Ions and buffer systems

Seminar No. 10

Average concentrations of plasma cations/anions

Cation	Molarity of (mmol/l)	
	Cation	Charge
Na^{+}	142	142
$\mathrm{~K}^{+}$	4	4
Ca^{2+}	2.5	5
Mg^{2+}	1.5	3

Total positive charge: 154

Anion	Molarity of (mmol/l)	
	Anion	Charge
Cl^{-}	103	103
$\mathrm{HCO}_{3}{ }^{-}$	25	25
Protein $^{-}$	2	18^{*}
$\mathrm{HPO}_{4}{ }^{2-}$	1	2
$\mathrm{SO}_{4}{ }^{2-}$	0.5	1
$\mathrm{OA}^{* *}$	4	5^{*}

Total negative charge: 154
*Calculated by empirical formula. **Organic acid anions

Compare concentrations in mmol/l

Blood plasma	
Na^{+}	Cl^{-}
$133-150$	~ 100

Saline solution (0.9 \%)	
Na^{+}	Cl^{-}
154	154

Saline solution of NaCl is isotonic with plasma but it has increased concentration of chloride ions compared to plasma!!

Q. 2

Commentary - Cations and anions in plasma

- every body fluid is electroneutral system
- in univalent ionic species $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{HCO}_{3}^{-}\right.$, lactate- $) \Rightarrow$ molarity of charge $=$ molarity of ion
- in polyvalent ionic species \Rightarrow
molarity of charge $=$ charge \times molarity of ion
$\mathrm{Mg}^{2+} \Rightarrow 2 \times\left[\mathrm{Mg}^{2+}\right]=2 \times 1=2$
$\mathrm{SO}_{4}{ }^{2-} \Rightarrow 2 \times\left[\mathrm{SO}_{4}{ }^{2-}\right]=2 \times 0.5=1$
- plasma proteins have pI around $5 \Rightarrow$ at pH 7.40 they are polyanions
- OA: lactate, free AA, oxalate, citrate, malate, ascorbate ...etc.
- charge molarity of proteins + org. ions is estimated by empirical formulas

Compare pH and pI

	$\xlongequal[+\mathrm{H}^{+}]{+\mathrm{OH}^{-}}$		$\xlongequal[+\mathrm{H}^{+}]{+\mathrm{OH}^{-}}$	
cation $\mathrm{pH}<\mathrm{pl}$		amphion $\mathrm{pH}=\mathrm{pl}$		anion $\mathrm{pH}>\mathrm{pl}$

Compare ECF and ICF

Feature
ECF
ICF

Main cation

Main anion
Cl^{-}
$\mathrm{HPO}_{4}{ }^{2-}$
Protein content

Main buffer base
$\mathrm{HCO}_{3}{ }^{-}$
$\mathrm{HPO}_{4}{ }^{2-}$

Give main dietary sources of magnesium

Q. 9

A. 9

approximate osmolality is calculated

 according to empirical relationship:$$
\begin{aligned}
& 2\left[\mathrm{Na}^{+}\right]+[\text {urea }]+[\text { glucose }]= \\
& 2 \times 146+4+5.6=301.6 \mathrm{mmol} / \mathrm{kg} \mathrm{H}
\end{aligned}
$$

Physiological range: $275-300 \mathrm{mmol} / \mathrm{kg} \mathrm{H}_{2} \mathrm{O}$

Q. 10

Hormones regulating calcium level

Hormone	Blood Ca	Main actions
Parathormone	\uparrow	\bullet Stimulates bone demineralization (osteoclasts) \bullet Stimulates renal Ca resorption \bullet Stimulates synthesis of calcitriol in kidneys
Calcitonine	\downarrow	\bullet •Inhibits renal Ca resorption \bullet Stimulates bone mineralization
Cacitriol	\uparrow	\bullet Stimulates intestinal Ca resorption \bullet Stimulates the action of parathormone on kidney

What are the forms of calcium in blood?

Give the structure of calcium chelated by malate

Calcium malate is chelate

Q. 13

Compare calcium ion concentrations

SID (strong ion difference)

- strong ions do not hydrolyze in aqueous solution
- $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$
- $\operatorname{SID}=\left[\mathrm{Na}^{+}\right]+\left[\mathrm{K}^{+}\right]-\left[\mathrm{Cl}^{-}\right]=142+4-103=43 \mathrm{mmol} / \mathrm{l}$
- physiological range of SID $=38-46 \mathrm{mmol} / \mathrm{l}$

SID \approx buffer bases of serum/plasma

$\mathrm{SID}=\mathrm{HCO}_{3}{ }^{-}+\mathrm{HPO}_{4}{ }^{2-}+\operatorname{Prot}^{-}$

AG (anion gap)

- the approximate extent of unmeasured (unusual) anions
- $\mathrm{AG}=\left[\mathrm{Na}^{+}\right]+\left[\mathrm{K}^{+}\right]-\left[\mathrm{Cl}^{-}\right]-\left[\mathrm{HCO}_{3}{ }^{-}\right]$
- $\mathrm{AG}=142+4-103-25=18 \mathrm{mmol} / \mathrm{l}$
- physiological range of $\mathrm{AG}=12-18 \mathrm{mmol} / \mathrm{l}$

AG

$\mathrm{AG}=\mathrm{HPO}_{4}{ }^{2-}+\mathrm{Prot}^{-}+\mathrm{SO}_{4}{ }^{2-}+\mathrm{OA}$

Elevated AG may be caused by various conditions

- kidney insufficiency $\left(\uparrow \mathrm{HPO}_{4}{ }^{2-}+\uparrow \mathrm{SO}_{4}{ }^{2-}\right)$
- diabetes, starvation (\uparrow OA: acetoacetate, β-hydroxybutyrate)
- poisoning by methanol (\uparrow OA: formate HCOO^{-})
- lactoacidosis (\uparrow OA: lactate)
- severe dehydratation (\uparrow proteinates)

Q. 16

Condition

Change in SID

Increased concentration of chloride ions
Increased KB
Acute diarrhea ($=$ loss of $\mathrm{HCO}_{3}{ }^{-}$)
Hypoxia (lactate production in tissues)
Ethylene glycol intoxication (oxalate) Formula
Long vomiting (loss of chloride)

A. 16

Condition	Change in SID
Increased concentration of chloride ions	\downarrow
Increased KB	\downarrow
Acute diarrhea (= loss of $\mathrm{HCO}_{3}{ }^{-}$)	\downarrow
Hypoxia (lactate production in tissues)	\downarrow
Ethylene glycol intoxication (oxalate)	\downarrow
Long vomiting (loss of chloride)	\uparrow

Metabolism from acid-base point of view

acid-base reactions in ECF with buffers systems

Which compounds are responsible for the pH of:

- Lemon juice (2.3)
- Pepsi-Cola (2.5)
- Gastric juice (1-2)
- Bile (6.2-8.5)

Proton-consumption reaction:

anion- $+\mathrm{H}^{+} \rightarrow$ non-electrolyte

Gluconeogenesis from lactate:
2 lactate $^{-}+2 \mathrm{H}^{+} \rightarrow 1$ glucose

- protons are consumed in the synthesis of non-electrolyte from anion
- proton-consumption is equivalent to OH^{-}production

Proton-productive reactions

- non-electrolyte \rightarrow acid \rightarrow anion ${ }^{-}+\mathbf{H}^{+}$
e.g. anaerobic glycolysis, glucose $\rightarrow 2$ lactate $^{-}+2 \mathbf{H}^{+}$
- synthesis of urea:

$\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+{ }^{-} \mathrm{OOC}-\mathrm{CH}=\mathrm{CH}-\mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}^{+}$
Q. 17

The main acidic catabolite is CO_{2}

compare daily production of acid equivalents:
CO_{2}.. up to $25000 \mathrm{mmol} /$ day
H^{+}as $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$............ up to $80 \mathrm{mmol} /$ day

How is CO_{2} made in the body?

Production of CO_{2} in the body

- CO_{2} is produced in decarboxylation reactions
- oxidative decarboxylation of pyruvate \rightarrow acetyl-CoA
- two decarboxylations in CAC (isocitrate, 2-oxoglutarate)
$\left\{\begin{array}{l}\begin{array}{l}\text { main } \\ \text { sources } \\ \text { of } \mathrm{CO}_{2}\end{array} \\ \hline\end{array}\right.$
- decarboxylation of aminoacids \rightarrow biogenous amines
- non-enzymatic decarboxylation of acetoacetate \rightarrow acetone
- catabolism of pyrimidine bases
(cytosine, uracil $\rightarrow \mathrm{CO}_{2}+\mathrm{NH}_{3}+\beta$-alanine)
- catabolism of glycine $\rightarrow \mathrm{CO}_{2}+\mathrm{NH}_{3}+$ methylen-THF

Overview of acidic catabolites

- aerobic metabolism of nutrients $\rightarrow \mathrm{CO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+}$
- anaerobic glycolysis \rightarrow lactic acid \rightarrow lactate $+\mathbf{H}^{+}$
- KB production (starvation) \rightarrow acetoacetic/ β-hydroxybutyric acid
- catabolism of cystein (-SH) \rightarrow sulfuric acid $\rightarrow \mathrm{SO}_{4}{ }^{2-}+2 \mathbf{H}^{+}$
- catabolism of purine bases \rightarrow uric acid \rightarrow urate $+\mathbf{H}^{+}$
- catabolism of phospholipids, DNA, RNA $\rightarrow \mathbf{H P O}_{4}{ }^{2-}+\mathbf{H}^{+}$

Q. 18

- strictly vegetarian diet
- contains a lot of potassium citrate/malate
- potassium salts get into blood plasma
- organic anions (OA) enter cells and are metabolized (CAC, malic enzyme etc.)
- K^{+}cations remain in plasma
- to keep electroneutrality of plasma \Rightarrow $\mathrm{HCO}_{3}{ }^{-}$concentration increases
- result: mild physiological alkalosis

What is the conversion of malate in:

a) CAC
b) malic enzyme reaction

Buffer systems in blood

Buffer system	Abundance	Buffer base	Buffer acid	$\mathbf{p} \boldsymbol{K}_{\mathbf{A}}$
Hydrogen carbonate	50%	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{2}$	6.1
Proteins a	45%	Prot-His	Prot-His- H^{+}	$6.0-8.0^{b}$
Hydrogen phosphate $^{\text {Hy }}$	5%	$\mathrm{HPO}_{4}{ }^{2-}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	6.8

${ }^{a}$ In plasma mainly albumin, in erythrocytes hemoglobin
${ }^{b}$ The $\mathrm{p} K_{A}$ value depends on the type of protein

Buffer bases in (arterial) plasma

Buffer base	$\mathbf{m m o l} / \mathbf{I}$
$\mathrm{HCO}_{3}{ }^{-}$	24
Protein-His	17^{*}
$\mathrm{HPO}_{4}{ }^{2-}$	1

Total	42

* Molarity of negative charge $=$ binding sites for H^{+}
Q. 19

A. 19

$\frac{\text { [buffer base] }}{\text { [buffer acid] }}$

Q. 20

A. 20

- concentration of both components
- the ratio of both components
- the best capacity if: [buffer base] = [buffer acid]

Hydrogen carbonate buffer is the only system which communicates with external environment

Describe double-equilibrium

$\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \leftrightarrows \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}$

excreted by lungs

can be excreted by urine

excreted by urine

Q. 23

Carbonic acid double equilibrium in vitro = carbonated water

$$
\begin{array}{rcccc}
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} & \leftrightarrows & \mathrm{H}_{2} \mathrm{CO}_{3} & \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \\
800 & : & 1 & : & 0.03
\end{array}
$$

- weak diprotic $\operatorname{acid}\left(\mathrm{p} K_{\mathrm{A} 1}=6.37 ; \mathrm{p} K_{\mathrm{A} 2}=10.33\right)$
- does exist only in aq. solution, easily decomposes to CO_{2} and water
- CO_{2} predominates $800 \times$ in sol. \Rightarrow therefore CO_{2} is included into K_{A}

$$
K_{\mathrm{A} \text { eff }}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \quad \begin{aligned}
& K_{\text {Aeff }}=\text { effective } \\
& \text { dissociation constant }
\end{aligned}
$$

Carbonic acid double equilibrium in blood plasma

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} & \leftrightarrows \\
1 & \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \\
1 & : \text { traces }: 20
\end{aligned}
$$

- CO_{2} hydration is catalyzed by carbonic anhydrase
- under physiological conditions: $\mathrm{p} K_{\mathrm{A} 1}=6.10$
- CO_{2} is continually eliminated from body by lungs
- the overall concentration of carbonic acid:
$\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\mathrm{pCO}_{2} \times s=0.23 \mathrm{pCO}_{2}(\mathrm{kPa})$

Compare: CO_{2} in water and blood

Liquid
Carbonated water ${ }^{a}$

Blood b b
$\left[\mathrm{CO}_{2}\right]:\left[\mathrm{HCO}_{3}{ }^{-}\right]$

$$
\begin{array}{cc}
3.50-5.00 & 800: 0.03 \\
7.36-7.44 & 1: 20
\end{array}
$$

${ }^{a}$ Closed system (PET bottle), $25^{\circ} \mathrm{C}, \mathrm{p} K_{\mathrm{A} 1}=6.37$
$\mathrm{pH} \sim p \mathrm{CO}_{2} \sim$ the pressure of CO_{2} applied in saturation process
${ }^{b}$ Open system, $37{ }^{\circ} \mathrm{C}, \mathrm{p} K_{\mathrm{A} 1}=6.10$
CO_{2} continually eliminated, $p \mathrm{CO}_{2}$ in lung alveoli $\sim 5.3 \mathrm{kPa}$, acid component of hydrogen carbonate buffer

Q. 26

A. 26

$\mathrm{mmol} / \mathrm{l}$

$\mathrm{pH}=6.1+\log \frac{\left[\mathrm{HCO}_{3}{ }^{-}\right]}{0.22 \times \mathrm{pCO}_{2}}$

Q. 27

A. 27

protons are eliminated in the reaction with buffer base $\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
hydroxide ions are eliminated in the reaction with buffer acid $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathbf{O H}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCO}_{3}^{-}$

Q. 28	Initial status	Closed system	Open system
$\left[\mathrm{HCO}_{3}{ }^{-}\right]$	$24 \mathrm{mmol} / 1$	$\mathbf{2 2}$	
$\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]$	$1.2 \mathrm{mmol} / 1$	$\mathbf{3 . 2}$	
pH	7.40	$\mathbf{6 . 9 4}$	

$2 \mathrm{H}^{+}$react with buffer base $\Rightarrow 24-2=22 \mathbf{H C O}_{3}{ }^{-}+2 \mathrm{CO}_{2}$ newly formed CO_{2} remain in the system $\Rightarrow 1.2+2=3.2 \mathrm{CO}_{2}$

	Initial status	Closed system	Open system
$\left[\mathrm{HCO}_{3}-\right]$	$24 \mathrm{mmol} / \mathrm{l}$	22	$\mathbf{2 2}$
$\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]$	$1.2 \mathrm{mmol} / \mathrm{l}$	3.2	$\mathbf{1 . 2}$
pH	7.40	6.94	$\mathbf{7 . 3 6}$

$2 \mathrm{H}^{+}$react with buffer base $\Rightarrow 24-2=22 \mathbf{H C O}_{3}{ }^{-}+2 \mathrm{CO}_{2}$ newly formed CO_{2} is eliminated by lungs $\Rightarrow 3.2-2=1.2 \mathrm{CO}_{2}$

Q. 29

A. 29

$$
\begin{aligned}
& 7.40=6.1+\log x \\
& \log x=1.3 \\
& x=10^{1.3}=20=20: 1=\left[\mathrm{HCO}_{3}^{-}\right]:\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]
\end{aligned}
$$

Calculate pCO_{2} if $\mathrm{pH}=7.30,\left[\mathrm{HCO}_{3}^{-}\right]=20 \mathrm{mmol} / 1$

$$
\begin{aligned}
& 7.30=6.1+\log \left(20 / 0.22 \mathrm{pCO}_{2}\right) \\
& 1.2=\log \mathrm{x} \\
& \mathrm{x}=10^{1.2}=15.85=20 / 0.22 \mathrm{pCO}_{2} \\
& \mathrm{pCO}_{2}=20 / 0.22 \times 15.85=5.74 \mathrm{kPa}
\end{aligned}
$$

Q. 30

A. 30

- $\left[\mathrm{HCO}_{3}^{-}\right]:\left[\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}\right]=20: 1$
- the concentration of buffer base is $20 \times$ higher
than the concentration of buffer acid
- hydrogen carbonate buffer is $20 \times$ more resistant to acids

Hydrogen phosphate buffer

- buffer base: $\mathrm{HPO}_{4}{ }^{2-}$
- buffer acid: $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
- occurs mainly in ICF, bones, urine

Q. 31 a)

A. 31 a)

$$
7.40=6.80+\log x
$$

$\log x=0.6$

$$
x=10^{0.6}=4 \Rightarrow\left[\mathrm{HPO}_{4}^{2-}\right]:\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=4: 1
$$

Protein and hemoglobin buffers

- hemoglobin (Hb) contains a lot of histidine (His)
weakly basic nitrogen
non-basic nitrogen

histidine why?

Q. 35

Buffering action of proteins is performed

 by the side chain of histidine
imidazol
$\mathrm{p} K_{\mathrm{B}}$ (His) $=8$

imidazolium
$\mathrm{p} K_{\mathrm{A}}$ (His) $=14-8=6$
$\mathrm{p} K_{\mathrm{A}}($ His in proteins $)=6-8$

Describe the transport of:

1) CO_{2} from tissues to air
2) O_{2} from air to tissues

Three ways of CO_{2} transport in blood

1. cca 85% in the form of $\mathrm{HCO}_{3}{ }^{-}$
it is formed in ery by the action of carbonic anhydrase, then is
transported to plasma, exchange for chloride is needed to maintain electroneutrality in ery
2. cca $\mathbf{1 0} \%$ in the form of unstable carbamates
3. cca 5% of physically dissolved CO_{2}

Q. 44

A. 44

- the nitrogen atom of N -terminal adds to carbon atom of CO_{2}
- released proton is buffered by the protein itself
- in lungs, protein-carbamates are non-enzymatically hydrolyzed to Prot- NH_{2} and CO_{2} which is exhaled

Kidney functions in acid-base balance

- kidneys excrete acid species:
ammonium cation $\mathrm{NH}_{4}{ }^{+}$
dihydrogen phosphate anion $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(uric acid and some other ...)
- kidneys resorb basic species:
the main buffer base $=$ hydrogen carbonate anion HCO_{3}^{-}

Q. 45

Glutaminase and GMD reactions produce $\mathbf{N H}_{4}{ }^{+}$in tubular cells
glutaminase glutamate dehydrogenase (GMD)
Gln \longrightarrow Glu \longrightarrow 2-oxoglutarate

$\stackrel{\downarrow}{\mathrm{NH}_{3}}$

$\mathrm{NH}_{4}{ }^{+}$

ammonium gets into urine by K^{+}-channel or by $\mathrm{K}^{+} / \mathrm{Na}^{+}$-antiport transporter
Q. 47

A. 47

Acid
Type
cation
9.25
$\sim 50 \mathrm{mmol} / \mathrm{d}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
Uric acid
neutral
5.40
$\sim 2 \mathrm{mmol} / \mathrm{d}$

Q. 48

$4.8=6.8+\log x$
$\log \mathrm{x}=-2$
$\mathrm{x}=10^{-2}=0.01=1 / 100 \Rightarrow\left[\mathrm{HPO}_{4}{ }^{2-}\right]:\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=1: 100$
under normal conditions (in mildly acidic urine)
the essentially prevailing species is dihydrogen phosphate

What is the consequence of reversed ratio in urine? $\mathrm{HPO}_{4}{ }^{2-} / \mathrm{H}_{2} \mathrm{PO}_{4}^{-}>1$

Formation of CaHPO 4 concrements

$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	H^{+}	CaHPO_{4}	H^{+}	$\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
	OH^{-}		OH^{-}	
insoluble		insoluble		soluble
pH >8		pH 6-8		pH 4-6

Compare and remember

Liquid	$\mathbf{p H}$	Prevailing phosphate species
ECF, ICF	~ 7.4	$\mathrm{HPO}_{4}{ }^{2-}$
Urine	~ 5.5	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
Coca-Cola	~ 2.5	$\mathrm{H}_{3} \mathrm{PO}_{4}$

Q. 49

Synthesis of urea is proton-productive

$$
\mathrm{CO}_{2}+\mathrm{NH}_{4}^{+}+\Theta \mathrm{OOC}_{\mathrm{NH}_{\oplus}}^{\mathrm{CH}} \underset{\sim}{\mathrm{CH} \mathrm{H}_{2} \mathrm{COO} \Theta}
$$

$\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+{ }^{-} \mathrm{OOC}-\mathrm{CH}=\mathrm{CH}-\mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}^{+}$

Synthesis of glutamine is proton-neutral

Liver functions maintaining acid-base balance

- in acidosis, liver preferably makes glutamine instead of urea
- glutamine is transported by blood to kidneys, where it is
hydrolyzed (glutaminase) - NH_{4}^{+}cation is released into urine
- glutamate can be further deaminated and $\mathrm{NH}_{4}{ }^{+}$cation is again released into urine
- urine pH is rather acidic

