Acid Base Balance II

Seminar No. 10

- Chapter 21, II. part -

Three ways of CO₂ transport in blood (scheme, p. 121)

1. cca 85 % in the form of HCO_3^-

it is formed in ery by the action of carbonic anhydrase, then is

transported to plasma, exchange for chloride is needed to

maintain <u>electroneutrality</u> in ery

- 2. cca 10 % in the form of unstable carbamates
- 3. cca 5 % of physically dissolved CO_2

How is CO₂ formed in tissues?

The production of CO₂ in tissues

- CO₂ is produced in **<u>decarboxylation</u>** reactions
- oxidative decarboxylation of pyruvate \rightarrow acetyl-CoA
- two decarboxylations in CAC (isocitrate, 2-oxoglutarate)
- decarboxylation of aminoacids \rightarrow biogenous amines
- non-enzymatic decarboxylation of acetoacetate \rightarrow aceton
- catabolism of pyrimidine bases

(cytosine, uracil $\rightarrow CO_2 + NH_3 + \beta$ -alanine)

• catabolism of glycine $\rightarrow CO_2 + NH_3 + methylen-THF$

Write the reaction of carbamate formation.

- the nitrogen atom of N-terminal adds to carbon atom of CO₂
- released proton is buffered by the protein itself
- \bullet in lungs, carba mates are non-enzymatically hydrolyzed and CO_2 is exhaled

Kidney functions in acid-base balance

• kidneys excrete acid species:

ammonium cation NH_4^+ dihydrogenphosphate anion $H_2PO_4^-$ (uric acid and some other ...)

• kidneys resorb basic species:

the main buffer base = hydrogenearbonate anion HCO_3^-

How is NH_4^+ formed in the kidney?

Glutamine deamination in tubular cells occurs stepwise

What is pH range of urine?

What are the three main acid species in urine?

Acid	Туре	р <i>К</i> _А	Daily excretion
NH ₄ ⁺	cation	9.25	$\sim 50 \text{ mmol/d}$
H ₂ PO ₄ -	anion	6.80	$\sim 30 \text{ mmol/d}$
Uric acid	neutral	5.40	$\sim 2 \text{ mmol/d}$

What is the ratio of $HPO_4^{2-} / H_2PO_4^{-}$ in urine with pH = 4.8?

A. Calculation from H.-H. equation

$$4.8 = 6.8 + \log x$$

$$\log x = -2$$

$$x = 10^{-2} = 0.01 \implies [HPO_4^{2-}] : [H_2PO_4^{--}] = 1 : 100$$

under normal conditions (in mild acidic urine) the essentially prevailing species is dihydrogenphosphate

What is the consequence of the reversed ratio? $HPO_4^{2-} / H_2PO_4^{--} > 1$

formation of urine concrements

calcium hydrogenphosphate CaHPO₄ is *insoluble*

Liver functions maintaining acid base balance

two ways of ammonia detoxication occur in liver:

- synthesis of urea \Rightarrow proton-productive process
- synthesis of glutamine \Rightarrow proton-neutral process

Liver functions maintaining acid base balance

- in acidosis, liver preferably makes glutamine instead of urea
- glutamine is transported by blood to kidneys, where it is hydrolyzed (glutaminase) NH_4^+ cation is released into urine
- glutamate can be further deaminated and NH_4^+ cation is again released into urine

Parameters of acid base balance

Measured in arterial blood

- $pH = 7.40 \pm 0.04 = 7.36 7.44$
- $pCO_2 = 4.8 5.8 \text{ kPa}$
- supporting data: pO₂, tHb, sO₂, HbO₂, COHb, MetHb

Calculated

- $[HCO_3^-] = 24 \pm 3 \text{ mmol/l} \text{ (from H.-H. eq.)}$
- $BE = 0 \pm 3 \text{ mmol/l}$ (from S.-A. nomogram, see physilogy)
- $NBB_p = 42 \pm 3 \text{ mmol/l}$
- $NBB_b = 48 \pm 3 \text{ mmol/l}$

Which buffer bases are in the plasma?

Buffer bases in (arterial) plasma

Compare NBB_p with NBB_b and explain the difference.

 $NBB_{p} = 42 \pm 3 \text{ mmol/l}$ $NBB_{b} = 48 \pm 3 \text{ mmol/l}$

hemoglobin in erythrocytes

increases NBB_b by 6-8 mmol/l

Four types of acid-base disorders

$$pH = 6.1 + log \frac{[HCO_3^-]}{0.23 \times pCO_2}$$

Changes in [HCO₃⁻]

 \downarrow metabolic acidosis

↑ metabolic alkalosis

Changes in pCO₂

 \downarrow respiratory alkalosis

↑ respiratory acidosis

Maintanance of constant pH in body

System / Organ	What is altered?	How quickly?
Buffers in ECF/ICF	pН	sec / min
Lungs	pCO ₂	hours
Liver	way of NH ₃ detoxication	days
Kidney	$NH_4^+/H_2PO_4^-$ excretion HCO ₃ ⁻ resorption	days
		30

Causes of metabolic acidosis

- Hypoxia of tissues insufficient supply of $O_2 \Rightarrow$ anaerobic glycolysis: glucose $\rightarrow 2$ lactate
- elevated AG lactoacidosis
- Starvation, diabetes
- TAG \rightarrow FA (β -oxidation in liver) \rightarrow acetyl-CoA (excess, over the capacity of CAC) \Rightarrow KB production
- elevated AG ketoacidosis

Explain why chronic alcoholism leads to lactoacidosis.

Explain why methanol intoxication leads to metabolic acidosis.

Metabolic oxidation of methanol provides a rather strong formic acid

Consequences:

- formate in plasma \Rightarrow elevated AG \Rightarrow acidosis
- excess of NADH \Rightarrow lactoacidosis

 K_A (formic ac.) : K_A (acetic ac.) = 10 : 1 formic acid is 10 × stronger than acetic ac.

Explain why ethylene glycol poisoning leads to metabolic acidosis.

Intoxication by ethylene glycol $HO-CH_2-CH_2-OH \longrightarrow \bigoplus_{HO} - \overset{\circ}{\leftarrow} \overset{\circ}{\leftarrow}$

Consequences:

- oxalic acid is rather strong acid ($pK_{A1} = 1.25, pK_{A2} = 4.29$)
- oxalate in plasma \Rightarrow elevated AG \Rightarrow acidosis
- excess of NADH \Rightarrow lactoacidosis
- in urine \Rightarrow calcium oxalate concrements

Excessive infusions of isotonic solution lead to metabolic acidosis. Explain.

Excessive infusions of NaCl isotonic solution lead to metabolic acidosis

Blood plasma (mmol/l)			Isotonic solution (mmol/	
Na ⁺	Cl-		Na ⁺	C1 ⁻
133-150	97-108		154	154
		ł		Î

Isotonic solution of NaCl has elevated concentration of Cl⁻ compared to plasma

Blood plasma is diluted by infusion solution \Rightarrow [HCO₃⁻] decreases

pCO₂ in alveolar air is the same

the ratio $[A^-] / [HA]$ in H.-H. equation decreases \Rightarrow pH < 7.40 (acidosis)

Explain lactoacidosis in thiamine deficit.

- thiamine is the cofactor of aerobic decarboxylation of pyruvate
- thiamine deficit \Rightarrow pyruvate cannot be converted to acetyl-CoA
- therefore pyruvate is hydrogenated to lactate
- even in aerobic conditions: glucose \rightarrow lactate
- increased plasma lactate \Rightarrow elevated AG \Rightarrow lactoacidosis

In chronic acidosis Ca²⁺ ions are released from bones and plasma proteins and pass into urine. Explain.

- calcium cations make electrostatic interactions with carboxylate anions in side chains of glutamate and aspartate (in various proteins)
- increased [H⁺] (= decreased pH) of plasma leads to a partial cation exchange
- one calcium ion is liberated and replaced by two protons

Metabolic acidosis

Parameter	Physiol. st.	Ac. change	Compensation	Correction
[HCO ₃ -]	24 mmol/l	\rightarrow		\rightarrow N
pCO ₂	5.3 kPa	Ν	\rightarrow	
[A ⁻]/[HA]	20:1	< 20:1		
рН	7.40 ± 0.04	< 7.36		
		System	lungs	kidney
		Process	hyperventilation	HCO_3^- resorption $NH_4^+ / H_2PO_4^-$ excr.

Causes of metabolic alkalosis

- **Repeated vomiting** the loss of chloride (Cl⁻) anion ⇒ hypochloremic alkalosis
- **Direct administration of buffer base HCO₃**per os: baking soda, some mineral waters intravenous infusions of sodium bicarbonate

• Hypoalbuminemia

severe malnutrition liver damage, kidney damage

What is baking soda?

NaHCO₃

sodium hydrogencarbonate (sodium bicarbonate)

sold in pharmacy

How is SID changed in alkalosis?

SID corresponds to buffer bases of plasma

What is the acid-base status of a patient if: $pCO_2 = 5.5 \text{ kPa}$ $[HCO_3^-] = 39 \text{ mmol/l}$ pH = 7.6

Which parameter will be changed after compensation?

$pCO_2 = 5.5 \text{ kPa} \dots \text{OK}$ [HCO₃-] = 39 mmol/1 \ldots f elevated $pH = 7.6 \dots \text{f elevated}$

status: metabolic alkalosis

pCO₂ will increase during compensation (hypoventilation)

What is the effect of the following infusions (alkalizing / acidifying) ?

- NaCl
- KHCO₃
- NH_4Cl
- NaHCO₃
- sodium lactate

Solution	Effect	Explanation	
NaCl	acid.	plasma dilution \Rightarrow [HCO ₃ ⁻] \downarrow while pCO ₂ is constant	
KHCO ₃	alkal.	direct addition of the main buffer base	
NH ₄ Cl	acid.	NH_4^+ excreted by urine, Cl ⁻ remains in plasma ⇒ [HCO ₃ ⁻] ↓	
NaHCO ₃	alkal.	direct addition of the main buffer base	
Na lactate	alkal.	lactate anion goes from plasma to liver (gluconeogenesis), Na ⁺ remains in plasma \Rightarrow its pos. charge is balanced by extra HCO ₃ ⁻ (similar effect like in vegetarian diet)*	

Metabolic alkalosis

Parameter	Physiol. st.	Ac. change	Compensation	Correction
[HCO ₃ -]	24 mmol/l	1		\rightarrow N
pCO ₂	5.3 kPa	Ν	↑	
[A ⁻]/[HA]	20:1	> 20:1		
рН	7.40 ± 0.04	> 7.44		
		System	lungs	kidney
		Process	hypoventilation	HCO_3^- excretion