Ions and buffer systems

Seminar No. 10

Average concentrations of plasma cations/anions

Cation -	Molarity of (mmol/l)		Anion	Molarity of (mmol/l)	
	Cation	Charge	Anion	Anion	Charge
Na ⁺	142	142	C1-	103	103
K^+	4	4	HCO ₃ -	25	25
Ca ²⁺	2.5	5	Protein ⁻	2	18*
Mg^{2+}	1.5	3	HPO ₄ ²⁻	1	2
			SO ₄ ²⁻	0.5	1
			OA**	4	5*
Total positive charge: 154			Total ne	egative cha	arge: 154

*Calculated by empirical formula. **Organic acid anions

Compare concentrations in mmol/l

Blood plasma		Saline solution (0.9 %)		
Na ⁺	C1-	Na ⁺	C1-	
133-150	~ 100	154	154	

Saline solution of NaCl is <u>isotonic</u> with plasma but it has increased concentration of chloride ions compared to plasma!!

Q. 2

Commentary - Cations and anions in plasma

- every body fluid is **electroneutral system**
- in univalent ionic species (Na⁺, K⁺, Cl⁻, HCO₃⁻, lactate⁻) ⇒
 molarity of charge = molarity of ion
- in polyvalent ionic species \Rightarrow

molarity of charge = charge × molarity of ion

$$Mg^{2+} \implies 2 \times [Mg^{2+}] = 2 \times 1 = 2$$

$$\mathrm{SO_4^{2-}} \implies 2 \times [\mathrm{SO_4^{2-}}] = 2 \times 0.5 = 1$$

- plasma proteins have pI around $5 \Rightarrow$ at pH 7.40 they are polyanions
- OA: lactate, free AA, oxalate, citrate, malate, ascorbate ...etc.
- charge molarity of proteins + org. ions is estimated by empirical formulas

Compare pH and pI

Compare ECF and ICF

Feature	ECF	ICF	
Main cation	Na ⁺	K^+	
Main anion	C1-	HPO ₄ ²⁻	
Protein content	\star	$\star \star \star$	
Main buffer base	HCO ₃ -	HPO ₄ ²⁻	

Give main dietary sources of magnesium

What is the main compound?

stitution are duited with the

Neperlivi

A. 9

approximate osmolality is calculated

according to empirical relationship:

 $2 [Na^+] + [urea] + [glucose] =$ $2 \times 146 + 4 + 5.6 = 301.6 \text{ mmol/kg H}_2\text{O}$

Physiological range: 275 – 300 mmol/kg H₂O

Q. 10

Hormones regulating calcium level

Hormone	Blood Ca	Main actions
Parathormone	1	 Stimulates bone demineralization (osteoclasts) Stimulates renal Ca resorption Stimulates synthesis of calcitriol in kidneys
Calcitonine	\downarrow	Inhibits renal Ca resorptionStimulates bone mineralization
Cacitriol	1	 Stimulates intestinal Ca resorption Stimulates the action of parathormone on kidney

What are the forms of calcium in blood?

Give the structure of calcium chelated by malate

Calcium malate is chelate

Q. 13

SID (strong ion difference)

- strong ions <u>do not hydrolyze</u> in aqueous solution
- Na⁺, K⁺, Cl⁻
- SID = $[Na^+] + [K^+] [Cl^-] = 142 + 4 103 = 43 \text{ mmol/l}$
- physiological range of SID = 38 46 mmol/l

SID ≈ buffer bases of serum/plasma

AG (anion gap)

- the approximate extent of unmeasured (unusual) anions
- $AG = [Na^+] + [K^+] [Cl^-] [HCO_3^-]$
- AG = 142 + 4 103 25 = 18 mmol/l
- physiological range of AG = 12 18 mmol/l

AG

Elevated AG may be caused by various conditions

- kidney insufficiency ($\uparrow HPO_4^{2-} + \uparrow SO_4^{2-}$)
- diabetes, starvation (\uparrow OA: acetoacetate, β -hydroxybutyrate)
- poisoning by methanol (↑ OA: formate HCOO⁻)
- severe dehydratation (↑ proteinates)

Q. 16

Condition	Change in SID
Increased concentration of chloride ions	
Increased KB	
Acute diarrhea (= loss of HCO_3^-)	
Hypoxia (lactate production in tissues)	
Ethylene glycol intoxication (oxalate) Form	ula
Long vomiting (loss of chloride)	

A. 16

Condition	Change in SID	
Increased concentration of chloride ions	\downarrow	
Increased KB	\downarrow	
Acute diarrhea (= loss of HCO_3^{-})	\downarrow	
Hypoxia (lactate production in tissues)	\downarrow	
Ethylene glycol intoxication (oxalate)	\downarrow	
Long vomiting (loss of chloride)	\uparrow	

Metabolism from acid-base point of view

acid-base reactions in ECF with buffers systems

Which compounds are responsible for the pH of:

- Lemon juice (2.3)
- Pepsi-Cola (2.5)

- Gastric juice (1-2)
- Bile (6.2 8.5)

Proton-consumption reaction: anion⁻ + $H^+ \rightarrow$ non-electrolyte

Gluconeogenesis from lactate:

2 lactate⁻ + 2 H⁺ \rightarrow 1 glucose

• protons are consumed in the synthesis of non-electrolyte from anion

proton-consumption is equivalent to OH⁻ production

Proton-productive reactions

• non-electrolyte \rightarrow acid \rightarrow anion⁻ + H⁺

e.g. anaerobic glycolysis, glucose \rightarrow 2 lactate⁻ + 2 H⁺

• synthesis of urea: $CO_2 + NH_4^+ + \bigoplus OOC - CH CH_2 COO$ $I = \bigoplus CO(NH_2)_2 + OOC-CH=CH-COO^- + H_2O + 2H^+$

Q.17

The main acidic catabolite is CO₂

compare daily production of acid equivalents:

 CO_2 up to **25 000** mmol/day

 H^+ as NH_4^+ and $H_2PO_4^-$ up to 80 mmol/day

How is CO₂ made in the body?

Production of CO₂ in the body

- CO₂ is produced in <u>decarboxylation</u> reactions
- oxidative decarboxylation of pyruvate \rightarrow acetyl-CoA
- two decarboxylations in CAC (isocitrate, 2-oxoglutarate)
- decarboxylation of aminoacids \rightarrow biogenous amines
- non-enzymatic decarboxylation of acetoacetate \rightarrow acetone
- catabolism of pyrimidine bases

(cytosine, uracil $\rightarrow CO_2 + NH_3 + \beta$ -alanine)

• catabolism of glycine $\rightarrow CO_2 + NH_3 + methylen-THF$

main

sources

Overview of acidic catabolites

- aerobic metabolism of nutrients $\rightarrow CO_2 \rightarrow H_2CO_3 \rightarrow HCO_3^- + H^+$
- anaerobic glycolysis \rightarrow lactic acid \rightarrow lactate + H⁺
- KB production (starvation) \rightarrow acetoacetic/ β -hydroxybutyric acid
- catabolism of cystein (-SH) \rightarrow sulfuric acid \rightarrow SO₄²⁻ + 2 H⁺
- catabolism of purine bases \rightarrow uric acid \rightarrow urate + H⁺
- catabolism of phospholipids, DNA, RNA \rightarrow HPO₄²⁻ + H⁺ O
 O
 R₁ O $||_{D}$ C $||_{D}$ C |

Q. 18

A. 18

- strictly vegetarian diet
- contains a lot of potassium citrate/malate
- potassium salts get into blood plasma
- organic anions (OA) enter cells and are metabolized (CAC, malic enzyme etc.)
- K⁺ cations remain in plasma
- to keep electroneutrality of plasma \Rightarrow HCO₃⁻ concentration increases
- result: mild physiological alkalosis

What is the conversion of malate in:

a) CAC

b) malic enzyme reaction

Buffer systems in blood

Buffer system	Abundance	Buffer base	Buffer acid	p <i>K</i> _A
Hydrogen carbonate	50 %	HCO ₃ -	H_2CO_3, CO_2	6.1
Proteins ^a	45 %	Prot-His	Prot-His-H ⁺	6.0-8.0 ^b
Hydrogen phosphate	5 %	HPO ₄ ²⁻	H ₂ PO ₄ -	6.8

^{*a*} In plasma mainly albumin, in erythrocytes hemoglobin

^{*b*} The pK_A value depends on the type of protein

Buffer bases in (arterial) plasma

* Molarity of negative charge = binding sites for H⁺

A. 19

$pH = pK_A + \log \frac{[buffer base]}{[buffer acid]}$

A. 20

- concentration of both components
- the ratio of both components

• the best capacity if: [buffer base] = [buffer acid]

Carbonic acid double equilibrium *in vitro* = carbonated water

$$H_2O + CO_2 \rightleftharpoons H_2CO_3 \leftrightarrows HCO_3^- + H^+$$

800 : 1 : 0.03

- weak diprotic acid ($pK_{A1} = 6.37$; $pK_{A2} = 10.33$)
- does exist only in aq. solution, easily decomposes to CO_2 and water
- CO₂ predominates 800 × in sol. \Rightarrow therefore CO₂ is included into K_A

$$K_{\text{A eff}} = \frac{[\text{H}^+][\text{HCO}_3^-]}{[\text{CO}_2 + \text{H}_2\text{CO}_3]}$$

$$K_{A eff}$$
 = effective dissociation constant

Carbonic acid double equilibrium in blood plasma

$$H_2O + CO_2 \leftrightarrows H_2CO_3 \leftrightarrows HCO_3^- + H^+$$

1 : traces : 20

- CO₂ hydration is catalyzed by carbonic anhydrase
- under physiological conditions: $pK_{A1} = 6.10$
- CO₂ is continually eliminated from body by lungs
- the overall concentration of carbonic acid:

 $[CO_2 + H_2CO_3] = pCO_2 \times s = 0.23 pCO_2 (kPa)$

directly measurable quantity

Compare: CO₂ in water and blood

Liquid	pН	[CO ₂] : [HCO ₃ ⁻]
Carbonated water ^a	3.50 - 5.00	800:0.03
Blood ^b	7.36 - 7.44	1:20

^{*a*} Closed system (PET bottle), 25 °C, $pK_{A1} = 6.37$ pH ~ pCO_2 ~ the pressure of CO₂ applied in saturation process

^{*b*} **Open system**, 37 °C, $pK_{A1} = 6.10$ CO₂ continually eliminated, pCO_2 in lung alveoli ~ 5.3 kPa, acid component of hydrogen carbonate buffer

A. 27

protons are eliminated in the reaction with buffer base $HCO_3^- + \mathbf{H}^+ \rightarrow H_2CO_3 \rightarrow H_2O + CO_2$

hydroxide ions are eliminated in the reaction with buffer acid $H_2CO_3 + OH^- \rightarrow H_2O + HCO_3^-$

Q. 28	Initial status	Closed system	Open system
[HCO ₃ ⁻]	24 mmol/l	22	
[CO ₂ +H ₂ CO ₃]	1.2 mmol/l	3.2	
рН	7.40	6.94	

2 H⁺ react with buffer base $\Rightarrow 24 - 2 = 22 \text{ HCO}_3^- + 2 \text{ CO}_2$ newly formed CO₂ remain in the system $\Rightarrow 1.2 + 2 = 3.2 \text{ CO}_2$

	Initial status	Closed system	Open system
[HCO ₃ ⁻]	24 mmol/l	22	22
[CO ₂ +H ₂ CO ₃]	1.2 mmol/l	3.2	1.2
рН	7.40	6.94	7.36

2 H⁺ react with buffer base $\Rightarrow 24 - 2 = 22 \text{ HCO}_3^- + 2 \text{ CO}_2$ newly formed CO₂ is eliminated by lungs $\Rightarrow 3.2 - 2 = 1.2 \text{ CO}_2$

A. 29

$$7.40 = 6.1 + \log x$$

log x = 1.3 x = $10^{1.3}$ = 20 = $20:1 = [HCO_3]: [CO_2 + H_2CO_3]$

Calculate pCO₂ if pH = 7.30, $[HCO_3^-] = 20 \text{ mmol/l}$

 $7.30 = 6.1 + \log (20 / 0.22 \text{pCO}_2)$

 $1.2 = \log x$

$$x = 10^{1.2} = 15.85 = 20 / 0.22 pCO_2$$

 $pCO_2 = 20 / 0.22 \times 15.85 = 5.74 \text{ kPa}$

A. 30

- $[HCO_3^{-}] : [CO_2 + H_2CO_3] = 20 : 1$
- the concentration of buffer base is $20 \times higher$

than the concentration of buffer acid

• hydrogen carbonate buffer is $20 \times$ more resistant to acids

Hydrogen phosphate buffer

- buffer base: HPO₄²⁻
- buffer acid: $H_2PO_4^-$

• occurs mainly in ICF, bones, urine

Q. 31 a)

A. 31 a)

 $7.40 = 6.80 + \log x$

 $\log x = 0.6$

$$x = 10^{0.6} = 4 \implies [HPO_4^{2-}] : [H_2PO_4^{--}] = 4 : 1$$

Protein and hemoglobin buffers

• hemoglobin (Hb) contains a lot of histidine (His)

Buffering action of proteins is performed by the side chain of histidine

Describe the transport of: 1) CO_2 from tissues to air 2) O_2 from air to tissues

Three ways of CO₂ transport in blood

1. cca 85 % in the form of HCO_3^-

it is formed in ery by the action of carbonic anhydrase, then is

transported to plasma, exchange for chloride is needed to

maintain <u>electroneutrality</u> in ery

- 2. cca 10 % in the form of unstable carbamates
- 3. cca 5 % of physically dissolved CO₂

- the nitrogen atom of N-terminal adds to carbon atom of CO₂
- released proton is buffered by the protein itself
- in lungs, protein-carbamates are non-enzymatically hydrolyzed to $Prot-NH_2$ and CO_2 which is exhaled

Kidney functions in acid-base balance

• kidneys excrete acid species:

ammonium cation NH_4^+ dihydrogen phosphate anion $H_2PO_4^-$ (uric acid and some other ...)

• kidneys resorb basic species:

the main buffer base = hydrogen carbonate anion HCO_3^-

Glutaminase and GMD reactions produce NH₄⁺ in tubular cells

ammonium gets into urine by K⁺-channel or by K⁺/Na⁺-antiport transporter

A. 47

Acid	Type	р <i>К</i> _А	Daily excretion
NH ₄ ⁺	cation	9.25	~ 50 mmol/d
H ₂ PO ₄ -	anion	6.80	~ 30 mmol/d
Uric acid	neutral	5.40	$\sim 2 \text{ mmol/d}$

 $4.8 = 6.8 + \log x$ $\log x = -2$ $x = 10^{-2} = 0.01 = 1/100 \implies [HPO_4^{2-}] : [H_2PO_4^{--}] = 1 : 100$

under normal conditions (in mildly acidic urine) the essentially prevailing species is dihydrogen phosphate

What is the consequence of reversed ratio in urine? HPO₄²⁻ / H₂PO₄⁻ > 1

Compare and remember

Liquid	pН	Prevailing phosphate species
ECF, ICF	~ 7.4	HPO ₄ ²⁻
Urine	~ 5.5	H ₂ PO ₄ -
Coca-Cola	~ 2.5	H ₃ PO ₄

Synthesis of urea is proton-productive

Liver functions maintaining acid-base balance

- in acidosis, liver preferably makes glutamine instead of urea
- glutamine is transported by blood to kidneys, where it is hydrolyzed (glutaminase) NH_4^+ cation is released into urine
- glutamate can be further deaminated and NH_4^+ cation is again released into urine
- urine pH is rather acidic