
GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1719

Note

Regulation by Software†

James Grimmelmann

CONTENTS

INTRODUCTION.. 1721

I. SOFTWARE AS A MODALITY OF REGULATION.................................. 1724
A. Modalities of Regulation .. 1724
B. The Orthodox View: Software as Architecture 1726
C. A Better View: Software as Its Own Modality 1728

II. FEATURES OF SOFTWARE AS A MODALITY OF REGULATION 1732
A. Software Acts According to Rules Rather than Standards......... 1732
B. Software Need Not Be Transparent ... 1734
C. Software Rules Cannot Be Ignored .. 1738
D. Software Is Vulnerable to Sudden Failure 1742

1. Software Is Hackable... 1742
2. Software Is Not Robust .. 1744

III. CASE STUDIES... 1745
A. Online Markets... 1746

1. Online Markets Rely on Ruleishness 1748
2. Online Markets Mitigate Transparency Problems

Appropriately... 1748

Copyright © 2005 by The Yale Law Journal Company, Inc. For classroom use information, see
http://www.yalelawjournal.org/about.asp. After June 1, 2006, this Note is licensed under the
Creative Commons Attribution 2.0 License, http://creativecommons.org/licenses/by/2.0/. Any
use under this license must carry the notation “First published in The Yale Law Journal, Vol.
114, pp. 1719-58.”

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1720 The Yale Law Journal [Vol. 114: 1719

3. Online Markets Reduce Transaction Costs 1749
4. Online Markets Deal Appropriately with the Risk of

Software Failures .. 1750
5. Summary .. 1750

B. Digital Rights Management Systems.. 1751
1. DRM Systems Depend on Software’s Ruleishness 1752
2. DRM Systems’ Lack of Transparency Raises Consumer

Protection Concerns .. 1754
3. DRM Systems Are Insensitive to User Transaction Costs..... 1755
4. Software Failures Threaten DRM Systems.......................... 1755
5. Summary .. 1757

CONCLUSION ... 1758

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1721

In real space we recognize how laws regulate—through
constitutions, statutes, and other legal codes. In cyberspace we must
understand how code regulates—how the software and hardware
that make cyberspace what it is regulate cyberspace as it is. As
William Mitchell puts it, this code is cyberspace’s “law.” Code is
law.1

And finally the architecture of cyberspace, or its code, regulates
behavior in cyberspace. The code, or the software and hardware
that make cyberspace the way it is, constitutes a set of constraints
on how one can behave.2

INTRODUCTION

Six years ago, Lawrence Lessig had two insights. First, code regulates.
Computer software (“code”) can constrain behavior as effectively as law
can. Second, code is like physical architecture. When software regulates
behavior online, it does so in a manner similar to the way that physical
architecture regulates behavior in the real world.3 His catchphrase—“code
is law”—is shorthand for the subtler idea that code does the work of law,
but does it in an architectural way. With this one phrase and two ideas, he
opened up an entire line of study: how regulating through software rather
than through law changes the character of regulation.

Unfortunately, that line of study has been stunted, and in a sense, it is
Lessig’s fault—for having three insights, instead of stopping with two. In
the book that made “code is law” famous, Code and Other Laws of
Cyberspace, Lessig also argued that software itself can be effectively
regulated by major social institutions, such as businesses or governments.
He then completed the syllogism. If other institutions can regulate software,
and software can regulate individual behavior, then software provides these
institutions an effective way to shape the conduct of individuals.

This third insight gives the first two their urgency, but its salience has
diverted attention from them. Code argues that decisions about the technical
future of the Internet are important questions of social policy, because these
decisions will have the force of law even as they defy many of our
assumptions about law.4 This argument has attracted great attention. Many

1. LAWRENCE LESSIG, CODE AND OTHER LAWS OF CYBERSPACE 6 (1999) (endnote omitted).
2. Lawrence Lessig, The Law of the Horse: What Cyberlaw Might Teach, 113 HARV. L. REV.

501, 509 (1999).
3. The most important intellectual precursor of Lessig’s popular formulation was Joel R.

Reidenberg, Lex Informatica: The Formulation of Information Policy Rules Through Technology,
76 TEX. L. REV. 553 (1998).

4. LESSIG, supra note 1, at 58-60.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1722 The Yale Law Journal [Vol. 114: 1719

scholars have debated Lessig’s claim that sufficient outside pressure could
modify the Internet’s basic technological structure.5 Others, taking this
claim as given, have debated what changes our governing institutions
should make to the Internet’s systems.6

In the face of such questions, the minor premise of Code—that software
is a form of regulation akin to physical architecture—has gone
comparatively unexamined. Scholars make a few cursory nods in Lessig’s
direction, note the power of architectural constraints, and then launch
immediately into their arguments about one particular problem or another.
This Note begins the process of correcting that oversight.

Lessig’s insight that code resembles physical architecture is incomplete.
Just as code is like law but not really the same, code is like physical
architecture but not really the same. The structures that can be built out of
software are so much more intricate and fragile than the structures that can
be built out of concrete that there is a qualitative difference between them.
You can hack a computer program into destroying itself; you will have no
such luck hacking a highway. Computer software is its own distinctive
modality of regulation, and it needs to be treated as such.

In particular, a systematic study of software as a regulator reveals
several recurring patterns. These patterns are present in any regulation by
software, whether it involves privacy, intellectual property, free speech,
online jurisdiction, or commerce, to name just a few fields profoundly
affected by the growing use of software. We can evaluate the success or
failure of regulation by software in one of these areas by asking whether
these patterns run with the grain of our regulatory goals or against them.
For designers, the patterns provide a road map for the appropriate
construction of software systems that must do “legal” work. For analysts,
they provide a toolkit of ways to predict the consequences of turning a
software system loose on real people.

Part I situates software within Lessig’s theory of different and
complementary modalities of regulation that constrain individuals. In Code,

5. See, e.g., Michael Geist, Cyberlaw 2.0, 44 B.C. L. REV. 323 (2003); Charles Fried, Perfect

Freedom or Perfect Control?, 114 HARV. L. REV. 606 (2000) (book review). Lessig himself was
responding to a line of arguments that began with David R. Johnson & David Post, Law and
Borders—The Rise of Law in Cyberspace, 48 STAN. L. REV. 1367 (1996). A notable early reply
was James Boyle, Foucault in Cyberspace: Surveillance, Sovereignty, and Hardwired Censors,
66 U. CIN. L. REV. 177 (1997). More recent discussions of whether cyberspace can be effectively
regulated through technology mandates include Peter Biddle et al., The Darknet and the Future of
Content Protection, in DIGITAL RIGHTS MANAGEMENT: ACM CCS-9 WORKSHOP, DRM 2002, at
155, 174-75 (Joan Feigenbaum ed., 2003), available at http://crypto.stanford.edu/DRM2002/
darknet5.doc; and Susan P. Crawford, The Biology of the Broadcast Flag, 25 HASTINGS COMM. &
ENT. L.J. 603, 643-51 (2003).

6. See, e.g., Yochai Benkler, Net Regulation: Taking Stock and Looking Forward, 71 U.
COLO. L. REV. 1203 (2000); Edward Lee, Rules and Standards for Cyberspace, 77 NOTRE DAME
L. REV. 1275 (2002); Lawrence B. Solum & Minn Chung, The Layers Principle: Internet
Architecture and the Law, 79 NOTRE DAME L. REV. 815 (2004).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1723

he postulates four such modalities: law, social norms, markets, and physical
architecture. He then argues that software is a subspecies of physical
architecture as a modality. I argue instead that three basic characteristics of
software establish it as a distinct modality that should not be conflated with
any of the others:

Software is automated. Once set in motion by a programmer, a
computer program makes its determinations mechanically, without further
human intervention.

Software is immediate. Rather than relying on sanctions imposed after
the fact to enforce its rules, it simply prevents the forbidden behavior from
occurring.

Software is plastic. Programmers can implement almost any system
they can imagine and describe precisely.

Software is like physical architecture and unlike law in being automated
and immediate. However, plasticity is more characteristic of legal systems
than of architectural ones. Software’s plasticity interacts with its automation
and its immediacy to produce consequences that set it apart from both law
and physical architecture.

In Part II, I turn to these distinctive consequences. There are four
recurring and predictable patterns present in any regulation by software:
 First, along the traditional continuum between rules and standards,
software lies at the extreme rule-bound end. Because a computer, rather
than a person, makes a program’s decisions, rules encoded in software are
free from ambiguity, discretion, and subversion.7 The plasticity of software
means that even intricate combinations of highly particular rules remain
formally realizable.
 Second, software can regulate without transparency. Frequently, those
regulated by software may have no reasonable way to determine the overall
shape of the line between prohibited and permitted behavior. The plasticity
of software and its automated operation also bedevil attempts to have
software explain itself. Even experts may not understand why a program
acts as it does.
 Third, software rules cannot be ignored. Parties facing a decision made
by software can, at best, take steps to undo what software has wrought. In
contrast, legal default rules can often be ignored because they operate only
when one party invokes the legal system. This difference means that
regulation by software creates different transaction costs than regulation by
law does.
 Fourth, software is more fragile than other systems of regulation.
Hackers can turn its plasticity against it, and its automated operation means

7. Not every rule can be implemented by software. Software is so rule bound that from its

perspective some “rules” seem more like standards.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1724 The Yale Law Journal [Vol. 114: 1719

that unintended consequences are shielded from human review. Its
immediacy also speeds up failures. A program can go from perfectly
functional to completely broken with the flip of a single bit. These effects
combine to make software more prone to sudden, unexpected, and severe
failures than other regulators.

By running down the list of patterns, we can quickly predict the
consequences of using software in a particular way to solve a particular
problem. We can also evaluate these consequences normatively, to say that
software is a good or a poor choice for solving a given problem. Sometimes
extreme ruleishness is a desirable feature of a regulatory system. Sometimes
it is not. Sometimes if a system fails, human life is at risk. Sometimes
nothing more than mild inconvenience will result. Thus, these four patterns
provide a general methodology for assessing the use of software in a given
regulatory context.

Part III explains this methodology and applies it to two case studies.
The methodology predicts that software is a good way to manage
negotiations and transactions in online marketplaces such as online auction
sites and electronic stock exchanges. The underlying rules of these
marketplaces are typically simple and well understood. Software rules can
track these market rules well, as predicted by the first pattern. On the other
hand, the methodology predicts several pitfalls for the use of software to
restrict the distribution of digital media. Here, the idea has been to use
“digital rights management” (DRM) software to enable some kinds of
consumption of media while simultaneously preventing some kinds of
redistribution. Both the transaction cost implications of the third pattern and
the failure mode implications of the fourth are troubling here.

I. SOFTWARE AS A MODALITY OF REGULATION

This Part describes Lessig’s framework of modalities of regulation and
then situates software within that framework, first according to Lessig’s
(partially correct) view of software as a form of physical architecture and
then as its own independent modality.8

A. Modalities of Regulation

People’s behavior is subject to many different kinds of constraints, of
which law is only one. Under different circumstances, one or another kind
of constraint may be the most significant in shaping the choices available to

8. The phrase “modalities of regulation” itself comes from Lessig’s The New Chicago School,
which worked out the concept’s intellectual genealogy and placed on the table topics such as the
nature of a regulatory modality and the relationship between different modalities. Lawrence
Lessig, The New Chicago School, 27 J. LEGAL STUD. 661, 663 (1998).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1725

people. These kinds thus represent different tools available to those who
wish to push behavior in one direction or another. To understand what we
gain in understanding by theorizing them as modalities of regulation, it is
easiest to start by considering the four modalities Lessig discusses in Code:
law, social norms, markets, and physical architecture.9

That law constrains behavior is obvious. Law threatens those who
misbehave with punishment. It encourages individuals to choose the “right”
course of action by associating sufficient sanctions with the “wrong” one to
make it comparatively unattractive.10

Even in the absence of formal law, informal social norms also constrain
behavior.11 Human behavior in everyday life is extensively programmed by
informal but strong codes of conduct: Don’t maintain eye contact with
strangers,12 follow instructions from authority figures,13 and so on. Stronger
sanctions back up more restrictive rules. Lynching in the South, for
example, was historically a constraint on interracial sex.14

A third form of constraint is a market. Unlike laws and social norms,
which threaten or cajole, markets place an explicit advance price tag on
particular behavior.15 From Smith to Marx and beyond, economists have
described how price constraints shape human behavior. Policymakers create
markets in pollution permits and in radio station licenses to regulate the use
of scarce resources more efficiently; truth-in-advertising laws and antitrust
suits are legal interventions that aim to improve the regulation implicitly
carried out by existing markets.

The last modality of regulation Lessig describes is physical
architecture. That physical reality, particularly the human-built
environment, is a constraint on behavior is beyond obvious. The “laws” of
physics, unlike positive laws, cannot be broken. The work of architects and
urban planners rests on the further assumption that such physical constraints
can be deployed as a purposive tool of a regulatory agenda, that different

9. See LESSIG, supra note 1, at 235 app.
10. See OLIVER WENDELL HOLMES, THE COMMON LAW 40 (Mark DeWolfe Howe ed.,

Belknap Press 1963) (1881).
11. See generally ERIC A. POSNER, LAW AND SOCIAL NORMS (2000).
12. See ERVING GOFFMAN, BEHAVIOR IN PUBLIC PLACES: NOTES ON THE SOCIAL

ORGANIZATION OF GATHERINGS 84 (1963).
13. See STANLEY MILGRAM, OBEDIENCE TO AUTHORITY: AN EXPERIMENTAL VIEW 1-12

(1974).
14. See, e.g., JAMES GOODMAN, STORIES OF SCOTTSBORO (1994) (illustrating complex,

racially charged norms of sexual conduct in the context of the famous “Scottsboro Boys” trials).
15. Of course, the market itself depends on laws and social norms to prevent people from

using a resource without paying the price, and those resources may themselves be creatures of
law. In such cases, the market is the predominant modality of regulation in the sense that the price
tag is the most salient feature of the constraint set. People think in terms of how to pay the price
rather than how to shoplift.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1726 The Yale Law Journal [Vol. 114: 1719

spaces conduce to different behaviors.16 For example, Lessig describes
speed bumps as an architectural constraint on speeding.17

Each of these three nonlegal modalities has generated a rich “law and
X” literature. Speaking of them as “modalities” emphasizes the structural
parallelism between these different forms of behavioral constraints.18 The
clearest statement of the approach is Lessig’s:

Now obviously, these four modalities do not regulate to the
same degree—in some contexts, the most significant constraint may
be law (an appeals court); in others, it is plainly not (a squash
court). Nor do they regulate in the same way—law and norms, for
example, typically regulate after the fact, while the market or
architecture regulates more directly. The modalities differ both
among themselves and within any particular modality. But however
they differ, we can view them from this common perspective—
from a single view from which we might account for (1) the
different constraints that regulate an individual and (2) the
substitutions among these constraints that might be possible.19

Taken together, Lessig’s points imply that regulatory choices among
modalities matter. A market may be cheaper than legal control; social
norms may be cheaper still but run the risk of permitting hidden invidious
discrimination. A good understanding of the characteristics of the available
modalities therefore becomes essential to selecting a modality conducive to
the goals of regulation, be they efficacy, cost reduction, fairness, expressive
richness, administrability, risk minimization, or any of the other concerns
that inform questions of policy. Recognizing them as distinct modalities
invites comparison of the consequences of choosing one modality as
opposed to another and focuses attention on their mutual influences.

B. The Orthodox View: Software as Architecture

“Software” does not appear on Lessig’s list of four modalities, because
he considers software to be a form of architecture. To understand the logic
behind this claim, it is helpful to consider a related question. What does it

16. For a legal analysis of this assumption and an extensive bibliography, see Neal Kumar

Katyal, Architecture as Crime Control, 111 YALE L.J. 1039 (2002).
17. LESSIG, supra note 1, at 92.
18. The first work that systematically analyzed different modalities as behavioral constraints

was probably ROBERT C. ELLICKSON, ORDER WITHOUT LAW: HOW NEIGHBORS SETTLE
DISPUTES (1991), which deploys a precise vocabulary of “controllers” and “rules” to talk about
regulatory effects on behavior. Ellickson develops a theory of social norms and their relationship
to law that has much in common with work in law and economics on the relationship between law
and markets. See id. at 126-36.

19. Lessig, supra note 8, at 664.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1727

mean to say that software “regulates” behavior, given that software runs
only on computers while people live in the real world?

Lessig’s idea of “dual presence” provides the necessary link. People
who are using computers are in two places at once. They are online, in
virtual spaces, and they are also offline, in the real world. Software
constrains the behavior of their online selves; those constraints then have
effects on the real people living in the real world.20 Sometimes the
connection is purely psychological. If I am insulted in a chat room because
the chat room software did not let me block messages from my antagonist,
or if I cannot reach the final level of a video game because I cannot defeat a
sub-boss, then a software-imposed constraint has affected the happiness of
an actual living person. Sometimes, the connection is even stronger, and
important real-life interests and relationships are mediated by software
systems. Online shopping, electronic voting, and file sharing come
immediately to mind. Offline relations we regulate with law are directly
affected by what happens online.

Put another way, just as we go into buildings and allow ourselves to be
regulated by architecture, we also go into virtual spaces and allow ourselves
to be regulated by them. The only difference is that we go “into” these
virtual spaces virtually, by doing things on computers.

To many, this spatial metaphor has seemed conclusive. Just as the set of
things we can physically do in physical spaces is determined by their
physical architecture, the set of things we can virtually do in virtual spaces
is determined by their virtual architecture—that is, by the software
programs that create these spaces. What is more, physical architecture and
software regulate their respective spaces in the same manner: automatically
without human intervention, with immediate constraints rather than after-
the-fact punishments.

Scholars have recognized problems with the spatial metaphor. First,
“code is law,” while an attractively pithy phrase, is a misleading way of
saying that code is architecture.21 Useful scholarship on the political
economy of software’s interactions with law has been forced into the
awkward rhetorical posture of rejecting this seeming equation of software
with law.22

20. See LESSIG, supra note 1, at 190.
21. See Cindy A. Cohn & James Grimmelmann, Seven Ways in Which Code Equals Law (And

One in Which It Does Not), in CODE: THE LANGUAGE OF OUR TIME 20 (Gerfried Stocker &
Christine Schöpf eds., 2003), available at http://www.aec.at/en/archives/festival_archive/
festival_catalogs/festival_artikel.asp?iProjectID=12315.

22. See R. Polk Wagner, On Software Regulation, 78 S. CAL. L. REV. 457 (2005) (discussing
principles regulators should consider when deciding whether to regulate directly through law or by
legislating particular software solutions); Tim Wu, When Code Isn’t Law, 89 VA. L. REV. 679,
707-09 (2003) (describing software as a tool people use to help themselves evade legal
regulation).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1728 The Yale Law Journal [Vol. 114: 1719

Second, although Lessig’s idea of dual presence emphasizes the close
connection between online and offline effects, many writers have been
overly influenced by images of virtual “places.” Some have even treated
online conduct as somehow disembodied from any real-world nexus.23
Scholars have intelligently critiqued the use of spatial metaphors to describe
software-mediated activity.24

These two critiques challenge only the precision of the language used to
describe software as a form of architecture. They do not contest the ultimate
correctness of that description. But to think of software as “architectural” is
to underestimate its power. Physical architecture, while powerful at times,
is hard to deploy in a purposive manner. Even the most ambitious proposals
for architectural regulation have modest goals compared with their expense.
Programmers can articulate more detailed, more comprehensive, and far
more complex systems of regulation than can any architectural regulators
confined to working with the clumsy materials of the physical world.25

C. A Better View: Software as Its Own Modality

To see why software is similar to physical architecture but profoundly
more powerful, we need to examine how software is written and used. The
story begins with a programmer who has in mind some task she would like
a computer to carry out. She attempts to envision as precisely as possible
the details of the process by which she would like that task carried out. This
precision is necessary because she must express her intention in the text of a
computer program—a list of instructions, written in one of a number of
artificial languages intelligible to a computer. Compared with human
languages, these languages are highly constrained. Each of her instructions
carries a fixed and precise meaning. Once she has finished editing the
program, her role ends. She turns the program over to the computer on
which it will run. As long as the computer is supplied with power and is
free of mechanical and electronic glitches, it will read her instructions and

23. See, e.g., John Perry Barlow, A Declaration of the Independence of Cyberspace (Feb. 8,

1996), reprinted in CRYPTO ANARCHY, CYBERSTATES, AND PIRATE UTOPIAS 27 (Peter Ludlow
ed., 2001), and available at http://www.eff.org/~barlow/Declaration-Final.html.

24. See, e.g., Dan Hunter, Cyberspace as Place and the Tragedy of the Digital Anticommons,
91 CAL. L. REV. 439 (2003); Orin Kerr, The Problem of Perspective in Internet Law, 91 GEO. L.J.
357 (2003); Timothy Wu, When Law & the Internet First Met, 3 GREEN BAG 2D 171 (2000).

25. None of this is to say that the analogy is always misleading. Many writers have used
“architecture” in a more limited sense to refer to the system of institutional relationships and
network connections that forms a backdrop to online behavior. When confined to this sense, the
metaphor is more apt. See, e.g., Mark A. Lemley & Lawrence Lessig, The End of End-to-End:
Preserving the Architecture of the Internet in the Broadband Era, 48 UCLA L. REV. 925, 930-40
(2001); Daniel J. Solove, Identity Theft, Privacy, and the Architecture of Vulnerability,
54 HASTINGS L.J. 1227, 1238-43 (2003); Solum & Chung, supra note 6, at 823-49.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1729

carry them out. A user may now encounter the program—that is, be
regulated by it.

This encounter has an important dual quality. On the one hand, the
software enables functionality. When I type in a chat room and my words
appear on your screen, this communication has been enabled by the chat
program, which in turn reflects the programmer’s design decisions. Without
her program, the communication could not happen.

On the other hand, software also limits behavior. By giving its users a
set of possible actions, it excludes every action not within this set. Some of
these exclusions are explicit: If you try to access a password-protected
website without the proper credentials, the software on the web server will
display a message telling you that such access is not allowed.26 But some
such limits are implicit: The software in a calculator program excludes
word processing in the sense that text handling is simply not something that
calculator software does. The calculator program both enables calculation
and regulates it.

This description makes clear three defining characteristics of software:
It is automated,27 immediate,28 and plastic. Because so much depends on
these characteristics, it is worth dwelling briefly on each.

Software is automated. The only person needed to make software work
is its programmer. Once she is done, the software can operate effectively on
its own. Because software is automated, it can be an extraordinarily
inexpensive way of solving problems. A computer costing $1000 can carry
out perhaps a hundred million billion operations over the course of its
useful life.29 Once a piece of software has been written, the marginal cost of
running it to handle another case can be vanishingly small.

Among other possible regulators, only physical architecture resembles
software in being automated much of the time. Once a building is up, it
tends to stay up; a locked door will deny a thief entry even if no guard is
watching. In contrast, a court requires judges to hear cases, lawyers to argue
them, and marshals to enforce the results. A market is the aggregation of the
individual decisions made by its participants. A market in which these
participants were uninvolved would be dysfunctional at best. Social norms,
by their very definition, are social. Take away the people, and you take
away the norms.

Software is immediate. Here is Lessig’s description of the distinction
between immediate (prospective) constraints and retrospective sanctions:

26. The password-protection example is Lessig’s. Lawrence Lessig, The Zones of

Cyberspace, 48 STAN. L. REV. 1403, 1408 (1996).
27. Lessig refers to this feature as “self-execution” or “agency.” LESSIG, supra note 1, app. at

236-37.
28. Lessig also uses the term “present constraint.” Lessig, supra note 2, at 510 n.32.
29. This figure assumes a computer with a three-gigahertz processor and a life of three years.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1730 The Yale Law Journal [Vol. 114: 1719

Architecture and the market constrain up front; law and norms let
you play first. For example, think of the constraints blocking your
access to the air-conditioned home of a neighbor who is gone for
the weekend. Law constrains you—if you break in, you will be
trespassing. Norms constrain you as well—it’s unneighborly to
break into your neighbor’s house. Both of these constraints,
however, would be imposed on you after you broke into the house.
They are prices you might have to pay later. The architectural
constraint is the lock on the door—it blocks you as you are trying
to enter the house. The market constrains your ownership of an air
conditioner in the same way—it demands money before it will give
you one.30

Again, the analogy between software and architecture holds. Think of
the calculator and the password-protected Internet site. There is no need to
punish someone who uses a calculator program to write a letter—it is
simply not possible to use the program in that way.31 Similarly, as long as
the password-checking software on the site works, it constrains your access
immediately.

Further, because software intervenes to constrain conduct prospectively,
it must act on the basis of information available to it at the time of the
conduct and on the basis of the program as the programmer wrote it before
the conduct. Thus, in order for a class of information to be material to a
decision made by software, the programmer must have specified the
relevance of such data in the program itself. Software cannot—as law can—
adapt its response in light of later-available information or a later
determination that such information is relevant.32

Software is plastic. So far, Lessig’s treatment of software as a species
of architecture seems justified. But there is one crucial respect in which
software profoundly violates expectations based on physical architecture:
Software can make much more finely grained decisions. Frederick Brooks,
in The Mythical Man-Month, probably the most influential book ever
written on the process of software development, describes the profound
degree of control a programmer has over her program:

30. LESSIG, supra note 1, app. at 237 (endnote omitted).
31. Technically, of course, if someone successfully hacks or evades the software, it has not

acted as an effective constraint, and ex post sanctions may be needed to deter such conduct. My
claim is not that software is always an effective constraint; in Section II.D, I discuss ways in
which software may fail to constrain. The point here is that to the extent software constrains, it
does so presently, in the here and now—exactly as physical architecture does, when one is not
driving around the speed bumps or removing the filters from one’s cigarettes.

32. Thus, the technical definition of “immediate” used in this Note implies its everyday
meaning of “at once.” A regulator that works through ex post sanctions can delay its response to a
given action while it investigates and decides whether to intervene. On the other hand, a regulator
that uses ex ante prohibitions must either allow or prohibit a given action at the moment that
action is attempted.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1731

Finally, there is the delight of working in such a tractable
medium. The programmer, like the poet, works only slightly
removed from pure thought-stuff. He builds his castles in the air,
from air, creating by exertion of the imagination. Few media of
creation are so flexible, so easy to polish and rework, so readily
capable of realizing grand conceptual structures.33

Whatever a programmer can express in a programming language, she
can create. But what kinds of processes can be expressed in a programming
language? Computer science’s best answer to this question is the Church-
Turing Thesis, which states that all moderately sophisticated programming
languages are equally powerful, because each of them is capable of
expressing everything any of the others could express.34 It follows that what
matters is whether the process we are looking at can be expressed in even
one programming language; if so, then it can be expressed in any
respectable programming language. In particular, anything about which we
can be precise can be expressed as a computer program. If I can express my
sense of what results should follow in a given set of circumstances in
statements of the form “if X happens, then the result should be Y,” I have
actually written a computer program to carry them out.

I can be as general or as specific in my instructions as I want. If I am
creating a virtual soda machine, I could have it emit a virtual can of soda
when its virtual button is pushed. I could have it examine the complete
history of the customer’s interaction with virtual vending machines and
only let it dispense a soda if the customer has never hit or shaken another
vending machine. Or I could have it dispense its entire contents if the
customer inserts a virtual dime between 3:55 and 4:00 a.m. on the second
Wednesday of the month and pushes the “cola” button three times in less
than eight seconds.

It is the combination of this precision with the immense leverage
provided by automation that gives programmers such power. They can
write programs that handle particular cases with any necessary level of
detail while at the same time being able to handle those cases billions of

33. FREDERICK P. BROOKS, JR., THE MYTHICAL MAN-MONTH: ESSAYS ON SOFTWARE

ENGINEERING 7 (anniversary ed. 1995).
34. See Alonzo Church, An Unsolvable Problem of Elementary Number Theory, 58 AM. J.

MATHEMATICS 345, 356-58 (1936), reprinted in THE UNDECIDABLE: BASIC PAPERS ON
UNDECIDABLE PROPOSITIONS, UNSOLVABLE PROBLEMS AND COMPUTABLE FUNCTIONS 88, 100-
02 (Martin Davis ed., 1965) (defining “effective calculability”); A.M. Turing, On Computable
Numbers, with an Application to the Entscheidungsproblem, 42 PROC. LONDON MATHEMATICS
SOC’Y 230, 249-58 (1936), reprinted in THE UNDECIDABLE, supra, at 116, 135-44 (defining
“computable”). Church’s “effective calculability” and Turing’s “computable” are provably
equivalent, suggesting that both definitions capture the same, meaningful concept. See Turing,
supra, at 149-51. For a readable modern discussion of the Church-Turing Thesis and its
implications, see DOUGLAS R. HOFSTADTER, GÖDEL, ESCHER, BACH: AN ETERNAL GOLDEN
BRAID 561-79 (twentieth-anniversary ed. 1999).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1732 The Yale Law Journal [Vol. 114: 1719

times. Physical architecture shares neither software’s level of precision nor
its nearly costless replication.

That programmers have such flexibility does not necessarily mean that
users do. Our hypothetical programmer could easily choose to make her
calculator program use decimal notation, scientific notation, or both. But
once she has made that choice, the user cannot easily undo it. When users
are powerless over software, it is often because programmers have made
design decisions that leave users without power. Indeed, this imbalance is
part of the effectiveness of regulation by software.35

II. FEATURES OF SOFTWARE AS A MODALITY OF REGULATION

This Part discusses the predictable consequences of choosing software
as a regulator. These consequences follow from the basic characteristics of
software identified in Part I.

A. Software Acts According to Rules Rather than Standards

The distinction between rule- and standard-based decisions is a staple
of jurisprudential theory.36 Rules provide the outcome for a set of cases in
advance; standards presuppose case-by-case balancing. Rules state a basis
for decisions independent of the decisionmaker; standards invite the
decisionmaker to exercise discretion.

Because software is automated and immediate, it applies rules and not
standards. The defining characteristic of rules is that they specify
completely the results of cases in advance without leaving space for
situation-specific discretion.37 The very idea of a rule presupposes some sort
of algorithm, some well-defined procedure that takes a set of inputs and
produces a determinate result. When a programmer creates a program, she
predetermines its responses to every possible input—to every possible
“case” it may adjudicate. The algorithm is the rule.

Because software is automated, it operates without human discretion.
On its way to making a decision, there is no place at which the result must
be filtered through a human mind. Indeed, because software is immediate,
there is not even a risk of discretion forcing itself into the process. In an ex
post decision process, a party can always plead personal equities,
extenuating circumstances, or the relevance of some other fact not specified

35. See RICHARD M. STALLMAN, Why Software Should Be Free, in FREE SOFTWARE, FREE
SOCIETY: SELECTED ESSAYS OF RICHARD M. STALLMAN 119, 124-25 (Joshua Gay ed., 2002),
available at http://www.gnu.org/philosophy/shouldbefree.html.

36. See, e.g., Pierre Schlag, Rules and Standards, 33 UCLA L. REV. 379 (1985); Kathleen M.
Sullivan, The Supreme Court, 1991 Term—Foreword: The Justices of Rules and Standards,
106 HARV. L. REV. 22 (1992).

37. See Cass R. Sunstein, Problems with Rules, 83 CAL. L. REV. 953, 961 (1995).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1733

in the original rule. But as noted above, an immediate regulator closes the
door to such pleas, because there is no way for a plea to affect the decisions
that the regulator has already made. The only facts that can be relevant to a
decision made by software are the facts the programmer considered relevant
when she wrote the program.

Because software operates by means of rules and not standards, many
jurisprudential observations about the nature of rules apply directly to
software. Where we think that a rule is better than a standard, software will
be an attractive regulator; where we prefer standards, software will be
comparatively unattractive. For example, where we value consistency of
application, we will tend to prefer rules to standards.38 Conversely, where
we believe we lack sufficient information to formulate good rules, we will
tend to prefer standards.

At the same time, several of our expectations about rules do not apply
to software. Most importantly, software rules achieve a perfection of
ruleishness compared to which legal rules always fall short. A familiar
critique of rules is that even facially precise rules invite a measure of
discretion. In the application of a rule to particular facts, the
characterization of the facts themselves will depend on the human
decisionmaker’s preconceptions and nonlegal sensibilities.39

But this critique has no bite against software rules, because software is
automated all the way down. There is no separate fact-finding layer to
provide human wiggle room. A software rule may be partisan—that is, it
implements its programmer’s idea of the “right” result, regardless of what
anyone else may think—but that does not mean it is any less a rule. Even if
the programmer herself changes her mind in response to the facts of a given
case, it is too late. All she can do is alter the rule for future cases.

Significantly, we are accustomed to thinking that as the complexity of
particularized rules increases, their formal realizability decreases. Increased
complexity introduces ambiguities, unpredictable interactions between
rules, and more opportunities to shade the “jurisdictional” facts that trigger
a rule’s application—all of which increase the discretion of the
decisionmaker.40 But where there is no discretion in the first place,
complexity does not turn rules into standards: Software rules can become
almost unimaginably complex without their hard edges blurring.

Further, rules enforced by software need not be capable of succinct
articulation. When judges are the decisionmakers, a rule that cannot be
written down cannot be read and applied. Even the famously prolix tax code

38. See id. at 974-77 (discussing several variations on this theme).
39. See Stanley Fish, The Law Wishes To Have a Formal Existence, in THE FATE OF LAW

159, 175-78 (Austin Sarat & Thomas R. Kearns eds., 1991); Sunstein, supra note 37, at 985.
40. See Duncan Kennedy, Form and Substance in Private Law Adjudication, 89 HARV. L.

REV. 1685, 1690 (1976); Sunstein, supra note 37, at 984-85.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1734 The Yale Law Journal [Vol. 114: 1719

presents a set of rules that are simple enough for humans to read and apply
to particular facts. But the rule implemented by a program is, ultimately, the
totality of the program itself; there need not be any version that a person
could explain in her own words.41

Consider Deep Blue, the computer program that is now the word’s top-
ranked chess player. The programmers who created it are worse chess
players than their program, which uses a combination of massive trial and
error and a highly abstracted evaluation of the quality of a chess position.42
In choosing any given move, Deep Blue makes millions of individual
decisions, any of which may be a but-for cause of the move it ultimately
makes. Deep Blue applies a rule in the sense that its response to a given
board position is completely predetermined by its program, but there is no
person alive who could apply that rule in any way other than by simulating
the millions of steps Deep Blue takes on its route to a decision. A person
carrying out this process of rote computation will not gain much insight into
why Deep Blue selects one move over another, any more than a person
studying an MRI of a philosopher’s brain will learn something about
philosophy. Predicting Deep Blue’s moves from outside is harder than
playing grandmaster-level chess—too hard, in other words, for any person
to do. Indeed, not even a program’s authors may fully understand the rule
the program follows. Deep Blue’s programmers certainly do not.

The creation of functional rules that cannot be explained is made
possible by the perfect formal realizability of software rules. Software can
successfully apply rules whose complexity would make them collapse
under their own weight if humans were forced to apply them.

B. Software Need Not Be Transparent

Among the virtues associated with the rule of law are at least two we
usually think of under the heading of “transparency.” First, good law is
predictable. One should be able to predict the application of a law and bring
one’s conduct into compliance with it. Second, good law is accountable.
One should be able to see who is responsible for a law, so that only those
who will stand behind their actions exercise authority.

41. The single most important result of computer science, the Turing Theorem (not to be

confused with the Church-Turing Thesis, although they are related), says that there is no general
way to find out much about computer programs. (More precisely, it is impossible in general to tell
whether a given computer program will ever finish its work. See Turing, supra note 34, at 132-
34.)

42. FENG-HSIUNG HSU, BEHIND DEEP BLUE: BUILDING THE COMPUTER THAT DEFEATED
THE WORLD CHESS CHAMPION 24, 197-203 (2002).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1735

It is sometimes asserted that rules are well correlated with these twin
virtues of transparency.43 While this is generally the case for legal rules, we
have long known that ruleishness per se is analytically independent from
these transparency values.44 And software can deliver ruleishness without
guaranteeing transparency. As the above discussion of Deep Blue suggests,
it is possible to have a well-functioning software system whose reasoning is
inscrutable even to its creators. More troublingly, this possibility is not
confined to cases of raw complexity. Software is capable of applying even
quite simple rules in a way that obscures both the pattern of their effects
and their source.45

To understand software’s transparency deficit, it is helpful to start by
considering how the other modalities stack up. Law is in many ways the
paragon of openness: The phrase “rule of law” is nearly synonymous with
transparency in adjudication.46 Because law is articulated and applied by
judges who must explain their conclusions in every case, the system has
built in a great deal of accountability in the form of transparent reasoning. A
judicial opinion foregrounds both the specific rule of decision being applied
and the institutional source of that rule.

Markets and norms both depend on predictability. Social norms, by
their nature, require individuals to internalize the relevant group’s sense of
acceptable and unacceptable behavior,47 while markets depend on price
signals to function.48 Where norms and markets sometimes fall short is on
the accountability side of transparency. Their decentralized nature means
that it is hard to locate any one agent responsible for the overall constraint
being imposed. This lack of agency is sometimes considered a good thing,
because it enables social groups to respond informally to their members’
interests and it accounts for the seemingly uncanny ability of markets to
aggregate vast quantities of information—the so-called “invisible hand.”
But it can also be troubling. Destructive or invidious social norms can be
difficult to uproot because there is no single agent with the power to alter
them,49 and markets have been frequently criticized for their disembodiment
of aggregate controls from individual choices.

43. See Kennedy, supra note 40, at 1688; Antonin Scalia, The Rule of Law as a Law of Rules,

56 U. CHI. L. REV. 1175, 1178-81 (1989).
44. See Kennedy, supra note 40, at 1701-02; see also LON L. FULLER, THE MORALITY OF

LAW 39 (2d ed. 1969).
45. Cf. Wagner, supra note 22, at 479-80 (treating transparency as a safety valve on

regulation).
46. See Scalia, supra note 43, at 1187.
47. See LESSIG, supra note 1, app. at 237-38.
48. See James Boyle, A Theory of Law and Information: Copyright, Spleens, Blackmail, and

Insider Trading, 80 CAL. L. REV. 1413, 1443-45 (1992).
49. See Dan M. Kahan, Gentle Nudges vs. Hard Shoves: Solving the Sticky Norms Problem,

67 U. CHI. L. REV. 607 (2000).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1736 The Yale Law Journal [Vol. 114: 1719

Physical architecture is more ambiguous. It is certainly predictable in
the sense that an object exists or it does not, and its basic physics are
intuitive. Speed bumps punish those who drive too fast. Similarly, because
regulation by physical architecture is so inflexible, there will be few
examples of cases in which it regulates in a way that is not predictable to
those being regulated but is purposeful from the point of view of the
architect. Walls, streets, and windows are not very selective; their rules of
behavior are written in very broad terms. On the other hand, physical
architecture can conceal the design choices embedded in it. Lee Tien gives
the example of doors on phone booths: Their presence increases one’s
expectation of privacy for Fourth Amendment purposes, but few would
look closely at the regulatory implications for privacy of a government
mandate that phone booths not have doors.50 To the extent that physical
architecture with a regulatory agenda figures in our lives as a given, it is not
always transparent.

In one sense, it is an immediate corollary of concerns noted above that
software can be unpredictable to those regulated by it. A software rule that
is so complex as to defy human understanding and explanation does not
provide predictability. The rule itself is unambiguous as applied to any
particular set of facts, but prospectively, there may be no simpler way to
predict whether a given action is allowed than by attempting to engage in
it.51

This problem of unpredictability can arise even when the underlying
rule is not in itself excessively complex. Software is asymmetric. The
programmer can determine its responses, but the user sees only the results
of the software’s individual decisions—allow this action, forbid that one—
and lacks access to accurate knowledge of the set of inputs that determined
a particular output.52 All the user knows is that a particular action is
disallowed, without necessarily understanding why. In particular, because
users are confined to dealing with software on a case-by-case basis, it may
be very difficult to detect systemic discrimination where unpredictable
software is involved.53

50. Lee Tien, Architectural Regulation and the Evolution of Social Norms, INT’L J. COMM. L.
& POL’Y, Autumn 2004, at 1, 4-5, http://www.digital-law.net/IJCLP/Cy_2004/pdf/
Lee_Tien_ijclp-paper.pdf.

51. Computational learning theory has shown that under many circumstances, it is infeasible
to derive a general rule merely by observing the results the rule dictates in particular cases. See
MICHAEL J. KEARNS & UMESH V. VAZIRANI, AN INTRODUCTION TO COMPUTATIONAL
LEARNING THEORY 123-42 (1994).

52. Computer science has drawn an important distinction between the existence of a solution
to a problem and the feasibility of determining that solution. See CHRISTOS H. PAPADIMITRIOU,
COMPUTATIONAL COMPLEXITY 230-34 (1994). Further, it is often possible to prove that one has
carried out a computation without revealing the computation itself. See ODED GOLDREICH,
FOUNDATIONS OF CRYPTOGRAPHY: BASIC TOOLS 184-90 (2001).

53. See Batya Friedman & Helen Nissenbaum, Bias in Computer Systems, 14 ACM
TRANSACTIONS ON INFO. SYS. 330, 331 (1996).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1737

If software were fully accountable, this issue might not be as troubling.
But two features of software undermine its accountability. The first it shares
with physical architecture: It may not occur to those regulated by software
to think of the man behind the curtain, to conceive of a restrictive design
decision as being a decision at all. Most streaming media players do not
give users the ability to save the stream to a local hard drive, a design
decision made quite deliberately, usually to advance the interests of
copyright holders.54 Users may not realize that this decision was made
deliberately.

The second feature that undermines software’s accountability is also
characteristic of markets and norms. In a complex software system, it may
be nearly impossible to determine who made the relevant regulatory
decision. In any software system that is itself composed of smaller
subsystems, the actual basis for decision may well be a composite of rules
specified by different programmers. If I try to load a web page and receive a
“not found” error, the request may have failed because I mistyped it,
because my computer is not connected to the Internet, because of a failure
at any number of places between my computer and the web server, because
the web server is unavailable, or because the page itself is no longer on the
server. Without further inspection, I cannot easily identify the reason for the
failure and thus cannot easily determine who is responsible for it.55

Further, even a regulator who wishes to use software transparently will
face difficulty, both because software has a hard time offering
contemporaneous explanations of its decisions and because even the
programmer herself may not be able to explain particular decisions. The
most basic regulatory strategy to combat opacity is explanation, in which
the regulator says what it is she is doing as she makes a decision. The
effectiveness of this strategy can depend significantly on one’s ability to
verify that her explanation is accurate. As anyone who has ever dealt with
cryptic error dialog boxes can testify, however, software does not always do
a very good job explaining itself, even when its programmer has tried to
offer such explanations.56

Generations of artificial intelligence researchers can attest that
computers remain unable to engage in sustained dialogue with users.

54. Cf. RealNetworks v. Streambox, No. C99-2070P, 2000 U.S. Dist. LEXIS 1889, at *3-13

(W.D. Wash. Jan. 18, 2000) (holding that a program enabling users to save streaming media files
to a hard drive violates the Digital Millennium Copyright Act).

55. See generally Helen Nissenbaum, Accountability in a Computerized Society, 2 SCI. &
ENGINEERING ETHICS 25 (1996), available at http://www.nyu.edu/projects/nissenbaum/papers/
accountability.pdf.

56. See AJ Cunningham, C Compiler Errors (For Real), http://www.netfunny.com/
rhf/jokes/91q3/cerrors.html (last visited Feb. 12, 2005); Funny Error Messages and Strange Bugs,
http://home.swipnet.se/moose/funerr.htm (last visited Feb. 12, 2005); Snopes.com, Urban Legends
Reference Pages: Computers (Haiku Error Messages), http://www.snopes.com/computer/internet/
haiku.asp (last visited Feb. 12, 2005).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1738 The Yale Law Journal [Vol. 114: 1719

Computers have great difficulty parsing natural human language
sufficiently well to be able to formulate appropriately responsive replies.57
Thus, they can only offer whatever explanation the programmer was able to
draft in advance. It is hard to adapt explanations to the concerns of a
particular user. To take a trivial example, the majority of Internet sites are
monolingual, and only a small fraction are properly accessible to blind
users.58 In another vein, many skilled computer users find themselves
frustrated by automated software technical support aimed at novices. The
desire to “speak to a person who understands” is a strong one. Dialogue is a
process value; the opportunity to be heard can make the outcome more
intelligible.

Sometimes programmers can create such dialogue by writing good help
text and having people who understand why the software makes the
decisions it does provide technical support. But recall the discussion of
Deep Blue. Programmers who do not themselves understand their
program’s reasoning may not be able to provide such support. Imagine
Deep Blue’s programmers hauled into court and ordered to justify its
decision to sacrifice a pawn. Their inability to explain is confirmation of the
practical unpredictability of their program.59

Another way of understanding why software is so often unpredictable is
to note that programming is a difficult profession. Programming absorbs the
attention of hundreds of thousands of intelligent, trained professionals. All
of them spend substantial amounts of time debugging their code. Almost
every computer program makes decisions that its creator neither expects nor
intends nor understands. The ambition of software engineering is to remove
the most important bugs and reduce the unpredictable errors (i.e., “wrong”
decisions) to a tolerable level, not to eliminate them entirely.60

C. Software Rules Cannot Be Ignored

Because software is automated, its rules can apply even in realms where
it would be extremely hard for law to reach. Even though I might want to

57. See, e.g., Stuart M. Shieber, Lessons from a Restricted Turing Test, 37 COMM. ACM 70,

71-74 (1994).
58. DISABILITY RIGHTS COMM’N, THE WEB: ACCESS AND INCLUSION FOR DISABLED

PEOPLE 9 (2004), http://www.drc-gb.org/publicationsandreports/2.pdf (“Most websites (81%) fail
to satisfy even the most basic Web Accessibility Initiative category.”); see also Pariah Burke, 81%
of Websites Inaccessible to Disabled, So Is the Report That Says So, http://iampariah.com/blog/
2004/04/81-of-websites-inaccessible-to-disabled-so-is-the-report-that-says-so/ (April 21, 2004,
00:50 PST) (noting that the PDF version of the Disability Rights Commission’s own report is
similarly inaccessible).

59. Indeed, its unpredictability is in some sense necessary to its operation because otherwise
its opponents could train against it too easily.

60. See ROGER S. PRESSMAN, SOFTWARE ENGINEERING: A PRACTITIONER’S APPROACH 212-
16 (5th ed. 2001).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1739

duplicate my copy of Microsoft Office XP for a friend, I cannot:
Microsoft’s “product activation” feature ties my copy to my computer.61
Sometimes this degree of control may be unjustified as a matter of social
policy,62 and sometimes it may apply in situations the regulator would
rather leave untouched.

Scholarship on regulatory modalities has convincingly demonstrated
that it is often good social policy, rational, and efficient for people to act
with indifference to legal rules.63 Law, extended into such realms, disrupts
efficient social norms in those cases in which it is applied. Because
software can reach so many more transactions than can law, it can disrupt
more cases. And because software, unlike law, is immediate, the effects of
each disruption are more severe.

Begin with the Coase Theorem: The most important determinant of the
efficiency of a legal rule is the structure of transaction costs. An efficient
legal rule minimizes the transaction costs people pay on their way from the
initial distribution of entitlements to a Pareto-efficient distribution. The
usual phrase for such transactions is “bargaining in the shadow of the
law,”64 and the model it implies is clear. People take as given the legal
default rules governing their situation, and where those rules produce
inefficient distributions, they strike individual bargains for more efficient
outcomes.

In reality, however, the law is neither as important nor as powerful as
this model presumes. Robert Ellickson has claimed that the presence of
shared social norms enables groups to self-regulate informally.65 Not only is
the law’s default rule not the starting place for their negotiations, they do
not need to know what law governs their situation or even know that it is
covered by law. If they have an effective norm-enforced default rule to
situate an entitlement, they will not need to turn to law.

This displacement works because law is neither automated nor
immediate. Because law is not automated, if the parties to a potential
dispute are satisfied with its resolution, the law will leave them alone. And
because law is not immediate, it is content to wait until one of the parties
comes before it with a complaint. It leaves time for them to strike an
informal deal with each other, or for internalized community norms to keep
a dispute from arising. The law does not come running in and attempt to

61. Microsoft Corp., Windows XP Product Activation, http://www.microsoft.com/

windowsxp/evaluation/features/activation.mspx (last edited Aug. 29, 2002).
62. See Boyle, supra note 5, at 196-200; Julie E. Cohen, Lochner in Cyberspace: The New

Economic Orthodoxy of “Rights Management,” 97 MICH. L. REV. 462, 468-80 (1998).
63. See ELLICKSON, supra note 18, at 280-83.
64. This phrase comes from Robert H. Mnookin & Lewis Kornhauser, Bargaining in the

Shadow of the Law: The Case of Divorce, 88 YALE L.J. 950 (1979).
65. ELLICKSON, supra note 18, at 167-83.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1740 The Yale Law Journal [Vol. 114: 1719

hand physical possession of a whale to the whaler who first harpoons it; it is
content to adjudicate legal title to the whale later on.66

But consider what would happen if the law could interpose itself
directly into people’s dealings. If law were automated, parties would need
to sign off explicitly on every readjustment of resources between them.
Worse, if law were immediate—if its decisions about entitlements
translated directly into physical reality—parties would have to go through
the cumbersome process of formally exchanging possession. So long as the
legal rule matched the content of their informal norm, no damage would be
done, but as soon as the law deviated from what they would have chosen in
its absence, the transaction costs would begin to mount.

This is exactly what happens when people are regulated by software,
which can and does impose itself on their dealings. If the resource they are
interested in is a virtual one—a domain name, an item inside a multiplayer
game—software determines at the outset who is entitled to it and who is
not. If the software chooses “wrongly,” it is up to the parties to fix the
mistake.

Now, it is quite possible for software to get many, indeed, most cases
right. But the law and economics literature is rife with examples showing
that essentially any explicit ex ante rule—and rules are what software
applies—will be inefficient in some cases that social norms among the
relevant community could get right.67 In these cases, software will impose
transaction costs that law would not.

In this respect, software is like physical architecture, like laws of
nature, like the world as we find it. But unlike these other constraints,
software can be used instrumentally—to settle the distribution of resources.
These other immediate regulators are simply not plastic enough for this
possibility to arise. Because there is no question of substantially changing
the way they distribute entitlements, the inefficiencies they generate are not
open to real evasion, nor can we turn such regulators “off” in the same way.
The best we can do is find ways to transact around them, and so we do.
With software, these added costs are the consequence of a decision over
which someone has control, and so the possibility of trading them off
against the benefits conferred by software-based regulation can arise.

Transaction costs are by definition context dependent. The effects on
transaction costs of using software are also context dependent. The
observation that software-imposed rules must be transacted around rather

66. See id. at 191-206 (discussing legal and nonlegal rules governing property in whales).
67. Ellickson’s discussion of whaling customs provides a good example. The community of

whalers employed at least three different customs for determining which ship had the right to a
whale, and the custom chosen depended on the type of whale, local geographic conditions, and the
hunting technology in use. Id.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1741

than ignored plays out very differently in different regulatory contexts. Here
are three examples.

In some settings, the regulator is interested in helping the users
collaborate to their mutual advantage and is indifferent about the details as
long as the users are collectively happy. This is the situation in many
computer games, where the users’ goal is typically to have fun together, and
in many productivity applications, where the users’ goal is typically to
collaborate in preparing a document. In such settings, it often makes sense
for the regulator both to optimize software rules so that they track the most
common cases and to provide users with easy software-based mechanisms
to strike corrective bargains. These software rules resemble legal default
rules.

In other settings, the interests of the users are more adversarial, but the
regulator is still unconcerned with the details of their interaction so long as
they are happy and they use the software. This is the pattern of many online
marketplaces, whose goal is to provide users with an automation-fueled
reduction in transaction costs.68 These software rules resemble perfectly
enforced mandatory legal rules. If you enter the system at all, you will be
bound by them.

In yet other settings—in many DRM systems, for example69—
regulators who use software are concerned that the software be the
exclusive medium for negotiating exchanges between users and, further,
that only certain kinds of exchanges be allowed. Unlike in the previous
case, however, regulators cannot rely on the users’ self-interest to prevent
attempts to opt out of the distribution of entitlements set up by the software.
In this case, as in the previous one, the efficiency consequences of an
inappropriate software rule will be magnified by users’ inability to contract
around it.

Finally, note that because software operates automatically, the
programmer may not be aware that her software’s rules are operating
inefficiently. All she can tell is that the rule is being applied, not how
people feel about the result. The natural tendencies that make other
regulators aware of their inefficiencies and pressure them to fix those
inefficiencies are absent with software. Markets will respond with price
changes; judges will respond with equitable exceptions; norms are
notoriously adaptable. Software is comparatively oblivious to its own
inefficiencies.

68. See infra Section III.A.
69. See infra Section III.B.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1742 The Yale Law Journal [Vol. 114: 1719

D. Software Is Vulnerable to Sudden Failure

Software failures range from the huge and newsworthy—a software bug
caused the eighteen-million-dollar Mariner I probe to go off course shortly
after launch in 196270—to the ordinary and everyday.71 Software gives us
the Internet; software failures have nearly taken it away.72 Software is
always, in a sense, on the brink of failure.

Specifically, software is vulnerable to failure in three related ways: It is
buggy, it is hackable, and it is not robust. Software’s intrinsic bugginess is
an emergent property of its complexity and has already been discussed. The
next two Subsections discuss hackability and robustness in turn.

1. Software Is Hackable

First, everything noted above about the power of software applies not
only to its intended uses but also to uses made of it by malicious hackers.
Thus, if Program X regulates some activity, a hacker who succeeds in
replacing Program X with Program X' of her own devising will have gained
the same absolute control over that activity that the original programmer
once enjoyed.

Second, everything noted above about the endemic bugginess of
software applies with particular force to software’s “security” features—
those parts of a system designed to keep a hacker from taking control.
Errors as slight as a programmer’s use of “x = y” instead of “x == y”
have caused many security holes in operating systems.73 Such seemingly
small differences between two computer programs can have wildly
disproportionate consequences. This difference could be the point of attack
of a worm program, one that tricks a computer into following the program’s
instructions instead of those of the computer’s owner. Because eliminating
bugs from software is so difficult, it is also difficult to secure a complex
computer system. Hackers can often gain significant toeholds even in
mature and heavily guarded systems.74

70. Gladwin Hill, For Want of Hyphen Venus Rocket Is Lost, N.Y. TIMES, July 28, 1962, at
A1.

71. An audit conducted by Earthlink, for example, found that the nearly five million
computers analyzed contained over twenty-five million instances of “spyware” and “adware,”
software that users almost certainly had not voluntarily chosen to allow on their computers.
EarthLink, Earthlink Spy Audit, http://www.earthlink.net/spyaudit/press (last visited Feb. 23,
2005).

72. See KATIE HAFNER & JOHN MARKOFF, CYBERPUNK: OUTLAWS AND HACKERS ON THE
COMPUTER FRONTIER 251-341 (1991) (discussing the Internet worm accidentally released by
Robert Tappan Morris).

73. In the C programming language, “x = y” sets x to be equal to y, whereas “x == y” is
a test to see whether x and y are already equal.

74. See generally BRUCE SCHNEIER, SECRETS AND LIES: DIGITAL SECURITY IN A
NETWORKED WORLD (2000).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1743

Third, and crucially, hackers get to use software, too. The simplest form
of such counterprogramming is to write one program that wages war on
another program. The computer world is awash in brute force attacks.
People guessing passwords use “dictionary attacks” that guess every
possible password, one at a time. Against some classes of Windows
computers, for example, a dictionary attack can successfully guess a
password in seconds.75 A related technique is to try the same attack against
millions of different computers. The Blaster worm, for example, would
randomly attempt to contact other computers on the Internet and would try
the same attack against each. It may have infected more than one million
computers.76 Software automates the process of breaking other software,
making such attacks far more likely to succeed.

Another class of software-abetted trickery involves leaving a program
itself alone but embedding it in a larger system whose overall effects are
contrary to the intent of the original programmer.77 A DRM system may use
strong encryption to prevent eavesdropping by nonpaying third parties
during music distribution, for example. But that same strong encryption
means that the DRM system could be a useful component for file sharers:
They could use it to trade files in a way that is secure against eavesdropping
by third-party copyright holders. The DRM system is doing exactly what it
was programmed to do—keep people not party to a communication from
learning anything about what is being said—but in a way that would be
considered a serious failure by the people who programmed it.

Even more creatively, users determined to evade a particular restriction
of software can often just recreate the software system and delete the
restriction they dislike. They copy, reverse engineer, or independently
recreate the program and make whatever changes they desire. In the 1980s,
when most software came on floppy disks with copy protection software,
stripping the copy protection from commercial software was one of the
most popular techniques by which hackers demonstrated their skill.78

75. Robert Lemos, Cracking Windows Passwords in Seconds, ZDNET NEWS, July 22, 2003,

http://news.zdnet.com/2100-1009_22-5053063.html.
76. Ellen Messmer, Blaster Worm Racks Up Victims, PC WORLD, Aug. 15, 2003,

http://www.pcworld.com/news/article/0,aid,112047,00.asp.
77. The possibility of embedding one software system inside another is a fundamental

technique of programmers. Entire software architectures are designed to allow later programmers
to embed software written by earlier ones in contexts not explicitly anticipated by those earlier
programmers. See, e.g., PRESSMAN, supra note 60, at 721-22.

78. For a collection of hundreds of screenshots of cracked Apple II games, see Artscene,
Apple II Crack Screens, http://artscene.textfiles.com/intros/APPLEII/.thumbs.html (last visited
Feb. 12, 2005).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1744 The Yale Law Journal [Vol. 114: 1719

2. Software Is Not Robust

Because software is immediate and automated, it can fail almost
instantaneously and without raising alarms among people who could
otherwise intervene.79

Start with the question of time. It takes years to learn whether a legal
loophole really works. Even if you find a rule exactly on point, you might
still be stopped by an equitable exception or a jurisdictional nicety. Other
regulators—markets, norms, physical architecture—are also not easy to
probe quickly. It takes time to try every doorknob on a block; it takes even
longer to have enough conversations with people to feel confident that they
will not condemn you for doing what you contemplate doing. Especially if
you don’t have a particular exploit already in mind, finding one that works
is a slow and tedious process. Software, by contrast, is immediate. You can
try out a possible exploit, and the software will tell you right away whether
or not you’ve succeeded. If not, you—or rather, your computer—have
wasted at most a few milliseconds.80

More seriously, once a software system has been hacked or has failed of
its own accord, the lack of human review means that it will not be able to
recover on its own. The legal system is filled with people whose job is to
prevent loopholing, including judges, opposing counsel, prosecutors, and
police. If a specific result is discontinuous with the surrounding doctrine or
runs against broader policy values, these monitors will find a way to stop it
or attempt to bring the issue to the attention of others with the power to
close the loophole. The legal system’s technique of reasoned case-by-case
adjudication is designed to let it fix discontinuities as they are observed, to
help it spot end runs and determine whether they should be allowed.

Architecture, markets, and norms also display features that provide
robustness. An important aspect of physical architecture is visibility.81
Regulation by architecture uses visibility in its idea of natural
surveillance—that good architecture is designed so that the conduct of
potential intruders can easily be seen by many residents and so that the
intruders are aware their actions can be seen.82 Precisely because markets

79. Cf. Wagner, supra note 25, at 480 (“[S]oftware regulation can ‘fly under the radar,’

avoiding the oversight, both formal and informal, that occurs in even the least interventionist
forms of legal regulation”).

80. Cf. SCHNEIER, supra note 74, at 18-19 (“Fast automation makes attacks with a minimal
rate of return profitable.”).

81. See generally MICHAEL SORKIN, LOCAL CODE: THE CONSTITUTION OF A CITY AT 42° N
LATITUDE 30-31 (1993) (treating views as a basic architectural element).

82. Katyal, supra note 16, at 1050. Katyal has attempted to extend this notion to cyberspace.
Neal Kumar Katyal, Digital Architecture as Crime Control, 112 YALE L.J. 2261, 2264 (2003).
Notice the difference between asking software to make actions visible to others and asking
software to make decisions itself. In the real world, architecture that attempts to do this security
job by itself has been notoriously ineffective—indeed, the harshness of visible security measures

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1745

function as devices for collecting and distributing information, they
encourage participants to seek out relevant information, including about the
behavior of other participants. Arbitrage makes markets hum, but it also
helps to close the price gaps it exploits. And as for norms, they are
enforced, indeed constituted, by people. If you do something without hiding
it (and no regulator can touch conduct of which it is ignorant), then by
definition it has come to the attention of the people who might regulate it by
norms.

But software is automated. A person doing a page of calculations who
hits a division by zero will know that something has gone wrong and check
her earlier work to find the mistake. A computer program hitting the same
division by zero will simply crash. Even when software is backed up by
human eyes, it has a very difficult time figuring out what has gone—or is
about to go—wrong. Debugging is the most difficult, tedious, and annoying
part of programming. Forensic debugging—figuring out the cause of a fault
after that fault has occurred—is even more difficult.83 It is generally
considered at least ten times more expensive to fix a bug found after release
than before.84

Even worse, when the problem is not something so obvious as a crash,
it is not always clear what the human supervisors ought to be watching for.
If the software is regulating as intended, it will likely be producing
enormous quantities of data.85 The words programmers use to describe such
data and the process of examining it—for example, one “grovels” through a
“dump”86—give an idea of the nature of the task. It is not a hunt for a
needle in a haystack. It is a hunt for the broken needle in a field covered
two feet deep in other needles.

III. CASE STUDIES

The four predictable consequences of regulation by software identified
in the previous Part—ruleishness, opacity, ubiquity, and fragility—provide
a methodology for evaluating the use of software in particular regulatory
contexts. First, one sketches out the key features of the problem domain and

tends to make architecture lifeless and antisocial, inadvertently reinforcing norms that such spaces
are inhumane and need not be treated with respect.

83. For examples of forensic debugging techniques, see Paul Richards & Jörg Wunsch,
Kernel Debugging, in FREEBSD DEVELOPERS’ HANDBOOK (2004), http://www.freebsd.org/doc/
en_US.ISO8859-1/books/developers-handbook/kerneldebug.html.

84. See BARRY W. BOEHM, SOFTWARE ENGINEERING ECONOMICS 40 (1981).
85. The total amount of recorded information produced in 2002 is estimated to be about five

exabytes, an amount equal to about 800 megabytes per person worldwide. PETER LYMAN & HAL
R. VARIAN, HOW MUCH INFORMATION? 2003, at 1 (2003), http://www.sims.berkeley.edu/
research/projects/how-much-info-2003/printable_report.pdf.

86. See THE NEW HACKER’S DICTIONARY 165-66, 228-29 (Eric S. Raymond ed., 3d ed.
1996), available at http://www.catb.org/~esr/jargon/.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1746 The Yale Law Journal [Vol. 114: 1719

the possible software solution. One then runs through the list of predictions
to see how these common features of regulation by software are likely to
emerge in the case at hand.

The next step is to ask whether these expected results are consistent
with one’s regulatory goals. If discretion is unnecessary, the need for
transparency low, the potential additional transaction costs small, and the
risk of software failure untroubling, then regulation by software is a good fit
to the task at hand. If, on the other hand, one or more of these conditions do
not apply, the shape of the inquiry shifts. The question then becomes
whether one can take steps to mitigate the undesirable consequences of
choosing software—with the costs and consequences of those steps factored
into one’s overall normative evaluation of whether software is the best
choice among modalities.

Pervasive regulation by software either is already taking place or has
been proposed for many policy domains. I discuss two: online markets and
DRM systems. I could equally well have discussed privacy,87 electronic
voting,88 virtual property,89 access to computer systems,90 peer-to-peer file
sharing,91 FCC regulation of telecommunications,92 the control of offensive
online speech,93 or many others. The goal of this Part is not to advance the
state of discussion of any of these areas. Instead, by showing that the
regulation-by-software model speaks intelligibly to existing discussions in
disparate areas, I offer evidence that it is both correct and generally
applicable.

A. Online Markets

The first example is software-mediated markets—marketplaces in
which the interactions of buyers and sellers are controlled by software.
Participants interact with the marketplace through a layer of software,
which determines when and on what terms transactions take place.

87. See, e.g., Jonathan Zittrain, What the Publisher Can Teach the Patient: Intellectual

Property and Privacy in an Era of Trusted Privication, 52 STAN. L. REV. 1201, 1203 (2000)
(relating “trusted systems” (i.e., DRM) to the management of privacy online).

88. See, e.g., ERIC A. FISCHER, CONG. RESEARCH SERV., ORDER CODE RL32139, ELECTION
REFORM AND ELECTRONIC VOTING SYSTEMS (DRES): ANALYSIS OF SECURITY ISSUES (2003).

89. See, e.g., F. Gregory Lastowka & Dan Hunter, The Laws of the Virtual Worlds, 92 CAL.
L. REV. 1 (2004).

90. See, e.g., Katyal, supra note 82; Eric J. Feigin, Note, Architecture of Consent: Internet
Protocols and Their Legal Implications, 56 STAN. L. REV. 901 (2004).

91. See, e.g., Lior Jacob Strahilevitz, Charismatic Code, Social Norms, and the Emergence of
Cooperation on the File-Swapping Networks, 89 VA. L. REV. 505 (2003).

92. See, e.g., Crawford, supra note 5; Kevin Werbach, Supercommons: Toward a Unified
Theory of Wireless Communication, 82 TEX. L. REV. 863 (2004).

93. See, e.g., United States v. Am. Library Ass’n, 539 U.S. 194 (2003); Lawrence Lessig,
What Things Regulate Speech: CDA 2.0 vs. Filtering, 38 JURIMETRICS J. 629 (1998).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1747

Typically, these transactions are sales; the software matches buyers and
sellers and assists them in negotiating a price.

This description encompasses a striking range of goods and
transactional models. Amazon zShops allows sellers to set prices for and
post descriptions of their items; buyers can search to find all the sellers who
are offering a particular item.94 eBay similarly uses seller-posted
descriptions but sets prices by auction.95 Priceline, which matches travelers
with travel services, uses a reverse auction, in which buyers name a price
and the system searches for sellers willing to meet that price.96 The
NASDAQ stock exchange is entirely computerized. Its software takes bids
from both buyers and sellers and finds market-clearing prices.97

In all of these markets, software mediates the transactions. Norms and
law are also at work. The underlying resources, whether they are tangible
personalty, contracts of carriage, or SEC-listed securities, are all subjects of
legal regulation. Once the software determines that a deal has been struck,
both buyer and seller find themselves parties to a legally enforceable
contract.98 The software here constrains participants to enter only into
certain kinds of legal relationships, and only in certain ways. There is no
mechanism on eBay for a consumer to attach a list of side conditions to her
bid; payment on an Amazon zShops item must go through Amazon’s
payment service.99

The companies building such markets have, in many cases, been
fabulously successful100 because these markets have been fabulously
successful in attracting participants.101 This success is not accidental:
Mediating online markets is an excellent use of software’s regulatory
powers.

94. Amazon.com, zShops Features, http://www.amazon.com/exec/obidos/tg/browse/-

/537856/ref=br_bx_c_2_0/103-0524332-2241431/104-3515892-4811160? (last visited Feb. 12,
2005).

95. eBay, Getting Started, http://pages.ebay.com/help/newtoebay/getting-started.html (last
visited Feb. 23, 2005).

96. Priceline.com, Two Great Ways To Save on the Airline Tickets You Want!,
http://www.priceline.com/customerservice/faq/howitworks/air.asp (last visited Feb. 23, 2005).

97. SEC, Nasdaq, http://www.sec.gov/answers/nasdaq.htm (last visited Feb. 23, 2005).
98. See, e.g., eBay, Your User Agreement § 4, http://pages.ebay.com/help/policies/user-

agreement.html (last visited Feb. 23, 2005) (“By bidding on an item you agree to be bound by the
conditions of sale included in the item’s description so long as those conditions of sale are not in
violation of this Agreement or unlawful.”).

99. Amazon.com, Participation Agreement, http://www.amazon.com/exec/obidos/tg/browse/-
/537790/104-3515892-4811160 (last visited Feb. 23, 2005).

100. For example, as of this writing, Amazon has a market capitalization of $13 billion.
Yahoo!, Summary for Amazon.com Inc., http://finance.yahoo.com/q?s=AMZN (last visited Apr.
27, 2005). eBay has a market capitalization of $42 billion. Yahoo!, Summary for eBay Inc.,
http://finance.yahoo.com/q?s=EBAY (last visited Apr. 27, 2005).

101. eBay has more than 100 million registered users. Press Release, eBay, eBay Inc.
Announces Fourth Quarter and Full Year 2004 Financial Results (Jan. 19, 2005), available at
http://investor.ebay.com/news/Q404/EBAY0119-777666.pdf.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1748 The Yale Law Journal [Vol. 114: 1719

1. Online Markets Rely on Ruleishness

Setting ground rules for market transactions is perhaps the prototypical
example of a situation in which we prefer rules to standards. A generation’s
worth of law and economics scholarship on contract law has argued that
economic efficiency is maximized when the rules for contracting are clear
and clearly understood. Decision by rule reduces both the ex ante
information costs associated with planning transactions and the ex post
transaction costs of relying on the system to resolve disputes.102

In markets where the goods are highly standardized, such as stock
exchanges, the use of highly automated systems has been driving costs
down dramatically.103 Even where the underlying goods being exchanged
are nonhomogeneous, as on eBay, a well-specified software system and the
resulting high consistency in the basic offer-bid-acceptance-exchange
framework make for a good fit with software’s ruleishness.

2. Online Markets Mitigate Transparency Problems Appropriately

It is important to remember the senses in which markets are and are not
transparent. Because markets themselves are not transparent with respect to
the motivations of one’s trading partners, it is irrelevant if an online market
fails to provide this form of transparency. Indeed, many online markets
thrive even in the presence of strong anonymity—all that matters is the deal
itself.104

With respect to individuals’ ability to know the terms of a deal, online
markets, like any other markets, require a very high degree of transparency.
In this context, transparency has typically been designed directly into these
software systems; the software tries to be a neutral medium for presenting
information about possible exchanges. The deployers of these systems have
recognized that keeping their preferences out of the software is important in
convincing people to use the systems. Typically the relevant rules are
clearly explained, and information sufficient to verify most of their
workings is made available.105 This technique is especially reasonable when
the market maker is not itself a transacting party but instead makes its
money writing good software to make deals possible.

102. See, e.g., Robert E. Scott, The Death of Contract Law, 54 U. TORONTO L.J. 369, 374-76
(2004).

103. See David Barboza, On-Line Trade Fees Falling off the Screen, N.Y. TIMES, Mar. 1,
1998, § 3 (Money & Business), at 4.

104. See, e.g., F. Randall Farmer, KidTrade: A Design for an eBay-Resistant Virtual
Economy (Oct. 19, 2004) (unpublished manuscript), available at http://www.fudco.com/habitat/
archives/KidTrade.pdf (proposing an online market as part of a game for children that enforces
complete anonymity in exchanges). Stock markets typically are close to anonymous in the offline
world; the computerized systems that are replacing them are equally anonymous.

105. See, e.g., eBay, supra note 95.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1749

Some online markets have displayed hidden biases.106 Amazon has
attempted to price discriminate among its customers by tailoring special
offers to their browsing patterns,107 and there have been problems with
insider access to mutual fund trading systems.108 But such problems are not
crippling in general. An online market is merely less effective in proportion
to its lack of transparency, not something that will be useless if it falls short
of perfect transparency.

3. Online Markets Reduce Transaction Costs

In most online markets, parties come together to make voluntary, binary
exchanges. From this fact, two points follow. First, the parties to the deal
are often placed in direct communication, and they can therefore directly
negotiate terms left open by the software. For example, although eBay
creates legally binding auction sales, it merely gives winning buyers and
sellers each other’s e-mail addresses and leaves them to arrange shipping
terms.109 Recognizing that software decisions cannot be ignored, eBay and
many other online markets reduce the transaction costs of reversing
incorrect decisions by enabling simple and direct negotiations by the
transacting parties.

Second, even where the goods being exchanged have great value, the
incentives to circumvent the software entirely can be kept low. Parties to
market transactions are generally adversarial and will therefore police the
system to make sure it is not in cahoots with their counterparties.110 When
the marketplace’s cut is small, the fee savings enjoyed by parties who strike
deals directly with each other generally do not justify the cost of negotiating
such deals individually. The most notable circumventions of software
restrictions target rules other than those enforced through software: for
example, by suborning an institution with privileged access to the market.111

106. See Friedman & Nissenbaum, supra note 53, at 330-32.
107. See Paul Krugman, Op-Ed, What Price Fairness?, N.Y. TIMES, Oct. 4, 2000, at A35.
108. See, e.g., Gretchen Morgenson, Market Timing: A Longtime Practice Comes Under New

Scrutiny, N.Y. TIMES, Nov. 10, 2003, at C1.
109. See eBay, Unpaid Item Policy, http://pages.ebay.com/help/policies/unpaid-item.html

(last visited Feb. 23, 2005).
110. These techniques are less effective against traditional techniques of transactional fraud.

See, e.g., Bob Sullivan, Man Arrested in Huge eBay Fraud; Buyers Criticize Auction Site’s Seller
Verification Service, MSNBC, June 12, 2003, http://msnbc.msn.com/id/3078461.

111. See, e.g., Floyd Norris, How To Beat the Market: Easy. Make Late Trades., N.Y. TIMES,
Sept. 5, 2003, at C5.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1750 The Yale Law Journal [Vol. 114: 1719

4. Online Markets Deal Appropriately with the Risk of Software
Failures

Several factors combine to make online markets robust in the face of
software failures. First, however valuable the market itself may be, the
spillover effects of a failure are not likely to include large consequential
damages. Many online markets are careful to insulate the assets themselves
from any failure of the software. If eBay’s servers were to crash, none of
the goods being traded there would suffer. Instead, after the interruption,
trading would simply resume.112

Second, most online market makers are thoughtful about watching out
for glitches, hacks, and crashes and have backup plans ready to respond to
software failures. The results have generally been encouraging. While
online markets have been subject to the occasional severe failure—some
people blame computerized trading for the 1987 stock crash,113 and
e-commerce sites have been regular targets of hackers looking for large
databases of credit card numbers114—there have been few reports of large-
scale rigging or other manipulation of prices and exchanges. More problems
have stemmed from the leakage of sensitive information than from
deliberate market manipulation.115

5. Summary

Online markets attack problems that seem almost tailor-made for
software-based resolution. Marketplaces benefit from the high ex ante
certainty of the rules within which software wraps the contract formation
process. The incentives for parties to transact around software’s mediation
can be kept low precisely because software can help drive the marginal cost
of negotiation so low. Sensible policies by market makers have avoided
thrusting such marketplaces into situations in which a failure of the
software would hurt the underlying assets. The result of this sensitivity to
software’s limits has been a set of applications that are generally well
accepted and uncontroversial, and often quite profitable.

112. See, e.g., eBay, Outage Policy, http://pages.ebay.com/help/community/png-extn.html

(last visited Feb. 12, 2005) (“Following a hard outage of two or more hours, eBay will extend the
end times for all eligible listings by 24 hours.”).

113. For a fuller discussion, see Richard A. Booth, The Uncertain Case for Regulating
Program Trading, 1994 COLUM. BUS. L. REV. 1; and works cited therein.

114. See, e.g., United States v. Ivanov, 175 F. Supp. 2d 367 (D. Conn. 2001).
115. See Bob Sullivan, Credit Card Leaks Continue at Furious Pace; Security Firm Claims

120 Million Accounts Compromised This Year, MSNBC, Sept. 24, 2004,
http://www.msnbc.msn.com/id/6030057.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1751

B. Digital Rights Management Systems

The Internet and other digital technologies have upended settled
understandings of copyright. As a matter of policy, copyright is designed to
give would-be authors and artists an economic incentive to be creative and
to share the fruits of that creativity with the public.116 Instrumentally,
copyright produces this incentive by creating a legal chokepoint at the act of
copying: Typically, anyone who wants to make a copy of a copyrighted
work must obtain the copyright holder’s permission.117 Copying without
authorization is deemed “infringement,” and the infringer can be hit with a
battery of civil, equitable, and criminal remedies.118 Copyright is a classic
form of regulation by law.119

The problem for this understanding of copyright in a digital age is that
copying has become far, far easier than it used to be. Copyright
infringement was once the province of those with printing presses; now
anyone can be an infringer with the click of a mouse button. Existing
notions of copyright enforcement by legal means no longer fit the
technological landscape either. Unsurprisingly, the implications of this
misfit are hotly contested. Some, most typically those with large portfolios
of copyrights, argue for a ratcheting up of sanctions for infringement.120
Others argue for redesigning copyright itself and finding some other
technique for giving creators appropriate incentives to share their works
with the public.121 Both camps, however, are closely watching attempts to
use DRM technology as a regulator instead of law, because such attempts
could moot their debate or transform it beyond recognition.122

The goal of a DRM system is to allow an individual user to enjoy some
piece of copyrighted content, thereby giving her a reason to pay for the
system and the content, while preventing her from making a distinct copy of

116. See, e.g., 1 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT

§ 1.03[A] (2004).
117. 17 U.S.C. § 106 (2000).
118. Id. §§ 501-506.
119. See LAWRENCE LESSIG, FREE CULTURE: HOW BIG MEDIA USES TECHNOLOGY AND THE

LAW TO LOCK DOWN CULTURE AND CONTROL CREATIVITY 121-22 (2004).
120. One such proposal was the Protecting Intellectual Rights Against Theft and

Expropriation (PIRATE) Act of 2004, S. 2237, 108th Cong. (2004).
121. See, e.g., WILLIAM W. FISHER III, PROMISES TO KEEP: TECHNOLOGY, LAW, AND THE

FUTURE OF ENTERTAINMENT (2004); Raymond Shih Ray Ku, The Creative Destruction of
Copyright: Napster and the New Economics of Digital Technology, 69 U. CHI. L. REV. 263
(2002); Ernest Miller & Joan Feigenbaum, Taking the Copy Out of Copyright, in SECURITY AND
PRIVACY IN DIGITAL RIGHTS MANAGEMENT: ACM CCS-8 WORKSHOP DRM 2001, at 233
(Tomas Sander ed., 2002), available at http://www.cs.yale.edu/homes/jf/MF.pdf; Neil Weinstock
Netanel, Impose a Noncommercial Use Levy To Allow Free Peer-to-Peer File Sharing, 17 HARV.
J.L. & TECH. 1 (2003).

122. The analysis of DRM technology in this Section is strongly influenced by LESSIG, supra
note 1, at 122-41, and works cited therein.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1752 The Yale Law Journal [Vol. 114: 1719

the content. She can enjoy the content within the software-regulated space
created by the DRM system but cannot remove the content from that space.

To make this example more concrete, consider one of the most common
types of DRM system in use today, an online music store like iTunes or
Rhapsody. A user of these services pays with a credit card for individual
songs, which are then downloaded onto her computer in an encrypted form.
The encrypted form, by itself, is useless: In order to hear the songs, she
must use a program provided by the online store that will decrypt the music
file and play it through her computer speakers. However, the program will
not give her direct access to the decrypted version. (If it did, she could send
the decrypted version to a friend or use it in ways other than those intended
by the DRM system’s creator.)

These services differ in their details, but they have in common the idea
that some uses of the song will be allowed by the software while others will
not. DRM systems therefore employ software as a regulator to carve out a
specific subset of allowed behavior from the larger space of the many things
one could do with an unencrypted music file.

1. DRM Systems Depend on Software’s Ruleishness

The restrictions that characterize DRM systems are fundamentally rule-
like. They state precise conditions under which certain uses of the media
will or will not be allowed. Although commentators disagree sharply on
whether such ruleishness is a good way to control the use of media, they do
not dispute that DRM systems use rules. Indeed, digital media themselves
are creatures of software. An MP3 audio file “exists” only within a context
defined by software tools. Digitized music and movies are already being
made, copied, and distributed with software. Adding DRM technology to
the mix does not require shifting behavior that currently takes place only
offline into an online realm. Instead, it requires people to use one software
application (a DRM-enabled one) in place of another application they
would otherwise need to use in order to interact with the media files.123 In
this sense, DRM systems, like other digital systems for the enjoyment of
media, depend on the predictability and cheap replicability of software
rules.

On the positive side, to the extent that the allowable uses of media
protected by DRM systems are made clear, consumers can develop precise
expectations about what uses are and are not allowed.124 Such precision

123. Thus, for example, iTunes will play either DRM-restricted files in the AAC file format
or unrestricted files in the MP3 format. WinAmp plays only unrestricted MP3 files. There are
formats even more “open” than MP3. The Ogg Vorbis compression technique is entirely patent
free and is available under a license guaranteed to be royalty free.

124. It is true, of course, that these rules are precise in large part because they simply exclude
an enormous number of uses that would be fully legal under existing copyright doctrine. See Julie

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1753

should be economically valuable, and one would expect it to lead to more
efficient purchasing of media content. If this claim seems farfetched,
consider the effects of another tactic being tested by recording companies:
selling “CDs” designed not to play in computer CD drives.125 These “CDs”
also have a tendency not to work in certain CD players. Here, the buyer of
music suffers from uncertainty about what uses she can and cannot make of
the music. In comparison, a well-specified DRM system is much fairer to
consumers, because they can develop reasonable expectations about it.

On the negative side, DRM systems reduce the social value created by
fair use, and DRM technology is frequently opposed for this reason.
According to this argument, fair use is and ought to be a standard and not a
rule because only a standard will be attuned to individual equities. We
should not expect a rule to capture all the subtleties of human creativity or
all the possible uses we might wish to call fair.126 The syllogism is simple:
Rule-bound regulators are a poor choice for handling copyright; software is
a rule-bound regulator; ergo software is a poor way to enforce copyright.

This debate is a rich one. It is also inseparable from one’s normative
views about the most appropriate level of copyright protection and whether
copyright cases should be judged using rules or standards. There are
certainly many who think that the vagaries of the fair use standards—
especially the infamous “four factors”—count as defects and that we would
be better off with a clearer rule, especially one under which more behavior
was presumptively legal instead of being subject to expensive and uncertain
litigation risks.127 And as I have suggested above, if the fear is of
insufficient complexity rather than insufficient clarity or insufficient ability
to make post hoc course corrections, it is not clear that software’s
ruleishness is really the wrong sort of ruleishness for fair use. With these
caveats, however, if one is committed to the idea that fair use embodies

E. Cohen, A Right To Read Anonymously: A Closer Look at “Copyright Management” in
Cyberspace, 28 CONN. L. REV. 981, 1019-31 (1996). Cohen objects not to DRM technology’s
effectiveness or ineffectiveness as a regulator but instead to the substantive regulations DRM
systems might effectively put in place.

125. Jefferson Graham, Uncopyable CDs May Be Unplayable, USA TODAY, Dec. 3, 2001, at
3D. Such “CDs” are often not real compact discs, because they have been altered so as not to
comply with the Red Book standard that governs the technical specifications of CD audio. See
Evan Hansen, Dion Disc Could Bring PCs to a Standstill, CNET NEWS.COM, Apr. 4, 2002,
http://news.com.com/2100-1023-876055.html.

126. See, e.g., Dan L. Burk, Muddy Rules for Cyberspace, 21 CARDOZO L. REV. 121, 140
(1999); Dan L. Burk & Julie E. Cohen, Fair Use Infrastructure for Rights Management Systems,
15 HARV. J.L. & TECH. 41, 54-70 (2001).

127. See, e.g., LESSIG, supra note 119, at 187 (“But fair use in America simply means the
right to hire a lawyer”). See generally David Nimmer, “Fairest of Them All” and Other
Fairy Tales of Fair Use, LAW & CONTEMP. PROBS., Winter/Spring 2003, at 263, 279-84
(demonstrating statistically the malleability and unpredictability of the fair use standards).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1754 The Yale Law Journal [Vol. 114: 1719

important values in its use of a flexible standard,128 then one has good
reason to be skeptical of DRM software’s ability to respect those values.

2. DRM Systems’ Lack of Transparency Raises Consumer Protection
Concerns

A concern about the inability of DRM systems to be fair judges of fair
use might also be a form of skepticism about the transparency of DRM
restrictions. This is very likely the nervousness felt by people who bump
into surprising restrictions in DRM systems. One e-book version of the
Constitution forbids printing;129 some users have seen the music tracks they
had purchased from iTunes stop working when they moved to another
country;130 DVD players prevent viewers from skipping the coming-
attraction commercials on some DVDs, even on repeated viewing.131 All of
these are cases in which it might seem obvious that one should have every
legal and moral right to do the deed in question—making it troublingly
ambiguous whether the creator of the DRM system meant to prevent them.

In these examples, DRM technology helps to construct a system of
copyright control in which decisional accountability is hard to find—but it
does so without apparent malice. Foes of DRM technology fear that this
blurring of accountability can also be the cover for more insidious doings,
especially when a DRM system’s design incorporates some measure of
surveillance of the user.132 The designer of a DRM system can incorporate
hard-to-discern restrictions on its use. The newest version of iTunes, for
example, has rules against repeatedly burning the same playlist to CD, but it
is not clear exactly how different two playlists must be for iTunes to allow
them both to be burned the maximum number of times.133 Lurking in
objections to such restrictions is a sense that your possessions—including
your software—should be accountable to you and no one else.

Various proposals for an escape hatch in DRM systems bring together
these strands of anxiety about the transparency of DRM technology as a
regulator.134 These escape hatches would allow users to do things normally

128. See, e.g., Wendy J. Gordon, Fair Use as Market Failure: A Structural and Economic

Analysis of the Betamax Case and Its Predecessors, 82 COLUM. L. REV. 1600, 1614-22 (1982)
(arguing that fair use standards respond better to unpredictable market failures than would rules).

129. Lawrence Lessig, This Is the Constitution on DRM, http://www.lessig.org/blog/archives/
001993.shtml (June 24, 2004 13:23 PST).

130. See Bob Tedeschi, Out of the U.S. and Out of Luck To Download Music Legally, N.Y.
TIMES, July 28, 2003, at C3.

131. See Greg Sandoval, “Tarzan” DVD Forces Viewers Through a Jungle of Previews,
CNET NEWS.COM, Mar. 2, 2000, http://news.com.com/2100-1017-237585.html.

132. See, e.g., Julie E. Cohen, DRM and Privacy, 18 BERKELEY TECH. L.J. 575 (2003).
133. See Jason Schultz, Meet the New iTunes, Less Than the Old iTunes?,

http://lawgeek.typepad.com/lawgeek/2004/04/meet_the_new_it.html (Apr. 29, 2004).
134. See Seth Schoen, Give TCPA an Owner Override, LINUX J., Dec. 2003, at 14, available

at http://www.linuxjournal.com/node/7055/print.

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1755

forbidden by DRM systems without trying to hide the fact that the system
had been overridden. The goal of such proposals is not to allow computer
users simply to ignore all DRM restrictions, but rather to allow a form of
human appeal. Such an escape hatch would be an explicit carve-out from
regulation by software back to the world of regulation by law.

3. DRM Systems Are Insensitive to User Transaction Costs

Consider again the case of the music file that stops working when one
moves to another country. The rule being applied here is supposed to
restrict music purchasers to buying songs from a music store “in” their own
country, as a way of tracking different national copyright and music
licensing regimes. An individual who transports a personal music collection
from one country to another is doing something that copyright law doesn’t
claim to reach and is happy to ignore. But the DRM software, unlike legal
copyright enforcement, cannot be efficiently ignored by one on the right
side of the law.

It is inherent to the purpose of a DRM system that it actively frustrate
many possible transactions among its users. If I can find a way to move a
protected media file out of a DRM system, I can continue to enjoy it using
non-DRM-enabled tools, as well as share it freely with others. Further, the
threshold for what counts as defeat is low. I do not need to cause the DRM
software to stop running or to reprogram it to remove each specific limit. I
just need to find (or create) a single hole in the system and export the file
through that hole.135 After that, I never need to engage with the DRM
software again, because neither I nor anyone I give the file to needs to enter
the DRM space to enjoy it. In sharp contrast to online markets, there are
substantial incentives for users to band together to defeat DRM systems.
Thus, such systems must adopt a more defensive, user-frustrating attitude.

4. Software Failures Threaten DRM Systems

Put another way, DRM systems suffer in a particularly acute way from
the seriousness of software’s failure modes. The list of famous failures of
DRM systems is long. The system used to control the video content on
DVDs was broken by a Norwegian teenager with a program simple enough
to have been translated into song form.136 The DRM system used to tie

135. See, e.g., Crawford, supra note 5, at 618-21 (discussing a similar hole in technology
mandated by a proposed FCC regulation).

136. See Universal City Studios v. Corley, 273 F.3d 429, 437-40 (2d Cir. 2001) (discussing
the program); David S. Touretzky, Corley Gallery of CSS Descramblers, http://www-
2.cs.cmu.edu/~dst/DeCSS/Gallery/index.html (last visited Feb. 12, 2004); see also Yochai
Benkler, Through the Looking Glass: Alice and the Constitutional Foundations of the Public
Domain, LAW & CONTEMP. PROBS., Winter/Spring 2003, at 173, 214-15 (describing the Gallery).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1756 The Yale Law Journal [Vol. 114: 1719

Adobe eBooks to a particular computer fell almost as easily.137 Many DRM
systems used to keep streaming Internet audio and video files from being
recorded have been cracked,138 as was every DRM technology employed in
a famous challenge issued by the Secure Digital Music Initiative.139 It is not
clear that any DRM system has withstood a serious attempt to crack it.

In practice, these exploits have a common structure. Someone analyzes
the DRM software. She then writes another program that takes advantage of
a bug or design decision of the DRM system to defeat it, yielding a use of
the content that the programmer of the system wished to prevent. Because
not everyone is expert in reverse engineering, these programs can lead to
mass defeat of DRM systems only if distributed to others. The original
cracker, therefore, writes a program that can be used by others to defeat the
DRM software.

In this sense, the use of DRM technology, while not effective as a
system of regulation standing alone, does suggest a new possible
chokepoint at the creation and distribution of such anti-DRM programs.
Responding to the failure of software as a regulator, copyright holders have
succeeded in enacting a legal system of regulation to take advantage of this
chokepoint. The anticircumvention provisions of the Digital Millennium
Copyright Act (DMCA) provide civil and criminal penalties for the
creation, distribution, and use of “circumvention devices”—effectively, any
technology (including software) that enables one to defeat a DRM system
or avoid its restrictions.140 The existence of the DMCA (and similar
legislation in many other jurisdictions) is an open admission that software
has failure modes sufficiently severe that regulation by software alone
cannot be trusted. In that sense, the DMCA is a targeted response to the
admitted weaknesses of software. The effectiveness of DRM software as a
regulator is therefore dependent on the legal effectiveness of the DMCA.

Many authors argue, for reasons related to the conception of software in
this Note, that the DMCA’s harms outweigh the good it does in propping up
DRM technology.141 The DMCA creates a category of per se illegal
software by outlawing programs that do certain things. But in so doing the
DMCA aligns itself squarely against software’s plasticity. In making it
illegal to create certain kinds of software, it tries to prevent people from

137. See United States v. Elcom Ltd., 203 F. Supp. 2d 1111, 1118-19 (N.D. Cal. 2002).
138. See, e.g., RealNetworks v. Streambox, No. C99-2070P, 2000 U.S. Dist. LEXIS 1889

(W.D. Wash. Jan. 18, 2000).
139. See Scott A. Craver et al., Reading Between the Lines: Lessons from the SDMI

Challenge, in PROCEEDINGS OF THE 10TH USENIX SECURITY SYMPOSIUM 353 (2001).
140. 17 U.S.C. §§ 1201-1205 (2000); see also ELEC. FRONTIER FOUND., UNINTENDED

CONSEQUENCES: FIVE YEARS UNDER THE DMCA (3d ed. 2003), http://www.eff.org/IP/DMCA/
unintended_consequences.php; Lawrence Lessig, Law Regulating Code Regulating Law, 35 LOY.
U. CHI. L.J. 1 (2003).

141. See, e.g., Solum & Chung, supra note 6, at 944 (criticizing the “layer-crossing” feature
of the DMCA).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

2005] Regulation by Software 1757

taking full advantage of one of software’s greatest virtues: that software can
do almost anything one can imagine.

5. Summary

The regulation-by-software framework reveals that DRM technology
raises serious concerns that online markets do not. As software systems go,
DRM systems encourage their own circumvention and hold up poorly in
response to attack. Their feasibility therefore depends on extensive external
investment, both social and legal. The inflexibility of DRM systems also
regularly frustrates users’ desires to use protected content creatively, raising
transaction costs. DRM systems’ potential lack of transparency may be
troubling, but well-designed systems mitigate this problem with good
disclosure of the underlying rules and good responsiveness to complaints.
And whether DRM systems’ ruleishness is good or bad depends on one’s
other policy commitments. All in all, DRM technology as a form of
regulation by software deserves a yellow warning sign: Proceed with
caution, danger ahead.

That said, fairness to DRM systems requires that they be evaluated in
the context of other proposed solutions to the computer copyright crisis.
Leaving aside serious reform of copyright law itself, most such solutions
depend just as strongly on massive software systems as DRM-based
solutions do. They are vulnerable to exactly the same criticisms.

One commonly proposed solution, for example, consists of a collective
license. In exchange for paying a copyright levy, consumers would be
allowed to copy content freely without fear of suit.142 This levy would then
be divided among the creators of such content. Although both the collection
and the distribution halves of this proposal come in many different
varieties, no one has yet told a story in which neither half involves a large-
scale software system. Where such a system can be identified, the vices of
software can be exploited.

Digital media are at least the right sort of thing to be regulated with
software, because they are themselves creatures of software. This theme
also caps the effectiveness of any purely software-based system of
regulating digital media. The plasticity of software makes it all too possible
to write more software that handles the regulated media in a way the system
regulating them cannot stop. Software can do some work in controlling the

142. See, e.g., ELEC. FRONTIER FOUND., A BETTER WAY FORWARD: VOLUNTARY

COLLECTIVE LICENSING OF MUSIC FILE SHARING (2004), http://www.eff.org/share/
collective_lic_wp.php; FISHER, supra note 121; Netanel, supra note 121; Lionel S. Sobel, DRM as
an Enabler of Business Models: ISPs as Digital Retailers, 18 BERKELEY TECH. L.J. 667, 680-84
(2003).

GRIMMELMANN_POST_FLIP_1 5/3/2005 3:15:32 PM

1758 The Yale Law Journal [Vol. 114: 1719

uses of digital media, but not all the work. The most appropriate use of
software here will be one that respects these limits.

CONCLUSION

We are all regulated by software now. It has become possible to
imagine that the most basic aspects of democracy, society, and even life
itself might be regulated by software. The federal government has tried to
regulate privacy,143 advertising,144 and pornography145 by software. In an
age when software promises to do anything, perhaps anything can be
regulated by software.

But regulation by software is never required. The very properties of
regulation by software that make it attractive for some areas make it
positively dangerous for others. Appreciating the similarities common to all
applications of software makes it easier to think critically about particular
uses. Each case in which we have used software tells us a little more about
what to expect if we turn to software to resolve the next one. The choice for
software may sometimes be justified and sometimes not, but there is no
excuse for making that choice blindly.

143. See Health Insurance Portability and Accountability Act of 1996, Pub L. No. 104-191,

1996 U.S.C.C.A.N. (110 Stat.) 1936 (codified in scattered sections of 18, 26, 29, and 42 U.S.C.).
144. See Controlling the Assault of Non-Solicited Pornography and Marketing (CAN-SPAM)

Act of 2003, Pub. L. No. 108-187, 2003 U.S.C.C.A.N. (117 Stat.) 2699 (to be codified in scattered
sections of 15 and 18 U.S.C.).

145. See, e.g., Child Online Protection Act § 1403, 47 U.S.C. § 231 (2000), invalidated by
Ashcroft v. ACLU, 124 S. Ct. 2783 (2004); Communications Decency Act of 1996 § 502,
47 U.S.C. § 223, invalidated by Reno v. ACLU, 521 U.S. 844 (1997).

