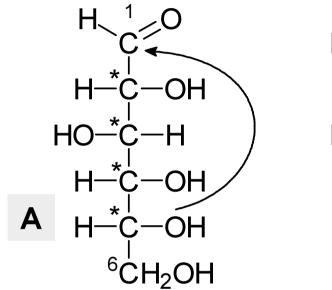
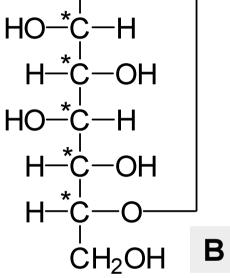
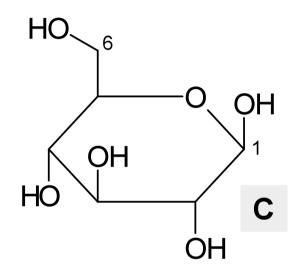

Glucose in blood

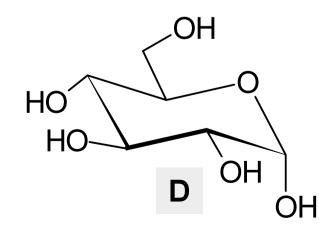
Seminar No. 3

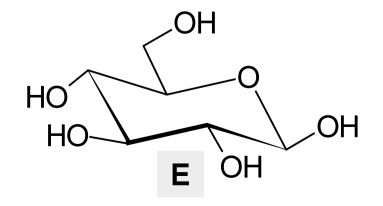
- Chapter 8 -


What is glucose?




2


- the most common monosaccharide, aldohexose
- $C_6H_{12}O_6 (M_r \ 180)$
- grape sugar, blood sugar, dextrose
- the most important sugar in the human body
- the source of chemical energy (17 kJ/g)
- metabolic nutrient for most tissues
- prominent fuel for the brain and RBC


Different formulas of D-glucose

- A = D-glucose (Fischer formula)
- $B = \beta$ -D-glucopyranose (Fischer formula)
- $C = \beta$ -D-glucopyranose (Haworth formula)
- $D = \alpha$ -D-glucopyranose (chair conformation)
- $E = \beta$ -D-glucopyranose (chair conformation)

Sources of glucose in blood

• **Resorption phase = just after meal** Exogenous saccharides (food)

• **Postresorption phase = in the obvious fasting** Endogenous storage and/or non-saccharide precursors of Glc

Glucose sources in resorption phase

- Starch (polysaccharide from glucose: amylose + amylopectin) Starch-based food: cereals, bread, rolls, pastry, cakes, biscuits, dumplings, rice, pasta, semolina, legumes, potatoes, banana
 - **Sugar** (table sugar, sucrose, disaccharide: glucose + fructose) commercially available in 100% purity

- Lactose (disaccharide: galactose + glucose) milk
- Glucose free glucose is very rare in common food
- Fructose fresh fruits (5-10 %), honey (cca 60 %)
- Honey \approx 30 % glucose, 60 % fructose, 10 % sucrose

Starch content in some food

Foodstuff	Starch (%) ^a
Flour	75
Rice	75
Pasta	70
Rolls	60
Legumes	60
Bread	50
Wholemeal bread	40
Potatoes	15
Banana	15

^a mass percentage, average values

Free glucose is rare in food

Food	Glucose (%) ^a	
Glukopur ^b	100	
Raisins	50	
Honey	30	
Grapes	6-10	
Other fresh fruits	1-5	

^{*a*} mass percentage, average values

^b pure crystalline glucose, Czech made, sold in pharmacy

Glucose sources in postresorption phase

• Liver glycogen is degraded by phosphate (phosphorolysis)

 $_{\rm P_i}^{\rm P_i}$ glycogen \rightarrow Glc-1-P \rightarrow Glc-6-P \rightarrow glucose in blood

• Gluconeogenesis from non-saccharide substrates:

Lactate (60 %) Alanine (30 %) Glycerol (10 %)

Five stages of glucose homeostasis

Feature	Ι	II	III	IV	V
Stage description	well-fed	post resorption	early starvation	prolonged starvation	extreme starvation
Time interval ^a	0-4 h	4-16 h	16-30 h	2-24 d	over 24 d
Origine of Glc in blood	food	liver glycogen gluconeogenesis	gluconeogenesis liver glycogen	gluconeogenesis	gluconeogenesis
Utilization of Glc	all tissues ^b	all tissues ^b muscle, ad.t. limited	all tissues ^b muscle, ad.t. limited	brain, Ercs, kidney	Ercs, kidney, brain - limited
Energy for brain	Glc	Gle	Glc	Glc, ketone bodies	ketone bodies, Glc

^{*a*} Approximate values, time 0 = any main meal (e.g. lunch).

^b Except of liver.

Five stages of glucose homeostasis

- Stage I glucose comes from food (mainly starch)
- Stage II glycogenolysis in liver
- Stage III gluconeogenesis in liver starts to work
- Stage IV in addition to liver, kidney starts to make Glc
- Stage V liver and kidney gluconeogenesis diminishes,
 energy needs of most tissues are met by FA + KB

Q. 1 (p. 45)

What is reference range of glucose concentration in blood?

A. 1

3.3 – 5.6 mmol/l capillary blood

Transport of glucose into cells

- Glucose is highly polar compound, does not pass freely across hydrophobic cell membranes
- Requires specific protein transporters
- $GLUT = \underline{glucose transporter}$

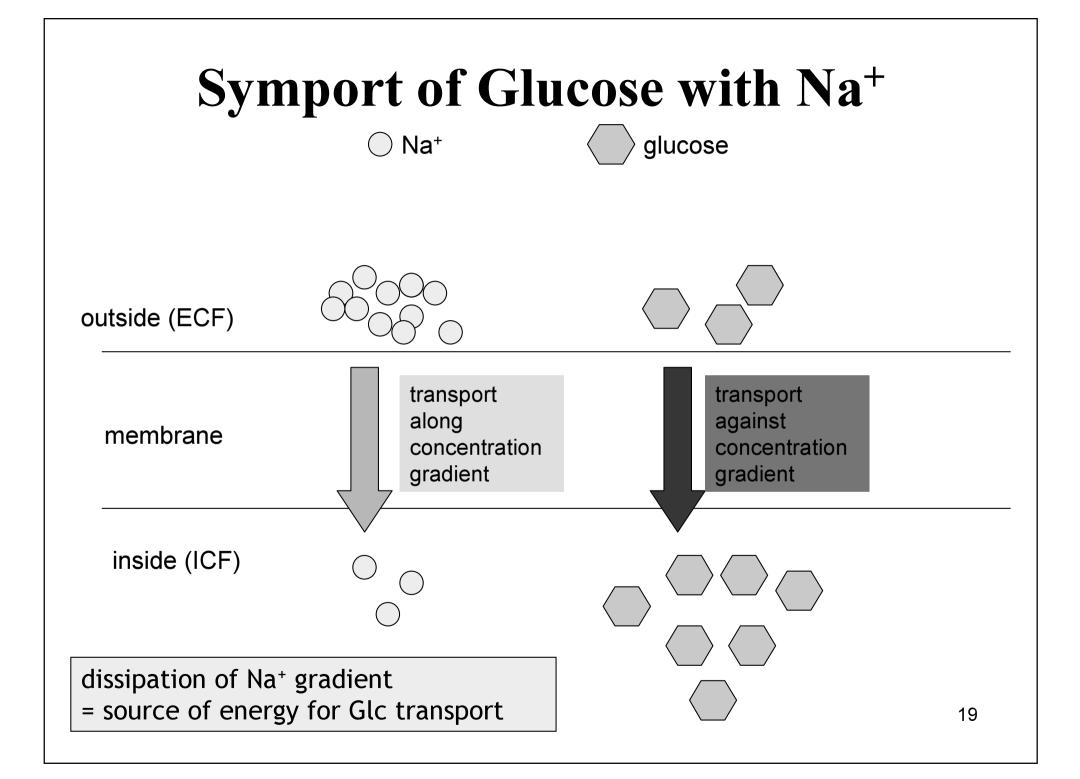
GLUT 2 liver	
GLUT 3 brain	
GLUT 4 muscle, adip. tissues – i	nsulin dependent

Insulin-independent transporters

- In most tissues (liver, CNS, Ery)
- Passive transport facilitated diffusion
- Transporter integral protein
- After binding Glc it changes conformation and releases glucose into ICF

Passive transport (facilitated diffusion) – no energy required see also Chapter 17 !!

Insulin-dependent transporters


- In muscles, adipose tissue peripheral tissues
- After binding Glc it changes conformation and releases glucose into ICF
- Free transporters are then transferred inside the cell by endocytosis
- Insulin stimulates their incorporation into cell membrane when necessary

Passive transport (facilitated diffusion) – no energy required

Symport (co-transport) with Na⁺ ions

- In enterocytes, renal tubules
- Transporter binds together Glc and Na⁺
- Na⁺ ions move from high conc. space to low conc. space
- Glc remains in cell and it is metabolized
- Na⁺ ions are expelled from cell *via* Na⁺,K⁺-ATPase pump

Secondary active transport – energy <u>is</u> required (p. 99)

Hormonal regulation of Glc metabolism

• "Resting state" hormones: insulin, glucagon

• Stress hormones: adrenalin, cortisol

Insulin (after meal)

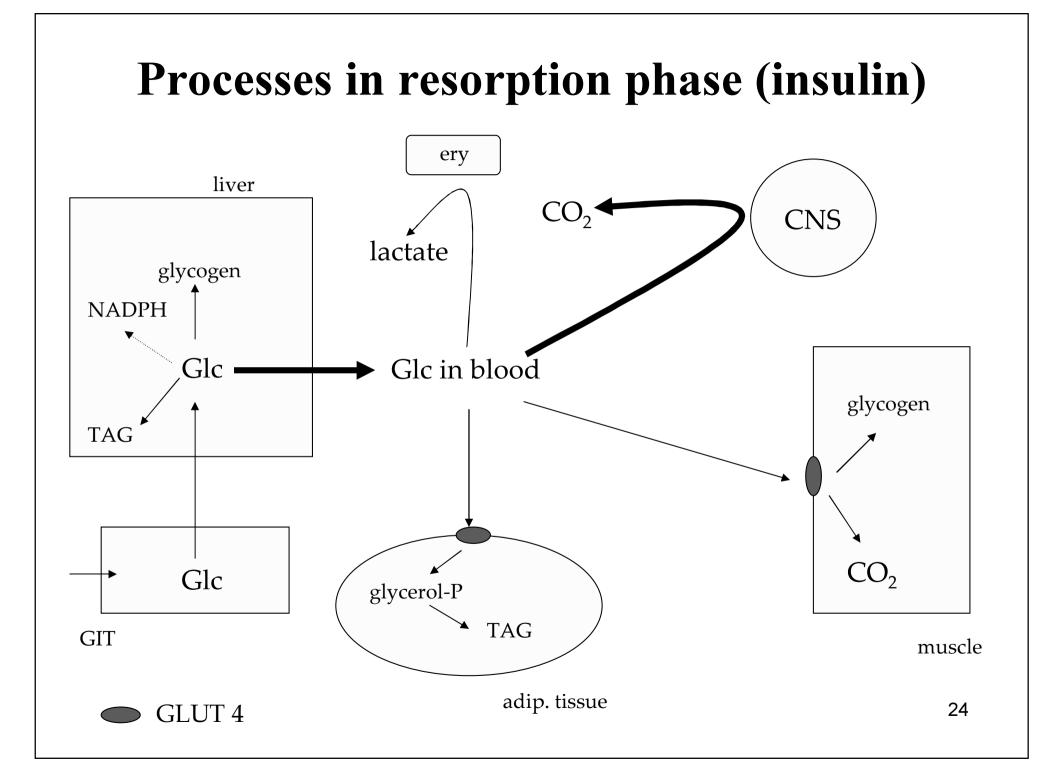
- High blood glucose level is the signal for insulin secretion
- Stimulates glycolysis in liver, muscles and other tissues
- Increases glucose transport into adipose tissues and muscles
- Stimulates synthesis of glycogen, TAG, proteins

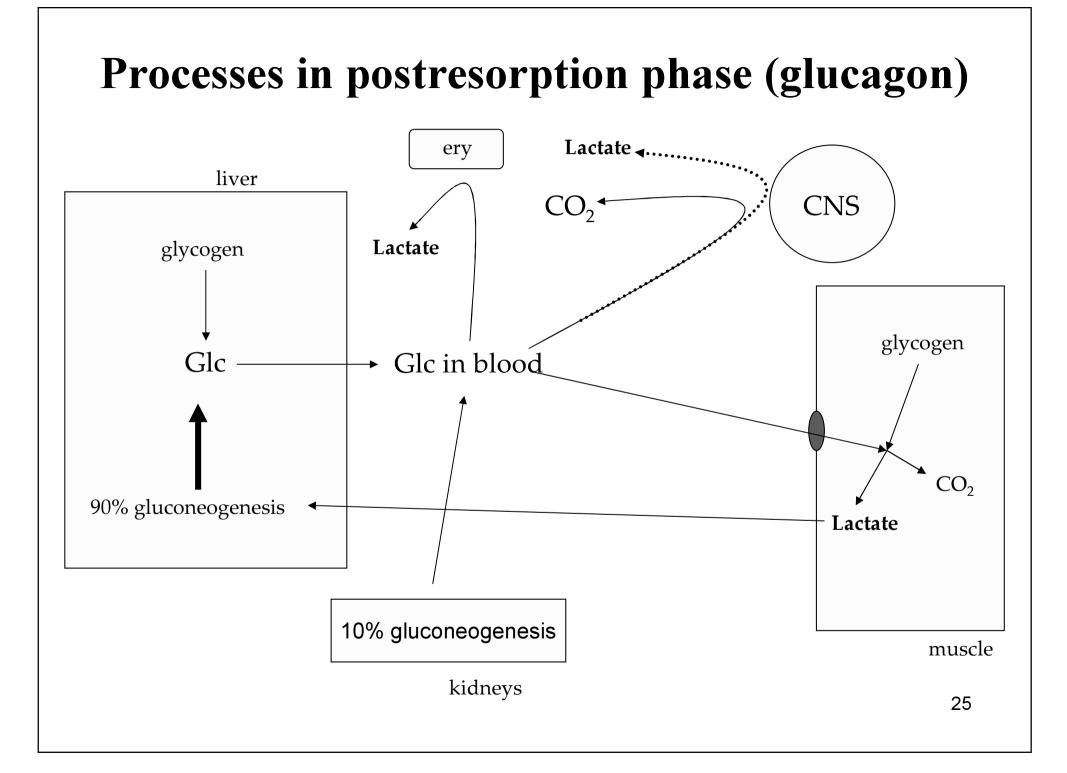
Insulin is generally anabolic hormone

Insulin is <u>inductor</u> of key enzymes of glycolysis and glycogenesis

Glucagon (after meal)

- Antagonist of insulin
- Low blood glucose level is the signal for glucagon secretion
- Stimulates breakdown of glycogen in liver (not in muscles)
- Stimulates gluconeogenesis from aminoacids


Glucagon is <u>inductor</u> of key enzymes of gluconeogenesis


Adrenaline (in stress)

- Signal that energy is needed immediately
- Very quick action
- Stimulates the breakdown of glycogen (in liver and muscles) and TAG

Cortisol – adaptation to stress

- Stimulates proteolysis in muscles
- Released AA are substrates for gluconeogenesis

Q. (p. 42)

The important intermediate of Glc is Glc-6-phosphate. What enzymes catalyze its formation?

A.

hexokinase glucokinase

$Glc + ATP \rightarrow Glc-6-P + ADP$

Q. (p. 42)

What enzyme catalyzes the conversion of Glc-6-P to glucose?

In which organs is it located?

A.

glucose-6-phosphatase

 $Glc-6-P + H_2O \rightarrow Glc + P_i$

occurs in liver, kidney, intestine but not in muscles

Metabolic Features of Diabetes (IDDM)

see the scheme on the page 43

metabolic processes occur under influence of glucagon

30

Metabolic Features of Diabetes (IDDM)

- The lack of insulin ⇒ Glc cannot enter adipose and muscle cells
 ⇒ elevated blood Glc
- The release of glucagon ⇒ glycogenolysis + lipolysis ⇒ elevated blood glucose + elevated blood FA
- The excess of FA ⇒ excess of acetyl-CoA (over CAC capacity)
 ⇒ synthesis of KB ⇒ elevated blood KB
- Limited glycolysis in liver ⇒ not enough pyruvate ⇒ not enough oxaloacetate to run CAC ⇒ excess of acetyl-CoA (over CAC capacity) ⇒ synthesis of KB ⇒ elevated blood KB
- The lack of insulin ⇒ not enough LPL (insulin is inductor of its synthesis) ⇒ elevated blood CM + VLDL

The metabolic consequences of insuline << glucagon ratio

Process	Change	Consequence
Transport of glucose into periph. tiss.	Û	
Glycolysis in liver	Û	
Gluconeogenesis in liver	仓	
Lipolysis in adipocytes	仓	
β-Oxidation of FA in liver	仓	
Production of ketone bodies	仓	

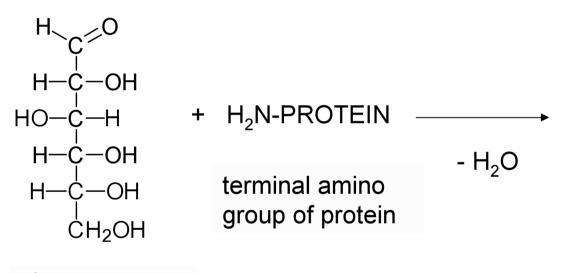
The metabolic consequences of insuline << glucagon ratio

Process	Change	Consequence
Transport of glucose into periph. tiss.	Û	elevated blood glucose
Glycolysis in liver	Û	elevated blood glucose
Gluconeogenesis in liver	仓	elevated blood glucose
Lipolysis in adipocytes	仓	elevated blood fatty acids
β-Oxidation of FA in liver	仓	increased prod. acetyl-CoA
Production of ketone bodies	企	elevated blood KB, acidosis

Complications of diabetes

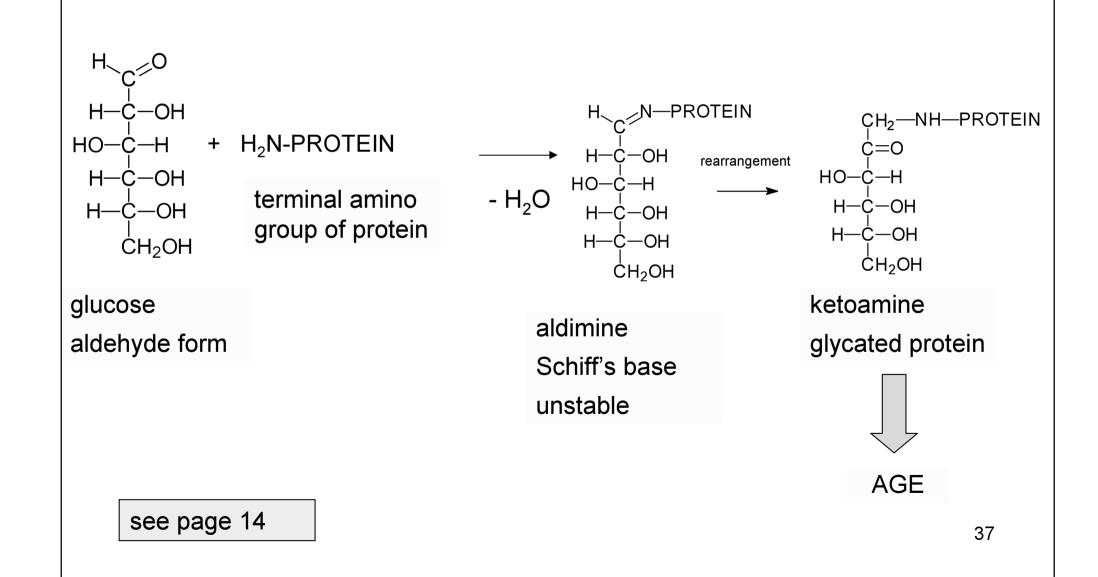
<u>Acute</u>

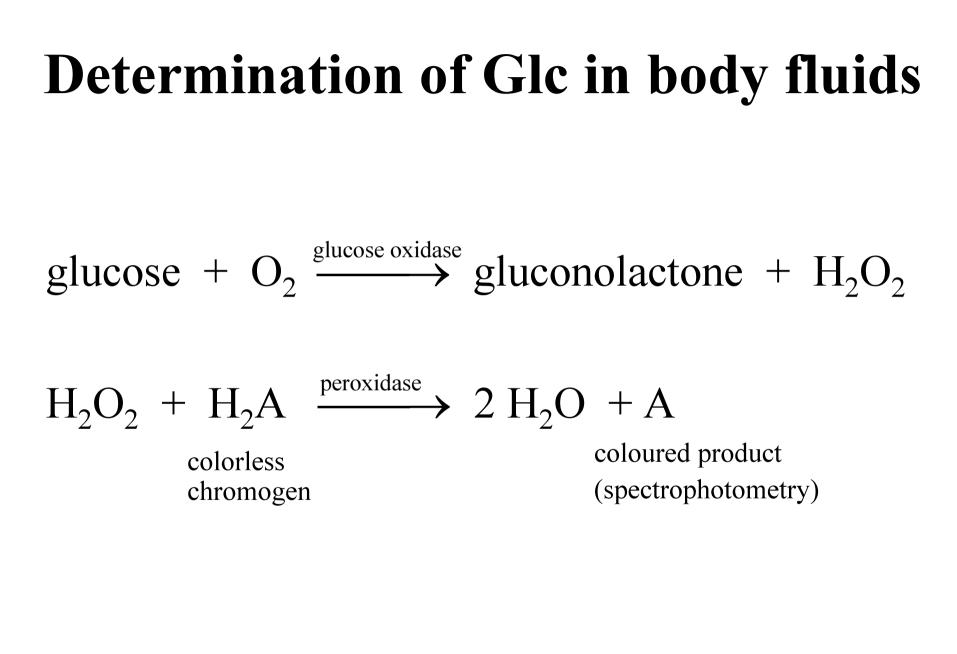
- ketoacidosis (pH of blood < 7.36)
- hyperosmolarity of blood plasma (> 310 mmol/l)


Long-term

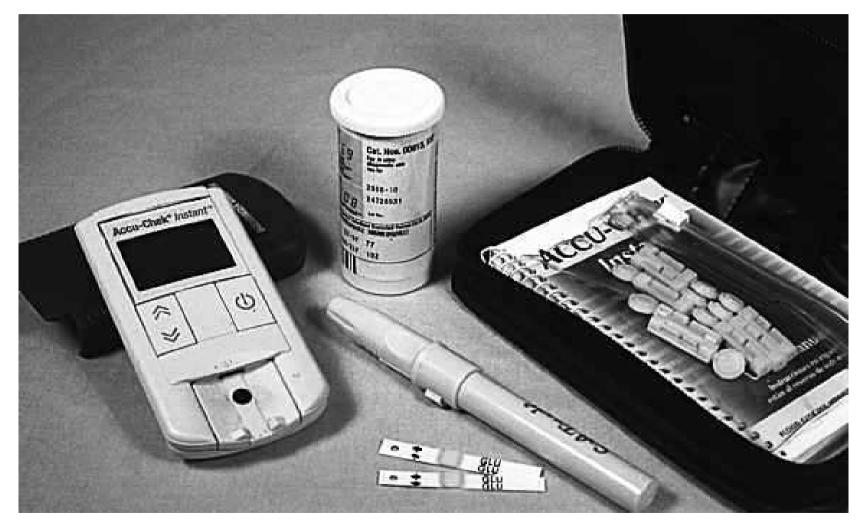
- non-enzymatic glycation of proteins
- AGE production (<u>a</u>dvanced <u>g</u>lycation <u>e</u>ndproducts)
- activation of sorbitol (glucitol) production

Glycated hemoglobin HbA_{1c}


- it is formed non-enzymatically in RBC
- reaction of globin NH₂-terminal group with aldehyde group of glucose
- the concentration of HbA_{1c} depends on:
 concentration of glucose in blood
 duration of hyperglycemia
 concentration of hemoglobin (less important factor)
- normal values: 6-8 %
- the value of HBA_{1c} gives cumulative information on glucose level in recent 6-8 weeks


Glycation of proteins

glucose aldehyde form


Glycation of proteins

Personal glucometer

(you will see in the labs)

Three diabetics, supervised after 6 weeks (p. 44)

Patient No. 1 (left picture)

glucose level little elevated HbA₁ OK conclusion good dietary regime

Patient No. 2 (middle picture)

glucose level	OK
HbA ₁	significantly elevated
conclusion	bad dietary regime

Patient No. 3 (right picture)

glucose level OK HbA₁ little elevated conclusion acceptable dietary regime