -.5, 1)

The formulas for the t and the df are:

t.ma <- sum(wj∗Gj)/sum(wj∧2/Wj)∧.5
df.contr <- sum(wj∧2/Wj)∧2/sum(wj∧4/(Wj∧2∗nuj))

The 95% CI for the contrast is:

moe <- qt(.025,df.contr, lower.tail=FALSE) ∗ sum(wj∧2/Wj)∧.5
ci.contrast <- c(sum(wj∗Gj)-moe, sum(wj∗Gj)+moe)
ci.contrast

Baguley (2011) includes functions that implement the Bond et al. fixed effect (2003) method
(including contrasts).

R packages
Viechtbauer, W. (2010) Conducting Meta-analyses in R with the metafor Package. Journal of

Statistical Software, 36, 1–48.

OS1.4 Notes on SPSS syntax for Online Supplement 1

OS1.4.1 Standardized effect size and meta-analysis

Calculating d family effect sizes will be easier by hand or using common spreadsheet software
such as Excel than using SPSS syntax (point estimates for many r family metrics are easily
obtained). SPSS syntax for obtaining CIs for standardized effect sizes including for δ is described
by Smithson (2001) and Fidler and Thompson (2001). Field and Gillett (2010) describe macros
for running meta-analysis of standardized effect size (g and r) using SPSS (with links to R for
some output).
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OS1.4.2 Diagnostic plots for meta-analysis

For details of meta-analytic procedures in SPSS it is worth looking at the SPSS macros in
Field and Gillett (2010). Field and Gillett also explain how to obtain funnel plots (but not
decomposition plots), and how to assess publication bias (using SPSS to invoke R).

OS1.5 Notes

1. The term ‘study’ is something of a misnomer. Meta-analysis combines effects that may come
from different studies (but need not). However, it is the standard term in the literature to
designate the source of an effect included in a meta-analysis and hence also adopted here.

2. Bond et al. use the symbol . The symbol θ is adopted here to reduce confusion with other
uses of .
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