Modern Technologies and Conflicts

Space Security

23.10.2024

Marek Dvořáček

- Neil Armstrong and Buzz Aldrin
- Pete Conrad, Alan Bean,
- Alan Shepard, Edgar Mitchell,
- David Scott, James Irwin,
- John Young, Charles Duke,
- Eugene Cernan, Harrison Schmitt

Future spaceflights [edit]

expedition [edit]

Scheduled future flights are shown below:					h	Crew	Arrival (UTC)	Arrival Flight	Departure (UTC)	Departure	Duration
Spacecraft	ISS Flight No.	Mission	Launcher	Scheduled date (UTC) ^{[85][86][87]}		Matthew Dominick			October 2024 (planned)	Flight SpaceX Crew-8	(days)
SpaceX CRS-31	CRS SpX-31	Logistics	Falcon 9 Block 5	30 October 2024		 Jeanette Epps Alexander Grebenkin Aleksey Ovchinin Ivan Vagner Donald Pettit 	Transferred from Expedition 71				
Progress MS-29	ISS-90P	Logistics	Soyuz 2.1a	21 November 2024							
SpaceX CRS-32	CRS SpX-32	Logistics	Falcon 9 Block 5	December 2024					March 2025 (planned)	Soyuz MS-26	
Cygnus NG-22	CRS NG-22	Logistics	Falcon 9 Block 5	February 2025							
Progress MS-30	ISS-91P	Logistics	Soyuz 2.1a	12 February 2025							
SpaceX CRS-33	CRS SpX-33	Logistics	Falcon 9 Block 5	March 2025		 Barry E. Wilmore Sunita Williams^[note 9] 			February 2025 (planned)	SpaceX Crew-9	
HTV-X1	HTV-X1	Logistics	H3-24W	March 2025							
SNC Demo-1	ISS-SNC-1	Logistics	Vulcan Centaur VC4L	May 2025		Nick Hague	29 September 2024 21:30	SpaceX Crew- 9			
Progress MS-31	ISS-92P	Logistics	Soyuz 2.1a	May 2025		Aleksandr Gorbunov					
Cygnus NG-23	CRS NG-23	Logistics	Antares 300	Late 2025		Anne McClain	February 2025 (planned)	SpaceX Crew- 10			
SpaceX CRS-34	CRS SpX-34	Logistics	Falcon 9 Block 5	Late 2025		Nichole Ayers					
Progress MS-32	ISS-93P	Logistics	Soyuz 2.1a	August 2025		 Takuya Onishi Kirill Peskov 					
Progress MS-33	ISS-94P	Logistics	Soyuz 2.1a	October 2025		Sergey Ryzhikov	March 2025 (planned)	Soyuz MS-27	Will be transferred to Expedition 73		
Progress MS-34	ISS-95P	Logistics	Soyuz 2.1a	February 2026		Alexey Zubritsky					
Cygnus NG-24	CRS NG-24	Logistics	Antares 300	Early 2026		Jonny Kim	(planned)				
SpaceX CRS-35	CRS SpX-35	Logistics	Falcon 9 Block 5	Early 2026							
Progress MS-35	ISS-96P	Logistics	Soyuz 2.1a	May 2026							
Cygnus NG-25	CRS NG-25	Logistics	Antares 300	Late 2026							
Progress MS-36	ISS-97P	Logistics	Soyuz 2.1a	August 2026							
Progress MS-37	ISS-98P	Logistics	Soyuz 2.1a	October 2026							
US Deorbit Vehicle	?	Deorbit	?	2030			- +				

Satellite operator Viasat climbs 27% after selling military communications unit to L3Harris for \$2 billion

PUBLISHED MON, OCT 3 2022+11:20 AM EDT | UPDATED MON, OCT 3 2022+4:07 PM EDT

SPACE

share f 🍠 in

KEY • California-based satellite operator POINTS business to defense contractor L3I

GAO: Defense, intelligence agencies need a better plan to buy commercial satellite imagery

by Sandra Erwin - September 7, 2022

SPACENEWS.

As DoD grows more reliant of the relationship

by Sandra Erwin - September 22, 2022

DoD and the intelligence commuthey would use commercial space

A > e-Library > Official texts (Chr.

Satellite image collected by BlackSky over Vasylkiv Air Base, Ukraine, Feb. 28. Credit: BlackSky

17 Jan. 2022 - | Last updated: 1

NATO's over

GAO director Brian Mazanec: 'Commercial satellite capabilities are increasingly going to be indispensable to the national security enterprise'

egal v Markets v Breakingviews Technology v Investigations More v

t Updated 11 days ago

Exclusive: Musk's SpaceX says it can no longer pay

e tab

for critical satellite services in Ukraine, asks

CNN DOITICS The Biden Presidency Facts First 2022 Midterms

es Iran of jamming its

1) Outer space and Kármán line

- the atmospheric boundary at the altitude of 100 km (62 miles)the highest achievable point for ordinary aviation: Aeronautics
- the highest achievable point for ordinary aviation: Aeronautics
- the lowest point under which the atmosphere is too dense for a spacecraft to remain on a stable orbit without a continuous pull of its drive: Astronautics
- (altitude where the speed necessary to aerodynamically support the airplane's full weight equals orbital velocity (assuming wing loading of a typical airplane). In practice, supporting full weight wouldn't be necessary to maintain altitude because the curvature of the Earth adds centrifugal lift as the airplane reaches orbital speed)

2) history – 1942

- Vergeltungswaffe 2

- 1957 Sputnik-1

Satellites

Concerned Scientists

Climate Energy Transportation Food Nuclear Weapons Science & Democracy

Satellites

REPORTS & MULTIMEDIA / FEATURE

UCS Satellite Database

In-depth details on the 7,560 satellites currently orbiting Earth, including their country of origin, purpose, and other operational details.

Published Dec 8, 2005 | Updated May 1, 2023

Satellite quick facts

Includes launches through 5/1/2023

- Total number of operating satellites: 7,560
 - United States: 5,184
 - Russia: 181
 - China: 628
 - Other: 1,572
- LEO: 6,768
- MEO: 143
- Elliptical: 59
- GEO: 590
- Total number of US satellites: 5,184
 - Civil: 30
 - Commercial: 4,741
 - Government: 167
 - Military: 246

Satellites

REPORTS & MULTIMEDIA / FEATURE

UCS Satellite Database

In-depth details on the 4,084 satellites currently orbiting Earth, including their country of origin, purpose, and other operational details.

Published Dec 8, 2005 | Updated May 1, 2021

Satellite quick facts

Includes launches through 4/30/2021

- Total number of operating satellites: 4,084
 - United States: 2,505
 - Russia: 168
 - China: 431
 - Other: 980
- LEO: 3,328
- MEO: 139
- Elliptical: 57
- GEO: 560
- Total number of US satellites: 2,505
 - Civil: 32
 - Commercial: 2,091
 - Government: 166
 - Military: 216

GeoInt

Table 1: Space effects and possible sources (not an all-inclusive list)

Space Services	NATO Uses and Effects	 National and Commercial Systems Global Positioning System (US) Galileo (EU) 			
Position, Navigation, Timing (PNT)	 Precision strike Force navigation Support to PR/CSAR Network timing 				
Integrated Tactical Warning and Threat Assessment	Force protectionAttributionMissile defence	 Space Based Infrared System (US) 			
Environmental Monitoring	 Mission planning Munitions selection Weather forecasting 	 Defence Meteorological Satellite Program (US) EUMETSAT (EU) 			
Communications	 Command and Control Unmanned Aerial Vehicle ops Deployed communications 	 GBS (US) Syracuse (FRA) EUTELSAT (FRA) SICRAL (ITA) SKYNET (UK) INTELSAT (US) 			
Intelligence, Surveillance and Reconnaissance	 Coverage of operation execution (in the operations centre) Battle Damage Assessment (BDA) Intelligence Targeting 	 SAR Lupe (DEU) COSMO SKYMED (ITA) HELIOS (FRA) IKONOS (?)(US) 			
Identification	Automated Identification	AIS			

Copernicus Service in Support to EU External Action

Earth observation satellites

→ Used for recognition

Maritime Traffic

Figure 5: Today's reliance on GNSS positioning and timing signals

Copernicus

https://www.youtube.com/ watch?v=MGJss4IDaBo

 Support to EU External Actions (implemented in partnership with the European Union Satellite Centre and the Emergency Management Service);

• Maritime surveillance (implemented in partnership with the European Maritime Safety Agency, EMSA);

• Border surveillance (implemented in partnership with FRONTEX).

Space Security Definition:

"Secure and sustainable access to space and its use, as well as freedom from threats emanating from space."

- Definition based upon Outer Space Treaty principles (of 1967)
- Outer space should remain freely sustainable for all to peaceful use now and in the future

<u>Clay Moltz</u>:

the ability to place and operate assets outside the Earth's atmosphere without external interference, damage, or destruction

The three dimensions of space Security by Jean-François Mayence:

Three dimensions - interrelated areas

I) Outer space for security:

Satellite systems contributing to security and defence initiatives

II) Security in outer space:

Keeping space assets and infrastructure intact against natural and human risks. Maintaining sustainable development

III) Security from outer space:

Protecting humanity and the environment from natural threats and risks originating in outer space

Risks and threats

- 1) Space debris
 - Kessler syndrome
- 2) Anti-satellite weapo
 - Conventional
 - Nuclear
 - Direct energy radic
 - Jamming / disruptior
- 3) Cyber
- Only non-kinetic cap military operations

Figure 1.1 Growth in on-orbit population by category⁹

Space Debris

- 1. Space Surveillance & Tracking / Space Situational Awareness
 - radars and telescopes
- 2. Conjunction Assessment or Collision Avoidance (CA)
 - Based on ephemeris and a catalog of objects, predict potential collisions in space and inform operators (e.g. Sentinel 1A 2016) or Cosmos 2251 Iridium 33 <u>collision</u> 2009 Iridium Cosmos Satellite

Space Surveillance & Tracking / Space Situational Awareness

• Objects are detected and tracked/monitored by a range of radars and telescopes, military, civilian, commercial

Starfish Prime 1962

SM-3 missile 2008

Fengyun-1C 2007

Current trends

- Privatisation + commercionalisation
- Turism
- Asteroid mining?
- Growing number of actors

NewSpace / Space 4.0

Rosetta Mission - a detailed study of comet

Hayabusa2 – asteroid sample return mission

SPACENEWS.

Subscribe to the Maga

lews Opinion Military Launch Commercial Sponsored More 🗸 Advertise

Civil

Scientists excited by first look at OSIRIS-REx asteroid samples

Jeff Foust October 12, 2023

- Asteroid Bennu
- Start 2016, collection 2020, September 2023 return to Earth
- 250 grams material, goal of mission was 60 grams

NewSpace

- Technological progress = large amount of actors and assets
 - Cheaper development, production and operation of satellites and launchers
- Various industrial sectors such as IT companies, investment and media companies
- New approaches, emphasis on innovation, lowering the overall price due to competition
- Products are not perfect but sufficient
 - Priority is given to a lower price before a perfect performance, reliability and endurance
- More efficient and simpler manufacturing processes
 - Cheaper components, 3D printing, open source software, adaptable production model

What topics to follow?

- Private sector
- Legal system
- Miniaturization microsatellites
- Evolution of autonomous systems
- Antisatellites system
- Planetary Defence
- Fifth NATO operational domain

- <u>http://spacesecurityindex.org/ssi_editions/space-security-2019/</u>
- <u>https://espi.or.at/news/public-espi-report-64-security-in-outer-space-rising-stakes-for-europe</u>
- <u>https://edition.cnn.com/2020/10/31/us/psyche-asteroid-ultraviolet-trnd-scn/index.html?utm_source=fbCNNi&utm_content=2020-10-31T15%3A09%3A31&utm_medium=social&utm_term=link&fbclid=IwAR19p6YUeNxv4B8Vv7fWfgDbplIt8I55LSgBrAPq31f4wa48AJuRXIkzaOQ</u>
- https://www.thespacereview.com/article/4056/1?fbclid=IwAR3iKGDTs9VY3y2DXMz4hhxAmKSXeosjxS056AkAInx62W5ht1aA PLIc5w
- <u>https://www.japcc.org/portfolio/space-natos-newest-operational-domain/</u>
- https://spacenews.com/pentagon-issues-new-strategy-to-defend-u-s-dominance-in-space/
- https://www.brookings.edu/blog/order-from-chaos/2020/04/22/nato-and-outer-space-now-what/
- https://arstechnica.com/science/2020/04/mission-extension-vehicle-succeeds-returns-aging-satellite-into-service/
- <u>https://phys.org/news/2020-03-planetary-defenders-validate-asteroid-deflection.html</u>
- MAYENCE, Jean-Francois. 2010. Space Security: Transatlantic Approach to Space Governance
- MOLTZ, James Clay. 2011. The Politics of Space Security: Strategic Restraint and the Pursuit of National Interests
- DRMOLA, Jakub a Tomas HUBIK. 2018. Kessler syndrome: System dynamics model. Space Policy. Dostupné také z: http://linkinghub.elsevier.com/retrieve/pii/S0265964617300966
- <u>https://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russia-war-us-2017-07#ampshare=http://www.businessinsider.com/space-race-anti-satellite-china-russi</u>
- <u>http://www.thespacereview.com/article/3331/1</u>
- https://www.ted.com/talks/will marshall the mission to create a searchable database of earth s surface
- ASBECK, Frank, 2015. Policy Framework for Space Security Activities in the EU. In: Youtube.com [online]. Dostupné z: <u>https://www.youtube.com/watch?v=xGKdT8oYBX0</u>
- THE UK MILITARY SPACE PRIMER. 2010. An introduction to potential military uses of space. [online. Dostupné z: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/33691/SpacePrimerFinalWebVersion.pdf
- SATCEN EU. 2018b. EU Satellite Centre Annual Report 2017. European Union Satellite Centre [online]. Dostupné z: https://www.satcen.europa.eu/key_documents/EU%20SatCen%20Annual%20Report%2020175af3f893f9d71b08a8d92b9d.pdf
- https://www.nasa.gov/press-release/nasa-confirms-dart-mission-impact-changed-asteroid-s-motion-in-space