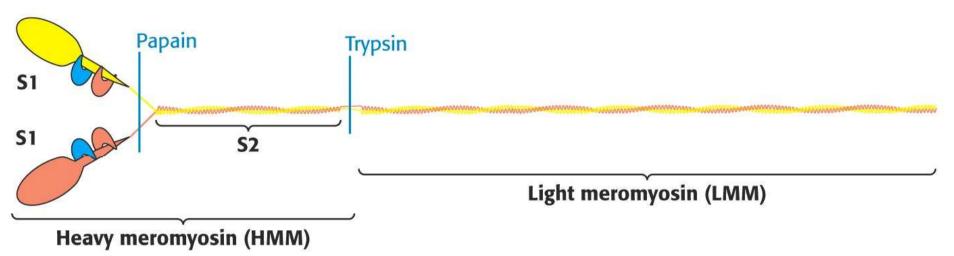
Biochemistry of muscles


Seminar No. 14

Thick filament is the myosin aggregate of cca 350 monomers

 $\underbrace{\mathcal{C}_{\mathcal{C}}} \underbrace{\mathcal{C}_{\mathcal{C}}} \underbrace{\mathcal{C}} \underbrace{\mathcal{C}}$

Describe myosine molecule

Myosin monomer

- two heavy chains (they make a double helix)
- four light chains (MLC myosin light chains)
- *N*-terminal of a heavy chain forms a globular head with ATPase activity (ATP + $H_2O \rightarrow ADP + P_i$)
- treatment of myosin with proteases affords stable fragments (for research purposes).

Describe the thin filament

Thin filament – Actin

- globular monomer (G-actin) makes a double helix (F-actin)
- F-actin has other accessory proteins attached:
- tropomyosin (smaller double helix)
- troponin C binds calcium ions
- troponin I inhibits interaction actin-myosin
- troponin T binds to tropomyosin and other troponins

(A) Relaxation: troponin I inhibits actin-myosin interaction, ATP (attached to myosin head) has been hydrolyzed \Rightarrow chemical energy is released and conserved in high-energy conformation of myosin head, concentration of Ca²⁺ in sarcoplasm is extremely low

Ca²⁺ is liberated from SR and attached to TnC, TnI is removed \Rightarrow myosin-ADP-P_i complex binds to actin (B)

 $ADP + P_i$ are liberated from myosin head, actin filament is pulled by cca 10 nm towards to sarcomere centre (C) = contraction = chemical energy is transformed to mechanical work

new ATP molecule binds to myosin head \Rightarrow dissociation of actin-myosin complex (D)

the liberation of Ca²⁺ ions from troponin C, insertion of TnI, and hydrolysis of ATP lead again to relaxation (A)

A. 11

The functions of ATP and calcium are **antagonistic**:

- ATP separates actin from myosin
- Calcium ion joins actin with myosin

Rigor mortis

Rigor mortis is a recognizable sign of death (L. *mors*, *mortis*, *f*.) that is caused by a chemical change in the muscles, causing the limbs of the corpse to become stiff (L. *rigor*, *oris*, *m*.) and difficult to move or manipulate.

Assuming mild temperatures, rigor usually sets in about 3-4 hours after clinical death, with full rigor being in effect at about 12 hours.

ATP supply from metabolic reactions is exhausted, the muscles remain contracted for ever.

Red and white filaments

Filament	Myoglobin	Mitochondria	Contraction	ATP source
Red	yes	many	slow	aerobic phosphorylation
White	no	few	fast	substrate level phosphorylation in anaerobic glycolysis

What is

- myoglobin
- aerobic phosphorylation
- substrate level phosphorylation

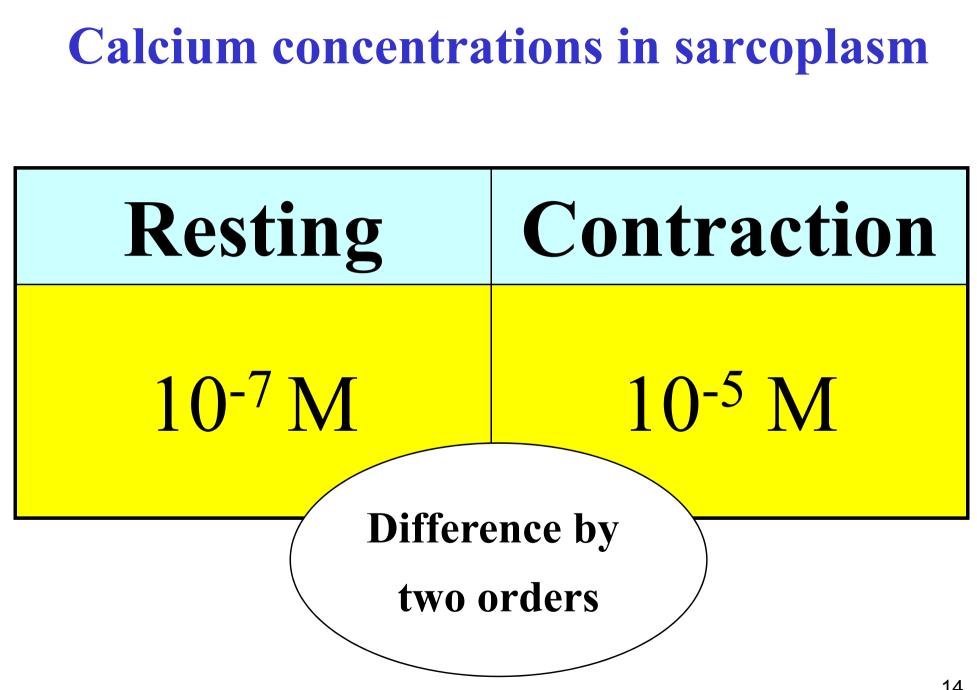
Phosphorylation:

substrate-OH + ATP \rightarrow substrate-O-P + ADP

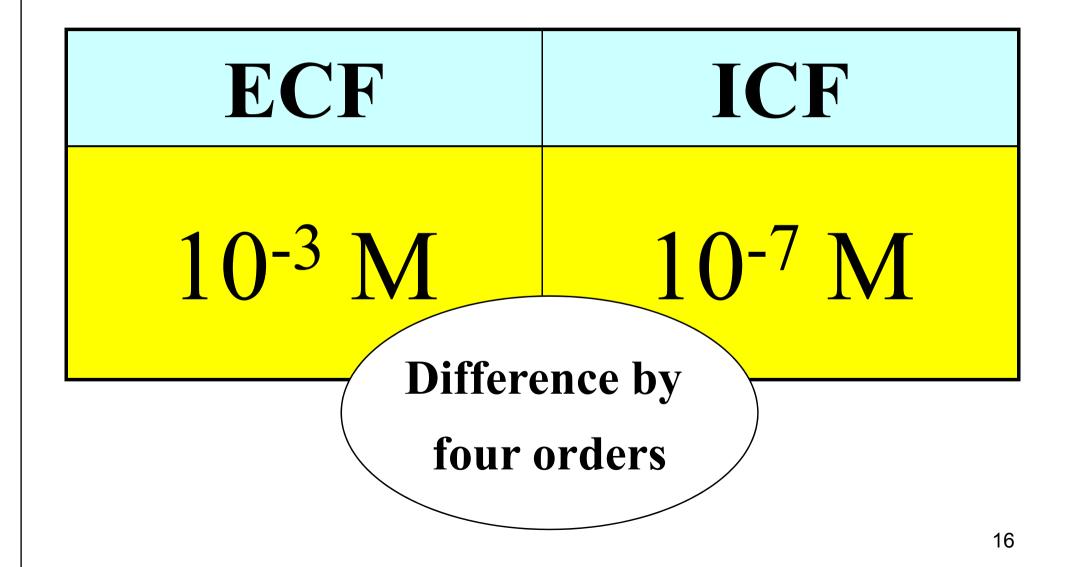
(e.g. glucose, protein, catalyzed by kinases)

Substrate level phosphorylation:

Distinguish

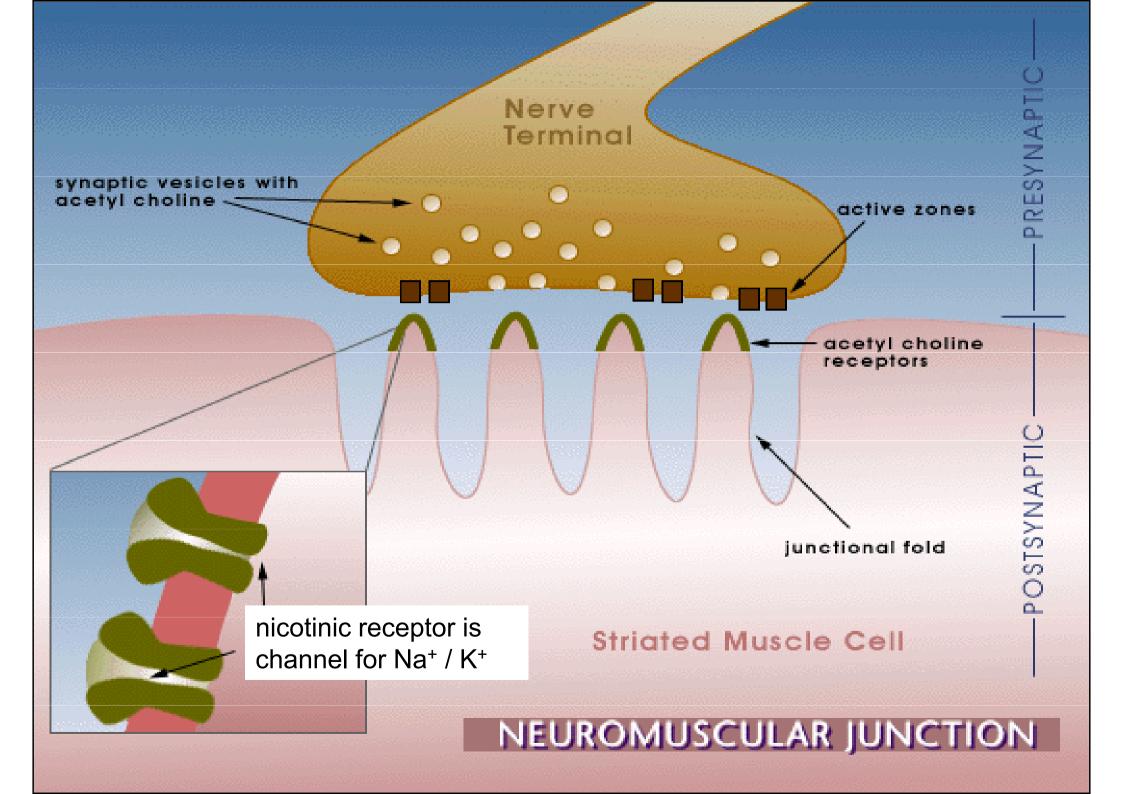

macroergic phosphate $X \sim P + ADP \rightarrow ATP + second product$

X~P: 1,3-bisP-glycerate, phosphoenolpyruvate (glycolysis), succinyl phosphate (CAC)

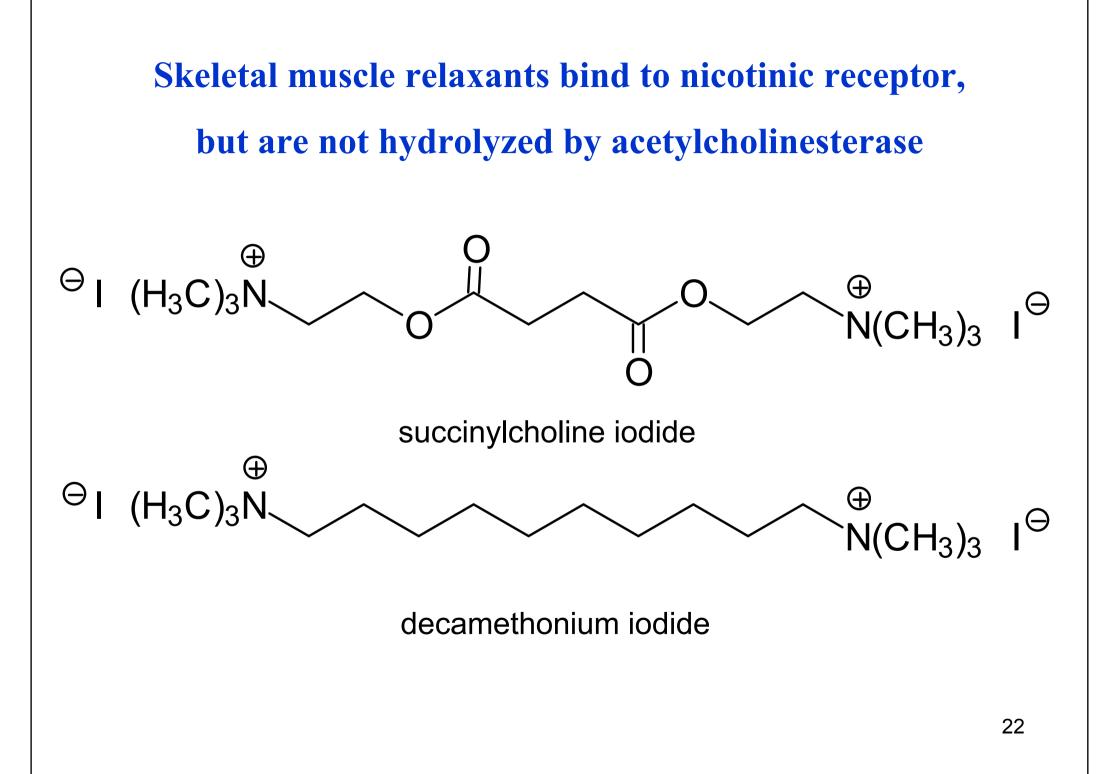

Aerobic phosphorylation:

ADP + P_i + energy of H⁺gradient \rightarrow **ATP** + heat

(H⁺gradient is made in respiratory chain by the oxidation of NADH+H⁺ and FADH₂ from aerobic glycolysis, β -oxidation of FA, and citric acid cycle)



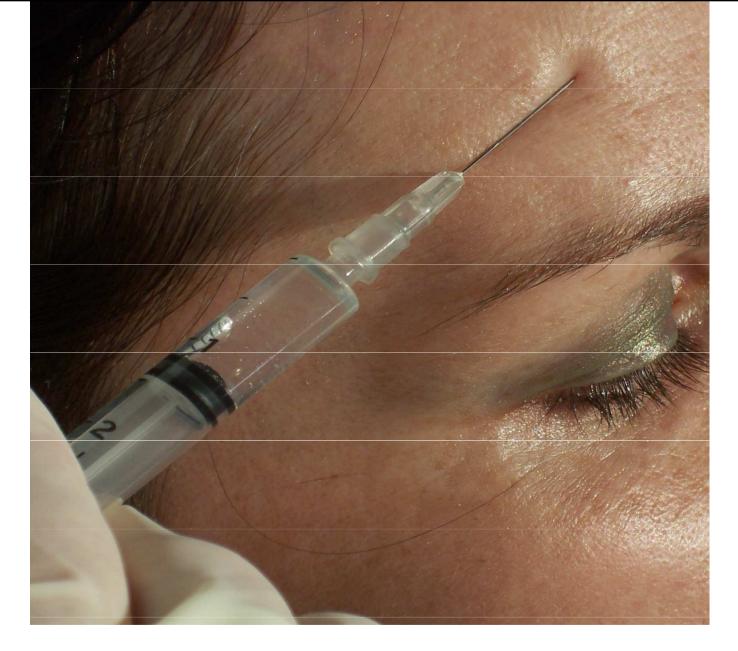
Calcium concentrations in body fluids


Events on neuromuscular junctions

- junction consists from nerve terminal separated from postsynaptic region by the synaptic cleft
- acetylcholine is released from presynaptic vesicles and binds to nicotinic receptors in muscle cell membrane ⇒ depolarization of membrane and T-tubules
- T-tubules are connected with sarcoplastic reticulum (SR) ⇒
 Ca²⁺ ions are released from SR (where are associated with calsequestrin protein)
- calcium ions then bind to troponin $C \Rightarrow$ contraction

Inhibitors of skeletal muscle contraction

Substance	Action		
Succinyl choline*	agonist of nicotinic receptor, not hydrolyzed by acetylcholinesterase, depolarization lasts longer – the result is myorelaxation		
Decamethonium	agonist of nicotinic receptor, not hydrolyzed by acetylcholinesterase		
Botulotoxin	inhibits the release of acetylcholine at presynaptic membrane		
Bungarotoxin*	antagonist of nicotinic receptor		
Curare*	tubocurarine is antagonist of nicotinic receptor		
Dantrolene	inhibits intracellular Ca ²⁺ release from SR		



Botulotoxin

- Botulinum toxin is produced by bacterium *Clostridium botulinum*. The toxin is a two-chain polypeptide with a heavy
 chain joined by a disulphide bond to a light chain.
- The light chain is a protease that attacks one of the fusion proteins at a neuromuscular junction, preventing vesicles from anchoring to the membrane to release acetylcholine.
 By <u>inhibiting acetylcholine release</u>, the toxin interferes with nerve impulses and causes <u>paralysis of muscles</u> (botulism).
- no action potential is generated \Rightarrow permanent relaxation

Medical uses of botulinum toxin

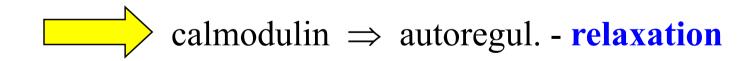
- Currently, Botox (= trade name) is finding enormous potential in several therapeutic areas including the treatment of migraine headaches, cervical dystonia (a neuromuscular disorder involving the head and neck), blepharospasm (involuntary contraction of the eye muscles), and severe primary axillary hyperhidrosis (excessive sweating).
- Other uses of botulinum toxin include urinary incontinence, anal fissure, **spastic disorders** associated with injury or disease of the central nervous system including trauma, stroke, multiple sclerosis, or cerebral palsy and focal dystonias affecting the limbs, face, jaw etc.

Botulinum toxin injections are applied in cosmetics to vanish facial wrinklers

Bungarotoxin is the antagonist of nicotinic receptor (blocks opening the Na⁺/K⁺ channel)

Bungarus multicinctus

Cardiac muscle: Three sources of calcium


- Extracellular Ca²⁺ (~ 10 %) enters by voltage operated channels (VOC)
- This influx of calcium triggers the release of calcium ions from SR and mitochondria (~ 90 %)

CICR = calcium-induced calcium release

Cardiac muscles - Contraction

• In sarcoplasm, Ca²⁺ ions bind to:

Cardiac muscles - Relaxation

- Ca²⁺ ions are liberated from troponin C and removed from sarcoplasm
- there are <u>four systems</u> how to vanish Ca^{2+} in sarcoplasm
- 1. Ca²⁺-ATPase in SR
- 2. Ca²⁺-ATPase in sarcolemma
- 3. Na^+/Ca^{2+} antiport in sarcolemma
- 4. Ca^{2+} re-entry to mitochondria

Autoregulation in cardiac muscle (scheme p. 4)

- intracellular calcium is in the complex with protein calmodulin: CM-4Ca²⁺
- Ca²⁺-CM stimulates <u>all</u> Ca²⁺-pumps (some by phosphorylation) which decrease the Ca²⁺ concentration in sarcoplasm
- the increase of intracellular [Ca²⁺] triggers contraction but, at the same time, stimulates relaxation processes

Modulatory effect of cAMP

Modulatory effect of cAMP on cardiac muscles

- cAMP is the second messenger produced after the activation of G_s -proteinlinked-receptors (β -adrenergic receptors)
- such receptors are activated by catecholamines (nor/adrenaline)
- cAMP activates protein kinase A
- protein kinase A catalyzes the phosphorylation of:
 calciductin of VOC ⇒ influx of Ca²⁺ ⇒ contraction
 Ca²⁺-ATPase in sarcolemma ⇒ eflux of Ca²⁺ ⇒ relaxation
 Ca²⁺-ATPase in SR ⇒ eflux of Ca²⁺ ⇒ relaxation
 troponin I ⇒ conformation change contact of actin-myosin ⇒ contraction

Compare Chapter 9, p. 8

Feature -	Adrenergic Receptors					
reature	α_1	α_2	β ₁	β_2		
Hormone	adrenaline	adrenaline	adrenaline	adrenaline		
G-protein	G_q	G _i	G _s	G _s		
2 nd messenger	DG, IP ₃	$cAMP\downarrow$	cAMP ↑	cAMP↑		
Occurence	smooth m.	brain	cardiac m.	smooth m.		
		increased pulse rate + contractility				
	as the result of modulatory effect of cAMF					

Metabolic background of MI

- ischemia (lack of oxygen in tissues) leads to anaerobic metabolism
 ⇒ glucose is converted to lactate
- lactate accumulates in ICF and alters intracellular environment ⇒ prolonged acidosis causes irreversible cell damage (necrosis)
- permeability of cell membrane increases ⇒
 cytoplasmatic/mitochondrial/contractile proteins are released into
 ECF
- the best markers of MI are: myoglobin, CK-MB, cardial troponins (T or I) – this triple combination is recommended
- LD isoforms are no longer used

Smooth muscles - Contraction

- source of Ca²⁺: ECF (VOC, ROC), SR
- there is no troponine C, but two other regulatory proteins binding calcium calmodulin + caldesmon
- calcium-calmodulin complex (Ca²⁺-CM) activates MLCK (myosin light chain kinase)
- activated MLCK catalyzes the phosphorylation of myosin
- phosphorylated myosin is capable to make complex with actin \Rightarrow contraction

Smooth muscles - Relaxation

Two relaxing processes occur:

- 1. Removing intracellular Ca²⁺ from ICF (like in cardiac m.)
- 2. MLC-phosphatase catalyzes the hydrolysis of

phosphorylated myosin:

MLC-P + $H_2O \rightarrow P_i + MLC$

MLC <u>does not</u> bind to actin \Rightarrow relaxation

The influence of cAMP on smooth muscles

- cAMP activates protein kinase A (PK-A)
- PK-A phosphorylates MLC-kinase:

 $MLCK \rightarrow MLCK-P$

• MLCK-P is inactive, does not phosphorylates MLC \Rightarrow

no interaction between actin and myosin \Rightarrow relaxation

Compare: Influence of cAMP on muscles

Skeletal muscle	Cardiac muscle	Smooth muscle
none	modulation	relaxation

Activation through	Effect on smooth muscle
β-receptor	$G_s \Rightarrow \uparrow cAMP \Rightarrow relaxation$
α_2 -receptor	$G_i \Rightarrow \downarrow cAMP \Rightarrow contraction$
α_1 -receptor	$\text{PIP}_2 \Rightarrow \uparrow \text{Ca}^{2+} \Rightarrow \text{contraction}$
NO	relaxation

Different actions mediated through different adrenergic receptors

Feature	Adrenergic Receptors			
reature	α_1	α_2	β_1	β ₂
Hormone	adrenaline	adrenaline	adrenaline	adrenaline
G-protein	Gq	G_i	G _s	G _s
2 nd messenger	DG/IP ₃ /Ca ²⁺	cAMP↓	cAMP↑	cAMP ↑
Muscle action	contraction	contraction	\uparrow contractility	relaxation
Muscle type	smooth	smooth	cardiac	smooth

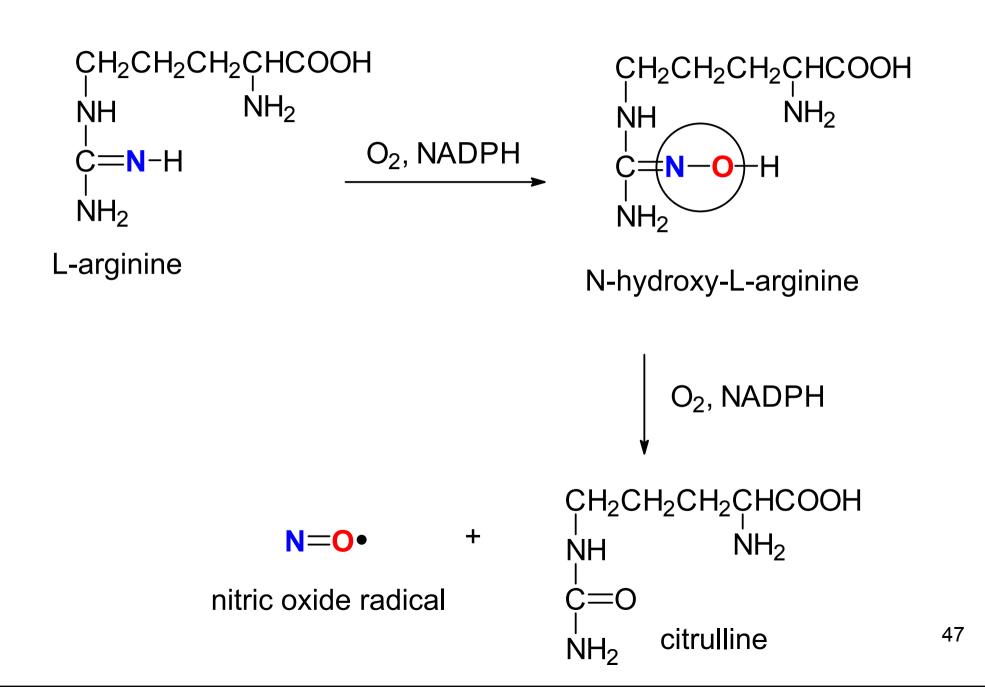
A. 32

- nitric oxide (NO) is a relaxant of smooth muscles
 (e.g. arterial myocytes)
- activates guanylate cyclase in cytosol: GTP \rightarrow cGMP + PP_i
- cGMP activates protein kinase G (PK-G)
- PK-G phosphorylates MLC-kinase: MLCK \rightarrow MLCK-P
- MLCK-P is inactive, does not phosphorylate MLC \Rightarrow no interaction between actin and myosin \Rightarrow relaxation

NO releasing compounds

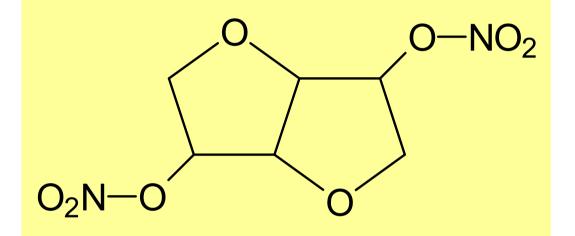
• Endogenous:

L-arginine (the imino nitrogen of guanidine part)


• Exogenous:

organic nitrates = esters of nitric acid (R-O-NO₂)

organic nitrites = esters of nitrous acid (R-O-N=O)


sodium nitroprusside = a complex of Fe^{3+} with CN^{-} and NO

NO originates from imino nitrogen of L-arginine

Organic nitrates (alkyl nitrates)

$$CH_2 - O - NO_2$$

 $CH - O - NO_2$
 $CH_2 - O - NO_2$

glycerol trinitrate (glyceroli trinitras)

isosorbide dinitrate (isosorbidi dinitras)

In myocytes, they are reduced by glutathion and subsequently release NO - vasodilators

Organic nitrites (alkyl nitrites)

H₃C $CH-CH_2-CH_2-O-N=O$ H₃C

isoamyl nitrite (amylis nitris)

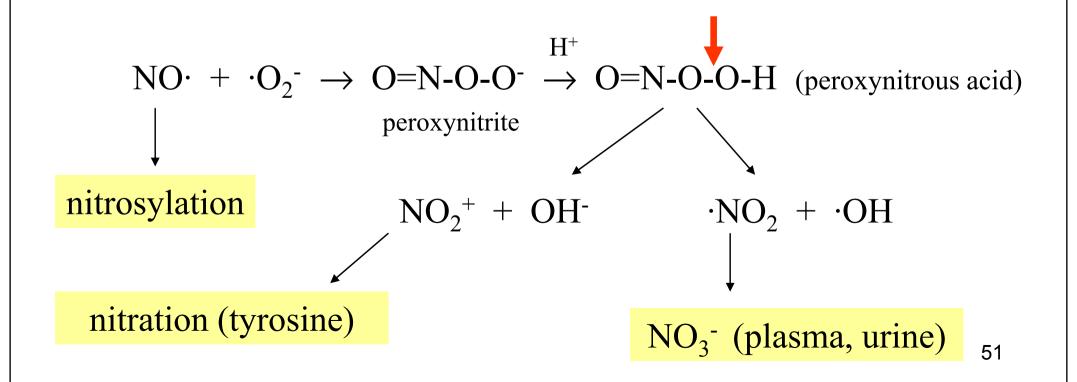
H₃C $CH-CH_2-O-H_3C$

isobutyl nitrite volatile liquid, new drug (poppers, rush, liquid aroma ...)

Alkyl nitrites as well as inorganic nitrites (NaNO₂) have oxidation properties \Rightarrow oxidize Fe²⁺ in hemoglobin to Fe³⁺ \Rightarrow they cause **methemoglobinemia**

Other NO releasing compounds

 $Na_2[Fe(CN)_5NO]$


sodium nitroprusside (natrii nitroprussias)

sodium pentacyanonitrosylferrate(III)

extremely potent vasodilator

Other metabolic pathways of NO

- nitric oxide is a radical (·N=O)
- reacts with superoxide to yield peroxynitrite
- the cleavage of peroxy bond (O-O) can occur in two ways

Different actions of the same signal molecule

Feature	Skeletal muscle	Smooth muscle
Signal molecule	acetylcholine	acetylcholine
Receptor	nicotinic	muscarinic (M_1/G_q)
2 nd messenger	none $\Delta \psi$ of membrane potential	IP ₃ , Ca ²⁺
Effect	\uparrow Ca ²⁺ \Rightarrow contraction	\uparrow NO \Rightarrow relaxation
Scheme on page	3	7

Maximal intesity of muscle work

- anaerobic phase
- $30 \sec 2 \min$
- muscles use glucose \Rightarrow metabolized to lactate
- lactate goes to liver \Rightarrow substrate of gluconeogenesis
- small portion of lactate becomes **metabolic fuel** for resting muscles and myocardium

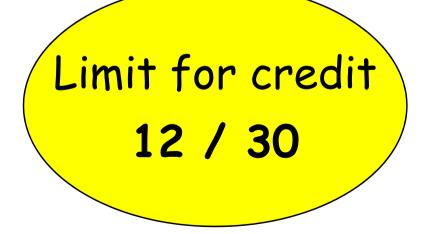
Prolonged muscle work/exercise

- working muscles are adapted to aerobic metabolism of glucose and FA
- resting muscles utilize FA and KB
- glycerol from lipolysis is the substrate for liver gluconeogenesis

A. 35

Type of glycolysis	ATP / Glc	
Aerobic from glucose	36-38*	
Anaerobic from glucose	2	
Anaerobic from glycogen	3	

* Depends on the type of transport of NADH from cytosol to mitochondria.


A. 38

- **in the first 10 sec** ATP itself and creatine phosphate currently present in muscle cell
- After 30 sec mainly anaerobic glycolysis glucose → 2 lactate + 2 ATP
- After 10 min aerobic oxidation of glucose glucose \rightarrow 2 pyruvate \rightarrow 2 acetyl-CoA \rightarrow 38 ATP
- After 2 hours aerobic oxidation of FA stearic acid → 9 acetyl-CoA → 146 ATP palmitic acid → 8 acetyl-CoA → 129 ATP

Monday June 2, 13:00

Credit test (30 Q / 35 min)

- all seminar chapters
- all practical chapters
- reference values: **YES**
- calculations: NO

