Regression Analysis

Methodology of Conflict and Democracy Studies December 17

Regression Analysis

- A variety of techniques with the same aim
- Identification of effects of one or more IVs on DV
- What it allows:
 - Identify effect of each independent variable
 - Control of effects of other independent/control variables
 - Predict values of DV based on specific values of IVs

Which Regression?

- Everything depends on your dependent variable
- Linear (OLS) regression:
 - Scale variable (or long ordinal)
- Logistic regression:
 - Binary variable (0/1) binary logistic regression
 - Nominal (0/1/2/3) multinomial logistic regression
- No limits on independent variables (all types allowed)

Examples

- OLS regression:
 - How do age, gender and education affect income of people?
 - Does attendance on lectures increase % amount of obtained points in your courses?
- Logistic regression:
 - Do men have higher chances to end up in jail than women?
 - Does attendance on lectures increase your chances to pass the course?

OLS Regression - Requirements

- Dependent variable:
 - Exactly one variable
- Independent variable:
 - One or more variables, all types without limits
- Some further requirements:
 - Independence of observations
 - No collinearity between independent variables

What is OLS Regression about?

- Basically, it is about searching for ideal lines that best describe the relationship between independent and dependent variable
- The best line is the one that is the least inaccurate of all possible lines
- Accuracy measured using sum of squares of vertical differences between predicted and observed data

R square

- Provides information about the overall fit of the model
- How well our model (= our IVs) explains the dependent variable
- Comparison of improvement of regression line compared to mean
- Ranges from 0 to 1 (zero to hundred per cent)
- Show how much of the variance of dependent variable we are able to explain using our set of independent variables
- Use Adjusted R square to control for inflation of number of IVs

The Outcomes of OLS Regression

- OLS regression estimates:
 - Intercept
 - Effects of each independent variable

•
$$y = b_0 + b_1^* x + b_2^* y + b_3^* z + ...$$

- y stands for predicted value of dependent variable
- **b**₀ stands for intercept
- **b**₁, **b**₂, **b**₃ etc. stand for slopes of independent variables **x**, **y**, **z** etc.

Example

- Is turnout in local elections affected by town population?
- Hypothesis: Turnout decreases as population increases
- Null hypotheses: There is no relation between population size and turnout
- Dependent variable:
 - Turnout turnout in % (scale)
- Independent variable:
 - Population_th town population in thousands of people (scale)

How to Perform the OLS Regression

- Analyze > Regression > Linear
- Select the variables:
 - Turnout into 'Dependent'
 - Population_th in the section for independent variables

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	35006,761	1	35006,761	220,877	,000 ^b
	Residual	462315,124	2917	158,490		
	Total	497321,885	2918			

a. Dependent Variable: Turnout

b. Predictors: (Constant), Population_1000

- Model Summary:
 - Our model explains 7 per cent (0,07 * 100) of variance of dependent variable

• ANOVA:

• Our model is a significant improvement in predicting the dependent variable and our results can be applied to the population

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	60,800	,244		248,812	,000,
	Population_th	-,591	,040	-,265	-14,862	,000,

- Intercept (Constant):
 - Predicted value of dependent variable if all independent variables = 0
 - In a (non-existing) town with zero population the turnout in local election is predicted as 60.8 per cent

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	60,800	,244		248,812	,000,
	Population_th	-,591	,040	-,265	-14,862	,000
a. D	ependent Variable	e: Turnout				

- Unstandardized B:
 - Shows how the value of DV changes if the value of an IV increases by one unit
 - Population_th is measured in thousands of people (one unit = 1,000 people)
 - Interpretation for each thousand people living in a town the turnout drops by 0.591 percentage points
 - This effect is significant at 99.9 % and so it can be applied to population (we reject the null hypothesis about absence of relationship between IV and DV)
- y = b₀ + b₁*x
 y = 60.8 + (-0.591)*x
 y = 60.8 0.591*x

Predictions Based on Results

- $y = b_0 + b_1^* x$
- Turnout = 60.8 + 0.591*Population_th

	Population	Population in thousands	Formula	Predicted turnout
Town 1	500	0.5	60.8 - 0.591 * 0.5 = 60.8 - 0.296	60.5
Town 2	1,000	1	60.8 - 0.591*1 = 60.8 - 0.591	60.2
Town 3	5,000	5	60.8 – 0.591*5 = 60.8 – 2.955	57.8
Town 4	10,000	10	60.8 - 0.591*10 = 60.8 - 5.91	54.9
Town 5	25,000	25	60.8 - 0.591*25 = 60.8 - 14.775	46,0

- Is turnout in local elections affected by town population, the local financial situation and whether there is a true competition?
- Dependent variable:
 - Turnout turnout in % (scale)
- Independent variables:
 - Population_th town population in thousands of people (scale)
 - Fin_Index indicator of financial situation in town (0-6; 0 = worst, 6 = best) (scale)
 - Competition 1 for at least two competitors or 0 for only one competitor (binary)

How to Perform the OLS Regression

- Analyze > Regression > Linear
- Select the variables:
 - Turnout into 'Dependent'
 - Population_th in the section for independent variables
- Because we have more than one IV:
 - Statistics > Collinearity Diagnostics

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	225580,308	3	75193,436	812,419	,000 ⁶
	Residual	269150,062	2908	92,555		\smile
	Total	494730,370	2911			

a. Dependent Variable: Turnout

b. Predictors: (Constant), Competition, Fin_Index, Population_th

- Our model explains 45.5 per cent of variance of dependent variable
- Substantial improvement compared to model that included only one independent variable
- Our model is a significant improvement in predicting the dependent variable and our results can be applied to the population

		Uns	tandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model			В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)		55,569	1,912		29,069	,000		
	Population_th		-,770	,031	-,347	-25,077	,000	,980	1,020
	Fin_Index		-1,382	,361	-,053	-3,831	,000	,994	1,006
	Competition		17,995	,397	,625	45,308	,000	,984	1,016

- Intercept (Constant):
 - Predicted value of dependent variable if all independent variables = 0
 - In a (non-existing) town with zero population, financial index of 0 and with no competition the turnout in local election is predicted as 55.569 per cent
- $y = \frac{b_0}{b_1} + b_1^* x + b_2^* y + b_3^* z$
- $y = 55.569 + b_1^* x + b_2^* y + b_3^* z$

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000		
	Population_th	-,770	,031	-,347	-25,077	,000,	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000,	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

- Unstandardized B:
 - Shows how the value of DV changes if the value of an IV increases by one unit
 - **Population_th** is measured in thousands of people
 - Interpretation for each thousand people living in a town the turnout drops by 0.77 percentage points
 - This effect is significant at 99.9 % and so it can be applied to population (we reject the null hypothesis about absence of relationship between IV and DV)
- $y = b_0 + \frac{b_1}{2} x + b_2 y + b_3 z$ $y = 55.569 \frac{0.77}{2} x + b_2 y + b_3 z$

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000,		
	Population_th	-,770	,031	-,347	-25,077	,000,	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000,	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

- Unstandardized B:
 - Shows how the value of DV changes if the value of an IV increases by one unit
 - Fin_Index is measured on a scale from 0 to 6
 - Interpretation for each increase on the financial scale by one the turnout drops by 1.382 percentage points
 - This effect is significant at 99.9 % and so it can be applied to population (we reject the null hypothesis about absence of relationship between IV and DV)
- $y = b_0 + b_1^* x + b_2^* y + b_3^* z$
- $y = 55.569 0.77*x 1.382*y + b_3*z$

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000		
	Population_th	-,770	,031	-,347	-25,077	,000	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

- Unstandardized B:
 - Shows how the value of DV changes if the value of an IV increases by one unit
 - **Competition** is a binary variable (0 = no competition; 1 = at least two candidates)
 - Interpretation if there is a competition, the turnout in town increases by 17.995 percentage points
 - This effect is significant at 99.9 % and so it can be applied to population (we reject the null hypothesis about absence of relationship between IV and DV)
- $y = b_0 + b_1^* x + b_2^* y + b_3^* z$
- y = 55.569 0.77*x 1.382*y + **17.995***z

Unstandardized B Coefficient

- Scale v. Binary Variables
- Same definition for scale and binary variables:
 - Shows how the value of DV changes if the value of an IV increases by one unit

BUT

- Binary (dummy) variables have only two values 0 and 1
 - Unlike scale variables, there is only one possible increase by one unit
 - The estimated effect is thus completely exhausted by this one increase

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000		
	Population_th	-,770	,031	-,347	-25,077	,000,	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

a. Dependent Variable: Turnout

• Competition:

- 0 no competition (only one candidate)
- 1 competition (at least two candidates)
- Shift from 0 to 1 means that towns with competition are predicted to have a nearly 18 percentage points higher turnout than towns without competition

• Population_th:

- Shift of population from 1 thousand to 2 thousand leads to drop of turnout by 0.77 percentage points
- Shift of population from 1 thousand to 5 thousand leads to drop of turnout by 3.08 percentage points (4 times decrease of 0.77)
- Shift of population from 5 thousand to 12 thousand leads to drop of turnout by 5.39 percentage points (7 times decrease of 0.77)

Standardized Beta Coefficient

- Provide information about importance of independent variables
- Measured in standard deviation units \rightarrow allow to easily compare the IVs
- Higher distance from zero (both positive and negative) indicates higher importance of the independent variables

		Unstandardized Coefficients		Standard Coefficie				Collinearity	Statistics
Model		В	Std. Error	Beta	a	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912			29,069	,000,		
	Population_th	-,770	,031		-,347	-25,077	,000,	,980	1,020
	Fin_Index	-1,382	,361	C	-,053	-3,831	,000,	,994	1,006
	Competition	17,995	,397	C	,625	45,308	,000,	,984	1,016

- Results show that Competition is the most important predictor of all three independent variables
- Population_th is less important and Fin_Index is the least important

Predictions Based on Results

- $y = \frac{b_0}{b_1} + \frac{b_1}{a} + \frac{b_2}{a} + \frac{b_3}{a} + \frac{b_3}{a$
- Turnout = 55.569 0.77*Population_th 1.382*Fin_Index + 17.995*Competition

	Population	Fin_Index	Competition	Formula	Predicted turnout
Town 1	1,000	3	0	55.569 – 0.77*1 – 1.382*3 + 17.995*0	50.7
Town 2	1,000	3	1	55.569 – 0.77*1 – 1.382*3 + 17.995*1	68.6
Town 3	5,000	3	0	55.569 – 0.77*5 – 1.382*3 + 17.995*0	47.6
Town 4	10,000	6	1	55.569 – 0.77*10 – 1.382*6 + 17.995*1	57.6
Town 5	25,000	6	0	55.569 - 0.77*25 - 1.382*6 + 17.995*0	28.0

Control of Assumptions

- Outliers cases with extreme values
- Collinearity association between independent variables
- How to do that:
 - Analyze > Regression > Linear
 - Statistics > Collinearity diagnostics + casewise diagnostics

Collinearity

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000		
	Population_th	-,770	,031	-,347	-25,077	,000	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

Coefficients^a

- VIF above 5 (10) or Tolerance below 0.2 (0.1) constitutes a problem
- Solution more models or dropping one of the variables

Outliers

- The data should contain up to:
 - 5 % of cases with residual above 2 (below -2)
 - 1 % of cases with residual above 2.5 (below -2.5)
- If we find outliers we can rerun the model without these cases and compare whether the results change