ARTICLE

PROTECTING COMPUTER SOFTWARE:
A COMPREHENSIVE ANALYSIS

Duncan M. Davidson

Contents
THE NATURE OF SOFTWARE
1. Definitionsouiininiiiin it nenanenen 340
2. Common Misconceptionsoiuiiiinint e, 342
3. Conclusion ... i 347
PATENT
1. The Subject Matter Tests i, 348
2. ANalySIS ... e 353
3. Conclusion e 359
COPYRIGHT
1. The Subject Matter Debate 360
2. Policy Limitationsccuiiuiiinniinnininennenn.. 370
3. The Enforcement Problem 376
4. Software-Related Works 385
5. Publicationand Notice iiiiiiiinnen... 390
TRADE SECRETS
I. Subject Matter it e 395
2. The Copyright Registration Problem 400
3. The Copyright Preemption Problem 407
SUMMER 1983 337

HeinOnline 23 Jurinetrics J. 337 19821983

OTHER PROTECTIVE SCHEMES

1. Technological it iiinnnnnnns 411
2. Trademark/Unfair Competition 413
3. International Protection 414
PROPOSED REGULATORY SCHEMES
1. Proposals i i 418
2. Implementingthe Reforms 423
3. Conclusion e 424
338 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 338 19821983

PROTECTING COMPUTER SOFTWARE:
A COMPREHENSIVE ANALYSIS

Duncan M. Davidson*

Protecting computer software has become increasingly important. The market
for software will have tremendous growth in this decade. Software is expensive
to create but easy to copy. Proliferation of functionally identical computers has
led to widespread software portability. Many software vendors, notably vi-
deogame distributors, are suffering from piracy and copying similar to that
which significantly reduces the revenues of companies in the musical recording
and videocassette businesses.

The debate over software protection has centered on the theoretical ques-
tion of what is the nature of software. In the patent area, the issue has been
whether software states mental steps or incorporates mathematical algorithms
or other fundamental laws of nature which traditionally are not patentable. In
the copyright area, the issue has been whether the form of software which is
actually used on the computer, binary form, is in any sense a *‘literary work”’
since it is intended only to operate a machine.

What causes difficulties in the analysis of software protection is that soft-
ware is both symbolic and mechanical. Software can be directly used to operate
a machine, but it only symbolically represents the hard-wiring of the machine.
Software creators no longer need to understand the actual wiring and circuitry
of the computer; it is sufficient if they understand how to manipulate certain
‘‘computer languages’’ around which other engineers, who are knowledgeable
of hardware, have built the computer. Instead of building software, software
engineers write it. Because of this, software has been argued to be suitable for

*Duncan M. Davidson has recently left Los Angeles to practice law in Denver, Colorado. He
is the Chairman, Committee on Proprietary Protection of Software, Computer Law Division,
American Bar Association Section of Science and Technology. The views expressed are personal
to the author and do not necessarily represent the views of the American Bar Association or any
other organization. The author would like to acknowledge the following people, who, while not
necessarily agreeing with the author’s views, provided valuable assistance in the ideas expressed in
this article: John Lautsch, Chairman, Computer Law Division; Jean Kunkel, Los Angeles; Richard L.
Bernacchi, Los Angeles; Mary Carrington, Newport Beach, CA: G. Gervaise Davis 11, Monterey, CA;
Hugh D. Finley, San Francisco; Robert T. Burke, San Francisco; Scott Price, Washington, DC and
Ronald §. Palenski, ADAPSO, Arlington, VA.

SUMMER 1983 339

HeinOnline 23 Jurinetrics J. 339 19821983

copyright protection. Software is used also to manipulate computer machinery,
however, making it part of a machine or process. Because of this, software has
also been argued to be suitable for patent protection. The dual nature of soft-
ware is the basis of the theoretical debate which has caused much concern and
consideration.

This article first analyzes the nature of software and concludes that for
most purposes it should be thought of as a tangible engineering product. The
article next reviews patent, copyright, trade secret, international and techno-
logical protective schemes and concludes that patent, copyright and trade se-
cret law together can adequately protect software once its nature is fully under-
stood. Patent protection covers software when it is used in larger processes or
as part of machinery in a manner which dynamically and automatically affects
items in the surrounding environment. Copyright law protects the computer
program itself—the specific logic and design of the software. Trade secret law
protects the program’s underlying algorithms and the way in which the pro-
gram interfaces with other components of a process or machine.

Finally, the article discusses proposed new protective schemes, including
current proposed amendments to the 1976 Copyright Act. Certain changes to
these amendments are recommended in order to avoid needless litigation and to
promote, rather than hamper, the rapidly growing software industry.

THE NATURE OF SOFTWARE

It may be possible to work out a satisfactory scheme of software protection
by a functional approach, considering the purposes being served by protection,
without answering the formal question of what is the nature of software. In or-
der to appreciate and correctly apply this functional approach, however, it is
still necessary to understand what software is and what it is not.

1. Definitions

Because of the various meanings given to software,’ the following terms
will be used in this article. Software shall refer to all materials encompassing or

'Usually, hardware refers to the computer machinery and software refers to the machine-
readable programs used to operate the hardware. See Law Research Serv. v. General Automation,
Inc., 494 F.2d 202, 204 n.3 (2d Cir, 1974) (‘*software includes the punch cards, memory tapes,
and paper tapes programmed to instruct the computer’’); Com-Share, Inc. v. Computer Complex,
Inc., 338 F. Supp. 1229, 1231 (E. D. Mich. 1971), aff'd per curiam 485 F.2d 1341 (6th Cir. 1972)
(*‘saftware refers to the programs and controls which are used in the computer™’).

Software often is given a more expansive meaning, to include both ‘‘human-readable’’ ver-
sions of programs, related documentation and operating manuals, University Computing Co. v.
Lykes-Youngstown Corp., 504 F.2d 518, 527 (5th Cir. 1974); Accountants Computer Serv., Inc.
v. Kosydar, 35 Ohio St. 2d 120, 123-24, 298 N.E.2d 519, 522 (1973), and ‘‘support’’ services
such as advice, programming systems, and engineering help, Honeywell, Inc. v. Lithonia Light-
ing, Inc., 317 F. Supp. 406, 408 (N.D. Ga. 1970) (defines hardware and software and complains
of the lack of clarity in the *‘jargon’” used in the computer industry).

340 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 340 19821983

describing computer programs. Computer programs are the ordered set of in-
structions which can operate a computer.

Software is first begun by creating *‘source’’ materials, including program
descriptions like flow charts and functional specifications. These source mate-
rials are then used to create the program. These source materials are used to
draft computer instructions in a specific computer language. These written in-
structions are the ‘‘source code’’ of the program. Source code can be written in
languages which are English-like, such as BASIC or FORTRAN. Interspersed
between the source code instructions can be extensive comments and annota-
tions in English which describe the various computer instructions and which
enable an untutored programmer to understand the program. Source code can
also be written in wholly symbolic languages, such as APL or direct machine
language (ones and zeros), without an English language overlay.

Source code instructions are either directly used by a computer or are first
translated into the computer’s machine language as ‘‘object’’ code. Object
code usually is printed as ones and zeros, but it can also be printed as octal
numbers (0-7) or hexadecimal numbers (0-15, with A-F representing decimal
10-15). Object code can be directly translated into ‘‘assembly’’ language, in
which machine instructions are represented by mnemonics. For example, if
‘10110010’ represents the machine instruction ‘Add register B to whatever
is in the accumulator,’’ an assembly language instruction might read ‘‘ADD
B.’’ (The same instruction in octal numbers would be ‘“262’" and in hexadeci-
mal numbers would be ‘‘B2.”’)

The written code (source or object) is prepared in machine-readable ‘ ‘bi-
nary’’ form, the form the computer uses. Binary form is unintelligible to a hu-
man being and normally resides in computer memory or on magnetic media in
the form of binary electrical signals or magnetization. Binary form can be rep-
resented by ones and zeros, but its actual form is slightly different; electrically,
it usually consists of high and low voltages, and magnetically, it consists of
different polarities of magnetization.

Binary form and object code are often confused. The binary version of a
program is sometimes called the object version. While binary form can always
be printed out into ones and zeros, these ones and zeros do not necessarily rep-
resent the object code of a program. Source code, and other textual material
(such as on a word processing machine) are stored in a standard encoded form
in a computer, such as in accordance with the encoding protocol ‘*ASCIIL.”’
The capital letter K in ASCII, for example, is encoded as binary 01001011,
which is decimal 75, hexadecimal 4B, and octal 113. To print textual material,
the computer would be instructed as to the encoding protocol (ASCII or other-
wise) and would translate each binary number to a letter, number or punctua-
tion.

Object code, the direct symbolic representation of the machine language,
is intelligible to trained engineers. Indeed, it has no other function when printed
but to be painstakingly understood. At one time, object code was source code,

SUMMER 1983 341

HeinOnline 23 Jurinetrics J. 341 19821983

the symbolic language in which programmers wrote. Today, they write in
“‘higher-level’’ languages such as BASIC. A program or several programs in
combination, called ‘‘compilers’’ or ‘‘assemblers,”’ depending upon the na-
ture of the computer language, transform higher-level source code into object
code in binary form which is used by the computer for operation. In some com-
puter languages, the higher-level source code encoded in binary form is di-
rectly translated into computer operation by programs called ‘‘interpreters.’’

Software consists of source materials, source code, object code, and bi-
nary form.

2. Common Misconceptions
a. Engineering, Not Art

A major fallacy in the literature of software protection has been to view
software as the result of artistic or scientific creativity. There certainly is crea-
tivity in the construction of software, but the creativity is more like that in-
volved in any engineering creation. Software is created like most engineering
products: by a process of problem or project definition, followed by designing
the product (the program), creating a prototype (writing the source code), test-
ing the prototype (debugging), and ultimately realizing a commercially mar-
ketable product.

The fact that source code looks like a writing is misleading. A program’s
sentences and paragraphs must be very precisely drafted according to how well
itcanbe ‘‘read’’ by a machine, not by a human. In the earliest days of the indus-
try, programs were hard-wired into machines, a process which was painstaking
and time-consuming. The great development in computing which has led to its
wide proliferation was the concept of symbolic software, written in symbolic
languages, which could substitute for the hard-wiring. A hard-wired machine
can still perform the same functions much faster than a general purpose pro-
grammable machine, but the time to develop and test a general purpose com-
puter’s symbolic program is much less than that required for a hard-wired ma-
chine. The development of programming languages enables the relatively fast
creation of ‘‘new’’ machines, general purpose computers which have been
uniquely programmed, and these machines can be developed by software engi-
neers who have no substantial knowledge of how the machine works or is
wired.

The failure to recognize the engineering and mechanical nature of software
has caused fundamental problems in the protection of software. For example, it
has colored the manner in which patent claims and patent issues have been ar-
gued, because by divorcing programming from the hard-wiring of machines,
courts and others have been led to the conclusion that programs are not part of
the machinery but are ‘‘mental’’ or ‘‘mathematical’’ processes.

Another example is the superficial attractiveness of sui generis protective
schemes based upon a ‘‘design patent’’ type of law. In the United Kingdom, for

342 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 342 19821983

example, a device made from a blueprint is considered a copy of a blueprint.” A
similar type of law could apply to all forms of software, including object code,
source code, flow charts and other representations of the same fundamental
design. Design patent laws, however, protect visual designs, not engineering
architecture. Such a law for software, because of software’s close relation to
hard-wiring, could restrict reverse engineering of otherwise unprotectable
computer design and architecture. This would cause greater anticompetitive
effects than current protection. A new design patent-like law for software
would require careful consideration,

A third example of the problems created by this fallacy is the continuing
debate on the copyrightability of software. The fundamental question of copy-
right application to software, discussed below, is whether software used solely
for utilitarian purposes when in a machine should be copyrightable. Software is
not only utilitarian; it is also symbolic. The symbolic nature of software distin-
guishes it from other utilitarian objects and from ‘‘designs’’ and, as will be
discussed, makes copyright protection appropriate. This issue has been misun-
derstood and misstated because the engineering nature of software is over-
looked in certain forms of software and found in other forms. It is in all forms.
The issue cannot be finessed by making artificial distinctions.

Nevertheless, the prevalence of this fallacy indicates that software engi-
neering is a new type of engineering and requires a reconsideration of the poli-
cies and theories underlying both patent and copyright protection.

b. Tangible, Not Intangible or Unique

A major debate has been over whether software is tangible or intangible, or
a new, hybrid creation somehow existing somewhere between tangible and in-
tangible objects. This debate has led to such oxymoronic decisions as saying
that software ‘‘though intangible™ is nevertheless a ‘‘good’’ under the Uni-
form Commercial Code (a *‘good’’ being defined as a movable thing).’

Software has tangible and intangible elements.’ The tangible elements in-
clude written or printed copies and all machine-readable binary forms of object
and source code, which of necessity must be tangible to be ‘‘read’’ by a ma-

’L.B. Plastics Ltd. v. Suish Prod. Ltd., [1979] Fleet St. Rep. .

3’l”rianglf: Underwriters, Inc. v. Honeywell, Inc., 457 F. Supp 765 (E.D.N.Y. 1978), rev'd on
other grounds, 604 F.2d 737 (2d Cir. 1979).

“The difference between the tangible and intangible parts of software can be analogized to the
difference between the tangible and intangible parts of music. These can be expressed in the fol-
lowing chart:

Music Software

Intangible Elements Intangible Elements
type of music; musical techniques; melody; functionality; programming techniques; real-
orchestration; ‘‘hooks’’; performance. ization; algorithm; reduction to practice.

Tangible Elements Tangible Elements
description; conductor’s manual; sheet mu- description; flow charts; source code; binary
sic; score; record/cassette tape. form.
SUMMER 1983 343

HeinOnline 23 Jurinetrics J. 343 19821983

chine. The intangible elements include a program’s external attributes, such as
what functions it performs, and its internal design, which includes the underly-
ing concepts, ideas and programming techniques and the specific algorithms
using the underlying programming techniques.

With strong tangible and intangible elements, it can be difficult to decide
whether ‘‘software’’ is the intangible set of instructions or a tangible embodi-
ment of the instructions. This debate, however, relates more to the definition of
software than to the underlying nature of software. Any engineering creation
has intangible elements, but usually the intangible ideas upon which the crea-
tion functions are not confused with copies of the creation.

For most purposes, like other engineering products, software should be
considered tangible. The program should be considered intangible; it is the
specific design and logic of the software. It is the physical software, however,
which is the subject of most legal transactions concerning any program. The
physical software can operate a computer. It is therefore unlike other intangi-
bles. It is unlike intangible legal rights; a patent right does not operate a patent.
It is unlike intangible laws and principles; the law of physics do not create pat-
entable machines. It is also unlike specific, ordered intangible instructions; a
set of rules, such as how to write a computer language or how to implement
‘‘protocol’’ for two computers to talk to each other, does not by itself create
computer programs or talk to computers.

It is critically important to appreciate this distinction between software and
the program when analyzing legal transactions. Software is too easily defined
as a hybrid tangible/intangible object or an amorphous item coexisting both in
objects and as the intangible processes accomplished by the program instruc-
tions. This is reflected in a statement that software *‘though intangible’’ is a
‘“‘thing.’’ Software is viewed like the disembodied grin on the Cheshire cat in
Alice’s Adventures in Wonderland: software is not seen as the cat itself (a copy
of the software) nor the unique pattern of stripes which identifies the cat (the
specific design and logic of the program); software is viewed as in between,
like the grin—not as tangible as the cat but not intangible either, since software
can operate a computer.

The grin should be removed from the face of this Cheshire cat. The ‘‘grin’’
fallacy arises because of the common psychological errors of extrapolating
concepts into real things or abstracting things into concepts. The nature of soft-
ware exacerbates these tendencies. First, software is easy to copy. Thus, it can
be argued that a ‘‘thing’’ exists separate from any one copy (but found in all
copies) which flows from copy to copy as the copies are made. But that “thing”’
is only the fact of resemblance, which is not a thing at all (although it may be
protectable under laws such as the Copyright Act, which gives rights to pre-
clude others from creating a substantially similar ‘‘pattern of stripes’’). Sec-
ond, the same functioning of a computer program can be achieved with differ-
ent types of instructions. Again, it can be argued that software consists of this
functioning and is a *‘thing’” which exists separate from any particular form in

344 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 344 19821983

which it may be expressed. But this specific functioning is no more than the
particular expression of the intangible program. Different software can em-
body different programs that accomplish similar functions. Third, software
can be electrically and electromagnetically transmitted. While transmitted, its
existence is ephemeral, but not intangible. Machines can read it.

It would be better to view software as tangible than to continue the debate
and define it as tangible for some purposes and intangible for others. It is too
easy to slip into the grin fallacy. It is the tangible software which is being mar-
keted; it is its intangible program which is protected by copyright or whose
functioning which might be protected by a patent.

c. The Architect’s Drawing Fallacy

Analogies can be helpful, but they should be viewed initially with skepti-
cism. A more traditional analogy for software (other than to a Cheshire cat) is
to view the dichotomy between source code and binary form as analogous to the
difference between blueprints and devices, recipes and cakes, and architects’
drawings and buildings.’ These analogies are only superficially accurate.

The devices, cakes and buildings are mechanical in nature, like binary
form, but are not easily copied, and do not retain symbolic attributes such as
source or object code which can be reproduced from binary form. The blue-
prints, recipes and architects” drawings are symbolic, like source or object
code, but cannot be mechanically translated into devices, cakes or buildings
without human labor. The three analogies lack the automatic, mechanical
translation of source or object code into binary form and then into machine op-
eration which makes software both symbolic and mechanical. Therefore, these
three analogies are inapposite.

d. Courts in Wonderland

These fallacies and others have been carried over into judicial and regula-
tory decisions. In the early cases, software was characterized as being ‘ ‘knowl-
edge.”’* Perhaps those courts were anthropomorphizing computers as ‘‘know-
ing’’ what they have in their memory systems.

There has been a continuing vigorous fight to avoid sales and use taxes on
software. The parties leading the fight have characterized software as ‘‘intangi-
ble’’ because most of these tax laws apply only to ‘‘tangible personal prop-
erty.””” Under certain tax situations, software has been found to be tangible.’

3E.g., Stern, Another Look at Copyright Protection of Software, 3 CoMpUTER/L.J. 1, 710.23,
10 (1981).

®E.g., District of Columbia v. Universal Computer Assoc., 465 F.2d 615, 618 (D.C. Cir.
1972).

*The following cases (not exhaustive) held that for purposes of a personal property or a sales or
use tax, software (at least in certain forms) is an *‘intangible."” District of Columbia v. Universal
Computer Assoc., Inc., 465 F.2d 615 (D.C. Cir. 1972) (punched cards containing programs);
County of Sacramento v. Assessment Appeals B., 32 Cal. App. 3d 654, 671, 108 Cal. Rptr. 434,
446 (1973); Commerce Union Bank v. Tidwell, 538 $.W.2d 405 (Tenn. 1976) (that software was
on magnetic tapes and punched cards not determinative; software could have been telecommunica-
ted and therefore is intangible); Honeywell Information Systems v. Maricopa County, 118 Ariz.

SUMMER 1983 345

HeinOnline 23 Jurinetrics J. 345 19821983

Distinctions are now being made, such as between custom designed software
and packaged software, the former being considered inherently a transaction
for services with only incidental and unimportant tangible elements.” Never-
theless, many states tax some types of software and many states exempt all
types, with little consistency. "

The tangibility issue has also arisen under the Uniform Commercial Code,
where software is generally found to be a ‘‘good”” and covered." In isolated
decisions in other areas, software has been found to be sufficiently tangible to

171, 575 P.2d 801 (1977) (software sold as part of integrated system must be unbundled for pur-
poses of exempting it from personal property taxation); State of Alabama v. Central Computer
Serv., Inc., 349 So. 2d 1160 (Ala. 1977) (held, that although there is an incidental commingling of
intangible information with tangible magnetic tapes and punched cards in the sale of computer pro-
grams, the essence of a software transaction is the purchase of nontaxable intangible information;
the Alabama court reached this conclusion despite a prior holding that the leasing of a motion pic-
ture film to a local TV station was taxable because the film was tangible personal property); First
Nat'l Bank v. Bullock, 584 §.W.2d 598 (Tex. 1979); First Nat’l Bank v. Department of Rev., 85
Ill. 84, 421 N.E.2d 175 (1981) (held that the substance of a software transaction is not the tapes but
the ‘‘information’’); James v. TRES Computer Serv., Inc., 642 S.W.2d 347 (Mo. 1982)
($135,000 program for on-line customer information system transferred under license on a $50
magnetic tape held intangible technical professional services in part because it could have been
telecommunicated). See also Spencer Gifts, Inc. v. Taxation Div. Dir., 182 N.J. Super. 179, 440
A.2d 104 (1981) (lease of magnetic tapes containing mailing lists nontaxable); Janesville Data
Center, Inc. v. Wisc. Dept. of Rev., 84 Wis. 2d 341, 267 N.W.2d 656 (1978) (sale of magnetic
media-containing customer data nontaxable); Bullock v. Statistical Tabulating Corp., 549 S.W.2d
166 (Tex. 1977) (sale of media-containing data supplied by customer nontaxable); Central Data
Sys. v. Kosydar, 35 Ohio St. 2d 120, 298 N.E.2d 519 (1973) (sale of reports containing business
analysis nontaxable). See generally Note, The Nature of Taxability of Computer Software, 22
WasHBURN L.J. 103 (1982).

$The following cases (not exhaustive) held that software was tangible under various tax stat-
utes. Greyhound Computer Corp. v. State Dept. of Assessment & Taxation, 271 Md. 674, 320
A.2d 52 (1974) (software is tangible personal property and is subject to the personal property tax);
Texas Instruments v. U.S., 407 F. Supp. 1326 (N.D.Tex. 1976), rev'd, 551 F.2d 599 (5th Cir.
1977) (in line with the IRS,VB42’s long-standing position that software is intangible, the District
Court denied a claim for an Investment Tax Credit under IRC § 48, which is only available for
*‘tangible personal property,’” for certain software, because ‘ ‘the real investment is in the informa-
tion on the tapes which is intangible.’” The Fifth Circuit reversed and held that property is intangi-
ble if its intrinsic value is attributable to its intangible elements rather than to any of its specific
embodiments. The court analogized software to motion picture and TV films, which are tangible
for Investment Tax Credit purposes, by noting that software physically embodies the information
on the tapes in much the same manner as performances are captured on film).

®See California Dept. of Equalization Regulation 1502 (1972); Bill 2932 and CaLIF. REv. &
Tax. Copk § 6010.9 (September 22, 1982) (finding *‘custom computer program’’ creation a ser-
vice not subject to sales or use tax).

'°A recent count showed thirty-four states tax at least some types of software and sixteen states
and the District of Columbia exempt it, although sales of some items containing software even in
those states may be taxable. 1980 ADAPSO Tax SUrVEY {updated Feb. 17, 1983) (listing as ex-
empting it: Ala., Ariz., Colo., D.C., Fla., Ill., Ind., La., Md., Minn., Neb., N.J., N.Y., No.
Car., No. Dak., Tex. and Vt.). See generally BIGELOW & SALTZBERG, STATE COMPUTER TAX
REPORT (1982).

!'See Note, Computer Programs as Goods under the U.C.C., 77 MicH. L. REv. 1149 (1979).
When software is licensed incidental to hardware procurement, it is treated as a good since the
whole transaction is treated under the UCC. E.g., Investors Premium Corp. v. Burroughs Corp.,
389 F. Supp. 39 (D.S.C. 1974); Carl Beasley Ford, Inc. v. Burroughs Corp., 361 F. Supp. 325
(E.D. Pa. 1973), aff 'd, 493 F.2d 1400 (3d Cir. 1974); Burroughs Corp. v. Joseph Uram Jewelers,
Inc., 305 So. 2d 215 (Fla. Dist. Ct. App. 1974); Bakal v. Burroughs Corp., 74 Misc. 2d 202, 343

346 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 346 19821983

be subject to replevin,” to be a product which can be the subject of an illegal tie-
in violating of antitrust laws,"” and to be property subject to conversion. “ In the
Commerce Department’s Export Regulations, software can be both intangible
“‘technical data’’ and a tangible ‘‘controlled commodity’’; the Department has
taken the position that software is technical data, although in some material
forms it will be embodied in a controlled commodity."*

It is likely that over time the courts will shift from the original view that
software is intangible or ‘‘knowledge’’ to a view that software is tangible, at
least in certain types of transactions.'® This will occur largely when software is
seen to be more like other tangible items, as it can be in computer stores where
software is sold like record albums. This will also occur when attorneys and
judges consider the practical or functional aspects of software transactions. For
example, in transactions for acquiring software, software can be acquired as is,
perhaps with some customization, or can be newly developed or largely spe-
cially manufactured. If software is largely specially manufactured, the soft-
ware contract should include many of the elements of a construction or service
contract. It can be strongly argued that the resulting tangible software is inci-
dental to a larger service arrangement and, therefore, the transaction as a whole
is for an intangible (programming services). In most cases for acquiring soft-
ware, the software is either sold as is (*‘packaged’’) or is only moderately cus-
tomized from its packaged form. Such software transactions on a functional
level should be handled under contracts which are analogous to sales or lease
contracts for tangible products.

3. Conclusion

Software is a new type of technology which will become dominant in the
coming years. This technology has at least two novel aspects: it is expensive to

N.Y.S.2d 541 (1972). When it is thought of as the **grin,”” software, ‘‘though intangible,”’ has
been held to be a good. Triangle Underwriters, Inc. v. Honeywell, Inc., 457 F. Supp. 765
(E.D.N.Y. 1978), rev'd on other grounds, 604 F.2d 737 (2d Cir. 1979). In holding that computer
programs are goods under the UCC, the District Court stated: **Although the ideas or concepts
involved in the custom designed software remained Honeywell's intellectual property, Triangle
was purchasing the product of these concepts. That product required efforts to produce, but it was a
product nevertheless and, though intangible, is more readily characterized as ‘goods’ than ‘ser-
vices'.”’

2F & M Schaefer Corp. v. Electronic Data Sys. Corp., 430 F. Supp. 988 (S.D.N.Y. 1977)
EDS sought replevin of software from F&M, and F&M resisted the replevin by claiming that soft-
ware consists of services as well as intengible ideas and concepts. The court held that software is
tangible and that EDS could replevin the software by recovering from F&M the tapes, instructions,
supporting documents, and all copies of each of the above.)

In re Data General Corp. 490 F. Supp. 1089 (N.D. Cal. 1980) (operating system software is
a product which can be illegally tied), appeal pending.

“National Sur. Corp. v. Applied Sys., 418 So. 2d 847 (Ala. 1982).

3Cp. 15 C.F.R. § 379.1 and the Department of Commerce Controlled Commodity List, Com-
modity No. 1572A.

"®*Thus, most software transactions involving packaged or moderately customized standard
software should be subject to sales and use taxes, the investment tax credit and accelerated cost
recovery under the Internal Revenue Code, the Uniform Commercial Code (assuming the transac-
tion is analogous to a sale or long-term lease), replevin, and so on.

SUMMER 1983 347

HeinOnline 23 Jurinetrics J. 347 19821983

make but easy and inexpensive to copy; and it can operate a machine but can be
written symbolically, without any awareness of how the machine is built. This
technology represents a major advance in the art of the design of machines.

The nature of software is certainly complicated, but it should not be misun-
derstood. Despite its novel aspects, it is fundamentally analogous to other engi-
neering creations. In physical form it can vary from a mechanical element
which can operate a machine (binary form) to symbolic engineering represen-
tations of the hard-wiring of a machine (the source materials). It is tangible, but
has basic intangible elements which can be ‘“copied’’ either by copying the in-
ternal design of the program to accomplish the same functions, or by copying
the functions with a different type of internal design.

The fundamental issue in the protection of software revolves around the
latter two elements: is it good policy to protect only the internal design or is it
better policy to protect the functions? This question has usually been posed as
whether a copyright or a patent scheme is most appropriate.

PATENT

The need for protection of software was first felt by computer users and
independent software houses in the early 1960s. Many turned to patent protec-
tion and soon the Patent Office was flooded with applications." In 1965, a pres-
idential commission studied the issue and recommended against patent protec-
tion." For fifteen years thereafter, patent protection of software was rare and
uncertain.

1. The Subject Matter Tests
a. Mental Steps

In 1966, the Patent Office issued guidelines for the patenting of software:
software was patentable subject matter under 35 U.S.C. Section 101 if it con-
sisted of *‘utility steps’” and not ‘ ‘mental steps.”’"” The Patent Office was apply-
ing the fairly recent decision of In re Abrams,” which explained what is now
known as the mental steps doctrine: processes which are executable mentally
are not patentable. This doctrine creates an obvious problem for patenting of

""Computer Software Protection: A Pragmatic Approach, Proceedings of the 1981 Fall Com-
puter Law Association Meeting in Washington, D.C., at 37 [hereinafter referred to as CLA Tran-

script].

lal’I'he Commission was established pursuant to Executive Order No. 11215 (April 8, 1965); 30
Fed. Reg. 4661; 814 Off. Gaz. Pat. Off. 3. In 1966 the Commission determined that computer
programs should not be patentable and recommended legislation to that effect. S. 1042, H.R. 5924.
In 1967, legislation was proposed as § 106 to the 1952 Patent Code, holding that all computer
programs are not patentable. 836 Off. Gaz. Pat. Off. 1115, 1118. The legislation was controversial
and was promptly withdrawn. See Commissioner Brenner's Testimony before the House, H.R.
5924 and H.R. 13951, Feb. 28, 1968,

1829 Off. Gaz. Pat. Off. 1 (1966).

188 F.2d 165 (CCPA 1951).

348 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 348 19821983

software because most computer software simply executes faster ‘‘mental’’
calculations or bookkeeping entries by machine than that which could be done
manually.

The Patent Office was suddenly caught in a crossfire between the interests
of the major computer manufacturers and the scientists and engineers who were
then academically oriented, and the independent computer users and software
developers.” The major computer manufacturers, such as IBM and Sperry-
Univac, realized that widely available software helped sell their hardware. The
software engineers considered themselves scientists, not entrepreneurs, and
were more interested in advancing the art than in exploiting the business. Op-
posed to them were major oil companies and other users of computers who had
internally developed extensive and complicated programs, and independent
software houses which insisted that software is technology, not *‘science’’ or
“‘art,”” which needed protection.” In 1968, the 1966 guidelines were with-
drawn and replaced by narrower guidelines.” In 1969, the Patent Office was
pressured into rescinding its guidelines.” The issue of the patentability of soft-
ware was left either for Congress or the courts.

b. Technological Arts

The courts were first to take up this challenge. Beginning in 1969 and
throughout the next decade, the Court of Customs and Patent Appeals (CCPA)
was confronted by appeals from rejection of patent claims by the patent exam-
iners and the Board of Patent Appeals for various claims relating to software.
These claims arose either as inventions for new machines (apparatus claims) or
for new methods for manipulating materials (process claims).

The CCPA first considered the mental steps doctrine. It allowed apparatus
claims involving software on the grounds that the steps were performed by a
machine and therefore were not *‘mental.”’” The CCPA then allowed process
claims by creating a broad exception to the mental steps doctrine: method or
process claims which could be performed on a programmable computer or
which were otherwise in the *‘technological arts’’ were patentable subject mat-
ter because they were not ‘‘purely mental.””*

2'Nimtz, Development of the Law of Computer Software, 3 ComP. L. SERv. § 4-1, art. 6
(1979).

ZThe major oil companies have pursued a number of software patents, generally relating to
seismic detection of subterranean oil. E.g., In re Musgrave, 431 F.2d 882 (CCPA 1970); In re
Christensen, 478 F.2d 1392 (CCPA 1973); Parker v. Flook, 437 U.S. 584 (1978); In re Johnson,
589 F.2d 1070 (CCPA 1979); In re Sherwood, 613 F.2d 809 (CCPA 1980), cert. denied, 450 U.S.
994 (1981); In re Walter, 618 F.2d 758 (CCPA 1980); In re Taner, 681 F.2d 787 (CCPA, Jun. 10,
1982).

855 Off. Gaz. Pat. Off. 829; 33 Fed. Reg. 15609 (Oct. 17, 1968).

2868 Off. Gaz. Pat. Off. 349; 34 Fed. Reg. 15724 (Oct. 3, 1969).

5In re Prater, 415 F.2d 1393 (CCPA 1969) (dictum); In re Bernhart, F.2d 1395 (CCPA 1969).

%In re Musgrave, 431 F.2d 882 (CCPA 1970) (method claims for computing seismic informa-
tion from a variety of mathematical data). The ‘‘technological arts’’ test was reaffirmed in In re
Foster, 438 F. 2d 1011 (CCPA 1971). See In re Mahoney, 421 F.2d 742 (CCPA 1970) (method for
synchronizing receipt of digital information); In re McIlroy, 442 F.2d 1397 (CCPA 1971).

SUMMER 1983 349

HeinOnline 23 Jurinetrics J. 349 19821983

In Gottschalk v. Benson,” the U.S. Supreme Court curtailed the CCPA’s
expansionist exuberance and recharacterized the debate. It held that a patent
claim relating to a simple mathematical formula without substantial practical
application except in connection with digital computers was not patentable sub-
ject matter. The claim in question related to a method for converting one type of
internal representation of numbers to another. The theoretical ground for this
decision was that principles of science, like mathematical formulas, are not ap-
propriate for patent protection. The Court also emphasized a functional reason
for why this was so: granting patents in such cases could effectively preempt
the use of the mathematical algorithm involved, giving the patent overly broad
applicability. The Court expressly restricted its holding to the particular facts
of the case to avoid stating a general rule. Benson was later interpreted nar-
rowly in Dann v. Johnston,” the second Supreme Court decision considering
the issue of patentability of software, in which the subject matter issue was not
reached.

c. Point of Novelty

The Benson Court strongly urged Congress to act in order to clarify the
area of patenting of computer programs. Congress did not act, but the CCPA
searched for a new approach. The CCPA was careful to consider claims in light
of Benson. It did this by applying what later evolved into the ‘‘point of novelty”’
test, a test which it had earlier rejected:29 if the novel element in the claim was
the use of software to implement a mathematical algorithm, the claim was non-
statutory subject matter. For example, in deciding In re Waldbaum™ prior to
Benson, the CCPA had allowed certain claims relating to a computer program
process which was useful in counting the busy and idle lines of a telephone
switch. On reconsideration in 1977, many of the claims were disallowed as
being too abstract and sweeping because they were not tied to a particular appli-
cation. Many claims which were tied to particular applications were also disal-
lowed since their novel elements were algorithms and they would wholly pre-
empt the algorithms for those uses.

When it could, the CCPA avoided the subject matter issue altogether.” In
general, however, the CCPA recharacterized software claims as not involving
software by itself but involving either particular programmed machines™ or

7409 U.S. 63 (1972).

%425 U.S. 219 (1976).

®In re Bernhault, 417 F.2d 1395, 1399 (CCPA 1969).

3457 F.2d 997 (1972), rev'd on reconsideration, 559 F.2d 611 (CCPA 1977). See In re De
Castelet, 562 F.2d 1236 (CCPA 1977) (method of generating curves which guide drafting and
milling machines); In re Richman, 563 F.2d 1026 (CCPA 1977) (method for calculating an air-
borne radar correction angle); In re Christensen, 478 F.2d 1392 (CCPA 1973) (method of deter-
mining and plotting subsurface porosity).

*'In re Knowlton, 481 F.2d 1357 (CCPA 1973) (affirmed rejection of claims relating to com-
puter processing of list information in view of prior art); In re Comstock, 481 F.2d 905 (CCPA
1973) (reversed rejection of claims relating to electronic calculator because of lack of particulariza-
tion).

*2In re Noll, 545 F.2d 141 (CCPA 1976) (apparatus claims).

350 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 350 19821983

methods of operating or controlling machines more efficiently.” In essence,
the CCPA began reconstruing software claims as being claims for a larger ap-
paratus or process in which software was only part of the invention.

In Parker v. Flook,” the U.S. Supreme Court again deflated these expan-
sionist tendencies. It reversed the CCPA, which had found a particular pro-
gram to be a part of a larger process, because the only novel element in the
process was a program implementing a mathematical algorithm. The Court
said that recitation of insignificant postsolution activity would not make an un-
patentable algorithm claim patentable. In other words, if the program only out-
put the results of a calculation, tying the results to a specific end use was not
enough to make the process as a whole patentable subject matter. This analysis
broadened the ‘‘preemption’’ approach in Benson, for the patent in Flook
would not have wholly preempted use of the mathematical algorithm involved.
In effect, Flook made it extremely difficult to patent processes implemented by
software.

d. Freeman-Walter Two-Step

Just before Flook, the CCPA handed down a key decision in this area. In In
re Freeman,” the CCPA upheld claims relating to computerized control of
typesetting based upon a two-step test:

First, it must be determined whether the claim directly or indirectly recites a mathe-
matical algorithm.

Second, the claim must be further analyzed to ascertain whether in its entirety it
preempts that algorithm.

This test is a clear exposition of a narrow interpretation of Benson. After Flook,
this test was broadened and clarified in In re Walter.” The second step in the
test was restated from one of preemption to the following:

If the mathematical algorithm is implemented in a specific manner to define struc-
tural relationships between the physical elements of the claim (in apparatus claims) or to
refine or limit the claim’s steps (in process claims), the claim is statutory subject matter.

If, however, the mathematical algorithm is merely presented and solved by the
claimed invention and is not applied in any manner to the physical elements or process
steps, no amount of postsolution activity nor limited field of use will render the claim
statutory.

In Diamond v. Diehr, * the Supreme Court endorsed this approach. The
Court upheld a claim containing a mathematical algorithm as a step in a process
which as a whole performed patentable subject matter functions. The mere use
of the program did not render the complete process unpatentable. The process

*In re Chatfield, 545 F.2d 152 (CCPA 1976), cert. denied, 434 U.S. 875 (1977) (process
claims); In re Deutsch, 553 F.2d 689 (CCPA 1977) (method to control a system of multiple-unit oil
refineries or manufacturing facilities); See In re Tomy, 575 F.2d 872 (CCPA 1978) (method of
translating languages by computer).

*437U.S. 584 (1978).

573 F.2d 1237 (CCPA 1978) (computerized typesetting).

%618 F.2d 758 (CCPA 1980).

7450 U.S. 175 (1981).

SUMMER 1983 351

HeinOnline 23 Jurinetrics J. 351 19821983

in question was using a computer program to time the curing process for rub-
ber. In what is considered a companion case, Diamond v. Bradley,” the Court
by a split decision upheld a CCPA decision in which software designed to ac-
cess certain otherwise unaccessible ‘‘scratch pad’’ registers in the central proc-
essing unit of certain computers was considered patentable subject matter.

Diehr does not explicitly open the door for the patenting of computer pro-
grams. Instead, the case established that in at least certain limited instances,
computer programs are patentable when they are part of a larger process or
apparatus which is patentable. In other words, a patentable process or appa-
ratus which contains as one of its elements computer program calculations is
not thereby rendered unpatentable.

Diehr again recharacterizes the debate and calls into question the point of
novelty test and the holdings in both Flook and Benson. The patent claims al-
lowed in Diehr are quite similar to those disallowed in Flook. In Flook, the
computer program was used to monitor and time the distillation process for
petroleum; in Diehr, the computer program was used to monitor, time and in-
terrupt the curing process for rubber. The cases were distinguished on the
grounds of novelty. In Diehr, the rubber-curing process used the programs in
the measuring and input of information, the calculation and, if the timing were
right, the curtailing of the curing process, all new elements in the art. In Flook,
the only new element in the petroleum distillation process was the use of the
program in calculating timing.

On the facts of the two cases, the basic distinction is that in Flook the pro-
gram merely calculated and a person had to interrupt the distillation process; in
Diehr the program calculated and interrupted the rubber-curing process with-
out human intervention. This distinction may not be convincing, and to some it
signals an encouraging change in the Supreme Court’s views as to patentability
of programs.” To others, it reveals a more fundamental disagreement among
members of the Court over what was meant in Benson by a ‘‘mathematical al-
gorithm.”’* The Diehr majority interpreted *‘algorithm’’ narrowly to mean a
mathematical calculation or mathematical formula. The minority considered
algorithm 10 be synonymous with computer program, the specific logic and
design of the software. The solution chosen by the majority for defining al-
gorithm is consistent with the approach taken by the CCPA: defining algorithm
narrowly to increase the number of programs which would be patentable.

The CCPA has considered software-related claims in light of Diehr. In one
case, certain claims relating to computerized axial tomography (CAT scans)
were allowed, and others were disallowed.*' One claim which was disallowed

450 U.S. 381 (1981), aff’g because of an equally divided court, In re Bradley, 600 F.2d 807
(1979).

*Schmidt, Legal Proprietary Interests in Computer Programs: The American Experience, 21
JURIMETRICS J. 345, 358-59 (1981).

“Sprowl, A Review of Niblett’s Legal Protection of Computer Programs and Diamond v.
Diehr and Some Thoughts on Patenting Computer Programs, 1981 A.B.A. Rsch. J. 559.

“'In re Abele, 684 F.2d 902 (CCPA, Aug. 5, 1982).

352 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 352 19821983

was that of a method of calculating the value of certain data and displaying it in
a pictorial form. A companion claim which was allowed was the same method,
but in which the data was gathered by and displayed on the video display of a
CAT scanner. Consistent with Benson, this decision restricts patents to specific
processes, not overly general concepts. Consistent with Diehr, this decision
restricts software-implemented processes to situations involving more than
calculations—in this case, the image-enhancement techniques used to display
output which is tied to the CAT scanning environment.

In another case, the CCPA allowed process claims for compiling computer
programs and automatically rearranging various formulas in the programs for
calculation.” While the invention in this method was to manipulate mathemati-
cal algorithms, it was held not to be a nonstatutory algorithm claim because it
related to the internal operations of a particular computer and governed the
manner in which the computer executed its programs. Again, this decision re-
flects the new approach—a specific software-implemented process affecting a
particular physical environment, and not merely calculating.

In a third recent case, the CCPA allowed claims which heavily involved
mathematical calculations in the context of seismic data processing.” Although
the claims directly recited mathematical algorithms, the claimed process took
sonic, seismic data and converted it into another form. This is signal processing
tied to and affecting material objects (analog data) in a specific environment.

The Patent Office, in light of Diehr, has decided that it now has been given
judicial approval to issue program patent examining guidelines.* These guide-
lines endorse the Freeman-Walter two-step test. Instead of concentrating on
35 U.S.C. Section 101 (nonstatutory subject matter) for rejecting software
claims, the Patent Office will concentrate on Section 102 (novelty), Section
103 (obviousness), and Section 112 (proper disclosure).

2. Analysis

a. Mathematical Algorithms?

The CCPA has had an undue fixation upon mathematical algorithms. This
may reflect the archaic view that programs are ‘‘scientific’” and ‘‘mathemati-
cal’’ in nature, or somehow intangible or ‘‘mental.’’ It may also reflect the
blind leading the blind: the CCPA attempting to generalize from Supreme
Court decisions, notably Benson, in which the Supreme Court clearly stated it
did not feel itself competent to establish policies in this area.

A careful consideration of the CCPA’s decisions, however, indicates a dif-
ferent and nontheoretical reason for the CCPA’s fixation on mathematical al-
gorithms. The CCPA has been striving to establish clear and broad grounds for

“In re Pardo, 684 F.2d 912 (CCPA, Aug. 5, 1982).
“In re Taner, 681 F.2d 787 (CCPA, Jun. 10, 1982).
“MANUAL OF PATENT EXAMINING PROCEDURES § 2110.

SUMMER 1983 353

HeinOnline 23 Jurinetrics J. 353 19821983

patenting software. By focusing upon mathematical algorithms, the CCPA has
narrowly defined the grounds for rejecting software claims as nonstatutory
subject matter.

Still, the CCPA may have picked the wrong narrow definition. It is not the
nature of the mathematical algorithm itself which makes it undeserving of pro-
tection, but the effect of granting the patent, that is, whether the protection pro-
vided by a patent would be too broad. An algorithm is not so much a ‘‘mental
process’’ or a ‘‘law of nature’’ as the realization of a solution to a mathematical
problem. An algorithm may be compared to processes which can be patented.
Some algorithms, like the one in Benson, are so primitive or so broad as not to
deserve protection. This is not new law; in O Reilly v. Morse,” the Supreme
Court rejected a claim of Samuel Morse which went beyond a specific inven-
tion, the telegraph, and attempted to capture a phenomenon of nature, the trans-
mission of information through electromagnetism.

In addition, the CCPA may have erred in focusing on mathematical al-
gorithms. Computers can also manipulate text (word processing), files (data
base processing), and graphics (videogames). All such manipulations involve
symbolic logic (whether of numbers or other symbols). The principles underly-
ing Morse and Benson as to patenting of laws of nature apply with equal force to
all symbolic logic, not merely mathematical logic.

The further aspect of Benson regarding preemption also applies to all sym-
bolic logic underlying internal routines of software. The constraints of com-
puters and computer languages may allow only one of several ways of imple-
menting the same symbolic logic. For example, an operating system which
allows a computer to operate with many different users at the same time re-
quires a common and basic internal structure. Each user will put different de-
mands on the system. If the computer were to wait to finish each user’s work
before going to the next user, there would be interminable delays. Instead, the
multi-user operating system ‘‘time slices’’ such that it operates on one user for
a certain number of instructions, and then it moves to the next user, and so on,
eventually coming back to the first user again. Properly done, the delays that
any user notices are negligible. For policy reasons, it might be troublesome if
the first manufacturer which invented such a multi-user system could patent it
and preclude all others from using that concept without payment of a royalty—
but that is the whole point of patent protection. The doctrines set forth in Morse
and Benson serve to limit this problem, but again, this is not new law designed
especially for software claims.

b. The Doctrine of Equivalents

The ‘*doctrine of equivalents’’ is that a patent covers equivalent configura-
tions, even though they are not disclosed or actually claimed, unless a purport-
edly equivalent configuration performs the prescribed function in a substan-

356 U.S. (15 How.) 62 (1853).

354 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 354 19821983

tially different way.” Thus, if a program could theoretically be reconfigured
into a hard-wired machine, then under this doctrine a patent of the machine
would protect the program.”’

This doctrine suggests that the Freeman-Walter test and its undue fixation
on mathematical algorithms contains the following loophole: to avoid the
Freeman-Walter test, an astute patent lawyer could describe the patent in terms
of an apparatus (a hard-wired version of the software) and later use the doctrine
of equivalents to prevent software versions of the apparatus from being manu-
factured and sold.* By limiting consideration of the fundamental policy ques-
tion regarding the scope of protection to situations involving mathematical al-
gorithmic software (as opposed to hard-wired machines), the Freeman-Walter
test may allow patents to be issued on machines which essentially have the same
undesired ability of capturing or preempting the use of a mathematical al-
gorithm or fundamental process that has been precluded in mathematical soft-
ware patent claims.”

A more fruitful approach for the CCPA would be to determine whether the
program being claimed would be patentable when reconfigured into an inte-
grated hardware/software machine (alone in apparatus claims or as part of a
process in method claims).” Programs which simply calculate primitive al-
gorithms are unworthy of patentability since they merely create electronic cal-
culators. Programs which do more, such as in Diehr or in the recent CAT scan-
ner case, could be patented. This approach would also solve another problem
which has plagued the Patent Office, that of not having much prior art from
which to evaluate software claims. There may be substantial prior art in other
computers and in old electromechanical devices which the new programmed
computers replace.”

c. The Patentability of Read-Only-Memory

The confusion over the nature of software and suitable patent analysis can
lead to superficial distinctions. A series of distinctions have been proposed
over the Jast decade; most have been disposed of. One remaining distinction

“4 D. CuisuM, PATENTS § 18.04 (Bender 1982).

“"Conversely, if the hard-wired machine patent overly protected a fundamental mathematical
algorithm, it would be disallowed. See Arshal v. U.S., 621 F.2d 421, 427 (Ct. Cl. 1979), cert.
denied, 449 U.S. 1078, rehearing denied, 450 U.S. 1050 (1981) (analog computer).

“See, e.g., In re Noll, 545 F.2d 141, 147, 149-50 (CCPA 1976).

“See, e.g., In re Bradley, 600 F.2d 807 (CCPA 1979), aff’d, sub nom. Diamond v. Bradley,
450 U.S. 381 (1981) (rejects Board of Patent Appeals attempt to reformulate apparatus claims as
“*mathematical’” on grounds all computers fundamentally operate based upon mathematical princi-
ples); but see Arshal v. U.S., 621 F.2d 421, 427 (Ct. Cl. 1979), cert. denied, 449 U S. 1078, reh.
denied, 450 U.S. 1050 (1981).

®The CCPA has recognized this problem. In In re Bradley, 600 F.2d 807, 812 (CCPA 1979),
aff'd sub nom. Diamond v. Bradley, 450 U.S. 381 (1981), the CCPA distinguished kow a program
operated from what it did when considered as an integral unit with the computer.

S1See Digitronics Corp. v. N.Y. Racing Assoc., 553 F.2d 740 (2d Cir.), cert. denied, 434
U.S. 860 (1977).

SUMMER 1983 355

HeinOnline 23 Jurinetrics J. 355 19821983

which should be discarded is that software embodied on memory chips called
Read-Only-Memory* is patentable even though the same software embodied in
a different form might be unpatentable. This ROM distinction, understood in
the context of earlier distinctions, is wholly superficial.

One argument in the early cases was that since no perceptible change oc-
curs in a digital computer when it is programmed differently, no physical
change was actually occurring and software was purely intangible, that is,
‘‘mental.”” But certainly the computer hardware can tell the difference, as it
executes different ‘‘mental’’ programs differently. The CCPA agreed, noting
that a computer programmed in one way is a physically different machine than
a computer unprogrammed or programmed differently because memory and
other elements are differently arranged; the changes may not be visible, but
they do exist and are of course measurable by the machine.”

A related argument was the early distinction between apparatus and pro-
cess claims. Again, perhaps because of the emphasis of the Patent Office on the
mental steps doctrine, software, at least in process claims, was considered in-
tangible and ‘‘mental.”’ A cogent dissent in In re Chatfield” should have put
this argument to rest, but Benson involved process claims and thereafter some
software claims more appropriately described as process claims were probably
reconfigured into apparatus format.”

Even in the recent decision of In re Walter,” an argument arose relating to
the perceptibility of magnetically recorded information. One element in the
process in that case was that the result of calculations from a mathematical al-
gorithm were placed upon magnetic tape for further use. This was held not to
constitute a sufficient change of an article to a different state to make the use of
the algorithm merely one step in a larger patentable process or apparatus. This
is an unconvincing distinction. Under the doctrine-of-equivalents analysis pro-
posed above, a better distinction is to view the software-implemented process
as a ‘‘black box’’—a process implemented in some undetermined fashion on an
integrated hardware/software machine. In Walter, regardless of how the ma-
chine stored or displayed its results, it did no more than calculate. Unlike other
cases involving similar data in which the raw data itself was processed, in Wal-
ter the results of such processing were merely further interpreted mathemati-
cally.” Thus, the process in Walter is unpatentable.

’ROM s have several progeny, including PROMs (Programmable ROMs), EROMs (Erasable
ROM:s), EPROMs (Erasable PROMs) and EEPROMs (Electrical EPROMs). ROMs are distin-
guished from volatile or dynamic memory chips, often called RAMs, meaning Random Access
Memory, in that ROMs retain their content when power is turned off, and ROMs are not erasable
except, in the case of an EROM or EPROM, by a process separate from the normal memory ad-
dressing operations of a computer. With advancing technology, ROMs may be less distinguishable
from RAMs. Several companies are now developing NOVRAMs, nonvolatile RAMs.

*In re Bernhardt, 417 F.2d 1395 (CCPA 1969).

%545 F.2d 152 (CCPA 1976), ceri. denied, 434 U.S. 875 (1977).

5SPossible examples include in re Noll, 545 F.2d 141 (CCPA 1976) and In re Bradley, 600
F.2d 807 (CCPA 1979), aff’d sub nom. Diamond v. Bradley, 450 U.S. 381 (1981).

%618 F.2d 758 (CCPA 1980).

37See In re Taner, 681 F.2d 787, 790 (CCPA, Jun. 10, 1982) (distinguishing Walter).

356 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 356 19821983

Finally, the most recent proposed distinction is that of ROMs. The case of
Diamond v. Bradley” can be interpreted to establish that ROM-implemented
processes are patentable subject matter even if the same process, software im-
plemented, would not be. This would be silly. The ROM in Bradley could have
been replaced in the computer with a volatile RAM (read-write) memory chip
which looks like the ROM; the software could be first read into the RAM, then
the process performed. Protecting a process based on such a trivial technologi-
cal distinction is unwarranted. A more valid distinction is that the software-
implemented process in Bradley did more than calculate.

d. The Arguments Against Patents

There are many arguments against relying upon patent protection of soft-
ware. Despite the attention given to the patenting of software, it is unimportant
for the vast majority of software vendors. Only a minute number of programs
(perhaps less than 1 percent) are inventive enough to be patented. Most soft-
ware is mundane, automating the same types of accounting or other functions
once done manually. Many programs have short product lifespans due to rapid
technological advances. Patenting is simply not useful for their protection.

The process of patenting is also unattractive. It is expensive and slow.
Congress and the Patent Office have been quite concerned about the patent sys-
tem’s administrative viability.” Patenting is also unreliable. Perhaps as many
as one-half of all patents which are challenged will be found unpatentable.”
Even after appeal, the results can be unsatisfactory; the federal appellate courts
have varied greatly as to how often they validate patents.

The Patent Office may have been correct in opposing the patenting of pro-
grams. The prior art is very recent and largely unavailable. Most software is
protected by trade secret protection and, therefore, there are restrictions on its
disclosure and promulgation. Also, full disclosure of patented programs may
be dangerous. Misappropriation is difficult to discover and disclosure could
give free rein to competitors.

The symbolic nature of software which allows the rapid creation of soft-
ware may have fundamentally changed a premise of patent protection: that the
slowness and expense of technological advance requires a broad, monopolistic
protection. The very success of the software industry without patent protection
seriously calls into question the need for such protection for software itself or
for its internal routines. A new program for an existing computer can now be
created in weeks or months, and changed as rapidly, and any novelty internally
in the program is most vulnerable to copying and not reverse engineering.

In addition, because of the symbolic nature of software, a patent of soft-
ware may inherently have broader scope than would a patent of a hard-wired

*Diamond v. Bradley, 450 U.S. 381 (1981). See Schmidt, Legal Proprietary Interests in
Comfuter Programs: The American Experience, 21 JURIMETRICS J. 345, 359-361 (1981).

1981 CLA Transcript at 169-175.

DSee Stern, ROMs in Search of a Remedy: Can They Find It?, 1 Compu., L. Rep. 4, 8 (1982)
(that 70 percent of all patents at the appellate level are held invalid).

SUMMER 1983 357

HeinOnline 23 Jurinetrics J. 357 19821983

machine. A machine can be torn apart and rebuilt; infringement can be appreci-
ated because form and function relate directly. A process which affects materi-
als and produces physical results can also be similarly understood. Because it is
symbolic, software is not as easily understood and appreciated. A different
program may innocently contain the same internal algorithms and yet perform
different functions. In planning and advising clients, lawyers may have a diffi-
cult task in determining the scope of a patent on an internal software routine—
and a conservative reaction would be to avoid infringement. Thus, such soft-
ware patents may be given broader interpretation than is appropriate.

More importantly, the number of persons unexpectedly affected by such a
software patent may be much larger than is traditional. Software and the com-
puters on which it is operated are separate items. Computer purchasers buy
‘‘blank’’ programmable machines without considering all of their particular
uses. Because of a routine inside a program innocently licensed or developed,
computer users may find themselves infringing a patent of which they had no
knowledge or concern, or may find their options to acquire certain software
applications limited.

e. The Growing Importance of Patents

The arguments against patenting software can seem compelling, even
overwhelming. Nevertheless, patent protection of software is of growing im-
portance. Techniques for drafting acceptable software claims are becoming
more widely known.” The experience being gained by patent lawyers should
allow them to give proper advice. The Patent Office has announced publicly
that during the Reagan administration it will concentrate on improving its ex-
amination and patent application processing for computer-related and
software-related patent claims,” and such patents may be issued faster. The
Patent Office examiners are gaining more software-related prior art against
which to evaluate claims. Most importantly, the federal courts can be expected
to become much more receptive to upholding software claims; all patent ap-
peals from district courts will be presented to the CCPA (now called the Circuit
Court of Appeals for the Federal Circuit).

In addition, the arguments against patenting software which are based
upon its symbolic nature do not encompass the types of software suitable for
patenting. Instead, they apply to software which is obvious or not novel enough
to be patentable—software which is relatively easy to create or which does not
implement transactions in a fundamentally new way.

The fight against patenting software, waged since the mid-1960s, has ap-
parently been lost because of Diehr. In addition, advocates of patenting soft-
ware today have a favorable political and economic climate. The major inde-

SIE.g., In re Sherwood, 613 F.2d 809, 816-17 (CCPA 1980), cert. denied, 450 U.S. 994
(1981) (seismic analysis claims drafted as apparatus not process claims with minimal emphasis on

the extensive use of mathematical calculations).
21981 CLA Transcript at 169.

358 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 358 19821983

pendent users, such as oil companies, have always favored patents on software.
Now the major manufacturers also see the advantages of patent protection. In
the last decade the price of hardware has dropped considerably. As a conse-
quence, much of the profit in the computer industry now lies in software. Also,
many manufacturers of computer hardware benefit greatly by the “‘lock-in’’
effect which occurs when their customers have substantial investment in soft-
ware which can only be used on one manufacturer’s machines. If essential
types of software, such as operating systems and compilers, were available to
execute the same applications programs on some other manufacturer’s equip-
ment, the user would not be ‘‘locked’’ into purchasing the first manufacturer’s
equipment. Conversely, by taking steps to protect its software and preserve the
lock-in, the manufacturer solidifies its customer base. Therefore, the manufac-
turers, as well as the independent software users and vendors, now favor pro-
tecting software.

3. Conclusion

The lesson of Flook and Diehr is that software must do more than calculate
to be patentable subject matter. A program which assimilates data and calcu-
lates, even if it is used in a larger process, but which does not automatically
implement the calculation in the process (requiring instead a person to interpret
the calculation), is not patentable under Flook. What is being claimed would be
no more than the underlying algorithms limited to a specific field of use. To the
extent the software is mechanically or automatically connected to the surround-
ing physical environment, it is patentable subject matter.

This distinction—calculation versus interconnection—is the basis for de-
termining patentable subject matter regarding software. As framed, however,
the distinction still is inadequate. Calculation connotes mathematics; as noted
above, it should be understood to include all aspects of symbolic logic imple-
mented by software. Interconnection connotes use of the software in larger
processes, but not software per se; as noted above, applying the ‘‘doctrine of
equivalents’’ means software operating on a computer when considered as an
integrated hardware/software unit might be patentable as an apparatus. Con-
versely, merely tying software to an environment as part of a larger process
may not be enough; the software although interconnected may still do no more
than static data assimilation or calculation.

The key distinction is the dynamic use of the software; its ‘‘real-time’’ use
tied to and affecting the environment. The environment can be affected by the
program’s output if the output manipulates the surrounding machinery. In
Diehr, this occurred by a servo-mechanism. In In re Chatfield,” this occurred
internally in the computer. The patented software-implemented process mea-
sured for bottlenecks in a computer’s operation and then automatically adjusted

545 F.2d 152 (CCPA 1976), cert. denied, 434 U.S. 875 (1977).

SUMMER 1983 359

HeinOnline 23 Jurinetrics J. 359 19821983

priorities of users to reduce the bottlenecks. Because of the latter element, the
program was not merely gathering and reporting information but was acting
upon the information.

The environment can also be affected by calculation alone, if the data is
one-time or analog in nature. The analog data, not surrounding machinery, is
the affected environment. In the seismic processing cases,” for example, pro-
grams accomplishing complex mathematical transformations were used to sep-
arate the signal from the noise on sonic, seismic data tapes and to produce
cross-sectional maps of subterranean features. Because of the feature of signal
processing tied to the seismic environment, the claims fell within statutory sub-
ject matter. The software affected the environment because it enhanced analog
data—data captured on tape from real-time recording devices, not static data
placed on tape from manually derived printouts.

This *‘real-time’’ test and these cases nevertheless still do not establish the
patentability of process claims based upon software per se or based upon inter-
nal routines, algorithms and programming techniques in software. Such claims
do not dynamically affect the environment. Instead, the external attributes of
software can be patentable subject matter—the manner in which the software is
used in an environment. Process claims involving software would be allowed
as long as the program in the process automatically and mechanically creates
specific and definite changes to analog data or to other machinery or objects. It
is this external novelty—new uses of software, mechanically or electronically
tied to and affecting an environment through dynamic, real-time processing—
which should be protectable by patents. The primary protection of software per
se and its internal routines would be copyright and trade secret laws.

COPYRIGHT

Software seems like a good candidate for copyright protection. Although it
is used in machinery (computers), it is written and not built. Copyright protec-
tion seems like a better protective scheme than patent protection for such writ-
ings. Under the 1976 Copyright Act,” copyright protection attaches automati-
cally but does not have the potentially overbroad scope of protection feared by
the Supreme Court in Benson. There are serious obstacles to copyright protec-
tion, however.

1. The Subject Matter Debate

The Copyright Office has been registering programs since the mid-1960s,
but has expressed doubt as to whether software, at least software in certain
forms, is copyrightable subject matter.” There has been little dispute that

®See cases cited at note 22.
817 U.S.C. §§ 101 er seq.

%0ffice of the Register of Copyrights, Announcement SML-47 (May 1964); Copyright Office
Circular 31D (Jan. 1965):

360 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 360 19821983

source code is copyrightable subject matter. The recurring question is whether
the binary form of software (particularly when it embodies object code) is ap-
propriate for copyright protection.

Binary form is unintelligible to human beings unless it is printed out in
some fashion. Under the 1909 Copyright Act, which incorporated the decision
in White-Smith Publishing Co. v. Apollo Co.” in which a player piano roll was
held not to be a ‘‘copy’’ of sheet music, unperceptible forms of works were not
copyrightable. This decision had its most important application in the music
industry, in which phonograph records for many years were not protectable per
se until the 1909 Copyright Act was amended in 1971.% This doctrine also ap-
plies to binary form, which, like music on phonograph records or cassette
tapes, embodies information in an unintelligible format. A person looking at
magnetic storage media or into the memory of a computer will not see any
change as the program itself is changed in that memory. Under the 1976 Copy-
right Act, however, works which are perceptible ‘‘with the aid of a machine or
device’’ are now copyrightable and this aspect of the White-Smith case has been
overruled.”

There is a second, more fundamental reason why binary form may not be
copyrightable subject matter. It is not *‘literary’” in the commonsensical mean-
ing of that term. It is not designed to be perceived by a human, with or without
the aid of a machine or device. Its function is to substitute for manual labor. Itis
designed to be a mechanical apparatus which runs a machine. Indeed, when
binary form is embodied onto ROMs, even more than when it is embodied on
magnetic media or other volatile forms, it appears to be a machine element.
ROMs are indistinguishable from most other elements of hardware.

Unfortunately, much of the debate on these issues has been sidetracked by

The registerability of computer programs involves two basic questions: (1) whether the pro-
gram is such as a ‘*writing of an author’’ and thus copyrightable, and (2) whether a reproduction of
the program in a form actually used to operate or to be *‘read’’ by a machine is a *‘copy’’ and can be
accepted for copyright registration.

Both of these are doubtful questions. However, in accordance with the policy of resolving
doubtful issues in favor of registration whenever possible, the Copyright Office will consider reg-
istration for a computer program as a ‘‘book’’ in Class A if:

(1) The elements of assembling, selecting, arranging, editing, and literary expression that
went into the compilation of the program are sufficient to constitute original authorship.

(2) The program has been published, with the required copyright notice; that is, ‘‘copies’’
(i.e., reproductions of the program in a form perceptible or capable of being made perceptible to
the human eye) bearing the notice have been distributed or made available to the public.

(3) The copies deposited for registration consist of or include reproductions in a language intel-
ligible to a human being. If the only publication was in a form that cannot be perceived visually or
read, something more (e.g., a printout of the entire program) would also have to be deposited.

The Copyright Office accepted approximately 2,000 programs for registration under the Copy-
right Act of 1909 between 1964 and 1977. CONTU FiNaL REPORT at 38 (July 31, 1978). Of these,
most were registered by just two hardware manufacturers, [BM and Burroughs. /d. at 85.

7209 U .S. 2 (1908).

S8 Act of Oct. 15, 1971; Pub. L. No. 92140; 90 Stat. 2541, amending Act of Mar. 4, 1909, ch.
320; 35 Stat. 1075.

17 U.S.C. § 102(a).

SUMMER 1983 361

HeinOnline 23 Jurinetrics J. 361 19821983

misleading distinctions. The ROM distinction, for example, is wholly superfi-
cial. The machine element distinction has at times been confused with the sepa-
rate issue of the relation between object and source code. Other distinctions
have been proposed based on a ‘‘communication to people’’ requirement, al-
though under the 1976 Act ‘‘reproduction’’ is all that is required, not ‘‘com-
munication.”’ These erroneous distinctions will be explored in an historical
context, and proper analysis will be proposed.

a. CONTU Report

Prior to enacting the 1976 Copyright Act, Congress created the National
Commission on New Technology Uses of Copyrighted Works (CONTU) to
analyze the question (among others) of copyrighting software.” A blue chip
panel studied this problem for several years. CONTU made several recom-
mendations in its Final Report’' which were embodied into the 1980 amend-
ments to the 1976 Act.”

In an extensive dissent, Commissioner Hersey felt binary form was not
appropriate for copyright because it was a ‘‘machine control element, a me-
chanical device’” which on constitutional and policy grounds ‘‘ought not to be
copyrighted.’’™ He distinguished written instructions in general, which are
copyrightable, on the grounds that although binary form contains instructions,
these instructions do not tell how to do something, they do it, and what they do
is not communicated to humans. He distinguished musical recordings as com-
municating, while software only *‘utters work.”’

Commissioner Nimmer approached this problem from a different perspec-
tive. While he concurred in CONTU’s recommendations, he was troubled be-
cause CONTU had not adequately distinguished software from other techno-
logical creations for which copying or misappropriation was a problem.™
These creations would include chip masks, the photolithes from which inte-
grated circuits (chips) are made. These creations could also include
recombinant-DNA, which copies itself. Instead, Nimmer suggested that copy-
right should exist in binary form not because the binary form itself is a *‘literary
work’’ but because (and only if) its output is copyrightable. For example, a
videogame would be copyrightable because its output is an ‘‘audiovisual
work.’’ Data base management or access systems would be copyrightable, be-
cause the collection of items manipulated by the data base management sys-
tem’s software is a ‘‘compilation.”’

Nimmer’s concern indicates that CONTU did not take a formal approach
(questioning whether software is a *‘literary work’’ or an ‘‘audiovisual work’’
or some other category of copyrightable subject matter), but recommended a

Act of Dec. 31, 1974; Pub. L. No. 93-53, tit. II; 88 Stat. 1973,

""CONTU FINAL REPORT (July 31, 1978) [hereinafter referred to as CONTU REPORT].

721980 Computer Software Copyright Act; Act of Dec. 12, 1980; Pub. L. No. 96-517, § 10;
94 Stat. 3028 (codified at 17 U.S.C. §§ 101, 117).

CONTU REPORT 69-93.

“CONTU REPORT 66-69.

362 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 362 19821983

Junctional approach. In its Report, CONTU noted that software is expensive to

make but easy to copy, and to steal, and therefore whatever its nature, it de-
serves protection. In its recommendations, instead of stating that computer
software is one of the categories of copyrighted works, CONTU merely in-
cluded the following definition of computer program: ** A computer program is
a set of statements or instructions to be used directly or indirectly ina computer
in order to bring about a certain result.’” The interesting point of this definition
is that it is functional. It does not define computer program with respect to a
certain form of the program or a certain type of program. The balance of the
CONTU’s recommendations concern certain uses of computer programs
which are allowable despite the otherwise exclusive rights of the copyright
owner. These relate to certain peculiarities of computer software and their uses
and once again indicate a functional approach to the problem as opposed to a
formal approach.

b. 1980 Amendments

On December 12, 1980, the 1976 Act was amended in accordance with the
recommendations of CONTU with one change.” The amendments are as fol-
lows:

8 101. Definitions . . . A computer program is a set of statements or instructions to
be used directly or indirectly in a computer in order to bring about a certain result.

§ 117. Notwithstanding the provisions of Section 106 [describing the copyright own-
er’s exclusive rights] it is not an infringement for the owner of a copy of a computer
program to make or authorize the making of another copy or adaptation of that computer
program provided:

1. That such a new copy or adaptation is created as an essential step in the utilization
of the computer program in conjunction with a machine and that it is used in no other
manner, or

2. That such new copy or adaptation is for archival purposes only and that all archival
copies are destroyed in the event the continued possession of the program should cease
to be rightful.

Any exact copies prepared in accordance with the provisions of this Section may be
leased, sold, or otherwise transferred, along with the copy from which such copies were
prepared, only as part of the lease, sale or transfer of all rights in the program. Adapta-
tions so prepared may be transferred only with the authorization of the copyright owner.

The one change made by Congress from the CONTU recommendations
was to substitute ‘“‘owner’’ in Section 117 for ‘‘rightful possessor.”” Congress
gave no official explanation of this change, but apparently was afraid that if one
inadvertently left the program lying around, an innocent finder would be a
rightful possessor. It has also been reported that Congress was worried that
otherwise Section 117 would not allow licensing of software.”

In the sense that these amendments reflect approval of the CONTU report,
which recommended coverage of binary form, it can be argued that whether or

71980 Computer Software Copyright Act; Act of Dec. 12, 1980; Pub. L. No. 96-517, § 10;

94 Stat. 3028 (codified at 17 U.S.C. §§ 101, 117).
1981 CLA Transcript at 195.

SUMMER 1983 363

HeinOnline 23 Jurinetrics J. 363 19821983

not binary form was covered by the 1976 Act, it certainly has been covered by
the 1980 amendments. The amendments themselves are consistent with this ar-
gument. The definition of computer program covers binary form by implica-
tion since the definition does not limit copyright protection for just certain for-
mats or forms of programs; the definition only requires that a certain function
be performed. Also, the right granted in Section 117 (1) to execute the program
copy in conjunction with a machine, which of necessity covers the binary form
of a program, would be meaningless if the copying of binary form for execution
in a machine could be considered unprotected.

c. Case Law

The cases have wrestled with the problem of binary form. The question of
the copyrightability of binary form was first reached in Data Cash Systems,
Inc. v. JS&A Group.” The lower court, relying upon White-Smith, the player
piano roll case, held that binary form embodied in a ROM was not a ‘‘copy”’
under the 1909 Act both because it was unintelligible to a human being and
because it was simply an element in a machine. On appeal, the lower court was
affirmed on different grounds: the ROM in question did not contain the requi-
site statutory notice.

The first two cases to consider the issue under the 1976 Act essentially
distinguished the lower court’s decision in Data Cash as aberrant.” The lower
court in Data Cash had reached its decision even though that issue had not been
briefed or argued by the parties.”

However, in Apple Computer, Inc. v. Franklin Computer Corp.,” the is-
sue was once again raised under the 1976 Act. A preliminary injunction was not
granted despite the clear copying of internal programs of an Apple computer
because the court had substantial doubt whether operating systems software
was copyrightable. The programs were all in binary form, either on magnetic
media or ROMs. The court’s doubts arose in part because the operating system
programs in question were designed not to communicate to a human being but
merely to operate a machine in substitution of manual labor. _

The arguments of the court in Apple were not persuasive in a recent case
involving operating systems software.*' In addition, the Apple arguments were
essentially overruled by the Third Circuit in a decision three days after the Ap-
ple decision, in a different case. In Williams Electric Inc. v. Artic International,

7480 F. Supp. 1063 (N.D. Ill. 1979), aff'd because of lack of notice, 628 F.2d 1038 (7th Cir.
1980).

™Tandy Corp. v. Personal Micro Computers, 524 F. Supp. 171 (N.D. Cal., 1981) (under
1976 Act, object code on ROM is covered, and if have notice on chip, copyright infringed by re-
verse engineering the chip); GCA Corp. v. Chance, 1982 Copr. L. Dec. {25,464 (N.D. Cal., July
12, 1982) (object code is covered by 1976 Act, and registration of source code is sufficient to regis-
ter the object code).

®See Midway Mfg. Co. v. Artic Int’l Inc., 547 F. Supp. 999, 1012-13 (N.D. Ill. 1982).

80545 F. Supp. 812 (E.D. Pa., Jul. 30), rehearing denied, No. 82-2107 (E.D. Pa., Sept. 15,
1982), appeal pending.

#' Hubco Data Prod. Corp. v. MAI, No. 81-1295 (D. Ida., Feb. 3, 1983) (slip opinion, at 11).

364 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 364 19821983

Inc.,” the court found infringement of a videogame on three grounds. It found
that the audiovisual work in the ‘‘attract’’ mode was infringed. (The attract
mode is the display of a videogame prior to a person commencing actual play.)
It also found infringement in the ‘‘play’’ mode. Finally, because of evidence
that the underlying ROM was substantially copied, it found copyright infringe-
ment of the underlying program. The court held that the argument that binary
form of software on a ROM was not intended to communicate to human beings
and was therefore not copyrightable subject matter was artificial and contrary
to the 1976 Copyright Act.

Williams, however, does not entirely obviate the arguments in Apple. The
facts underlying Williams do not support the breadth of the language in that
case. The software in Williams was communicative—a videogame—the type of
software for which the Apple court would express less doubt as to copyright-
ability. Indeed, a petition for reconsideration in the Apple case following the
Williams decision was denied precisely on the ground that the utility software
in the Apple case were very different types of works than the communicative
videogame software in the Williams case.”

The arguments in Apple may be raised again from a different angle. The
Copyright Clause in the U.S. Constitution extends copyright protection to
“‘writings’” of an ‘‘author.”’® The 1909 Copyright Act used the phrase *“writ-
ing of an author’’ to define copyrightable subject matter. The 1976 Act uses
“‘original works of authorship,’’ including such works as *‘literary works’’ and
‘‘audiovisual’’ works, to make it clear that it is defining writings broader than
some of the case law under the 1909 Act. ‘‘Writings,”” in other words, now
covers all forms of artistic expression, including music and film, which are not
expressly written. All these forms, however, have in common a fundamental
purpose to communicate to human beings. Thus, a constitutional argument re-
mains that binary form is not covered by the Copyright Clause of the U.S. Con-
stitution. Still, the necessary constitutional authority for the 1976 Act or the
1980 amendments could then be found in the Commerce Clause.”

d. Recommended Analysis

The copyrightability of software is easy to demonstrate. The analysis is
straightforward. It is consistent with and supported by the 1976 Act, the 1980
amendments and the attendant legislative history. The problems and distinc-
tions which have been raised are not legal points but policy questions which
should be distinguished from the legal analysis. The straightforward legal anal-
ysis consists of determining software authorship, defining software expression

%2685 F.2d 870 (3d Cir., Aug. 2, 1982).

®No. 82-2107 (E.D. Pa., Sep. 15, 1982), appeal pending.

%U.S. ConsT., art. 1, § 8, cl. 8.

¥U.S. ConsT., art. 1, § 8, cl. 3. But see Baker v. Selden, 101 U.S. 99, 105 (1880), (copyright
protection does not extend to ideas), incorporated as § 102(b) of the 1976 Copyright Act. Argua-
bly, despite the Commerce Clause, this case is still good constitutional interpretation and the Con-
stitution does not allow Congress to overly extend protection to inventions and writings.

SUMMER 1983 365

HeinOnline 23 Jurinetrics J. 365 19821983

and applying the Copyright Act’s definition of copy to physical forms of soft-
ware embodying this expression of authorship.

AUTHORSHIP

The authorship in software is embodied in the original written computer
instructions, the source code. This authorship consists of the symbolic manipu-
lation of letters, numbers, and other symbols in accordance with the rules and
requirements of computer languages. This authorship is analogous to other
symbolic engineering authorship and to literary works, and falls within the def-
inition of literary works in Section 101 of the 1976 Copyright Act: *“ ‘Literary
works’ are works . . . expressed in words, numbers, or other verbal or numeri-
cal symbols or indicia, regardless of the nature of the material objects . . . in
which they are embodied.”’

Source code often is written in English-like form, like other literary works
(although source code instructions must be written in a very precise fashion to
be ‘‘read’’ by a computer and do not involve manipulation of human lan-
guages). Some computer languages, notably APL, contain only the manipula-
tion of symbols without this English-like overlay. The machine language itself
consists of manipulating ones and zeros, again without a further English lan-
guage overlay.

This authorship, whether in English-like computer languages, in wholly
symbolic or arbitrary languages or in machine language, is nevertheless quite
suitable for copyright protection. In all cases, the computer languages used are
symbolic. Originally the ones and zeros of object code represented switches in
the computer which actually turned on and off. Today, they are simply sym-
bolic representations of instructions which the computer uses later to turn on
and off specific switches and circuits. These symbolic languages are compara-
ble to other symbolic languages, including human languages and (to a lesser
extent) engineering ‘‘languages’’ used to construct engineering diagrams and
descriptions such as schematics of electronic circuits, blueprints, and other
symbolic representations of machines. A computer programmer is not a com-
puter engineer, just as an architect or structural engineer who produces copy-
rightable engineering drawings and descriptions is not a builder and does not
actually weld the steel or lay the foundation.

This is the fundamental principle for distinguishing software from other
technology which is expensive to create but easy to copy (the concern raised by
Commissioner Nimmer in the CONTU Report). So long as the authorship con-
sists of manipulation of symbols and not the actual hard-wiring of a machine,
programmers are authors of works comparable to other copyrightable works.
The fundamental distinction between building a machine and writing a pro-
gram is that the program is written in a symbolic language whereas the machine
is what it is. To “‘read’’ 2 machine, one would have to ‘‘reverse engineer’” it in
order to understand the creativity which went into building it. To read a pro-
gram, one need only understand the computer language in which the software

366 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 366 19821983

was written. The activity of writing a computer program is a different type of
activity than building a machine. The activity of reading it is a different type of
activity than reverse engineering a machine. The creation of computer pro-
grams consists of manipulation of symbols comparable to the creation of other
copyrightable works. The reading of computer programs consists of reading of
such symbols comparable to the reading of other literary works written in lan-
guages other than generally understocd human languages.

EXPRESSION

Copyright protects expression, not embodiment. Copyright protects the
writing, not the book; similarly, it protects the program, not the ROM, the
diskette or the printout. The fundamental principle for the protection of object
code and all other program codes derived from source code is based upon the
nature of the ‘‘expression’” of the original authorship of the source code. The
expression of a book does not consist of the precise language in the book, but
consists of the specific interrelation of plot, character, theme, and other ele-
ments of the story. Similarly, the expression in the software does not consist of
the exact written source code, but the specific logic and design of the program.

In this respect software is more deserving of copyright protection than are
other engineering creations such as schematic diagrams, structural engineering
descriptions and architects’ drawings. There is more freedom of expression of
a programmer than in most other engineering disciplines in which engineering
diagrams, descriptions, flow charts or other symbolic works are created prior
to making the engineering structure involved. In software, there can be many
ways to achieve the same processing of transactions. There are often several
ways to write individual routines to accomplish specific purposes. There are
also individual styles of the manner of coding, such that, like an e.e. cummings
poem, even the layout of the source code on printout looks very different de-
pending upon a programmer’s style. (Much of the effort in developing better
programming techniques is to remove many aspects of individual style from a
program in order to make it more universally understandable and useable by
other programmers.) Within the constraints of computer languages, which are
much more precise than human languages, computer programmers can show a
wide range of creativity roughly comparable to that shown by authors of liter-
ary works.

This expression is not the functioning of the computer but a symbolic rep-
resentation of that functioning. The authorship of software should not be con-
fused with its functioning or its use. The expression is the design, logic, struc-
ture, and specific choices as to what that functioning will be when the program
is run, but not the functioning itself. This is true of all comparable engineering
creations. For example, the expression of a schematic diagram of an electronic
circuit represents how the circuit will function when built, but it is not the func-
tioning circuit itself.

Much of the confusion in the debate over the copyrightability of software

SUMMER 1983 367

HeinOnline 23 Jurinetrics J. 367 19821983

involves the translation of source into object code. The code has changed; the
ones and zeros of object code are very different than the letters, numbers and
symbols of source code. But the expression remains the same; only the size of
the alphabet has been reduced. Source code is mechanically translated into ob-
ject code through translating programs called ‘‘compilers’’ or ‘‘assemblers,’’
depending upon the nature of source code. Compilers are designed to carry the
same specific logic of source code intc object code. Therefore, the expression
of software is precisely translated from source code into object code.”

One reason for the object code/source code problem is that the expression
of the program in object code is less intelligible than the expression in source
code. This is due to the nature of computer languages. Much of what makes
source code intelligible in a higher-level computer language consists of
English-like language labels and names, an easy-to-follow structure, an effi-
cient and concentrated set of instructions (so that one instruction in source code
may generate a number of instructions in object code), and the ability to include
with the computer instructions nonfunctionable comments which can describe
what each computer instruction is doing.

Nevertheless, object code is not unintelligible. Indeed, it has no purpose
when printed or displayed except to be deciphered. In addition, object code can
be almost directly translated into assembly language (even if the original source
code were in some other language). Assembly language consists of the object
code computer instructions represented by ones and zeros translated into sim-
ple mnemonics which are easier to understand. Thus, object code could be ren-
dered more understandable through the aid of machine or device, a computer
which translates from object code into an assembly language.

“COPIES™’

There is little question that a printout or handwritten coding sheet embody-
ing source code or object code is a ‘‘copy’’ of the respective code within the
meaning of Section 101 of the 1976 Copyright Act. There should be little ques-
tion that, based on the language of Section 101, binary formis alsoa “‘copy’’ of
the source code or object code it embodies. The definition of copy in Section
101, and the further description of authorship in Section 102(a), state that
copyright protection subsists in authorship fixed in material objects from which
the work ‘‘can be perceived, reproduced or otherwise communicated, either
directly or with the aid of a machine or device.’’ In other words, the tangible
medium of expression of authorship does not matter so long as the authorship is
at least reproducible from it with the aid of a machine or device. Software in-

$Source code tends to be written for one particular compiler or assembler. If so, and if it is
later used on a different compiler or assembler, there may be minor differences in how the other
compiler or assembler translates the source code into object code or assembly language. The ex-
pression is still virtually the same. It is possible with many computer languages to reverse object
code back into a form of source code. This quasi-source code would not necessarily look the same
as the original source code, but would contain virtually the identical specific logic and design which
is the expression of the program.

368 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 368 19821983

herently can be reproduced from binary form because of the nature of com-
puters. Binary form does not consist of the hard-wiring of a machine; instead, it
consists of memory in which the program is stored. It is inherent in any mem-
ory device that the information in memory is reproducible, with the aid of a
computer, even if it consists of software. This is a fundamental basis for a gen-
eral-purpose programmable computer.

Because a ROM from the outside looks like any other chip in a computer, it
is easy to argue that a ROM should be considered part of the hard-wiring of the
computer. Hard-wiring of a computer should be clearly distinguished. A ROM
is a memory device. Binary form in a ROM can be placed inside the computer
or can be attached externally in a cartridge, as on many home computers or
videogame computers. In either situation the binary form can be directly ad-
dressed as it would also be addressed if it had been read from a diskette into the
internal memory and then used. Binary form on magnetic media, such as disk-
ettes, must first be read into the internal memory of a computer before being
used. Software can also be output from diskettes or ROMs just as any other
memory can be output. Because of the frequent piracy of software, technologi-
cal means are often used to restrict the ability to copy programs from diskettes
or from ROMs. These technological steps do not make the ROMs or diskettes
so ‘‘hard-wired’’ that the software is not reproducible from them, or else the
computer itself would be unable to read its own software. In all cases the soft-
ware is embodied in memory devices from which it can be automatically repro-
duced. In none of these cases is the software so embedded into the hard-wiring
of the computer that it cannot be automatically reproduced.

The printing or display of software from a ROM or diskette onto a different
medium of expression, such as onto paper or a video terminal, is sufficient ‘‘re-
production’’ within the definitions of copy or authorship above. There is no
requirement within these definitions that the reproduction be in the same me-
dium of expression. The reproduction from a ROM onto some other medium of
expression should be distinguished from the manufacture of an identical copy
of the ROM itself. Similarly, the copying of software off a diskette onto a form
perceptible by a person is sufficient within the meaning of the Copyright Act
without requiring the person to manufacture from scratch a diskette with the
same magnetic coding on it.

SUMMARY

This analysis establishes the copyrightability of all types of software (oper-
ating systems or applications) in all languages (high level, assembler or ma-
chine), in all codes (source or object), and in all forms (written, printed, in
ROM or on diskette). The original written source code is the authorship; the
program (the logic and design of the software) is the expression; and all forms
of software from which a version of the program can be perceived, reproduced
or otherwise communicated with the aid of a machine or device are protectable
‘‘copies.”” Unless there are compelling policy limitations, all forms of soft-
ware could therefore be protectable under the 1976 Copyright Act.

SUMMER 1983 369

HeinOnline 23 Jurinetrics J. 369 19821983

2. Policy Limitations

There are several policies in the copyright laws which may exclude certain
types of programs from copyright protection.

a. Expression of an Idea?

Section 102(b) of the 1976 Copyright Act expressly denies copyright pro-
tection to such things as ‘‘ideas’’ and ‘‘processes’’ in any copyrighted work.
This section embodies the prior decision of Baker v. Seldon® to the same effect.
Normally, this doctrine should not limit copyright coverage of software.
‘“‘Ideas’’ in the sense of Section 102(b) are different from the intangible “‘ex-
pression’’ of a program. For example, consider the expression and ideas in-
volved in Apple v. Franklin, supra. Franklin did not use the ideas in Apple’s
operating system programs in order to create its own original works. Instead,
Franklin precisely copied the expression as embodied in binary form. This dis-
tinction is critical to understand the underlying policies in this area.

Apple was not seeking to protect the ideas involved in creating a computer
which can run programs that now run only on Apple’s (and Franklin’s) com-
puters. The ‘‘ideas’’ in Apple’s operating systems include such elements as:
the manner in which the operating system reads information from or stores it on
a diskette and the manner in which the operating system translates programs
written in certain computer languages; in other words, the interfaces between
parts of a computer, not the internal design of the software itself. Apple did not
claim copyright of these interfaces. Franklin is not precluded by Apple’s copy-
rights from building a computer based upon Apple’s design and upon these in-
terfaces; Franklin could have written its own specific operating systems soft-
ware to enable its computer to run programs which run on Apple’s computers.

It is possible that in some cases the number of ways in which software
could express these uncopyrightable ideas would be so limited that any pro-
gram written to accomplish them would look ‘‘substantially similar’’ to Ap-
ple’s programs. This is the crux of the idea/expression dichotomy as to soft-
ware. [f the expression captures the idea, it may be unprotectable. In Morrissey
v. Proctor & Gamble Co.,* copying of a set of rules for a sweepstakes contest
was not held to be an infringement because there were only a small number of
ways to express the ideas embodied in the sweepstakes contest rules. This deci-
sion is similar to the patent decision of Gortschalk v. Benson, supra, which held
that fundamental mathematical algorithms were not patentable subject matter
because their patent could effectively preempt use of the algorithm for other
purposes.

These arguments may apply with additional force in the area of copyright-
ability of programs. For example, a copyrighted industrial process program
may monopolize the process. Similarly, a copyright on a particular type of op-

5101 U.S. 99 (1880).
¥379 F.2d 675 (1st Cir. 1967).

370 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 370 19821983

erating system program for the functioning of a computer may monopolize cer-
tain key elements in the operation of the computer; in other words, because of
the nature of computers, there may only be a limited number of ways to write a
program which performs certain utilitarian functions and a copyright for such a
program may effectively monopolize the area.

This issue may be reached in Apple. In reverse engineering a computer
which can operate the same applications programs as can an Apple computer,
certain utility programs or routines may of necessity be substantially similar to
the same programs in the Apple computer. One program in the Apple II com-
puter, which is common to many computers, causes particular concern: the
boot-ROM, called the *‘Autostart-ROM’’ by Apple. This short program per-
forms the narrow function of starting (booting) the computer by beginning op-
eration of the proper operating system program. Thus, as a narrower grounds
for decision in the Apple case, it might be found that while in general operating
systems programs are copyrightable, the specific programs copied were too
closely related to the functionality of the Apple computer to be copyrightable.
Even then, while this idea/expression doctrine frees one to reverse engineer
expression from ideas, it does not allow one to copy slavishly.” Therefore,
Franklin may win the war (the principle), but lose the battle.

b. Useful Article?

The “‘useful article’” doctrine is embodied in the 1976 Copyright Act at
Section 113 and in Section 101 within the definition of *‘pictorial, graphic and
sculptural works.”” The doctrine is that useful articles which portray such
works are not ‘‘copies’’ except to the extent that they embody separable fea-
tures. This doctrine is inapplicable to software, which is not a pictorial work.
Instead of being drawn as a picture, it is written with letters and numbers or
other symbols like any literary work. Even if this doctrine were stretched to
apply, the expression in software can be separated from the useful article
merely by the process of outputting the program to a video terminal or printer.
In addition, the binary form alone is not necessarily the useful article; it is the
operation of binary form in the computer which is the useful article, but this is
not the “‘copy’” which is being protected by the copyright owner.

c. Distinguish Object Code?

Debate over the copyrightability of certain forms of programs has usually
been based on a distinction between object and source code. This distinction is
misleading. A program could be written in object code, which would then also
be its own source code. Conversely, as computer systems become more ‘ ‘user-
friendly’’ or ‘‘people-oriented,”’ many programs will not have a distinct object
phase except on a transient basis. The source code performs like object code. In

See Continental Cas. Co. v. Beardsley, 253 F.2d 702, 705-06 (2d Cir. 1958) (noting that the
copyright is valid even if the expression largely captures ideas, but that liability due to infringement
beyond exact copying is difficult to establish).

SUMMER 1983 371

HeinOnline 23 Jurinetrics J. 371 19821983

addition, many programs do not have source code in the traditional sense, but a
series of simplified commands. These three circumstances raise serious ques-
tions as to the viability of the distinction between object and source code.

Some computer languages are interpreted instead of compiled or assem-
bled. Interpreted source code is executed line by line, with only a transient ob-
ject phase. Compiled or assembled source code is completely translated into
object code before execution and has a permanent object phase. Does the direct
translation of source code into machine operation make source code a ‘‘ma-
chine element’’ and therefore not copyrightable? Such source code would still
contain all the English comments and English-like instructions which makes
them seem copyrightable in the first place.

A separate situation is created by a program generator or a high-level data
base inquiry system (a data base is a computerized compilation of information
or data). Program generators can create program code from simplified specifi-
cations. The programs that are generated are in a sense never written by pro-
grammers, and the simplified specifications which generate the program can be
quite different from traditional source code. Similarly, data base inquiry sys-
tems can allow access of the data by simple inquiries. Like program generators,
the inquiries cause programs to generate search-and-recovery procedures not
otherwise written by programmers.

It can be expected that the development of even higher-level languages—
particularly in conjunction with the creation of artificial-intelligence
machines—will further obscure the distinction between source code and object
code and will further remove programming from computer users. Is the pro-
gram created by another program in any sense a ‘‘writing”’ of an ‘‘author’’? In
part it represents the creativity of the author of the program generator; does this
mean that the program generator author is a co-author of the resulting work? If
the programs being generated are created by artificially intelligent computers,
will such computers suddenly have standing to be ‘‘authors’’ under copyright
laws? In light of developing software technology, the source code/object code
dichotomy is a doubtful source for an answer to the debate over what software
is copyrightable.

d. Distinguish Operating Systems?

The Apple case may lead to a new test for copyrightability based upon
whether the program is communicative or whether it merely operates internally
in a computer. Certainly if the program’s output creates a separately copyright-
able work, such as a videogame, the communication requirement is met. But
few programs produce copyrightable output. Instead, to apply this new test
meaningfully, ‘‘communicative’” must be interpreted to cover all applications
programs which produce output. The types of programs which would not be
copyrightable would be those utility and operating system programs that man-
age the internal operations of a computer. Instead, those types of programs
would have to be of patentable subject matter to be protectable; indeed, a sub-

372 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 372 19821983

stantial number of the cases which have upheld the patentability of programs
involve programs which manipulate the internal operations of a computer.”™

The communicative/utility or applications/operating systems dichotomy,
however, does not result in a satisfactory test for copyright protection. The dis-
tinction is unworkable and artificial. Applications programs can have substan-
tial amounts of program code relating to the internal operations of the com-
puter; many parts of operating systems programs could be incorporated as part
of the applications program. Further, applications programs can cause exten-
sive internal operations to produce only brief output; conversely, operating
systems programs often output extensive status information or directions to
computer operators, and can respond to commands from computer users and in
that sense be communicative or interactive. Finally, applications programs
have been designed which monitor and affect the internal operations of com-
puters; the monitoring informs computer operators of inefficiencies, and the
computer operators can issue commands back to the monitoring program,
which then by itself adjusts the operating systems programs. When does the
‘‘communication’’ end and the ‘‘utility’’ begin?

The fallacy in the ‘‘communication’’ argument is that it presumes that the
copyrightable work in question is the functioning of the program and not the
writing of it. This presumption misconstrues the meaning of authorship under
the 1976 Act. The output of a program could consist of a copyrightable work,
such as an audiovisual work, but this output is of a different authorship than the
writing of a program and would be separately protectable. A program need not
produce any output to be protectable; it is sufficient that the original written
program is found to consist of authorship, for that authorship is readable in the
same way other literary works are readable, as discussed above.

The communicative/utility distinction also misapplies the meaning of copy
under the 1976 Act. The Act does not require a copy to be communicative. A
copy can be in an unintelligible format if the authorship can be ‘‘perceived,
reproduced, or otherwise communicated from it either directly or with the aid
of a machine or device.”””' Perception or communication are not required; re-
production is sufficient. ‘‘Reproduction’’ should not be read out of the Act.”
At best, only the original program need be in some sense communicative or
authored; but this ‘‘communication’’ in software occurs when it is first written.
Software is authored in symbolic computer languages which make software
readable and usable by programmers outside of any machine utility or commu-
nicative output. Both source and object code have this symbolic nature, and

®In re Bernhard, 417 F.2d 1395 (CCPA 1969); In re Chatfield, 545 F.2d 152 (CCPA 1976),
cert. denied, 434 U.S. 875 (1977); In re Bradley, 600 F.2d 807 (CCPA 1979), aff'd sub nom.
Diamond v. Bradley, 450 U.S. 381 (1981).

117 U.S.C. §§ 101; 102(a).

%2E.g., Stern, ROMs in Search of a Remedy: Will They Find It?, 1 Compu. L. Rep. 4, 7 (1982)
(somewhat disingenuously argues for a *‘communication’’ requirement based in part upon analysis
of a misquote of the definition of *‘copy’’ in § 101 in which the word reproduced was omitted).

SUMMER 1983 373

HeinOnline 23 Jurinetrics J. 373 19821983

both can be read and understood by skilled technicians. Their later fixation in
any form from which they are perceptible only with the aid of a machine or
device does not change this.

e. A “‘Machine Element’’ or Utilitarian Use Limit?

Rapidly developing technology has created the problem of whether author-
ship can be protected even though it can be used as a machine element. This is a
new problem and existing limitations on copyrights do not apply. Should a new
limitation be created because of the ‘‘machine element’’ concept alone? The
answer to this question is negative, but it requires a precise understanding of
the nature of the machine element argument.

Being a machine element is not sufficient to render the form of embodi-
ment of copyrightable expression unprotectable. Film, phonograph records,
and other such works are machine elements in the devices which are used to
play them. What is different about software is that its function as a machine
element can be independent of any ‘‘playing’’ of the expression. The machine
element argument can be misleading since it implies that the work is somehow
the functioning of the machine, not the written code itself.

The machine element argument is often confused with the separate ques-
tion of the relation between source and object code, that is, how much of the
authorship in source code is contained in object code. To avoid this separate
issue, consider the machine element argument when the program is written in
object code, that is, when the source code is the object code. The machine ele-
ment, binary form (electrical or magnetic pulses), is a direct embodiment of the
authorship, the program in object code (written ones and zeros). It is clear that
this authorship is reproducible with the aid of a machine or device. When the
source code is first translated into object code and then into binary form, an
issue other than copyrightability of binary form arises.” If the source code
work being protected is still protectable when translated into object code, the
fact that this object code is transformed into binary form and becomes a ma-
chine element does in itself not mean that it or the original work become unpro-
tectable so long as it or the original work are still perceptible with the aid of a
machine or device.

The machine element argument also is different than, although related to,
the communication/utility distinction. Software when put in binary form to be
used to operate a computer has no communicative or literary function. The out-
put of the program may communicate, but it would be a separate copyrightable
work from the program, if protectable at all. This does not end the analysis,
since the work can be read from binary form and the work then communicates.
In addition, binary form can contain textual material. Documents on word
processors which clearly are copyrightable are stored in the computer in binary
form. Source code or even object code when stored in a computer as textual

“This issue is the relation of source to object code and perfection and enforcement of copy-
rights in both forms of software, and is discussed in Part 3d under **Copyrights.’’

374 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 374 19821983

material are in binary form. In other words, the communication analysis must
proceed beyond form to function, to how the binary form is being used.

The basic question in the machine element argument is whether when a
copyrighted work is embodied in forms whose sole function is mechanical or
utilitarian, do those forms continue to be protectable?

This is a novel question. It arises precisely because of the dual nature of
software: it is symbolic writing which can mechanically be translated into utili-
tarian operation. Other symbolic utilitarian works do not have this direct me-
chanical correlation. Recipes are utilitarian because they are used to bake cakes
(or whatever), but a recipe cannot be put in a machine, causing the cake to be
baked. Architects’ drawings are utilitarian, but do not build structures by them-
selves. (With the advent of CAD-CAM, computer-aided manufacture and de-
sign, such drawings may soon be used to build products and structures automat-
ically.)

This basic question is related to the ‘‘useful article’” doctrine, but does not
fall within it. The doctrine is based on the problem that a copyright of func-
tional design could preclude others from marketing a similar useful object.™
For example, if Volkswagen could copyright the design of the ‘‘Rabbit’’ auto-
mobile, it could have precluded many of the look-alike automobiles of competi-
tors from being marketed. However, this anticompetitive threat does not exist
with binary form. There are many different ways to code programs which per-
form similar functions. It is the functions which are marketed as useful articles,
not the code of the program as embodied in binary form. The functions are not
protected by copyright. The functions are the analogue to a useful article; the
code is analogous to the separable, ornamental features which are copyright-
able. Therefore, the basic question of protection of binary form when used to
operate computers cannot be answered by existing doctrine on works of utility.

The policies behind copyright protection strongly reject creating a new
limitation on copyright of utilitarian uses of binary form. The grant of copy-
right is intended to reward authors and give them an incentive to create. Soft-
ware source code is authorship, but is seldom marketed as literature. Instead,
practically all the reward to software creators, and the basic incentive to create
software, is derived from marketing binary forms for use in a computer. Piracy
of binary form by straight copying deprives programmers of reward and incen-
tive.

A further interest served by protecting binary form is to allow technology
to develop without artificial distinctions The object code/source code distinc-
tion is already insufficient to answer questions relating to interpreted source
code, program generators and data base management systems. The applica-
tions/operating system distinction is also unworkable due to the problem of de-
termining which parts of the program are “‘applications’’ and which are ‘‘oper-
ating systems.’’ Therefore, freezing copyright protection base upon the current
understanding of software technology would be shortsighted.

*Mazer v. Stein, 347 U.S. 201 (1954).

SUMMER 1983 375

HeinOnline 23 Jurinetrics J. 375 19821983

Rather than create a new limitation, the courts should allow copyright law
to develop with new technology. The dual nature of software makes it an ex-
traordinary development in engineering. One could imagine a more primitive
computer industry in which software was painstakingly translated ‘‘by hand™
into the hard-wiring of computers. Instead, this translation is automatic, and it
allows the rapid creation of wholly new machines (programmed computers).
Copyright could work well to protect the interests of the creators of software. It
should be allowed to do so.

Therefore, instead of the source/object or communicative/utility tests, a
distinction should only be made when a form of software—source code, object
code, diskettes or ROMs—becomes so distant from a ‘ ‘writing’’ as to no longer
bea ‘‘copy.’’ Under Section 101 of the 1976 Act, this occurs when the original
authorship is no longer perceptible even with the aid of a machine or device.
This occurs when software is so hard-wired (beyond ROMs) into a particular
computer that it can be read out only with the intervention of human reverse
engineering. In other words, an embodiment of software is no longer a “‘copy’’
when it no longer can be copied easily.

This result is consistent with the fundamental, functional purpose of copy-
right protection. It is easy to steal an expression by copying and this discour-
ages the creation of such expressions. Thus, copyright is an appropriate form
of protection of such expression from a functional point of view. This situation
is met for all forms of software. Nimmer’s concern about distinguishing soft-
ware from other easily copied technology is answered because software has a
symbolic ‘‘expressive’’ nature which is lacking in such items as a recombinant
DNA or unprogrammed chips. Therefore, software, in all forms, regardless of
their utilitarian or machine element purpose, should be copyrightable.

3. The Enforcement Problem

In general, to show copyright infringement, the copyright owner must
demonstrate that the alleged copy is *‘substantially similar’’ to the original and
that the infringer had “‘access’” to and copied the original (although access is
often inferred from similarity).” The suitability of copyright protection to soft-
ware is to a large extent dependent upon how well this test works. Properly
applied, it can work very well—a conclusion which may be surprising to the
many advocates for trade secret protection or a sui generis protective system.
Still, before this test will be properly applied, it must be appreciated that the
expression (the logic and design of the software) is tested for similarity, not the
specific source code instructions, and that access should be demonstrated by
more than an inference from similarity of logic and design.

This test should first be understood in context. Originally, copyright was
designed to protect publishers who had to pay royalties to authors from other
publishers who could print copies of the same books and have a cost savings by

%3 M. NIMMER, CopYRIGHT § 13.01[B] (1981).

376 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 376 19821983

not having to pay the royalties.™ In those cases, the concern was slavish copy-
ing, for the copiers were seeking to market exactly the same book with the same
words and expression. Similarly, much of the concern in the software industry
is against exact copiers. It is an easy matter to copy machine-readable forms of
software. Such piracy creates identical copies and thus the issues of “‘access’’
and whether a copy is ‘‘substantially similar’’ are easy to answer.

In many circumstances, however, particularly when the form of a literary
work is translated to a different form, such as from a book to a film, the ques-
tion of copying becomes very difficult to answer. One could first look at similar
dialogue and proceed to similar plot, theme, names of characters and other
identifying material. At some point, however, the similarity becomes only at
an abstract or fundamental level; for example, in the idea of a detective story
with a certain type of plot twist, as opposed to a specific story by a specific
author.

A similar problem arises with software when translated from one form to
another. Source code for a particular computer in a particular computer lan-
guage, for example, can be translated to object code, to source code in a differ-
ent computer language, to object code designed for a different computer, or to
any of the above but disguised to look different. Software translation can be
mechanical if a compiler or cross-compiler is available, or can be more difficult
than translation of literary works if the translation must be done manually. A
computer is very literal minded and the instructions in the manual translation
must be very precise in order to work.

Protection can also be more difficult for software than books since there
can be many ways to achieve the same functionality. When two programs
achieve the same results through different logic and design, it can be difficult to
determine whether the protectable expression of the original has been stolen or
merely the unprotected ideas in it. Therefore, it becomes much more important
independently to demonstrate access. Computers operate in similar ways.
Computer languages have built-in biases which greatly determine the logic and
design of a program. Therefore, programs independently written in the same
computer language for the same type of computer may look substantially simi-
lar if they perform similar functions. Access should nor be inferred from simi-
larity.

These problems with applying the test for copyright infringement to soft-
ware, and the importance of determining access and defining expression, will
be explored in specific contexts in which slavish copying is not an issue.

a. Source Code

Source code normally contains much more than computer instructions.
First, source code can contain comments and annotations which are not exe-
cuted by the computer but which describe the functioning of certain parts of the

*Kaplan, An Unhurried View of Copyright (1967); Denicoli, Copyright and Free Speech:
Constitutional Limitations on the Protection of Expression, 67 CaLIF. L. Rev. 283, 284 (1979).

SUMMER 1983 377

HeinOnline 23 Jurinetrics J. 377 19821983

program. Second, it contains names of subroutines, variables and labels which
can be wholly arbitrary as far as the computer program’s functionality is con-
cerned but which are often highly individualized to make the program easy to
understand. Third, it can contain an easy-to-follow internal structure, particu-
larly if “*structured programming’’ techniques are used. Fourth, the source
code can contain data tables setting forth the structure of memory and the di-
mensions of variables. Upon compilation or interpretation of the source code,
the comments are ignored, the names are replaced with symbolic representa-
tions, the structure may be changed to a chronological order rather than the
easy-to-follow logical order and the data tables are implemented and can be
difficult to recreate from object code.

It is a trivial matter to change the comments, the names of routines, vari-
ables and labels, and the order of subroutines and other parts of the program
structure, It is also possible to rearrange the memory structure or select differ-
ent dimensions for variables and still achieve the same functionality in many
circumstances, or even to incorporate the data tables into the functional parts of
the program. These changes can be done in 2 matter of days or weeks and
would have little or no impact on the operation of the program. The new pro-
gram, however, would not look at all similar. These selections are symbolic
and do not have intrinsic meaning to the computer as they do to the program-
mer. These changes present a problem which is unique to programs among lit-
erary works. In other literary works, changes in the structure, names, words,
and size cannot be done without significantly affecting the literary work itself.

With proper expert testimony, it should be possible to argue successfully
that the source code changed as above contains the same expression as the orig-
inal program. Once the symbolic nature of many aspects of programming is
understood, it can be urged that the parts of the expression which have been
infringed are those involving the logical structure as seen by a computer and not
as seen by the programmer.

Source code can also be changed beyond simply changing symbolic val-
ues. Noncritical subroutines and algorithms can be reorganized. There are of-
ten several ways of implementing the same mathematical calculation or the
same manipulation of textual, graphic or stored material. These changes may
improve or hurt the program’s speed or its ability to handle peak loads, but
often not noticeably, and should not affect its accuracy in producing results. A
copyright injunction may still issue, this time based upon key or complicated
routines which remain unchanged, but often with a little more effort even those
could be changed.

At some point, a court would probably put its foot down and say that copy-
right only protects expression and if substantial changes are made, only under-
lying ideas are left in the infringing copy. As expressed by Learned Hand:

““Upon any work . . . a great number of patterns of increasing generality will
fit equally well, as more and more the incident is left out . . . there is a point in
378 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 378 19821983

this series of abstractions where they are no longer protected [by copyright]
9997

b. Program Description

A similar problem arises with respect to program descriptions. Program
descriptions aid the programmer in writing the source code. Program descrip-
tions include flow charts and pseudosource code, instructions which are similar
to source code but do not comply with all the detailed requirements necessary to
make the source code work on an actual computer. Such program descriptions,
although they could not be compiled on a computer into functioning object
code, can be easily translated into working source code by an experienced pro-
grammer.

Such program descriptions, if they are as complete and detailed as the
source code created from them, are ‘‘copies’’ of the original program because
they contain the same protected expression. When the descriptions are less
complete, or are written in a more abstract fashion than flow charts or pseudo-
source code, the question arises as to whether expression or ideas are being
described. Indeed, in some circumstances the program description would be
represented by a logic table or some other entirely abstract structure. Although
these abstract structures denote logically the same functionality as the source
code, they appear far removed from it, and they cannot be used as easily by a
would-be copier to create the source code. At some point such abstract program
descriptions—and the different source code created from them—would likely
be found not to be a copy of, and not to infringe, the underlying source code.
These abstract forms describe the ideas in the program more than the expres-
sion. The specific design choices of the programmer—the expression of the
software—are not included in the abstract program descriptions.

When the descriptions consist primarily of supporting materials like user
documentation and functional descriptions of the program, this same problem
arises. Again, these supporting materials do not reveal the manner of
programming—the expression—but the underlying functionality. In Synercom
Technology, Inc. v. University Computing Co.,” the use of instruction manuals
and input formats to create programs with similar functionality and compatibil-
ity was held not to be a violation of copyright since an input format structure is
an idea without a separately protectable expression. However, the verbatim use
of substantial portions of the instruction manuals themselves was a violation of
the original owner’s copyright in the manuals.

This result is consistent with the copyright analysis recommended above.
The expression of software is its internal specific logic and design, not its exter-
nal input and output formats and interfaces. The formats would be protectable
only as independent works, such as videogames. In addition, protection of the

“Nichols v. Universal Pictures, Inc., 45 F.2d 119, 121 (2d Cir. 1930) (L. Hand, J.).
%462 F. Supp. 1003 (N.D. Tex. 1978).

SUMMER 1983 379

HeinOnline 23 Jurinetrics J. 379 19821983

expression does not protect the underlying programming techniques or the
functions themselves. User manuals normally only reveal input and output for-
mats and techniques for using functions—the ideas, not the expression, of the
software. Therefore, a person who only uses user manuals to reverse engineer
software is not an infringer, since he or she never had access to the protected
expression of the software.

This result also seems correct on policy grounds. It would be anticompeti-
tive, and probably a mistake, to allow a software owner to prevent copying of
formats and functions. This would allow Apple Computer, for example, to pre-
clude others from making Apple-compatible computers, even if they reverse
engineered the proper interfaces and not merely slavishly copied Apple’s pro-
grams (as Franklin Computer did). A different result would allow patent-like
monopoly protection over more than expression without the novelty required
of patents and without the relatively short protection period granted patents.

c. Object Code and Decompilers

Different problems arise with protection of object code. It is extremely un-
productive to derive new programs directly from object code except by slavish
copying. Instead, object code must first be decompiled or disassembled into a
cousin of the original source code. This cousin does not contain the written
comments in the original source codes, the same names of variables, routines
and labels, the same structure nor the original data tables, since all of this infor-
mation was (most likely) not retained in the object code. Still, this cousin con-
tains virtually the same expression as the original source code, the same logic
and design, since if it is recompiled or reassembled it would operate the com-
puter in virtually the same way as was intended by the original source code.
This cousin is a ‘‘copy’’ of the original source code.

Therefore, decompilation infringes the owner’s copyright. This provides
strong theoretical protection to the copyright owner who markets object code in
binary form only, without program descriptions other than user manuals. Ac-
cess to the expression of a program is legally impermissible. To gain access,
the object code would have to be decompiled. Object code itself is too incom-
prehensible to provide effective ‘‘access’’ to the expression of the program. In
addition, access to object code by printing it from binary form would also im-
permissibly create a “‘copy.’’ This situation also provides strong theoretical
comfort to the would-be infringer who does not print or decompile the object
code but only works from input/output formats and user manuals. Such a per-
son would not have ‘‘access’’ to the protected expression, and would not be an
infringer.

This result, surprisingly, means copyright law may protect software mar-
keted in object code on binary form better than it protects books or film. Works
derived from the latter are subject to fine distinctions which can make legal
planning difficult; for example, courts are now attempting to draw such fine
distinctions in deciding whether Battlestar Galactica is a derivative work of

380 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 380 19821983

Star Wars.” Works derived from object code, however, are subject to a simple
test: was the object code decompiled or not. For example, consider the issues in
Apple v. Franklin, supra, in this light. Franklin slavishly copied, and should be
found to have infringed Apple’s copyrights. If Franklin had first decompiled
the programs and derived programs which accomplished the same functions, it
would have had access and would have infringed Apple’s rights. If Franklin
had left the internal attributes of Apple’s programs alone and instead used the
external attributes to create compatible programs, it would not have violated
Apple’s rights. The case could have been decided upon a single factual issue.

While this simple test provides theoretical comfort to software owners and
persons making similar software without decompilation, it may not provide
them practical comfort. The difficulty of showing direct copying of traditional
literary works led to proof of copying by circumstantial evidence—similarity
and access.'™ Elevating the importance of proving access by requiring evidence
of decompilation may make such proof less circumstantial and more difficult.
Still, unlike most literary works, software can be “‘fingerprinted’’ by dummy
code or unusual ways of programming.' If the infringer goes to the trouble of
removing fingerprints, other circumstantial evidence can be used to demon-
strate decompilation, such as comparing the amount of time taken to create the
original program with the time taken to copy it. In some circumstances it may
still be difficult to show access by decompilation, and that difficulty may make
enforcement of copyrights in software more troublesome. Nevertheless, these
difficulties can be justified by the greater clarity between infringing copies (af-
ter decompilation) and noninfringing similar programs (only after reverse en-
gineering). In addition, since computer structure dictates program logic and
design to a great extent, a contrary result could grant too much protection to
copyright owners.

d. Object Code and Compilers

A second problem involving enforcement of rights in object code arises in
the process of compilation or assembly of object code from source code. This
process is accomplished by separate programs, including a compiler or assem-
bler and linking programs (which link separately compiled source code mod-
ules into one executable ‘‘load module’’). These separate programs almost in-
variably are owned by another and licensed for use in creating object code. Use
of these separate programs in translating source code into object code obscures
the legal relation between source and object code. Is object code a ‘“derivative
work’’? If so, does the owner of the compiler gain co-authorship rights to the
object code? The answer to both questions is negative, but the reasoning is
complicated, and requires an understanding of the process of compilation.

“Twentieth Century Fox v. MCA, Inc., 209 U.S.P.Q. 200 (C.D. Cal. 1980), rev'd, 696 F.2d
689 (9th Cir., Jan. 11, 1983).

'®See Midway Mfg. Co. v. Artic Int’l Inc., 547 F. Supp. 999, 1012 (N.D. Ill. 1982).

1%1See Part 1 under “‘Other Protective Schemes.””

SUMMER 1983 381

HeinOnline 23 Jurinetrics J. 381 19821983

Upon compilation of source code, most of what makes source code expres-
sion appear unique—annotations, names, structure, data tables—is obliterated,
as noted above. What remains is largely only the instructions in the source
code, reorganized and rewritten in a different medium of expression. The
source code has been “‘translated.’” This superficially implies that object code
is a “‘derivative work’’ rather than a ‘‘copy.’’ The definition of derivative work
under Section 101 of the Act includes any ‘‘translation . . . or other form in
which a work may be recast, transformed or adapted.’’

The concept of derivative work, however, requires derivation due to crea-
tivity, not physical act. Only the added creative elements of a derivative work
are independently protectable.'” Object code is created by physical act—the
use of a compiler or assembler. To the extent that there are any independent
creative elements in the resultant object code, they are authored by the pro-
grammers who wrote the compiler or wrote the various other utility programs
that enable a computer to compile complicated programming material.

The independent creative elements in compiled object code, however, are
not protectable. They consist of ideas, not expression. The way in which any
source code statement (or group of statements) is transliterated into object code
is anidea. The automatic implementation of each of these ideas by a compiler is
a mechanical process with insufficient originality to be copyrightable expres-
sion.'” The object code fails to contain sufficient independent authorship which
could be separately protectable as part of a derivative work. Therefore, the
compiler’s owner can claim no co-authorship rights in the resulting object
code.

What then is the legal relation between source and object code? Source
code and object code could be considered part of the same work. Source code is
written with object code in mind; both works are *‘written’’ together. Object
code could instead be considered an encryption of source code and in that sense
a copy.'” Object code is a mechanical and precise translation of parts of source
code, an exact transcription of one set of words or symbols into another set.
The precise set of instructions in the source code is encrypted in object code.'”

1926¢e Gracen v. Bradford Exchange, 696 F.2d 300, 302 (7th Cir., Jan. 12, 1983); L. Batlin &
Son, Inc. v. Snyder, 536 F.2d 486, 490-91 (2d Cir. 1976).

101 Signo-Trading Int’l, Ltd. v. Gordon, 535 F. Supp. 362 (N.D. Cal. 1981), the list of
words translated from English to Arabic by use of an electronic device was held not to be copyright-
able since they consisted of ideas and their implementation by computer was too mechanical to
involve sufficient copyrightable originality. An automatic process can nevertheless cause a deriva-
tive work. In Midway Mfg. Co. v. Artic Int’l, Inc., 547 F. Supp. 999 (N.D. Ill. 1982), a set of
ROM s constituting a ‘‘speed-up kit”* which plugged into a videogame and electronically sped it up
was held to create a derivative work—the faster videogame.

'%GCA Corp. v. Chance, 1982 Copr. L. Dec. § 25, 464 (N.D. Cal., July 12, 1982). See Reiss
v. National Quotation Bureau, 276 F. 717 (S.D.N.Y. 1921) (L. Hand, I.) (code book of coined
words copyrightable).

1%The annotations and comments in source code are not copied in object code. Since this part
of source code are irrelevant to the design of the program, they should be considered separate
literary works from the program.

382 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 382 19821983

There is, however, an even deeper relation between source and object
code. It is not the precise written source code which is protectable, but the un-
derlying logic and design, the program. This program in object code has the
same logic and design as the source code; indeed, source code is tested by com-
pilation and execution of object code. It is therefore inherent in the relation
between source and object code that they contain the same expression—and this
expression is what is protected by copyright.

The test for infringement—similarity and access—is as an evidentiary mat-
ter one step removed from this deeper relation between source and object code.
Similarity of literary works such as books is typically shown by similar words,
one step removed from the expression, the interrelation of plot, character, and
other elements of the story. The underlying expression traditionally only need
be explored when derivative works are in question—when the original words
are translated or transformed. Object code similarity will be shown in other
ways, such as by direct compilation of the original source code and comparison
of this object code with the alleged infringing object code. Where the object
code is first decompiled, the cousin-source code modified, and then recom-
piled, more complicated proof will be necessary. This proof may be accom-
plished in the same manner as demonstrating that a work is a derivative work.
Despite this similarity in proof, object code remains simply a copy of its under-
lying source code.

e. Current Licensing Practices

Copyright alone may not support current marketing practices and assump-
tions regarding software. The 1976 Act in some respects is designed to protect
marketing practices of an age prior to that of Xerox, IBM and Apple.

Under Section 109 of the 1976 Act, the owner of a program copy may re-
sell it or otherwise remarket it. This at least means that a user of a program copy
could satisfy its desire to use it and then sell it, removing a potential buyer from
paying the author. Software vendors typically grant nontransferable licenses.

Under new Section 117(1), enacted by the 1980 amendments, the
‘‘owner’’ of a program copy has the right to copy the software for execution in
a machine. Arguably, taking the copy provided by the licensor or seller of the
program and copying it into several computers contemporaneously would also
be allowed; technically, also allowable would be leaving one of these copies in
the machine and selling or giving to a friend the copy provided by the vendor.
Each new copy internally used falls within Section 117(1) as being utilized
solely in conjunction with the use of a machine. Since most program licenses
are priced on a per-computer basis, this interpretation of Section 117(1) would
cause substantial financial hardship, especially when the software is licensed to
a large company which has many computers. This problem will become even
more widespread as ‘‘office automation’’ techniques are used by companies,
which will result in placing a computer at every person’s desk. The CONTU
Report does not discuss this problem except in the context of selling a single

SUMMER 1983 383

HeinOnline 23 Jurinetrics J. 383 19821983

copy and keeping the original." Contexts other than this probably were not
considered when CONTU’s recommendations for amending Section 117 were
drafted.

Section 117(1) also allows a program copy owner to make an ‘‘adapta-
tion’’ of a program if it is created ‘“as an essential step in the utilization of the
computer program in conjunction with a machine and that it is used in no other
manner.’’ The CONTU Report explained that this right was to enable *‘conver-
sion of a program from one higher-level language to another to facilitate use”’
or adding ‘‘features to the program that were not present at the time of rightful
acquisition.””'” This right appears most suitable to source code, but could apply
to object code. To adapt object code such as by adding features may require that
the object code be decompiled. If so, it may be legally permissible for a pro-
gram copy owner to gain intelligible access to the program by decompilation.
This would enhance the likelihood of the program copy owner reverse engi-
neering the program and marketing its own version of the program in competi-
tion with the original program owner. Section 117 arguably does not allow this
result, since the adaptation can be legally used ‘‘in no other manner’’ other than
to operate the original program; still, it may be used as a loophole to justify
access in a case involving infringement after decompilation.

To avoid problems, program distributors often attempt to limit the right of
resale, copying and adaptation by characterizing the original sale as a “‘li-
cense.”’ In the personal computer market, this is done by enclosing a warranty
card with the program, encouraging or requiring the buyer to sign and return
the card, and including on the card a statement that the program is licensed, not
sold. Sometimes the diskette containing the software is shrink-wrapped, and
acceptance of the license arrangement is found in the act of breaking the wrap.
Although theoretically a license may exist in that circumstance, it is certainly
questionable whether such a license would be enforced, particularly in view of
the protection given consumers in this country.

Assuming a license is created, it may not be effective against Section 117.
While the Section 117(1) exception only applies to an ‘‘owner’’ of a program
copy, and not to a licensee, it is unclear what ‘‘owner’’ of a *‘program copy’’
means. Possibly, a distinction is intended between the software and the media
on which it must reside. If so, an owner of the medium would be a ’‘program
copy owner’’ under Section 117. Thus, if a person licensing the program is
nevertheless deemed to be an owner of the medium, that person would have this
Section 117(1) right. For many program distributors the safest solution to this
problem is to rely upon a combination of copyright and trade secret law. The
per-computer limitation, for example, even if unenforceable under copyright
law, could be enforced because of trade secret restrictions in the license.

1%CONTU REPORT at 31-33.
1CONTU RePorT at 13-14,

384 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 384 19821983

4. Software-Related Works

a. Videogames

Much of the recent case law in the area of copyright of programs involves
videogames. Most of these decisions concern not whether the program itself
has been copied but whether the audiovisual display of the program has been
appropriated.

The argument that the videogame constitutes a protectable audiovisual dis-
play has allowed several videogame distributors to protect their games.'™ The
argument has also allowed game distributors to prevent the importation of in-
fringing games.'” The game distributors do not always win, because the game
itself cannot be copyrighted, only the stylized expression, that is, the precise
pattern of the characters and pictures in the display of the game."™

One interesting problem is whether the player is a2 ‘‘co-author’’ of the
game. This problem is usually raised as a defense to infringement or as a chal-
lenge to registration. The game distributors have to be careful regarding regis-
tration. Typically, they submit a videotape of the game-display in its ‘‘attract’’
and its ‘‘play’’ modes; they should specify whether they are registering the vi-
deotape as an artistic work itself, the game-display, or the underlying program.
The ‘‘co-author’’ challenge arises because in the ‘‘play’” mode, the game can
have a very large number of possible sequences. The videotape deposited upon
registration normally would contain only a few of those possible sequences.
The argument is raised that only those sequences have been registered, or that
the person actually playing the game is a co-author of the particular sequence
when it is being played.

"%william Elec., Inc. v. Artic Int’], Inc., 685 F.2d 870 (3d Cir., Aug. 2, 1982) (order grant-
ing preliminary injunction); Atari, Inc. v. North Am. Philips, 672 F.2d 607 (7th Cir. 1982) (pre-
lim. inj. granted against ‘K. C. Munchkin’’ as infringer of ‘‘Pac-Man’’); Stern Elec., Inc. v.
Kaufman, 523 F. Supp. 635 (E.D.N.Y. 1981), aff’d, 669 F.2d 852 (2d Cir. 1982); Midway Mfg.
Co. v. Drikschneider, 543 F. Supp. 466 (D. Neb. 1981) (order granting preliminary injunction);
Midway Mfg. Co. v. Artic Int’l, Inc., 547 F. Supp. 999 (N.D. Ill. 1981).

1% In re Coin-Operated Audio-Visual Games and Components Thereof, Investigation No. 337-
TA-87, USITC Pub. No. 1160 (June 1981) (Galaxian); In re Certain Coin-Operated Audio-Visual
Games and Components Thereof, Investigation No. 337-TA-105, USITC Pub. No. 1267 (July
1982) (Rally-X; Pac-Man). The first investigation found infringement due to similar ‘‘attract’
modes; no decision as to infringement of ‘‘play’” modes beyond first few moments, due to co-
authorship problem. The second investigation found infringement in both modes, relying on Stern
and Arari.

""Midway Mfg. Co. v. Baudai-America, Inc. 546 F. Supp. 125 (D.N.J., Jul. 22, 1982) (suf-
ficient factual questions to deny prelim. inj. to **Galaxian’’ and ‘‘Pac-Man’’ owner against vendor
of handheld versions of those games); Atari, Inc. v. Amusement World, Inc., 1982 Copr. L. Dec.
{ 25, 347 (D.Md. 1981) (in copyrighting ‘*Asteroids,’’ Atari did not prevent others from making
asteroid-like game, only games with ‘‘Asteroids’’ characters and features). See Atari, Inc. v.
North Am. Philips, 672 F.2d 607 (7th Cir. 1982) (videogames); Durham Ind., Inc. v. Tomy
Corp., 630 F.2d 905, 914-15 (2nd Cir. 1980) (toys). Cf. Morrisey v. Proctor & Gamble Co., 379
F.2d 675 (1st Cir. 1967) (copyright may not be an infringement when there are only a small number
of ways to express an idea, such as a set of rules for a sweepstakes contest). Traditionally, copy-
right does not protect games. Antimonopoly, Inc. v. General Mills Fun Group, 611 F.2d 296, 300
n.1 (9th Cir. 1979).

SUMMER 1983 385

HeinOnline 23 Jurinetrics J. 385 19821983

This co-authorship question is fundamentally specious. All sequences are
embodied in the program; the player only selects one as he or she plays. This is
roughly analogous to selecting and viewing parts of a movie, parts of a video-
disc or certain slides of a slide show. It can also be compared to skimming
through a book. These analogies are not perfect, because the interactive nature
of the game is fundamentally different from the passive nature of watching a
movie or reading a book. Still, what is protectable is not the game itself but the
repeated patterns of characters in the game and other elements of the game, and
these repeated patterns do not materially change between different se-

quences. '

b. ROMs, Chips and Chip Masks

A peculiar enforcement problem arises when software on ROMs is consid-
ered a tangible embodiment of a copyrighted work. One method of copying a
ROM is by photographing the inside of the chip to determine the successive
layers of semiconducting material and how they are laid out, and to reverse
engineer how those layers were constructed. A related way is to acquire copies
of the actual “‘masks’’ used in creating the chip. Chip ‘‘masks’’ are alterna-
tively transparent and opaque representations of a particular layer of semicon-
ducting material on a chip, which, by a process similar to photoengraving, can
be used to create each particular layer."” If a photograph of the inside of the
chip is not a copy of the program, and if the design of the chip itself is not copy-
rightable because the design is a work of utility (see below), a loophole may be
created for copiers of ROMs. However, this method of copying does not dis-
guise the fact that the resulting chip is a copy of the program and infringes the
copyright. Thus, even if the intermediary steps themselves do not constitute
infringing acts, the subsequent creation of the chip is the necessary infringing
act.

The problems of ROMs should be distinguished from those of chip masks
or chips (integrated circuits) themselves. Intel, among other semiconductor
companies, has attempted to protect its chip masks and the resulting chips
through the use of copyright. Intel attempted to copyright nine mylar masks for
its 8755 microcomputer under the category of technical drawings, one of the
types of ‘“pictorial, graphic and sculptural works’” as defined in Section 101 of
the 1976 Act which are within the types of authorship subject to copyright un-
der Section 102. Intel had successfully registered the masks as technical draw-
ings but was refused registration when it proceeded to take two of its chips and
submit them to the Copyright Office as published copies of the masks. Intel

'Stern Elec. Inc. v. Kaufman, 669 F.2d 852 (2nd Cir. 1982).

"2See Toward the Silicon Foundry, 248 Sc1. AM. 82 (Feb. 1983); Angell, Silicon Microme-
chanical Devices, 248 Sc1. AM. 44 (Apr. 1983); Brady, The Bumpy Road to Submicron Lithogra-
phy, HiGH TECH 26 (Mar. 1983).

386 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 386 19821983

brought a mandamus action, but after a few depositions the case was settled and
none of these issues were resolved.'”

Intel was not likely to succeed. Its argument is that the ‘‘technical draw-
ings’’ authorship in the chip masks has been embodied in the chips. Under Sec-
tion 101 of the Act, however, works of utility created from *‘technical draw-
ings’’ or other ‘‘pictorial, graphic and sculptural works’’ are not
copyrightable. Indeed, Intel’s situation is not even a difficult question. Func-
tion shapes the form of the chip; there are no aesthetic or artistic ‘ ‘ornaments.’’
The harder cases are when the work of utility is to be seen by people and is
designed to be attractive as well as functional.

Other works of authorship as defined in the 1976 Act do not have this utili-
tarian use restriction explicitly. Therefore, arguments have been made to bring
chips and chip masks under some other type of authorship. It has been half-
seriously suggested, for example, that since chip masks are ‘‘displayed’’ in a
factory, which can be construed to be a public place, therefore creating a public
performance, they are ‘‘audiovisual’’ works and are protected from being
‘‘performed’’ elsewhere in the process of making the actual chips from the cop-
ied masks.""* However, unlike slides, videotapes or film, the masks are not dis-
playable through use of the chips. Those parts of the masks which are audiovi-
sual works are not embodied on the chips. Thus, protecting the masks as
audiovisual works would not protect the chips.

A more serious possibility concerns the process of creating and using the
masks. This process usually includes digitalization of the masks to be stored in
a computer for easy re-creation, storage and reference. The data can be con-
strued to be a ‘‘compilation,’’ protectable under Section 103 of the 1976 Act,
and arguably the actual masks as well as the chips created from the compilation
of information are tangible embodiments of it and consist of infringing copies.
The problem is that this information may not be recoverable from chips even
with the aid of a machine or device without human reverse engineering and
therefore the authorship is not embodied on the chips. Again, the compilation
may be protectable, but not the resulting chips.

Another interesting suggestion is to copyright the topology of the chip it-
self as a “‘sculptural’’ work. Since the chip’s topology is utilitarian, however,
arguably only nonfunctional, ornamental parts of the topology (i.¢., virtually
none of it) are protectable.'” Still, the topology can be photographed. Blowups
of these photographs are multicolored and look *‘artistic.”” Would it help the
chip manufacturers to hang these blowups in their front lobbies as art? How-
ever, then the ornamental or artistic elements would not be in the chips but in
the photographs. It would be an artificial result to find an infringement of a

€

111981 CLA Transcript at 160-61. The case was Intel Corp. v. Ringer, No. C-77-2848 (RHS)
(N.D. Cal., filed Dec. 16, 1977 and April 13, 1978), dismissed by stip. (Oct. 10, 1978).

"1“1981 CLA Transcript at 161-62.

5Esquire, Inc. v. Ringer, 591 F.2d 796 (D.C. Cir. 1978), cerr. denied, 440 U.S. 908 (1979)
(austere, nonornamental lamppost not copyrightable).

SUMMER 1983 387

HeinOnline 23 Jurinetrics J. 387 19821983

picture or sculpture in a copy which is too small to see and is sealed from view-
ing.

Yet another suggestion is to include actual programs or data on the chips.
Many chips, specifically microprocessors and microcomputers, contain cer-
tain fixed software programs to aid in their operation."® Any copier of these
chips will be making a copy of the program parts of the chip and therefore will
be violating the copyright in the programs. If a chip being designed does not
have a built-in program, a ‘‘dummy’’ program could be added in the original
form of the chip, which would be erased or ignored when the chip was put to
functional use. Alternatively, data constituting a ‘‘compilation’’ could be en-
tered in the chip, which again would be erased or ignored upon functional use.
Unfortunately, even if sound on a theoretical basis, these latter ideas suffer im-
practicality. The chip infringer could copy only the erased form of the chip, or
if the dummy programs or data are not erased after use is commenced, the chip-
infringer could copy around the dummy parts. In either case, there is no protec-
tion.

The copyrightability of software on chips should be firmly distinguished.
Software is a separate, symbolic work. What is the authorship which is fixed on
a nonsoftware chip? The engineering of chips themselves does not involve the
creation of symbolic material which is later fixed on the chip. While the earlier
steps in creating a chip (logic diagrams, component schematics, chip designs,
digitalized data of the designs and the masks) may be to some extent authored,
this authorship is not fixed onto the chip. These earlier, arguably symbolic
works cannot be mechanically ‘‘perceived, reproduced or otherwise communi-
cated’’ from the chip. They are either entirely lost or too connected to be sepa-
rated. With ROMs, however, it is possible to read out the software which is
fixed on the chip.

Chips may not need copyright protection. The semiconductor industry
competes largely by offering new products and retaining a cost advantage.
Costs tend to drop 28 percent for each doubling in volume of production.'’
There may be sufficient incentive to create new chips by being first. Also, the
market acceptance of a chip tends to increase when it can be acquired from
several sources, and second-source copiers may actually increase the origina-
tor’s volume and return on investment. From a broader perspective, chip con-
sumers benefit from lack of protection. The threat (or reality) of copiers forces
originators to decrease prices to match decreased costs in order to maintain
market share. Protection, therefore, may not increase chip variety but would
decrease chip sources and increase chip prices. Finally, while chips are expen-
sive to design and less expensive to reverse engineer, ‘‘copying’’ is neverthe-
less an expensive and time consuming process. It is not mechanical, as with
software. While chip copying technology may improve dramatically, currently

""®patterson, Microprogramming, 248 Sci. AM. 50 (Mar. 1983).
"Noyce, Microelectronics, 242 Sci. AM. 63, 67 (Sept. 1977).

388 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 388 19821983

the functional reascn for copyright protection—a work is expensive to create
but easy to copy—is not strong. '

c. Firmware (Microcode)

The copyrightability of firmware may test the limits of the ‘‘symbolism™’
analysis proposed above.'” *‘Firmware’’ is microcode, the interface between
software written in machine language and hardware operation.'”

Instructions in machine language are not directly translated into machine
operation; the ones and zeros of object code do not represent actual on and off
signals to computer circuits. Instead, object code instructions are first decoded
and then translated into a different set of binary signals which turn on and off
circuits. This different set consists of microcode instructions. One object code
instruction may be decoded into a number of microcode instructions which to-
gether execute a microprogram. The binary ones and zeros of microcode can be
directly connected to control wires; in such cases, the microinstruction
010011, for example, would turn off the first control wire, turn on the second,
turn off the next two and turn on the last two. In other cases, the microinstruc-
tion is itself decoded to turn on or off specific control wires. This can be done
because often several control wires are only used together, or never used to-
gether; a shorter microinstruction length than the number of control wires can
still contain all possible useful control-wire combinations.

Programming was a major advance in computing. Instead of rewiring ma-
chines, only volatile memory location need be changed to change machine ap-
plications. Microprogramming represents an equivalent advance in comput-
ing. Instead of rewiring the control wires of a machine and changing the
machine language, only the microprogram memory need be changed to change
amachine’s control system. This enabled IBM with its 360 family of computers
to offer seven different computers, varying in speed by a factor of 300 and in
cost by a factor of 100, which all operated from the same object code instruc-
tion set.”” IBM has been able to continue this compatibility with many newer
families of ever-changing computers, including the 370, 4300, 303X and 308X
series.

The next trend is to skip the object code ‘‘macro’’ instruction set and de-
sign machines to be programmed in the microinstruction set. The programmer
for the most part will still write in higher-level languages, which would be com-
piled into microcode instead of object code. The microcode computers may
contain several microinstruction sets, depending upon application. Instead of

"®The problems of chip makers have been presented to Congress in connection with H.R.
1007, introduced and not acted upon in 1979; S. 3117 and H.R. 7207, introduced and not acted
upon in 1981; and H.R. 1028, introduced in 1983 and pending consideration.

1%See Part 1 to **Copyright.”’ ,

patterson, Microprogramming, 248 Sci. AM. 50 (Mar. 1983). Firmware, like software, has
various other meanings. It can refer to proprietary programs sold only by one computer company
(the]f;{'m’s software). It can also refer to ROMs, being a firmer form of software.

Id., at 56.

SUMMER 1983 389

HeinOnline 23 Jurinetrics J. 389 19821983

being general-purpose computers, they would be specific-purpose computers
with several specific purposes. The contents of microcode memory will be
changeable to enable each special application to be accomplished with optimal
hardware efficiency.

Is a microprogram copyrightable? When written, it can consist of
symbols—ones and zeros. It thus could fall within the definition of a ‘‘literary
work’’ under Section 101 of the Copyright Act. The critical question is whether
it is authored or built—is the microprogrammer manipulating symbols or set-
ting circuits on or off? The answer depends not upon microcode itself but upon
how a specific microprogram is authored. If it is done by setting circuits, then
the result is not copyrightable. If it is done by manipulations in accordance with
a microprogram *‘language,”’ then it is copyrightable. This means the original
set of microinstructions placed in the microcode memory are not copyright-
able, but any subsequent microprogram which uses the microinstruction set to
perform computer functions is copyrightable. The original creation of a mi-
croinstruction set is based upon actual (not symbolic) understanding of ma-
chine circuit operation. The subsequent writing of microprograms based upon
the microinstruction set is symbolic, since it is a process one step removed from
machinery.

S. Publication and Notice

Under the 1909 Act, publication was the point at which copyright at-
tached.'” Under the 1976 Act, copyright attaches when a copyrighted work is
fixed in a tangible medium of expression for more than a brief moment."” The
concept of publication is still important with respect to the use of a copyright
notice. The notice is not needed unless the work is published. However, it is
prudent to place the notice even on an unpublished work, although this creates
other problems, as will be discussed below.

a. Limited Publication

It is easy to publish. Publication is defined under Section 101 of the 1976
Act as ““distribution [or offering for such distribution] to the public by sale,
. . rental, lease or lending.’’ This definition is broad and can be applied to the
widespread licensing of software. However, a “‘limited publication’’ is not
““publication.”” A limited publication is ‘‘distribution to a definitely selected
group for a limited purpose without right of defusion, reproduction, distribu-
tion or sale.””™ This is a troublesome definition for software owners if the
“‘definitely selected group’’ requirement means more than that the software is
distributed only to owners of certain computers who agree to certain restric-
tions.” Arguably, making software available to anyone (with an appropriate
221909 Copyright Act §§ 2, 24.
1217 U.S.C. § 102(a).

"White v. Kimmel, 193 F.2d 244, 746-47 (9th Cir. 1952).
'*F.g., M. Bryce & Assoc., Inc. v. Gladstone, 107 Wis. 2d 241, 319 N.W.2d 907, 914 (Wis.

390 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 390 19821983

computer system) and then restricting use does not meet the definite group re-
quirement. This concept of limited publication is critical to determining
whether the distribution of software with restriction licenses is a publication or
not.

The legislative history indicates that distributing to the public means dis-
tributing ¢‘generally to persons under no explicit or implicit restrictions with
respect to disclosure of contents.”"™ This legislative history endorses a favor-
able interpretation of a limited publication test, to the effect that the test does
not mean that dissemination must be to a limited group whose members are
ascertained prior to distribution, but only that the group must be restricted from
recirculating the work."’ Case law is also favorable, but not clear. In GCA
Corp. v. Chance,™ distribution of object form only to purchasers of another
product and for a limited purpose with the belief that it would not be copied was
held to be a limited publication.

The distinction between a ‘‘limited’” or ‘‘general’’ publication first arose
under the 1909 Copyright Act when the underlying policies were different than
under the 1976 Act. In effect, there were two standards of ‘‘publication’’: an
easy one to meet when the just result was to apply federal protection, and a hard
one when to apply federal protection would cause the work to be forfeited to the
public domain." The *‘limited publication” doctrine arose to prevent such
forfeiture following distribution without a statutory notice. Neither standard is
pertinent under the 1976 Act because federal protection applies regardless of
publication and an author can take steps (such as registration) to prevent forfeit-
ure even after publication without notice.

Therefore, it is unclear how to apply precedent under the 1909 Act regard-
ing publication and whether the ‘‘limited publication’” doctrine is still viable.
The main effect of publication and the use of statutory notice, as discussed be-
low, is whether trade secret protection is lost either by public disclosure due to
publication or election of protection by use of the notice."” When the trade se-
cret issues are clarified, these publication issues will be unimportant.

App. 1982) (manuals and forms on how to design certain software systems published where author
did not restrict customer copying and redistribution of them); H. W. Wilson Co. v. National Li-
brary Serv. Co., 402 F. Supp. 456 (S.D.N.Y. 1975) (*‘Reader’s Guide’” held to be published even
though it was always provided with a restrictive license, since the persons who could use it were not
restricted, only its resale or transfer). See American Visuals Corp. v. Holland, 239 F.2d 740 (2d
Cir. 1956).

1264 R. REp. No. 94-1476, 94th Cong. 2d Sess. 1 at 138, reprinted in [1976] U.S. CobE
CoNG. & Ap. NEws 5569 at 5754.

"?1See Public Affairs v. Rickover, 284 F.2d 262, 273 n.2 (D.C. Cir. 1960) (dissent) (that the
test does not mean that dissemination must be to an ascertained group, but that the group must be
restricted from recirculating the work).

1281982 Copr. L. Dec. § 25, 464 (N.D. Cal., Jul. 12, 1982); see Hubco Data Prod. Corp. v.
MAI, No. 81-1295 (D. Ida., Feb. 3, 1983) (slip opinion at 12-13).

M. Bryce & Assoc., Inc. v. Gladstone, 107 Wis. 2d 241, 319 N.W.2d 907 (Wis. App.
1982).

'%See Part 1b under *“Trade Secrets.’

SUMMER 1983 391

HeinOnline 23 Jurinetrics J. 391 19821983

b. Notice on Unpublished Works

Since it is easy to publish, should the notice be used even though the author
believes the work to be unpublished? This question is critical to software ven-
dors who rely upon restrictive licenses and trade secret protection in marketing
software, and who want to retain the argument that the work is not *‘disclosed’’
under trade secret law. They fear that 2 finding of copyright publication, al-
though not conclusive, would weaken trade secret protection.

The use of the statutory notice for published work may create an argument
that because of the copyright notice the vendor is admitting that the work is
being published. Indeed, the ABA Section on Patent, Trademarks and Copy-
right Law has gone so far as to suggest using a nonstatutory notice on software
to avoid this argument. The notice reads: ‘‘Unpublished—all rights reserved
under the Copyright laws.’” This position, however, is untenable. If the work
were held to be published, since it would not have a proper notice, certain addi-
tional steps would have to have been taken to preserve copyright protection,
such as registration, which creates other problems. " If the work were held to
be unpublished, the notice is unnecessary. Rather, a statutory notice which in-
cludes the phrase ‘‘an unpublished work’’ may be more prudent, such as the
following: ‘‘Copyright 1982, an unpublished work by Software Company. All
rights reserved.’’ By including the phrase ‘‘an unpublished work,’’ the soft-
ware company is protecting itself in the event the software is determined to
have been published.

This problem is not unique to software. Unnamed ‘‘professional sports
leagues’’ requested a regulation from the Copyright Office recently that the use
of the notice not be construed as evidence of or an admission of publication.
The Copyright Office refused, claiming such a regulation was outside its au-
thority. "

c. Date on the Notice

The statutory notice must include the name or a recognized abbreviation of
the name of the owner; the date of first publication; and the appropriate copy-
right symbol or words.'” An interesting problem with software is which date to
use. Software normally is continually modified throughout its life. Initially, it
is subject to extensive testing and modification. Thereafter, it is subject to im-
provement and the infrequent correction of major defects or *‘bugs.’’ In some
cases, particularly when the software is widely distributed through distribution
companies, as is now becoming common in the personal computer market, the
date of first publication is relatively clear. In many cases, however, when the
software is distributed by restrictive licenses and publication may not have oc-
curred, it is less clear which date to use. The 1976 Act indicates that a date is
defective only if it is more than one year after first publication, and is not defec-

134 See Part 2 under ‘“Trade Secrets.”’
13246 Fed. Reg. 58308 (Dec. 1, 1981).
17 U.5.C. § 401(b).

392 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 392 19821983

tive if it is earlier than publication. ™ Therefore, safe advice is to use the earliest
conceivable date. While one’s protection period commences at the early date
picked, the period is over fifty years,"” much longer than the useful life of any
now-conceivable program.

The uncertainty with the coverage of binary form has created a problem
with an early date, however. The eatly date may be construed as an admission
of publication at that time. " If the program was marketed then without an ef-
fective notice, it may be in the public domain. This problem is insurmountable
only if that date was prior to January 1,1978, when the 1976 Act took effect."”
Under the 1976 Act, software companies can take certain steps, such as regis-
tration, to preserve their rights even though they may have published software
without the statutory notice."”

A different problem arises if the date of the notice and the date of first pub-
lication is between 1978 and 1980. It is possible to argue that binary form was
not copyrightable until the 1980 amendments became effective. This argument
has constitutional dimensions, particularly if the authority for covering binary
form is found to derive from the Commerce Clause, rather than the Copyright
Clause; a distinction would be made between the 1976 Act, passed under the
Copyright Clause, and the 1980 amendments, passed under the Commerce
Clause. Binary form was not addressed until the 1980 amendments. Indeed, the
1976 Act specifically delayed acting on software. The original Section 117
prior to amendment in 1980 expressly continued the law applicable to software
under the 1909 Copyright Act and state common law copyright. If between Jan-
uary 1, 1978 (when the 1976 Act took effect), and December 12, 1980 (when
the 1980 amendments took effect), binary form was not copyrightable subject
matter, if protectable at all, it would have been protected by common law copy-
right or other schemes of protection.

The uncertainty between 1978 and 1980 brings into question the “‘back-
dating’’ of the notice prior to 1981. Is the notice defective if the subject matter
is not copyrightable? If the notice constitutes publication, has publication oc-
curred at a time when the notice cannot help preserve federal protection? The
software company would have to argue that common law copyright still applied
(or trade secret law) and that distribution of the software then without a notice
and now with a back-dated notice does not constitute ‘‘publication’’ at the ear-
lier time divesting the work of common law copyright protection.'”

1317 U.S.C. § 406(b).

13517 U.S.C. § 302.

1%E. g., Management Science Am., Inc. v. Cyborg Systems, Inc., 6 Comp. L. SERV. REP. 921
(N.D. 1Il. 1978).

¥717U.8.C., ch. 3.

817 U.S.C. § 405(a).

¥Rossette v. Rainbo Record Mfr. Corp., 354 F. Supp. 1183 (S.D.N.Y. 1973), aff 'd, 546
F.2d 461 (2d Cir. 1976) (held that distribution of musical recordings did not constitute *‘publica-
tion”” ending common law copyright protection because musical recordings were then not subject
to federal copyright laws). But see Data Cash Systems, Inc. v. JS&A Group, Inc., 628 F.2d 1038
(7th Cir. 1980) (under 1909 Act, object code on ROM unprotected when distributed without no-
tice).

SUMMER 1983 393

HeinOnline 23 Jurinetrics J. 393 19821983

If the software has undergone substantial revisions since the early date of
first distribution, an alternative is to put several dates on the notice: the date of
first distribution and the dates of recent distribution of substantially changed
versions (preferably at least the first such date after December 12, 1980).
Then, if for any reason the earlier version were held to be in the public domain
because of the defective notice or publication without notice, the revisions
would still be protectable.

d. Placement of the Notice

The Copyright Office has adopted a final regulation for placement of the
notice on software.' It provides four examples of placement on machine-
readable works:

1. Placed such that the notice would appear either with or near the title, or at
the end, of printouts;

2. Displayed on a terminal at sign-on;

3. Continuously displayed on a terminal; or

4. Legible on the work’s ‘‘permanent’’ container.

Placement in other fashions can still provide requisite notice provided that
the notice is ‘‘permanently legible’” to the user under normal use.' Interest-
ingly, the four examples of placement do not necessarily meet the ‘‘perma-
nently legible’’ requirement. For example, a program once loaded in the com-
puter may be ‘‘signed-on’’ continuously, and its users would never see a notice
on the original permanent container of the program or displayed at sign-on, nor
would they necessarily see it on printouts. Thus, deviation from the four exam-
ples may be strictly construed.

On ROM s, the notice should be placed on the container of the chip.'” The
notice can also be placed inside the container on the chip itself (microscopi-
cally) and, if several chips together create the copyrighted work, it may be pru-
dent to place the notice both on all chips and on the circuit board near the chips.

For videogames, the notice of the audiovisual work in the game (a different
work than the program) can be placed with the title or credits of the work in its
‘“attract mode,’’ at the beginning or end of execution of the *‘play mode’’ oron
the housing or container of the game.'”

e. Useof ‘“(c)”

The 1976 Act provides for only three symbols for the copyright notice:
““‘copyright,”” ““Copr.”” and **©.””"* However, the forty-eight-character print
matrix of most word processors does not include the copyright symbol ©. Many

%46 Fed. Reg. 58307 (Dec. 1, 1982), which amends the existing regulation at 37 C.F.R.
§ 201.20. New § 201.20(g) gives four examples of placement on machire-readable works.

'“137 C.F.R. § 201.20(c)(1).

237 C.F.R. § 201.20(g)(4).

4237 C.F.R. § 201.20(h).

417 U.5.C. § 401(b).

394 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 394 19821983

authors now use ‘‘(c)’’ instead. The Copyright Office was asked to sanction
such usage, but refused, claiming no authority.'”

The main reason to use © is for international protection under the Universal
Copyright Convention. Although it is doubtful that ‘*(c)”’ will be found to meet
this requirement, at least an equitable or inquiry-notice argument is preserved
with *“(¢)”’ inlieu of nothing. However, the international requirement is only 2
substitute for formalities, such as registration. Primarily the only country
which requires formalities for which the c-in-a-circle is necessary is the United
States. Therefore, the problem of print matrix not having this symbol is mostly
a problem facing foreign, not American, authors. Still, the addition of *‘(c)”’
would be of great convenience.

TRADE SECRETS

Trade secret protection has been the primary method of protection of soft-
ware. Many articles or reports discussing the protection of software, including
this one, commence with the discussion of patent and copyright problems. The
majority of the literature in this area have concentrated on such problems. This
emphasis may give the misleading impression that it is for patent and copyright
systems that most program owners yearn. Instead, except in the now-
developing market for microcomputer software such as videogames, which are
distributed much as any consumer entertainment item has been distributed in
the past, most software has been well protected by restrictive trade secret li-
censes.

1. Subject Matter

Trade secrets have been defined to cover any confidential formula, pat-
tern, device or compilation of information which is used in one’s business and
which gives one an opportunity to obtain an advantage over competitors who
do not know or use it." Trade secret law operates differently from patent or
copyright law, and instead of encouraging disclosure and invention, its purpose
i to maintain standards of commercial ethics as well as to encourage the inven-
tion of competitive advantage."” The ethics in question oblige persons entering
into commercial relationships requiring confidentiality to respect the confiden-
tiality.

Trade secret protection in many ways is preferable to copyright or patent
protection. It has been suggested that it is easier to obtain a preliminary injunc-
tion, or at least that they are issued more frequently, in trade secret actions than
in patent or copyright actions.'** Also, the secrecy aids protection by preventing

'“’46 Fed. Reg. 58310 (Dec. 1, 1981).

1“SRESTATEMENT OF TORTS, § 757, Comment B.

"Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470 (1974).

'“*Bender, Trade Secret Software Protection, 3 CoMp. L. SERv. § 4-4, art. 2, p. 23,

SUMMER 1983 395

HeinOnline 23 Jurinetrics J. 395 19821983

access and the opportunity to copy. If the software involved is marketed in low
volumes and is expensive, infringement may be hard to discover and copyright
or other disclosure laws may be too risky to rely upon. Trade secret protection,
however, will not be available to a mass distributor of software, because the
sale of thousands of copies will negate a claim that the software is secret and
will make it impractical to create or enforce restrictive licenses with software
buyers.

a. Trade Secrets in Software

Software which contains novel elements, such as allowing new applica-
tions to be processed by computers, fairly clearly falls within the standard defi-
nition of a trade secret. Most software, however, does not contain novelty in
this sense, but simply is a different way of repeating the same standard account-
ing or other applications that comprise the vast bulk of work that computers do.
Nevertheless, if the software contains a little-known combination of well-
known features performing ordinary functions but which give a competitive
advantage, it is protectable.'”’

This combination of features may be unique in every complicated pro-
gram. Every programmer has pet quirks and every program reflects individual
decisions of structure, logic and coding. As a result, programs executing the
same transactions will vary in speed, accuracy, cost, flexibility, ease of use,
and, above all, commercial feasibility. These inherent differences by them-
selves have been found to create a ‘‘unique logic and coherence’” which is suf-
ficient to make programs protectable as trade secrets.'®

Arguably, the mere fact of having a working program, giving one a ‘‘head
start’’ over competitors working in the same area, is protectable. The head start
is created by the dedication of time and effort in the development and program-
ming of the software, even if the ideas and algorithms are commonplace. Pro-
grams are not easy to design and write. They also are not easy to debug and
make marketable. The very fact that a program works, or that certain design
steps were taken which led to blind alleys but later after the expenditure of
much time and effort led to a working model, may be protectable. Usually in-
junctions will issue for trade secrets for the length of time it is estimated to take
someone not having access to the trade secret to recreate the same program.”™
Thus, if an employee has had exposure to a project and has seen the blind al-
leys, and then leaves and pursues the same line of programming, avoiding the
blind alleys, it is conceivable an injunction would still issue to preclude the new
program from being marketed until as much time passes as it would have taken
someone to go down the blind alleys.

“*Telex v. IBM, 367 F. Supp. 258, 323 (N.D. Okla. 1973), aff 'd on trade secret issue, 510
F.2d 894 (10th Cir.), cen. dismissed, 423 U.S. 802 (1975).

1""’Com-Share, Inc. v. Computer Complex, Inc. 338 F. Supp. 1229 (E.D. Mich. 1971); see
Cybertek Computer Prod., Inc., v. Whitefield, 203 U.S.P.Q. 1020, 1022 (Cal. Super. Ct. 1977).

'E. g., Winston Research Corp. v. Minnesota Mining & Mfg., 350 F.2d 134, 142 (9th Cir.
1965); Analogic Corp. v. Data Translation, Inc., 358 N.E. 218, 804, 807 (Mass. 1976).

396 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 396 19821983

b. The Public Disclosure Problem

It is a common misunderstanding that trade secrets are easy to lose. Trade
secrets are protectable against tortious conduct. Even if the secret was not air-
tight, if the defendant acted badly in acquiring it, the defendant can lose.'” The
secrecy is lost either by widespread disclosure as opposed to technical slipups
or by not taking reasonable precautions to avoid disclosure.'” For example,
Data General Corporation at one time had distributed over eighty copies of a
maintenance manual which contained trade secrets regarding the construction
of its computers and which were seen or could have been seen by over 6,000
persons. It was able to enforce its trade secret rights despite the broad potential
dissemination because it had taken steps to preserve its rights, such as placing
proprietary legends on the documents and causing employees and customers to
agree to confidentiality restrictions.'*

Software must nevertheless be kept relatively secret to be protectable. The
software company should first institute procedures and take reasonable steps to
protect the secrets at the site of creation and marketing.'” Standard procedures
would include restrictive licenses with users; nondisclosure agreements with
employees; proprietary and confidentiality legends on all materials embodying
the secrets; and restricted access to locations containing the materials or com-
puter systems containing the software, such as by locking doors and cabinets in
the evening, having a sign-in, sign-out procedure for the removal of any mate-
rials, escorting any guests when in the installation, and having password pro-
tection on the computer system.

In this regard, employee nondisclosure agreements can be especially help-
ful to prevent the theft of source code and other source materials. They may
also create rights against the theft of information which falls short of being a
trade secret.” They can be coupled with a covenant not to compete in many
states, notably not including California.’” If a nondisclosure agreement is not
strictly with an employee but with a consultant or independent software house,
it should provide that the software being developed is a ‘‘work made for hire’’
under Section 201(b) of the 1976 Copyright Act. Otherwise, the copyright
might be owned by the developer. To transfer it would require a written instru-
ment which should be registered as suggested by Section 205. Also, the trans-
fer is reclaimable after thirty-five years pursuant to Section 203.

'2R. Milgrim, TRADE SECRETs § 7.08[2].

'}Id; See Motorola, Inc. v. Fairchild Camera and Instrument Corp., 366 F. Supp. 1173, 1186
(D. Ariz. 1973) (no trade secrets when company gave guided tours through sensitive areas without
restrictions).

**Data General Corp. v. Digital Computer Controls, Inc., 357 A.2d 105, 108, 110-11 (Del.
Ch. 1975).

"Motorola, Inc. v. Fairchild Camera and Instrument Corp., 366 F. Supp. 1173, 1186 (D.
Ariz. 1973) (no trade secrets when company gave guided tours through sensitive areas without
restrictions).

"**R. MiLGRM, TRADE SECRETS § 3.05[1][a].

*'CaLir. Bus. & ProF. CoDE § 16600.

SUMMER 1983 397

HeinOnline 23 Jurinetrics J. 397 19821983

Disclosure to nonemployees is permissible pursuant to a confidentiality re-
lationship, whether explicitly made confidential by contract or impliedly made
confidential by the circumstance of the relationship."* The party learning of the
trade secret pursuant to the confidential relationship has an obligation not to
disclose the secret. Rather than rely upon implied rights, software houses
should execute restrictive licenses with users, specifying restrictions which
perfect trade secret rights. This procedure is useful, and perhaps essential, to
create trade secret rights: the fact that you protect something indicates its im-
portance, and one way of creating trade secret protection is to act as if what is
being protected is protectable. Common restrictions include a statement that
the software is held in trust and is to be kept confidential; limiting access to it on
a need-to-know basis; agreeing to take reasonable steps to prevent unauthor-
ized use, reproduction transfer, or disclosure of it; stating that the software re-
mains the licensor’s property; requiring an acknowledgment that the software
is or contains trade secrets of the licensor; restricting use to only one computer
at a time; requiring all copies to contain the proper proprietary notices and leg-
ends; requiring return of all materials and destruction of all computer records
when the license is terminated; and being able to terminate the license for any
default of the licensee.

In most software licensing arrangements, the party will have access to the
materials containing the trade secret (the software) but will not actually learn of
any of the trade secrets. Instead, the obligation will be not to attempt to learn
the trade secrets. This differentiates software licenses from standard trade se-
cret licenses. Usually trade secret licensing involves the passage of know-how
for the creation of a manufacturing process, and inherent in that transfer is the
disclosure of the trade secret. Because the person learning of the trade secret
may be concerned that it really is not a secret, standard trade secret licenses
usually contain extensive exceptions for information in the public domain. In
the software context, with respect to the software itself, unless the source code
is supplied, these exceptions are not applicable. The user is not supposed to
have any knowledge of the trade secret information and would be largely un-
able to determine whether or not the information is in the public domain. How-
ever, many trade secret licenses purport to cover manuals and other documen-
tation in addition to the software, and with respect to such manuals and
documents, the standard exceptions for public domain information are more
appropriate.

c. Copyright Compared

Copyright protects the specific logic and design of the program. Trade se-
cret law protects the unique logic and coherence of the program as well as the
underlying programming techniques, routines and algorithms of the program,
the input and output formats of the program and the ways in which the program

**Data General Corp. v. Digital Computer Controls, Inc., 357 A.2d 105, 110-11 (Del. Ch.
1975).

398 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 398 19821983

interfaces with other parts of the computer or the surrounding environment.
The fundamental advantage of trade secret law is that it protects more than the
logic and design of the program itself.

Even with respect to the logic and design of the program, trade secret law
has an advantage over copyright. The test for infringement is different; theoret-
ically, in a trade secret case, even if source code is modified to look not at all
‘‘substantially similar’’ it could still be protectable. Trade secret law would
still apply despite extensive changes for any one of the main reasons for its
applicability to software. The novel ideas in the original source code may not
have been changed; a particular advantageous combination of features which
made the original program marketable may have been appropriated; the
‘‘unique logic and coherence’’ of the original software may still be for the most
part retained; and, fundamentally, the head start of the original owner has prob-
ably been damaged since it would undoubtedly take the infringer less time to do
the changes than it would have taken the infringer independently to develop the
software. ,

Over time, the advantage of using trade secret law to protect the program
itself may become less apparent. Often the proof in such trade secret cases will
be similar to that in copyright cases and will revolve around certain ‘‘finger-
prints’’ in the original source code (such as the programmer’s initials or a pro-
grammer’s pattern of misspelling) which by oversight reappear in the changed
version.'” In addition, the common law development of software copyrights
may extend protection beyond that normally given copyrighted expression, and
eventually copyright protection may be found to extend almost as far as would
trade secret protection.

Even then, trade secret protection will still retain certain advantages. It can
inhibit (by restrictive licenses) public disclosure of the software and thus limit
the number of persons who might be possible infringers and lessen the likeli-
hood of infringement. It is also applied fairly uniformly around the country and
has less unresolved issues currently than copyright has respecting software,
including clear applicability to object code; coverage of intermediate materi-
als, such as flow charts, ROMs, chip masks, and diagrammatic source materi-
als; and (as discussed below) the availability of international coverage.

Trade secret law has been criticized by advocates of copyright or patent
schemes for software on the grounds that it is easy to lose (since once the secret
is no longer a secret, it cannot be protected as a trade secret). This assertion is
moderately misleading, for technical disclosures of trade secrets have not been
sufficient to relinquish the secrets to the public domain and diligent software
vendors should be able to put a cap on such a release by vigorous litigation.'®

Trade secret law, however, gives less protection than copyrights or patents

'**In Structural Dynamics Corp. v. Engineering Mechanics Mechanisms Research Corp., 401
F. Supp. 1103, 1117 (E. D. Mich. 1979) and in Williams Elec., Inc. v. Artic Int’l, Inc., 685 F.2d
870 (3d Cir., Aug. 3, 1982), copying was shown by such ‘‘fingerprints.’’

'R, MiLGRIM, TRADE SECRETS, § 7.08[2].

SUMMER 1983 399

HeinOnline 23 Jurinetrics J. 399 19821983

against third parties. The third party would have to obtain the trade secret
wrongfully through a licensee or employee (in which case that licensee or em-
ployee could be sued), or the third party would have to have had knowledge or
reason to believe that it was obtaining a trade secret (in which case the third
party could be sued)."®' Still, the problem of third parties may be more theoreti-
cal than actual. The trade secret owner is most concerned not when it loses
royalties because of licensees cheating on a license or giving copies to friends,
but when a concerted effort is made to create a competing business. In that cir-
cumstance, it is generally essential for the competing business to have access to
the source materials. Normally, this cannot be done without violation of trade
secret law because a trade secret owner generally only markets object code.

2. The Copyright Registration Problem

The reliance on trade secret protection in addition to copyright law may not
be effective because of problems caused by copyright registration. Under the
1976 Act, registration is not required for copyright protection but it does have
certain advantages. A Certificate of Registration is prima facie evidence of
ownership and validity of the copyright.'” Registration is a prerequisite to
bringing an infringement action.'® Registration entitles a copyright owner to
statutory damages and attorneys’ fees against infringements occurring after
registration.'” Registration can also cure defective notice and avoid release of a
copyrighted work into the public domain.'"*

a. Disclosure of Trade Secrets

Registration, however, may result in disclosure of trade secrets. Nor-
mally, registered works are deposited both in the Library of Congress and in
the Copyright Office, and in both cases are available for public inspection (al-
though copyrighted works inspected at the Copyright Office may not be copied
without permission of the copyright owner)."® The disclosure of trade secrets
can result from several situations.

Public inspection could result in disclosure of trade secrets. As a practical
matter it may be difficult to inspect the program without copying it, particularly
since it is not allowable that a physical copy be made and taken for more careful
scrutiny outside the Library of Congress or the Copyright Office. Still, allow-
ing such inspection makes protection of trade secrets questionable. Only

1814, , § 5.04. See Computer Printing Systems, Inc. v. Lewis, 212 U.S.P.Q. 626 (Pa. Super.
Ct. 1980) (licensee ‘‘innocently’’ received source code from disloyal officer of licensor but was
nevertheless liable for unjust enrichment in using the source code for creating competing soft-
ware).

16217 U.S.C. § 410.

1917 U.S.C. §411.

817 U.S.C. § 412.

19317 U.S.C. § 405-46.

1617 U.S.C. § 407-08. The Library of Congress requirements are identical to the Copyright
Office rules; see 37 C.F.R. 202.19(d)(1).

400 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 400 19821983

certain parts of the work may need to be seen to ascertain the critical secrets;
more to the point, in convincing a judge to issue a preliminary injunction, the
fact that software is available for inspection may make later success on the mer-
its questionable unless it was not in fact inspected or if no secrets could be re-
vealed when it was inspected.'”

The very deposit of the work, particularly with the Library of Congress
where it will be indexed and potentially exposed to widespread inspection, is
hardly an act which retains the ‘‘secrecy’’ of a trade secret. Deposit may be
deemed as a matter of law to be an act inconsistent with treating the work as
secret. Trade secret protection would then not exist even if the trade secret in-
fringer in a particular case did not in fact attempt to inspect the work where
deposited.

Even if a registered copy of software is still somehow “‘secret’’ or if a sys-
tem of registration in secrecy is created (as discussed below), its secrecy con-
ceivably could later be lost by release due to a Freedom of Information Act
(FOIA) request. The Copyright Office is subject to the FOIA, at least to the
extent of **actions taken by the Register of Copyrights. . . .””'* Arguably, the
Register in accepting deposit of registered works is taking an action which falls
within the scope of the FOIA. Since deposited works are open for public in-
spection regardless of the FOIA, this problem is largely academic. It is not sur-
prising that the regulations of the Copyright Office implementing the FOIA
currently cover only the records respecting deposited works, but not the works
themselves.'” Now that certain tests such as the SAT are allowed secure de-
posit, this previously academic issue may soon arise.'”

The FOIA provides for several exemptions which may be applicable. The
FOIA allows an agency not to disclose a ‘‘trade secret.””"”" It is not yet clear,
however, how the Copyright Office would interpret what the FOIA means by
trade secret. The Copyright Office would make its own decision as to what
constitutes a trade secret.”” The Copyright Office can consider certain public
interest issues, such as whether retaining the secrecy may harm the public;' ™

'*7Cp. Franke v. Wiltscheck, 209 F.2d 493 (2d Cir. 1953) with Carson Prod. Co. v. Califano,
594 F.2d 453 (5th Cir. 1979).

1817 U.S.C. § 701(d). The extent of the Copyright Office’s obligations under FOIA are as
specified under § 701(d). Without it, the Copyright Office would be exempt since it is a part of the
Library of Congress, which is part Congress, and ‘‘Congress”’ is exempt from the FOIA under 5
U.S.C. § 551(1)(A). See Reporters Comm. for Freedom of Press v. Vance, 442 F. Supp. 383, 385
n.5 (D.D.C. 1977), aff’'d, 589 F.2d 1116 D.C. Cir. 1978), aff'd in part rev'd in part sub nom.
Kissi{‘lgger v. Reporter’s Comm. for Freedom of Press, 445 U.S. 136 (1980).

137 C.F.R. § 203 .4.

¢ issue was not raised in Narional Conf. of Bar Examiners v. Multistate Legal Studies, 692
F.2d 478 (7th Cir., Nov. 2, 1982) (secure deposit of Multistate Bar Exam). Related issues under a
state equivalent to the FOIA were raised in Associates of Am. Med. Coll. v. Carey, 482 F. Supp.
1358 (N.D.N.Y. 1980) (*‘Truth in Testing’’ release of MCAT).

"5 U.S.C. § 552(b)(4).

'E T.C. v. Owens-Corning Fiberglass Corp. 626 F.2d 966 (D.C. Cir. 1980).

'"In making the decision to disclose or withhold a trade secret, the agency can legitimately
consider factors such as whether disclosure would significantly aid the agency in performing its

SUMMER 1983 401

HeinOnline 23 Jurinetrics J. 401 19821983

since the Copyright Office has generally been opposed to the registration of
software in secret, a program owner might be ill-advised to risk the Copyright
Office’s weighing of such factors. The FOIA also prevents disclosure of items
*‘specifically exempted from disclosure by statute’’ (emphasis added).'™ The
1976 Copyright Act has been interpreted to allow the Copyright Office to issue
regulations restricting disclosure.™ To be effective against the FOIA, how-
ever, the Copyright Act may need to be amended to provide clear statutory au-
thority."™

Ironically, the software owner’s best protection against the FOIA is the
owner’s statutory copyright itself. The Copyright Office is arguably statutorily
precluded from producing a copy in compliance with an FOIA request without
permission of the copyright owner (assuming such copying would not be con-
sidered fair use).'”

b. Techniques to Retain Secrecy

Prudent advice is to avoid the possibility of losing trade secret protection
by not registering software if that can be avoided. A system of registration of
software in secret, not subject to the FOILA, would be very helpful to the soft-
ware industry. In the meantime, a variety of techniques have been proposed or
are available to retain secrecy.

IDENTIFYING MATERIALS

The most commonly used method to retain secrecy is to deposit *‘identify-
ing materials’’ instead of the complete program. By a specific regulation relat-
ing to software, the Copyright Office exempts from deposit in the Library of
Congress computer programs published in the United States in machine-
readable form only."” This regulation covers a substantial number of software
houses which only market their software as object code in binary form, al-
though many of these houses would take the position that they have not *‘pub-
lished’’ their works and perhaps do not fall precisely within the regulation.

The regulation also exempts deposit of the complete program in the Copy-
right Office, and instead requires deposit of ‘‘identifying materials’’ consisting

functions, the extent it would cause harm to its procedures and to the public, and alternatives which
would serve the public interest. Doctors Hospital of Sarasota, Inc. v. Califano, 455 F. Supp. 476
(1978).

15 U.8.C. § 552(b)(3).

""*National Conf. of Bar Examiners v. Multistate Legal Studies, 692 F.2d 478 (7th Cir., Nov.
2, 1982) (finding secure deposit regulation for the *‘Multistate Bar Examination’” consistent with
the Copyright Act under 17 U.S.C. § 408(c)).

T®E.g., Irons & Sears v. Dann, 606 F.2d 1215 (D.C.Cir), cert. denied, 444 U.S. 1075 (1975)
(FOIA request for undisclosed, abandoned patent applications denied due to specific exemption).

' Cp. 17 U.S.C. § 706(b) with Weisberg v. Department of Justice, 631 F.2d 824 (D.C. Cir.
1980) (FOIA request for copyrighted photographs of Life magazine held by FBI not granted be-
cause the copyright owner had not been joined as defending or given consent). Butsee 37 C.F.R. §
203.5(a), allowing a copy to be made of materials requested under the FOIA.

%37 C.F.R. § 202.19(c)(5) exempts from the Library of Congress’ deposit requirements
computer programs published in the United States in machine-readable form only, from which the
work cannot ordinarily be visually perceived except with the aid of a machine or device.

402 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 402 19821983

of the first and last twenty-five pages of the program and the page containing
the copyright notice. The materials deposited must be in human-perceptible
form.'” Typically, the first and last twenty-five pages of the source code would
be reorganized before deposit such that these pages contain only irrelevant
““filler’’ or nonsensitive information so as not to compromise trade secrets.
Some programs are too short or have insufficient modularity to be reorganized,
however. Also, blatant reorganization may allow an infringer to question the
validity of registration, possibly delaying issuance of a preliminary injunction.

The Copyright Office may show flexibility on the issue of deposit of identi-
fying materials, and may accept other than the first and last twenty-five pages,
such as every other page or some other structure which indicates authorship but
which does not reveal sensitive matters. Also, conceivably a program could be
identified by a videotape of its output. In such a registration, however, the
copyright owner should make it very clear that the underlying program is being
registered, not the audiovisual work represented by the output.

DEPOSIT OBJECT CODE

A second approach to retain secrecy is to deposit object code rather than
source code. Theoretically, trade secrets are then not being compromised.
Many of the trade secrets may not be ascertainable from object code but would
require access to the source code. The object code cannot be copied out of the
Copyright Office or decompiled. In addition, if supplied in binary form, not a
printout, and in a format for which no translating machine exists at the Copy-
right Office, it could not even be perceived by any would-be inspector.

The main impediment to this approach is the Copyright Office, which
would rather have source code. It claims that it is difficult to determine author-
ship from binary form or object code.' This view of the Copyright Office is
not consistent with its acceptance of foreign language works, encrypted works,
or works in non-Latin script in the sense that it is no easier to determine author-
ship from them than it is from object code. Still, the 1976 Act requires that the
“‘best edition’’ of the work be deposited,"™ which the Copyright Office inter-
prets to mean the best representation of authorship: a source code printout.
Even then, if object code is determined not to be a *‘copy’’ but a ‘‘derivative
work’’ of source code, it needs to be separately registered. Object code is also
the version that is most often being distributed and the one that needs that pro-
tection from copiers.

The Copyright Office will accept object code deposits, but only after send-
ing a “‘rule-of-doubt’’ letter.'” The rule of doubt is the policy of resolving

""The program must be ‘‘reproduced in a form visually perceptible without the aid of a ma-
chine or device.”’ 37 C.F.R. § 202.20(c)(2)(vii).

%1981 CLA Transcript at 196.

8117 U.S.C.. § 408(b)(2).

"®The letter is designated as GLR-70. The doubt stated is not that the program is not within the
subject matter of copyright, but that since the Copyright Office examiners are not expert computer
programmers, they are unable to determine that the object code deposited actually contains copy-
rightable authorship. 1981 CLA Transcript at 129. The letter reads in part as follows:

SUMMER 1983 403

HeinOnline 23 Jurinetrics J. 403 19821983

doubtful issues in favor of registration. The effect of this rule is not clear. The
rule of doubt may be found to be outside the Copyright Office’s discretion.
Section 410 gives the Office only two options: to accept or reject registration. If
the rule of doubt is ulrra vires, it may be ignored by a court—or it may be found
to constitute a rejection of registration, possibly seriously delaying or damag-
ing a software owner’s action for infringement. Even if it does not remove the
advantages of registration in establishing a prima facie case, it may make rebut-
tal of that case much easier—which makes it more difficult to obtain prelimi-
nary injunctions in copyright infringement actions.'®

SPECIAL RELIEF

A third route for retaining secrecy is to apply for ‘‘special relief”’ under the
Copyright Office regulations.'® This means that the source code would be in-
spected for evidence of authorship and then returned except for minimal identi-
fying portions. The Copyright Office has used it for such tests as the SAT, but
does not officially sanction this approach for software, except on an ad hoc
basis."™ For a particularly sensitive program, it may be prudent to apply for
special relief before relying upon depositing object code and being subject to
the rule of doubt or depositing identifying materials and having to restructure
the program. The application for relief may need to be creative; the Copyright
Office will want to retain some type of identifying materials. One idea: photo-
graph source code through diagonal slits, so only slices of code are visible; the
original code can still be identified from these slits, but no intelligence or se-
crets would be revealed.

TRADE SECRET ACT
Another approach which has been suggested is based upon the Trade Se-

cret Act, ' which provides that a public employee who discloses trade secrets
entrusted with his governmental agency can be fined and dismissed. While

Dear Remitter:

We are delaying registration of the claim to copyright in this work because the deposit consists
of a printout of the computer program in object code or other non-source code format.

The Copyright Office generally requires the best representation of the authorship for which
copyright is being claimed. Because Copyright Examiners are not skilled computer programumers,
they have extreme difficulty in examining computer programs in other than source code format to
determine whether the deposit contains copyrightable authorship. . . .

The Office believes that the best representation of the authorship in a computer program is a
printout of the program in source code format. Where, however, the applicant is unable or unwill-
ing to deposit a printout in source format, we will proceed with registration under our “‘rule of
doubt,’’ upon receipt of a letter from the applicant assuring us that the work as deposited [i.e., in
nonsource code format] contains copyrightable authorship.

31981 CLA Transcript at 196-97.

%37 C.F.R. § 202.20 (d); Cp. 37 C.F.R. § 202.19(e)(1), regarding deposit in the Library of
Congress.

837 C.F.R. § 202.20(c)(vi). A request for treatment of software like secure tests was denied.
43 Fed. Reg. 772 (Jun. 4, 1978).

%18 U.S.C. § 1905.

404 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 404 19821983

there is no private cause of action for this, or for an injunction based upon it, the
action of an agency on disclosing trade secrets of a business is reviewable under
the Administrative Procedures Act.'” If one is denied special relief, one could
then seek review under the Administrative Procedures Act for violation of the
Trade Secret Act. The denial should then be sanctioned under the Trade Secret
Actonly if it is “authorized by law.”’'* Regulations can supply this authority if
substantive and rooted in a grant of such power by Congress.'® Section 706 of
the 1976 Act, which provides that deposited copyrighted works will be avail-
able for inspection, may provide such authorization by law. This authorization
is not clear, however, because there has been no indication of particular consid-
eration of trade secret problems in Section 706 and because Section 706(b) al-
lows the Copyright Office to make restrictions on disclosure at its discretion.

SECTION 411(a)

One other approach to retain secrecy has been suggested in connection
with applications for special relief.'” It is based upon Section 411(a) of the 1976
Act, which allows an applicant refused registration after complying with all
formalities to institute an infringement action. (Normally, registration is a pre-
requisite to instituting an action.) The approach is to apply for registration with
special relief, and, if special relief is refused, gain return of all deposits. Se-
crecy is retained. When an infringement action is later instituted, claim juris-
diction despite lack of registration based upon Section 411(a). Section 411(a),
however, appears intended to prevent subject matter rejection as opposed to
formalistic rejection or rejections of collateral requests, such as for special re-
lief.”" Arguably, the original application was not in proper form and the rejec-
tion was not the type for which Section 411 provides relief.

c. Policy Considerations

It is puzzling why the Copyright Office has refused to accept programs as
secret or to grant special relief. It may believe that supplying identifying mate-
rials is a sufficient compromise, although many programs cannot be restruc-
tured to avoid disclosing sensitive parts in the first and last twenty-five pages,
and many programs are not distributed either by publication or in machine-
readable form only. Perhaps it wants copyright alone to protect software, and
does not want to encourage trade secret law, patent law or a mixture of various.
protective schemes. It may interpret the 1976 Act as requiring at least minimal

'¥ Admin. Proc. Act § 10(e)(2)(A). See Chrysler Corp. v. Brown, 441 U.S, 281 (1979) (re-
viewable based upon Trade Secret Act); Burroughs Corp. v. Brown, 501 F. Supp. 375, 383 (E.D.
Va. 1980), rev'd on other grounds, 654 F.2d 299 (4th Cir. 1981) (reviewable based upon FOIA
excmsations).

188 I

189See Chrysler Corp. v. Brown, 441 U.S. 281 (1979) (must show a nexus between the regula-
tions and some delegation of the requisite legislative authority by Congress showing a consider-
ation of trade secret concerns).

'%1981 CLA Transcript at 91-92.

""!Cf. International Trade Mgmt. v. U.S., 553 F.2d 402 (Ct. Cl., Dec. 17, 1982).

SUMMER 1983 405

HeinOnline 23 Jurinetrics J. 405 19821983

identifying materials, although Section 408(c) gives it broad discretion to ex-
empt works from deposit requirements.

Another reason may be the conflicting policies behind copyright protec-
tion. Traditionally, the monopoly of copyright protection was provided to en-
courage public disclosure. The Copyright Office may still agree. The 1976
Act, however, changes the thrust of copyright from publication to creation, and
it sanctions federal protection of unpublished works. The 1976 Act also en-
courages registration and archival storage. These goals can be met without dis-
closure. Indeed, the present structure discourages registration, thereby dis-
couraging both archival storage and disclosure.

Perhaps the fundamental reason for the Copyright Office to concentrate on
disclosure is the political and economic situation facing the Copyright Office
and Congress. Disclosure systems benefit large vendors (which have political
clout) because of their ability to enforce their rights and to take advantage of
disclosure. Registration inhibits start-up companies (which lack political clout)
because of their inability to enforce their rights and the high risk that disclosure
will benefit competitors with a much more substantial market position and
monetary resources.

d. Analysis

Rather than ponder the ways to retain registration secrecy, a more impor-
tant question is: Why require registration of programs at all? It is specious to
view registration as facilitating academic development of the “‘art’’ of pro-
gramming. Most programs are mundane. Most developments will be kept se-
cret, for commercial advantage. At present only identifying materials need to
be registered and they can be fixed so as not to show any advances in the art.
Also, it is fiction to believe that persons operating in the software industry peri-
odically review copyrighted works deposited in the Copyright Office through
public inspection in order to learn the new techniques. Published programs,
unlike books, are not distributed to be read but to be used.

Registration simply fills warehouses. Commercial programs are contin-
ually revised, and requiring all revisions or all major revisions to be deposited
serves little purpose. Proof considerations—having a copy which can be pre-
sented at a trial to prove which copy was copyrighted—could be important, but
has not been expressed as a major reason for deposit. Independent proof copies
could be acquired, if necessary, from other customers of the copyright owner.
Also, these considerations can be met while still having a deposit in secret.
Still, unless every new release of software is deposited, the infringed version
may not look substantially like the registered version; instead of facilitating
proof, deposited copies may impede such proof.

Therefore, it would be better to have no deposit requirement at all. Regis-
tration could be performed by reviewing the submitted work for authorship and
returning it, or, at worst, accepting it in secrecy, subject to the future rights of
defendants.

406 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 406 19821983

3. The Copyright Preemption Problem

a. Federal Preemption

Section 301 of the 1976 Act provides that the Act preempts certain types of
state law. The 1976 Act extended federal protection to unpublished as well as
published works, and was intended to preempt common law copyright. Com-
mon law copyright protected personal papers much as a trade secret law pro-
tects business secrets.'” Common law copyright gave persons the right to keep
private papers from being published if they were appropriated through tortious
conduct, such as breaking and entering into a house or other private areas, or
breaching a confidentiality relationship.'” The language of Section 301 does
not directly mention trade secret law or common law copyright, but instead
calls for preemption of state law remedies which are ‘‘equivalent’’ to exclusive
rights given to the copyright holder and which protect copyrightable subject
matter.

Legislative history is favorable to the position that trade secret law has not
been preempted. The House, but not the Senate, addressed the issue in the 1980
amendments to the Copyright Act, and in its Report the House concluded that
no preemption should occur.™ On the floor of the House at the time of the pas-
sage of the 1976 Act, however, an extensive list of types of state laws not to be
preempted by Section 301 was removed from the Act by voice vote. This re-
moval was apparently due to the overbreadth and vagueness of one of the listed
state laws, i.e., “‘misappropriation.”’'” ‘“Trade secret law’’ was not in the [ist.
This may imply that it was meant to be preempted. This may also imply the
opposite. Although it is similar to some of those laws which were removed, it
protects different rights than misappropriation. Therefore, the removal of the
list does not speak either way as to preemption of trade secret laws.

The basic argument as to why trade secret law should not be considered
preempted by the 1976 Act is that trade secret law protects different subject

121 M. NIMMER, COPYRIGHT § 2.02.

d,

'“H.R. ReP. No. 96-1307, 96th Cong., 2d Sess. 1 at 23-24, reprinted in [1980] U.S. CobE
CoNG. & AD. NEws 6460 at 6482-83. The CONTU Report at 18 also concluded (without analysis)
that § 301 did not preempt trade secret law.

1950riginally, § 301(b)(3) would have had a laundry list of state rights which would not have
been preempted including ‘‘breaches of contract, breaches of trust, invasion of privacy, defama-
tion and deceptive practices, such as passing off and false representation.’” Section 301(b)(3),
H.R. 4347, 89th Cong., 2d Sess. (1966). Each of these rights protects rights other than mere copy-
ing and arguably none of them concern rights equivalent to copyright. The bill sent to the floor of
the House contained this laundry list with the addition of some others, including one that resulted in
considerable controversy: ‘‘misappropriation not equivalent to any of such exclusive rights.”’ Var-
ious parties, including the Department of Justice, objected to the exemption of ‘‘misappropria-
tion’’ on the grounds that ‘ ‘misappropriation’’ was so vague and uncertain that it might effectively
nullify preemption. Letter from Michael M. Uhlmann, Assistant Attorney General for Legislative
Affairs, Department of Justice, to Congressman Robert Kastenmeier (July 27, 1976). As aresult of
the opposition against the word misappropriation, the entire laundry list was scratched. 122 CoNG.
Rec. H32015 (Sept. 22, 1976).

SUMMER 1983 407

HeinOnline 23 Jurinetrics J. 407 19821983

matter than does copyright law. Copyright protects expression and not ideas;
trade secret law protects ideas regardless of the form of expression."” For ex-
ample, if Coca-Cola’s famous formula were written down, assuming that this
writing would then be copyrightable, would it no longer be protectable as a
trade secret?

Still, there is overlap between the expression and ideas in software, and
arguably trade secret protection of software is narrowed by Section 301. Trade
secret law may no longer protect any copyrightable expression which may exist
in software. The expression in software is its specific logic and design; trade
secret protection extends to the ‘‘unique engineering, logic and coherence’’ of
a program'” —the same subject matter. Therefore, trade secret protection may
be restricted to protecting the underlying algorithms, ideas and programming
techniques in software, or the input and output formats and interfaces of soft-
ware, matters not protected by copyright, and may be preempted from protect-
ing the program itself. To again use the Coca-Cola example, if the secret for-
mula were implemented by programs, trade secret law would still protect the
formula but would not apply to the unique way the programs were designed and
coded.

Even the ‘‘unique logic and coherence’’ of a program could still be pro-
tected by trade secret law if the rights granted by trade secret law are not
‘‘equivalent’’ to the exclusive rights given to a copyright holder. This is the
second essential part of the preemption test under Section 301. Trade secret
rights may not be equivalent because copyright restricts unauthorized copying
while trade secret law restricts unauthorized use or disclosure.'” This distinc-
tion may not apply to programs, however, since new Section 117 discusses its
use. Arguably, Congress believed that ‘‘equivalent rights’’ included use of
software, and felt it had to make an express exception to those equivalent exclu-
sive rights. Still, trade secret law protects more than merely use. It gives reme-
dies for tortious invasion of privacy and breach of trust or breach of confi-
dence, different rights than copying or use. Avoiding preemption may require
that the infringement actions be framed in terms of these other remedies, and as
a result this may create a narrower trade secret law than currently is accepted in
most states.””

Even if Section 301 preempts state trade secret law, there may be constitu-

'%No preemption: Warrington Assoc. v. Real-Time Eng. Sys., 522 F. Supp. 367, (N.D. IL.
1981); Bromhall v. Rorvik, 478 F. Supp. 361 (E.D. Pa. 1979); Technicon Medical Info. Sys.
Corp. v. Green Bay Packaging, Inc., 1982 Copr. L. Dec. { 25, 438 (7th Cir., Aug. 30, 1982)
{dictum); M. Bryce & Assoc., Inc. v. Gladstone, 107 Wis. 2d 241, 319 N.W.2d 907 (Wis. App.
1982) (dictum).

¥1Com-Share, Inc. v. Computer Complex, Inc., 338 F. Supp. 1229, 1234 (E.D. Mich. 1971).

'¥No preemption: Warrington Assoc. v. Real-Time Eng. Sys., 522 F. Supp. 367, (N.D. Ill.
1981); M. Bryce & Assoc., Inc. v. Gladstone, 107 Wis.2d 241, 319 N.W.2d 907 (Wis. App. 1982)
{dictum).

"Recent case concurs—and found preemption where claims of infringement were not framed
as above. Avco Corp. v. Precision Air Parts, 210 U.S.P.Q. 894 (M.D. Ala. 1980), aff"d on differ-
ent grounds, 676 F.2d 494 (11th Cir. 1982).

408 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 408 19821983

tional limits on the extent of preemption. Binary form may not be a *‘writing”’
of an ‘‘author’’ under the Patent and Copyright Clause. If so, the authority for
copyright for binary form may derive from the Commerce Clause and be lim-
ited accordingly. The Commerce Clause has been given very broad applicabil-
ity, however, and would probably cover all procurements of software except
perhaps software developed internally and not marketed in interstate com-
merce. This would not necessarily be a bad result. If trade secret law were held
still to apply to enforce employee confidentiality agreements with respect to the
development of software, then software houses marketing complex and sensi-
tive software could protect their source materials by such agreements under
trade secret law and could market and protect binary form by copyright.

Answering the question of whether Section 301 preempts trade secret law
may not be conclusive. Traditional preemption doctrines may be applied by
courts to provide for preemption beyond or different from that specified in Sec-
tion 301. Also, Section 301 may not apply to software for cases arising between
1978 and 1980. Former Section 117 continued the law applicable to software in
effect before the 1976 Act took effect, until CONTU had concluded its investi-
gations. Arguably, the standards of Section 301 did not control respecting pre-
emption until December 12, 1980, when Section 117 was amended.

b. Election of Protection

Sometimes the preemption issue is confused with election of remedies.™
Defendants recently have argued that a copyright notice on a program is an
admission of publication.” Publication for copyright purposes, however, is
not necessarily the same as disclosure for trade secret purposes. Defendants
have also argued that use of a copyright notice may give rise to an estoppel, that
is, use of one precludes reliance upon the other. In Technicon Medical Informa-
tions Systems Corp. v. Green Bay Packaging, Inc.,” this argument was inten-
sively considered and rejected. Fundamentally, this argument is archaic be-
cause the 1976 Act recognizes copyright in unpublished works. No longer must
one elect copyright protection by the act of publication; it attaches (whether one
wishes it or not) at the moment of creation of a work in a nontransient form.

c. Analysis

The policy question is whether copyright law or any other regulatory sys-
tem protecting software should supplant trade secret protection. The Supreme
Court has recently compared the policies of federal patent law with trade secret
law and found that in those contexts preemption was not appropriate.” From a

0. g., BPI Systems, Inc. v. Leith, 532 F. Supp. 208 (W.D. Tex. 1981) (trade secret law not
preempted since *‘the material improperly used was not copyrighted’’).

*'E.g., Management Science Am., Inc. v. Cyborg Sys., Inc., 6 CoMp. L. SERv. REP. 921
(N.D. Ill. 1978) (1909 Act).

21982 Copr. L. Dec. § 25,438 (7th Cir., Aug. 30, 1982) (no estoppel).

WK ewanee Oil Co. v. Bicron Corp., 416 U.S. 470 (1974) (federal patent law does not pre-
empt state trade secret law); Aronson v. Quick Point Pencil Co., 440 U.S. 257 (1979) (trade secret
license relating to a mechanical structure was upheld).

SUMMER 1983 409

HeinOnline 23 Jurinetrics J. 409 19821983

narrower point of view for this industry, trade secret law should not be pre-
empted because it would change the marketing practices and assumptions of
software houses.

The dilemma facing software houses is as follows: An employee who
steals source code can modify it so that it is not recognizable. This makes it
unlikely that the software house could prove a copyright violation because the
source code would no longer look substantially similar. Therefore, the best
protection and the traditional protection is to rely upon employee nondisclosure
agreements.

If a licensee is given source code, the same problem could occur. With
respect to many forms of software, it is possible to market object code, and
copyright should work in this context since it is very hard to modify object code
or to make it look other than substantially similar. However, if object code is
marketed without trade secret protection, that in itself may comprise trade se-
cret protection; in addition certain copyright procedures must be followed, the
most important of which is to register the program prior to suing for infringe-
ment. Registration, however, as discussed above, may result in the disclosure
of the source code version of the program.™ This may cause loss of the use of
trade secret protection of the source code with respect to employees; it may also
enable competitors to inspect the registered version of the program and to copy
it in a manner which it is difficult for the software company to discover or to
prevent.

Further, if manuals are licensed with the subject code, the manuals and the
way in which the object code work may give clues to the licensee of how the
source code is structured. Copyright does not preclude use of this knowledge to
reverse engineer the program.”™ Trade secret protection of the manuals, the
object code, input forms, operating procedures, output and data sets created by
the program on the computer may preclude use of such clues.

Therefore, trade secret law should not be preempted. Nevertheless, the
dilemma of software houses can be solved even if trade secret law is partially
preempted as long as trade secret law still restricts disloyal employees and out-
side consultants who are provided with more than just a program and with man-
uals. Returning to the Coca-Cola example, it is those who are told the formula
who must be restricted, not those who are given programs which implement the
formula but from which the formula cannot be ascertained.” The programs can

%See Part 2 under ‘*Trade Secrets.”’

2gynercom Technology, Inc. v. University Computing Co., 462 F. Supp. 1003 (N.D. Tex.
1978).

Interestingly, copyright protection of binary form enhances trade secret protection of under-
lying algorithms. It is a violation of copyright to print out the code from binary form, or to decom-
pile it if it is object code. Therefore, it is legally impermissible to make binary form intelligible—
and therefore impermissible to attemnpt to reverse engineer the trade secrets which may be in binary
form. Thus, distribution of binary form under copyright licenses should not disclose trade sectets
in source or object code. For example, if the Coca-Cola formula is embodied in a machine which
mixes the necessary ingredients in the right combinations, and the machine contains a program in
binary form to do this, binary form which incorporates the trade secret formula but from which one

410 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 410 19821983

be adequately protected by copyright. Thus, partial preemption of trade secret
law as outlined above—of protecting the unique logic and design of programs
against copying or deriving related programs—will not significantly affect the
software industry. Software houses could still protect underlying formulas or
obtain relief against disloyal employees, since either the subject matter pro-
tected would not be copyrightable or the rights being protected would be other
than copying rights.

This argument still leaves software houses up in the air. How do they act
now to preserve their rights in light of preemption or election of remedies argu-
ments? Relying purely on trade secret protection may result in loss of protec-
tion due to the preemption of trade secret law and the resulting problem of not
having had a statutory notice for copyright protection. Placing a statutory no-
tice may result in the election of remedies. One answer is to place the words
‘‘an unpublished work’’ with the statutory notice and also to place a trade secret
legend on the software. The use of the phrase ‘‘an unpublished work’’ probably
avoids the problem of creating an admission of publication; the use of the statu-
tory notice avoids loss to the public domain in the event of preemption; and the
use of a trade secret legend argues against an election of protection.

OTHER PROTECTIVE SCHEMES
1. Technological

Inadequacy of legal methods has led to the use of technological self-help
techniques. Patent protection has been expensive and unreliable. Copyright
protection may not be sufficient and may not apply to all forms of programs.
Trade secret protection requires increased costs for internal security proce-
dures and marketing, as many trade secret licenses with users are negotiated,
and is potentially impermanent. Even if an enforceable method of protection is
discovered, detection of infringement is difficult. Enforcement is expensive
and there is always the risk of a capricious decision. Uncertainty in the relation
of copyright to trade secret law enhances this risk. Therefore, software houses
have searched for self-help remedies. Unfortunately, even self-help methods
often fail through the efforts of the idle minds of software hobbyists.

The major self-help mechanism is to distribute object code only. The ideas
in the source code are very difficult to discover from object code and as a practi-
cal matter it is not always feasible to reverse engineer the source code from the
object code. Wang, a word processing company, takes this method much fur-
ther than usual: it distributes only ROMs which are already in its machines.
Currently, one of the main limitations on this method is the comprehensive and
detailed operating manuals which often have to be provided with the object
code. These manuals are sometimes distributed without consideration of their
need to be protected and can provide the basis for reverse engineering.

could not legally ascertain the trade secret formula, in what sense is distributing the binary form
disclosing the trade secret?

SUMMER 1983 411

HeinOnline 23 Jurinetrics J. 411 19821983

The second major self-help technique is to rely upon economic leverage. If
software is complicated and not fully debugged, customers will eagerly pay for
maintenance and will be loathe to violate a license or use a pirated copy and lose
access to the maintenance. Indeed, one of the major ways in which software
houses discover piracy is when an innocent acquirer of a pirated copy asks for
the most recent version of the software because of certain bugs the user has
discovered. In addition, software houses often offer updates or new releases to
their licensed customers. These updates not only contain corrections of errors
but also can contain improvements or changes to bring the software in con-
formity with changing laws or changing technology. Licensed customers can
often obtain the updates at a discount compared to acquiring a new license.

Another common self-help method is ‘‘fingerprinting.’’ Fingerprinting is
easy to implement and quite prudent in anticipation of litigation. Fingerprinting
consists of placing identifying items in the program, including dummy routines
with no useful purpose; unnecessary code, such as specifying a constant value
for a variable; contorted methods of coding, unlikely to be duplicated indepen-
dently; initials, names or other identifying symbols in the comments to the
code; insignificant mistakes; and a serial number for each copy of the software
to be able to trace the source of piracy.

A developing area of self-help is to create techniques which internally limit
the ability of a machine to copy the program. One method is for the program to
have a timer or otherwise to count the number of times it is operating. This can
be done by referring to the internal clock of a computer and checking a start
date with the then-current date, or it can be done by counting the number of
times a certain operation or combination of operations is executed. The pro-
gram then can be designed to self-destruct unless it receives certain code
words. A lawyer recommending this method be implemented should also con-
sider whether the user should be notified about this self-destruction capability,
to avoid a large claim for damages arising from unexpected early self-
destruction.

Another internal self-help method is to have the program check the serial
number of the computer or another hardware-dependent item in the computer
and to become inert if it is on the wrong machine. One problem this creates is
how to allow for the use of the software on a back-up computer. One answer is
to combine the self-destruction capability with the hardware-dependent or se-
rial number capability. In this context, use on a back-up machine would be al-
lowable (in the contract) only for a specific amount of time, such as thirty days,
and the program would cause itself to self-destruct if it were used on a different
machine for more than that time period.

Many of the technological techniques for limiting copying are being devel-
oped in the microcomputer area. Most microcomputer programs are distrib-
uted like books, without the economic leverage of providing updates or mainte-
nance, and often are distributed so widely that enforcement is entirely
impractical. For a brief time, popular microcomputer programs, such as

412 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 412 19821983

““Visicalc’’ or ‘‘Micro-Chess,’’ were able to use the operating systems of cer-
tain computers, notably Apple I computers, to prevent themselves from being
copied. Often this was done by manipulating the manner in which the program
was stored on floppy disks. Recently, however, certain ‘‘nibbling’’ programs
have been marketed which can defeat these methods. Much of the personal
computer literature touches on this situation, pleading with the pirates to cease,
since the protective mechanism they break means that the programs they soon
make will also be stealable. Many of the pirates claim they break protective
devices only to create back-up copies, and not to compete with the software
houses. A new protective mechanism which has been proposed is to let the pro-
gram allow itself to be copied several times before it implements the restrictive
copying system.

More exotic self-help mechanisms can be contemplated. As computer sys-
tems become automatically connected to telephone and other communications
networks, it would be possible to create a program which has the ability to dial
its home office automatically and inform the home office that it has been stolen
or is being used on the wrong machine. Another method is to scramble or en-
crypt the program code and to include the decoding chip when marketing the
software to be inserted in the computer, or to use one of the ‘‘double key’’ sys-
tems in which the encoding key is well known but the decoding key is secret.™”

Clearly, the best regulatory approach to these self-help mechanisms is not
to specify what mechanisms are acceptable or to limit their use but to support
their use.™

2. Trademark/Unfair Competition

Trademark protection can be important, particularly in the mass market
for videogames and home computer programs. A substantial portion of sales
may be lost if a version of a videogame which does not rise to the level of a
copyright infringement is marketed under the same name, such as ‘‘Pac-Man
I1.’"*” Similarly, use of unfair competition can restrict the passing off of one
videogame or program for another. Also, certain elements of unfair competi-
tion, such as misappropriation of ideas or unjust enrichment, may in the appro-
priate context be arguable for protecting a program. For example, use of a pro-
gram to create a new program may constitute unjust enrichment.*"

“7E g., Patent No. 4,168,396.

08E g.,National Subscription Television v. S & H TV, 644 F.2d 820 (9th Cir. 1981) (inter-
preted Communications Act of 1934, 47 U.S.C. § 605, and concluded that the Act prevented the
unauthorized sale of decoders which could unscramble pay TV signals.

*F.g., Midway Mfg. Co. v. Bandai-America, Inc., 546 F. Supp. 125, 155-58 (D. N.J., Jul.
22, 1982) (summary judgment granted on infringement of trademark ‘‘Galaxian’’ but not on copy-
right infringement of ‘‘Galaxian”’ videogame).

2E. g.,Computer Print Sys., Inc. v. Lewis, 212 U.S.P.Q. 626 (Pa. Super. Ct. 1980) (com-
pany which received source code innocently subject to liability for unjust enrichment in developing
competitive program). Note that unfair competitions laws may be preempted by § 301 of the 1976
Copyright Act. E.g., Schuchart & Assoc. v. Solo Serve Corp., 540 F. Supp. 928, 942-48 (W.D.
Tex. 1982) (unjust enrichment not preempted; misappropriation/unfair competition preempted).

SUMMER 1983 413

HeinOnline 23 Jurinetrics J. 413 19821983

3. International Protection

An important consideration is whether a program will be eligible for pro-
tection overseas.

a. Patent

It is unlikely that patent protection will be available, although interestingly
enough, a patent was granted in Germany for the same program denied a patent
in Gottschalk v. Benson.”' Since then, the German patent law has been
amended to exclude *‘programs for data processing installations.’**” In the Eu-
ropean Economic Community (EEC), a new patent procedure allows a patent
to be valid in all EEC countries with one filing, but excludes software ‘‘as
such.””*” In France, a 1968 patent law excluded software.*" This law was fol-
lowed in Austria, Switzerland, Poland, the Netherlands and Denmark; on the
continent only Sweden appears receptive to program patents.’” The U.K., once
receptive to program patents, is no longer.” In all these countries a U.S. patent
can constitute full disclosure without protection.

b. Copyright

It is increasingly likely that software will be protected by copyright in the
major Western developed nations. Recent decisions in France, Germany, Ja-
pan, and Scuth Africa have held that software is copyrightable under their re-
spective copyright laws.”"” Recent decisions in the UK. indicate software for
the most part is being protected under the U.K. 1956 Copyright Act even in the
absence of a clear holding in favor of such protection.” These cases find soft-

?'Western Elec. Co. Patent Appl. P-14-74-091.1-53 (Fed. Rep. Germany Patent Court, May
28, 1973), as translated and reported in FREED, COMPUTERS AND Law 27 (5th Ed. 1976) (patent
granted for same program denied a patent in Benson); but see Siemens A.G. v. Aeg Telefunken,
FED. REP. GERMANY (S. Ct., June 22, 1976).

2121978 Patent Act § 1(2), No. 3.

7131973 Convention of Munich § 52(2)(c).

U4Erench 1968 Patent Law, art. 7.

33oltysinski, Computer Programs and Patent Law: A Comparative Study, 3 RutG. 1.
Compu. & L. 1(1973).

215J.K. 1977 Patent Act; Cp. Burroughs Corp. (Perkins) Application, [1974] RPC 147, [1973]
Fleet St. Rep. 439 (Pat. App. Trib. Jul. 30, 1973) (method of transmitting data to slave computers
patentable).

27p. v. BMV, 46 Expertises les Systemes d’Information 243, 245 (Paris Ct. App., Dec. 1982)
(dispute between applications program developer and a user); VisiCorp v. Basis Software GmbH,
reported in 9 Comp. L. & Tax REep., No. 8, at 4, (March, 1983) (1st Mun. Dist. Ct., Dec. 21,
1982) (**VisiCalc™ copyrightable as a ‘‘linguistic work of a literary nature’’ under § 2 of the Ger-
man Copyright Act); Taito v. .N.G. Enterprise reported in Japan Times, Dec. 8, 1982 (Tokyo
Dist. Ct., Dec. 6, 1982) (microcomputer program embodying videogame copyrightable); North-
ern Office Micro Computers v. Rosenstein, 1981 (4) CPD 123, {1982] Fleet St. Rep. 124 (So.
Africa 1981) (medical applications program source code in written and machine-readable form
copyrightable under 1978 South African Copyright Act): See generally 9 Comp. L. & TAX Rep.,
No. 8, at 4-5 (March 1983).

#18See Systematics Ltd. v. London Computer Centre Ltd., available on LEXIS, reported in

414 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 414 19821983

ware copyrightable because the creative choices of a programmer are not nar-
rowly channeled due to machine constraints but contain the stamp of individual
style.

This is a welcome development, particularly because there are several in-
ternational conventions which make the international protection of copyrighted
works feasible. The United States is a member of the Universal Copyright Con-
vention (UCC), of which most developed nations are members, and which re-
quires only the use of a copyright notice, including the sign c-in-a-circle, in
order to comply with all formalities of each local member country.”” (Techni-
cally, ‘‘(c)’’ will not suffice.) The United States is also a member of the Buenos
Aires Convention, whose only formality is to require a reservation clause such
as “‘all rights reserved.”’*” The United States is not a member of the Berne Con-
vention, which requires no formalities for protection.” The 1976 Act contains
certain changes, such as the duration of copyright, which would make it easier
for the United States to join that Convention. In the meantime, it is suggested
that to retain protection in Berne countries one publish simultaneously (i.¢.,
within thirty days) in a Berne country (such as Canada) when first publishing
anywhere in the world.”

These conventions will provide protection for software only if the country
in which protection is desired recognizes protection. The recent decisions in
major Western nations should create momentum leading to acceptance of copy-
right in most countries. Even then, certain peculiarities in the conventions may
complicate the use of copyright across the borders. The UCC, for example, is
in many respects structured like the 1909 Copyright Act in the United States, in
that protection appears to attach only upon publication, and the notice provided
under the UCC is not effective unless it is placed upon works when first pub-
lished in visually perceptible form;™ this would seem not to apply to unintelli-
gible binary form which is marketed as an unpublished work. Still, since the
notice is required only if the country in question requires formalities, and most
developed nations other than the United States have none, this ambiguity in the
UCC mostly affects works first published outside this country.

DataLink, 13 Dec. 1982 and in The Times, 16 Nov. 1982 (Ch. Div., Nov. 11, 1982) (CP/M pro-
gram copyrightable; reported decision only discusses award of costs); Format Comm. Mfg. Ltd.
v. ITT (U.K.) Ltd., available on LEXIS (Ct. App., Oct. 26, 1982) (telephone switching software;
appeal of discovery order); Sega Ent. Ltd. v. Alca Elec. Ltd., [1981] Fleet St. Rep. 516 (Ch. Div.,
Mar. 31, 1982) (‘‘Frogger’’ videogame stipulated copyrightable; decision involved enforcement
of interim equitable relief); Gates v. Swift, [1982] RPC 339, [1981] Fleet St. Rep. 37 (Ch.Div.,
Oct. 27, 1980) (interim seizure of cassette tapes containing two Tandy TRS,VB42-80 operating
systems programs and three ‘‘Adventure’’ videogames). But see Williams Elec. Inc. v. Rene
Pierre S.A., available on LEXIS, MM No. 113 (Ch. Div., Apr. 29, 1981) (‘‘Defender’’ vi-
deogame; dismissed for failure to establish jurisdiction over foreign defendant).

*®Universal Copyright Convention, art. ITI(1),

uenos Aires Convention, 38 Stat. 1785 (1910).

2'Berne Convention for the Protection of Literary and Artistic Works, art. 5(2) (Paris Act).

214, art. 3(1)(b).

Universal Copyright Convention, art. VL.

SUMMER 1983 415

HeinOnline 23 Jurinetrics J. 415 19821983

c. Trade Secrets

Besides copyright, a method for overseas protection of software is the use
of trade or industrial secret laws. Such laws are present in most developed
countries. The main impediment to the use of trade secret laws overseas is their
weaker enforceability due to some of the differences between civil law and
common law jurisdictions.

In civil law jurisdictions, it may be more difficult than in the United States
to gain protective orders, which are essential in litigation; otherwise, the act of
enjoining a trade secret infringer would result in the trade secret being part of
the publicly available record of the lawsuit and would therefore constitute pub-
lic disclosure and loss of future protection. Also, in many jurisdictions, discov-
ery is not sanctioned or will not be as extensive as allowable in the United
States, and it may be difficult to prove theft of trade secrets if the infringing
products look very different. One informal practice is to appoint a special com-
missioner to analyze, in secret, the original and the alleged copy of the pro-
gram. This both keeps the trade secret secret and can substitute for much of
what would be required in discovery.

Trade secret enforcement can be enhanced through arbitration. Arbitra-
tion proceedings can be specified as being secret and discovery can be provided
for. Other advantages include specifying that English shall be the language for
all testimony and the language into which all documents shall be translated; that
venue shall be in a specific place; that certain law shall be used, disregarding
local custom and rules; and that the decisions and the reasons for the decision
will be in writing (it is very disconcerting to go through a lengthy and compli-
cated arbitration and receive a decision without any explanation or ruling as to
facts or law). The arbitrator can also be specified, as, for example, a person
having fluency in English, experience with data processing and being impartial
in the arbitration (by international custom, even a party-selected arbitrator is
supposed to act impartially unless the arbitration clause provides otherwise).
Enforcement can also be easier for arbitration awards than for court judgments.
Arbitration awards are in many countries treated as contractual matters, not
judicial, and the sovereignty of local courts is not called into question. If the
arbitration clause provides that the arbitration award can be enforceable in any
competent court and is governed by the 1958 U.N. Convention, it is possible to
enforce awards in member countries by going directly to the nonvenue coun-
try’s court without first docketing the award in local courts.

d. Registration Systems

In many South American countries and other Third World nations, the
transfer of technology from the developed world to the Third World is an im-
portant issue. Many of these countries have implemented registration systems
under which any technology-related agreement must be scrutinized and ap-

416 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 416 19821983

proved by a local ministry.” These laws are intended to prevent the exploita-
tion of local workers, for example by the creation of a factory, its use over
many years, and the sudden withdrawal of the factory to a more favorable
country, leaving in its wake semitrained workers and no ability to duplicate the
secret processes. The registration process can be expensive and time-
consuming. Many requirements to achieve registration can apply, some of
which can lead to the loss of the technology at the termination of the relation-
ship and others of which limit the relationship to a short time period, such as
five years.™ This may result in public disclosure of the trade secrets in the soft-
ware and loss of trade secret protection both in that particular country and even-
tually around the world.

There are many suggestions on how to avoid this scenario, most of which
are not entirely satisfactory. For example, the simplest method would be to use
self-help: provide only object code of an old version of the software and not
provide updates, so that by the end of the five-year period any loss of protection
or disclosure of the old software would not be threatening to newly developed
software. Another method is to negotiate special provisions with the registra-
tion authorities, which may require extralegal activity to implement. One idea
which to the knowledge of this author has not been attempted is to ‘‘leapfrog”’
the software license by providing that within each five-year license a new li-
cense will be executed for an updated version of the software and providing that
the old version shall be returned in its entirety upon such exchange. Thus, a
five-year license can become a perpetual license, with continued legal protec-
tion.

Even if a protective method were developed, there can be limitations on en-
forcement. There inay be a limited right or no right to injunctive or other simi-
lar relief. Damages may not be adequate compensation, particularly if trade
secrets are compromised worldwide. In some countries the best interim rem-
edy may be what is in some jurisdictions called secuestro, the ability to seize all
materials embodying the subject of the license in the event of any breach. This
too has its problems, including the practical problem of ensuring that all
machine-readable copies have been deleted from the offending party’s com-
puter system. Secuestro perhaps is best used to stop the wholesale competitive
marketing of the software.

e. International Trade Commission and Customs Service

The International Trade Commission can prevent the import of products
involving unfair methods of competition.” This can include unlicensed import
of a product in violation of a patent,” or following misappropriation of a trade

2See, e.g., Venezuelan Decree No. 2.442, art. 63 et seq. (Nov. 15, 1977).
2514, art. 65(¢).

2519 U.S.C. § 133.

TIn re Chain Door Locks, 191 U.S.P.Q. 272 (ITC 1976).

SUMMER 1983 417

HeinOnline 23 Jurinetrics J. 417 19821983

secret.” It may also include importation of a copyright-infringing product, al-
though typically the quicker and less expensive way to prevent such import is to
use the Customs Service.™

PROPOSED REGULATORY SCHEMES

1. Proposals
a. ADAPSO Proposal

The Association of Data Processing Service Organization (ADAPSO) has
investigated its members’ problems relating to the protection of software and
recently proposed five basic amendments to the 1976 Copyright Act:

1. to specify that copyright notice does not imply public disclosure or publi-
cation;
~ 2. tocover all forms of computer programs, including program descriptions
other than source code;
3. to specify that trade secret law is not preempted;
4. to allow the symbol (c) in addition to the symbol ©; and
5. to allow registration of programs in secret.

These proposals were incorporated into H.R. 6983, introduced on August 12,
1982. This bill was not acted upon, and ADAPSO has prepared a different bill
which it may submit to the current Congress. This new bill corrects some of the
problems in ADAPSO’s Proposal. ADAPSO has amended its Proposal to sup-
port the changes.

Although each of the areas of ADAPSO’s Proposal would be quite useful
in clarifying certain problems with respect to the coverage of copyright law,
ADAPSO’s recommended language is not always well considered. Regarding
preemption, instead of simply stating that ‘‘trade secret law’’ is not preempted
by the 1976 Act, ADAPSO recommended that there would be no preemption
with respect to ‘‘trade secret law not equivalent to copyright.’’ This definition
unfortunately simply repeats one of the unsolved issues in the 1976 Act:
whether trade secret law encompasses rights that are not equivalent to the rights
granted by copyrightlaw. If it is desired that both systems of protection coexist,
it would have been better for ADAPSO simply to have stated that trade secret
law is not preempted, and to allow the much less troublesome problem of
whether certain state laws are ‘trade secret’” laws or are what used to be called
common law copyright. Since trade secret law is well defined in the United
States, and historically was easy to distinguish from common law copyright,

2%/ re Apparatus for the Continuous Production of Copper Rod, 206 U.S.P.Q. 138 (ITC

1979).

219 C.F.R. § 133.1 et seq. See In re Coin-Operated Audio-Visual Games and Components
Thereof, Investigation No. 337-TA-87, USITC Pub. L. No. 1160 (June 1981) (Galaxian); In re
Certain Coin-Operated Audio-Visual Games and Components Thereof, Investigation No. 337-
TA-105, USITC Pub. L. No. 1267 (July 1982) (Rally-X; Pac-Man).

418 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 418 19821983

this dispute would not cause the same problems to software houses as are
caused by the current law or would be caused by ADAPSO’s recommendation.

The revised bill does not clearly remove this problem. The new language
stated that Section 301 will not “‘limit any right or remedy which the owner of a
copyright may have under state trade secret or other law not equivalent to any
of the exclusive rights within the general scope of Copyright. . . .>’ It is am-
biguous whether ‘‘not equivalent to’” applies to *‘trade secret . . .law’’ or just
to ‘‘other law.’’ The revised ADAPSO Proposal indicates that it does intend to
preempt trade secret rights equivalent to copyrights. ADAPSO believes this
will cause software trade secret agreements to be construed so as not to conflict
with copyright. This desire is laudable, and if copyright is interpreted broadly
enough to protect the specific logic and design of a program rather than just the
code, it is feasible that both protective systems could complement each other.
Nevertheless, this new language will still allow for fine distinctions between
trade secrets and copyrights, which will continue the uncertainty as to the ex-
tent of preemption and may cause lack of protection in some cases.

Regarding the attempt to cover all forms of computer programs, ADAPSO
recommended first that new definitions be included of computer program, pro-
gram description, and supporting materials. Computer software was then de-
fined to be the “‘literary works in’’ the other three definitions. This simply begs
the question as to whether computer software in each of its forms is a literary
work. (The WIPQ Proposals, discussed below, from which these four defini-
tions were derived, defines software to mean any or several of the ‘‘items’’ in
the other three definitions.) In 2 companion recommendation, ADAPSO would
add to the enumerated works of authorship in Section 102 of the 1976 Act, in
lieu of the phrase ‘‘literary works, including computer software.’’ Because of
the tautological definition of computer software, however, expressly adding
‘‘computer software’’ as a type of literary work adds nothing.

The revised bill obviates these problems by removing the proposed
amendment to Section 102 and by replacing the four definitions of types of soft-
ware with a new definition of computer program. Still, because it is still dis-
puted whether all types of software contain *‘authorship,’’ it might have been
better for ADAPSO to have added as an additional type of work of authorship a
category called ‘‘computer programs.’’ Also, the new definition of computer
program may be a step backwards. The current definition is functional; in ef-
fect, a program is defined as a set of instructions which could operate a com-
puter. The proposed definition is partially formal, restricting the current defi-
nition to programs in a ‘‘verbal, schematic or other form.’’ This confuses the
work with the embodiment. ADAPSQO’s intent was to combine *‘computer pro-
gram’’ and “‘program description,’’ to indicate that the protected program
could exist in computer-readable form as well as human-readable and sche-
matic form, such as a flow chart. If *‘program’’ is understood to be the specific
logic and design of software, then this combination of definitions is unneces-
sary. A flow chart with sufficient detail could express the same logic and design

SUMMER 1983 419

HeinOnline 23 Jurinetrics J. 419 19821983

as a machine-readable program and be protectable as a ‘‘program’’ regardless
of ADAPSO’s new definition.

The addition of *“(¢)’’ as a copyright symbol would be welcome, although
hardly necessary. ADAPSO should consider whether it should also propose
allowing “‘(P)’’ for the performance copyright symbol ® and ‘‘(R)’’ for the
trademark symbol ®

The ADAPSO Proposal calls for the Copyright Office to create a nonpub-
lic registration system, a welcome change. However, the enabling amendment
may not be a specific enough clause to avoid potential Freedom of Information
Act problems, discussed above.”* ADAPSO should also reconsider whether to
recommend deposit of software, even securely, or to establish a system in
which the registered copies are returned, not deposited.

Neither the ADAPSQO Proposal nor the revised bill address several other
unresolved copyright problems, including whether object code is a *‘copy’’ or
‘‘derivative work”’ of source code, what is the effect of the Copyright Office
applying a ‘‘rule of doubt’’ to registration of object code, how to interpret Sec-
tion 117(1) with respect to per-computer restrictions or ability to make adapta-
tions, and how much revision to a program is necessary before it should be
reregistered.

b. WIPO Proposal

- The World Intellectual Property Organization (WIPO) coterminously with
CONTU investigated the most suitable protection method for software on an
international scale. Its 1977 Report contains a detailed and lengthy discussion
of whether a patent-oriented or a copyright-oriented protective scheme would
be most suitable for protection of software. WIPO concluded that a copyright-
oriented scheme would be most suitable. Such a scheme would protect the ex-
pression of software, but not the fundamental ideas. WIPO also added to its
copyright scheme certain trade secret concepts to enable the functionality of a
program ascertainable from source materials and user documentation to re-
main protectable.

The WIPO proposals have interesting differences from the 1976 Copyright Act.
No registration or deposit is required. This is typical of most foreign copyright
systems. The WIPO Report questions administration of a registration system—
whether programs could be filed and classified such that the advantages of reg-
istration would be available in reality. It also points out the administrative prob-
lem of the continual updating and modification of software. Unlike books,
records and the vast bulk of copyrighted material, to register all versions of
programs would cause a continual storage of minor modifications. It is difficult
to draw a line between when an update should be deposited and when it should
not. The WIPO Report also questions whether an optional deposit system—
perhaps with the idea of disclosure of concepts or an abstract of the program as

08ee Part 2 under *“Trade Secrets.*’

420 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 420 19821983

identifying materials—would be useful. If the disclosure were sufficient to al-
low a competitor to recreate the same program, it is unlikely to be deposited.

WIPO would cover software in its broadest sense, and include programs,
program descriptions and supporting materials.

The WIPO proposals would clarify the scope of coverage and may avoid a
generation of litigation. Besides preventing copying, it adds ‘‘trade secret”
concepts: it prevents disclosure of a copy either orally or physically and pre-
vents using the program description to create a ‘‘substantially similar’” pro-
gram. It also expressly covers translations by use of computer programs which
compile, assemble, decompile, disassemble or cross-compile from one lan-
guage to another. It covers the use of the program in a computer and would
continue current marketing practices of restricting licenses to a per-computer
basis.

The coverage of protection under the WIPO proposals is twenty years
from use or twenty-five years from creation. This is longer than patents (seven-
teen years)”' but shorter than copyright (seventy-five years if a work for hire,
otherwise life of author plus fifty years).” The stated reason is that most pro-
grams are of an industrial nature and have a limited product use lifetime.

Finally, the WIPO Proposal would provide no statutory damages or attor-
neys’ fees to the prevailing party, and would make injunctive relief discretion-
ary to the extent issuance of an injunction would be found to be ‘‘unreason-
able.””

The WIPO Proposal contains at least three questionable points. The inabil-
ity to gain attorneys’ fees, statutory damages and at times an injunction could
put software owners at a disadvantage. The cost of litigation often exceeds ac-
tual damages, particularly if an injunction is sought at an early stage in a viola-
tion. Also, lack of injunctive relief in ‘‘unreasonable’” cases may cause the
software owner gradually to lose control over the software, making enforce-
ment of rights, particularly trade secret rights, more difficult.

Second, the definition of program description would have to be under-
stood narrowly. WIPO precludes using program description to create pro-
grams. If this right extends to input and output formats, programming tech-
niques and other facets of software beyond its specific logic and design, too
much protection may have been granted. Apple Computer, for example, might
then be able to prevent others from developing Apple-compatible computers
.even if they rely solely on Apple’s user documentation and the actual operation
of an Apple computer. WIPO did not intend this result; the user manuals were
to be considered ‘ ‘supporting materials’’ not ‘‘program descriptions.’” But in
attempting to cover all aspects of protecting software, WIPO may have allowed
this type of argument.

The third questionable aspect of WIPQ’s proposals is the lack of preemp-

2135 U.5.C. § 154.
#7U.8.C. § 302.

SUMMER 1983 421

HeinOnline 23 Jurinetrics J. 421 19821983

tion. Patent, copyright, and trade secret protection can coexist with WIPO’s sui
generis scheme. This may complicate protection, rather than simplify it; soft-
ware vendors in their marketing procedures, software licenses and litigation
will attempt to enforce WIPO, copyright and trade secret protection together.
The Achilles’ heel in any sui generis system is lack of experience with the new
scheme and the corresponding inability to foresee all problems. The resulting
fear that some problem may have been overlooked leads to a desire to cover all
bets by not preempting other protective schemes, perhaps creating a worse situ-
ation than that which now exists.

Therefore, the WIPO proposals would work best from a construction and
interpretation point of view if they were appended to the copyright laws of
member countries. In many respects, the ADAPSO proposals purports to cre-
ate the same type of coverage specified in the WIPO Report. Specifically, both
purport to clarify what it means to ‘‘copy’’ a program and to what extent ideas
are covered rather than expression. Both also purport to allow the continuance
of trade secret law concepts. Indeed, it might be possible for the United States
to become a party to the WIPO Proposal by using the ADAPSO amendments,
slightly modified, and the lead of the United States in this area might encourage
other developed nations to follow to protect software.

c. Computer Software Protection Act

Commissioner Hersey of CONTU had the Computer Software Protection
Act prepared as an alternative to the CONTU proposed amendments. The Act
is a copyright approach which does not have any examination of programs as in
a patent system. Instead, there would be aregistration system in a special regis-
try in the Department of Commerce.

The Act is different from copyright in a number of respects. Protection
would only be for ten years. All other protective schemes would be preempted,
except trademark protection and copyrights in the descriptive parts of docu-
mentation. A special notice would be created, like a copyright notice, involv-
ing the symbol s-in-a-circle. The Act would cover both the program’s code it-
self and “‘the original method or process embodied in the software’’ other than
embodiments of mathematical relationships or scientific principles.

Unfortunately, this Act suffers from many of the same deficiencies that
exist under the current system, including lack of clarity in coverage. In any
event, the Act has dropped from sight and consideration and was not even ap-
pended to the CONTU Report.

d. IBM Proposal

IBM Corporation proposed a patent approach to software protection over a
decade ago. Its key features were requiring deposit of the program and publica-
tion of key, innovative concepts in an abstract. It was essentially a proposal for
nonprotection, since it provided broad grounds to invalidate registration or to
defend against an infringement action. Also, the disclosure of the concepts cre-
ated the ability of independent creation of competing programs, a situation

422 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 422 19821983

which would aid hardware vendors (because the proliferation of programs sells
hardware), not software houses.

This proposal was offered at a time when IBM and the other hardware ven-
dors were not inclined to allow the protection of most software, in order to sell
their hardware. Not surprisingly, this proposal can be criticized for being help-
ful only to large companies that have the resources to detect and enforce the
rights granted. Cottage industry software houses would have to rely on secrecy
instead since they would have insufficient resources and information to detect
or enjoin infringers, and disclosure of the key ideas would enable many com-
petitors to enter their markets.

This proposal has died a natural death and is unlikely to be considered in
any form in the future, nor to be proposed by IBM, which now has different
interests regarding the protection of software.

2. Implementing the Reforms

The most direct manner of implementing any of these or other reforms is
by legislation in Washington. Because the pending ADAPSO Proposal is likely
to be submitted as a bill in Congress, reconsideration of this method of imple-
mentation is timely. If any deficiencies in the new ADAPSO Proposal are not
cured but pass into law, the goodwill of the software industry in asking for fur-
ther revisions will probably have been exhausted.

The problem with legislation is best exemplified by the ADAPSO Proposal
itself. The ADAPSO amendments appear to represent a compromise of various
positions, and some of the ambiguities in ADAPSO’s proposed amendments
are presumably the result. The hearings on the new copyright legislation will
likely have conflicting comments filed by the Department of Justice, by large
vendors, by the Copyright Office, and by a myriad of others. Consequently, it
is possible that if additional points are raised for legislation, the same types of
compromises will be forced upon the new recommendations. Also, it is possi-
ble that there would be a change, perhaps on the floor of the houses in Con-
gress, which has not been well considered. For example, the change from
“‘rightful possessor’” to ‘‘owner’’ in the 1980 copyright amendments was made
at the last minute without substantial explanation in the record. Similarly, when
the 1976 Copyright Act was being considered, the preemption section, Section
301, was changed at the last minute. In other words, a worse situation may be
created than now exists.

The problems in this area perhaps can best be solved on a case-by-case
basis, in which the functional impact of a particular change is clear and limited
to particular circumstances. A sweeping theoretical change does not have
this functional approach and does not have the fundamental appreciation of the
effects of the amendments. This is not an avoidance of the political process; it is
a practical recommendation based upon the conflicting and compelling inter-
ests in this area and the difficulty in appreciating the nature of software.

SUMMER 1983 423

HeinOnline 23 Jurinetrics J. 423 19821983

Therefore, ADAPSO’s bill should be limited to items requiring legislative
action, such as a secure deposit system. The interpretive questions would be
left for common law development.

3. Conclusion

The main problem addressed by these proposed protective schemes is the
fundamental issue of what is being protected: the instructions themselves (the
““expression’’ of the program) or the functionality of the program. From a pro-
competitive point of view, since the software industry has burgeoned without
having any patent-like protection or the protection of functionality, it is ques-
tionable whether such protection is necessary. The critical concern of the in-
dustry is copying or direct reverse engineering of software, not the learning of
certain ideas and functionalities and attempting to recreate them. Access to
software or to materials describing software is a critical first step to copying or
reverse engineering. Therefore, of all these systems, copyright law as inter-
preted above or the WIPO Proposal as improved above are probably closest to
what is desired by the industry.

As a consequence, it is recommended that the WIPO Proposal as improved
above be seriously considered by Congress, be implemented as part of the 1976
Copyright Act if possible, and be pursued worldwide. As a compromise, the
ADAPSO Proposal could be improved, with Congress concentrating on the
following points. '

First, it is important to allow copyright registration with secrecy. This can
best be accomplished by requiring no registration at all or by requiring only an
inspection by the registration office and return of the software. The purpose of
the secrecy is both to allow the further enforcement of trade secret rights and to
avoid the problem faced by many small software houses of not having adequate
resources to detect and enforce their rights.

Second, it will be quite valuable to implement any protection scheme on a
worldwide basis. The easiest manner to do this may be to implement WIPO’s
proposals through existing copyright laws, thus having an existing body of law
from which to plan and having the ability to use worldwide copyright conven-
tions as well as WIPO treaties to implement protection. Alternatively, current
international copyright conventions should be clarified to allow the overseas
protection of software. In this regard, it would be helpful to amend the Univer-
sal Copyright Convention to allow for the use of the symbol ‘‘(c)’’ in lieu of the
symbol ‘“©*’ and to create the concept of placing the copyright notice on unpub-
lished works in machine-readable form.

Third, trade secret law should not be preempted in whole, nor should use
of copyright be considered an election or give rise to an estoppel, unless trade
secret concepts which support current licensing practices are added to the pro-
tective scheme, as in WIPO’s proposals. In particular, a copyright violation
should occur if a competing program is made from source or object code or

424 JURIMETRICS JOURNAL

HeinOnline 23 Jurinetrics J. 424 19821983

specific and complete program descriptions. However, if the copy was made
only from supporting materials or by appropriating the functionality of the soft-
ware and not the particular way in which it was expressed in the design of the
program, no copyright infringement would occur. These problems under cur-
rent law can best be left to common law development; amendment to the Act
would only be needed to correct mistaken precedent.

Fourth, those types of software which are marketed with restrictive li-
censes should be deemed not to be ‘‘published.’’ This would include a broad
reading of the ‘‘limited publication’’ rule and would include that use of a copy-
right notice does not constitute an admission of publication or public disclosure
which would compromise the software’s status as an unpublished work or as a
trade secret. These problems are being satisfactorily answered by recent cases.

Finally, additional questions, such as what constitutes a ‘‘substantially
similar’’ copy or what is the legal relation between source and object code, can
best be answered on a case-by-case approach.

With these changes, judicial or legislative, a relatively satisfactory scheme
of protection would be created. Patent law would apply not to software per se
but to specific machines or processes in which software is cne element that op-
erates on a real-time basis affecting the other elements. Copyright law would
protect all materials from which symbolic forms of programs are reproducible.
Trade secret law would protect input and output formats, underlying al-
gorithms, concepts and techniques, and source materials, and would restrict
disloyal employees. International law in the developed countries would be in
accord with these copyright and trade secret interpretations. Finally, in light of
the practical limits on legal protection, technological methods of protection
would be available. The peaceful coexistence of these legal doctrines should
allow the software industry to prosper and software users to benefit.

SUMMER 1983 425

HeinOnline 23 Jurinetrics J. 425 19821983

HeinOnline 23 Jurinetrics J. 426 19821983

