

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

1 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-1-

Accountable Algorithms

Joshua A. Kroll, Joanna Huey, Solon Barocas, Edward W. Felten, Joel R.

Reidenberg, David G. Robinson, and Harlan Yu†

Abstract

Many important decisions historically made by people are now made by

computers. Algorithms count votes, approve loan and credit card applications, target

citizens or neighborhoods for police scrutiny, select taxpayers for IRS audit, grant or deny

immigration visas, and more.

The accountability mechanisms and legal standards that govern such decision

processes have not kept pace with technology. The tools currently available to

policymakers, legislators, and courts were developed to oversee human decision makers

and often fail when applied to computers instead. For example, how do you judge the intent

of a piece of software? Because automated decision systems can return potentially

incorrect, unjustified or unfair results, additional approaches are needed to make such

systems accountable and governable. This Article reveals a new technological toolkit to

verify that automated decisions comply with key standards of legal fairness.

We challenge the dominant position in the legal literature that transparency will

solve these problems. Disclosure of source code is often neither necessary (because of

alternative techniques from computer science) nor sufficient (because of the issues

analyzing code) to demonstrate the fairness of a process. Furthermore, transparency may

be undesirable, such as when it permits tax cheats or terrorists to game the systems

determining audits or security screening or discloses private information.

The central issue is how to assure the interests of citizens, and society as a whole,

in making these processes more accountable. This Article argues that technology is

creating new opportunities--subtler and more flexible than total transparency--to design

decisionmaking algorithms so that they better align with legal and policy objectives. Doing

so will improve not only the current governance of automated decisions, but also--in

certain cases--the governance of decisionmaking in general. The implicit (or explicit)

biases of human decisionmakers can be difficult to find and root out, but we can peer into

the “brain” of an algorithm: computational processes and purpose specifications can be

declared prior to use and verified afterwards.

The technological tools introduced in this Article apply widely. They can be used

in designing decisionmaking processes from both the private and public sectors, and they

can be tailored to verify different characteristics as desired by decisionmakers, regulators,

or the public. By forcing a more careful consideration of the effects of decision rules, they

also engender policy discussions and closer looks at legal standards. As such, these tools

have far-reaching implications throughout law and society.

† Respectively, System Engineer, CloudFlare and Affiliate, Center for Information Technology

Policy, Princeton; Associate Director, Center for Information Technology Policy, Princeton; Post

Doctoral Research Associate, Princeton; Robert E. Kahn Professor of Computer Science and Public

Affairs, Princeton; Stanley D. and Nikki Waxberg Chair in Law, Fordham Law School; Principal,

Upturn; Principal, Upturn. For helpful comments, the authors are very grateful to participants at the

Berkeley Privacy Law Scholars Conference and at the NYU School of Law conference on

“Accountability and Algorithms.”

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

2 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-2-

Part I of this Article provides an accessible and concise introduction to

foundational computer science concepts that can be used to verify and demonstrate

compliance with key standards of legal fairness for automated decisions without revealing

key attributes of the decisions or the processes by which the decisions were reached. Part

II then describes how these techniques can assure that decisions are made with the key

governance attribute of procedural regularity, meaning that decisions are made under an

announced set of rules consistently applied in each case. We demonstrate how this

approach could be used to redesign and resolve issues with the State Department’s

diversity visa lottery. In Part III, we go further and explore how other computational

techniques can assure that automated decisions preserve fidelity to substantive legal and

policy choices. We show how these tools may be used to assure that certain kinds of unjust

discrimination are avoided and that automated decision processes behave in ways that

comport with the social or legal standards that govern the decision. We also show how

automated decision making may even complicate existing doctrines of disparate treatment

and disparate impact, and we discuss some recent computer science work on detecting and

removing discrimination in algorithms, especially in the context of big data and machine

learning. And lastly, in Part IV, we propose an agenda to further synergistic collaboration

between computer science, law, and policy to advance the design of automated decision

processes for accountability.

Table of Contents
I. How Computer Scientists Build and Evaluate Software .. 10

A. Assessing Computer Systems ... 10

1. Static Analysis: Review from Source Code Alone .. 13

2. Dynamic Testing: Examining a Program’s Actual Behavior 16

3. The Fundamental Limit of Testing: Noncomputability ... 18

B. The Importance of Randomness .. 19

II. Designing Computer Systems for Procedural Regularity ... 22

A. Transparency and Its Limits .. 23

C. Technical Tools for Procedural Regularity ... 27

1. Software Verification ... 27

2. Cryptographic Commitments ... 30

3. Zero-Knowledge Proofs ... 32

4. Fair Random Choices ... 33

D. Applying Technical Tools Generally .. 36

1. Current DVL Procedure ... 38

2. Transparency Is Not Enough ... 39

3. Designing the DVL for Accountability.. 39

III. Designing Algorithms to Assure Fidelity to Substantive Policy Choices 41

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

3 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-3-

A. Machine Learning, Policy Choices, and Discriminatory Effects 42

B. Technical Tools for NonDiscrimination ... 45

1. Learning from Experience ... 46

2. Fair Machine Learning ... 47

3. Discrimination, Data Use, and Privacy .. 51

C. AntiDiscrimination Law and Algorithmic Decisionmaking ... 53

1. Ricci v. DeStefano: The Tensions Between Equal Protection, Disparate Treatment,

and Disparate Impact .. 54

2. Ricci Impels Designing for NonDiscrimination .. 56

IV. Fostering Collaboration Across Computer Science, Law, and Policy 56

A. Recommendations for Computer Scientists: Design for After-the-Fact Oversight 57

B. Recommendations for Lawmakers and Policymakers .. 60

1. Reduced Benefits of Ambiguity ... 60

2. Accountability to the Public... 63

3. Secrets and Accountability .. 65

Introduction

Many important decisions that were historically made by people are now

made by computer systems:1 votes are counted; voter rolls are purged; loan and

credit card applications are approved;2 welfare and financial aid decisions are

made;3 taxpayers are chosen for audits; citizens or neighborhoods are targeted for

1 In this work, we use the term “computer system” where others have used the term “algorithm.”

See, e.g., Frank Pasquale, The Black Box Society: The Secret Algorithms That Control Money and

Information (2015). This allows us to separate the concept of a computerized decision from the

actual machine that effects it. See infra note 14 for a more detailed explanation.
2 See, e.g., Calyx - More Than Just an LOS, Calyx Software (Mar. 2013),

http://www.calyxsoftware.com/company/newsletters/13-03.html [https://perma.cc/E93L-8UGD]

(noting that Calyx offers clients an automated underwriting system to vet loan applications for

approval against predetermined guidelines).
3 See Virginia Eubanks, Caseworkers v. Computers, PopTech (Dec. 11, 2013, 3:10 PM),

http://virginiaeubanks.wordpress.com/2013/12/11/caseworkers-vs-computers

[https://perma.cc/37VG-GQC6] (describing and critiquing several states’ efforts to automate

welfare eligibility determinations).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

4 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-4-

police scrutiny;4 air travelers are selected for search;5 and visas are granted or

denied. The efficiency and accuracy of automated decisionmaking ensures that its

domain will continue to expand. Even mundane activities now involve complex

computerized decisions: everything from cars to home appliances now regularly

executes computer code as part of its normal operation.

However, the accountability mechanisms and legal standards that govern

decision processes have not kept pace with technology. The tools currently

available to policymakers, legislators, and courts were developed primarily to

oversee human decisionmakers. Many observers have argued that our current

frameworks are not well adapted for situations in which a potentially incorrect,6

unjustified,7 or unfair8 outcome emerges from a computer. Citizens, and society as

a whole, have an interest in making these processes more accountable. If these new

inventions are to be made governable, this gap must be bridged.

In this Article, we describe how authorities can demonstrate--and how the

public at large and oversight bodies can verify--that automated decisions comply

with key standards of legal fairness. We consider two approaches: ex ante

approaches aiming to establish that the decision process works as expected (which

are commonly studied by technologists and computer scientists), and ex post

approaches once decisions have been made, such as review and oversight (which

are common in existing governance structures). Our proposals aim to use the tools

of the first approach to guarantee that the second approach can function effectively.

Specifically, we describe how technical tools for verifying the correctness of

computer systems can be used to ensure that appropriate evidence exists for later

oversight.

We begin with an accessible and concise introduction to the computer

science concepts on which our argument relies, drawn from the fields of software

verification, testing, and cryptography. Our argument builds on the fact that

technologists can and do verify, for themselves, that software systems work in

accordance with known designs. No computer system is built and deployed in the

4 See David Robinson, Harlan Yu & Aaron Rieke, Civil Rights, Big Data, and Our Algorithmic

Future 18-19 (2014), http://bigdata.fairness.io/wp-content/uploads/2014/11/

Civil_Rights_Big_Data_and_Our_Algorithmic-Future_v1.1.pdf [https://perma.cc/UL3G-3MQ7]

(describing the Chicago Police Department’s “‘Custom Notification Program,’ which sends police

(or sometimes mails letters) to peoples’ homes to offer social services and a tailored warning”).
5 See Notice of Modified Privacy Act System of Records, 78 Fed. Reg. 55,270, 55,271 (Sept. 10,

2013) (“[T]he passenger prescreening computer system will conduct risk-based analysis of

passenger data TSA will then review this information using intelligence-driven, risk-based

analysis to determine whether individual passengers will receive expedited, standard, or enhanced

screening”).
6 See Danielle Keats Citron, Technological Due Process, 85 Wash. U. L. Rev. 1249, 1256 (2008)

(describing systemic errors in the automated eligibility determinations for federal benefits

programs).
7 See id. at 1256-57 (noting the “crudeness” of algorithms designed to identify potential terrorists

that yield a high rate of false positives).
8 See Solon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 Calif. L. Rev. 671, 677

(2016) (“[D]ata mining holds the potential to unduly discount members of legally protected classes

and to place them at systematic relative disadvantage.”).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

5 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-5-

world shrouded in total mystery.9 While we do not advocate any specific liability

regime for the creators of computer systems, we outline the range of tools that

computer scientists and other technologists already use, and show how those tools

can ensure that a system meets specific policy goals. In particular, while some of

these tools provide assurances only to the system’s designer or operator, other

established methods could be leveraged to convince a broader audience, including

regulators or even the general public.

The tools available during the design and construction of a computer system

are far more powerful and expressive than those that can be bolted on to an existing

system after one has been built. We argue that in many instances, designing a

system for accountability can enable stakeholders to reach accountability goals that

could not be achieved by imposing new transparency requirements on existing

system designs.

We show that computer systems can be designed to prove to oversight

authorities and the public that decisions were made under an announced set of rules

consistently applied in each case, a condition we call procedural regularity. The

techniques we describe to ensure procedural regularity can be extended to

demonstrate adherence to certain kinds of substantive policy choices, such as

blindness to a particular attribute (e.g., race in credit underwriting). Procedural

regularity ensures that a decision was made using consistently applied standards

and practices. It does not, however, guarantee that such practices are themselves

good policy. Ensuring that a decision procedure is well justified or relies on sound

reasoning is a separate challenge from achieving procedural regularity. While

procedural regularity is a well understood and generally desirable property for

automated and nonautomated governance systems alike, it is merely one principle

around which we can investigate a system’s fairness.

It is common, for example, to ask whether a computer system avoids certain

kinds of unjust discrimination, even when such systems are blind to certain

attributes (e.g., gender in automated hiring decisions). We later expand our

discussion and show how emerging computational techniques can assure that

automated decisions satisfy other notions of fairness that are not merely procedural,

but actively consider a system’s effects. We describe in particular detail techniques

for avoiding discrimination, even in machine learning systems that derive their

decision rules from data rather than from code written by a programmer. Finally,

we propose next steps to further the emerging and critically important collaboration

between computer scientists and policymakers.

9 Although some machine-learning systems produce results that are difficult to predict in advance

and well beyond traditional interpretation, the choice to field such a system instead of one which

can be interpreted and governed is itself a decision about the system’s design. While we do not

advocate that any approach should be forbidden for any specific problem, we aim to show that

advanced tools exist that provide the desired functionality while also permitting oversight and

review.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

6 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-6-

Legal scholars have argued for twenty years that automated processing

requires more transparency,10 but it is far from obvious what form such

transparency should take. Perhaps the most obvious approach is to disclose a

system’s source code, but this is at best a partial solution to the problem of

accountability for automated decisions. The source code of computer systems is

illegible to nonexperts. In fact, even experts often struggle to understand what

software code will do: inspecting source code is a very limited way of predicting

how a computer program will behave.11 Machine learning, one increasingly popular

approach to automated decisionmaking, is particularly ill-suited to source code

analysis because it involves situations where the decisional rule itself emerges

automatically from the specific data under analysis, sometimes in ways that no

human can explain.12 In this case, source code alone teaches a reviewer very little,

since the code only exposes the machine learning method used and not the data-

driven decision rule.

Moreover, in many of the instances that people care about, full transparency

will not be possible. The process for deciding which tax returns to audit, or whom

to pull aside for secondary security screening at the airport, may need to be partly

opaque to prevent tax cheats or terrorists from gaming the system. When the

decision being regulated is a commercial one, such as an offer of credit,

transparency may be undesirable because it defeats the legitimate protection of

consumer data, commercial proprietary information, or trade secrets. Finally, when

an explanation of how a rule operates requires disclosing the data under analysis

and those data are private or sensitive (e.g., in adjudicating a commercial offer of

credit, a lender reviews detailed financial information about the applicant),

disclosure of the data may be undesirable or even legally barred.

Furthermore, making the rule transparent--whether through source code

disclosure or otherwise--may still fail to resolve the concerns of many participants.

No matter how much transparency surrounds a rule, people can still wonder

whether the disclosed rule was actually used to reach a decision in their own cases.

Particularly where an element of randomness is involved in the process, a person

audited or patted down may wonder: Was I really chosen by the rule, or has some

bureaucrat singled me out on a whim? But full disclosure of how particular

decisions were reached is often unattractive because the decisions themselves often

incorporate sensitive health, financial, or other private information either as input,

10 See, e.g., Citron, supra note 6, at 1253 (describing automated decisionmaking as “adjudicat[ion]

in secret”); Paul Schwartz, Data Processing and Government Administration: The Failure of the

American Legal Response to the Computer, 43 Hastings L.J. 1321, 1323-25 (1992) (“So long as

government bureaucracy relies on the technical treatment of personal information, the law must pay

attention to the structure of data processing There are three essential elements to this response:

structuring transparent data processing systems; granting limited procedural and substantive rights

. . . and creating independent governmental monitoring of data processing systems.” (emphasis

omitted)).
11 See infra subsection I.A.1 (discussing static analysis).
12 See Stanford University, Machine Learning, Coursera, https://www.coursera.org/learn/machine-

learning/home/info [https://perma.cc/L7KF-CDY4] (“Machine learning is the science of getting

computers to act without being explicitly programmed.”).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

7 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-7-

output, or both (for example, an individual’s tax audit status may be sensitive or

protected on its own, but it may also imply details about that individual’s financial

data).

Even full disclosure of a decision’s provenance to that decision’s subject

can be problematic. Most individuals are ill-equipped to review how computerized

decisions were made, even if those decisions are reached transparently. Further, the

purpose of computer-mediated decisionmaking is to bring decisions an element of

scale, where the same rules are ostensibly applied to a large number of individual

cases or are applied extremely quickly. Individuals auditing their own decisions (or

experts assisting them) would be both inundated with the need to review the rules

applied to them and often able to generalize their conclusions to the results of

others, raising the same disclosure concerns described above. That is, while

transparency of a rule makes reviewing the basis of decisions more possible, it is

not a substitute for individualized review of particular decisions.13

Fortunately, technology is creating new opportunities--more subtle and

flexible than total transparency--to make automated decisionmaking more

accountable to legal and policy objectives. Although the current governance of

automated decisionmaking is underdeveloped, computerized processes can be

designed for governance and accountability. Doing so will improve not only the

current governance of computer systems, but also--in certain cases--the governance

of decisionmaking in general.

 This Article argues that in order for a computer system to function in an

accountable way--either while operating an important civic process or merely

engaging in routine commerce--accountability must be part of the system’s design

from the start. Designers of such systems--and the nontechnical stakeholders who

often oversee or control system design--must begin with oversight and

accountability in mind. We offer examples of currently available tools that could

aid in that design, as well as suggestions for dealing with the apparent mismatch

between policy ambiguity and technical precision.

In Part I of this Article, we provide an accessible introduction to how

computer scientists build and evaluate computer systems and the software and

algorithms14 that comprise them. In particular, we describe how computer scientists

13 Even when experts can pool investigative effort across many decisions, there is no guarantee that

the basis for decisions will be interpretable or that problems of fairness or even overt special

treatment for certain people will be discovered. Further, a regime based on individuals auditing their

own decisions cannot adequately address departures from an established rule, which favor the

individual auditing her own outcome, or properties of the rule, which can only be examined across

individuals (such as nondiscrimination).
14 In this Article, we limit our use of the word “algorithm” to its usage in computer science, where

it refers to a well-defined set of steps for accomplishing a certain goal. In other contexts, where

other authors have used the term “algorithm,” we describe “automated decision processes” reflecting

“decision policies” implemented by pieces of “software,” all comprising “computer systems.” Our

adoption of the phrase “computer systems” was suggested by (and originally due to) Helen

Nissenbaum and we are grateful for the precision it provides. See generally Batya Friedman & Helen

Nissenbaum, Bias in Computer Systems, 14 ACM Transactions on Info. Sys. 330 (1996).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

8 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-8-

evaluate a program to verify that it has desired properties, and discuss the value of

randomness in the construction of many computer systems. We characterize what

sorts of properties of a computer system can be tested and describe one of the

fundamental truths of computer science--that there are some properties of computer

systems which cannot be tested completely. We observe that computer systems

fielded in the real world are (or at least should be) tested regularly during creation,

deployment, and operation, merely to establish that they are actually functional.

Part II examines how to design computer systems for procedural regularity,

a key governance principle enshrined in law and public policy in many societies.

We consider how participants, decision subjects, and observers can be assured that

each individual decision was made according to the same procedure-- for example,

how observers can be assured that the decisionmaker is not choosing outcomes on

a whim while merely claiming to follow an announced rule. We describe why mere

disclosure of a piece of source code can be impractical or insufficient for these ends.

Indeed, without full transparency--including source code, input data, and the full

operating environment of the software--even the disclosure of audit logs showing

what a program did while it was running provides no guarantee that the disclosed

The term “algorithm” is assigned disparate technical meanings in the literatures of computer science

and other fields. The computer scientist Donald Knuth famously defined algorithms as separate from

mathematical formulae in that (1) they must “always terminate after a finite number of steps;” (2)

“[e]ach step of an algorithm must be precisely defined; the actions to be carried out must be

rigorously and unambiguously specified for each case;” (3) input to the algorithm is “quantities that

are given to it initially before the algorithm begins;” (4) an algorithm’s output is “quantities that

have a specified relation to the inputs;” and (5) the operations to be performed in the algorithm

“must all be sufficiently basic that they can in principle be done exactly and in a finite length of time

by someone using pencil and paper.” 1 Donald E. Knuth, The Art of Computer Programming:

Fundamental Algorithms 4-6 (1968). Similarly and more simply, a widely used computer science

textbook defines an algorithm as “any well-defined computational procedure that takes some value,

or set of values, as input and produces some value, or set of values, as output.” Thomas H. Cormen

et al., Introduction to Algorithms 10 (2d ed. 2001).

By contrast, communications scholar Christian Sandvig says that “‘algorithm’ refers to the overall

process” by which some human actor uses a computer to do something, including decisions made

by humans as to what the computer should do, choices made during implementation, and even

choices about how algorithms are represented and marketed to the public. Christian Sandvig, Seeing

the Sort: The Aesthetic and Industrial Defense of “The Algorithm,” Media-N,

http://median.newmediacaucus.org/art-infrastructures-information/seeing-the-sort-the-aesthetic-

and-industrial-defense-of-the-algorithm [https://perma.cc/29E4-S44S]. Sandvig argues that even

algorithms as simple as sorting “have their own public relations” and are inherently human in their

decisions. Id.

Another communications scholar, Nicholas Diakopoulos, defines algorithms in the narrow sense as

“a series of steps undertaken in order to solve a particular problem or accomplish a defined

outcome,” but also considers them in the broad sense, saying that “algorithms can arguably make

mistakes and operate with biases,” which does not make sense for the narrower technical definition.

Nicholas Diakopoulos, Algorithmic Accountability: Journalistic Investigation of Computational

Power Structures, 3 Digital Journalism 398, 398, 400 (2015). This confusion is common to much of

the literature on algorithms and accountability, which we describe throughout this paper.

To avoid confusion, this paper adopts the precise definition of the word “algorithm” from computer

science and, following Friedman and Nissenbaum, refers to the broader concept of an automated

system deployed in a social or human context as a “computer system.”

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

9 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-9-

information actually reflects a computer system’s behavior.15 In order to move

beyond the need for full transparency, we focus on tools that can communicate

partial information about secret processes, so that accountability and oversight

continue to function even when policy interests, personal privacy, trade secrets, or

other concerns protect a computer system, a piece of software, its inputs, its outputs,

or its environment from disclosure. Putting it all together, we provide an illustrative

example of how to redesign an existing, legally mandated automated

decisionmaking system--the State Department’s Diversity Visa Lottery--so that it

is provably accountable.

Part III considers the broader question of how to assess a computer system’s

compliance with policy principles that go beyond procedural regularity. These

broader properties include determining whether automated decision systems treat

people (including protected groups) in ways that comport with the social or legal

standards that govern the decision being made.16 This broadening raises the issue

of translating a policy principle into a property of the system. Certain substantive

policy choices translate easily: for example, prespecified rules such as blindness to

a sensitive attribute.17 However, defining other policy objectives, such as a general

notion of nondiscrimination, is a more complicated and fraught affair, particularly

when systems rely on machine learning rather than decision rules explicitly

predetermined by humans. We explore in particular the discriminatory effect that

automated decisionmaking can have, noting real-world examples of newfound risks

and describing some system properties that may align with policy goals. Finally,

we observe how automated decisionmaking may complicate the existing doctrine

of disparate treatment and disparate impact.

Part IV concludes by calling for increased collaboration between computer

scientists and policymakers to develop and apply technical tools for the governance

of computer systems. Given the ever-widening reach of automated decisions,

computer scientists need to understand the policy challenges of oversight, and

policymakers need to understand where new and emerging software tools can help

address those challenges. We offer recommendations for bridging the gap between

technologists’ desire for specificity and the policy process’s need for ambiguity. As

a first step, we urge policymakers to recognize that accountability is feasible even

when the details of a computer system are not fully known or must be kept secret.

15 The environment of a computer system includes anything it might interact with. For example, an

outside observer will need to know what other software was running on a particular computer to

ensure that nothing modified the behavior of the disclosed program. Some programs also observe

(and change their behavior based on) the state of the computer they are running on (such as which

files were or were not present or what other programs were running), the time they were run, or even

the configuration of hardware on the system on which they were run.
16 This type of evaluation depends upon having already verified procedural regularity: if it cannot

be determined that a particular algorithm was used to make a decision, it is fruitless to try to verify

properties of that algorithm.
17 A concrete example would be the requirement that a decision only account for certain information

for certain purposes, as in a system for screening job applicants that is allowed to take the gender of

applicants as input, but only for the purpose of keeping informational statistics and not for making

screening decisions.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

10 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-10-

We also argue that the ambiguities, contradictions, and uncertainties of the policy

process need not discourage computer scientists from engaging constructively in it.

I. How Computer Scientists Build and Evaluate Software

Fundamentally, computers are general purpose machines that can be

programmed to do any computational task, though they lack the desirable

specificity and limitations of physical devices.18 Engineers often seek strong digital

evidence that a computer system is working as intended. Such evidence may be

persuasive for the system’s creator or operator only, for a predesignated group of

receivers such as an oversight authority, or for the public at large. In many cases,

systems are carefully evaluated and tested before they make it to the real world.

Evidence that is convincing to the public and sufficiently nonsensitive to be

disclosed widely is the most effective and desirable for ensuring accountability.

In this Part, we examine how computer scientists think about software

assurance, how software is built and tested in the software industry, and what tools

are available to get assurances about an individual piece of software or a large

computer system. Thus, this section provides a brief and accessible map of key

concepts and offers some insight into how computer scientists think about and

approach these challenges.

A. Assessing Computer Systems

In general, a computer program is something that takes a set of inputs and

produces a set of outputs. All too often, programs fail to work as their authors

intended, because the programs have bugs or make assumptions about the input

data which are not always true. Programmers often structure or design programs

with an eye towards evaluation and testing in order to avoid or minimize these

pitfalls.19 Many respected and popular approaches to software engineering are

based on the idea that code should be written in ways that make it easier to

analyze.20 For example, the programmer can:

 Organize the code into modules that can be evaluated separately and

then combined.21

 Test these modules for proper functionality both individually and in

groups, possibly even testing the entire computer system end-to-end. Such testing

generally involves writing test cases, or expected scenarios in which each module

18 For example, hydraulically operated control surfaces in a vehicle will telegraph resistance to the

operator when they are close to a dangerous configuration, but the same controls operated by

computer can omit feedback, allowing the computer to request configurations of actuators that are

beyond their tolerances. This is a problem especially in the design of robotic arms and fly-by-wire

systems for aircraft.
19 See Andrew Hunt & David Thomas, The Pragmatic Programmer: From Journeyman to Master

(2000).
20 In particular, Test Driven Development (TDD) is a software engineering methodology practiced

by many major software companies. For a general description of how TDD integrates automated

testing into software design, see Kent Beck, Test-Driven Development: By Example (2003).
21 See Hunt & Thomas, supra note 19, at .

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

11 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-11-

will run, and may involve running test cases each time the software is changed to

avoid introducing new bugs or taking away functionality unintentionally.22

 Annotate the code with “assertions,” simple statements about the

code that describe error conditions under which the program should crash

immediately. Assertions are intended to be true if the program is running as

expected. They become false when something is amiss and cause the program to

crash (with an error message), rather than continuing in an errant state. In this way,

assertions are a special kind of program error--a point at which a piece of software

considers its internal state and its environment, and stops if these do not match what

had been assumed by the program’s author.23

 Provide a detailed description specifying the program’s behavior

along with a machine-checkable proof that the code satisfies this specification. This

differs from using assertions in that the proof guarantees ahead of time that the

program will work as intended in all cases (or, equivalently, that an assertion of the

facts covered by the proof will never fail to be true). When feasible, this approach

is the most helpful thing a programmer can do to facilitate testing because it can

provide real proof (rather than just circumstantial evidence or evidence linked to a

particular point in a program’s execution, as with assertions) that the whole

program operates as expected.24

These techniques are illustrative examples from a larger toolbox. Testing

and verification of software and the development of tools to facilitate it comprise a

rich and active subfield of computer science research. A thriving industry builds

tools to assist in the development of software, and there is a constant debate about

the practice of software engineering in the technology industry more broadly.

Below, we give a brief taxonomy of this area, as well as some examples of tools,

expectable results, and limitations of each category. We conclude this Section by

22 See Steve McConnell, Code Complete: A Practical Handbook of Software Construction (2d ed.

2004).
23 This technique is originally due to 1 Herman H. Goldstine & John von Neumann, Planning and

Coding of Problems for an Electronic Computing Instrument (1947), but it is now a widely used

technique. For a historical perspective, see Lori A. Clarke & DavidS. Rosenblum, A Historical

Perspective on Runtime Assertion Checking in Software Development, Software Engineering Notes

(ACM Special Interest Grp. on Software Eng’g, New York, N.Y.), May 2006, at 25.
24 A simple example is a technique called model checking, usually applied to computer hardware

designs, in which the property desired and the hardware or program are represented as logical

formulae, and an automated tool performs an exhaustive search (i.e., tries all possible inputs) to

check whether those formulae are not consistent. See, e.g., Edmund M. Clarke, Jr. et al., Model

Checking (1999). An even simpler example comes from the concept of types in programming

languages, which associate the data values on which the program operates into descriptive classes

and provide rules for how those classes should interact. For example, it should not be possible to

add mathematically a number like “42” to a string of text like “Hello, World!” Because both kinds

of data are represented inside the computer as bits and bytes, without a type system, the computer

would be free to try executing this nonsensical behavior, which might lead to bugs. Type systems

can help programmers avoid mistakes and express extremely complex relationships among the data

processed by the program. For a more thorough explanation of type systems and model checking,

see Benjamin C. Pierce, Types and Programming Languages (2002).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

12 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-12-

describing why testing code after it has been written, however extensively, cannot

provide true assurance of how the system works, because any analysis of an existing

computer program is inherently and fundamentally incomplete. This

incompleteness implies that observers can never be certain that a computer system

has a desired property unless that system has been designed to guarantee that

property.

When technologists evaluate computer systems, they attempt to establish

invariants, or facts about a program’s behavior which are always true regardless of

a program’s internal state or what input data the program receives.25 Invariants can

cover details as small as the behavior of a single line of code but can also express

complex properties of entire programs, such as which users have access to which

data or under what conditions the program can crash. By structuring code modules

and programs in a way that makes it easy to establish simple invariants, it is possible

to build an entire computer system for which important desirable invariants can be

proved.26 Together, the set of invariants that a program should have make up its

specification.27

Software code is, ultimately, a rigid and exact description of itself: the code

both describes and causes the computer’s behavior when it runs.28 In contrast,

public policies and laws are characteristically imprecise, often deliberately so.29

Thus, even when a well-designed piece of software does assure certain properties,

there will always remain some room to debate whether those assurances match the

25 See C.A.R. Hoare, An Axiomatic Basis for Computer Programming, Comm. ACM, Oct. 1969, at

576, .
26 See id. at .
27 Specifications can be formal and written in a specification language, in which case they are rather

like computer programs unto themselves. For example, the early models of core internet technology

were written in a language called LOTOS, built for that purpose. See Tommaso Bolognesi & Ed

Brinksma, Introduction to the ISO Specification Language LOTOS, 14 Computer Networks &

ISDN Sys. 25, (1987). Other common specification languages in practical use include Z and UML.

It is even possible to build an executable program by compiling such a specification into a

programming language or directly into machine code, an area of computer science research known

as program synthesis. See Zohar Manna & Richard Waldinger, A Deductive Approach to Program

Synthesis, 2 ACM Transactions on Programming Languages & Sys. 90, (1980). Research has

shown that when the language in which a program or specification is written more closely matches

a human-readable description of the program’s design goals, programs are written with fewer bugs.

See Michael C. McFarland et al., The High-Level Synthesis of Digital Systems, 78 Proc. IEEE 301

(1990) (summarizing early “high-level language” oriented program synthesis); see also McConnell,

supra note 22, at (arguing that the number of software bugs is constant when measured by lines of

written code). Specifications can also be informal and take the form of anything from a mental

model of a system in the mind of a programmer to a detailed written document describing all goals

and use cases for a system. The world of industrial software development is full of paradigms and

best practices for producing specifications and building code that meets them.
28 See David A. Patterson & John L. Hennessy, Computer Organization and Design: The

Hardware/Software Interface (5th ed. 2014).
29 See, e.g., Joseph A. Grundfest & A.C. Pritchard, Statutes with Multiple Personality Disorders:

The Value of Ambiguity in Statutory Design and Interpretation, 54 Stan. L. Rev. 627, 628 (2002)

(explaining how legislators often obscure the meaning of a statute to allow for multiple

interpretations).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

13 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-13-

requirements of public policy. The methods described in this Article are designed

to forward, rather than to foreclose, debates about what laws mean and how they

ought to work. Our approach aims to empower the policy process, by empowering

the policymaker’s tools for dealing with ambiguity and lack of precision, namely

review and oversight. We wish to show that software does work as described,

allowing a reviewer to determine precisely which properties of the software created

a particular rule enforced for a particular decision. Further, if a precise specification

of a policy does exist, we wish to show that software which claims to implement

that policy in fact does so.

The specification of a system is a critical question for assessment, and

system implementers should be prepared to describe the invariants that their system

provides. Verification allows the claims of a system’s implementer to constitute

evidence that the software in question in fact satisfies those claims.30 Without

strong evidence of a computer system’s correctness, even the author of that system

cannot reliably claim that it will behave according to a desired policy, and no

policymaker or overseer should believe such a claim. For example, a medical

radiation device with a software control module was approved for use on patients

based on the manufacturer’s claims, but a subtle bug in the software allowed it to

administer unsafe levels of radiation, which resulted in six accidents and three

deaths.31

Computer scientists evaluate programs using two testing methodologies: (1)

static methods, which look at the code without running the program; and

(2)dynamic methods, which run the program and assess the outputs for particular

inputs or the state of the program as it is running.32 Dynamic methods can be

divided into (1) observational methods in which an analyst can see how the program

runs in the field with its natural inputs; and (2) testing methods, which are more

powerful, where an analyst chooses inputs and submits them to the program.33

1. Static Analysis: Review from Source Code Alone

Reading source code does allow an analyst to learn a great deal about how

a program works, but it has some major limitations. Code can be complicated or

obfuscated, and even expert analysis often misses eventual problems with the

behavior of the program.34 For example, the Heartbleed security flaw was a

potentially catastrophic vulnerability for most internet users that was caused by a

30 See Carlo Ghezzi et al., Fundamentals of Software Engineering (2d ed. 2002).
31 The commission reviewing the accidents determined that overconfidence on the part of engineers

and operators led to both a failure to prevent the problem in the first place and a failure to recognize

it as a problem even after multiple accidents had occurred. For an overview, see Nancy Leveson,

Medical Devices: The Therac-25, in Safeware: System Safety and Computers app. (1995), an update

of the earlier article Nancy G. Leveson & Clark S. Turner, An Investigation of the Therac-25

Accidents, Computer, July 1993, at 18.
32 See Flemming Nielson et al., Principles of Program Analysis (1999).
33 See id. at .
34 As an example, the Heartbleed bug was in code that was subjected to significant expert review

and careful static analysis with industry leading tools, but was still missed for years. See Edward

W. Felton & Joshua A. Kroll, Heartbleed Shows Government Must Lead on Internet Security, 311

Sci. Am. no. 1, 2014, at 14.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

14 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-14-

common programming error--but that error made it through an open source vetting

process and then sat unnoticed for two years, even though anyone was free to read

and analyze the code during that time.35 While there exist automated tools for

discovering bugs in source code, even best-of-breed commercial solutions designed

to discover exactly this class of error did not find the Heartbleed bug because its

structure was subtly different from what automated tools had been designed to

recognize.36 This experience underscores how difficult it can be to find small and

simple mistakes. More complex errors evade scrutiny even more easily.

Further, static methods on their own say nothing about how a program

interacts with its environment.37 A program that examines any sort of external data,

even the time of day, may have different behavior when run in different contexts.

For example, it has long been programming practice to use the time of day as the

starting value for a chaotic function used to produce random numbers in programs

that do statistical sampling.38 Such programs naturally choose a different sample of

data based on the time of day when they were started, meaning that their output

cannot be reproduced unless the time is explicitly represented as an input to the

program.

Depending on the technology used to implement a program, static analysis

might lead to incomplete or incorrect conclusions simply because it fails to consider

the dependencies--that is, the other software that a given program needs in order to

operate correctly.39 For some technologies, the same line of code can have radically

different meanings based on the version of even a single dependency.40 Because of

this, it is necessary for static analysis to cover a large portion of any system, and to

include at least some dynamic information about how a program will be run.

 Within limits, static methods can be very useful in establishing facts

about a program, such as the nature of the data it takes in, the kind of output it can

35 Edward W. Felten & Joshua A. Kroll, Heartbleed Shows Government Must Lead on Internet

Security, Sci. Am. (Apr. 16, 2014), http://www.scientificamerican.com/article/heartbleed-shows-

government-must-lead-on-internet-security [https://perma.cc/QLN4-TUQM].
36 Id.
37 See Nielson et al., supra note 32, at .
38 This practice dates back at least as far as the 1989 standard for the C programming language. See

ANSI X3.159-1989 “Programming Language C.”
39 See, e.g., Managing Software Dependencies, Gov.UK Service Manual,

https://www.gov.uk/service-manual/technology/managing-software-dependencies

[https://perma.cc/3BA8-CXED] (“Most digital services will rely on some third party code from

other software to work properly. This is called a dependency.”).
40 For example, it is common to re-use “library” code, which provides generic functionality and can

be shared across many programs. Ghezzi et al., supra note 30. Library functions can be very different

from version to version, meaning that running a program with a different version of the same library

can radically change its behavior. It can even change programs that fail to run at all into running,

working programs. Because Microsoft Windows refers to its system libraries as “Dynamic Linked

Libraries,” developers often call this “DLL Hell.” Rick Anderson The End of DLL Hell,

Microsoft.com (Jan. 11, 2000). Further, in some programming languages, such as PHP, the meaning

of certain statements is configurable. See The Configuration File, PHP,

http://php.net/manual/en/configuration.file.php) [https://perma.cc/9LFC-62D9] (describing

configuration of PHP).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

15 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-15-

produce, the general shape of the program, and the technologies involved in the

program’s implementation.41 In particular, static analysis can reveal the kinds of

inputs that might cause the program to behave in particular ways.42 Analysts can

use this insight to test the program on different types of inputs. Advanced analysis

can, in some cases, determine aspects of a program’s behavior and establish

program invariants, or facts about the program’s behavior which are true regardless

of what input data the program receives.43 Programs which are specially designed

to take advantage of more advanced analysis techniques can enable an analyst to

use static methods to prove formally complex invariants about the program’s

behavior.44 On the simplest level, some programming languages are designed to

prevent certain classes of mistakes. For example, some are designed in such a way

that it is impossible to make the mistake that caused the Heartbleed bug.45 These

techniques have also been deployed in the aviation industry, for example, to ensure

that the software that provides guidance functionality on rockets, airplanes,

satellites, and scientific probes does not ever crash, as software failures have caused

the losses of several vehicles in the past.46 More advanced versions of these

41 See Nielson et al., supra note 32, at .
42 In programming languages, the most basic structure for expressing behavior that depends on a

value is a conditional statement, often written as if X then Y else Z. A conditional statement will

execute certain code (Y) if the condition (X) is met and different code (Z) if the condition is not

met. Static analysis can reveal where a program has conditional logic, even if it may not always be

able to determine which branch of the conditional logic will actually be executed. For example,

static analysis of conditional logic might show an analyst that a program behaves one way for inputs

less than a threshold and another way otherwise, or that it behaves differently on some particular

special case. Generalizing this analysis can allow analysts to break the inputs of a program into

classes and evaluate how the program behaves on each class. For an overview of logical constructs

in computer programs, see Harold Abelson et al., Structure and Interpretation of Computer Programs

(2d ed. 1996).
43 See Hoare, supra note 25, at .
44 See Nielson et al., supra note 32, at .
45 Since Heartbleed was caused by improper access to the program’s main memory, see Felten &

Kroll, supra note 35, computer scientists refer to the property that a program has no such improper

access as “memory safety.” For a discussion of the formal meaning of software safety, see Pierce,

supra note 24, at . For an approachable description of possible memory safety issues in software,

see Erik Poll, Lecture Notes on Language-Based Security ch. 3,

https://www.cs.ru.nl/E.Poll/papers/language_based_security.pdf [https://perma.cc/YJ23-6PG6].

Several modern programming languages are memory safe, including some, such as Java, that are

widely used in industrial software development. However, while any system could be written in a

memory safe language, developers often choose memory unsafe languages for performance and

other reasons.
46 Both the Ariane 5 and Mars Polar Lander crashed due to software failures. See J.L. Lions,

Chairman, Ariane 501 Inquiry Bd., Ariane 5: Flight 501 Failure (1996); James Gleick, Little Bug,

Big Bang, N.Y. Times Mag. (Dec. 1, 1996), http://www.nytimes.com/1996/12/01/magazine/little-

bug-big-bang.html [https://perma.cc/D4JE-V7K2]; see also Arden Albee et al., JPL Special Review

Bd., Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions (2000),

http://spaceflight.nasa.gov/spacenews/releases/2000/mpl/mpl_report_1.pdf

[https://perma.cc/RE9Z-PX6L]. Similarly, a software configuration error caused the crash of an

Airbus A400M military transport. Sean Gallagher, Airbus Confirms Software Configuration Error

Caused Plane Crash, Ars Technica (June 1, 2015), http://arstechnica.com/information-

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

16 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-16-

techniques may eventually lead to strong invariants being much more commonly

and less expensively used in a wider range of applications.

Transparency advocates often claim that by reviewing a program’s

disclosed source code, an analyst will be able to determine how a program

behaves.47 Indeed, the very idea that transparency allows outsiders to understand

how a system functions is predicated on the usefulness of static analysis. But this

claim is belied by the extraordinary difficulty of identifying even genuinely

malicious code (“malware”), a task which has spawned a multibillion-dollar

industry based largely on the careful review of code samples collected across the

internet.48 Of course, under some circumstances, transparency can also use dynamic

methods such as emulating disclosed code on disclosed input data. We discuss

transparency further in Part II.

2. Dynamic Testing: Examining a Program’s Actual Behavior

By running a program, dynamic testing can provide insights not available

through static source code review. But again, there are limits. While static methods

may fail to reveal what a program will do, dynamic methods are limited by the finite

number of inputs that can be tested or outputs that can be observed. This is

important because decision policies tend to have many more possible inputs than a

dynamic analysis can observe or test.49 Dynamic methods, including structured

auditing of possible inputs, can explore only a small subset of those potential

inputs.50 Therefore, no amount of dynamic testing can make an observer certain

that he or she knows what the computer would do in some other situation that has

yet to be tested.51

technology/2015/06/airbus-confirms-software-configuration-error-caused-plane-crash

[https://perma.cc/X9A4-X9CH].
47 See Frank Pasquale, The Black Box Society: The Secret Algorithms That Control Money and

Information 40 (2015).
48 Malware analysis can also be dynamic. A common approach is to run the code under examination

inside an emulator and then examine whether or not it attempts to modify security-restricted portions

of the system’s configuration. For an overview, see Manuel Egele et al., A Survey on Automated

Dynamic Malware-Analysis Techniques and Tools, 44 ACM Computing Surveys (CSUR) 6 (2012).
49 Computer scientists call this problem “Combinatorial Explosion.” It is a fundamental problem in

computing affecting all but the very simplest programs. Edward Tsang, Combinational Explosion,

U. Essex (May 12, 2005),

http://cswww.essex.ac.uk/CSP/ComputationalFinanceTeaching/CombinatorialExplosion.html

[https://perma.cc/R7KE-4BJD].
50 Even auditing techniques that involve significant automation may not be able to cover the full

range of possible input data if that range cannot be limited in advance to a small enough size to be

searched effectively. For programmers testing their own software, achieving complete coverage of

a program’s behavior by testing alone is considered impossible. Indeed, if testing for the correct

behavior of a program were possible at a modest cost, then there would be no bugs in modern

software. For a formal version of this argument, see H.G. Rice, Classes of Recursively Enumerable

Sets and Their Decision Problems, 74 Transactions Am. Mathematical Soc’y, 358 (1953).
51 Computer security experts often worry about so-called “back doors,” which are unnoticed

modifications to software that cause it to behave in unexpected, malicious ways when presented

with certain special inputs known only to an attacker. There are even annual contests in which the

organizers “propose a challenge to coders to solve a simple data processing problem, but with covert

malicious behavior. Examples include miscounting votes, shaving money from financial

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

17 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-17-

Dynamic testing can be divided into “black-box testing,” which considers

only the inputs and outputs of a system or component, and “white-box testing,” in

which the structure of the system’s internals is used to design test cases. Intuitively,

white-box evaluation is more powerful, since any test that can be performed in a

black-box setting can also be performed in a white-box setting, but white-box

evaluation can suggest more robust test cases by showing an analyst when multiple

tests will yield the same behavior or what inputs are likely to trigger differences in

the output.52 White-box analysis also helps the developers and operators of a system

determine how to monitor its operation so that deviations from expected behavior

(e.g., unforeseen bugs, security compromise, abuse, and other unexpected

behavior) can be detected and remedied.53

Even structured “audits” of software systems, in which systems are

provided with related inputs and analyzed for differential behavior, cannot provide

complete coverage of a program’s behavior for the same reason: this methodology

explains little about what happens to inputs which have not been tested, even those

that differ very slightly.54 Additionally, auditing that treats a system as a black box

tells an analyst very little about why differential behavior was observed. A

computer program could treat two inputs very differently because it has been

explicitly designed to use special case logic for one or both, because those inputs

naturally fall into different decision categories, or because the decision rule in use

is very sensitive to small changes in its input.

One extremely straightforward and very commonly used form of dynamic

program review comes from the practice of logging, or recording certain program

actions in a file either immediately before or immediately after they have taken

place.55 Analysis of log messages is among the easiest and is perhaps the most

common type of functional review performed on most software programs.

However, analyzing program logs requires that programs be written to log when

they perform events which might be interesting for analysis (and that they log

enough information about those events to actually perform the analysis in

transactions, or leaking information to an eavesdropper. The main goal, however, is to write source

code that easily passes visual inspection by other programmers.” The Underhanded C Contest,

http://www.underhanded-c.org/_page_id_2.html [https://perma.cc/82N4-FBDP]. Back doors have

been discovered sitting undetected for many years in commercial, security-focused infrastructure

products subject to significant expert review, including the Juniper NetScreen line of devices. See

Matthew Green, On the Juniper Backdoor, Few Thoughts on Cryptographic Engineering (Dec. 22,

2015). http://blog.cryptographyengineering.com/2015/12/22/on-juniper-backdoor

[https://perma.cc/M7S8-SCM4] (describing the unauthorized code that created a security

vulnerability in the Juniper devices).
52 See Glenford J. Myers et al., The Art of Software Testing (3d ed. 2011).
53 See Slawek Ligus, Effective Monitoring and Alerting 1-2 (2012) (describing how to perform

monitoring effectively, as opposed to verifying a system’s behavior through testing alone).
54 See infra note 59 and accompanying text.
55 Logging is now sufficiently common to be a basic feature of most programming languages. For

an overview of early uses, see Ronald E. Rice & Christine L. Borgman, The Use of Computer-

Monitored Data in Information Science and Communication Research, 34 J. Am. Soc’y Info. Sci.

247 (1983).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

18 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-18-

question).56 And because logs are just like other files on a computer, they can easily

be modified and rewritten to contain a sequence of events that bears no relation to

what a system’s software actually did. Because of this, audit logs meant to record

sensitive actions requiring reliable review are generally access controlled or sent to

special restricted remote systems dedicated to receiving logging data.57

3. The Fundamental Limit of Testing: Noncomputability

Testing of any kind is, however, a fundamentally limited approach to

determining whether any fact about a computer system is true or untrue. There are

some surprising limitations to the ability to evaluate code statically or dynamically.

Counterintuitively, the power of computers is generally limited by a concept that

computer scientists call noncomputability.58 In short, certain types of problems

cannot be solved by any computer program in any finite amount of time. There are

many examples of noncomputable problems, but the most famous is Alan Turing’s

“Halting Problem,” which asks whether a given program will finish running (“halt”)

and return an answer on a given input or will run forever on that input. No algorithm

can solve this problem for every program and every input.59 As a corollary, no

testing regime can establish any property for all possible programs, since no regime

can even determine whether all programs will actually terminate.60 A related

theorem, proposed by Rice, strongly limits the theoretical effectiveness of testing,

saying that for any nontrivial property of a program’s behavior, no algorithm can

always establish whether a program under analysis has that property.61 Any such

algorithm must get some cases wrong even if the algorithm can do both static and

dynamic analyses of the program.62 However, testing can be very useful in

establishing certain specific invariants on restricted classes of programs, and can

be made much more useful when programs are designed to facilitate the use of

testing to establish those invariants. That is, while testing is not guaranteed to work

56 See, e.g., Bernard J. Jansen, Search Log Analysis: What It Is, What’s Been Done, How to Do It,

28 Libr. & Info. Sci. Res. 407 (2006).
57 A common feature of security breaches of computer systems is that attackers will rewrite logs to

prevent investigation into how the attack was carried out or who did it. See Dr. Eric Cole et

al., Network Security Bible 198 (2005) (noting that the “early stages of an attack often deal with

deleting and disabling logging”). Modifying logs in this way can even allow attackers to avoid losing

access to a compromised system once the compromise has been detected, since it obscures what

steps must be taken to remediate the intrusion. See generally id. (describing how security breaches

happen, how they are investigated, and how attackers try to cover the traces of their activity).
58 See Michael Sipser, 2 Introduction to the Theory of Computation (2006).
59 See A.M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem,

42 Proc. London Mathematical Soc’y 230, 259-63 (1937) (proving that the Hilbert

Entscheidungsproblem has no solution); see also A.M. Turing, On Computable Numbers, with an

Application to the Entscheidungsproblem. A Correction, 43 Proc. London Mathematical Soc’y 544,

544-46 (1937) (providing a correction to the original proof).
60 To see why this is so, imagine writing a new program which halts if it decides that the program it

is testing has a certain property, and which runs forever otherwise. For a more detailed version of

this argument, see Sipser, supra note 58, at .
61 Rice, supra note 50.
62 Id.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

19 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-19-

in general, it can often be useful in specific cases, especially when those cases have

been designed to facilitate testing.

While both static and dynamic methods are after-the-fact assessments--they

take the computer system and its design as a given--using both approaches together

is often helpful. If an analyst can establish through static methods that a program

behaves identically over some class of inputs,63 the analyst can test a single input

from that class and infer the program behavior for the rest of the class. However,

not every computer program will be able to be fully analyzed, even with such a

combination of methods.

B. The Importance of Randomness

Randomness is essential to the design of many computer systems, so any

approach to accountability must grapple with it.64 However, when randomness is

used, it is easy to lose accountability, since by definition any outcome which a

randomized process could have produced is at least facially consistent with the

design of that process.65 Accountability for randomized processes must determine

why randomness was needed and determine that the source of that randomness and

its incorporation into the process under scrutiny meets those goals.

The most intuitive benefit of randomness in a decision policy is that it helps

prevent strategic behavior--i.e., “gaming” of a system. When a tax examiner, for

example, uses software to choose who is audited, randomization makes it

63 This can be done, for example, by noting where in a program’s source code it considers input

values and changes its behavior. See infra note 68, at 161 and accompanying text.
64 In fact, there is suggestive theoretical evidence that the power of randomness may be fundamental:

there are problems for which the best known randomized algorithm performs much better than the

best known deterministic algorithm. For example, the well-studied “multi-armed bandit” problem

in statistics has seen wide application in the field of machine learning, where randomized

decisionmaking strategies are provably more efficient than nonrandomized ones. See, e.g., J.C.

Gittins, Bandit Processes and Dynamic Allocation Indices, 41 J. Royal Stat. Soc’y 148, 148 (1979)

(providing a formal mathematical definition of the multi-armed bandit problem); see also Richard

S. Sutton & Andrew G. Barto, Reinforcement Learning (1998) (providing a general overview of

the usefulness of the multi-armed bandit problem in machine learning applications).

Even outside of machine learning, there are strong indications in computer science theory that

certain problems can be solved efficiently only via randomized techniques. Although it is obvious

that every efficient algorithm also has an efficient randomized version (which is just rewritten to

take some random bits as input and ignore them), it is conjectured but not known that the converse

is not true, namely that every efficient randomized algorithm also has a deterministic version that

solves the same problem with comparable efficiency. For a summary of work in this area, see Leonid

A. Levin, Randomness and Nondeterminism, 1994 Proc. Int’l Congress Mathematicians 1418.

Many important problems, from finding prime numbers (which is necessary for much modern

cryptography), to estimating the volume of an object (which is useful in computer graphics and

vision algorithms), to most machine learning, had well-understood randomized algorithms that

solved them long before they had efficient deterministic solutions (many still do not have any known

efficient and deterministic algorithms). For an example, see Morton, infra note 107.
65 For example, a winning lottery ticket with the numbers “1 2 3 4 5” is just as likely to be correct

as any other ticket, and yet it seems strikingly unlikely. In a similar way, it will always be necessary

when randomness is involved in a process to ensure that even outcomes that are “correct” in the

sense that the system could have produced them are also correct in the sense that they fulfill the

goals which necessitated randomness in the first place (e.g., in a lottery, that the winning ticket

numbers not be known in advance of their selection and not be influenced by the lottery operators).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

20 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-20-

impossible for a taxpayer to be sure whether or not he or she will be audited. Those

who are evading taxes, in particular, face an unknown risk of detection—--which

can be minimized, but not eliminated--and do not know whether, or when, they

should prepare to be audited. Similarly, if additional security screening is applied

at random to those crossing a checkpoint, or if the procedures at the checkpoint are

changed at random on a day-to-day basis, a smuggler or attacker cannot be as

prepared as if the procedures were fully known in advance.66 Additionally, studies

of the performance of human guards have shown that randomization in procedures

reduces boredom, thereby improving vigilance.67

The card game of poker illustrates a second benefit: randomness can

obscure secret information. A good poker player has secret information--how good

her cards are--that affects how she will bet. By occasionally bluffing, she

randomizes her behavior and makes it more difficult for opponents to infer the

quality of her hand.

In situations where a scarce or limited resource must be apportioned to

equally deserving recipients such that not all qualified applicants can receive a

share, randomness can help by fairly apportioning resources to participants in a way

that cannot be controlled or predicted by those in control of the resource. For

example, the Diversity Visa Lottery, considered in Part II, is a case where a random

lottery allocates a scarce resource--a limited number of visas to live and work in

the United States. Randomness as a source of fairness requires two attributes: first,

the outcome must not be controlled by the system’s operator, or else the

randomness serves little purpose when compared to a model where the system’s

operator just chooses the winners; and second, the outcome must not be predictable,

or else the operator of such a system could put its favored winners into certain slots

or slip them “winning tickets” prior to the system’s operation. Further, it is

important that the random choices made when the system is run be binding upon

the system’s operator, so that the system cannot be run many times to control the

eventual output by shopping for a favorable result among many actual runs of the

system. We explore precisely how to address these issues below.

Many machine learning systems use randomization as part of their normal

operation. It turns out that guessing randomly and adjusting the probability of each

class of output often leads to much better performance than trying to determine the

absolute best decision at any point.68

66 See, e.g., James Pita et al., Deployed ARMOR Protection: The Application of a Game Theoretic

Model for Security at the Los Angeles International Airport, 2008 Proc. 7th Int’l Conf. on

Autonomous Agents & Multiagent Sys.: Industry & Applications Track 125 (describing a software

system that uses a game-theoretic randomized model to improve the efficiency of police and federal

air marshal patrols at the Los Angeles International Airport).
67 See, e.g., Richard I. Thackray et al., FAA Civ. Aeromedical Institute, Physiological, Subjective, and

Performance Correlates of Reported Boredom and Monotony While Performing a Simulated Radar

Control Task (1975) (discussing the improvement of performance through increased

unpredictability in procedures).
68 The use of randomization is found throughout artificial intelligence and machine learning. For a

survey of the field, see Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach

(1995). Some models naturally depend on randomness. See, e.g., Kevin B. Korb & Ann E.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

21 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-21-

Finally, randomization can give computers more flexibility to perform well

in unexpected environments. Consider how the Roomba robot is programmed to

vacuum rooms.69 If rules of motion were hard-coded in the software controlling the

robot, an unusual furniture configuration might lead to the Roomba getting stuck in

a corner or under a table or repeatedly following the same path without cleaning

the rest of the room. Adding in randomized motion allows it to escape these patterns

and work more effectively without the need to code in all possible room

configurations. By allowing for unknowns, randomized strategies can avoid worst-

case outcomes with high probability, no matter how unfriendly the environment

turns out to be.70

However, poorly designed randomization can lead to unaccountable

automated decisions. If a decision depends on a randomly selected value, then any

outcome consistent with some possible value of the random choice, no matter how

unlikely, must be considered valid. Concretely, if a decision is based on the

outcome of a coin flip, even if the coin is biased to land heads up 99 times out of

100, a result based on a tails up flip cannot be shown to be improper, since one out

of every 100 results will be derived from the value of tails. A corrupt decisionmaker

could influence this supposedly random choice, picking the value of the coin

consistent with its preferred outcome, or could flip many coins and then assign the

value of each flip to the set of decisions he has to make (perhaps by changing the

order in which he considers decisions) in such a way as to pick the outcomes he

desires. Random choices generated by a computer system can also be remade by

re-running a program until the outputs match a preferred outcome. Without

designing the computer system to demonstrate that this is not happening, it is very

hard for a decisionmaker to prove that he has not done this. The speed of automated

decisionmaking only increases this risk; while physical randomization of balls in a

tumbler can only produce a small number of values per hour of effort, a computer

can try thousands or millions of outcomes in a matter of minutes.

Nicholson, Bayesian Artificial Intelligence § 1.1 (2004) (describing a model of probabilistic

reasoning that depends on reckoning with randomness). Other methods simply use randomness as

an efficient way to explore a large space of possible strategies, in which case it is generally necessary

to try to build a model many times, evaluate the differences, and report back an estimate of

confidence in the system’s correct construction. See Volodya Vovk et al., Machine-learning

Applications of Algorithmic Randomness, 1999 Proc. Sixteenth Int’l Conf. on Machine Learning

444 (describing one approach to integrating randomness to improve a machine learning model).
69 For a description of the Roomba’s movement algorithm, see Ja-Young Sung et al., “My Roomba

is Rambo”: Intimate Home Appliances, in 2007 Proc. 9th Int’l Conf. on Ubiquitous Computing 145.
70 More concretely, one study showed that computer-generated teaching plans customized to

particular students can be less effective than lesson plans without customization if the software

model used to tailor lessons to individual performance is trained on large groups that do not capture

individual-specific patterns. This failure of “big data” methods trained on large groups of students

to properly capture the quirks of a “small data” situation (such as a classroom-sized group of

students) can be avoided by adding random deviations from the model’s prediction and tracking the

results of these deviations. See, e.g., Yun-En Liu et al., Trading Off Scientific Knowledge and User

Learning with Multi-Armed Bandits, 2014 Proc. 7th Int’l Conf. on Educ. Data Mining 161

(observing the introduction of small changes on result prediction).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

22 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-22-

Additionally, a randomized process is not easily reproduced. For example,

if it depends on interaction with its environment (e.g., the operating system on

which it is running, its human user, or a database with rapidly changing records),

its behavior may be altered in a nondeterministic way since that environment can

change between runs.71 One unwieldy solution to this problem is to capture all of

the environment in which a program runs, so that this environment can be replayed

by an analyst. However, this solution does not address how to verify all of the

reasons that randomness might be needed in a process.

II. Designing Computer Systems for Procedural Regularity

The first goal in any plan to govern automated decisionmaking should be to

enable the people overseeing the process--whether they are government officials,

corporate executives, or members of the public--to know how a computer system

makes decisions (or, at the very least, that it makes decisions based on some rule,

even if that rule is not fully disclosed). A baseline requirement in most contexts is

procedural regularity: each participant will know that the same procedure was

applied to her and that the procedure was not designed in a way that disadvantages

her specifically.72 This baseline requirement draws on the Fourteenth Amendment

principle of procedural due process. Ever since a seminal nineteenth century case,

the Supreme Court has articulated that procedural due process requires rules to be

generally applicable and not designed for individual cases.73 Similarly, federal

statutes articulate the requirement for procedural regularity in administrative

agency actions.74 These principles are also enshrined in the Federal Rules of Civil

Procedure for civil litigation.75

In this Part, we will demonstrate that the tools of computer science can

guarantee important elements of procedural regularity when they are incorporated

in the initial design of computer systems. Specifically, these tools can assure that:

 The same policy or rule was used to render each decision.

 The decision policy was fully specified (and this choice of policy

was recorded reliably) before the particular decision subjects were known, reducing

the ability to design the process to disadvantage a particular individual.

71 One specific example is a program that chooses a random value based on the time that it has been

running but takes different amounts of time to run based on what other programs are running on the

same physical computer system.
72 For example, a tax auditing risk assessment should not single out individuals either by name or

by identifying characteristics. If a process added extra weight to filers of a particular postal code,

gender, and birth month, this could be enough to single out individuals in many cases. See, e.g.,

Paul Ohm, Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization,

57 UCLA L. Rev. 1701, 1716-27 (2010) (showing that an individual’s identity may be reverse-

engineered from a small number of data points).
73 See Marchant v. Pa. R.R., 153 U.S. 380, 386 (1894) (holding that the plaintiff had due process

because “her rights were measured, not by laws made to affect her individually, but by general

provisions of law applicable to all those in like condition”).
74 See Administrative Procedure Act, 5 U.S.C. §§ 551-59 (2012) (prescribing exhaustive procedural

requirements for most levels of federal administrative agency action).
75 See Fed. R. Civ. P. 1 (noting that the rules apply “in all civil actions and proceedings . . . to secure

the just . . . determination of every action and proceeding” (emphasis added)).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

23 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-23-

 Each decision is reproducible from the specified decision policy and

the inputs for that decision.

 If a decision requires any randomly chosen inputs, those inputs are

beyond the control of any interested party.

After describing these properties and showing how they can be

implemented, we will apply them to a case study--the Diversity Visa Lottery at the

State Department--where application of these tools could greatly improve the

legitimacy and fairness of an automated decision procedure.

A. Transparency and Its Limits

A naïve solution to the problem of verifying procedural regularity is to

demand transparency of the source code as well as inputs and outputs for the

relevant decisions; if all of these elements are public, it seems easy to determine

whether procedural regularity was satisfied. Indeed, full or partial transparency can

be a helpful tool for governance in many cases,76 and transparency has often been

suggested as a remedy to accountability issues for computerized systems.77

However, transparency alone is not sufficient to provide accountability in all cases.

First and foremost, it is often necessary to keep secret the elements of a

decision policy, the computer systems that implement it, key inputs, or the outcome.

Keeping aspects of a decision policy secret can help prevent strategic “gaming” of

a system. For example, the IRS may look for signs in tax returns that are highly

correlated with tax evasion based on returns previously audited.78 But if the public

knows exactly which things on a tax return are treated as telltale signs of fraud, tax

cheats may adjust their behavior and the signs may lose their predictive value for

the agency. Moreover, when the decision being regulated is a commercial one, such

as a decision to offer credit, a business’s legitimate interest in protecting proprietary

information or guarding trade secrets like the underwriting formula may be

incompatible with full transparency. And in many contexts, an automated decision

may use as inputs, or will create as an output, sensitive or private data that should

not be broadly shared to protect business interests, privacy, or the integrity of law

enforcement or investigative methods. In some cases, especially with financial or

medical data, disclosure may be barred or limited by statutes or regulations.79

Finally, in many situations--such as scoring consumers for credit or insurance risk-

-the purpose of the automated decision process is to determine something not

76 See Danielle Keats Citron & Frank Pasquale, The Scored Society: Due Process for Automated

Predictions, 89 Wash. L. Rev. 1, 8, 18-20 (2014) (arguing that “transparency of scoring systems is

essential”).
77 See 14 C.F.R. § 255.4 (2015) (requiring transparency for airline reservation system display

information); Frank Pasquale, Beyond Innovation and Competition: The Need for Qualified

Transparency in Internet Intermediaries, 104 Nw. U. L. Rev. 105, 160-61 (2010) (suggesting

transparency in broadband networks to hold carriers accountable for potential favoritism and

discrimination).
78 See Jeff Reeves, IRS Red Flags: How to Avoid a Tax Audit, USA Today (Mar. 15, 2015 12:08

PM), http://www.usatoday.com/story/money/personalfinance/2014/03/15/irs-tax-audit/5864023

[https://perma.cc/BFW5-DG34] (identifying characteristics of tax returns that trigger IRS audit).
79 See, e.g., 45 C.F.R. § 164.502 (2015) (restricting the disclosure of personally identifiable

information collected by health care providers).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

24 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-24-

directly measurable, such as the risk of defaulting on credit or claiming a loss on

an insurance policy. Because these values cannot be measured directly, they are

computed from proxy variables such as a consumer’s credit history, income, or

personal attributes. Consumers who understand these actuarial processes would be

rational in attempting to control the input proxy variables, which in turn could

render the scoring process less useful in elucidating unmeasurable risk.80 Secrecy

discourages strategic behavior by participants in the system and prevents violations

of legal restrictions on disclosure of data.

Second, while transparency allows for the testing strategies described

earlier (i.e., static and dynamic tests including auditing), those methods are often

insufficient to verify properties of software systems if these systems have not been

designed with future evaluation and accountability in mind.81

Third, for decision processes that involve some element of randomness,

even full transparency--of the system’s source code, its inputs, its operating

environment, and its results--does not foreclose the possibility that an outcome

could be improperly fixed in an undetectable way, as described in Section I.C.82 A

classic lottery provides an excellent example. A perfectly transparent algorithm that

uses a random number generator to assign a number to each participant and has the

participants with the lowest numbers win will yield results that cannot be

reproduced or verified because the random number generator will produce different

random numbers each time. Reviewing the code alone, or even together with the

data fed into it and the environment in which it was operated, does not tell us that

it was actually used to produce a particular result. By design, the process produces

unpredictable results that are not reproducible.

Fourth and finally, systems that change over time cannot be fully

understood through transparency alone. System designers regularly change

complicated automated decision processes--such as search engine ranking

80 In particular, consumers are rational to modify proxy variables that control their perceived risk

when those variables are cheaper or easier to manipulate than the gain obtained via better treatment

by the decision system. Intuitively, if proxy variables are weak and easy to alter or sometimes poorly

correlated with the feature being measured (e.g., standardized test scores as a measure of student

learning), they are more likely to be gamed than features which are highly proximate to the value

being estimated, or which are difficult or expensive to alter (e.g., annual income as a measure of

creditworthiness in a particular transaction). See generally Cathy O’Neil, Weapons of Math

Destruction: How Big Data Increases Inequality and Threatens Democracy (2016). In economic

policymaking, this is sometimes known as Goodhart’s Law, popularly formulated as “[w]hen a

measure becomes a target, it ceases to be a good measure;” Goodhart formulated it more formally

as “[a]ny observed statistical regularity will tend to collapse once pressure is placed upon it for

control purposes.” C.A.E. Goodhart, Problems of Monetary Management: The U.K. Experience, in

1 Papers in Monetary Economics (1976). Hardt and his co-authors have developed adversarial

methods for designing automated decision and classification systems that remain robust even in the

face of gaming. See Moritz Hardt et al., Strategic Classification, 2016 Proc. 2016 ACM Conf. on

Innovations Theoretical Computer Sci. 111 (discussing methods to strengthen classification

models).
81 See supra Part I.
82 There are ways to incorporate randomness that can be replicated. See infra subsection II.B.3.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

25 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-25-

methodology,83 spam filter rules,84 intrusion detection system methods,85 or the

algorithms that select website ads--in response to strategic behavior by participants

in the system.86 Computer systems that choose social media posts to display to users

might respond to user behavior. “Online” machine learning systems can update

their model for predictions after each decision, incorporating each new observation

as part of their training data. Even knowing the source code and data for such

systems is not enough to replicate or predict their behavior--we also must know

precisely how and when they interacted or will interact with their environment.

Whether updates to the system are effected by human engineers and operators (e.g.,

a search engine engineer modifies the software used to rank pages) or by a machine

learning system (e.g. the search engine’s software discovers that users more often

click the second link for a certain query instead of the first, so it reverses their

order), transparency alone does little to explain either why any particular decision

was made or how fairly the system operates across bases of users or classes of

queries. With such systems, there is the added risk that the rule disclosed is obsolete

by the time it can be analyzed. Online machine learning systems update their

decision rules after every query, meaning that any disclosure will be obsolete as

soon as it is made.

B. Auditing and Its Limits

Beyond transparency, auditing is another strategy for verifying how a

computer system works. An audit treats the decision process as a black box, whose

inputs and outputs are visible but whose inner workings are unseen.87 The approach

has a long history in offline contexts, such as testing for discrimination in retail car

negotiations.88 For retail car negotiations, the transparency of the bargaining

83 For a list of updates to one search engine, see Google: Algorithm Updates, Search Engine Land,

http://searchengineland.com/library/google/google-algorithm-updates [https://perma.cc/XV4Z-

AFF9].
84 Many spam filters work by keeping a list of bad terms, email addresses, and computers to block

messages from. The most widely used “blacklist” is produced by the organization Spamhaus. See

SBL Advisory, Spamhaus, https://www.spamhaus.org/sbl [https://perma.cc/V9LN-EPK9]

(describing the Spamhaus Block List Advisory, “a database of IP addresses from which Spamhaus

does not recommend the acceptance of electronic mail”).
85 Intrusion detection systems work in a similar way, using a set of “signatures” to identify bad

network traffic from attackers. See Karen Kent Frederick, Network Intrusion Detection Signatures,

Part One, Symantec (Dec. 19, 2001), https://www.symantec.com/connect/articles/network-

intrusion-detection-signatures-part-one [https://perma.cc/Q9XY-TQCA] (discussing signatures for

network intrusion detection systems).
86 See Jure Leskovec et al., Mining of Massive Data Sets ch. 8 (2d ed. 2014).
87 See generally Christian Sandvig et al., Auditing Algorithms: Research Methods for Detecting

Discrimination on Internet Platforms (May 22, 2014), , http://www-

personal.umich.edu/~csandvig/research/Auditing%20Algorithms%20--%20Sandvig%20--

%20ICA%202014%20Data%20and%20Discrimination%20Preconference.pdf

[https://perma.cc/DS5D-3JYS] (describing algorithm audits and reviewing possible audit study

designs).
88 See Ian Ayres, Fair Driving: Gender and Race Discrimination in Retail Car Negotiations, 104

Harv. L. Rev. 817, 818 (1991) (using auditing to determine “[w]hether the process of negotiating

for a new car disadvantages women and minorities”).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

26 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-26-

process for the purchase of a car is insufficient to determine if different prices are

offered based on race or gender.89

In computer science, auditing refers to the review of digital records

describing what a computer did in response to the inputs it received.90 Auditing is

intended to reveal whether the appropriate procedures were followed and to

uncover any tampering with a computer system’s operation. For example, there is

a substantial body of literature in computer science that addresses audits of

electronic voting systems,91 and security experts generally agree that proper

auditing is necessary but insufficient to assure secure computer-aided voting

systems.

Computer scientists, however, have shown that black-box evaluation of

systems is the least powerful of a set of available methods for understanding and

verifying system behavior.92 Even for measuring demonstrable properties of

software systems, such as testing whether a system functions as desired without

bugs, it is much more powerful to be able to understand the design of that system

and test it in smaller, simpler pieces.93 Approaches that attempt to review system

failures simply by looking at how the output responds to changes in input are

limited by either an inability to attribute a cause to those changes or an inability to

interpret whether or why a change is significant.94 Instead, software developers

regularly use other, more powerful evaluation techniques.95 These include white-

box testing (in which a the person doing a test can see the system’s code, and uses

that knowledge to more effectively search for bugs) and using programming

languages that automatically preclude certain types of mistakes.96

89 See id. at 827-28 (observing that women and minorities received worse prices than white males

even when using the same negotiation strategy).
90 See Douglas W. Jones, Auditing Elections, 47 Comms. ACM 46, (2004).
91 See Joseph Lorenzo Hall, Election Auditing Bibliography (Feb. 12, 2010),

https://josephhall.org/eamath/bib.pdf [https://perma.cc/L397-AATD] (collecting scholarly

literature discussing audits in elections).
92 Specifically, white-box testing, in which an analyst has access to the source code under test, is

generally considered to be superior; even in cases where the basic testing approach does not make

use of the structure of the software (e.g., so-called “fuzz testing” where a program is subjected to

randomly generated input), testing benefits from some access to the structure of programs. See supra

note 52 and accompanying text.

 Also, consider the difficulties encountered in one such audit study. The authors show a

causal relationship between changing sensitive, protected attributes (e.g., gender) and the

advertisements presented to a user (e.g., advertisements for high-paying jobs). See Amit Datta et al.,

Automated Experiments on Ad Privacy Settings: A Tale of Opacity, Choice, and Discrimination,

2015 Proc. Privacy Enhancing Techs. 92, 105-06. However, the methodology is unable to identify

the mechanism of this causation or even whether the results discovered will generalize beyond the

data seen in the study. Id. at 105.
93 See supra notes 20-23 on approaches to structuring software.
94 For example, if the output of a system is an error or other failure such as a crash, it is not obvious

to an analyst how to modify the output to learn much at all.
95 See supra Section I.A.
96 See supra note 24.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

27 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-27-

C. Technical Tools for Procedural Regularity

As we demonstrated above, transparency and auditing often do not suffice

for accountability. In this Section, we introduce computational methods that can

provide accountability for procedural regularity even when some information is

kept secret. These methods can be used alongside transparency and auditing when

appropriate and apply to all computer systems.97

Our approach harnesses the power of computational methods and does not

take the design of the computer system as a given. Instead, we explicitly advocate

for systems to be designed to use methods such as the ones described here. Nor do

we give up on governance when all or part of a computer system must remain secret.

We rely on several advanced techniques from computer science to enable the

governance of secret decision systems: software verification, cryptographic

commitments, zero-knowledge proofs, and fair random choices. Counterintuitively,

even when a piece of software or the data input to it is secret, these methods can

guarantee that the software and inputs satisfy the requirements for procedural

regularity. They can verify that the same decision policy was used for each decision,

that the policy was determined and recorded before inputs were known, and that

the outcomes are reproducible. Just because a given computer system or piece of

software is secret does not mean that nothing about that system can be known.

1. Software Verification

Software verification is a set of techniques for proving mathematically that

software has certain properties, either by analyzing existing code or by building

software using specialized tools for extracting proved correct invariants. It has been

a promising field for many decades, and while many benefits are only realized in

research prototypes today, these methods are finding increasing industrial adoption,

especially in sectors where software is safety or security-critical and in domains

with strong liability regimes.98 While the complete verification of any program is

97 While the methods we propose are general, they can be inefficient for certain applications. The

cost of providing a certain level of accountability must be considered as part of the design of any

policy requirement. For more detail, see Kroll, infra note 119.
98 While software verification has been embraced by the aviation and industrial control sectors and

for some financial applications (for example, the hedge fund Jane Street regularly touts its use of

formal software analysis in recruiting materials sent to computer science students), it has yet to see

much adoption in the critical fields of healthcare and automotive control. See Jean Souyris et al.,

Formal Verification of Avionics Software Products, 2009 Proc. of the 2nd World Congress on

Formal Methods 532 (describing the use of software verification at Airbus); Norbert Volker &

Bernd J. Kramer, Automated Verification of Function Block-Based Industrial Control Systems, 42

Sci. Computer Programming 101 (2002). Indeed, researchers have effected compromises of

embedded healthcare devices such as pacemakers. See, e.g., Daniel Halperin et al., Pacemakers and

Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses, 2008 IEEE

Symp. on Security and Privacy 129, 141 (finding that implantable cardioverter defibrillators are

“potentially susceptible to malicious attacks that violate the privacy of patient information” and

“may experience malicious alteration to the integrity of information or state”). News reports also

indicate that former Vice President Dick Cheney had the remote software update functionality on

his pacemaker disabled so that updating the software would require surgery, ostensibly in order to

prevent remote compromise of his life-critical implant. Andrea Peterson, Yes, Terrorists Could Have

Hacked Dick Cheney’s Heart, Wash. Post (Oct. 21, 2013),

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

28 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-28-

an expensive undertaking largely reserved to technologists versed in this particular

area, it is important as a matter of policy to understand the options that are available

so that costs and benefits can be weighed and acted upon.

Unlike static analysis, which aims to examine already-written code for bugs

or deviations from its specification, or software testing, which aims to verify that

software meets a specific set of functional requirements by explicitly executing the

software in a particular configuration, software verification aims to prove invariants

about a program mathematically, using logic to reason about a program’s behavior

under all conditions.99 Verified programs come with a mathematically checkable

proof demonstrating that they have certain invariants, rendering testing for those

invariants unnecessary, as the proof implies that such tests will always pass.100

There are many ways to verify software. For instance, a program can be

carefully annotated using formal logic to determine its behavior in a precise

manner, though this can be expensive and will not always yield the desired

invariants;101 a program can be certified by another program which translates it to

https://www.washingtonpost.com/news/the-switch/wp/wp/2013/10/21/yes-terrorists-could-have-

hacked-dick-cheneys-heart[https://perma.cc/VY5S-6XR6].

 Additionally, researchers have also demonstrated spectacular compromises of automobile

control systems, including disabling brakes, controlling steering and acceleration, and completely

cutting engine power. See Karl Koscher et al., Experimental Security Analysis of a Modern

Automobile, 2010 IEEE Symp. on Security and Privacy 447 (performing early analyses of the

security of automobile computers); see also Stephen Checkoway et al., Comprehensive

Experimental Analyses of Automotive Attack Surfaces 2011 Proc. 20th USENIX Conf. on Security

77 (same). Subsequently, researchers have demonstrated problems in other models, including luxury

models with significant telematics capabilities and remote software upgrade capability, showing that

active maintenance of these software systems does not completely defend against attacks. See, e.g.,

Jonathan M. Gitlin, Man Hacks Tesla Firmware, Finds New Model, Has Car Remotely

Downgraded, Ars Technica (Mar. 8, 2016 11:36 AM), http://arstechnica.com/cars/2016/03/man-

hacks-tesla-firmware-finds-new-model-has-car-remotely-downgraded [https://perma.cc/R9C5-

9RTY] (describing an incident where a Tesla car model was hacked despite frequent software

updates). Problems with spontaneous acceleration in many Toyota vehicles were later traced to

software issues. See Phil Koopman, A Case Study of Toyota Unintended Acceleration and Software

Safety (Sept. 18, 2014),

https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

[https://perma.cc/VP9T-VYMF] (presenting a detailed analysis of the issue). And of course,

Volkswagen designed its engine control software to defeat an emissions testing regime. For a

complete timeline of the Environmental Protection Agency’s actions on this matter, see Volkswagen

Light Duty Diesel Vehicle Violations for Model Years 2009-2016, EPA.gov,

https://www.epa.gov/vw [https://perma.cc/C83U-UZLG] (last updated Nov. 7, 2016).
99 See supra Section I.A.
100 See supra notes XX-XX.
101 For one of the earliest approaches to representing programs as statements in formal logic, see

C.A.R. Hoare, An Axiomatic Basis for Computer Programming, 12 Comm. ACM 576, 576-80

(1969). While Hoare’s techniques form the basis of many modern methods, some methods attempt

to build software that is correct by virtue of its construction, rather than analyzing software that has

already been written. For an overview of different approaches and their tradeoffs, see B. Bérard et

al., Systems and Software Verification: Model-Checking Techniques and Tools (2001). For a classic

reference on how to include these techniques in the software engineering process, see Carlo Ghezzi

et al., Fundamentals of Software Engineering (2d ed. 2003).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

29 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-29-

a form which is guaranteed to have the desired property;102 a program can be

exhaustively tested for all possible inputs to ensure that an invariant is never

violated;103 or a program can be built using tools that allow for the careful

specification of invariants (and proofs of those invariants).104 Researchers have

even verified entire operating systems using these techniques.105 Verification can

be communicated to clients in a number of ways: so called proof-carrying code

comes with a machine-checkable proof of its verified invariants which can be

checked by a user just prior to running the program;106 a user can recompute the

analysis used to generate the proof; or the truth of the proof can be confirmed by

an entity the user trusts, with cryptography used to guarantee that the version a user

is running matches the version that was verified.107

102 These tools are known as “certifying compilers.” The advantage of a certifying compiler is that

one need only expend effort verifying the certifying compiler itself, not the software being compiled,

in order to prove that the desired invariant holds for the compiled software. For a description of the

original concept and a first implementation, see George C. Necula & Peter Lee, The Design and

Implementation of a Certifying Compiler, 33 ACM SIGPLAN Notices 333 (1998). There are many

examples of certified compiler systems. See, e.g., Joshua A. Kroll et al., Portable Software Fault

Isolation, 2014 Proc. IEEE 27th Computer Security Found. Symp. 18 (describing a certifying

software fault isolation compiler built out of CompCert’s certified back end).
103 This technique, known as “model checking,” could also be described as a form of static analysis.

Model checking aims to verify an invariant by finding a counterexample (an input to the program

which makes the invariant untrue and hence not an invariant). If a counterexample can be found, the

program has a demonstrable bug. If no counterexample can be found, that invariant has been

verified. See supra note XX and infra note XX.
104 Several such programming languages exist, though one of the more successful toolkits in active

research is the proof assistant Coq, which allows for writing complex programs and theorems and

invariants about those programs, in such a way that the proved-correct programs can be “extracted”

into executable code. For an introduction to Coq, see Adam Chlipala, Certified Programming with

Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant (2013) and Yves Bertot &

Pierre Castéran, Interactive Theorem Proving and Program Development: Coq’Art: The Calculus

of Inductive Constructions (2004) (describing advanced programming techniques). Several large

and complex programs have been written in Coq, which demonstrates that it is a robust tool capable

of supporting nontrivial development tasks and proofs of correctness about those tasks. Perhaps the

most famous of these was the proof of the “four-color theorem,” which states that any map can be

drawn using only four colors such that no border on the map uses the same color for the regions on

both sides of the border. Georges Gonthier, Formal Proof--The Four-Color Theorem, 55 Notices

AMS 1382 (2008). Similar tools include a theorem prover for programs written in ANSI Common

Lisp 2 and the interactive theorem prover Isabelle. See Lawrence C. Paulson, The Foundation of a

Generic Theorem Prover, 5 J. Automated Reasoning 363 (describing the design and

implementation of Isabelle).
105 See Gerwin Klein et al., seL4: Formal Verification of an OS Kernel, 2009 Proc. ACM SIGOPS

22nd Symp. on Operating Sys. Principles 207 (documenting the verification of the seL4

microkernel).
106 See, e.g., George C. Necula & Peter Lee, Safe Kernel Extensions Without Run-Time Checking, 1996

Proc. Second UNENIX Symp. on Operating Sys. Design & Implementation 229 (describing the

concept of proof-carrying code and a first implementation with applications to operating system

security); see also George C. Necula, Proof-Carrying Code Design and Implementation., in Proof

and System Reliability 261 (H. Schwichtenberg & R. Steibruggen eds., 2002) (giving a detailed

overview of the concepts of proof carrying code and their development over time).
107 This approach would consist of the certifying authority making a cryptographically signed

statement that it had verified the proof for a binary with a certain cryptographic hash value and the

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

30 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-30-

However, just because a program has been verified or proven correct does

not mean that it has been vetted at all for correctness or compliance with a policy.

Verification typically constitutes a proof that the software object in use matches its

specification, but this analysis says nothing about whether the specification is

sufficiently detailed, correct, lawful, or socially acceptable, or constitutes good

policy. Software verification is a rapidly developing field, and the costs of building

fully verified software will likely drop precipitously in the coming decades, leading

to wide adoption in the software industry due to the benefits of reduced security

exposure and the elimination of many types of software bugs.

2. Cryptographic Commitments

A cryptographic commitment is the digital equivalent of a sealed document

held by a third party or in a safe place. It is possible to compute a commitment for

any digital object (e.g., a file, a document, the contents of a search engine’s index

at a particular time, or any string of bytes). Commitments are a kind of promise that

binds the committer to a specific value for the object being committed to (i.e., the

object inside the envelope) such that the object can later be revealed and anyone

can verify that the commitment corresponds to that digital object.108 In this way, as

in the envelope analogy, an observer can be certain that the object was not changed

since the commitment was issued and that the committer did indeed know the value

of the object at the time the commitment was made (e.g., the source code to a

program or the contents of a document or computer file). Importantly, secure

cryptographic commitments are also hiding, meaning that knowledge of the

commitment (or possession of the envelope in the analogy) does not confer

information about the contents. This gives rise to the sealed document analogy:

once an object is “inside” the sealed envelope, an observer cannot see it nor can

anyone change it. However, unlike physical envelopes, commitments can be

published, transmitted, copied, and shared at very low cost and do not need to be

guarded to prevent tampering. In practice, cryptographic commitments are much

smaller than the digital objects they represent.109 Because of this, commitments can

be used to lock in knowledge of a secret (say, an undisclosed decision policy) at a

certain time (say, by publishing it or sending it to an oversight body) without

revealing the contents of the secret, while still allowing the secret to be disclosed

later (e.g., in a court case under a discovery order) and guaranteeing that the secret

distribution of a signed copy of that piece of software. For an overview of code signing systems, see

Code Signing, Certificate Authority Security Council, https://casecurity.org/wp-

content/uploads/2013/10/CASC-Code-Signing.pdf [https://perma.cc/DZU8-TA36].
108 See Ariel Hamlin et al., Cryptography for Big Data Security, in Big Data: Storage, Sharing, and

Security 1, 29 (Fei Hu ed., 2016) (describing cryptographic commitments as a method of

verification).
109 See id. at (noting that commitments can be smaller than the statements to which they relate). A

typical commitment will be 128 or 256 bytes, regardless of the size of the committed object. See

Info. Tech. Lab., Nat’l Inst. of Standards & Tech., FIPS PUB 180-4, Secure Hash Standard(2015)

(describing the hash algorithms accepted for government computer applications, which provide

widely-used standards in industry).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

31 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-31-

was not changed in the interim (for example, that the decision policy was not

modified from one that was explicitly discriminatory to one that was neutral).110

When a commitment is computed from a digital object, the commitment

also yields an opening key, which can be used to verify the commitment.111

Importantly, a commitment can only be verified using the precise digital object and

opening key related to its computation; it is computationally implausible for anyone

to discover either another digital object or another opening key which will allow

the commitment to verify properly. In the envelope metaphor, this is tantamount to

proof that neither the envelope nor the document inside the envelope was replaced

clandestinely with a different envelope or document. Any digital object (e.g., a file,

document, or any string of bytes) can have a commitment and an opening key such

that it is: 1) impossible to deduce the original object from the commitment alone;

2) possible to verify, given the opening key, that the original object corresponds to

the commitment, and 3) impossible to generate a fake object and fake opening key

such that using the (real) commitment and the fake opening key will reveal the fake

object.

Cryptographic commitments have useful implications for procedural

regularity in automated decisions. They can be used to ensure that the same decision

policy was used for each of many decisions. They can ensure that rules

implemented in software were fully determined at a specific moment in time. This

means a government agency or other organization can commit to the assertions that

(1) the particular decision policy was used, and (2) the particular data were used as

input to the decision policy (or that a particular outcome from the policy was

computed from the input data). The agency can prove the assertions by taking its

secret source code, the private input data, and the private computed decision

outcome and computing a commitment and opening key (or a separate commitment

and opening key for each policy version, input, or decision). The company or

agency making an automated decision would then publish the commitment or

commitments publicly and in a way that establishes a reliable publication date,

perhaps in a venue such as a newspaper or the Federal Register. Later, the agency

could prove that it had the source code, input data, or computed results at the time

of commitment by revealing the source code and the opening key to an oversight

110 As a curiosity, we remark that the popular board game Diplomacy is essentially based on physical

world commitments: each player negotiates a set of moves for the next round of the game, but then

these moves are written on paper and passed secretly to a game master who stores them in an

envelope. Once all players have entered their moves, the moves are revealed and taken

simultaneously. This commitment mechanism allows players to simulate simultaneous moves

without any risk that a player will fall behind or change their moves in a particular round in response

to their perception of what another player is doing in that round. However, the commitment

mechanism alone does not prevent players from entering incorrect or impossible moves, writing

nonsense on their paper instead of moves, or simply refusing to enter a move at all (the game master,

however, enforces that all moves placed into the envelope are correct and all players must trust her

to do this to ensure that the game is not spoiled). Below, in the section on zero-knowledge proofs,

we describe how techniques from computer science can address the role of the game master purely

through computation without the need for an entity trusted by all players of the game.
111 See Oded Goldreich, Foundations of Cryptography – A Primer (2005).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

32 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-32-

body such as a court. This technique assures that the software implementing the

decision policy was determined and recorded prior to the publication of the

commitment, which can be useful in demonstrating that neither the software nor the

decision policy were influenced by later information or events.

By themselves, however, cryptographic commitments do not prevent the

committer from lying and generating a fake commitment that it cannot open at all

or from destroying (or refusing to disclose) the information that allows a valid

commitment to be opened. In either case, when the time comes to reveal the

contents of the commitment, it will be demonstrable that the committer has

misbehaved. However, an observer does not know the nature of the misbehavior.

The committer may not have a correct opening key (analogous to having sealed an

unintelligible or irrelevant document in a physical envelope) or may want to lie

about what was in the original file (analogous to discovering that the contents of

the envelope may be embarrassing under scrutiny of oversight). In either case, an

oversight authority might punish the committer for lying and assume the worst

about the contents of the missing file.112 However, it would be preferable to be able

to avoid this scenario altogether, which we can do with another tool, zero-

knowledge proofs, described below.

3. Zero-Knowledge Proofs

A zero-knowledge proof is a cryptographic tool that allows a

decisionmaker, as part of a cryptographic commitment, to prove that the decision

policy that was actually used (or the particular decision reached in a certain case)

has a certain property, but without having to reveal either how that property is

known or what the decision policy actually is.113

For example, consider how money flows in an escrow transaction.

Traditionally, an escrow agent holds payment until certain conditions are met. Once

they are, the agent attests to this fact and disburses the money according to a

predetermined schedule. Zero-knowledge proofs can allow escrow without a

trusted agent. Suppose that an independent sales contractor wishes to certify that

she has remitted appropriate taxes from her sales in order to be paid by a

counterparty, but without revealing precisely how much she was able to sell an item

for. Using a zero-knowledge proof, she can demonstrate that sufficient taxes were

paid without disclosing her sales prices or earnings to a third party.

Another classic example used in teaching cryptography posits that two

millionaires are out to lunch and they agree that the richer of them should pay the

bill. However, neither is willing to disclose the amount of her wealth to the other.

A zero-knowledge proof allows them both to learn who is wealthier (and thus who

should pay the restaurant tab) without revealing how much either is worth.

112 A parallel to this assumption is a spoliation inference, which sanctions a party who withholds,

tampers, or destroys evidence by assuming that the missing or changed evidence was unfavorable

to the spoliator. See Fed. R. Civ. P. 37(e)(2)(A) (providing that if electronically stored information

is lost because a party, intending to deprive the other party of the information, failed to take

reasonable steps to preserve it, the court may “presume that the lost information was unfavorable to

the party”).
113 See Goldreich, supra note 111, at .

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

33 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-33-

A zero-knowledge proof works with cryptographic commitments to verify

procedural regularity in the following manner. If a decisionmaker makes a trio of

commitments, A, B, and C, where A is a commitment to the decision policy, B a

commitment to the inputs that were used in a particular case, and C a commitment

to the decision actually reached in that case, then zero-knowledge proofs let the

public verify that A, B, and C really do correspond to each other. In other words,

the decisionmaker can prove that, when the committed policy A is applied to the

committed input data B, the result is the committed outcome C.

This allows decisionmakers to build audit logs, which can be verified by the

public to confirm that the decisionmaker applied the appropriate policy to the

correct input in order to reach the stated outcome, all without revealing the decision

policy itself and without revealing private data that might be included in the input

or outcome.

Later, if the outcome is challenged, a court or other oversight body can

compel the decisionmaker to reveal the actual policy and input used and can verify

that it matches the published commitment, effectively providing digital evidence

that the decisionmaker was honest about its announced decision. By using a

commitment to the same policy in decisions for multiple decision subjects, a

decisionmaker can demonstrate that it is applying a consistent policy across those

subjects. Such zero-knowledge proofs can be enhanced to test parts of the decision

policy, either by exhibiting properties of the input-output relation (e.g., that a credit

score would have been the same if the subject’s gender were reversed) or properties

of the policy itself (e.g., that the policy only uses certain inputs for certain

purposes).

4. Fair Random Choices

Where random choices are part of a decisionmaking process, the fairness of

the randomness used in those computer systems should be verifiable. Poorly

designed randomization can lead to unaccountable automated decisions. The

decisionmaker could influence the supposedly random choices or could generate

many sets of random values and then pick the set that gives its preferred outcome.

Additionally, a randomized process is not easily reproduced. For example, if it

depends on interaction with its environment (e.g., the operating system on which it

is running or its human user), its behavior may be altered in a nondeterministic way

since that environment can change between runs.114

Automated decision processes must therefore be designed from the

beginning to allow for oversight of the decisionmaker and to avoid problems with

unpredictable behavior. To solve this problem, a decisionmaker could demonstrate

that any unpredictable behavior or random choices in the software does not affect

the eventual output; for example, a program designed to find the top of a hill (i.e.,

114 One example is a program that chooses a random value based on the time that it has been running

but takes different amounts of time to run based on other programs that are running on the same

physical computer system.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

34 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-34-

optimize some objective) can start at any randomly chosen point and take any

arbitrary path upwards and will still ultimately return the same maximum value.115

More often, the random choices made by an automated decision process

will affect the results. In these cases, the software implementing the decision can

always be redesigned to replace the set of random choices made by the software

with a small recorded, random input (a seed value) from which any necessary

random values can be computed in a deterministic, pseudorandom way. In this way,

the decisionmaking process can be replayed so long as the seed is known and the

randomness of the input is completely captured by the randomness of the seed.

Using this technique, a decisionmaker would not have to generate a new random

choice each time a random value is needed by a piece of software (such choices can

be made by a cryptographic algorithm that uses the seed to yield reproducible

values), nor know in advance how many random choices must be made. This

technique allows software that makes random choices, such as a lottery, to be made

fully reproducible and reviewable. Unlike capturing the entire environment, as was

discussed above, this technique reduces the relevant portion of the environment to

a very small and manageable value (the seed) while preserving the benefits of using

randomness in the system.

If this technique is used, we also must prevent the decisionmaker from

tampering with the seed value, as it fully determines all random data accessed by

the program implementing the decision policy. Several methods can aid in ensuring

the fair choice of seed values. A public procedure can be used to select a random

value: for example, rolling dice or picking ping pong balls from the sort of device

used by state lotteries.116 Alternatively, the seed value could be provided by a

trusted third party, such as the random “beacon” operated by the U.S. National

115 In general, this approach will only find the top of some crest, which may or may not be the highest

point on a hill (for instance, if a mountain has two peaks, one much higher than the other).

Randomness helps fix this problem, however, since an algorithm can start climbing the hill at many

different randomly chosen points and verify that they all reach the same highest point. Additionally,

for many important problems, one can prove that only a certain limited number of optimal (i.e.,

highest or lowest) values exist. That is, if an analyst knows that the hill only has one peak, then

which path a program takes to the top is irrelevant. For a description of the gradient descent approach

to optimization and other approaches, see Richard O. Duda et al., Pattern Classification (2d ed.

2001).
116 Currently known strategies for generating public random values (“randomness beacons”) all have

advantages as well as disadvantages--dice could be weighted; ping pong balls could be put in the

freezer and the cold ones picked out of the machine. The National Institute of Standards and

Technology runs a randomness beacon that has come under scrutiny because of distrust of the

National Security Agency. To minimize these types of issues, the algorithm designer should pick

the source of randomness most likely to be trusted by participants, which may vary. The algorithm

designer could choose to collect many sources of random choices and mix them together to

maximize the number of participants who will trust the randomness of the chosen seed. However,

even physical sources of randomness that have not been tampered with have failed to be accountable

for their goals in unexpected ways; for instance, the 1969 lottery for selecting draftees by birthday

was later shown to be biased, with a disproportionate number of selectees coming from months early

in the year. For a detailed overview of the problem and its causes, see Joan R. Rosenblatt & James

J. Filliben, Randomization and the Draft Lottery, Science, Jan. 22, 1971, at 306.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

35 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-35-

Institute of Standards and Technology (NIST).117 In addition, it is possible for a set

of mutually distrustful parties (possibly including decision subjects themselves) to

engage in an interaction that produces a value that is unpredictable so long as at

least one participant provided random input.118 Perhaps, the best option is to mix

together randomness (sometimes called entropy) from many different sources. The

simplest form of this practice would involve a decision subject entering a short

random number as part of the input for their decision (e.g., on an application form).

Then, the decisionmaker would generate a seed value for each decision by

combining this known-to-the-subject, personal random value with (1) a pre-chosen

random value to which the decisionmaker committed to using far in advance of

seeing the personal random value, and (2) a unique identifier for the particular

decision or decision subject that is difficult to change (e.g., the social security

number of the participant). In order to foster maximum confidence that random

choices are not improperly influenced, the decisionmaker should derive them using

a combination of (1) a random value from a trusted third-party; (2) a random value

chosen by the decisionmaker and possibly kept secret; (3) a participant- or decision-

specific identifier that cannot be changed or controlled by the decisionmaker, such

as a social security number, identification number, or other immutable piece of the

subject’s name or data; and (4) a value chosen by the decisionmaker. Since these

values are either outside of the decisionmaker’s control or are known, fixed, and

subsequently verifiable before the inputs to a decision are known, using these

117 Computer science refers to a trusted third-party source of randomness as a “beacon.” The best

known beacon is operated by the NIST, which publishes new random data every few minutes,

ostensibly based on the measurement of quantum mechanical randomness via a device maintained

in a NIST lab. NIST Randomness Beacon, Nat’l Inst. Standards & Tech.

http://www.nist.gov/itl/csd/ct/nist_beacon.cfm [https://perma.cc/UNT3-6N6P] (last updated Sept.

21, 2016). Recent revelations about NIST’s role in allowing the U.S. National Security Agency to

undermine the security of random number generation techniques standardized by NIST have led to

some distrust of the NIST beacon, although it may be trustworthy in some applications. NIST

standardized the Duel EC Deterministic Random Bit Generator (DUAL-EC) in SP 800-90A in 2007.

At that time, cryptographers already knew the standard could accommodate a “backdoor,” or secret

vulnerability. See Dan Shumow & Niels Ferguson, On the Possibility of a Back Door in the NIST

SP800-90 Dual Ec Prng, in 7 Proc. Crypto (2007). Later, it was discovered that the NSA had very

likely made use of this mechanism to create a backdoor in the standard itself. See Daniel J. Bernstein

et al., Dual EC: A Standardized Back Door, in The New Codebreakers 256 (2016). Other beacon

implementations have been proposed, including beacons based on “cryptocurrencies” such as

Bitcoin. See, e.g., Joseph Bonneau et al., On Bitcoin as a Public Randomness

Source, https://eprint.iacr.org/2015/1015.pdf [https://perma.cc/XQ38-FJ3H] (outlining a specific

alternate proposal involving the use of Bitcoin as a source of publicly verifiable randomness).
118 Computer science has methods to simulate a trusted third party making a random choice. These

methods require the cooperation of many mutually distrustful parties, such that as long as any one

party chooses randomly, the overall choice is random. By selecting many participants in this process,

one can maximize the number of people who will believe that the chosen value is in fact beyond

undue influence. For an easy-to-follow introduction to these methods, see Manuel Blum, Coin

Flipping by Telephone: A Protocol for Solving Impossible Problems, in 1981 Crypto, at 11

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

36 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-36-

methods gives assurance that the decisionmaker is not skewing the results by

controlling the selection of random values.119

Where random choices are part of a decisionmaking process, the fairness of

the randomness (i.e., the consistency with the goal for which randomness was

deployed in a particular system) used in those decisions should be verifiable. This

can be achieved by relying on a small random seed and verifying its source. Once

a random seed has been chosen in a satisfactory manner, it is still necessary to verify

that the seed was in fact used in later decisions.120 This can be accomplished by the

techniques we describe.

D. Applying Technical Tools Generally

Our general strategy in designing systems accountable for their procedural

regularity is to require systems to create cryptographic commitments as digital

evidence of their actions. Systems can be designed to publish commitments

describing what they will do (i.e., a commitment to the decision policy enforced by

the system, as represented by source code) before they are fielded and commitments

describing what they actually did (i.e., a commitment to the inputs121 and outputs

of any particular decision) after they are fielded. Zero-knowledge proofs can be

used to ensure that these commitments actually correspond to the actions taken by

a system.122 Indeed, it is possible to use zero-knowledge proofs to verify, for each

decision, that the committed-to decision policy applied to the committed-to inputs

yields the committed-to outputs.123 These zero-knowledge proofs could either be

made public or provided to the system’s decision subjects along with their results.

119 When the fairness of random choices is key to the accountability of a decision process, great care

must be taken in determining the source of random seed values, as many very subtle accountability

problems are possible. For example, by changing the order in which decisions are taken, the

decisionmaker can effectively “shop” for desirable random values by computing future

deterministic pseudorandom values and picking the order of decisions based on its preference for

which decisions receive which random choices. To prevent this, it may also be necessary to require

that the decisionmaker take decisions in a particular order or that the decisionmaker commit to the

order in which it will take decisions in advance of the seed being chosen. For a detailed description

of the problems with randomness “shopping” and post-selection by a decision authority, see Joshua

Alexander Kroll, Accountable Algorithms (Sept. 2015) (unpublished Ph.D dissertation, Princeton

University) (on file with author).
120 For example, several state lotteries have been defrauded by insiders who were able to control

what random values the lottery system used to decide winners. Specifically, an employee of the

Multi-State Lottery Association (MUSL) was convicted of installing software on the system that

controlled the random drawing and using the information gleaned by the software to purchase

winning tickets for the association’s “Hot Lotto” game. See Grant Rodgers, Hot Lotto Rigger

Sentenced to 10 Years, Des Moines Register (Sept. 9, 2015, 7:12 PM),

http://www.desmoinesregister.com/story/news/crime-and-courts/2015/09/09/convicted-hot-lotto-

rigger-sentenced-10-years/71924916 [https://perma.cc/U26A-8VMD] (describing the Iowa lottery

fraud sentencing).
121 Note that, for these commitments to function, systems must also be designed to be fully

reproducible, capturing all interactions with their environments as explicit inputs that can then be

contained in published commitments. The use of seed values for randomization, discussed above in

subsection II.C.4, offers one example of ensuring reproducibility.
122 The approach here was introduced in Kroll, supra note 119.
123 Id.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

37 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-37-

By disclosing commitments instead of source code or inputs and outputs,

system operators can fully explain what their systems do without actually

disclosing how those systems work up front. Later, if it becomes necessary to

review the actions or decision policy of a system during a court case or regulatory

action, system operators can disclose the contents of their commitments (that is,

source code, inputs, and outputs), possibly under a protective regime. If it is

possible to disclose these values publicly, then system operators may also choose

(or be required) to do so. However, whether these data are disclosed or not, the

published commitments and zero-knowledge proofs allow overseers and the public

at large to verify that the decisions of some authority actually correspond to a

specific predetermined policy rather than the arbitrary whim of a decisionmaker.

Further, by observing that all decisions arise from the same policy, anyone

reviewing these commitments can be certain that the policy was used for all

decisions simply by checking that the commitments to the decision policy are

consistent across decisions.

By requiring commitments to be published far in advance of any decision,

it is possible to ensure that the particulars of a decision policy were chosen

independently of the factors in the decisions it would render. For example, a

decision policy that selects which individuals will receive a tax audit should be

based on the risk of tax evasion, which in turn can be inferred by properties of the

tax return itself. However, a corrupt tax authority could pick out individuals for

audit and guess the particulars of their tax return data, then tailor the audit decision

policy accordingly. Further, if a policy must be approved in advance by some

oversight or certification body, the policy would need to be decided on and

implemented in software far enough in advance to admit certification or review.

Finally, if such certification does take place, subjects of the policy’s decisions (or

overseers of those decisions) can be certain after the fact that the policy which was

certified is the policy which was actually used in practice.124

To the extent that the invariants of interest in a computer system are simple

enough to compute, their truth can be verified by the same zero-knowledge proofs

that attest to the relationship between the code, the inputs, and the outputs. Because

powerful, modern zero-knowledge techniques can be applied to any code, they can

also be applied to code that performs the analysis of these invariants, and the

execution of that code can be considered as part of the operation of the system.125

124 Electronic voting systems have suffered from such problems in practice. In many jurisdictions,

voting system software must be certified before it can be used in polling places. Systems are tested

by the Election Assistance Commission (EAC), an independent commission created by the 2002

Help America Vote Act. See Testing and Certification Program, U.S. Election Assistance

Commission, http://www.eac.gov/testing_and_certification [https://perma.cc/8DFX-LTYD]

(detailing the EAC’s testing and certification regime). However, in many cases, updated, uncertified

software has been used in place of certified versions because of pressure to include updated

functionality or bug fixes. See, e.g., Fitrakis v. Husted, No. 2:12-cv-1015, 2012 WL 5411381 (S.D.

Ohio Nov. 6, 2012) (involving a suit arising out of updates to voting systems immediately prior to

the 2012 presidential election in Ohio).
125 For example, suppose that we wish to demonstrate that a decision would be the same if the

subject’s gender were reversed. The software implementing the decision could simply compute the

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

38 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-38-

Simply publishing commitments to the inputs and outputs of a system rather

than making them transparent will not solve all of the issues with transparency

brought up in Part I. However, it can address the need for legitimate secrecy of the

system, its inputs, or its outputs. Because it is possible using these methods to verify

that a particular input and a particular decision policy correspond to a particular

output, it is not strictly necessary to see these values in order to investigate the

system’s procedural regularity.

We describe how certification of procedural regularity can be done for

randomized software, such as software implementing a lottery, in greater detail in

Section II.E below. Later, in Part III, we explain how these tools can extend to

certify other, more complicated invariant properties of interest, enabling proof that

a system comports with substantive goals or principles beyond simple procedural

regularity.

E. Applying Technical Tools to Reform the Diversity Visa Lottery

Armed with these tools, we can turn to the question of how to ensure the

procedural regularity of automated decisionmaking. To illustrate how designing a

computer system can make it more accountable, we will apply the methods

described above to a case study: the Diversity Visa Lottery (DVL) operated by the

U.S. Department of State.

1. Current DVL Procedure

The DVL is run annually by the State Department to grant U.S. permanent

resident visas (“green cards”) to 50,000 immigrants from around the world. The

process, prescribed by 8 U.S.C. 1153(c), is intended to increase the national and

regional diversity of immigrants to the U.S. by granting visas to a sample of people

from countries otherwise underrepresented in the immigrant population.

The annual DVL process operates as follows.126 Would-be immigrants

apply to be entered in the lottery, and applicants are grouped according to their

country of birth. Within each country group, applicants are put into a rank-ordered

list in a random order (the lottery step). The Attorney General then calculates the

number of applicants to accept from each country using a formula based on the

number of immigrants to the U.S. in recent years from each country and region.

The calculated number of applicants is selected from the top of each country’s rank-

ordered list. These “winners” are screened for eligibility to enter the U.S., and they

receive visas if they are eligible. In some years, additional winners are selected so

that all statutorily available visas can eventually be awarded, even if some

applicants fail the screening process, drop out, or fail to proceed with their visa

application.127

decision with a different gender for each subject and confirm that the same result is reached in each

case.
126 See generally Immigration and Nationality Act § 203(c), 8 U.S.C. § 1153(c) (2012); U.S. Dep’t

of State, Foreign Affairs Manual ch. 9, § 502.6.
127 Visa Bulletin for June 2015, U.S. Dep’t St. Bureau Consulate Aff.,

https://travel.state.gov/content/visas/en/law-and-policy/bulletin/2015/visa-bulletin-for-june-

2015.html [https://perma.cc/7H7L-SJKX].

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

39 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-39-

Questions have been raised about the correctness and accountability of this

process. Would-be immigrants sometimes question whether the process is truly

random or, as some suspect, is manipulated in favor of individuals or groups

favored by the U.S. government. This suspicion, in turn, may subject DVL winners

to reprisals, on the theory that winning the DVL is evidence of having collaborated

secretly with U.S. agencies or interests.

There have also been undeniable failures in carrying out the DVL process.

For example, the 2012 DVL initially reported incorrect results due to programming

errors coupled with lax management.128 An accountable implementation of the

DVL could address both issues by demonstrating that there is no favoritism in the

process and by making it easy for outsiders to check that the process was executed

correctly.

2. Transparency Is Not Enough

The DVL is an automated decision system for which transparency alone

cannot solve its problems. First, the software implementing the decisions appears

to be written in an irreproducible way.129 The system relies on the computer’s

operating system to provide random numbers; thus, attempts to replicate the

program’s execution at another time or on another computer will yield different

random numbers and therefore a different DVL result. Notably, no amount of

reading, analyzing, or testing of the software can remedy the nonreplicability of

this software.

Second, the privacy interests of participants bar full transparency. People

who apply to the DVL do not want their information, or even the fact that they

applied, to be published. However, such publication is needed for the process to be

verified through transparency and auditing. The Department could try to work

around this problem by assigning an opaque record ID to each applicant and then

having the lottery choose record IDs rather than applicants, but lottery operators

could manipulate the outcome by retroactively assigning winning record IDs to

people they wanted to favor. Further, it would be difficult to verify that no extra

record IDs corresponding to actual participants had been added.

3. Designing the DVL for Accountability

Instead of this inherently unverifiable approach, we propose a technical

solution for building an accountable version of the DVL.130 Using the techniques

we have described, the State Department can demonstrate that it is running a fair

lottery among a hidden set of participants.131

128 Memo from Howard W. Geisel, Deputy Inspector General, U.S. Dep’t of State, Review of the

FY 2012 Diversity Visa Program Selection Process, ISP-I-12-01 (Oct. 13, 2011),

https://oig.state.gov/system/files/176330.pdf [https://perma.cc/4FWM-URYJ].
129 Id.
130 A full technical analysis is beyond the scope of this paper.
131 Note that it is less straightforward to prove that the set of participants actually considered in the

lottery matches the set of individuals who applied to be included. For example, the operator of the

lottery might insert “shills,” or lottery entries that do not correspond to any real applicant, and if one

of these applications were to be chosen, that place could be given to anyone of the Department’s

choosing. It is technically nontrivial to prove that no extra applications were considered; studies of

end-to-end secure voting protocols provide methods to do so. See, e.g., Daniel Sandler et al.,

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

40 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-40-

We can solve the nonreplicability problem by choosing a random seed, as

described previously. The third-party generating the random value used to create

the seed could be one or more trusted NGOs, or applicants could provide a “PIN”

on their applications.

Recall that the decision policy for the DVL is fixed in statute and hence

publicly known. To provide additional oversight, the State Department could

publish in the Federal Register a commitment to its software source code (far in

advance of any decisions being made) and a commitment to all the inputs (i.e., to

each data element in an application for the US visa) used to create the rank-ordered

list and calculate the cut-off points. The State Department also could provide a zero-

knowledge proof showing that applying the committed-to software to the

committed-to inputs produces the announced lottery results. The proof could also

demonstrate that the commitment to the software published in advance of all

decisions is a commitment to the same software as the one used in each individual

decision. These actions would bind the State Department to its choices of software,

source code, and applicant data; ensure that the commitment to the software was

not a fake; and prove that the same procedure was used to render each decision.

Subsequent auditing by an oversight body could establish that the source code in

the commitment faithfully implements the policy specified by statute (the code

should be designed to enable this).

Finally, the State Department could determine an adequate method for

generating a random seed to be used in the lottery step. This method should

guarantee to the public that it is not possible for the State Department to choose

winners by rearranging applications.132 This could be accomplished by combining

random data chosen at a public ceremony (as is done for state lotteries);

alternatively, the State Department could cooperate with interested NGOs to

produce a verifiable random seed with a random value selected exclusively by the

State Department (and published prior to the ceremony and any lottery applications)

along with something that identifies a particular lottery entry uniquely (e.g., the

applicant’s full application data, reduced by cryptographic hash, to a small numeric

value). Depending on the implementation and application, the State Department

could also include randomness selected by DVL applicants on their application,

which could be harvested passively by tracking mouse movements during the

application process.133

Once these steps are taken, each applicant can be assured that the State

Department’s decision on his application is fully explainable. If the applicant has

questions regarding the process or a governmental overseer wants to audit it, the

decisions will be replicable, and, if necessary, the secret source code and secret

input data (including the random choices made in the lottery step) can be revealed

VoteBox: A Tamper-Evident, Verifiable Electronic Voting System, 2008 Proc. 17th Conf. on

Security Symposium 349 (enunciating the measures necessary to make electronic voting secure).
132 Random choices in the DVL must be demonstrably random even to nonparticipants so that

winners can plausibly claim that they were chosen by lottery and not because of sympathy for U.S.

interests.
133 See supra note XX

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

41 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-41-

and verified--by a court or auditing agency--to be the proper code and data used to

render the decision.134

These solutions depend on both redesigning the software code (a technical

solution) and adopting procedures relating to how the software program is used (a

legal or policy solution). They must be deployed during the design of the decision

process and cannot salvage a poorly designed system after the fact.

In hindsight, it should not be surprising that the path to accountability for

computational processes requires some redesign of the processes themselves. The

same is true for noncomputational administrative processes, where the most

accountable processes are those that are designed with accountability in mind.

III. Designing Algorithms to Assure Fidelity to Substantive Policy

Choices

In Part I, we described methods that permit certification of properties of

systems, and in Part II, we demonstrated how those methods can ensure that

automated decisions are reached in accordance with agreed upon rules, a goal we

called procedural regularity. In this Part, we examine how those methods could be

used to certify other system properties that policymakers desire. Accountability

demands not only that we certify that a policy was applied evenly across all

subjects, but also that those subjects can be certain that the policy furthers other

substantive goals or principles. A subject may want to know: Is the rule correctly

implemented? Is it moral, legal, and ethical? Does it operate in the aggregate with

fidelity to substantive policy choices?

We focus here on the goal of nondiscrimination135 in part because specific,

additional technical tools have developed to assist with it and in part because the

use of automated decisionmaking already has raised concerns about discrimination

and the ability of current legal frameworks to deal with technological change.136

The well-established potential for unfairness in systems that use machine learning,

in which the decision rule itself is not programmed by a human but rather inferred

from data, has heightened these discrimination concerns. However, what makes a

rule unacceptably discriminatory against some person or group is a fundamental

and contested question. We do not address that question here, much less claim to

134 In fact, just as the applicant can be convinced that his decision is explainable without seeing the

secret algorithm or secret inputs, an oversight body can be convinced that particular decisions were

made correctly without seeing the applicant’s inputs, which might contain sensitive data, like health

records or tax returns. Thus, subsequent auditing is rendered more useful and more acceptable to

participants, as it can determine the basis for every decision without revealing sensitive information.
135 The word “discrimination” carries a very different meaning in engineering conversations than it

does in public policy. Among computer scientists, the word is a value-neutral synonym for

differentiation or classification: a computer scientist might ask, for example, how well a facial

recognition algorithm successfully discriminates between human faces and inanimate objects. But,

for policymakers, “discrimination” is most often a term of art for invidious, unacceptable

distinctions among people–-distinctions that either are, or reasonably might be, morally or legally

prohibited. We use the latter meaning here.

136 See Pasquale, supra note 47, at 8-9 (describing the problem of discrimination through the use of

automated decisionmaking).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

42 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-42-

resolve it with computational precision. Instead, we describe how an emerging body

of computer science techniques may be used to avoid outcomes that could be

considered discriminatory.

Fidelity to policy choices like nondiscrimination is a more complicated goal

than procedural regularity, and the solutions that currently exist to address it are

less robust. Technical tools can ameliorate these problems, but they generally

require a well-defined notion of what sort of fairness they are supposed to be

enforcing. In this Part, we outline a few proposed well-defined notions. We present

these techniques as examples of system properties that could be certified using the

techniques described in Part I, but we do not necessarily advocate for any of them;

ultimately, policymakers must decide whether these properties or others square

with nondiscrimination goals.

In addition, the precision of computer code often brings into sharp focus the

tensions surrounding antidiscrimination within current legal frameworks.

Computers favor hard and fast rules over the types of standards and balancing tests

often found in our common law system and civil rights law. While this tension

suggests that doctrinal reform would make it easier to apply computerized

decisionmaking in an area, we are not advocating a policy regime entirely made of

bright line rules or predetermined fairness criteria. In fact, we believe that

investigations of fairness should always be in the purview of ex post review

processes. Instead, we offer an overview of the problem of algorithmic

discrimination, the current state of the related technical tools, and the relationship

of these tools to existing legal frameworks. Our aim is to both elucidate the current

state of the art and suggest directions for further research and action.

A. Machine Learning, Policy Choices, and Discriminatory Effects

We focus here on decisions developed through machine learning--on

situations where a machine has been “trained” through exposure to a large quantity

of data and infers a rule from the patterns it observes. Computers are especially

well-suited to discover patterns in these input-output pairs that can then guide future

decisionmaking. In contrast to human-made rules, these rules for decisionmaking

are induced from historical examples—-they are, quite literally, rules learned by

example. Humans orchestrate a computerized rule-creation process, rather than

imparting the rules directly. These kinds of decisions raise problems for the

methods described in Part I because they do not have obvious decision rules fixed

by the system’s designer, which can be verified in the manner we have described.

Instead, for the tools to apply, policymakers must determine that certain system

properties would reflect substantive policy goals, and if such properties exist, they

can then be certified and permit the type of accountability we have proposed above.

Machine learning is an increasingly common approach to solving problems

that once seemed computationally intractable due to their complexity (e.g., object

recognition in a photograph). The recent movement of software systems into a

growing number of domains owes primarily to successful applications of machine

learning, which is thus the primary focus of our analysis.

A significant concern about automated decisionmaking is that it may

simultaneously systematize and conceal discrimination. Because it can be difficult

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

43 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-43-

to predict the effects of a rule in advance (especially for large, complicated rules or

rules that are machine-derived from data), regulators and observers may be unable

to tell that a rule has discriminatory effects. In addition, decisions made by

computers may enjoy an undeserved assumption of fairness or objectivity.137

However, the design and implementation of automated decision systems can be

vulnerable to a variety of problems that can result in systematically faulty and

biased determinations.138

These decision rules are machine-made and follow mathematically from

input data, but the lessons they embody may be biased or unfair nevertheless.

Below, we describe a few illustrative ways that models, or decision rules derived

from data, generated through machine learning, may turn out to be discriminatory.

We adapt a taxonomy laid out in previous work by Solon Barocas and Andrew D.

Selbst139 and make use of the “catalog of discriminatory evils” of machine learning

systems laid out by Hardt140 and Dwork et al.141

First, algorithms that include some type of machine learning can lead to

discriminatory results if the algorithms are trained on historical examples that

reflect past prejudice or implicit bias, or on data that offer a statistically distorted

picture of groups comprising the overall population. Tainted training data would be

a problem, for example, if a program to select among job applicants is trained on

the previous hiring decisions made by humans, and those previous decisions were

themselves biased.142 Statistical distortion, even if free of malice, can produce

similarly troubling effects: consider, for example, an algorithm that instructs police

to stop and frisk pedestrians. If this algorithm has been trained on a dataset that

overrepresents the incidence of crime among certain groups (because these groups

have historically been the target of disproportionate enforcement), the algorithm

may direct police to detain members of these groups at a disproportionately high

rate (and nonmembers at a disproportionately low rate). Such was the case with the

137 See Paul Schwartz, Data Processing and Government Administration: The Failure of the

American Legal Response to the Computer, 43 Hastings L.J. 1321, 1342 (1992) (describing the

deference that individuals give to computer results as the “seductive precision of output”).
138 See id. at 1342-43 (noting that the computer creates “new ways to conceal ignorance and

subjectivity” because people overestimate its “accuracy and applicability”).
139 See Barocas & Selbst, supra note 8 (describing a taxonomy that isolates specific technical issues

to create a decisionmaking model that may disparately impact protected classes).
140 Moritz A.W. Hardt, A Study of Privacy and Fairness in Sensitive Data Analysis (Nov. 2011)

(Unpublished Ph.D dissertation, Princeton University) (on file with author).
141 Cynthia Dwork et al., Fairness Through Awareness, 2012 Proc. 3rd Innovations in Theoretical

Computer Sci. Conf. 214.
142 See Barocas & Selbst, supra note 8, at 682 (citing Stella Lowry & Gordon Macpherson, A Blot

on the Profession, 296 Brit. Med. J. 657, 657 (1988)) (describing how a hospital developed a

computer program to sort medical school students based on previous decisions that had disfavored

racial minorities and women). Another example is a Google algorithm that showed ads for arrest

records much more frequently when black-identifying names were searched than when white-

identifying names were searched—-likely because users clicked more often on arrest record ads for

black-identifying names and the algorithm learns from this behavior with the purpose of maximizing

click-throughs. Id. at 682-83 (citing Latanya Sweeney, Discrimination in Online Ad Delivery,

Comm. ACM, May 2013, at 44, 47 (2013)).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

44 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-44-

New York City Police Department’s stop-and-frisk program, for which data from

2004 to 2012 showed that 83% of the stops were of black or Hispanic persons and

10% were of white persons in a resident population that was 52% black or Hispanic

and 33% white.143 Note that the overrepresentation of black and Hispanic people in

this sample may lead an algorithm to associate typically black or Hispanic traits

with stops that lead to crime prevention, simply because those characteristics are

overrepresented in the population that was stopped.144

Second, machine learning models can build in discrimination through

choices in how models are constructed. Of particular concern are choices about

which data models should consider, a problem computer scientists call feature

selection. Three types of choices about inputs could be of concern: using

membership in a protected class directly as an input (e.g., decisions that take gender

into account explicitly); considering an insufficiently rich set of factors to assess

members of a protected class with the same degree of accuracy as nonmembers

(e.g., in a hiring application, if fewer women have been hired previously, data about

female employees might be less reliable than data about male employees); and

relying on factors that happen to serve as proxies for class membership (e.g.,

women who leave a job to have children lower the average job tenure for all women,

causing this metric to be a known proxy for gender in hiring applications).

Eliminating proxies can be difficult, because proxy variables often contain other

useful information that an analyst wishes the model to consider (for example, zip

codes may indicate both race and differentials in local policy that is of legitimate

interest to a lender). The case against using a proxy is clearer when alternative

inputs could yield equally effective results with fewer disadvantages to protected

class members. A problem of insufficiently rich data might be remedied in some

cases by gathering more data or more features, but if discrimination is already

systemic, new data will retain the discriminatory impact. While it is tempting to say

that technical tools could allow perfect enforcement of a rule barring the use of

protected attributes, this may in fact be an undesirable policy regime. As previously

noted, there may be cases where allowing an algorithm to consider protected class

status can actually make outcomes fairer. This may require a doctrinal shift, as, in

many cases, consideration of protected status in a decision is presumptively a legal

harm.

Third and finally, there is the problem of “masking”: intentional

discrimination disguised as one of the above-mentioned forms of unintentional

discrimination. A prejudiced decisionmaker could skew the training data or pick

proxies for protected classes with the intent of generating discriminatory results.145

143 David Rudovsky & Lawrence Rosenthal, Debate: The Constitutionality of Stop-and-Frisk in New

York City, 162 U. Pa. L. Rev. Online 117, 120-21 (2013).
144 The underrepresentation of white people would likely cause the opposite effect, though it could

be counter-balanced if, say, the police stopped a subset of white people who were significantly more

likely to be engaged in criminal behavior.
145 See Barocas & Selbst, supra note 8, at 692-93 (describing ways to intentionally bias data

collection in order to generate a preferred result).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

45 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-45-

More pernicious masking could occur at the level of designing a machine learning

model, which is a very human-driven, exploratory process.146

B. Technical Tools for NonDiscrimination

As mentioned in the previous Part, transparency and after-the-fact auditing

can only go so far in preventing undesired results. Ideally, those types of ex post

analyses should be used in tandem with powerful ex ante techniques during the

design of the algorithm. The general strategy we proposed in Section II.D--

publishing commitments and using zero-knowledge proofs to ensure that

commitments correspond to the system’s decisionmaking actions--can certify any

property of the decision algorithm that can be checked by a second examination

algorithm.147 Such properties can be proven by making the examination algorithm

public and giving a zero-knowledge proof that, if the examination algorithm were

run on the secret decision algorithm, it would report that the decision algorithm has

the desired property. The question then is which, if any, properties policymakers

would want to build into particular decision systems.

A simple example of such a property would be the exclusion of a certain

input from the decisionmaking process. A decisionmaker could show that a

particular algorithm does not directly use sensitive or prohibited classes of

information, such as gender, race, religion, or medical status.

The use of machine learning adds another wrinkle because decision rules

evolve on the fly. However, the absence of static, predetermined decision rules does

not necessarily preclude the use of our certification strategy. Computer scientists,

including Hardt,148 Dwork et al.,149 and others, have developed techniques that

formalize fairness in such a way that they can constrain the machine learning

process so that learned decision rules have specific well-defined fairness properties.

These properties also can be incorporated in the design of systems such that their

inclusion in the decisionmaking process can be certified and proven.150

We describe three such properties below. First, decisions can incorporate

randomness to maximize the gain of learning from experience. Second, computer

science offers many emerging approaches to maximize fairness, defined in a variety

of ways, in machine learning systems. At a high level, all of these definitions reduce

to the proposition that similarly situated people should be treated similarly, without

regard to sensitive attributes. As we shall see, simple blindness to these attributes

is not sufficient to guarantee even this simplified notion of fairness. Finally, related

ideas from differential privacy can also be used to guarantee that protected status

could not have been a substantial factor in certain decisions.

146 In other words, the machine learning model would be intentionally coded to develop bias.
147 Such an algorithm might be a tool for verifying properties of software or simply a software test.

See supra Part I (discussing software testing and software verification in greater detail).
148 Hardt, supra note 140.
149 Dwork et al., supra note 141.
150 We concentrate on certification and proof of a system property to an overseer, observer, or

participant. However, these tools are also valuable for compliance (since proofs can certify to the

implementer of a system that the system is working as intended) and for demonstration that a

decisionmaker will be able to show how and why they used certain data after the fact in case of an

audit or dispute.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

46 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-46-

Those who use algorithmic decisionmaking today regularly make assertions

about properties of these algorithms without proving them. This likely occurs

because they are required by law to disclose certain facts about their decision

process to regulators and consumers,151 they simply want to generate good will,152

or they demonstrate better behavior than a competitor.153 But without proof, these

assertions are just words on paper, subject to challenge by skeptical regulators and

disbelief by skeptical consumers. This skepticism is not entirely unfounded: these

assertions have proved false in the past.154 Digital evidence such as zero-knowledge

proofs gives a direct connection between the fact being asserted and the technical

mechanism of decisionmaking. This proof provides the consumer with a high

assurance that the assertion proffered relates meaningfully to the facts on the

ground.

1. Learning from Experience

As mentioned in Section I.B, incorporating randomness into an algorithm

can give it flexibility to operate outside of the environment for which it was

designed. Similarly, randomness can prevent hidden biases in the design or

deployment of an algorithm from leading to consistent discriminatory outcomes.

There is a large and rich literature on how to maximally learn from previous data

and how to use random choices to ensure that a model is as faithful as possible to

the real world.155

Consider a machine learning algorithm for hiring that is trained using a

biased set of initial data indicating that women are weak candidates, even though

gender does not predict job performance among the full population. If the resulting

model would hire mostly men, the algorithm for hiring can create a self-fulfilling

prophecy in which it finds that characteristics of successful hires correlate strongly

with proxies for gender. But, if the algorithm is designed to incorporate an element

of randomness such that some candidates who are not predicted to do well get hired

(and have their performance tracked), the validity of the initial assumptions can be

tested and the accuracy and fairness of the entire system will benefit over time. By

occasionally guessing about candidates for which the model cannot make confident

predictions, the model can gather additional data and evolve to become more

faithful to the real world.

Similarly, randomness is often necessary when training machine learning

models. Models may become too specialized or specific to the data used for

training, a problem called “overfitting.” Randomness can prevent this problem.

Likewise, models may find a decision rule is well-suited for some portion of the

input, but not the best rule overall. Randomness can also help avoid this bias.

Consider, for example, a credit-scoring model trained initially on a biased set of

151 See, e.g., 12 C.F.R §§ 203.4-5 (2015) (providing requirements for the compilation, disclosure,

and reporting of loan data).
152 [CITE example TK]
153 [CITE example TK]
154 [CITE example TK]
155 This literature is divided between the machine learning research community in Computer Science

and the study of optimal decisionmaking in Statistics. See supra note 17.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

47 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-47-

data that underrates the creditworthiness of some minority group. Even if the model

is the best possible decision rule for a population matching the biased input data,

the model may unfairly deny access to credit to members of that minority group. In

addition to the discrimination, the use of this model would deny creditors business

opportunities with the unfairly rejected individuals. Here again, allowing the model

to occasionally guess randomly, while tracking expected versus actual

performance, can improve the model’s faithfulness to the population on which it is

actually used rather than the biased population on which it was trained. The

information from this injection of randomness can be fed back to the model to

improve the accuracy and fairness of the system overall.

2. Fair Machine Learning

One commonly understood way to demonstrate that a decision process is

independent of sensitive attributes is to preclude the use of those sensitive attributes

from consideration. For example, race, gender, and income may be excluded from

a decisionmaking process to assert that the process is “race-blind,” “gender-blind,”

or “income-blind.”156 From a technical perspective, however, this approach is

naive. Blindness to a sensitive attribute has long been recognized as an insufficient

approach to making a process fair. The excluded or “protected” attributes can often

be implicit in other nonexcluded attributes. For example, when race is excluded as

a valid criterion for a credit decision, redlining may occur when a zip code is used

as proxy that closely aligns with race.157

This type of input “blindness” is insufficient to assure fairness and

compliance with substantive policy choices. Although there are many conceptions

of what fairness means, we consider here a definition of fairness in which similarly

situated people are given similar treatment--that is, a fair process will give similar

participants a similar probability of receiving each possible outcome. This is the

core principle of a developing literature on fair classification in machine learning,

an area first formalized by Dwork, Hardt, Pitassi, Reingold, and Zemel.158 This

work stems from a longer line of research on mechanisms for data privacy.159 We

further describe the relationship between fairness in the use of data and privacy

below.

156 See, e.g., 12 C.F.R. § 1002.5(b) (2015) (“A creditor shall not inquire about the race, color,

religion, national origin, or sex of an applicant or any other person in connection with a credit

transaction.”); 12 C.F.R. § 1002.6(b)(9) (2015) (“[A] creditor shall not consider race, color, religion,

national origin, or sex (or an applicant’s or other person’s decision not to provide the information)

in any aspect of a credit transaction.”)
157 See Jessica Silver-Greenberg, New York Accuses Evans Bank of Redlining, N.Y. Times

Dealbook (Sept. 2, 2014), http://dealbook.nytimes.com/2014/09/02/new-york-set-to-accuse-evans-

bank-of-redlining [https://perma.cc/3YFA-6N4J] (detailing a redlining accusation in great detail).
158 Dwork et al., supra note 141.
159 Specifically, the work of Dwork et al. is a generalization of ideas originally presented in Cynthia

Dwork, Differential Privacy, 2006 Proc. 33rd Int’l Colloquium on Automata, Languages &

Programming 1. As discussed below, fairness can be viewed as the property that sensitive or

protected status attributes cannot be inferred from decision outcomes, which is very much a privacy

property.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

48 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-48-

The principle that similar people should be treated similarly is often called

individual fairness and it is distinct from group fairness in the sense that a process

can be fair for individuals without being fair for groups.160 Although it is almost

certainly more policy-salient, group fairness is more difficult to define and achieve.

The most commonly studied notion of group fairness is statistical parity, the idea

that an equal fraction of each group should receive each possible outcome. While

statistical parity seems like a desirable policy because it eliminates redundant or

proxy encodings of sensitive attributes, it is an imperfect notion of fairness. For

example, statistical parity says nothing about whether a process addresses the

“right” subset of a group. Imagine an advertisement for an expensive resort: we

would not expect that showing the advertisement to the same number of people in

each income bracket would lead to the same number of people clicking on the ad

or buying the associated product. For example, a malicious advertiser wishing to

exclude a minority group from a resort could design its advertising program to

maximize the likelihood of conversion for the desired group while minimizing the

likelihood that the ad will result in a sale to the disfavored group. In the same vein,

if a company aimed to improve the diversity of its staff by offering the same

proportion of interviews to candidates with minority backgrounds as are minority

candidate applications, that is no guarantee that the number of people hired will

reflect the population of applicants or the population in general. And the company

could hide discriminatory practices by inviting only unqualified members of the

minority group to apply, effectively creating a self-fulfilling prophecy for decision

rules established by machine learning.

The work of Dwork et al. identifies an additional interesting problem with

the “fairness through blindness” approach: by remaining blind to sensitive

attributes, a classification rule can select exactly the opposite of what is intended.161

Consider, for example, a system that classifies profiles in a social network as

representing either real or fake people based on the uniqueness of their names. In

European cultures, from which a majority of the profiles come, names are built by

making choices from a relatively small set of possible first and last names, so a

name which is unique across this population might be suspected to be fake.

However, other cultures (especially Native American cultures) value unique names,

so it is common for people in these cultures to have names that are not shared with

anyone else. Since a majority of accounts will come from the majority of the

population, for which unique names are rare, any classification based on the

uniqueness of names will inherently classify real minority profiles as fake at a

higher rate than majority profiles,162 and may also misidentify fake profiles using

names drawn from the minority population as real. This unfairness could be

remedied if the system were “aware” of the minority status of a name under

160 Sometimes, a more restrictive notion of individual fairness implies group fairness. Id. Intuitively,

this is because if people who are sufficiently similar are treated sufficiently similarly, there is no

way to construct a minority of people who are treated in a systematically different way.
161 See Dwork et al., supra note 141.
162 That is, the minority group will have a higher false positive rate.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

49 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-49-

consideration, since then the algorithm could know whether the implication of a

unique name is that a profile is very likely to be fake or very likely to be real.163

This insight explains why the approach taken by Dwork et al. is to enforce

similar probabilities of each possible outcome on similar people, requiring that the

aggregate difference in probability of any individual receiving any particular

outcome be limited.164 Specifically, Dwork et al. require that this difference in

chance of outcome be less than the difference between individuals subject to

classification.165 This requires a mathematically precise notion of how “different”

people are, which might be a score of some kind or might naturally arise from the

data in question.166 This notion of similarity must also capture all relevant features,

including possibly sensitive or protective attributes such as minority status, gender,

or medical history. Because this approach requires the collection and explicit use

of sensitive attributes, the work describes its definition of fairness as fairness

through awareness.167 While the work of Dwork et al. provides only a theoretical

framework for building fair classifiers, others have used it to build practical systems

that perform almost as well as classifiers that are not modified for fairness.

The work of Dwork et al. also provides the theoretical basis for a notion of

fair affirmative action, the idea that imposing an external constraint on the number

of people from particular subgroups who are given particular classifications should

have a minimal impact on the principle that similar people are treated similarly.

This provides a technique for forcing a fairness requirement such as statistical

parity even when it will not arise naturally from some classifier.

A more direct approach to making a machine learning process fair is to

modify or select the input data in such a way that the output satisfies some fairness

property. For example, in order to make sure that a classifier does not over-reflect

the minority status of some group, we could select extra training samples from that

group or duplicate samples we already have. In either case, care must be taken to

avoid biasing the training process in some other way or overfitting the model to the

nonrepresentative data.

Other work focuses on fair representations of data sets. For example, we

can take data points and assign them to clusters, or groups of close-together points,

treating each cluster as a prototypical example of some portion of the original data

163 In this case, differential treatment based on a protected status attribute improves the performance

of the automated decision system in a way that requires that the system know and make use of the

value of that attribute.
164 See Dwork et al., supra note 141, at 215 (explaining that fairness can be captured under the

principle that “two individuals who are similar with respect to a particular task should be classified

similarly”).
165 This is formalized as the proposition that the difference in probability distributions between outcomes for each subgroup of the population being

classified is less than the difference between those groups, for a suitable measurement of the difference between groups. For technical reasons,

this particular formulation is mathematically convenient, although different bounds might also be

useful. For the formal mathematical definition, see Dwork et al., supra note 141, at 216.
166 For example, if the physical location of subjects is a factor in classification, we might naturally

use the distance between subjects as one measure of their similarity.
167 Id. at 215.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

50 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-50-

set. This is the approach taken by Zemel, Wu, Swersky, Pitassi, and Dwork.168

Specifically, Zemel et al. show how to generate such prototypical representations

automatically and in a way that guarantees statistical parity for any subgroup in the

original data. In particular, the probability that any person in the protected group is

mapped to any particular prototype is equal to the probability that any person not

from the protected group is mapped to the same prototype.169 Therefore,

classification procedures which have access only to the prototypes must necessarily

not discriminate, since they cannot tell whether the prototype primarily represents

protected or unprotected individuals. Zemel et al. test their model on many realistic

data sets, including the Heritage Health Prize data set, and determine that it

performs nearly as well as best-of-breed competing methods while ensuring

substantial levels of fairness.170 This technique allows for a kind of “fair data

disclosure,” in which disclosing only the prototypes allows any sort of analysis, fair

or unfair, to be run on the data set to generate fair results.

A related approach is to use a technique from machine learning called

regularization, which involves introducing new information to make trained models

more generalizable in the form of a penalty assigned to undesirable model attributes

or behaviors. This approach has also led to many useful modifications to standard

tools in the machine learning repertoire, yielding effective and efficient fair

classifiers.171

The work of Zemel et al. suggests a related approach, which is also used in

practice: the approach of generating fair synthetic data. Given any set of data, we

can generate new data such that no classifier can tell whether a randomly chosen

input was drawn from the real data or the fake data. Furthermore, we can use

approaches like that of Zemel et al. to ensure that the new data are at once

representative of the original data and also fair for individuals or subgroups.

Because synthetic data are randomly generated, they are useful in situations where

training a classifier on real data would create privacy concerns. Also, synthetic data

can be made public for others to use, although care must be taken to avoid allowing

others to infer facts about the underlying real data. Such model inversion attacks172

have been demonstrated in practice, along with other inference or deanonymization

attacks that allow sophisticated conclusions without direct access to the actual data

that give rise to the conclusions.173

168 Richard Zemel et al., Learning Fair Representations, 28 Proc. 30th Int’l Conf. on Machine

Learning 325 (2013).
169 Id.
170 Id.
171 See, e.g., Toshihiro Kamishima et al., Fairness-Aware Learning Through Regularization

Approach, 2011 Proc. 3rd IEEE Int’l Workshop on Privacy Aspects of Data Mining 643 (describing

a model in which two types of regularizers were adopted to enforce fair classification).
172 See Matthew Fredrikson et al., Privacy in Pharmacogenetics: An End-to-End Case Study of

Personalized Warfarin Dosing, 2014 Proc. 23rd USENIX Security Symp. 17 (describing privacy

risks in which attackers can predict a patient’s genetic markers if provided with the model and some

demographic information).
173 For an overview of these techniques, see Arvind Narayanan & Edward W. Felten, No Silver

Bullet: De-identification Still Doesn’t Work (July 9, 2014),

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

51 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-51-

All of these approaches demonstrate that it is possible to build a wide variety

of definitions of fairness into a wide variety of data analysis and classification

systems, at least to the extent that a definition of fairness is known or can be

approximated in advance. There are no bright-line rules that allow the designer or

operator of a machine learning system to guarantee that the system’s behavior is

compliant with antidiscrimination laws. Nor do we believe that such rules can or

even should exist. It is not for technologists to define an ex ante notion of fairness

that applies in all cases or even just for a specific system. Rather, fairness must be

determined contextually and often must be reviewed ex post. Regardless, it is

certainly not impossible to build fairness into automated decision systems, which

shows that unconstrained use of data analysis is not always necessary. Uses of data

that do not employ methods to investigate or ensure fairness must account for their

decision policies in some other way.

Many of these approaches rely on the insufficient notion of group fairness

by statistical parity. To the extent that more technical research can help to address

the problem of unfairness in big data analysis, it is by expanding the repertoire of

definitions of group fairness that can be usefully applied in practice and by

providing better exploratory and explanatory tools for comparing different notions

of fairness. From a public policy perspective, it would be extremely useful to

system designers to have a set of rules, standards, or best practices that explain what

notions of fairness should be used in specific real-world applications.

A complementary notion to machine learning systems that can guarantee

prespecified, formal fairness properties is the work of Rudin on machine learning

systems that are interpretable.174 Such systems generate models that can be used to

classify individuals, but also explanations for why those classifications were made.

These explanations can be reviewed later to understand why the model behaves a

certain way, and in some cases how changes in the input data would affect the

model’s decision. These explanations can be extremely valuable to experts and

oversight authorities, who wish to avoid treating models as black boxes.

3. Discrimination, Data Use, and Privacy

A different way to define whether a classification is fair is to say that we

cannot tell from the outcome whether the subject was a member of a protected

group or not. That is, if an individual’s outcome does not allow us to predict that

individual’s attributes any better than we could by guessing them with no

information, we can say that outcome was assigned fairly. To see why this is so,

observe the contrary: if the fact that an individual was denied a loan from a

particular bank tells you that this individual is more likely to live in a certain

neighborhood, this implies that you hold a strong belief that the bank denies credit

to residents of this neighborhood and hence a strong belief that the bank makes

http://randomwalker.info/publications/no-silver-bullet-de-identification.pdf

[https://perma.cc/VT2G-7ACG], and Arvind Narayanan et al., A Precautionary Approach to Big

Data Privacy (Mar. 19, 2015), http://randomwalker.info/publications/precautionary.pdf

[https://perma.cc/FQR3-2MM2].
174 Cynthia Rudin, Algorithms for Interpretable Machine Learning, 2014 20th ACM SIGKDD Conf.

on Knowledge Discovery & Data Mining 1519.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

52 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-52-

decisions based on factors other than the objective credit risk presented by

applicants.

Thus, fairness can be seen as a form of an information hiding requirement

similar to privacy. If we accept that a fair decision does not allow us to infer the

attributes of a decision subject, we are forced to conclude that fairness is protecting

the privacy of those attributes.

Indeed, it is often the case that people are more concerned that their

information is used to make some decision or classify them in some way than they

are that the information is known or shared. This concern relates to the famous

conception of privacy as the “right to be left alone,” in that generally people are

concerned with the idea that disclosure interrupts their enjoyment of an “inviolate

personality.”175

Data use concerns also surface in the seminal work of Solove, who refers to

concerns about “exclusion” in “information processing,” or the lack of disclosure

to and control by the subject of data processing and “distortion” of a subject’s

reputation by way of “information dissemination.”176 Solove argues that these

problems can be countered by giving subjects knowledge of and control over their

own data.177 In this framework, the predictive models of automated systems, which

might use seemingly innocuous or natural behaviors as inputs, create anxiety on the

part of data subjects. We propose a complementary approach: if a system’s designer

can prove to an oversight entity or to each data subject that the sorts of behaviors

that cause these anxieties are simply not possible behaviors of the system, the use

of these data will be more acceptable.

We can draw an analogy between data analysis and classification problems

and the more familiar data aggregation and querying problems that are much

discussed in the privacy literature. Decisions about an individual represent

(potentially private) information about that individual (i.e., one might infer the

input data from the decision), and this raises concerns for privacy. In essence,

privacy may be at risk from an automated decision that reveals sensitive

information just like fairness may be at risk from an automated decision. In this

analogy, a vendor or agency using a model to draw automated decisions wants those

decisions to be as accurate as possible, corresponding to the idea in privacy that it

is the goal of a data analyst to build as complete and accurate a picture of the data

subject as is feasible.

A naive approach to making a data set private is to delete “personally

identifying information” from the data set. This is analogous to the current practice

of making data analysis fair by removing protected attributes from the input data.

However, both approaches fail to provide their promised protections.178 The failure

175 Samuel D. Warren & Louis D. Brandeis, The Right to Privacy, 4 Harv. L. Rev. 193, 205 (1890).
176 Daniel J. Solove, A Taxonomy of Privacy, 154 U. Pa. L. Rev. 477, 521, 546 (2006).
177 Id. at 546 (detailing privacy statutes that allow individuals to access and correct information that

is maintained by government agencies).
178 Reidentification of individuals based on inferences from disparate data sets is a growing and

important concern that has spawned a large literature in both Computer Science and Law. See Ohm,

supra note 72, 1704 (arguing that developments in computer science demonstrate that “[d]ata can

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

53 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-53-

in fairness is perhaps less surprising than it is in privacy--discrimination law has

known for decades about the problem of proxy encodings of protected attributes

and their use for making inferences about protected status that may lead to adverse,

discriminatory effects.179

The work of Hardt180 relates the work on fairness by Dwork et al.181 to the

work on differential privacy by Dwork.182 As differential privacy is a well-founded

notion of protection against inferences and the recovery of an individual identity

from “anonymous” data, so are formal fairness properties for automated decision

systems sound notions of fairness for individuals and a theoretical framework on

which to ground more complicated notions of fairness for protected groups.

The many techniques of building fair data analysis and classification

systems described above mostly require decisionmakers to have access to protected

status information, at least during the design phase of the algorithm. However, in

many cases, concerns about misuse, reuse, or abuse of this information have led to

a policy regime where decisionmakers are explicitly barred from using such

information. The deployment of these technical tools would require a policy

change.183 The techniques described above could be used to make such a change

less prone to engendering the very real concerns of data abuses that have led to the

current regime.

C. AntiDiscrimination Law and Algorithmic Decisionmaking

The goal of Part II-—procedural regularity-—is relatively simple from a

legal standpoint. Procedural regularity is a core idea behind due process: the state

cannot single out an individual for a different procedure.184 An argument that

governance measures ensuring algorithmic procedural regularity are required by

due process is more tenuous,185 but an agency that implements such measures will

not risk violating a legal requirement.

be either useful or perfectly anonymous but never both,” and that such developments should “trigger

a sea change” in legal scholarship).
179 For example, the law explicitly forbids the (sole) use of certain attributes that are likely to be

highly correlated with protected status categories, as in protections against redlining. See, e.g., 12

C.F.R. § 1002.5(b) (2015) (“A creditor shall not inquire about the race, color, religion, national

origin, or sex of an applicant or any other person in connection with a credit transaction”); 12 C.F.R.

§ 1002.6(b)(9) (2015) (“[A] creditor shall not consider race, color, religion, national origin, or sex

(or an applicant’s or other person’s decision not to provide the information) in any aspect of a credit

transaction.”).
180 Hardt, supra note 140.
181 Dwork et al., supra note 141.
182 Dwork, supra note 159.
183 One example is the privacy regime created by the Health Insurance Portability and Accountability

Act, see supra note 79, which forbids the disclosure of certain types of covered information beyond

those for which the data subject was previously given notice and which limits disclosure to covered

entities subject to the same restrictions.
184 See, e.g., Arthur S. Miller, An Affirmative Thrust to Due Process of Law?, 30 Geo. Wash. L.

Rev. 399, 403 (1962) (“Procedural due process (‘adherence to procedural regularity’), as we have

often been told by Supreme Court justices, is the very cornerstone of individual liberties.”).
185 See Citron, supra note 6, at 1278-1300 (arguing that current procedural protections are inadequate

for automated decisionmaking).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

54 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-54-

In contrast, governance of algorithms to promote nondiscrimination runs

into the complicated field of antidiscrimination law. Here, the movement toward a

colorblind interpretation of equal protection has created friction with the precedents

involving disparate impact. We argue that, given the current state of

antidiscrimination law, designing for nondiscrimination is important because users

of algorithms may be legally barred from revising processes to correct for

discrimination after the fact, and technical tools offer solutions to help.

1. Ricci v. DeStefano: The Tensions Between Equal Protection, Disparate

Treatment, and Disparate Impact

Antidiscrimination law is based upon both the constitutional guarantee of

equal protection186 and supplemental statutory protections. Modern interpretations

of the Equal Protection Clause generally have been divided into two camps: those

who believe in a color-blind Constitution-—protecting individualized assessments

and eschewing any evaluations based on group status--and those who support

antisubordination attempts to remedy inequalities between groups.187 The general

trend has been toward colorblindness.188

For statutory measures, we will focus on Title VII of the Civil Rights Act

of 1964.189 Under Title VII, remedies are available for disparate treatment--

discriminatory intent or the formal application of different rules to people of

different groups--and disparate impact--results that differ for different groups.190

186 See U.S. Const. amend. XIV, § 1 (“No State shall . . . deny to any person within its jurisdiction

the equal protection of the laws.”). The Equal Protection Clause has also been interpreted to apply

to the federal government through the Due Process Clause of the Fifth Amendment. See, e.g., Kenji

Yoshino, The New Equal Protection, 124 Harv. L. Rev. 747, 748 n.10 (2010).
187 See, e.g., Reva B. Siegel, From Colorblindness to Antibalkanization: An Emerging Ground of

Decision in Race Equality Cases, 120 Yale L.J. 1278, 1281 (2011) (describing this binary as the

common interpretation of equal protection jurisprudence).
188 See The Supreme Court, 2008 Term--Leading Cases, 123 Harv. L. Rev. 153, 289 (2009) (“The

Court’s conception of equal protection turns largely on its swing voter, Justice Kennedy, who

appears to support a moderate version of the colorblind Constitution.”). But see Reva B. Siegel, The

Supreme Court, 2012 Term--Foreword: Equality Divided, 127 Harv. L. Rev. 1, 6 (2013) (agreeing

that “[s]hifts in equal protection oversight . . . are continuing to grow” but arguing that these changes

are “neither colorblind nor evenhanded” because “the Court has encouraged majority claimants to

make discriminatory purpose arguments about civil rights law based on inferences the Roberts Court

would flatly deny if minority claimants were bringing discriminatory purpose challenges to the

criminal law”).
189 42 U.S.C. §§ 2000e to 2000e-17 (2012). Title VII applies to employment discrimination on the

basis of race, national origin, gender, and religion. The disparate impact framework is also used for

housing discrimination, and employment, public entity, public accommodation, and

telecommunications discrimination for people with disabilities. See Tex. Dep’t of Hous. & Cmty.

Affairs v. Inclusive Cmtys. Project, Inc., 135 S. Ct. 2507 (2015) (holding that disparate impact

claims are cognizable under the Fair Housing Act); Lopez v. Pac. Mar. Ass’n, 657 F.3d 762 (9th

Cir. 2011) (deciding a disparate impact claim brought under the Americans with Disabilities Act).
190 See Richard Primus, The Future of Disparate Impact, 108 Mich. L. Rev. 1341, 1350-51 & n.56

(2010) (describing the evolution of the “disparate impact” and “disparate treatment” terminology,

and the types of discrimination they are associated with).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

55 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-55-

Algorithmic decisionmaking blurs the definitions of disparate treatment and

disparate impact and poses a number of open questions.191

Is it disparate treatment when the inputs used are a proxy for membership

in a protected class? Different rules are effectively applied to different groups in

this case, but that difference may have no effect on the outcomes.192 If the people

responsible for a decision know that an algorithm behaves in a way that has

disparate impact, does that mean that they intend a discriminatory result?193 If an

algorithm generates poor outcomes for a group of people, how accurate does the

algorithm need to be (and how carefully does the decisionmaker need to test

alternative algorithms) before the decisionmaker can escape disparate impact

liability because the factors used are job-related?194 If, as noted in subsection

III.B.2, knowledge of class membership can be used to improve the fairness of

outcomes for members of all classes, should doing so be considered disparate

treatment?

These doctrines were recently considered in Ricci v. DeStefano, in which

the Supreme Court held that “before an employer can engage in intentional

discrimination for the asserted purpose of avoiding or remedying an unintentional

disparate impact, the employer must have a strong basis in evidence to believe it

will be subject to disparate-impact liability if it fails to take the race-conscious,

discriminatory action.”195 At issue was the City of New Haven’s test for firefighter

promotions; though the tests had been constructed in an attempt to ensure there was

no discrimination by race,196 the pass rates for minorities were about half of the

pass rate for whites.197 The New Haven Civil Service Board did not certify the

results of the test (and validate the promotions) due to concerns about fairness and

disparate impact liability for the City.198

Ricci demonstrates the tension between disparate treatment and disparate

impact. Facially neutral policies can produce unequal results for protected classes,

but remedying that disparate impact would require the state to treat people

differently based on class membership, which Ricci forbids. Ricci also hints at the

difficulties in squaring the Court’s move towards a colorblind interpretation of the

Equal Protection Clause and the doctrine of disparate impact. The holding does not

directly address the constitutional issue, but Justice Scalia’s concurrence does note

that the “war between disparate impact and equal protection will be waged sooner

or later.”199 Both of these doctrinal tensions are of concern to lawmakers and

policymakers.

191 See Barocas & Selbst, supra note 8, at 694-714 (noting the ways in which algorithmic data mining

techniques can lead to unintentional discrimination against historically prejudiced groups).
192 Id. at 695.
193 Id. at 700.
194 Id. at 707.
195 557 U.S. 55, 585 (2009).
196 Id. at 565.
197 Id. at 586-87.
198 Id. at 579.
199 Id. at 595-96 (Scalia, J., concurring).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

56 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-56-

2. Ricci Impels Designing for NonDiscrimination

Although Ricci has generated wide-ranging conversation about equal

protection, disparate treatment, and disparate impact, we wish to emphasize its

implications for the governance of decision algorithms for processes where

nondiscrimination is a goal. The holding in Ricci suggests that we cannot solely

rely on auditing for legal reasons in addition to the reasons discussed in Section

II.A. If an agency runs an algorithm that has a disparate impact, correcting those

results after the fact will trigger the same kind of analysis as New Haven’s rejection

of its firefighter test results. It is even possible that the Court will “subject some

range of disparate impact compliance efforts to strict scrutiny,”200 a high bar that

will be difficult to satisfy in most cases.

The legal difficulties with correcting discriminatory algorithms ex post

make measures to design algorithms for nondiscrimination even more important.

The Court in Ricci took no issue with New Haven’s process of designing the tests

with an eye towards nondiscrimination, reasoning that “Title VII does not prohibit

an employer from considering, before administering a test or practice, how to

design that test or practice in order to provide a fair opportunity for all individuals,

regardless of their race.”201 However, “once that process has been established and

employers have made clear their selection criteria, they may not then invalidate the

test results, thus upsetting an employee’s legitimate expectation not to be judged

on the basis of race.”202

The uneasy fit of algorithmic decisionmaking into the disparate

treatment/disparate impact framework does mean that someone could allege

disparate treatment because the design of the algorithm includes inputs that are a

proxy for class membership, resulting in a formal application of different rules to

different groups of people. However, such a claim would be valid against virtually

any system with a significant number of inputs. It seems more likely that courts

would reject the formal-rule subset of disparate treatment for algorithmic decisions

than that they would hold the majority of algorithmic decisionmaking to be

disparate treatment. In the end, incorporating nondiscrimination in the initial design

of algorithms is the safest path that decisionmakers can take, and we should

encourage the development and deployment of technical tools to aid in that design.

IV. Fostering Collaboration Across Computer Science, Law, and

Policy

In this Part, we consider how the types of technological assurance described

in previous Parts relate to mechanisms of oversight in law and public policy. In

technical approaches, it is traditional to have a detailed, well-defined specification

of the behavior of a system for all types of situations. In lawmaking and the

application of public policy, it is normal, and even encouraged, for rules to be left

open to interpretation, with details filled by human judgment emerging from

disputes in specific cases that are resolved after-the-fact. We offer

200 The Supreme Court, 2008 Term--Leading Cases, supra note 188, at 290.
201 Ricci, 557 U.S. at 585.
202 Id.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

57 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-57-

recommendations for dealing with this apparent mismatch, arguing for greater

collaboration between experts in two different fields.

We emphasize that computer scientists cannot assume that the policy

process will give them a meaningful, universal, and self-consistent theory of

fairness to use as a specification for algorithms. There are structural, political, and

jurisprudential reasons why no such theory exists today. Likewise, the policy

process would likely not accept such a theory if it were generated by computer

scientists.

At the same time, lawmakers and policymakers will need to adapt in light

of these new technologies. We highlight changes that stem from automated

decisionmaking. First, choices made when designing computer systems embed

specific policy decisions and values in those systems whether or not they provide

for accountability. Algorithms can, nevertheless, permit direct accountability to the

public or to other third parties, despite the fact that full transparency is neither

sufficient nor always necessary for accountability. For both groups, we note that

the interplay between these areas will raise new questions and may generate new

insights into what the goals of these decisionmaking processes should be.

A. Recommendations for Computer Scientists: Design for After-the-Fact

Oversight

Computer scientists may tend to think of accountability in terms of

compliance with a detailed specification set forth before the creation of an

algorithm. For example, it is typical for programmers to define bugs based on the

specification for a program--anything that differs from the specification is a bug;

anything that follows it is a feature.203

This Section is intended to inform computer scientists that no one will

remove all the ambiguities and offer them a clear, complete specification. Although

lawmakers and policymakers can offer clarifications or other changes to guide the

work done by developers,204 drafters may be unable to remove certain ambiguities

for political reasons or be unwilling to resolve details to meet flexibility objectives.

As such, computer scientists must account for the lack of precision--and the

corresponding need for after-the-fact oversight by courts or other reviewers--when

designing decisionmaking algorithms.

A computer scientist’s mindset can conflict deeply with many sources of

authority to which developers may be responsible. Public opinion and social norms

are inherently not precisely specified. The corporate requirements to satisfy one’s

supervisor (or one’s supervisor’s supervisor) may not be clear. Perhaps most

importantly and least intuitively for computer scientists, the operations of U.S. law

203 See, e.g., Michael Dubakov, Visual Specifications, Medium (Oct. 26, 2013),

https://medium.com/@mdubakov/visual-specifications-1d57822a485f [https://perma.cc/SE46-

6B2C] (“No specs? No bugs.”); SF, What Is the Difference Between Bug and New Feature in Terms

of Segregation of Responsibilities?, StackExchange (July 12, 2011, 6:51),

http://programmers.stackexchange.com/questions/92081/what-is-the-difference-between-bug-and-

new-feature-in-terms-of-segregation-of-re [https://perma.cc/PPM6-HFAA] (“You could put an

artificial barrier: if it’s against specs, it’s a bug. If it requires changing specs . . . it’s a feature.”).
204 See infra Section IV.B.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

58 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-58-

and public policy also work against clear specifications. These processes often

deliberately create ambiguous laws and guidance, leaving details--or sometimes

even major concepts--open to interpretation.205

One cause of this ambiguity is the political reality of legislation. Legislators

may be unable gather majority support to agree on the details of a proposed law,

but may be able to get a majority of votes to pass relatively vague language that

leaves various terms and conditions unspecified.206 For example, different

legislators may support conflicting specific proposals that can be encompassed by

a more general bill.207 Even legislators who do not know precisely what they want

may still object to a particular proposed detail; each detail that caused sufficient

objections would need to be stripped out of a bill before it could become law.208

Another explanation of ambiguity is that legislators may have uncertainty

about the situations to which a law or policy will apply. Drafters may worry that

they have not fully considered all of the possibilities. This creates an incentive to

build in enough flexibility to cover unexpected circumstances that currently exist

or may exist in the future.209 The U.S. Constitution is often held up as a model in

this regard: generalized provisions for governance and individual rights continue to

be applicable even as the landscape of society changes dramatically.210

Finally, ambiguity may stem from shared uncertainty about how best to

solve even a known problem. Here, drafters may feel that they know what situations

will arise but still not know how they want to deal with them. They may, in effect,

choose to delegate authority to other parties by underspecifying particular aspects

of a law or policy. Vagueness supports experimentation to help determine what

methods are most effective or desirable.211

205 See, e.g., Marbury v. Madison, 5 U.S. (1 Cranch) 137 (1803) (establishing the practice of judicial

review, on which the Constitution was silent); 47 U.S.C. § 222(c)(1) (2012) (requiring a

telecommunications carrier to get the “approval of the customer” to use or disclose customer

proprietary network information, but neglecting to define “approval”).
206 See Victoria F. Nourse & Jane S. Schacter, The Politics of Legislative Drafting: A Congressional

Case Study, 77 N.Y.U. L. Rev. 575, 593 (2002) (“Several staffers thought that pressures of time,

and the political imperative to get a bill ‘done,’ bred ambiguity. Indeed, one staffer emphasized that

while it was well and good to draft a bill clearly, there was no guarantee that the clear language

would be passed by the House or make it through conference.”).
207 Richard L. Hasen, Vote Buying, 88 Calif. L. Rev. 1323, 1339 (2000) (describing the practice of

“legislative logrolling”).
208 Id. at .
209 See, e.g., 17 U.S.C. § 1201 (2012) (granting the Copyright Office the power to create exemptions

from the statute’s prohibition on anti-circumvention).
210 See David A. Strauss, The Living Constitution (2010). Laws governing law enforcement access

to personal electronic records are often cited as a counterexample, with over-specific provisions in

the Electronic Communications Privacy Act (18 U.S.C. §§ 2510-2704 (2012)) that fail to account

for a shift in technology to a regime where most records reside with third party service providers,

not users’ own computers. For a more detailed explanation, see Orin S. Kerr, Applying the Fourth

Amendment to the Internet: A General Approach, 62 Stan. L. Rev. 1005 (2010).
211 A similar logic—policy experimentation among the states is one of the principles underlying

federalism. See New State Ice Co. v. Liebmann, 285 U.S. 262, 311 (1932) (Brandeis, J., dissenting)

(praising the ability of a state to “serve as a laboratory” for democracy).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

59 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-59-

The United States has a long history of dealing with these ambiguities

through after-the-fact and retroactive oversight by the courts.212 In our common law

system, ambiguities and uncertainties are left unaddressed until there is a dispute

and their resolution becomes necessary. Disagreements about the application of a

law or regulation to a specific set of facts are resolved through cases, and the areas

of ambiguity are clarified over time by the accretion of many rulings on specific

situations.213 Even when statutes and regulations may have specific and detailed

language, they are interpreted through cases--with extensive deference often given

to the expertise of administrative agencies.214 Those cases form binding precedents,

which, in the U.S. common law system, are an additional source of legal authority

alongside the statutes themselves.215 The gradual development and extension of law

and regulations through cases with specific fact patterns allows for careful

consideration of meaning and effects at a level of granularity that is usually

impossible to reach during the drafting process.216

In practice, these characteristics imply that computer scientists should focus

on creating algorithms that are reviewable, not just compliant with the

specifications that are generated in the drafting process.217 For example, this means

it would have been good for the Diversity Visa Lottery described in Section II.C to

use an algorithm that made fair, random choices and it would be desirable for the

State Department to be able to demonstrate that property to a court or a skeptical

lottery participant.218

The technical approaches described in this Article219 provide several ways

for algorithm designers to ensure that the actual basis for a decision can be verified

later. With these tools, reviewers can check whether an algorithm actually was used

to make a particular decision,220 whether random inputs were chosen fairly,221 and

whether the algorithm comports with certain principles specified at the time of the

design.222 Essentially, these technical tools allow continued after-the-fact

evaluations of algorithms by allowing for and assisting the judicial system’s

212 See generally E. Allan Farnsworth, An Introduction to the Legal System of the United States

(Steve Sheppard ed., 4th ed. 2010).
213 See generally id.
214 See Chevron U.S.A. Inc. v. Nat. Res. Def. Council, Inc., 476 U.S. 837 (1984).
215 See Farnsworth, supra note 213.
216 Id.
217 Another possible conclusion is that certain algorithms should also be developed to be flexible,

permitting adaptation as new cases, laws, or regulations add to the initial specifications. The need

to adapt algorithms is discussed further in subsection IV.B.1. This also reflects the current

insufficiency of building a system in accord with a particular specification, though oversight or

enforcement bodies evaluating the decision at a later point in time will still need to be able to certify

compliance with any actual specifications.
218 Algorithms offer a new opportunity for decisionmaking processes to be reviewed by

nontraditional overseers: decision recipients, members of the public, or even concerned

nongovernmental organizations. We discuss this possibility further in subsection IV.B.2.
219 See supra Sections II.B & III.B.
220 See supra Section II.C.
221 See supra notes XX-YY and accompanying text.
222 See supra notes XX-YY and accompanying text.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

60 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-60-

traditional role in ultimately determining the legality of particular

decisionmaking.223

Implementing the approaches described in this Article would improve the

accountability of decisionmaking algorithms dramatically, but we see that

implementation as only a first step. We encourage research into extensions of these

technical tools, as well as new techniques designed to facilitate oversight.

B. Recommendations for Lawmakers and Policymakers

The other side of the coin is that lawmakers and policymakers need to

recognize and adapt to the changes wrought by algorithmic decisionmaking.

Characteristics of algorithms offer both new opportunities and new challenges for

the development of legal regimes governing decisionmaking: algorithmic

decisionmaking can reduce the benefits of ambiguity, increase accountability to the

public, and permit greater accountability than was previously possible in cases

where aspects of the decision process remain secret.

1. Reduced Benefits of Ambiguity

Although computer scientists can build algorithms to permit after-the-fact

assessment and accountability, they cannot alter the fact that any algorithm design

will encode specific values and involve specific rules. Furthermore, the design of a

computer system may limit opportunities for after-the-fact accountability. In other

words, if a system is not designed to permit certification of a particular

characteristic, an oversight body cannot be certain that it will be able to certify that

characteristic. Both of these traits imply that automated decisionmaking can

exacerbate certain disadvantages of legal ambiguities.

In the framework set forth above,224 we identify key drivers for ambiguity:

political stalemate, uncertainty about future circumstances, and desire for policy

experimentation. Here, with respect to each of these drivers, we will discuss how

the shift to algorithmic decisionmaking diminishes the appeal of ambiguity, and we

will suggest ways of retaining the functional benefits that ambiguity provides in the

U.S. lawmaking system and ways that are more amenable to automation.

Ambiguity stemming from political stalemate essentially passes the buck

for determining details from legislators to someone later on in the process. These

later actors tend to be more sheltered from political pressures and thus able to make

specific decisions without risking their jobs at the next election. Judges and

administrative agencies frequently fill this role. Courts are expected to offer

impartial decisions resistant to public pressure225 and administrative agencies are

223 Computer scientists model this after-the-fact input as an “oracle” that can be consulted only rarely

on the acceptability of the algorithm. See Kroll, supra note 119.

224 Supra Section IV.A.
225 See, e.g., The Federalist No. 78 (Alexander Hamilton), (laying out the philosophy that the

judiciary’s roleis to secure an “impartial administration of the laws”). However, the rise of elected

judges raises questions about this traditional role of the court system. See Stephen J. Choi et al.,

Professionals or Politicians: The Uncertain Empirical Case for an Elected Rather Than Appointed

Judiciary (Univ. of Chi. Law Sch., John M. Olin Law & Economics Working Paper No. 357, 2007)

(finding that elected judges behave more like politicians than appointed independent judges).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

61 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-61-

expected to retain staff who offer subject matter expertise beyond what is expected

of legislators, despite changes in political administrations.226

However, this transfer of responsibility often works in less than ideal ways

when it comes to software systems.227 Fully automated decisionmaking may

exacerbate these problems by adding another actor to whom the responsibility can

devolve: the developer who programs the decisionmaking software. Citron offers

examples of failures in automated systems that determine benefits eligibility,

notably the airport “No Fly” lists, terrorist identifications, and punishment for

“dead-beat” parents.228 Lawmakers should consider this possibility and avoid

giving the responsibility for filling in the details of the law to program developers

because (1) the algorithms will apply broadly, affecting all participants; (2) the

program developer is unlikely to be held accountable by the current political

process; and (3) the program developer is unlikely to have substantive expertise

about the political decision being made.229

 One potential method for restricting the discretion of developers without

requiring specifications in the legislation itself would be for administrative agencies

to publish guidance for software development. Difficulties in translating between

code choices and policy effects still would exist, but they could be partly eased

using the technical methods we have described.230 For example, administrative

agencies could work together with developers to identify the properties they want

a piece of software to possess, and the program could then be designed to satisfy

those properties and permit proof.

Ambiguity generated by uncertainty about the situational circumstances or

ambiguity motivated by a desire for policy experimentation presents a more

difficult concern. Here, the problem raised by automated decisionmaking is that a

piece of software locks in a particular interpretation of law for the duration of its

use, and, especially in government contexts, provisions to update the software code

may not be made. Worries about changing or unexpected circumstances could be

assuaged by adding sunset provisions to software systems,231 requiring periodic

226 This is the rationale of the Chevron doctrine of judicial deference to administrative agency

actions Chevron U.S.A. Inc. v. Nat. Res. Def. Council, Inc., 476 U.S. 837 (1984).
227 For example, Citron argues that “[d]istortions in policy have been attributed to the fact that

programmers lack ‘policy knowledge,’” and that this leads to software that does not reflect policy

goals. Citron, supra note 6, at 1261. Ohm also reports on a comment of Felten that “[i]n technology

policy debates, lawyers put too much faith in technical solutions, while technologists put too much

faith in legal solutions.” Paul Ohm, Breaking Felten’s Third Law: How Not to Fix the Internet, 87

Denv. L. Rev. Online (2010), http://www.denverlawreview.org/how-to-

regulate/2010/2/22/breaking-feltens-third-law-how-not-to-fix-the-internet.html

[https://perma.cc/6RGQ-KUMW] (internal quotation marks omitted).
228 Citron, supra note 6, at 1256-57.
229 Id. at . A distinction should be drawn here between the responsibilities given to individual

developers of particular algorithms and the responsibilities given to computer scientists in general.

Great gains can be made by improved dialogue between computer scientists and lawmakers and

policymakers about how to design algorithms to reach social goals.
230 See supra Sections II.B & III.B.
231 The effectiveness of sunset provisions in leading to actual reconsideration and change is

debatable. The inertia of the pre-existing choices can be hard to overcome. See, e.g., Mark A.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

62 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-62-

review and reconsideration of the software. Additionally, software should be

designed with eventual revisions and updates in mind. As for preserving the

benefits of policy experimentation, the traditional solution might be having

multiple programs that take multiple approaches deployed simultaneously. A more

sophisticated version of this solution is the incorporation of machine learning into

decisionmaking systems. Again, machine learning can have its own fairness

pitfalls,232 and care should be taken to consider fair machine learning methods233

and to build in precautions like persistent testing of the hypotheses built into the

machine learning model.234

More generally, the benefits of ambiguity decrease in the case of

algorithmic decisionmaking. Here, an uninformed programming actor may

determine the details and then apply them broadly. In addition, the choice of

algorithm cements the particular policy choices encoded in that software for as long

as it is used. Drafters should instead consider whether they should increase the

specificity offered by law and policy governing these algorithms to prevent coders

from filling the ambiguity.

To a certain extent, this question mirrors the rules versus standards debate

about the relative merits of laws that specify actions and their repercussions (for

example, a speed limit) and those that espouse a principle open to interpretation

(for example, “drive at a speed reasonable for the conditions”).235 Rules give clarity

and forewarning, while standards offer greater flexibility for interpretation.236

Here, the question is whether drafters should include additional and clearer

specifications for developers. In practice, drafters may wish to incorporate a set of

narrow rules within a broad, overarching standard. For example, drafters could

include specifications of each of the properties that they want a piece of software

to possess and requirements that the developer design that program in a way that

renders those properties provable upon review. Additionally, drafters might

consider requiring a general statement of purpose for the algorithm. Doing so would

give the developer some flexibility in writing the code while also ensuring that

particular properties can be checked later.

Lemley & David McGowan, Legal Implications of Network Economic Effects, 86 Calif. L. Rev.

479, 481-82 (1998) (noting that stare decisis, confusion regarding the role of theory, differing

normative values, and other factors impede the progress of the law).
232 See supra note XX (noting that machine learning programs give predictions but not confidence

levels).
233 See supra Sections III.A-B.
234 In other words, even after a machine learning algorithm determines that a particular rule should

be used to produce particular results, it always should continue to test inputs that do not follow that

rule. See, e.g., Russell & Norvig, supra note 68.
235 See, e.g., Louis Kaplow, Rules versus Standards: An Economic Analysis, 42 Duke L.J. 557, 562-

66 (1992) (arguing that rules are more costly to promulgate while standards are most costly on

individuals).
236 See Kathleen M. Sullivan, The Supreme Court, 1991 Term--Forward: The Justices of Rules and

Standards, 106 Harv. L. Rev. 22, 26 (1992) (explaining the rule versus standard choice in terms of

force of precedent, constitutional reading, and formulating operative tests).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

63 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-63-

2. Accountability to the Public

Oversight is traditionally performed by courts, enforcement agencies, or

other designated entities such as government prosecutors.237 Typically, the public

and third parties have an indirect oversight role through the ability to provide

political feedback and the ability to bring lawsuits if their specific circumstances

allow.238 The use of software can alter how effectively the legal system and the

public can oversee the decisionmaking process.

In one sense, decisionmaking computer systems can enhance accountability

to the public and interested third parties by permitting greater involvement in

oversight. The technical tools we describe allow for a more direct form of oversight

by these parties. Unlike traditional legal oversight mechanisms that generally

require discovery or the gathering of internal evidence, the technical tools may

enable verifications by the public and by third parties that are completely

independent from the organizations using the software. For example,

technologically proficient members of the public or third parties could verify that a

particular algorithm was used in a program or that the program has particular

properties. In addition, a system could be built to enable participants to check these

properties for their own outcomes so that nontechnical users could verify these facts

while the system as a whole would be overseen by others--potentially both inside

and outside of government--who have the necessary technological expertise. As

another example, third parties could be involved in generating fair randomness.239

In contrast to the possibility for enhanced public accountability, the use of

software without the reliance on technical tools for oversight, as we have described,

can reduce accountability to the public because courts and other policy actors are

generally ill-equipped to evaluate software, thereby hampering our traditional

scrutiny of decisionmaking. The U.S. court system is designed to protect against

wrongful government actions through the power of judicial review.240 Judicial

review gives judges the power and responsibility to determine if government

actions comply with legal obligations. Similarly, for private actions, the legal

system vests judges and regulatory agencies with the authority to determine

whether those actions are consistent with legal standards.

The use of software systems to make decisions shifts these burdens to

external experts or to the organizations creating and deploying the software. Courts

and enforcement agencies are no longer able to make a determination as to whether

the rules have been properly applied or whether fairness obligations have been met.

That determination shifts to the experts evaluating the automated decisionmaking

process. One way to address this unintended shift in responsibility is to appoint

237 See Farnsworth, supra note 213.
238 The public can vote political leaders out of office and aggrieved parties can bring lawsuits to seek

vindication.
239 See supra note 117 (using a quantum source to generate randomness).
240 See Marbury v. Madison, 5 U.S. (1 Cranch) 137, 177 (1803) (“It is emphatically the province

and duty of the judicial department to say what the law is.”).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

64 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-64-

technical experts as special masters. Courts typically appoint special masters to

perform functions on behalf of the court that require special skill or knowledge.241

Another issue that challenges public accountability is the validation of the

technical tools we have described. For courts, technical tools cannot be accepted

until their integrity and reliability are proven. Courts have long confronted the

problem of the admissibility of scientific evidence. There is a rich literature about

the standards courts should use to admit expert scientific evidence, and, even now,

federal and state standards vary.242 Following many years of debate, the Federal

Rules of Evidence now spell out the federal standard for the acceptability of new

scientific methods in adversarial proceedings.243 In 1993, the Supreme Court

adjusted those standards to take account of factors that include testing, peer review

and publication.244 The courts took years during the 1980s and 90s to establish and

accept the scientific validity of DNA and the methods used to isolate and test

DNA245 and even now, there are concerns that some scientific methods (e.g.

matching DNA based on mixtures of DNA) may be receiving undeserved deference

from courts and thus resulting in faulty findings of fact.246 The Federal Rules of

Evidence now provide for the acceptability of new scientific methods in adversarial

proceedings.247 In 1993, the Supreme Court set out standards to meet the Federal

Rules requirements that include testing, peer review and publication.248 This

addresses the validation of technical tools used to examine automated

241 See, e.g., United States v. Microsoft Corp., 147 F.3d 935, 959 n.4 (D.C. Cir. 1998) (noting Larry

Lessig’s role as a special master for technical issues in the antitrust case brought against Microsoft).
242 See, e.g., Paul C. Giannelli, The Admissibility of Novel Scientific Evidence: Frye v. United

States, a Half-Century Later, 80 Colum. L. Rev. 1197 (1980) (highlighting the development of the

standards used for evidentiary scientific evidence); Note, Heather G. Hamilton, The Movement from

Frye to Daubert: Where Do the States Stand?, 38 Jurimetrics 201 (1998) (emphasizing the lack of

uniformity of state approaches).
243 See Fed. R. Evid. 702 (“A witness who is qualified as an expert by knowledge, skill, experience,

training, or education may testify in the form of an opinion or otherwise if . . . the expert’s scientific,

technical, or other specialized knowledge will help the trier of fact to understand the evidence or to

determine a fact in issue”).
244 See Daubert v. Merrell Dow Pharm., Inc., 509 U.S. 579, 592-95 (1993) (explaining that a judge

faced with a proffer of expert scientific testimony must assess whether the testimony’s underlying

reasoning is valid, and in doing so, consider whether the technique or theory in question can be

tested and whether it has been subjected to peer review and publication).
245 See, e.g., Nat’l Research Council, The Evaluation of Forensic DNA Evidence 166-211 (1996)

(discussing the legal implications of the use of forensic DNA testing as well as the procedural and

evidentiary rules that affect such use).
246 Logan Koepke, Should Secret Code Help Convict?, Medium (Mar. 24),

https://medium.com/equal-future/should-secret-code-help-convict-7c864baffe15#.j9k1cwho0

[https://perma.cc/6LNW-WN6W].
247 See Fed. R. Evid. 702 (“A witness who is qualified as an expert by knowledge, skill, experience,

training, or education may testify in the form of an opinion or otherwise if . . . the expert’s scientific,

technical, or other specialized knowledge will help the trier of fact to understand the evidence or to

determine a fact in issue”).
248 See Daubert v. Merrell Dow Pharm., Inc., 509 U.S. 579, 592-95 (1993) (explaining that a judge

faced with a proffer of expert scientific testimony must assess whether the testimony’s underlying

reasoning is valid, and, in doing so, consider whether the technique or theory in question can be

tested and whether it has been subjected to peer review and publication).

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

65 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-65-

decisionmaking, but still leaves open the assurance of the technical tools’

reliability. Ordinarily, the U.S. legal system relies on the adversarial process to

assure the accuracy of findings. This attribute may be preserved by allowing

multiple experts to test software-driven processes.

3. Secrets and Accountability

Implementing automated decisionmaking in a socially and politically

acceptable way requires progress in our ability to communicate and understand

fine-grained partial information about how decisions are reached. Full transparency

(disclosing everything) is technically trivial but politically and practically

infeasible and may not be useful, as described in Section II.A. However, disclosing

nothing about the basis for a decision is socially unacceptable and generally poses

a technical challenge. Lawmakers and policymakers should remember that it is

possible to make an algorithm accountable without the evaluator having full access

to the algorithm.249

U.S. law and policy often focus on transparency and sometimes even equate

oversight with transparency for the overseer.250 As such, accountability without full

transparency may seem counterintuitive. However, oversight based on partial

information occurs regularly within the legal system. Courts prevent consideration

of many types of information for various policy reasons: disclosures of classified

information may be prevented or limited to preserve national security;251 juvenile

records may be sealed because of the notion that mistakes made in one’s youth

should not follow them forever;252 and other evidence is deemed inadmissible for a

multitude of reasons, including being unscientific,253 hearsay,254 inflammatory,255

or illegally obtained.256 Thus, all of the rules of evidence could be construed as

precedent for the idea that optimal oversight does not require full information.

There are strong policy justifications for holding back information in the

case of automated decisionmaking. Revealing software source code and input data

can expose trade secrets, violate privacy, hamper law enforcement, or lead to

gaming of the decisionmaking process.257 The advantage of computer systems is

that concealment of code and data does not imply an inability to analyze the code

and data. The technical tools we describe give lawmakers and policymakers the

ability to keep software programs and their inputs secret while still rendering them

249 See supra note XXX.
250 See, e.g., 5 U.S.C. § 552 (2012) (requiring agencies to make certain information available to the

public); 15 U.S.C. § 6803 (2012) (requiring financial institutions to provide annual privacy notices

to customers as a transparency measure).
251 See 18 U.S.C. § 798(a) (2012) (providing that the disclosure of classified government

information may result in criminal liability).
252 See, e.g., N.Y. Crim. Proc. § 720.15 (requiring filing under seal in juvenile proceedings).
253 See Fed. R. Evid. 702 (establishing the court’s discretion to admit scientific evidence).
254 See Fed. R. Evid. 802 (stating that hearsay evidence is inadmissible unless a federal statute, the

rules of evidence, or the Supreme Court provides otherwise).
255 See Fed. R. Evid. 403 (providing for the exclusion of relevant evidence for prejudice).
256 See, e.g., 18 U.S.C. § 2515 (2012) (setting an exclusionary rule for evidence obtained through

wire tap or interception).
257 See Section II.A.

DRAFT PLEASE CITE TO FINAL VERSION 11-19-2016

66 UNIVERSITY OF PENNSYLVANIA LAW REVIEW [Vol. 165: forthcoming]

-66-

accountable. They can implement these tools in government-run algorithms, such

as the DVL, and incentivize nongovernmental actors to use them, perhaps by

mandating use or by requiring transparency--at least to courts--of code and inputs

if they do not employ such technical tools.

