Aplikovaná optika II Fyzikální část

Josef Kuběna , *Přírodovědecká fakulta MU, Brno* Svatopluk Synek, *Lékařská fakulta MU, Brno*

Optické principy počítačových skenovacích a jiných metod užívaných v oftalmologii Učební pomůcka pro obor optometrie

Princip činnosti laserů

Laser = aktivní prostředí + optický rezonátor

Schéma potenciální energie elektronů v atomu

Metastabilní stav atomu

- 1. Z1 a Z2 jsou rovnoběžná zrcadla s odrazivostí větší než 99%.
- 2. Délka rezonátoru L je M násobkem půlvlny (M je celé číslo). Délce L odpovídají vlastní frekvence rezonátoru $v_{\rm M}$ (podélné módy laseru).
- 3. Uvnitř rezonátoru je **stojaté vlnění** elektrického pole **E** o frekvenci $v_{\rm M} = c/\lambda_{\rm M}$

Optické rezonátory

Kvalita rezonátoru je určována především odrazivostí zrcadel. Uvedené 4 typy patří mezi tzv. stabilní rezonátory.

- 1. Když se atom nenachází v elektrickém poli, přechází do stabilního stavu samovolně.
- 2. Foton je vyzářen do libovolného směru a v libovolné polarizaci.
- 3. Pozorujeme obvyklou **spektrální čáru** o šířce $\Delta \lambda \sim 1/\tau$ (τ = doba života).

- 1) Atom v metastabilním stavu vyzáří **spontánně** foton (EM vlnu) ve **směru optické osy** rezonátoru. Tím vznikne stojatá elektrická vlna.
- 2) Záření zbývajících atomů v metastabilním stavu **je nyní stimulováno** elektrickým polem oné stojaté vlny.
- 3) Tyto atomy vyzáří své vlny do směru optické osy rezonátoru a v té polarizaci a fázi, která odpovídá stavu vektoru E stojaté vlny. Tím se dosahuje prostorové koherence v celém průřezu svazku.
- Malá šířka Δλ podélných modů (odpovídá za velkou <u>koherenční délku</u>) je důsledek vysoké odrazivosti zrcadel a délky L rezonátoru.

Druhy laserů

Vlastnosti aktivního prostředí

Excitace atomů do metastabilního stavu

Srážkami mezi atomy dvou druhů (He-Ne, CO₂)
Optickou excitací - čerpáním (rubín, neodymové sklo)
Excitací při chemické reakci (eximery)
Průchodem elektrického proudu (polovodiče,GaAs)
a jiné způsoby

Světelný výkon laserů:

- 1. Kontinuální laser až desítky mW
- 2. Pulsní laser při středním výkonu 10 mW může mít parametry:
 - délka pulsu = 1 ns,
 - energie v pulsu = 1 MJ,
 - opakovací frekvence = 10 Hz

He – Ne a CO_2 laser

- Jsou-li výstupní okénka skloněna pod Brewsterovým úhlem, pak svazek laserových paprsků je lineárně polarizován
- Skleněná výbojová trubice s náplní He (tlak asi 100Pa) a Ne (tlak asi 10 Pa).
- 3. U CO₂ laseru přebírá funkci He dusík a neonu molekula CO₂

Typické kontinuální lasery. λ (He-Ne) = 632.8 nm λ (CO₂) = 10.6 µm Energiové schéma buzení (tzv. tříhladinový systém)

- 1. Výbojem se excituje atom He na E_1
- 2. Srážkou atomů He s Ne se excituje atom Ne do metastabilního stavu
- 3. Za přítomnosti elektrického pole o frekvenci v_M vyzáří Ne foton stimulovaně, jinak spontánně

Rubínový laser

- 1. Rubín je krystal Al_2O_3 s příměsí asi 0.1% atomů chrómu (dělá červené zabarvení).
- 2. Pracuje na tříhladinovém systému buzení. Funkci atomů He přebírá zde krystalová mřížka Al_2O_3 , jejíž **tepelné kmity spolu s fotony čerpací výbojky** excitují atomy Cr do metastabilního stavu (doba života asi 3 ms)
- 3. Když je dostatek atomů Cr v metastabilním stavu, **otevře se rezonátor** a téměř okamžitě (díky vzniku elektrického stojatého vlnění v rezonátoru) přejdou všechny atomy excitované atomy Cr do základního stavu a přitom **stimulovaně září**.
- 4. Jde o typický **pulzní laser**. Opakovací frekvencev režimu volných oscilací (rezonátor stále otevřený) bývá asi 10 Hz. Světelná energie jednoho pulzu roste s objemem krystalu, dosahuje a dosahuje v 1 cm³ hodnoty asi 2 Jouly .
- 5. $\lambda = 694.3 \text{ nm}$
- 6. Řízené otevírání rezonátoru se děje:
 - mechanicky např. rotujícím zrcadlem ,pomalé spínání, Δt asi 10⁻³ s
 - Kerrovou celou (Vnější elektrické pole v kapalině (např. nitrobenzen) stáčí polarizační rovinu světla o 90 stupňů), Δt až 10⁻⁶ s
 - **Pockelsovou celou** (Vnější elektrické pole E mění rozdíl $(n_e n_o)$ dvojlomného krystalu, tzv. elektrooptický jev), Δt až 10⁻⁹ s

Spínaný rubínový laser

σ

E

- Kerrova cela se ovládá napětím U a je vložena mezi dva zkřížené polarizátory P_1 a P_2 1.
- Při napětí U = 0 světlo z rubínu neprojde na zrcadlo Z_1 . Rezonátor je zavřený. 2.
- 3. Při napětí U_1 se průchodem přes celu otočí polarizační rovina 90 st. a rezonátor je otevřený pro polarizaci svazku určenou polarizátorem (mezi řádným a mimořádným paprskem vznikne fázový posuv π).

- Vnější napětí uvedené polarity způsobí, že se v opticky aktivní vrstvě krystalu GaAs nahromadí současně velké množství elektronů a děr (s dostatečně dlouhou dobou života), které spolu mohou rekombinovat převážně jen zářivými přechody.
- 2. Zrcadlově upravené čelní plochy krystalu vytvářejí planparalelní **optický rezonátor** délky asi 1 mm. Ten zaručí, že při rekombinaci elektronů a děr vznikne stimovaná emise fotonů.
- 3. Vlnová délka emitovaného světla je z intervalu 700 až 900 nm podle obsahu Al.
- 4. Na podobném principu pracují **luminiscenční fotodiody** (LED). Nemají rezonátor a elektrony a díry v aktivním prostředí téměř hned rekombinují.

Srovnání vlastností světla

Vlastnost	Laserové světlo	Obyčejné světlo
spektrální složení	zlomek šířky jedné spektrální čáry, několik podélných modů	soubor spektrálních čar spojité spektrum
časová koherence (koherenční doba τ, koherenční délka δ=τc)	velká, δ je větší než délka resonátoru	malá, $\delta \sim \lambda$ až 100 λ $\delta = \frac{\lambda^2}{\Delta \lambda}$
prostorová koherence (koherenční šířka β)	po celém průřezu laserového svazku je β přibližně rovna 1	velice malá, pro koherenční šířku platí $\beta = \lambda \frac{a}{s}$
polarizace	a) nepolarizovanéb) lineárně polarizované	nepolarizované
rovnoběžnost	vysoká, čím delší rezonátor, tím menší divergence svazku	září do všech směrů, o rovnoběžnosti se nedá mluvit

Odhad zesílení laserů

Zesílením se rozumí kolikrát intenzivnější je svazek laseru než obyčejný zdroj světla při stejném světelném výkonu.

Při **spontánní emisi** se šíří paprsky do do všech stran, tj. do prostorového úhlu $\Omega = 4\pi$.

Při **stimulované emisi** se šíří do prostorového úhlu $\omega = 2\gamma^2$, kde úhel γ je úhel divergence paprsků vystupujících z laseru.

Zesílení nepolarizovaného laserového svazku:

$$z_n = \frac{4\pi}{2\gamma^2}$$

U nepolarizovaného svazku má vektor elektrické intenzity **E** libovolný směr kolmý na svazek. Tomuto stavu odpovídá úhel 2π .

Když je výbojová trubice zakončena okénky pod Brewsterovým úhlem, pak je stojaté vlnění uvnitř rezonátoru téměř lineárně polarizováno. Označme v tomto případě úhel mezi krajními vektory \mathbf{E} jako ε .

Zesílení polarizovaného laserového svazku:

$$z_{p} = \frac{4 \pi}{2 \gamma^{2}} \frac{2 \pi}{\varepsilon}$$

Typy laserů v medicíně

V medicíně se převážně dosud užívají tyto typy laserů:

- 1. argonový laser plynový, kontinuální, (vhodné vlnové délky 488 nm a 514nm)
- 2. kryptonový laser plynový, kontinuální, (647,1nm)
- 3. Nd:YAG laser, pevnolátkový, pulsní i kontinuální, buzení výbojkami, (1064 nm)
- Dye (angl. barevný odstín) laser, kapalinový, u kterého je možné nastavit vlnovou délku laseru změnou koncentrace aktivních prvků vzácných zemin (Eu, Dy, Tb, Sm) v roztoku, buzení výbojkou, chlazení tekutým dusíkem (fotodynamická léčba submakulární membrány).
- 5. eximerové lasery, plynové, pracují na principu buzení chemickým rozpadem dimerů vzácných plynů (např. ArF, KrCl, XeF, aj.), jejich obor vlnových délek leží v oblasti 120 nm až 550 nm.

Skanovací optika - osvětlení

Scanovací optika - zobrazení

- na elektrický signál a tím se řídí při skanová v daném bodě obrazu na monitoru.
- 2. Zaostřování obrazu na předmět odpadá!

Umělý kontrast obrazu

Standardní metody:

- temné pole
- fázový kontrast
- interferenční kontrast
- polarizační kontrast

Metody skanovací laserové optiky (CSLO):

- Tomografie (analogie modifikací temného pole na odraz i průchod)
- 3D topografie (zobrazení 3D předmětů)
- Polarizační kontrast (i v kombinaci s tomografií)

Výhody CSLO:: Záznam obrazů TV rychlostí (25 snímků za sec.)
snadná modifikace kontrastu softwarem počítače
využití IR záření k osvětlení a zobrazení
počítačové zpracování sady snímků umožňuje modifikovat kontrast i získat zobrazení 3D preparátu

Temné pole - průchod

Princip metody temného pole na průchod

1. Terčík mimo ohnisko – světlé pole

obraz vytvářejí paprsky rozptýlené i paprsky rovnoběžné s osou čočky

 Terčík v ohnisku – temné pole obraz vytvářejí jen rozptýlené paprsky, které projdou čočkou

Temné pole-odraz

Metoda temného pole na odraz

Tohoto principu užívá např. **spekulární (endotelový) mikroskop** k zobrazení buněčné struktury na vnitřní straně rohovky.

CSLO - tomografie

Počítačové skanovací laserové metody se podobají RTG tomografii. Tam se také detekuje jen intenzita jednoho paprsku, který právě prochází objektem a z něho **počítač odvozuje** (softwarově) **jas** bodu na obrazovce.

Jde o problém zobrazení trojrozměrných předmětů na rovinu obrazu. Čočka zobrazí ostře předmětovou rovinu na svou příslušnou obrazovou rovinu. Rozostření obrazu z jiných předmětových rovin závisí na clonovém čísle.

Konfokální 3D zobrazení

- 1. Zobrazovaný objekt je **3D**.
- Ostrost obrazu je dána tím, že v daném okamžiku je osvětlen jen jeden bod předmětu, jemuž odpovídá jeden bod na obrazovce.
- **3. Jas** bodu na obrazovce nezáleží na tom, v které předmětové rovině leží.
- Jas každého bodu na obrazovce zde určuje jas paprsku rovnoběžného s osou systému (když otvor před detektorem leží v ohnisku zobrazovací čočky).

Počítačový obraz 3D objektu je 2D a nelze jej softwarově rekonstruovat na 3D.

Konfokální skanovací oftalmoskop

K zobrazení sítnice využívá metody **temného pole na odraz** Skanovací metodou se dají tak zobrazit i 3D sítnice, protože u této metody není třeba zaostřovat. Interpretace kontrastu je složitá, avšak podstatné znaky 3D struktury předmětu se zachovávají.

Tloušťka nervových vláken

Posouzení tloušťky nervových vláken

sítnice může být časným indikátorem glaukomového poškození, protože úbytek axonů vrstvy nervových vláken je nejčasněji zjistitelným defektem u glaukomu. Dnes je známo, že ani ztráta 50% nervových vláken sítnice nevyvolá zjistitelné defekty zorného pole. Proto je velmi důležité sledovat v delším časové úseku změny zrakového nervu a vrstvy nervových vláken sítnice pomocí moderních zobrazovacích metod.

Mezi přístroje umožňující tuto analýzu změn zrakového nervu a vrstvy nervových vláken patří:

- 1. Heidelberský sítnicový tomograf
- 2. optická koherenční tomografie
- 3. analyzátor nervových vláken-GDx

Fyzikální principy těchto zařízení jsou objasněny na následujících schématech

Dvojlomné látky

Izotropní látky

Polární diagram: **Délka šipek** je úměrná velikosti indexu lomu **n** v daném směru. Koncové body šipek leží na kouli.

Anizotropní látky (látky dvojlomné)

Dvojlomná látka je charakterizována dvěma indexy lomu \mathbf{n}_{o} a \mathbf{n}_{e} a optickou osou. Ve směru optické osy jsou indexy lomu stejné.

Polární diagram Koncové body \mathbf{n}_{o} leží na kouli, zatím co \mathbf{n}_{e} leží na rotačním elipsoidu.

Uměle vyvolaný dvojlom

Izotropní látky:

např. sklo, plexisklo, kapaliny, ...

Přírodní anizotropní látky (dvojlomné látky):

- např. krystaly jako vápenec, křemen, KH₂ PO₄ (hydrofosforečnan draselný, zkráceně KDP)
- např. organické látky s orientovanými makromolekulami

Umělá anisotropie:

V izotropních látkách je možné vyvolat umělou anisotropii:
•elastickou nebo i plastickou deformací (fotoelasticimetrie)
•silným elektrickým polem (Kerrův jev, Pockelsův jev)

- 1. Optická osa leží ve směru orientace makromolekul nebo ve směru maximální deformace či vektoru intenzity elektrického pole E.
- 2. Rozdíl $n_e n_o$ je největší ve směru kolmo na optickou osu. Nabývá hodnot od 0 až 0.1, podle druhu látky.

Kerrova cela

Kerrova cela je elektro-optické zařízení, které slouží k modulaci intenzity světla prostřednictvím přiváděného elektrického napětí (elektrického pole *E*). Je založena na **Kerrově jevu**, který spočívá v tom, že isotropní kapalina o indexu lomu *n* se stane dvojlomnou tím, že její molekuly se orientují do směru elektrického pole. **Optická osa** dvojlomné kapaliny je pak rovnoběžná se směrem vektoru *E* a pro rozdíl indexů lomu $(n_e - n_o) = kE^2$, kde *k* je konstanta úměrnosti (největší je pro nitrobenzen). Polarizátor a analyzátor jsou zkřížené a se směrem vektoru **E** svírají 45 st.

Fázový posuv mezi řádným a mimořádným paprskem je

$$p(E) = \frac{2\pi d(n_e - n_o)}{\lambda} = \frac{2\pi k dE^2}{\lambda}$$

Po průchodu analyzátorem pak tyto dva paprsky **interferují** a **interferenční intenzita** závisí na fázovém posuvu a tedy na přivedeném elektrickém napětí (E = U/d)

Pockelsova cela

Pockelsova cela je elektro-optické zařízení založené na principu modifikace dvojlomných látek (nejčastěji krystalu KDP – dihydrogenfosfát draslíku) elektrickým polem **E** podobně jako Kerrova cela.

- Při U = 0 světlo prochází podél
 osy z (optické osy KDP),
 libovolná lineární polarizace,
 fázový posuv mezi řádným a
 mimořádným paprskem je φ =0
- Při U = U₁ se z jednoosého dvojlomného krystalu stane dvojosý a po průchodu světla podél původní optické osy bude fázový rozdíl φ se tím změní. Původně lineárně polarizovaný paprsek se rozdělí ve dva polarizované kolmo na sebe (vektory E leží ve směrech 1 a 2).

Pockelsova cela – modulátor intenzity

- $p_1 a p_2 jsou směry$ propustnosti $polarizátorů <math>P_1 a$ P_2
- 1 a 2 jsou směry propustnosti indukované napětím U

Modulace intenzity I prošlého světla vzniká interferencí paprsků I_{12} a I_{22} . Fázový rozdíl interferujících paprsků se ovládá elektrickým napětím U

$$I = I_{12} + I_{22} + 2\gamma_t \sqrt{I_{12}I_{22}} \cos \varphi(U)$$
$$\varphi(U) = \frac{2\pi (n_1 - n_2)d}{\lambda}$$

Když má krystal obecně orientovanou optickou osu vzhledem k elektrodám, může se pak využít jako elektronický modulátor směru (deflektor).

Ultrazvukový modulátor směru

Ultrazvukový modulátor směru (akustooptický deflektor) je založen na **optické difrakci** laserového svazku na ultrazvukových vlnách v pevných lákách i v kapalinách. **Jde o jev analogický difrakci světla na optické mřížce**. Elektronicky se mění frekvence ultrazvuku od 10 MHz až do 1GHz a tím se vlnová délka A akustických vln (analogie mřížkové konstanty optické mřížky) mění v rozsahu asi 100 µm až 1 µm. **Difrakční úhel α** výstupního paprsku pak lze ovládat elektronicky.

$$\alpha = \alpha_1 + \alpha_2$$

$$\Lambda(\sin \alpha_1 + \sin \alpha_2) = N\lambda$$

$$N = \pm 1, \pm 2, \cdots$$

Kontrast dvojlomných preparátů

Základní vlastnosti dvojlomných látek:

Ve dvojlomných látkách se šíří světlo jako dva lineárně polarizované paprsky. Nazývají se řádný (ordinárius), jemu přísluší index lomu n_o , a mimořádný (extraordinárius) s indexem lomu n_e . Vektor \mathbf{E}_0 paprsku **o** je rovnoběžný s optickou osou, vektor \mathbf{E}_e paprsku **e** je na ni kolmý.

Interference řádného a mimořádného paprsku:

Průchodem řádného a mimořádného paprsku přes dvojlomnou látku vznikne mezi nimi rozdíl optických drah $\Delta = dn_o - dn_e$. Po průchodu analyzátorem kmitají vektory **E** ve stejném směru a nastane jejich interference.

Intenzita paprsků je:
$$I_o \sim (E_o \cos \beta)^2, I_e \sim (E_e \sin \beta)^2$$

$$I = I_e + I_o \pm 2\gamma_t \sqrt{I_e I_o} \cos \varphi$$

β je úhel mezi optickou osou a analyzátorem

$$\varphi = \frac{2\pi d \left(n_e - n_o\right)}{\lambda}$$

Graf interferenční intenzity (1)

Směry propustnosti P a A jsou rovnoběžné

Graf interferenční intenzity (2)

Směry propustnosti P a A jsou na sebe kolmé

Standardní polarizační projektor

Optické schéma

Kontrast vzniká interferencí řádného (**o**) a mimořádného (**e**) paprsku za analyzátorem. Intenzita v bodě P' je dána vztahem:

$$I(P') = I_e + I_o + 2\gamma \sqrt{I_e I_o} \cos \varphi$$

Fotoelasticimetrie

Elasticky (pružně) deformovaný objekt – destička plexiskla

- 1. tloušťka d je konstantní
- 2. rozdíl $(n_e n_o)$ je úměrný pnutí
- 3. λ je konstantní
- 4. úhel φ je úměrný pnutí
- 5. A a P jsou rovnoběžné
- 6. intensita klesá, když síla roste

Když síla (pnutí) zmizí, zanikne dvojlom a kontrast zobrazení se ztratí!

- Aplikace:
- zviditelnění zbytkových pnutí ve skle (čočky)
 zviditelnění pnutí v plastikových výrobcích

Deformační dvojlom

Dvojlom vyvolaný orientací makromolekul: natažení polyetylenové folie

izotropní dvojlom vyvolaný přednostní orientací makromolekul

makromolekuly nedeformovaného polyetylénu

- 1. tloušťka folie *d* je konstantní
- 2. rozdíl $(n_e n_o)$ je úměrný stupni orientace makromolekul
- 3. λ je konstantní
- 4. úhel φ je úměrný stupni orientace
- 5. optická osa má směr orientace

Intenzita obrazu při A a P rovnoběžných:

- nedeformovaná bez kontrastu ($\phi = 0$)
- natažená intenzita klesá ($\phi > 0$)
- největší kontrast při $\beta = 45^{\circ}$

Dvojlom biologických preparátů

1.

2.

5.

Dvojlom vyvolaný orientací buněk: nervová vlákna

tloušťka nervů d je různá rozdíl $(n_e - n_o)$ je konstantní 3. λ je konstantní úhel φ je úměrný tloušť ce d4. optická osa dvojlomu má v každé části nervového vlákna jiný směr

Intenzita obrazu při rovnoběžných směrech A a P: Interferenčním kontrastem se zobrazí jen ty části nervového vlákna, jejichž úhel β s A a P bude 45°. Se zmenšujícím úhlem β bude kontrast klesat. Pro $\beta = 0$ se kontrast neobjeví.

Počítačové zobrazení nervové sítě

- 1. Lineárně polarizovaný paprsek projde nervovým vláknem tam a zpět.
- 2. Odražené paprsky o a e po průchodu A interferují.
- 3. Největší kontrast nastane jen u těch částí vláken, kdy je $\beta = 45^{\circ}$.
- 4. Tento problém se odstraní tím, že se do počítače sejme sada snímků pro řadu úhlů β_i . Na každém snímku budou zobrazeny jiné části nervové sítě. Počítač pak provede superpozici všech snímků a jejím výsledkem je zobrazení celé sítě.
- Optické schéma takového zařízení je stejné jako na předchozím obrázku, jen se do příslušných paprsků vloží P a A, jejichž současnou rotaci v úhlovém oboru β od - 45° do 45° zajistí počítač.
- 6. Použije se IR laser, aby neoslňoval pacienta.

Měření tloušťky nervového vlákna

Fyzikální princip měření tloušťky nervové vrstvy využívá faktu, že nervová vlákna jsou dvojlomná a je založen analýze vztahu pro intenzitu při interferenci řádného a mimořádného paprsku, když směry propustnosti P a A jsou rovnoběžné.

Kontrast obrazu vláken

Po dosazení do vztahu pro interferenční intenzitu dostaneme

$$I = E^{2} \sin^{4} \beta + E^{2} \cos^{4} \beta + 2\gamma_{t} E^{2} \sin^{2} \beta \cos^{2} \beta \cos \varphi,$$

kde veličina
$$\varphi = \frac{2 \pi d (n_e - n_o)}{\lambda}$$

obsahuje **tloušťku** *d* vrstvy dvojlomné látky, kterou chceme určit. Intenzitu *I* naměříme v každém bodě obrazu P'. Neznáme však úhel β v daném bodě. Budeme tedy sledovat, jak závisí intenzita v daném bodě na úhlu otočení β . Z matematické analýzy vztahu pro interferenční intenzitu totiž plyne, že maximum intenzity dostaneme pro $\beta = 0$ a minimum pro $\beta = 45^{\circ}$.

Výpočet tloušťky pro
$$\gamma_t = 1$$

1.
$$\beta = 0$$
: $I_{\text{max}} = E^2$
2. $\beta = 45^{\circ}$: $I_{\text{min}} = E^2 \left(\frac{1}{4} + \frac{1}{4} + \frac{2}{4}\cos\varphi\right) = \frac{1}{2}E^2 \left(1 + \cos\varphi\right) = \frac{1}{2}I_{\text{max}} \left(1 + \cos\varphi\right)$

Odtud dostaneme pro fázový posuv mezi řádným a mimořádným paprskem vztah

$$\cos\varphi = \frac{2I_{\min}}{I_{\max}} - 1$$

Tím je problém výpočtu tloušťky dvojlomné tkáně v bodě P´ vyřešen.

Optická biometrie oka

Optická biometrie má za cíl změřit tloušťky jednotlivých optických rozhraní oka. Využívá při tom interferenci paprsků odražených na jednotlivých optických rozhraních. Přístroj se v principu skládá z **Michelsonova interferometru** se zdrojem světla o **malé koherenční délce**, konfokální optice s detektorem světla v ohnisku a počítače, který řídí posuv volného zrcadla interferometru a současně ('on line') počítá **viditelnost interference** v závislosti na posuvu. Analýza této závislosti poskytne pak hodnoty tlouštěk jednotlivých vrstev. Předpokládá se, že jde o vrstvy isotropní o známém indexu lomu a minimálně rozptylující světelný paprsek.

Pro pochopení optických principů je důležité seznámit se poněkud podrobněji s dvoupaprskovou interferencí.

Schéma Michelsonova interferometru

Z₁ pevné

Světlo z luminiscenční diody prochází polopropustnou deskou a odráží se na pevném zrcadle Z_1 . Tak vznikne paprsek 1 o intenzitě I_1 .

Na polopropustné desce se ale světlo odráží, dopadá na posuvné zrcadlo Z_2 , kde se odrazí a projde polopropustnou deskou. Tak vznikne paprsek 2 o intenzitě I_2 . Fázový rozdíl mezi nimi je $2\pi(z - z)$

$$\varphi_o = \frac{2\pi(z_2 - z_1)}{\lambda_o}$$

Časová koherence

Pro přísně monochromatické světlo je interferenční intenzita dána vztahem

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \varphi_o$$

Pro spektrální čáru o střední vlnové délce λ_o a šířce $\Delta\lambda$ pak platí

$$I = I_1 + I_2 + \gamma_t 2 \sqrt{I_1 I_2} \cos \varphi_o,$$

kde γ_t je tzv. stupeň časové koherence, který závisí na spektrálním složení a na dráhovém rozdílu Δz paprsků 1 a 2.

Zjednodušeně a názorně lze časovou koherenci reálných paprsků popsat koherenční délkou δ (délka vlnového klubka) je dána vztahem

$$\delta = \frac{\lambda_o^2}{\Delta \lambda}$$

Stupeň viditelnosti - definice

Stupeň viditelnosti je definován pro všechny jevy dvoupaprskové interference stejně. Označme I_{min} a I_{max} minimum a následující maximum intenzity nějakého interferenčního jevu.

Stupeň viditelnosti $\mu(\Delta z)$ je pak číslo dané vztahem

$$\mu(\Delta z) = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

Důležité je, že µ je měřitelná veličina světelnými detektory!

```
Jak víme, \mu = \gamma_t
```


Příklad interference

Parametry paprsků:

Střední vlnová délka: $\lambda_o = 1 \mu m$, šířka čáry: $\Delta \lambda = 0.2 \mu m$, koherenční délka: $\delta = 5 \mu m$ gaussovský profil spektrální čáry.

Následují výpočty interferenční intenzity a viditelnosti pro výše uvedené parametry a pro tyto intenzity paprsků $I_1 = 1$ a $I_2 = 1$, resp. $I_2 = 0.1$. Dvojnásobek polohy zrcadla Z_1 je $z_1 = 100$ mm.

Všimněte si na grafech viditelnosti dvou vlastností:

- 1. maximum viditelnosti nastane, když dráhový rozdíl je nulový
- 2. viditelnost klesá, čím více se liší intenzita paprsků 1 a 2, ale její maximum polohu nemění.

Interferenční intenzita

Závislost intenzity na poloze zrcadla z₂

Viditelnost interference

Závislost viditelnosti interference na poloze zrcadla z₂

Interferují vlnová klubka

Dvoupaprsková interference se vyznačuje zajímavou vlastností spočívající v tom, že při velkém dráhovém rozdílu interference zcela vymizí (tj. viditelnost $\mu = 0$). Tento jev lze názorně vysvětlit tím, že **nemonochromatické světlo se šíří jako vlnová klubka**.

Vlnové klubko si můžeme představit jako úsek paprsku délky δ , kterému přísluší **střední vlnová délka** λ_0 . Mimo tento úsek žádný světelný signál není.

Zjednodušeně se dá říci, že interferují jen ta klubka, která vznikla **dělením amplitudy**. Taková klubka jsou totiž **prostorově koherentní**₂ Aby dva paprsky interferovaly, musí se setkat v místě, kde je detektor světla.

Interference detailně

- 1. Paprsky se odrážejí na každém rozhraní. Mezi paprsky jsou různé dráhové rozdíly
- 2. Všechny paprsky mohou navzájem interferovat, pokud posuv MI vykompenzuje jejich dráhový rozdíl. Pro 6 paprsků se na grafu viditelnosti objeví až 15 maxim.
- 3. Jejich souvislost s tloušťkou rohovky, čočky nebo sítnice se neobejde bez analýzy založené na znalosti příslušných **indexů lomu** a **koherenční délky**.
- 4. Vodítkem při této interpretaci je dále i **maximální hodnota** viditelnosti příslušného maxima, protože ta závisí na intenzitě interferujících paprsků a ta zase na **odrazivosti** příslušných optických rozhraní.

Topografie povrchu rohovky

Rohovkový topograf (keratograph)

využívá Placidův keratoskop, kdy svítící soustředné kružnice se odrážejí na na povrchu rohovky jako na vypouklém zrcadle. Obraz původních kružnic vytvořený odrazem paprsků z rohovky je snímán kamerou, a softwarově počítačem převeden do 3D zobrazení tvaru rohovky. Software pak může navrhnout refrakční korekci, která by kompenzovala deformaci povrchu rohovky např. v jejím pooperačním stadiu.

Optické principy tohoto zařízení jsou objasněny na následujících optických schématech.

Analýza obrazu kružnice

Taková deformace rohovky by se dala korigovat vhodnou cylindrickou čočkou.

Rentgenový tomograf

Počítačový rentgenový tomograf vytváří rentgenový obraz struktury rovinného řezu objektem na principu měření úbytku intensity rtg paprsku po průchodu objektem. Během měření proskenuje paprsek postupně zvolenou rovinu a navíc mnoha směrech pro různé úhly α od 0 do 180 stupňů.

Zobrazení tomografem

Už superpozice obrazů dvou skenů lokalizuje oblast zvýšené absorpce.

Tvar celého objektu i oblasti zvýšené absorpce se získá až po superpozici mnoha obrazů získaných měřením v různých směrech α.

Řízení procesu měření intenzity řádově tisícovek detektorů, uchování a zpracování superpozice stovek meziobrazů je **nemyslitelné** bez použití výkonných počítačů. Proto je také zcela oprávněný název **Computer Tomography** (CT), i když je fyzikálně založen na jevu zvaném **absorpce.** Jde o typický příklad, jak počítače mohou z obyčejného jevu vytvořit významnou analyzační metodu.

Optický princip angiografu

