Acid-Base Balance I.

Seminar No. 9

- Chapter 21, I. part -

Homeostasis = maintenance of constant

parameters of internal environment (= ECF)

- volumes of all body fluids (isovolemia)
- concentrations of cations/anions in body fluids (isoionia)
- osmolality of body fluids (isotonia)
- body temperature (isothermia)
- pH of body fluids (isohydria)

Q.

Which (general biological) factors influence the volume and distribution of body fluids?

A.

age

- newborn baby $\sim 78 \%$ TBW, adults $\sim 60 \%$ TBW
sex
- males 55-70 \%, females 45-60 \% (more fat in the body)

Cations and anions in plasma (average concentrations)

Cation	Molarity (mmol/l)	
	Cation	Pos. charge*
Na^{+}	142	142
$\mathrm{~K}^{+}$	4	4
Ca^{2+}	2.5	5
Mg^{2+}	1.5	3

Total positive charge: 154

Anion	Molarity (mmol/l)	
	Anion	Neg. charge*
Cl^{-}	103	103
$\mathrm{HCO}_{3}{ }^{-}$	25	25
Prot^{-}	2	18
$\mathrm{HPO}_{4}{ }^{2-}$	1	2
$\mathrm{SO}_{4}{ }^{2-}$	0.5	1
Org. A	4	5
Total negative charge: 154		

* Molarity of charge $=$ miliequivalents per liter ($\mathrm{mEq} / \mathrm{l}$)

Compare: Isotonic solution of $\mathbf{N a C l}$

Physiological sol. $0.9 \%=9 \mathrm{~g} / \mathrm{l}=154 \mathrm{mmol} / \mathrm{l}$

$\mathbf{N a}^{+}$	$\mathbf{C l}^{-}$
$154 \mathrm{mmol} / \mathrm{l}$	$154 \mathrm{mmol} / \mathrm{l}$

1

Commentary - Cations and anions in plasma

- every body fluid is electroneutral system
- in univalent ionic species \Rightarrow molarity of charge $=$ molarity of ion $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{HCO}_{3}^{-}\right.$, lactate -$)$
- in polyvalent ionic species \Rightarrow molarity of charge $=$ charge \times molarity of ion
$\mathrm{Mg}^{2+} \Rightarrow[$ pos. charge $]=2 \times\left[\mathrm{Mg}^{2+}\right]=2 \times 1=2$
$\mathrm{SO}_{4}{ }^{2-} \Rightarrow \quad[$ neg. charge $]=2 \times\left[\mathrm{SO}_{4}{ }^{2-}\right]=2 \times 0.5=1$
- proteins (mainly albumin) are at pH 7.40 polyanions
- org. acid anions (OA) - mainly lactate (AA, oxalate, citrate, ascorbate ...)
- charge molarity of proteins +OA is estimated by empirical formulas

Q.

Compare the ion composition of the plasma and ICF.

A.

Feature
Plasma
ICF
Main cation
Na^{+}
K^{+}
Main anion Cl^{-}
$\mathrm{HPO}_{4}{ }^{2-}$
Protein content
Main buffer base
HCO_{3}^{-}
$\mathrm{HPO}_{4}{ }^{2-}$

Q.

What are the main dietary sources of $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Cl}^{-}$?

A.

Ion Main dietary source
 $\mathrm{Na}^{+} \quad$ common (table) salt, salty products
 $\mathrm{K}^{+} \quad$ potatoes, vegetables, dried fruits, soya flour
 Ca^{2+} milk products, (cottage) cheese, mineral waters
 Mg^{2+} green vegetable (chlorophyll)
 $\mathrm{Cl}^{-} \quad$ common (table) salt, salty products

Calculate the approximate osmolality of blood plasma if:
$\left[\mathrm{Na}^{+}\right]=146 \mathrm{mmol} / \mathrm{l}$
[urea] $=4 \mathrm{mmol} / \mathrm{l}$
[glucose] $=5.6 \mathrm{mmol} / \mathrm{l}$

A.

approximate osmolality is calculated according to empirical relationship:
$2\left[\mathrm{Na}^{+}\right]+$[urea] + [glucose $]=$
$2 \times 146+4+5.6=\mathbf{3 0 1 . 6} \mathbf{~ m m o l} / \mathbf{k g ~} \mathbf{H}_{2} \mathbf{O}$

Data derived (calculated) from ionogram

SID, AG

SID (strong ion difference)

- strong ions do not hydrolyze in aqueous solution
- $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$
- $\operatorname{SID}=\left[\mathrm{Na}^{+}\right]+\left[\mathrm{K}^{+}\right]-\left[\mathrm{Cl}^{-}\right]=142+4-103=43 \mathrm{mmol} / \mathrm{l}$
- physiological range of SID $=39-45 \mathrm{mmol} / \mathrm{l}$

SID = buffer bases of plasma

$\mathrm{SID}=\mathrm{HCO}_{3}{ }^{-}+\mathrm{HPO}_{4}{ }^{2-}+$ Prot $^{-}$

AG (anion gap)

- the extent of unmeasured or unusual anions
- $\mathrm{AG}=\left[\mathrm{Na}^{+}\right]+\left[\mathrm{K}^{+}\right]-\left[\mathrm{Cl}^{-}\right]-\left[\mathrm{HCO}_{3}^{-}\right]$
- $\mathrm{AG}=142+4-103-25=18 \mathrm{mmol} / \mathrm{l}$
- physiological range of $\mathrm{AG}=12-18 \mathrm{mmol} / \mathrm{l}$

AG

$\mathrm{AG}=\mathrm{HPO}_{4}{ }^{2-}+\operatorname{Prot}^{-}+\mathrm{SO}_{4}{ }^{2-}+\mathrm{OA}$

Elevated AG may be caused by various conditions

- kidney insufficiency $\left(\uparrow \mathrm{HPO}_{4}{ }^{2-}+\uparrow \mathrm{SO}_{4}{ }^{2-}\right)$
- diabetes, starvation (\uparrow acetoacetate $+\uparrow \beta$-hydroxybutyrate)
- poisoning by methanol (\uparrow formate HCOO^{-})
- lactoacidosis (\uparrow lactate)
- severe dehydratation (\uparrow proteinates)

Metabolic processes produce or consume various acids

Metabolism of nutrients from acid-base point of view

Food - hydrolysis of nutrients in GIT

acid base reactions in ECF - buffers systems

Proton consumption reactions

Gluconeogenesis from lactate:

2 lactate $^{-}+\mathbf{2} \mathbf{H}^{+} \rightarrow 1$ glucose
anion + proton \rightarrow neutral molecule

- protons are consumed in the synthesis of non-electrolyte from anion
- proton consumption is equivalent to OH^{-}production

Proton productive reactions

- anaerobic glycolysis: glucose $\rightarrow 2$ lactate $^{-}+\mathbf{2} \mathbf{H}^{+}$
- synthesis of urea:

$$
\mathrm{CO}_{2}+\mathrm{NH}_{4}^{+}+\Theta \underset{\substack{\mathrm{O} \\ \mathrm{NH}_{3}{ }^{\oplus}}}{\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{COO}^{\ominus}}
$$

$\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+{ }^{-} \mathrm{OOC}-\mathrm{CH}=\mathrm{CH}-\mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}+2 \mathbf{H}^{+}$

Q.

Which compound is the main acid product
of metabolism in human body?

A.

carbon dioxide CO_{2}

compare daily production of acid equivalents:
CO_{2} - up to $\mathbf{2 5} \mathbf{0 0 0} \mathbf{~ m m o l} /$ day
H^{+}as NH_{4}^{+}and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}-$up to $\mathbf{8 0} \mathrm{mmol} /$ day

Q.

What kind of food leads to an increased production of OH^{-}?

A.

- strictly vegetarian diet
- contains a lot of potassium citrate/malate
- potassium salts get into blood plasma
- organic anions enter cells and are metabolized (CAC)
- K^{+}cations remain in plasma
- to keep electroneutrality of plasma \Rightarrow $\mathrm{HCO}_{3}{ }^{-}$concentration increases
- result: mild physiological alkalosis

Q.

How is CO_{2} formed in tissues?

Endogenous production of $\mathrm{CO}_{\mathbf{2}}$

- CO_{2} is produced in decarboxylation reactions
- oxidative decarboxylation of pyruvate \rightarrow acetyl-CoA
- two decarboxylations in CAC (isocitrate, 2-oxoglutarate)

- decarboxylation of aminoacids \rightarrow biogenous amines
- non-enzymatic decarboxylation of acetoacetate \rightarrow aceton
- catabolism of pyrimidine bases
(cytosine, uracil $\rightarrow \mathrm{CO}_{2}+\mathrm{NH}_{3}+\beta$-alanine)
- catabolism of glycine $\rightarrow \mathrm{CO}_{2}+\mathrm{NH}_{3}+$ methylen-THF

Acid products of metabolism - Overview

- aerobic metabolism of nutrients $\rightarrow \mathbf{C O}_{2}$
- anaerobic glycolysis \rightarrow lactic acid
- KB production (starvation) \rightarrow acetoacetic/ß-hydroxybutyric acid
- catabolism of cystein $(-\mathrm{SH}) \rightarrow \mathrm{SO}_{4}{ }^{2-}+\mathbf{2} \mathbf{H}^{+}$
- catabolism of purine bases \rightarrow uric acid
- catabolism of phospholipids $\rightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathbf{H}^{+}$

Buffer systems in blood

Buffer system	Relevance	Buffer base	Buffer acid	$\mathbf{p} \boldsymbol{K}_{\mathbf{A}}$
Hydrogencarbonate	50%	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{2}$	6.1
Proteins a	45%	Protein-His	Protein-His- H^{+}	$6.0-8.0^{b}$
Hydrogenphosphate $^{5 \%}$	5%	$\mathrm{HPO}_{4}{ }^{2-}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	6.8

${ }^{a}$ In plasma mainly albumin, in erythrocytes hemoglobin
${ }^{b}$ The $\mathrm{p} K_{A}$ value depends on the type of protein

Buffer bases in (arterial) plasma

Buffer base	mmol/l
$\mathrm{HCO}_{3}{ }^{-}$	24
Proteins	17
$\mathrm{HPO}_{4}{ }^{2-}$	1
Total	42

Write a general form of Henderson-Hasselbach equation.

$$
\begin{gathered}
\text { A. } \\
\mathrm{pH}=\mathrm{p} K_{\mathrm{A}}+\log \frac{[\text { buffer base }]}{[\text { buffer acid }]}
\end{gathered}
$$

Q.

What does the buffering capacity depends on?

A.

- buffering capacity depends on:
- concentration of both components
- the ratio of both components
- the best capacity if: [buffer base] = [buffer acid]

Hydrogencarbonate (bicarbonate)

buffer

Carbonic acid in vitro

$$
\begin{array}{rlccc}
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} & \leftrightarrows & \mathrm{H}_{2} \mathrm{CO}_{3} & \leftrightarrows & \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \\
800 & : & 1 & : & 0.03
\end{array}
$$

- weak diprotic acid $\left(\mathrm{p} K_{\mathrm{A} 1}=6.37 ; \mathrm{p} K_{\mathrm{A} 2}=10.33\right)$
- does exist only in aq. solution, easily decomposes to CO_{2} and water
- CO_{2} predominates $800 \times$ in sol. \Rightarrow therefore CO_{2} is included into K_{A}

$$
K_{\mathrm{A} \text { eff }}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]}
$$

$$
K_{\mathrm{A} \text { eff }}=\text { effective/overall }
$$ dissociation constant

Carbonic acid in vivo

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} & \leftrightarrows \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \\
1 & : \text { traces }
\end{aligned}
$$

- formation catalyzed by carbonic anhydrase
- under physiological conditions: $\mathrm{p} K_{\mathrm{A} 1}=6.10$
- CO_{2} is continually eliminated from body by lungs
- the overall concentration of carbonic acid:
$\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\mathrm{pCO}_{2} \times s=0.23 \mathrm{pCO}_{2}(\mathrm{kPa})$

Compare: $\mathbf{C O}_{\mathbf{2}}$ in water and blood

Liquid

pH
$\left[\mathrm{CO}_{2}\right]:\left[\mathrm{HCO}_{3}{ }^{-}\right]$

Carbonated water a	$3.50-5.00$	$800: 0.03$
Blood b	$7.36-7.44$	$1: 20$

${ }^{a}$ Closed system (PET bottle), $25^{\circ} \mathrm{C}, \mathrm{p} K_{\mathrm{A} 1}=6.37$
$\mathrm{pH} \sim p \mathrm{CO}_{2} \sim$ the pressure of CO_{2} applied in saturation process
${ }^{b}$ Open system, $37^{\circ} \mathrm{C}$, $\mathrm{p} K_{\mathrm{A} 1}=6.10$
CO_{2} continually eliminated, $p \mathrm{CO}_{2}$ in lung alveoli $\sim 5.3 \mathrm{kPa}$, acid component of bicarbonate buffer

Give the Henderson-Hasselbalch equation for the hydrogencarbonate buffer

$$
\mathrm{pH}=6.1+\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{0.23 \times \mathrm{pCO}_{2}}
$$

Q.

Express the changes in the bicarbonate buffer after adding H^{+}.

A.

protons are eliminated in the reaction with buffer base
$\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

Q.

Express the changes in the bicarbonate buffer after adding OH^{-}.

A.

hydroxide ions are eliminated in the reaction with buffer acid

$$
\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCO}_{3}^{-}
$$

Q. Calculate changes in buffer system after adding $2 \mathbf{m m o l} \mathbf{H}^{+}$into one liter

	Initial status	Closed system	Open system
$\left[\mathrm{HCO}_{3}{ }^{-}\right]$	$24 \mathrm{mmol} / \mathrm{l}$		
$\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]$	$1.2 \mathrm{mmol} / \mathrm{l}$		
pH	7.40		

	Initial status	Closed system	Open system
$\left[\mathrm{HCO}_{3}{ }^{-}\right]$	$24 \mathrm{mmol} / \mathrm{l}$	$\mathbf{2 2}$	
$\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]$	$1.2 \mathrm{mmol} / \mathrm{l}$	$\mathbf{3 . 2}$	
pH	7.40	$\mathbf{6 . 9 4}$	

$2 \mathrm{H}^{+}$react with buffer base $\Rightarrow 24-2=\mathbf{2 2} \mathbf{H C O}_{\mathbf{3}}{ }^{-}+2 \mathrm{CO}_{2}$ newly formed CO_{2} remain in the system $\Rightarrow 1.2+2=\mathbf{3 . 2} \mathbf{C O}_{2}$

	Initial status	Closed system	Open system
$\left[\mathrm{HCO}_{3}{ }^{-}\right]$	$24 \mathrm{mmol} / \mathrm{l}$	22	$\mathbf{2 2}$
$\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]$	$1.2 \mathrm{mmol} / \mathrm{l}$	3.2	$\mathbf{1 . 2}$
pH	7.40	6.94	$\mathbf{7 . 3 6}$

$2 \mathrm{H}^{+}$react with buffer base $\Rightarrow 24-2=\mathbf{2 2} \mathbf{H C O}_{\mathbf{3}}{ }^{-}+2 \mathrm{CO}_{2}$ newly formed CO_{2} is eliminated by lungs $\Rightarrow 3.2-2=\mathbf{1 . 2} \mathbf{C O}_{\mathbf{2}}$

Calculate the ratio of $\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ at physiological pH .

$$
\begin{aligned}
& \text { A. } \\
& 7.40=6.1+\log x \\
& \log x=1.3 \\
& x=10^{1.3}=20=20: 1=\left[\mathrm{HCO}_{3}^{-}\right]:\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]
\end{aligned}
$$

Q.

Is the bicarbonate buffer more resistant to acids or bases?

A.

- see previous problem
- $\left[\mathrm{HCO}_{3}^{-}\right]:\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]=20: 1$
- the concentration of buffer base is $20 \times$ higher
than the concentration of buffer acid
- conclusion: bicarbonate buffer is $20 \times$ more resistant to acids

Hydrogenphosphate buffer

- buffer base: $\mathrm{HPO}_{4}{ }^{2-}$
- buffer acid: $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
- occurs mainly in ICF, bones, urine

Q.

What is the ratio of plasma phosphates at physiological pH ?

A.

$$
7.40=6.80+\log x
$$

$\log \mathrm{x}=0.6$
$\mathrm{x}=10^{0.6}=4 \Rightarrow\left[\mathrm{HPO}_{4}{ }^{2-}\right]:\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=4: 1$

Hemoglobin buffer

- hemoglobin (Hb) contains a lot of histidine

Buffering function of $\mathbf{H b}$ is performed by side chain of histidine

imidazolium
$\mathrm{p} K_{\mathrm{A}}$ (His) $=14-8=6$
$\mathrm{p} K_{\mathrm{A}}($ His in proteins $)=6-8$

The next seminar May 15

- Chapter 21, II. part -

