Proteins Nitrogen balance

Seminar No. 4

- Chapter 10 -

1

Overall metabolism of proteins

- Schemes on p. 53 and 54
- all proteins in the body are continuously degraded (metabolized) and newly synthesized
- free AA from food, tissue proteins and non-essential AA from synthesis make AA pool
- AA pool is used for:
 - new body proteins

specialized products (amines, NO, porphyrines, NA bases ...) catabolic proceses (energy gain)

AA pool

- ~ 80 % in muscles
- $\sim 10 \%$ in liver
- \sim 5 % in kidney
- \sim 5 % in blood

AA pool is not reserve !!

There is not a specific protein reserve in human body in contrast to saccharides (liver glycogen) and lipids (adip. tissue) !!

AA in blood

Resorption phase

- predominate Val, Leu, Ile
- liver does not take them up from circulation (no specific aminotransferases in liver for Val, Leu, Ile)

Postresorption phase and fasting

- predominate Gln and Ala
- released from muscles (Gln + Ala) and liver (Gln)

There are eight essential aminoacids

- valine
- leucine
- isoleucine
- threonine

- phenylalanine
- tryptophan
- lysine
- methionine

Conditionally essential aminoacids

histidine, arginine (in childhood and youth) alanine, glutamine (in metabolic stress) **Biological value of proteins (BV)** the amount of endogenous proteins made in body from 100 g of dietary proteins

about 30 % of methionine requirement can be made up by cysteine about 50 % of phenylalanine requirement can be made up by tyrosine

Biological value of some proteins

Protein	BV (%)		
Egg white	100		
Whey	100		
Whole egg	96		
Casein	80		
Beef	77		
Pork	70		
Oats	60		
Wheat flour	53		
Beans	46		
Gelatine	25		

Whey

- a by-product at (cottage) cheese production
- yellowish liquid (the colour comes from riboflavin)
- cca 12 % of high quality proteins (lactoalbumin, lactoglobulins)
- rich in other B-complex vitamins and lactose
- dried whey is available in shops (esp. fitness centres)

Catabolic pathways of AA

- dietary proteins \rightarrow AA (GIT, pepsin, trypsin etc.)
- transamination of AA in cells \rightarrow glutamate
- dehydrogenation deamination of glutamate $\rightarrow NH_3$
- detoxication of ammonia \rightarrow urea, glutamine

blue colour indicates the pathway of nitrogen

Q. (p. 54)

Write a general equation of a reaction catalyzed by aminotransferases.

Q. (p. 54)

Which cofactor is used by aminotransferases?

In transaminations, nitrogen of most AA is concentrated in glutamate

Glutamate then undergoes dehydrogenation deamination and releases **free ammonia** NH₃

Intracellular localization cytosol Transamination \Rightarrow glutamate mitochondria GMD glutamate NH₃ urea cytosol synthesis $Glu + NH_3 \rightarrow Gln$ 17

Q.

What are <u>two</u> main sources of ammonia

in human body?

Two main sources of ammonia in body

Dehydrogenation deamination of glutamate

in cells of most tissues

Bacterial fermentation of proteins in large intestine

ammonia diffuses freely into portal blood \implies

portal blood has high concentration of $NH_3 \implies$

NH₃ is eliminated by liver (under normal cond.)

Other ways of deaminations

- deamination of glutamate in purine nucleotide cycle (p. 55)
- oxidative deamination of some AA (\rightarrow H₂O₂)
- oxidative deamination of biogenous amines $(\rightarrow H_2O_2)$
- desaturation deamination of His \rightarrow urocanic acid + NH_3
- oxidative deamination of lysinu

lysyloxidase (Cu²⁺): Lys + $O_2 \rightarrow NH_3$ + allysine + H₂O (p. 114)

Other sources of ammonia in tissues

• non-enzymatic carbamylation of proteins

 $Prot-NH_2 + NH_2-CO-NH_2 \rightarrow NH_3 + Prot-NH-CO-NH_2$

• catabolism of pyrimidine bases

cytosine/uracil \rightarrow NH₃ + CO₂ + β -alanine

thymine $\rightarrow \mathbf{NH}_3 + CO_2 + \beta$ -aminoisobutyrate

• hem synthesis

4 porfobilinogen \rightarrow 4 NH₃ + uroporfyrinogen

Three ways of ammonia detoxication

Feature	Urea	Glutamine (Gln)	Glutamate (Glu)
Relevance	* * * * * *	* * * *	*
Compound type	H ₂ CO ₃ diamide	γ-amide of Glu	α-aminoacid
Reaction	urea cycle	Glu + NH ₃	hydrog. amin. 2-OG
Enzyme	5 enzymes	Gln-synthase	GMD
Energy needs	3 ATP	1 ATP	1 NADH ^a
Intracell localiz.	mitoch. + cytosol	cytosol	mitochondria
Organ localiz.	only liver	liver + other	mainly brain

^{*a*} Equivalent of 3 ATP (compare respiratory chain).

The properties of urea

- carbonic acid diamide
- perfectly soluble in water
- non-electrolyte \Rightarrow neutral aq. solutions (pH = 7)
- produced in liver × excreted by kidneys
- difuses easily through all cell membranes

Glucose-alanine cycle

Glutamine cycle

- Gln carries –NH₂ group from muscles to liver (periportal hepatocytes) for detoxification
- in perivenous hepatocytes, Gln is made from glutamate to keep ammonia concentration low (Glu + $NH_3 \rightarrow Gln$)
- Gln is exported from the liver to kidney where is deaminated, NH_4^+ ions are excreted by urine
- exogenous and endogenous Gln is the source of energy for intestinal mucosa: $Gln \rightarrow 2-OG \rightarrow energy (CAC)$

Glutamine deamination in kidney occurs stepwise

Q.

What reaction is catalyzed by glutaminase?

Test results will be available on line

is.muni.cz

Spring 2006

Biochemistry II-s

Notebook

37