# Lipoproteins

Seminar No. 3

## A.1 - Lipids of Blood Plasma

| Lipid                  | Plasma concentration |  |  |
|------------------------|----------------------|--|--|
| Cholesterol (C+CE)*    | 3-5 mmol/l           |  |  |
| Phospholipids          | ~ 3 mmol/l           |  |  |
| Triacylglycerols       | ~ 1.5 mmol/l         |  |  |
| Free fatty acids (FFA) | ~ 0.5 mmol/l         |  |  |

\* C = free cholesterol, CE = cholesteryl-esters



#### A.2 - FFA transport

- **FFA are non-polar species**, insoluble in water
- they always need transport systems
- In blood plasma bound to albumin
- In cytoplasm Z protein
- Across cell membrane protein transporter, cotransport with Na<sup>+</sup>
- Across mitochondrial membrane ester with carnitine





#### FFA come predominantly from adipose tissues



### **A.4**

a) Fasting state – action of glucagon – FFA are released from adipose tissues – 0.8 mmol/l

b) Postprandial state – 0.4 mmol/l

### **Q.5**

# A.5 - Lipoprotein particle

• Polar surface monolayer

contact with polar aqueous environment

• Non-polar core

completely separated from aqueous environment

### **Components of Surface Layer**



### **Components of Surface Layer**



### Non-polar core of lipoprotein



### Non-polar core of lipoprotein





#### Draw formula of cholesterol Describe the structure

### **Structure of cholesterol**



27 carbon atoms

1 hydroxyl (C3)

1 double bond (C5)

Chemical name: cholest-5-en-3β-ol

### **Draw formula of lecithin**



phosphatidylcholine (lecithine)

### Draw formula of triacylglycerol



Q.9 + Q.12

#### A.9,12 - Lipoproteins: Density vs. Composition

| Class | Density (g/ml) | Proteins (%) | TAG (%) |
|-------|----------------|--------------|---------|
| СМ    | 0.90           | 2            | 84      |
| VLDL  | 0.95           | 9            | 54      |
| LDL   | 1.05           | 21           | 11      |
| HDL*  | 1.20           | 7 50         | 4       |

\* 
$$HDL_2 < HDL_3$$

# **Q. 10**

### **A. 10**

#### CM contain predominantly TAG =<u>neutral</u> molecules

(without charge)  $\Rightarrow$  they do not move in electric field

# **Q.** 11

#### A.11 - The Composition of Lipoproteins

Features to remember

| Lipoprotein  | Principal component            |
|--------------|--------------------------------|
| Chylomicrons | ~85 % TAG                      |
| VLDL         | ~ 50 % TAG                     |
| LDL          | ~ 50 % cholesterol (mainly CE) |
| HDL          | ~ 50 % proteins                |

### Apoproteins

Complete the table

# Functions of apoproteins the completion of the table

- A-I LCAT activator
- B-100 structure of VLDL, ligand for LDL receptor
- B-48 structure of CM
- C-II LPL activator

### **Transport functions of lipoproteins**

| Class | Origin     | Transport                                    |
|-------|------------|----------------------------------------------|
| СМ    | enterocyte | exogenous TAG from GIT to peripheral tissues |
| VLDL  | liver      | endogenous TAG from liver to periph. tissues |
| LDL   | plasma     | cholesteryl esters to peripheral tissues     |
| HDL   | liver      | free cholesterol from tissues to liver       |

# **Q.14**



Liver receptors have greater affinity to IDL

to remove them from circulation because of apo E receptors

# **Q.15**



#### LDL because:

- Long half-life (2-4 days) !!
- They are **<u>stationary</u>** (no remodelling in contrast to HDL)
- Contain a big portion of CE with PUFA

### **Enzymes in lipoprotein metabolism**

| Enzyme | Substrates             | Reaction       | Location    |
|--------|------------------------|----------------|-------------|
| LPL    | TAG of CM, VLDL        | hydrolysis     | capillaries |
| HL     | TAG of IDL, HDL        | hydrolysis     | liver       |
| LCAT   | cholesterol + lecithin | esterification | HDL         |

- LPL = lipoprotein lipase
- HL = hepatic lipase

LCAT = lecithin cholesterol acyltransferase

#### **Q.17**

Write the equation of reaction catalyzed by LPL


• Elevated CM and VLDL in serum – chylous serum

How can you detect chylomicrons in serum sample?

# Q. 17 Write the equation of reaction catalyzed by LCAT (lecithin cholesterol <u>acyl</u>transferase)

#### What is acyl?





С

а

#### **LCAT reaction**

#### cholesterol + lecithin $\rightarrow$



#### **Metabolism of chymomicrons (CM)**

- CM are produced in enterocytes, apo B-48
- They carry dietary TAG and CE to periph. tissues
- In plasma, CM receive apo E and apo C-II from HDL
- Apo C-II activates lipoprotein lipase (LPL)
- LPL is attached to capillary surface in adipose, cardiac and muscle tissues
- TAG are hydrolysed, apo C-II is returned to HDL
- CM particles begin to shrink remnants
- Remnants bind to apo E receptors in liver, where they are hydrolytically degraded in lysosomes

#### What is the result of deficient synthesis of apo B-48?

No CM will be produced, dietary fat remains in stool (steatorrhoea)

**Lipophilic vitamins** and **essential FA** will be deficient.



| Feature        | LPL                | HSL                  |
|----------------|--------------------|----------------------|
| Substrate      | TAG in circulation | TAG in stores        |
| TAG stores are | increased          | decreased            |
| Stimulated by  | insulin (inducer)  | glucagon + adrenalin |

#### **Metabolism of VLDL**

- VLDL are made in liver, they transport endogenous TAG to periph. tissues
- In plasma they take apo C-II from HDL (LPL activ.)
- TAG are removed by LPL action VLDL become smaller and more densed = IDL
- IDL take some CE from circulating HDL
- IDL are transformed into LDL by hepatic lipase



#### Food rich in lipids (fat) and saccharides (sugars)

#### **Three pathways of LDL**

- 1. LDL provide cholesterol to peripheral tissues via LDL receptors
- 2. The rest of LDL is taken up by liver and degraded
- 3. Small amount of LDL (chemically modified by oxidative stress)

enters to some cells (endothelial) by non-specific endocytosis

and alters them to "foam cells"

- Apo B-100 is structural protein of VLDL
- If absent, VLDL cannot be made in liver
- TAG remain and accumulate in liver
- Liver steatosis

#### A. 30 Metabolism of HDL

- HDL particles are made in liver
- Nascent HDL are <u>disc-shaped</u> (bilayer of PL + proteins)
- HDL take free cholesterol (C) from cell membranes
- Once C is taken up, it is esterified by LCAT
- After this process HDL becomes spherical
- Spherical HDL are taken up by liver and CE are degraded

- Apo A-I
- ABC transporter A1
- LCAT
- CETP
- SR-B1
- HL

- LCAT
- Made in liver
- Acts on HDL
- Activated by apo A-I



- During digestion:
   Pancreatic lipase, LPL
- In fasting: HSL

#### **Cellular uptake of LDL**

- LDL receptors are in clathrin-coated pits
- After binding, LDL+receptor are internalized by endocytosis
- Vesicle loses its clathrin coat and becomes endosome
- Receptor is removed and recycled
- LDL is hydrolyzed after fusing with lysosome
- Free cholesterol is released to make **cholesterol pool**

#### **Intracellular cholesterol**

- Free cholesterol (C) is immediately esterified by ACAT\* to make intracellular storage
- Small amounf of C is incorporated into cell membrane
- Some C is converted into hormones (in some tissues)
- Some C is converted into bile acids (in liver)

Intracellular cholesterol regulates three processes

- Decreases activity of HMG-CoA reductase
   (= synthesis of cholesterol)
- Decreases synthesis of new LDL receptors
   (to block intake of LDL)
- 3. Enhances activity of ACAT (to make storage)

- They are not recognized by LDL receptors in tissues
- They are taken by scavenger receptors in macrophages and make foam cells
- The aggregation of foam cells atherogenic plaques



#### **The Balance of Cholesterol**

| Input into body      | g/day        | Output from body        | g/day        |
|----------------------|--------------|-------------------------|--------------|
| food                 | 0.5 g        | coprostanol (stool)     | 0.8 g        |
| biosynthesis in body | 1.0 g        | bile acids (stool)      | 0.5 g        |
|                      |              | sebum/desquamated cells | 0.2 g        |
| Total:               | <b>1.5 g</b> | Total:                  | <b>1.5</b> g |



# Which food is the main source of cholesterol?

only animal fats (including fish): lard, butter, bacon, egg yolk, mayonnaise, fat meat, fat cheese

plant oils and margarines are cholesterol free

# The next seminar you will write the revision test (15 Q) from

• Seminar chapters 1-3

Practical chapters 1-2