Acid-Base Balance I.

Seminar No. 9

- Chapter 21, I. part -

Homeostasis = maintenance of constant parameters of internal environment (= ECF)

- volumes of all body fluids (isovolemia)
- concentrations of cations/anions in body fluids (isoionia)
- osmolality of body fluids (isotonia)
- body temperature (isothermia)
- pH of body fluids (isohydria)

Which (general biological) factors influence the volume and distribution of body fluids?

A.

age

• newborn baby ~ 78 % TBW, adults ~ 60 % TBW

sex

• males 55-70 %, females 45-60 % (more fat in the body)

Cations and anions in plasma (average concentrations)

Cation	Molarity (mmol/l)		Anion	Molarity (mmol/l)	
	Cation	Pos. charge*	Anion	Anion	Neg. charge*
Na ⁺	142	142	Cl-	103	103
\mathbf{K}^+	4	4	HCO ₃ -	25	25
Ca ²⁺	2.5	5	Prot-	2	18
Mg^{2+}	1.5	3	HPO ₄ ²⁻	1	2
			SO ₄ ²⁻	0.5	1
			Org. A	4	5
Total positive charge: 154			Total n	egative c	harge: 154

* Molarity of charge = miliequivalents per liter (mEq/l)

Compare: Isotonic solution of NaCl

Physiological sol. 0.9 % = 9 g/l = 154 mmol/l

Na ⁺	Cl-
154 mmol/l	154 mmol/l
	1

Commentary - Cations and anions in plasma

- every body fluid is electroneutral system
- in univalent ionic species \Rightarrow

molarity of charge = molarity of ion (Na⁺, K⁺, Cl⁻, HCO₃⁻, lactate⁻)

• in polyvalent ionic species \Rightarrow

molarity of charge = charge × molarity of ion

$$Mg^{2+} \Rightarrow [pos. charge] = 2 \times [Mg^{2+}] = 2 \times 1 = 2$$

 $SO_4^{2-} \implies [neg. charge] = 2 \times [SO_4^{2-}] = 2 \times 0.5 = 1$

- proteins (mainly albumin) are at pH 7.40 polyanions
- org. acid anions (OA) mainly lactate (AA, oxalate, citrate, ascorbate ...)
- charge molarity of proteins + OA is estimated by empirical formulas

Compare the ion composition of the plasma and ICF.

A.

Feature	Plasma	ICF	
Main cation	Na ⁺	K^+	
Main anion	Cl-	HPO ₄ ²⁻	
Protein content	\star	$\star \star \star$	
Main buffer base	HCO ₃ -	HPO_4^{2-}	

What are the main dietary sources

of Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻?

A.

Ion Main dietary source

- Na⁺ common (table) salt, salty products
- K⁺ potatoes, vegetables, dried fruits, soya flour
- Ca²⁺ milk products, (cottage) cheese, mineral waters
- Mg²⁺ green vegetable (chlorophyll)
- Cl⁻ common (table) salt, salty products

Calculate the approximate osmolality of blood plasma if:

$$[Na^+] = 146 \text{ mmol/l}$$

[urea] = 4 mmol/l

[glucose] = 5.6 mmol/l

approximate osmolality is calculated

according to empirical relationship:

2 [Na⁺] + [urea] + [glucose] = $2 \times 146 + 4 + 5.6 =$ **301.6 mmol/kg H₂O**

Data derived (calculated) from ionogram

SID, AG

SID (strong ion difference)

- strong ions **do not hydrolyze** in aqueous solution
- Na⁺, K⁺, Cl⁻
- SID = $[Na^+] + [K^+] [C1^-] = 142 + 4 103 = 43 \text{ mmol/l}$
- physiological range of SID = 39 45 mmol/l

AG (anion gap)

- the extent of unmeasured or unusual anions
- $AG = [Na^+] + [K^+] [C1^-] [HCO_3^-]$
- AG = 142 + 4 103 25 = 18 mmol/l
- physiological range of AG = 12 18 mmol/l

Elevated AG may be caused by various conditions

- kidney insufficiency ($\uparrow HPO_4^{2-} + \uparrow SO_4^{2-}$)
- diabetes, starvation (\uparrow acetoacetate + $\uparrow \beta$ -hydroxybutyrate)
- poisoning by methanol (↑ formate HCOO⁻)
- lactoacidosis († lactate)
- severe dehydratation (↑ proteinates)

Metabolic processes produce or consume various acids

Metabolism of nutrients from acid-base point of view

Food – hydrolysis of nutrients in GIT

Proton consumption reactions

Gluconeogenesis from lactate:

2 lactate⁻ + 2 $H^+ \rightarrow 1$ glucose

anion + proton \rightarrow neutral molecule

- protons are consumed in the synthesis of non-electrolyte from anion
- proton consumption is equivalent to OH⁻ production

Proton productive reactions

- anaerobic glycolysis: glucose \rightarrow 2 lactate⁻ + 2 H⁺
- synthesis of urea:

$$CO_{2} + NH_{4}^{+} + \stackrel{\Theta}{OOC} - CH - CH_{2} - COO^{\Theta}$$

 NH_{3}^{\oplus}
 U
 $CO(NH_{2})_{2} + OOC - CH = CH - COO^{-} + H_{2}O + 2 H^{+}$

Which compound is **the main acid product**

of metabolism in human body?

carbon dioxide CO₂

compare daily production of acid equivalents:

 CO_2 - up to **25 000** mmol/day

 H^+ as NH_4^+ and $H_2PO_4^-$ - up to **80** mmol/day

What kind of food leads to an increased production of OH⁻?

A.

- strictly vegetarian diet
- contains a lot of potassium citrate/malate
- potassium salts get into blood plasma
- organic anions enter cells and are metabolized (CAC)
- K⁺ cations remain in plasma
- to keep electroneutrality of plasma ⇒
 HCO₃⁻ concentration increases
- result: mild physiological alkalosis

How is CO₂ formed in tissues?

Endogenous production of CO₂

- CO₂ is produced in <u>decarboxylation</u> reactions
- oxidative decarboxylation of pyruvate \rightarrow acetyl-CoA
- two decarboxylations in CAC (isocitrate, 2-oxoglutarate)
- decarboxylation of aminoacids \rightarrow biogenous amines
- non-enzymatic decarboxylation of acetoacetate \rightarrow aceton
- catabolism of pyrimidine bases

(cytosine, uracil $\rightarrow CO_2 + NH_3 + \beta$ -alanine)

• catabolism of glycine $\rightarrow CO_2 + NH_3 + methylen-THF$

main

sources

Acid products of metabolism - Overview

- aerobic metabolism of nutrients $\rightarrow CO_2$
- anaerobic glycolysis \rightarrow lactic acid
- KB production (starvation) \rightarrow acetoacetic/ β -hydroxybutyric acid
- catabolism of cystein (-SH) \rightarrow SO₄²⁻ + 2 H⁺
- catabolism of purine bases \rightarrow uric acid
- catabolism of phospholipids \rightarrow HPO₄²⁻ + **H**⁺

$$R_{1} - O - P - O - R_{2} \xrightarrow{2 H_{2}O} R_{1} - OH + \Theta O - P - OH + HO - R_{2} + H^{\oplus}$$

Buffer systems in blood

Buffer system	Relevance	Buffer base	Buffer acid	pK _A
Hydrogencarbonate	50 %	HCO ₃ -	H_2CO_3, CO_2	6.1
Proteins ^a	45 %	Protein-His	Protein-His-H ⁺	6.0 - 8.0 ^b
Hydrogenphosphate	5 %	HPO_4^{2-}	H ₂ PO ₄ -	6.8

^{*a*} In plasma mainly albumin, in erythrocytes hemoglobin

^{*b*} The pK_A value depends on the type of protein

Buffer bases in (arterial) plasma

Write a general form of Henderson-Hasselbach equation.

What does the buffering capacity depends on?

A.

• buffering capacity depends on:

- concentration of both components
- the ratio of both components

• the best capacity if: [buffer base] = [buffer acid]

Hydrogencarbonate (bicarbonate)

buffer

Carbonic acid in vitro

$$H_2O + CO_2 \quad \leftrightarrows \quad H_2CO_3 \quad \leftrightarrows \quad HCO_3^- + H^+$$

$$800 \quad : \quad 1 \quad : \quad 0.03$$

- weak diprotic acid ($pK_{A1} = 6.37$; $pK_{A2} = 10.33$)
- does exist only in aq. solution, easily decomposes to CO_2 and water
- CO_2 predominates 800 × in sol. \Rightarrow therefore CO_2 is included into K_A

$$K_{\text{A eff}} = \frac{[\text{H}^+][\text{HCO}_3^-]}{[\text{CO}_2 + \text{H}_2\text{CO}_3]}$$

 $K_{A eff}$ = effective/overall dissociation constant

Carbonic acid in vivo

 $H_2O + CO_2 \rightleftharpoons H_2CO_3 \leftrightarrows HCO_3^- + H^+$ 1 : traces : 20

- formation catalyzed by carbonic anhydrase
- under physiological conditions: $pK_{A1} = 6.10$
- CO₂ is continually eliminated from body by lungs
- the overall concentration of carbonic acid:

 $[CO_2 + H_2CO_3] = pCO_2 \times s = 0.23 pCO_2 (kPa)$

Compare: CO₂ in water and blood

Liquid	pН	$[CO_2] : [HCO_3^-]$
Carbonated water ^a	3.50 - 5.00	800:0.03
Blood ^b	7.36 - 7.44	1:20

^{*a*} **Closed system** (PET bottle), 25 °C, $pK_{A1} = 6.37$ pH ~ pCO_2 ~ the pressure of CO₂ applied in saturation process

^{*b*} **Open system**, 37 °C, $pK_{A1} = 6.10$ CO₂ continually eliminated, pCO_2 in lung alveoli ~ 5.3 kPa, acid component of bicarbonate buffer

Give the Henderson-Hasselbalch equation for the hydrogencarbonate buffer

Express the changes in the bicarbonate buffer after adding H⁺.

protons are eliminated in the reaction with buffer base

 $HCO_3^- + H^+ \rightarrow H_2CO_3 \rightarrow H_2O + CO_2$

Express the changes in the bicarbonate buffer after adding OH⁻.

A.

hydroxide ions are eliminated in the reaction with buffer acid

$H_2CO_3 + OH^- \rightarrow H_2O + HCO_3^-$

Q. Calculate changes in buffer system after adding 2 mmol H⁺ into one liter

_	Initial status	Closed system	Open system
[HCO ₃ -]	24 mmol/l		
[CO ₂ +H ₂ CO ₃]	1.2 mmol/l		
рН	7.40		

	Initial status	Closed system	Open system
[HCO ₃ -]	24 mmol/l	22	
[CO ₂ +H ₂ CO ₃]	1.2 mmol/l	3.2	
pН	7.40	6.94	

2 H⁺ react with buffer base $\Rightarrow 24 - 2 = 22 \text{ HCO}_3^- + 2 \text{ CO}_2$ newly formed CO₂ remain in the system $\Rightarrow 1.2 + 2 = 3.2 \text{ CO}_2$

_	Initial status	Closed system	Open system
[HCO ₃ -]	24 mmol/l	22	22
[CO ₂ +H ₂ CO ₃]	1.2 mmol/l	3.2	1.2
pН	7.40	6.94	7.36

2 H⁺ react with buffer base \Rightarrow 24 - 2 = 22 HCO₃⁻ + 2 CO₂

newly formed CO₂ is eliminated by lungs \Rightarrow 3.2 - 2 = **1.2 CO₂**

Calculate the ratio of $[HCO_3^-]/[CO_2+H_2CO_3]$ at physiological pH.

A.

$$7.40 = 6.1 + \log x$$

 $\log x = 1.3$
 $x = 10^{1.3} = 20 = 20 : 1 = [HCO_3^-] : [CO_2 + H_2CO_3]$

Is the bicarbonate buffer more resistant to acids or bases?

- see previous problem
- $[HCO_3]: [CO_2 + H_2CO_3] = 20:1$
- the concentration of buffer base is **20** × **higher**

than the concentration of buffer acid

• conclusion: bicarbonate buffer is $20 \times more$ resistant to acids

Hydrogenphosphate buffer

- buffer base: HPO₄²⁻
- buffer acid: $H_2PO_4^-$

• occurs mainly in ICF, bones, urine

What is the ratio of plasma phosphates at physiological pH?

 $7.40 = 6.80 + \log x$

 $\log x = 0.6$

 $x = 10^{0.6} = 4 \implies [HPO_4^{2-}] : [H_2PO_4^{--}] = 4 : 1$

Hemoglobin buffer

• hemoglobin (Hb) contains a lot of histidine

Buffering function of Hb is performed by side chain of histidine

The next seminar May 15

- Chapter 21, II. part -