Glucose in blood. Diabetes mellitus

Seminar No. 4

What is glucose?

- the most common monosaccharide / aldohexose
- $C_6H_{12}O_6 (M_r \ 180)$
- synonyms: grape sugar, blood sugar, dextrose
- the most important sugar in the human body
- the source of chemical energy (17 kJ/g)
- metabolic nutrient for most tissues
- prominent fuel for the brain and RBC

A.1a) Free glucose in food is rare

Food	Glucose (%) ^a	
Glukopur ^b	100	
Raisins	50	
Honey ^c	30	
Grapes	6-10	
Other fresh fruits	1-5	

^{*a*} mass percentage, average values

- ^b pure crystalline glucose, Czech made, sold in pharmacy
- ^c about 30 % glucose, 40 % fructose, 10 % oligosaccharides, 20 % water

A.1 b) Glucose chemically bound

- Starch (polysaccharide from glucose: amylose + amylopectin) cereals, bread, rolls, pastry, cakes, biscuits, dumplings, rice, pasta, semolina, legumes, potatoes, banana ...
- **Sugar** (table sugar, **sucrose**, disaccharide: glucose + fructose) commercially available in 100% purity
- Lactose (disaccharide: galactose + glucose) milk

A. 2 Symport (co-transport) with Na⁺ ions

- transporter binds together Glc and Na⁺ (secondary active transport) see also Harper (27th ed., p. 436)
- Na⁺ ions move from high conc. space to low conc. space
- Glc is expelled from enterocyte *via* GLUT2 (facilitated diffusion)
- Na⁺ ions are expelled from cell *via* Na⁺,K⁺-ATPase pump

What is the metabolic fuel for enterocyte itself?

Q. 4 + 5

Lactate (60 %)

Alanine + other glucogenic AA (30 %)

Glycerol (10 %)

gluconeogenesis

occurs in liver

$$H_3C-CH-COO^{\ominus}$$

 NH_3^{\oplus}

A. 7 Cori cycle

A. 8

• Liver glycogen is degraded by phosphate (phosphorolysis)

• Phosphorylase – phosphoglucomutase – glc-6-phosphatase

Q.9+10

A. 9 + 10 (Harper, p. 173)

- Glucose is highly polar compound, does not pass freely across hydrophobic cell membranes
- Requires specific protein transporters
- $GLUT = \underline{glu}cose \underline{t}ransporter$

GLUT 1	most cells, brain, erythrocytes
GLUT 2	liver, pancreas, kidney
GLUT 3	brain, kidney
GLUT 4	muscle, adip. tissues – insulin dependent
GLUT 5	small intestine
SGLT 1	small intestine, kidney (Na ⁺ coupled active transport)

Insulin-independent transporters

- In most tissues (liver, CNS, Ery)
- Passive transport facilitated diffusion
- Transporter integral protein
- After binding Glc it changes conformation and releases glucose into ICF

Passive transport – no energy required

Insulin-dependent transporters

- In muscles, adipose tissue
- After binding Glc it changes conformation and releases glucose into ICF
- Free transporters are then transferred inside the cell by endocytosis
- Insulin stimulates their incorporation into cell membrane when necessary

Passive transport – no energy required

A. 12

- night fasting liver glycogen
- one-day fasting liver glycogen + gluconeogenesis
- three-day fasting gluconeogenesis

Five stages of glucose homeostasis

Feature	Ι	II	III	IV	V
Stage description	well-fed	post resorption	early starvation	prolonged starvation	extreme starvation
Time interval ^a	0-4 h	4-16 h	16-30 h	2-24 d	over 24 d
Origin of Glc in blood	food	liver glycogen gluconeogenesis	gluconeogenesis liver glycogen	gluconeogenesis	gluconeogenesis
Utilization of Glc	all tissues	all tissues ^b muscle, ad.t. limited	all tissues ^b muscle, ad.t. limited	brain, Ercs, kidney	Ercs, kidney, brain - limited
Energy for brain	Glc	Glc	Glc	Glc, ketone bodies	ketone bodies, Glc

^{*a*} Approximate values, time 0 = any main meal (e.g. lunch).

^b Except of liver.

Five stages of glucose homeostasis

- Stage I glucose comes from food (mainly starch)
- Stage II glycogenolysis in liver
- Stage III gluconeogenesis in liver starts to work
- Stage IV in addition to liver, kidney starts to make Glc
- Stage V liver and kidney gluconeogenesis diminishes, energy needs of most tissues are met by FA + KB

Hormonal regulation of Glc metabolism

• insulin, glucagon

• stress hormones: adrenalin, cortisol

Harper, 27th ed., Ch. 20, p. 170

A.17

a) glucose \downarrow

b) FFA \downarrow

Glucagon (fasting)

- Low blood glucose level is the signal for glucagon secretion
- Glucagon stimulates:
- breakdown of glycogen in liver (not in muscles)
- gluconeogenesis in liver (from lactate and AA)
- lipolysis in adip. tissues

Glucagon is **inducer** of key enzymes of gluconeogenesis

Insulin (after meal) stimulates

- in liver: glycolysis + synthesis of glycogen
- in adip. tissue: synthesis of TAG
- in muscles: synthesis of proteins

Insulin is generally anabolic hormone

Insulin is **inducer** of key enzymes of glycolysis and glycogenesis

A. 20

- Glc phosphorylation (hexokinase, glucokinase)
- Glc-1-P isomeration
- Fru-6-P isomeration

A. 21 Glycogenolysis

liver

- cca 4-6 % of liver mass
- Glycogenolysis affords
 free glucose for other
 tissues
- After about 18 h of fasting exhausted

<u>muscle</u>

- cca 1 % of muscle mass
- Glycogenolysis affords
 Glc-6-P for muscle only
- Storage lasts longer

A. 22

- Liver: glucagon, adrenalin
- Muscle: adrenalin

glycogen \rightarrow Glc-1-P \rightarrow Glc-6-P \rightarrow glucose in blood

A. 25

glucose-6-phosphatase

 $Glc-6-P + H_2O \rightarrow Glc + P_i$

occurs in liver, kidney, intestine but not in muscles

A. 26

- Glc is the source of **energy** (aerobic glycolysis)
- Glc is the source of **NADPH** +**H**⁺ for FA synthesis (pentose cycle)
- Glc is the source of **glycerol-3-P** for TAG synthesis

glycerol-3-P \rightarrow 1-acylglycerol-3-P \rightarrow 1,2-diacylglycerol-3-P \rightarrow

1,2-diacylglycerol \rightarrow TAG

Adrenaline – acute stress

- Signal that energy is needed immediately
- Very quick action
- Stimulates the breakdown of glycogen (in liver and muscles) and TAG (In adipos. tissue)

Cortisol – adaptation to stress

- Stimulates proteolysis in muscles
- Released AA are substrates for gluconeogenesis
- Inducer of key enzymes of gluconeogenesis

Metabolic Features of Diabetes (Type I)

metabolic processes occur under influence of glucagon

Process	Change	Consequence
Transport of glucose to muscle + ad.t.		
Glycolysis in liver		
Gluconeogenesis in liver		
Lipolysis in adipocytes		
β-Oxidation of FA in liver		
Capacity CAC, lack of oxaloacetate		
Production of ketone bodies		

A. 30

Process	Change	Consequence
Transport of glucose to muscle + ad.t.	Û	elevated blood glucose
Glycolysis in liver	Û	elevated blood glucose
Gluconeogenesis in liver	仓	elevated blood glucose
Lipolysis in adipocytes	仓	elevated blood fatty acids
β-Oxidation of FA in liver	仓	↑ production of acetyl-CoA
Capacity CAC, lack of oxaloacetate	Û	↑ amount of acetyl-CoA
Production of ketone bodies	仓	elevated blood KB, acidosis

Elevated: glucose FFA TG KB

A. 31 – elevated Glc

- The lack of insulin \Rightarrow few GLUT4 \Rightarrow Glc cannot enter adipose and muscle cells \Rightarrow elevated blood Glc
- The lack of insulin \Rightarrow decreased glycolysis in liver
- The excess of glucagon ⇒ glycogenolysis ⇒ elevated blood glucose
- The excess of glucagon \Rightarrow increased liver gluconeogenesis

A. 31 – elevated FFA

The excess of glucagon \Rightarrow lipolysis \Rightarrow elevated blood FFA (bound to albumin)

A. 31 – elevated TG

• The lack of insulin \Rightarrow not enough LPL (insulin is the

inducer of its synthesis) \Rightarrow elevated blood TG

(CM + VLDL)

A. 31 – elevated KB

- The excess of FA from lipolysis ⇒ excess of acetyl-CoA (over CAC capacity) ⇒ synthesis of KB ⇒ elevated blood KB
- Limited glycolysis in liver ⇒ not enough pyruvate
 ⇒ not enough oxaloacetate to run CAC ⇒ excess of acetyl-CoA (over CAC capacity) ⇒ synthesis of KB
 ⇒ elevated blood KB

A. 33

1. The lack of insulin \Rightarrow decreased glycolysis \Rightarrow the shortage of

pyruvate \Rightarrow the shortage of oxaloacetate

2. The excess of glucagon \Rightarrow increased utilization of

oxaloacetate for gluconeogenesis

Complications of diabetes

<u>Acute</u>

- ketoacidosis (pH of blood < 7.36)
- hyperosmolarity of blood plasma (> 310 mmol/l)

Long-term

- non-enzymatic glycation of proteins
- AGE production (<u>a</u>dvanced <u>g</u>lycation <u>e</u>ndproducts)
- activation of sorbitol (glucitol) production

- A) Increased lipolysis, elevated FFA-albumin in blood
- B) Shortage of LPL because of the lack of insulin \Rightarrow elevated plasma TG (CM and VLDL)
- C) Increased production of KB and VLDL

Glycated hemoglobin HbA_{1c}

- glycation is **<u>non-enzymatic</u>** and **<u>irrevesible</u>**
- reaction of globin NH_2 -groups with aldehyde group of glucose
- the concentration of HbA_{1c} depends on:

concentration of glucose in blood

duration of hyperglycemia

concentration of hemoglobin (less important factor)

- normal values: 2.8 4.0 %
- the value of HBA_{1c} gives cumulative information on glucose level in recent 4-8 weeks

Glycation of proteins

Glycation of proteins

