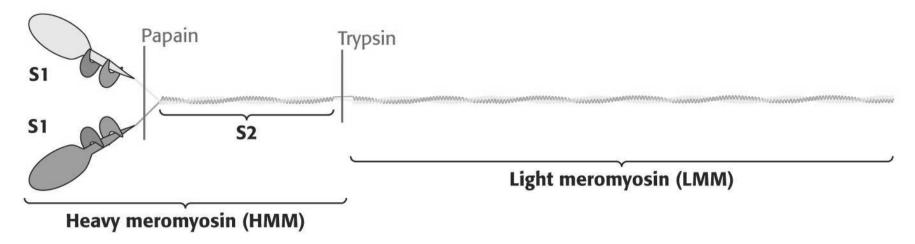

Muscles

Skeletal ~ Cardiac ~ Smooth

Seminar No. 12


- Chapter 19 -

Thick filament is the myosin aggregate of cca 350 monomers

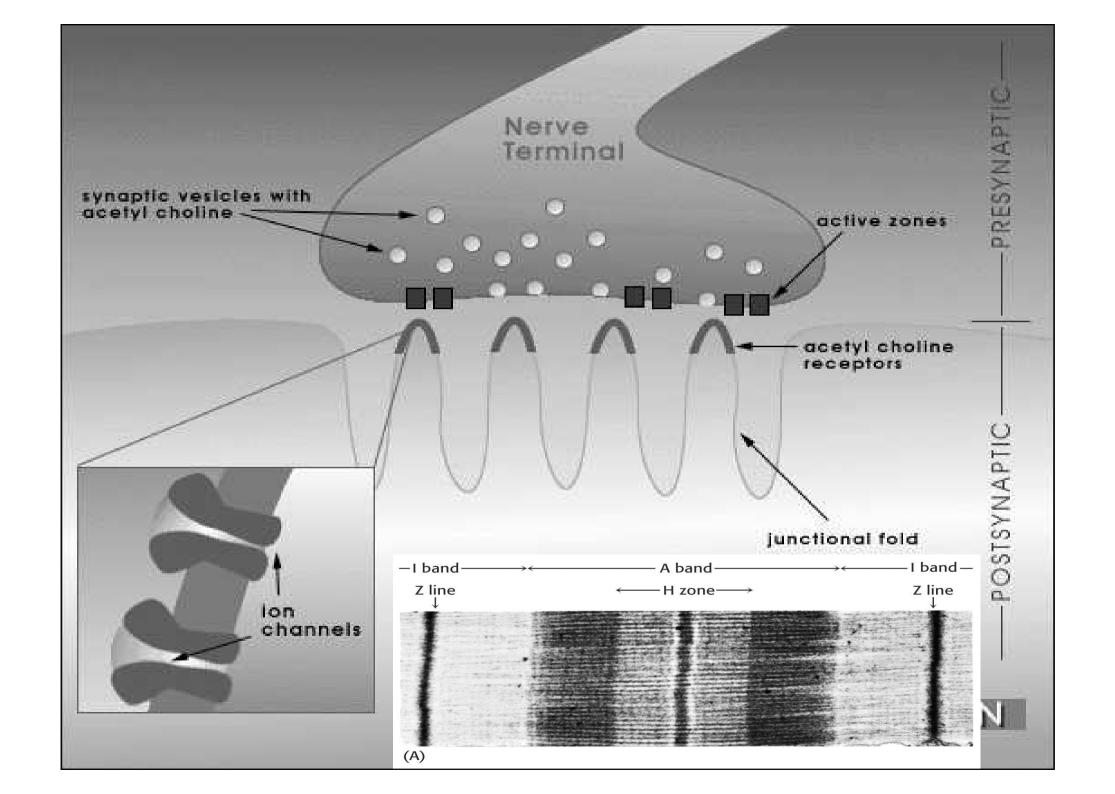
Myosin monomer

- two heavy chains (they make a double helix)
- four light chains (MLC myosin light chains)
- N-terminal of a heavy chain forms a globular head with ATPase activity (ATP + $H_2O \rightarrow ADP + P_i$)
- treatment of myosin with proteases affords stable fragments (for research purposes).

Thin filament – Actin

- globular monomer (G-actin) makes a double helix (F-actin)
- F-actin has other accessory proteins attached:
- tropomyosin (double helix)
- troponin C binds calcium ions
- troponin I inhibits interaction actin-myosin
- troponin T binds to tropomyosin and other troponins

Which signal molecule triggers the contraction of skeletal muscles?


A.

acetylcholine

(see Harper, Chapter 64)

Events on neuromuscular junctions

- junction consists from nerve terminal separated from postsynaptic region by the synaptic cleft
- acetylcholine is released from synaptic vesicles and binds to nicotinic receptors in muscle cell membrane ⇒ depolarization of membrane and T-tubules
- T-tubules are connected with sarcoplastic reticulum (SR) \Rightarrow Ca²⁺ ions are released from SR (where are associated with calsequestrin protein)
- calcium ions then bind to troponin $C \Rightarrow$ contraction

What is the Ca^{2+} concentration?

- a) in ICF sarcoplasm during resting state
- b) in ICF sarcoplasm during contraction
- c) in ECF blood plasma

The concentration of calcium ions in body fluids

Fluid / Condition	mol/l	μmol/l
Sarcoplasm / resting	10-8	0.01
Sarcoplasm / contraction	10-5	10
Blood plasma	2.5×10^{-3}	2 500*

^{* 2.5} mmol/l

Skeletal muscle: relaxation/contraction cycle

- **Relaxation** (scheme on p. 109)
- troponin I inhibits actin-myosin interaction
- ATP molecule (attached to myosin head) has been hydrolyzed

 ⇒ chemical energy is conserved in myosin head conformation
- concentration of calcium ions in sarcoplasm is extremely low (10-8 M)

Skeletal muscle: relaxation/contraction cycle

- after release of Ca^{2+} from $SR \Rightarrow myosin-ADP-P_i$ complex binds to actin
- ADP and P_i are liberated from myosin head, actin filament is pulled by cca 10 nm towards to sarcomere centre ⇒
 chemical energy is transformed to mechanical work
- new ATP molecule binds to myosin head ⇒ dissociation of actin-myosin complex
- the liberation of Ca²⁺ ions from troponin C and hydrolysis of ATP leads to relaxation

What is the effect of botulinum toxin on the neuromuscular junction?

A. (see scheme on p. 135)

- Botulinum toxin is produced by bacterium *Clostridium* botulinum. The toxin is a two-chain polypeptide with a heavy chain joined by a disulphide bond to a light chain.
- The light chain is a protease that attacks one of the fusion proteins at a neuromuscular junction, preventing vesicles from anchoring to the membrane to release acetylcholine.
 - By <u>inhibiting acetylcholine release</u>, the toxin interferes with nerve impulses and causes <u>paralysis of muscles</u> (botulism).
- no action potential is generated \Rightarrow permanent relaxation

Medical uses of botulinum toxin

- Currently, Botox (= trade name) is finding enormous potential in several therapeutic areas including the treatment of migraine headaches, **cervical dystonia** (a neuromuscular disorder involving the head and neck), blepharospasm (involuntary contraction of the eye muscles), and severe primary axillary hyperhidrosis (excessive sweating).
- Other uses of botulinum toxin include urinary incontinence, anal fissure, **spastic disorders** associated with injury or disease of the central nervous system including trauma, stroke, multiple sclerosis, or cerebral palsy and focal dystonias affecting the limbs, face, jaw etc.

Botulinum toxin injections are applied in cosmetics to vanish facial wrinklers

What are ATP sources for maximal work:

- a) during the first 10 sec
- b) after 1 min
- c) after 10 min

ATP sources for muscle contraction

see page 95

- **During the first 10 sec** ATP itself and creatine phosphate present in muscle cell
- After 1 min mainly anaerobic glycolysis glucose → 2 lactate + 2 ATP
- After 10 min aerobic oxidation of glc + FA
 glucose → 2 pyruvate → 2 acetyl-CoA → 38 ATP
 stearic acid → 9 acetyl-CoA → 146 ATP

Skeletal muscles contain red (slow) and white (fast) fibers

Feature	Red fibers	White fibers	
Colour	red	white	
Myoglobin	yes	no	
Mitochondria	many	few	
Contraction rate	slow	fast	
Duration	prolonged	short	
ATP source	?	?	

Skeletal muscles contain red (slow) and white (fast) fibers

Feature	Red fibers	White fibers	
Colour	red	white	
Myoglobin	yes	no	
Mitochondria	many	few	
Contraction rate	slow	fast	
Duration	prolonged	short	
ATP source	FA, Glc/aerob	Glc/anaerob	

Maximal intesity of muscle work (scheme on p. 94)

- anaerobic phase
- 30 sec 2 min
- working muscles use glucose \Rightarrow metabolized to lactate
- lactate goes to liver \Rightarrow substrate of gluconeogenesis
- small portion of lactate becomes metabolic fuel for resting muscles and myocard

Prolonged muscle work/exercise (scheme, p. 94)

- working muscles are adapted to aerobic metabolism of glucose and FA
- resting muscles utilize FA and KB
- glycerol from lipolysis is the substrate for liver gluconeogenesis

What is the yield of ATP during:

- a) aerobic glycolysis
- b) anaerobic glycolysis

A.

Type of glycolysis	ATP / Glc
Aerobic	36 – 38*
Anaerobic	2

^{*} Depends on the type of transport of cytosolic NADH to mitochondria.

Explain the cause of rigor mortis.

A.

Rigor mortis is a recognizable sign of death (L. *mors*, *mortis*, *f*.) that is caused by a chemical change in the muscles, causing the limbs of the corpse to become stiff (L. *rigor*, *oris*, *m*.) and difficult to move or manipulate.

Assuming mild temperatures, rigor usually sets in about 3-4 hours after clinical death, with full rigor being in effect at about 12 hours.

ATP supply from metabolic reactions is exhausted, the muscles remain contracted for ever.

Cardiac muscles - Contraction

- three different sources of Ca²⁺: ECF, SR, mitochondria
- extracellular calcium enters muscle cells via VOC (voltage operated channels)

$$\longrightarrow$$
 troponin C \Rightarrow contraction

• Ca²⁺ bind to:

calmodulin
$$\Rightarrow$$
 autoregul. - relaxation

Cardiac muscles - Relaxation

- Ca²⁺ ions are liberated from troponin C and removed from sarcoplasm
- there are **four systems** how to vanish Ca²⁺ in sarcoplasm
- 1. Ca^{2+} -ATPase in SR
- 2. Ca²⁺-ATPase in sarcolemma
- 3. Na⁺/Ca²⁺-exchanger (antiport) in sarcolemma
- 4. Ca²⁺ re-entry to mitochondria

Autoregulation in cardiac muscle

- see scheme on page 110
- intracellular calcium is in the complex with protein calmodulin: Ca²⁺-CM
- Ca²⁺-CM stimulates <u>all</u> Ca²⁺-pumps which decrease [Ca²⁺] in sarcoplasm
- the increase of intracellular [Ca²⁺] triggers contraction but, at the same time, stimulates relaxation processes

Modulatory effect of cAMP on cardiac muscles

- cAMP is the second messenger produced after the activation of G_s-protein-linked-receptors (β-adrenergic receptors)
- such receptors are activated by catecholamines nor/adrenaline
- cAMP activates protein kinase A
- protein kinase A catalyzes the phosphorylation of: calciductin of VOC \Rightarrow influx of $Ca^{2+} \Rightarrow$ contraction Ca^{2+} -ATPase in sarcolemma \Rightarrow eflux of $Ca^{2+} \Rightarrow$ relaxation Ca^{2+} -ATPase in $SR \Rightarrow$ eflux of $Ca^{2+} \Rightarrow$ relaxation

cAMP as the second messenger (compare p. 136)

Feature	Adrenergic Receptors			
reature	α_1	α_2	β_1	$oldsymbol{eta_2}$
Hormone	adrenaline	adrenaline	adrenaline	adrenaline
G-protein	G_p	G_{i}	G_{s}	G_{s}
2 nd messenger	DG, IP ₃	cAMP ↓	cAMP↑	сАМР ↑
Occurence*	smooth muscle	brain	myocard	smooth m.

^{*} Example of occurence

Which parameters are used as the best markers of myocardial infarction (MI)?

Markers of MI (updated table from p. 25)

Marker	Onset (hours)	Maximum (hours)	Multiple of elevation
CK-MB	3 - 6	16 - 32	up 30
cTnT	3 - 4	12 - 18	up 300
Myoglobin*	0.5 - 3	6 - 12	up 10

^{*} The most sensitive indicator, but not specific for myocard.

Metabolic background of MI

- ischemia (lack of oxygen in tissues) leads to anaerobic metabolism
 ⇒ Glc is converted to lactate
- lactate accumulates in ICF and alters intracellular environment ⇒ prolonged acidosis causes irreversible cell damage (necrosis)
- permeability of cell membrane increases ⇒
 cytoplasmatic/mitochondrial/contractile proteins are released into
 ECF
- the best markers of MI are: myoglobin, CK-MB, cardial troponins (T or I) a triple combination is recommended
- LD isoforms are no longer used

Creatine kinase (CK) – see p. 23

- Dimer, two different chains (M muscle, B brain)
- Three isoenzymes: MM (muscle), MB (heart), BB (brain)
- Major isoenzyme in blood is MM (95 %)
- MB form in blood: 0-6%
- BB in blood: traces (BB cannot pass across blood-brain barrier)
- MB isoenzyme is a marker of myocardial infarction

Smooth muscles - Contraction

- source of Ca²⁺: ECF (VOC, ROC), SR
- there is no troponine C, but two other regulatory proteins binding calcium calmodulin + caldesmon
- calcium-calmodulin complex (Ca²⁺-CM) activates MLCK (myosin light chain kinase)
- activated MLCK catalyzes the phosphorylation of myosin
- phosphorylated myosin is capable to make complex with
 actin ⇒ contraction

Smooth muscles - Relaxation

• MLC-phosphatase catalyzes the hydrolysis of phosphorylated myosin:

$$MLC-P + H_2O \rightarrow P_i + MLC$$

• MLC <u>does not</u> bind to actin \Rightarrow relaxation

The influence of cAMP on smooth muscles

- cAMP activates protein kinase A (PK-A)
- PK-A phosphorylates MLC-kinase:

 $MLCK \rightarrow MLCK-P$

• MLCK-P is inactive, does not phosphorylates MLC \Rightarrow no interaction between actin and myosin \Rightarrow **relaxation**

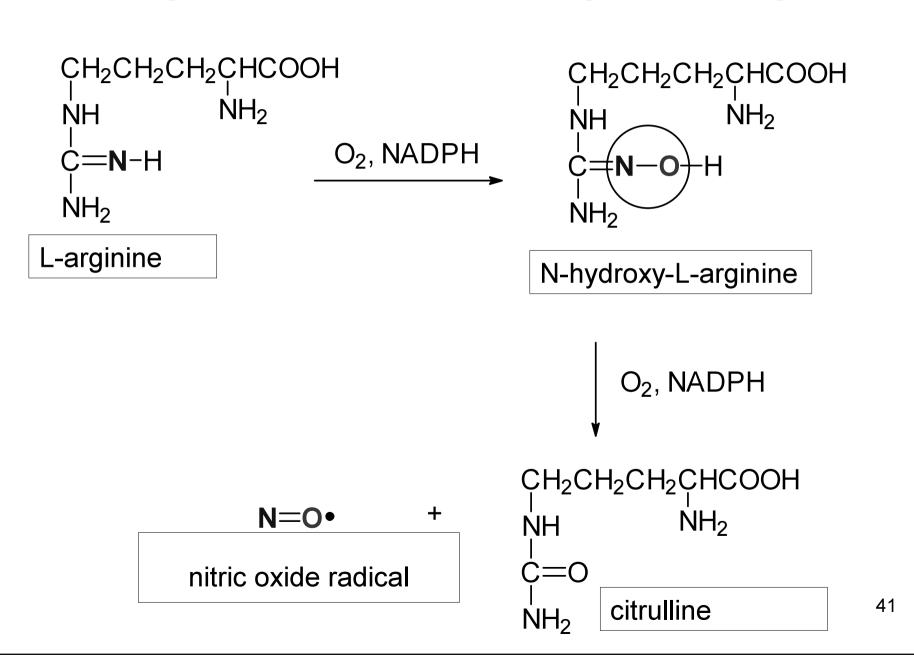
The influence of NO on smooth muscles

- nitric oxide (NO) is a relaxant of smooth muscles
 (e.g. arterial myocytes)
- activates guanylate cyclase in cytosol: GTP \rightarrow cGMP + PP_i
- cGMP activates protein kinase G (PK-G)
- PK-G phosphorylates MLC-kinase: MLCK → MLCK-P
- MLCK-P is inactive, does not phosphorylate MLC \Rightarrow no interaction between actin and myosin \Rightarrow relaxation

NO releasing compounds

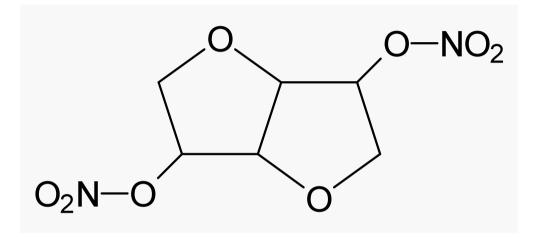
• Endogenous:

L-arginine (the imino nitrogen of guanidine part)


• Exogenous:

organic nitrates = esters of nitric acid (R-O-NO₂)

organic nitrites = esters of nitrous acid (R-O-N=O)


sodium nitroprusside = a complex of Fe³⁺ with CN⁻ and NO

NO originates from imino nitrogen of L-arginine

Organic nitrates (alkyl nitrates)

glycerol trinitrate (glyceroli trinitras)

isosorbide dinitrate (isosorbidi dinitras)

In myocytes, they are reduced by glutathion and subsequently release NO - vasodilators

Organic nitrites (alkyl nitrites)

$$H_3C$$

 $CH-CH_2-CH_2-O-N=O$
 H_3C

isoamyl nitrite (amylis nitris)

$$H_3C$$

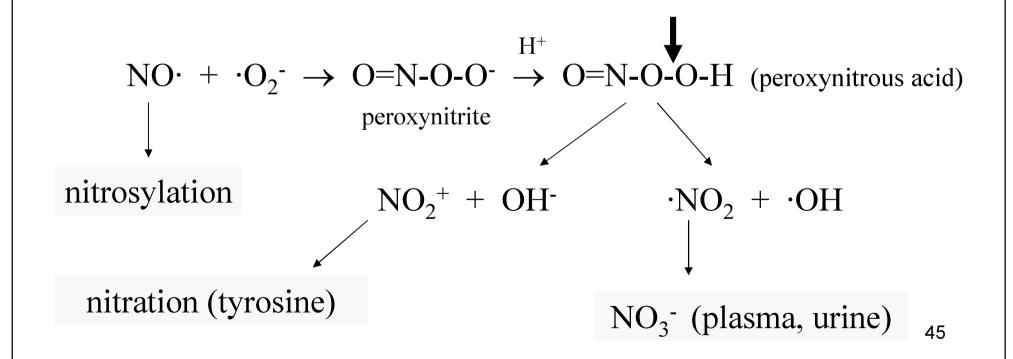
CH-CH₂-O-N=O
 H_3C

isobutyl nitrite volatile liquid, new drug (poppers, rush, liquid aroma ...)

Alkyl nitrites as well as inorganic nitrites (NaNO₂) have oxidation properties \Rightarrow oxidize Fe²⁺ in hemoglobin to Fe³⁺ \Rightarrow they cause **methemoglobinemia**

Other NO releasing compounds

 $Na_2[Fe(CN)_5NO]$


sodium nitroprusside (natrii nitroprussias)

sodium pentacyanonitrosylferrate(III)

extremely potent vasodilator

Other metabolic pathways of NO

- nitric oxide is a radical ($\cdot N=O$)
- reacts with superoxide to yield peroxynitrite
- the cleavage of peroxy bond (O-O) can occur in two ways

Q.

What effect on **smooth muscle** contractility is caused

by a signal molecule acting through:

 α_1 -adrenergic receptors

 α_2 -adrenergic receptors

β-adrenergic receptors

A.

Effects on **smooth muscle** contractility through:

 α_1 -adrenergic receptors \Rightarrow contraction

 α_2 -adrenergic receptors \Rightarrow contraction

 β -adrenergic receptors \Rightarrow relaxation

Actions mediated through adrenergic receptors (Harper, Ch. 49)

Feature	Adrenergic Receptors			
	α_1	α_2	β_1	$oldsymbol{eta_2}$
Hormone	adrenaline	adrenaline	adrenaline	adrenaline
G-protein	G_p	G_{i}	G_{s}	G_{s}
2 nd messenger	$DG/IP_3/Ca^{2+}$	cAMP ↓	cAMP ↑	сАМР ↑
Muscle action	contraction	contraction	↑ contractility	relaxation
Muscle type	smooth	smooth	myocard	smooth