Integration of metabolism

Seminar No. 6

The first law of thermodynamics

Energy can be converted from one form to another, but cannot be destroyed.

In the interaction between a closed system and its surroundings, the internal energy change of the system (ΔU) equals the **heat** exchanged by the system (ΔQ) plus the **work** done on or by the system (ΔW).

$\Delta U = \Delta W + \Delta Q = \text{work} + \text{heat}$

Although work can be transformed completely into heat, it

does not follow that heat can be transformed completely to work.

 \Rightarrow heat is taken as a less utilizable form of energy.

Reserves = chemical energy of adip. tissue, liver/muscle glycogen, and cca $\frac{1}{3}$ of muscle proteins

Basal metabolism is the amount of energy expended while at rest in a neutrally

temperate environment, in the post-absorptive state (no digestion).

The release of energy in this state is sufficient only for the functioning of vital

organs, such as the heart, lungs, brain.

Basal metabolism can be estimated from

body mass: 0.1 MJ / kg / day

body surface: 4.2 MJ / m² / day

Example: 70 kg \Rightarrow BM = 0.1 \times 70 = 7 MJ/day

Statement	TRUE	FALSE
Females have higher BM than males		
Fever increases BM		
Hyperthyreosis increases BM		
Pregnancy increases BM		
BM increases with age		

Statement	TRUE	FALSE
Females have higher BM than males		×
Fever increases BM	×	
Hyperthyreosis increases BM	×	
Pregnancy increases BM	×	
BM increases with age		×

Recommended intake of nutrients

Nutrient	Percentage of energy intake / day
Starch	
Lipids	
Proteins	

Recommended intake of nutrients

Nutrient	Percentage of energy intake / day	
Starch	55 - 60 %	
Lipids	≤30 %	SAFA \approx 5 % MUFA \approx 20 % PUFA \approx 5 %
Proteins	10 - 15 %	

1) BM of student calculated from body surface (MJ/d) =

2) output of student (between light work and medium hard work)

estimated from graph (MJ/d) \approx

3) total energy output in MJ/d =

4) total energy output in J/s (= in W)

- 1) BM of student (MJ/d) = $4.2 \times 1.73 = 7.266 \text{ MJ/d}$
- 2) activity of student estimated from graph (MJ/d) \approx 4 MJ/d
- 3) total energy output in MJ/d = 7.266 + 4 = 11.266 MJ/d
- 4) total energy output in J/s =
- 11 266 000 J/day = $\frac{11266000}{86400}$ (J/s) = 130 J/s = <u>130 W</u>

Body mass index $BMI = \frac{mass (kg)}{[height (m)]^2}$

BMI	Classification
< 16	severe underweight
16-20	underweight
20-25	optimal weight
25-30	light obesity
30-40	marked obesity
>40	severe obesity

Energy reserves in adult man (70 kg)

Nutrient	Tissue	Mass (g)	Energy (MJ)
Glycogen	liver	70	1,2
Glycogen	muscle	120	2,0
Glucose	ECF	20	0,3
Lipids	adip. t.	15 000	570
Proteins	muscle	6 000	102/3=34

energy stores =

survival time = $\frac{\text{energy available}}{BM}$

Metabolic process	Insulin	Glucagon	Adrenaline	Cortisol
Gluconeogenesis				
Glycolysis in liver				
Glycolysis in muscle	1	_		
Glycogenolysis in muscle	-	-		
Glycogenolysis in liver				
Glycogenesis liver + muscle				
Lipolysis in adipocytes				
Lipogenesis in liver/adip.t.	1			
Cholesterol synthesis	1	\downarrow		
Proteosynthesis		-		
Proteolysis in liver		1		
Proteolysis in muscles	_	_		

Metabolic process	Insulin	Glucagon	Adrenaline	Cortisol
Gluconeogenesis	\downarrow	1	1	↑ (AA)
Glycolysis in liver	1	\downarrow	\downarrow	-
Glycolysis in muscle	1	-	<u>↑</u> ↑↑	-
Glycogenolysis in muscle	-	-	↑ ↑ ↑	-
Glycogenolysis in liver	\leftrightarrow	↑	↑ ↑ ↑	-
Glycogenesis liver + muscle	↑	\downarrow	$\downarrow\downarrow$	↑
Lipolysis in adipocytes	\rightarrow	1	↑↑↑	↑
Lipogenesis in liver/adip.t.	↑	\downarrow	\rightarrow	\downarrow
Cholesterol synthesis	↑	\downarrow	\rightarrow	\downarrow
Proteosynthesis	↑	-	-	↑liver, ↓other
Proteolysis in liver	\downarrow	↑	↑	\downarrow
Proteolysis in muscles	-	-	 ↑	↑

Basic facts on metabolism

- ATP is immediate source of energy in cells
- ATP is derived from metabolic oxidation of nutrients: glycolysis + β -oxidation of FA \rightarrow acetyl-CoA \rightarrow CAC \rightarrow resp. chain \rightarrow ATP
- ATP and glucose levels in body have to be reasonably constant
- glucose is necessary for brain and RBC
- glucose is necessary for utilization of lipids for energy: Glc \rightarrow pyruvate \rightarrow oxaloacetate \rightarrow CAC
- glucose cannot be made from FA

Relationships between nutrients

glucose \rightarrow lipids \checkmark

glucogenic AA \rightarrow glucose \checkmark

Glc (pyruvate, CAC intermed) \rightarrow C skeleton of non-essential AA \checkmark

AA \rightarrow lipids \checkmark

lipids ≽ AA (most ketogenic + mixed AA are essential)

Saccharides after meal (insulin)

• GLUT 4 insulin dependent transporter

Glucose (Glc) in liver after meal

- Glc \rightarrow glycogen
- Glc \rightarrow pyruvate \rightarrow acetyl-CoA \rightarrow CAC \rightarrow energy
- Glc \rightarrow pyruvate \rightarrow acetyl-CoA \rightarrow FA \rightarrow TAG (VLDL)
- considerable amount of Glc just passes through into blood
- small portion of Glc is converted into specialized products (pentoses + NADPH, galactose, glucuronate)
- excess of Glc \rightarrow lipids (VLDL) \rightarrow blood \rightarrow adipose tissue \rightarrow obesity

Glc in other tissues after meal

- Glc is the only fuel for RBC (anaerobic glycolysis)
- Glc is prominent fuel for brain (aerobic glycolysis)
- Glc is source of energy + reserves (glycogen) in muscles
- Glc is source of glycerol-3-P for TAG synthesis in adip. tissue

Lipids after meal (insulin)

Lipids after meal

- Exogen. TAG (CM) and endogen. lipids (VLDL) supply peripheral tissues (muscles, myocard, kidney, adip. t.)
- FA are released from TAG by the action of LPL
- FA are fuel for muscles

 $FA \rightarrow acetyl-CoA \rightarrow CAC \rightarrow CO_2 + energy$

• In adipose tiss., FA are substrates for TAG synthesis

- Glc is metabolic fuel in most tissues:
- ERCS + brain (exclusively in well-fed state)
- muscles + adipose tissue + some other ...

- insulin stimulates the exposition of GLUT4 in muscles and adipose tissue cell membranes
- Glc can massively enter these organs

- 1. Glc is the source of **energy** (aerobic glycolysis)
- 2. Glc is the source of $NADPH+H^+$ for FA synthesis (pentose cycle)
- 3. Glc is the source of **glycerol-3-P** for TAG synthesis

glycerol-3-P \rightarrow 1-acylglycerol-3-P \rightarrow 1,2-diacylglycerol-3-P \rightarrow

1,2-diacylglycerol \rightarrow TAG

- Glc \rightarrow 2 pyruvate (aerobic glycolysis)
- pyruvate \rightarrow acetyl-CoA (oxidative decarboxylation)
- acetyl-CoA + CO_2 -biotin \rightarrow malonyl-CoA (activation)
- $[malonyl-CoA + acetyl-CoA]_{nx} \rightarrow \rightarrow FA$

- LPL lipoprotein lipase
- Insulin is the inducer of LPL synthesis

Why are KB <u>not</u> made after meal?

- there is not enough substrate for KB synthesis
- insulin has **anti-lipolytic action**
 - \Rightarrow not enough FA and acetyl-CoA

Saccharides in fasting (glucagon)

Glucose in fasting (glucagon)

- blood Glc level is maintained by two processes:
- (1) liver glycogenolysis

 $(Glc)_n + P_i \rightarrow (Glc)_{n-1} + Glc-1-P$

Glc-6-P \rightarrow free glucose

• (2) liver gluconeogenesis from lactate, AA, glycerol

Lipids in fasting (glucagon)

• glucagon stimulates lipolysis in adip. tiss. (HSL)

TAG \rightarrow 3 FA + glycerol

• FA are released to blood, bound to albumin, and trasferred to muscles ($\rightarrow CO_2$ + energy)

to liver (\rightarrow partly CO₂ + energy for liver, partly KB for export)

• KB are metabolic fuel for muscles and partly for brain

mostly branched AA – Val, Ile, Leu

Alanine, glutamine

Originate from:

- Muscle proteolysis \rightarrow alanine + glutamine
- Transamination of pyruvate \rightarrow alanine
- Ammonia detoxication \rightarrow glutamine

in muscles + brain, glycolysis is partly anaerobic

$Glc (6C) \rightarrow 2$ lactate (3C) recycling three carbon atoms

the body starts to save glucose

Compare two different degradation processes

Feature	Glycogen	Starch
Where in body		
Enzyme		
Reagent		
Type of reaction		
Product		

Compare two different degradation processes

Feature	Glycogen	Starch
Where in body	liver / muscles	intestine
Enzyme	glycogen phosphorylase	pancreatic amylase
Reagent	P _i	H ₂ O
Type of reaction	phosporolysis	hydrolysis
Product	glucose-1-P	maltose

- KB are produced only in <u>liver</u> from acetyl-CoA
- the metabolic cause:

the shortage of oxaloacetate and excess of acetyl-CoA

succinyl-CoA: acetoacetate-CoA transferase

does not occur in the liver

- KB small soluble molecules, enter brain
- FA big molecules, cannot get across blood-brain barrier

Metabolic turn-over of saccharides in fasting (g/d) liver CNS **Early fasting 144** glycogen 75 Proteins \rightarrow AA. Glc 180 gluconeogenesis Ery 36 glycerol lactate 16 36 **Prolonged starvation** liver **CNS 44** Proteins \rightarrow AA 20 Glc 80 gluconeogenesis Ery **36** glycerol lactate 15 **50** 62

- muscle proteolysis: $75 \rightarrow 20 \text{ g/d} \Rightarrow \text{decreases}$
- liver gluconeogenesis: $180 \rightarrow 80 \text{ g/d} \Rightarrow \text{decreases}$
- lipolysis: $160 \rightarrow 150 \text{ g/d} \Rightarrow \text{approx}$. the same
- KB production: $60 \rightarrow 57 \text{ g/d} \Rightarrow \text{approx. the same (dif. utilization)}$
- energy for brain: Glc (44 g/d) + KB (47 g/d)
- energy for muscle: FA

1. sparing glucose

2. sparing proteins

- 1. The capacity of brain to utilize KB is limited
- 2. The protection of body against excessive acidification

of internal environment

the accumulation of acetoacetate and β -hydroxybutyrate

anions in ECF leads to the decrease of main buffer base $[HCO_3^-]$

 \Rightarrow decrease of pH \Rightarrow metabolic acidosis (ketoacidosis)